]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/buffer.c
[PATCH] __block_write_full_page race fix
[net-next-2.6.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/config.h>
22#include <linux/kernel.h>
23#include <linux/syscalls.h>
24#include <linux/fs.h>
25#include <linux/mm.h>
26#include <linux/percpu.h>
27#include <linux/slab.h>
28#include <linux/smp_lock.h>
29#include <linux/blkdev.h>
30#include <linux/file.h>
31#include <linux/quotaops.h>
32#include <linux/highmem.h>
33#include <linux/module.h>
34#include <linux/writeback.h>
35#include <linux/hash.h>
36#include <linux/suspend.h>
37#include <linux/buffer_head.h>
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
43
44static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
45static void invalidate_bh_lrus(void);
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55
56static int sync_buffer(void *word)
57{
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68}
69
70void fastcall __lock_buffer(struct buffer_head *bh)
71{
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
77void fastcall unlock_buffer(struct buffer_head *bh)
78{
79 clear_buffer_locked(bh);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82}
83
84/*
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
88 */
89void __wait_on_buffer(struct buffer_head * bh)
90{
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92}
93
94static void
95__clear_page_buffers(struct page *page)
96{
97 ClearPagePrivate(page);
98 page->private = 0;
99 page_cache_release(page);
100}
101
102static void buffer_io_error(struct buffer_head *bh)
103{
104 char b[BDEVNAME_SIZE];
105
106 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
107 bdevname(bh->b_bdev, b),
108 (unsigned long long)bh->b_blocknr);
109}
110
111/*
112 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
113 * unlock the buffer. This is what ll_rw_block uses too.
114 */
115void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
116{
117 if (uptodate) {
118 set_buffer_uptodate(bh);
119 } else {
120 /* This happens, due to failed READA attempts. */
121 clear_buffer_uptodate(bh);
122 }
123 unlock_buffer(bh);
124 put_bh(bh);
125}
126
127void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
128{
129 char b[BDEVNAME_SIZE];
130
131 if (uptodate) {
132 set_buffer_uptodate(bh);
133 } else {
134 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
135 buffer_io_error(bh);
136 printk(KERN_WARNING "lost page write due to "
137 "I/O error on %s\n",
138 bdevname(bh->b_bdev, b));
139 }
140 set_buffer_write_io_error(bh);
141 clear_buffer_uptodate(bh);
142 }
143 unlock_buffer(bh);
144 put_bh(bh);
145}
146
147/*
148 * Write out and wait upon all the dirty data associated with a block
149 * device via its mapping. Does not take the superblock lock.
150 */
151int sync_blockdev(struct block_device *bdev)
152{
153 int ret = 0;
154
155 if (bdev) {
156 int err;
157
158 ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
159 err = filemap_fdatawait(bdev->bd_inode->i_mapping);
160 if (!ret)
161 ret = err;
162 }
163 return ret;
164}
165EXPORT_SYMBOL(sync_blockdev);
166
167/*
168 * Write out and wait upon all dirty data associated with this
169 * superblock. Filesystem data as well as the underlying block
170 * device. Takes the superblock lock.
171 */
172int fsync_super(struct super_block *sb)
173{
174 sync_inodes_sb(sb, 0);
175 DQUOT_SYNC(sb);
176 lock_super(sb);
177 if (sb->s_dirt && sb->s_op->write_super)
178 sb->s_op->write_super(sb);
179 unlock_super(sb);
180 if (sb->s_op->sync_fs)
181 sb->s_op->sync_fs(sb, 1);
182 sync_blockdev(sb->s_bdev);
183 sync_inodes_sb(sb, 1);
184
185 return sync_blockdev(sb->s_bdev);
186}
187
188/*
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
192 */
193int fsync_bdev(struct block_device *bdev)
194{
195 struct super_block *sb = get_super(bdev);
196 if (sb) {
197 int res = fsync_super(sb);
198 drop_super(sb);
199 return res;
200 }
201 return sync_blockdev(bdev);
202}
203
204/**
205 * freeze_bdev -- lock a filesystem and force it into a consistent state
206 * @bdev: blockdevice to lock
207 *
208 * This takes the block device bd_mount_sem to make sure no new mounts
209 * happen on bdev until thaw_bdev() is called.
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
212 */
213struct super_block *freeze_bdev(struct block_device *bdev)
214{
215 struct super_block *sb;
216
217 down(&bdev->bd_mount_sem);
218 sb = get_super(bdev);
219 if (sb && !(sb->s_flags & MS_RDONLY)) {
220 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 221 smp_wmb();
1da177e4
LT
222
223 sync_inodes_sb(sb, 0);
224 DQUOT_SYNC(sb);
225
226 lock_super(sb);
227 if (sb->s_dirt && sb->s_op->write_super)
228 sb->s_op->write_super(sb);
229 unlock_super(sb);
230
231 if (sb->s_op->sync_fs)
232 sb->s_op->sync_fs(sb, 1);
233
234 sync_blockdev(sb->s_bdev);
235 sync_inodes_sb(sb, 1);
236
237 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 238 smp_wmb();
1da177e4
LT
239
240 sync_blockdev(sb->s_bdev);
241
242 if (sb->s_op->write_super_lockfs)
243 sb->s_op->write_super_lockfs(sb);
244 }
245
246 sync_blockdev(bdev);
247 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
248}
249EXPORT_SYMBOL(freeze_bdev);
250
251/**
252 * thaw_bdev -- unlock filesystem
253 * @bdev: blockdevice to unlock
254 * @sb: associated superblock
255 *
256 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
257 */
258void thaw_bdev(struct block_device *bdev, struct super_block *sb)
259{
260 if (sb) {
261 BUG_ON(sb->s_bdev != bdev);
262
263 if (sb->s_op->unlockfs)
264 sb->s_op->unlockfs(sb);
265 sb->s_frozen = SB_UNFROZEN;
d59dd462 266 smp_wmb();
1da177e4
LT
267 wake_up(&sb->s_wait_unfrozen);
268 drop_super(sb);
269 }
270
271 up(&bdev->bd_mount_sem);
272}
273EXPORT_SYMBOL(thaw_bdev);
274
275/*
276 * sync everything. Start out by waking pdflush, because that writes back
277 * all queues in parallel.
278 */
279static void do_sync(unsigned long wait)
280{
281 wakeup_bdflush(0);
282 sync_inodes(0); /* All mappings, inodes and their blockdevs */
283 DQUOT_SYNC(NULL);
284 sync_supers(); /* Write the superblocks */
285 sync_filesystems(0); /* Start syncing the filesystems */
286 sync_filesystems(wait); /* Waitingly sync the filesystems */
287 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
288 if (!wait)
289 printk("Emergency Sync complete\n");
290 if (unlikely(laptop_mode))
291 laptop_sync_completion();
292}
293
294asmlinkage long sys_sync(void)
295{
296 do_sync(1);
297 return 0;
298}
299
300void emergency_sync(void)
301{
302 pdflush_operation(do_sync, 0);
303}
304
305/*
306 * Generic function to fsync a file.
307 *
308 * filp may be NULL if called via the msync of a vma.
309 */
310
311int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
312{
313 struct inode * inode = dentry->d_inode;
314 struct super_block * sb;
315 int ret, err;
316
317 /* sync the inode to buffers */
318 ret = write_inode_now(inode, 0);
319
320 /* sync the superblock to buffers */
321 sb = inode->i_sb;
322 lock_super(sb);
323 if (sb->s_op->write_super)
324 sb->s_op->write_super(sb);
325 unlock_super(sb);
326
327 /* .. finally sync the buffers to disk */
328 err = sync_blockdev(sb->s_bdev);
329 if (!ret)
330 ret = err;
331 return ret;
332}
333
334asmlinkage long sys_fsync(unsigned int fd)
335{
336 struct file * file;
337 struct address_space *mapping;
338 int ret, err;
339
340 ret = -EBADF;
341 file = fget(fd);
342 if (!file)
343 goto out;
344
345 mapping = file->f_mapping;
346
347 ret = -EINVAL;
348 if (!file->f_op || !file->f_op->fsync) {
349 /* Why? We can still call filemap_fdatawrite */
350 goto out_putf;
351 }
352
353 current->flags |= PF_SYNCWRITE;
354 ret = filemap_fdatawrite(mapping);
355
356 /*
357 * We need to protect against concurrent writers,
358 * which could cause livelocks in fsync_buffers_list
359 */
360 down(&mapping->host->i_sem);
361 err = file->f_op->fsync(file, file->f_dentry, 0);
362 if (!ret)
363 ret = err;
364 up(&mapping->host->i_sem);
365 err = filemap_fdatawait(mapping);
366 if (!ret)
367 ret = err;
368 current->flags &= ~PF_SYNCWRITE;
369
370out_putf:
371 fput(file);
372out:
373 return ret;
374}
375
376asmlinkage long sys_fdatasync(unsigned int fd)
377{
378 struct file * file;
379 struct address_space *mapping;
380 int ret, err;
381
382 ret = -EBADF;
383 file = fget(fd);
384 if (!file)
385 goto out;
386
387 ret = -EINVAL;
388 if (!file->f_op || !file->f_op->fsync)
389 goto out_putf;
390
391 mapping = file->f_mapping;
392
393 current->flags |= PF_SYNCWRITE;
394 ret = filemap_fdatawrite(mapping);
395 down(&mapping->host->i_sem);
396 err = file->f_op->fsync(file, file->f_dentry, 1);
397 if (!ret)
398 ret = err;
399 up(&mapping->host->i_sem);
400 err = filemap_fdatawait(mapping);
401 if (!ret)
402 ret = err;
403 current->flags &= ~PF_SYNCWRITE;
404
405out_putf:
406 fput(file);
407out:
408 return ret;
409}
410
411/*
412 * Various filesystems appear to want __find_get_block to be non-blocking.
413 * But it's the page lock which protects the buffers. To get around this,
414 * we get exclusion from try_to_free_buffers with the blockdev mapping's
415 * private_lock.
416 *
417 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
418 * may be quite high. This code could TryLock the page, and if that
419 * succeeds, there is no need to take private_lock. (But if
420 * private_lock is contended then so is mapping->tree_lock).
421 */
422static struct buffer_head *
423__find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
424{
425 struct inode *bd_inode = bdev->bd_inode;
426 struct address_space *bd_mapping = bd_inode->i_mapping;
427 struct buffer_head *ret = NULL;
428 pgoff_t index;
429 struct buffer_head *bh;
430 struct buffer_head *head;
431 struct page *page;
432 int all_mapped = 1;
433
434 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
435 page = find_get_page(bd_mapping, index);
436 if (!page)
437 goto out;
438
439 spin_lock(&bd_mapping->private_lock);
440 if (!page_has_buffers(page))
441 goto out_unlock;
442 head = page_buffers(page);
443 bh = head;
444 do {
445 if (bh->b_blocknr == block) {
446 ret = bh;
447 get_bh(bh);
448 goto out_unlock;
449 }
450 if (!buffer_mapped(bh))
451 all_mapped = 0;
452 bh = bh->b_this_page;
453 } while (bh != head);
454
455 /* we might be here because some of the buffers on this page are
456 * not mapped. This is due to various races between
457 * file io on the block device and getblk. It gets dealt with
458 * elsewhere, don't buffer_error if we had some unmapped buffers
459 */
460 if (all_mapped) {
461 printk("__find_get_block_slow() failed. "
462 "block=%llu, b_blocknr=%llu\n",
463 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
464 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
465 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
466 }
467out_unlock:
468 spin_unlock(&bd_mapping->private_lock);
469 page_cache_release(page);
470out:
471 return ret;
472}
473
474/* If invalidate_buffers() will trash dirty buffers, it means some kind
475 of fs corruption is going on. Trashing dirty data always imply losing
476 information that was supposed to be just stored on the physical layer
477 by the user.
478
479 Thus invalidate_buffers in general usage is not allwowed to trash
480 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
481 be preserved. These buffers are simply skipped.
482
483 We also skip buffers which are still in use. For example this can
484 happen if a userspace program is reading the block device.
485
486 NOTE: In the case where the user removed a removable-media-disk even if
487 there's still dirty data not synced on disk (due a bug in the device driver
488 or due an error of the user), by not destroying the dirty buffers we could
489 generate corruption also on the next media inserted, thus a parameter is
490 necessary to handle this case in the most safe way possible (trying
491 to not corrupt also the new disk inserted with the data belonging to
492 the old now corrupted disk). Also for the ramdisk the natural thing
493 to do in order to release the ramdisk memory is to destroy dirty buffers.
494
495 These are two special cases. Normal usage imply the device driver
496 to issue a sync on the device (without waiting I/O completion) and
497 then an invalidate_buffers call that doesn't trash dirty buffers.
498
499 For handling cache coherency with the blkdev pagecache the 'update' case
500 is been introduced. It is needed to re-read from disk any pinned
501 buffer. NOTE: re-reading from disk is destructive so we can do it only
502 when we assume nobody is changing the buffercache under our I/O and when
503 we think the disk contains more recent information than the buffercache.
504 The update == 1 pass marks the buffers we need to update, the update == 2
505 pass does the actual I/O. */
506void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
507{
508 invalidate_bh_lrus();
509 /*
510 * FIXME: what about destroy_dirty_buffers?
511 * We really want to use invalidate_inode_pages2() for
512 * that, but not until that's cleaned up.
513 */
514 invalidate_inode_pages(bdev->bd_inode->i_mapping);
515}
516
517/*
518 * Kick pdflush then try to free up some ZONE_NORMAL memory.
519 */
520static void free_more_memory(void)
521{
522 struct zone **zones;
523 pg_data_t *pgdat;
524
525 wakeup_bdflush(1024);
526 yield();
527
528 for_each_pgdat(pgdat) {
529 zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones;
530 if (*zones)
531 try_to_free_pages(zones, GFP_NOFS, 0);
532 }
533}
534
535/*
536 * I/O completion handler for block_read_full_page() - pages
537 * which come unlocked at the end of I/O.
538 */
539static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
540{
541 static DEFINE_SPINLOCK(page_uptodate_lock);
542 unsigned long flags;
543 struct buffer_head *tmp;
544 struct page *page;
545 int page_uptodate = 1;
546
547 BUG_ON(!buffer_async_read(bh));
548
549 page = bh->b_page;
550 if (uptodate) {
551 set_buffer_uptodate(bh);
552 } else {
553 clear_buffer_uptodate(bh);
554 if (printk_ratelimit())
555 buffer_io_error(bh);
556 SetPageError(page);
557 }
558
559 /*
560 * Be _very_ careful from here on. Bad things can happen if
561 * two buffer heads end IO at almost the same time and both
562 * decide that the page is now completely done.
563 */
564 spin_lock_irqsave(&page_uptodate_lock, flags);
565 clear_buffer_async_read(bh);
566 unlock_buffer(bh);
567 tmp = bh;
568 do {
569 if (!buffer_uptodate(tmp))
570 page_uptodate = 0;
571 if (buffer_async_read(tmp)) {
572 BUG_ON(!buffer_locked(tmp));
573 goto still_busy;
574 }
575 tmp = tmp->b_this_page;
576 } while (tmp != bh);
577 spin_unlock_irqrestore(&page_uptodate_lock, flags);
578
579 /*
580 * If none of the buffers had errors and they are all
581 * uptodate then we can set the page uptodate.
582 */
583 if (page_uptodate && !PageError(page))
584 SetPageUptodate(page);
585 unlock_page(page);
586 return;
587
588still_busy:
589 spin_unlock_irqrestore(&page_uptodate_lock, flags);
590 return;
591}
592
593/*
594 * Completion handler for block_write_full_page() - pages which are unlocked
595 * during I/O, and which have PageWriteback cleared upon I/O completion.
596 */
597void end_buffer_async_write(struct buffer_head *bh, int uptodate)
598{
599 char b[BDEVNAME_SIZE];
600 static DEFINE_SPINLOCK(page_uptodate_lock);
601 unsigned long flags;
602 struct buffer_head *tmp;
603 struct page *page;
604
605 BUG_ON(!buffer_async_write(bh));
606
607 page = bh->b_page;
608 if (uptodate) {
609 set_buffer_uptodate(bh);
610 } else {
611 if (printk_ratelimit()) {
612 buffer_io_error(bh);
613 printk(KERN_WARNING "lost page write due to "
614 "I/O error on %s\n",
615 bdevname(bh->b_bdev, b));
616 }
617 set_bit(AS_EIO, &page->mapping->flags);
618 clear_buffer_uptodate(bh);
619 SetPageError(page);
620 }
621
622 spin_lock_irqsave(&page_uptodate_lock, flags);
623 clear_buffer_async_write(bh);
624 unlock_buffer(bh);
625 tmp = bh->b_this_page;
626 while (tmp != bh) {
627 if (buffer_async_write(tmp)) {
628 BUG_ON(!buffer_locked(tmp));
629 goto still_busy;
630 }
631 tmp = tmp->b_this_page;
632 }
633 spin_unlock_irqrestore(&page_uptodate_lock, flags);
634 end_page_writeback(page);
635 return;
636
637still_busy:
638 spin_unlock_irqrestore(&page_uptodate_lock, flags);
639 return;
640}
641
642/*
643 * If a page's buffers are under async readin (end_buffer_async_read
644 * completion) then there is a possibility that another thread of
645 * control could lock one of the buffers after it has completed
646 * but while some of the other buffers have not completed. This
647 * locked buffer would confuse end_buffer_async_read() into not unlocking
648 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
649 * that this buffer is not under async I/O.
650 *
651 * The page comes unlocked when it has no locked buffer_async buffers
652 * left.
653 *
654 * PageLocked prevents anyone starting new async I/O reads any of
655 * the buffers.
656 *
657 * PageWriteback is used to prevent simultaneous writeout of the same
658 * page.
659 *
660 * PageLocked prevents anyone from starting writeback of a page which is
661 * under read I/O (PageWriteback is only ever set against a locked page).
662 */
663static void mark_buffer_async_read(struct buffer_head *bh)
664{
665 bh->b_end_io = end_buffer_async_read;
666 set_buffer_async_read(bh);
667}
668
669void mark_buffer_async_write(struct buffer_head *bh)
670{
671 bh->b_end_io = end_buffer_async_write;
672 set_buffer_async_write(bh);
673}
674EXPORT_SYMBOL(mark_buffer_async_write);
675
676
677/*
678 * fs/buffer.c contains helper functions for buffer-backed address space's
679 * fsync functions. A common requirement for buffer-based filesystems is
680 * that certain data from the backing blockdev needs to be written out for
681 * a successful fsync(). For example, ext2 indirect blocks need to be
682 * written back and waited upon before fsync() returns.
683 *
684 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
685 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
686 * management of a list of dependent buffers at ->i_mapping->private_list.
687 *
688 * Locking is a little subtle: try_to_free_buffers() will remove buffers
689 * from their controlling inode's queue when they are being freed. But
690 * try_to_free_buffers() will be operating against the *blockdev* mapping
691 * at the time, not against the S_ISREG file which depends on those buffers.
692 * So the locking for private_list is via the private_lock in the address_space
693 * which backs the buffers. Which is different from the address_space
694 * against which the buffers are listed. So for a particular address_space,
695 * mapping->private_lock does *not* protect mapping->private_list! In fact,
696 * mapping->private_list will always be protected by the backing blockdev's
697 * ->private_lock.
698 *
699 * Which introduces a requirement: all buffers on an address_space's
700 * ->private_list must be from the same address_space: the blockdev's.
701 *
702 * address_spaces which do not place buffers at ->private_list via these
703 * utility functions are free to use private_lock and private_list for
704 * whatever they want. The only requirement is that list_empty(private_list)
705 * be true at clear_inode() time.
706 *
707 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
708 * filesystems should do that. invalidate_inode_buffers() should just go
709 * BUG_ON(!list_empty).
710 *
711 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
712 * take an address_space, not an inode. And it should be called
713 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
714 * queued up.
715 *
716 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
717 * list if it is already on a list. Because if the buffer is on a list,
718 * it *must* already be on the right one. If not, the filesystem is being
719 * silly. This will save a ton of locking. But first we have to ensure
720 * that buffers are taken *off* the old inode's list when they are freed
721 * (presumably in truncate). That requires careful auditing of all
722 * filesystems (do it inside bforget()). It could also be done by bringing
723 * b_inode back.
724 */
725
726/*
727 * The buffer's backing address_space's private_lock must be held
728 */
729static inline void __remove_assoc_queue(struct buffer_head *bh)
730{
731 list_del_init(&bh->b_assoc_buffers);
732}
733
734int inode_has_buffers(struct inode *inode)
735{
736 return !list_empty(&inode->i_data.private_list);
737}
738
739/*
740 * osync is designed to support O_SYNC io. It waits synchronously for
741 * all already-submitted IO to complete, but does not queue any new
742 * writes to the disk.
743 *
744 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
745 * you dirty the buffers, and then use osync_inode_buffers to wait for
746 * completion. Any other dirty buffers which are not yet queued for
747 * write will not be flushed to disk by the osync.
748 */
749static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
750{
751 struct buffer_head *bh;
752 struct list_head *p;
753 int err = 0;
754
755 spin_lock(lock);
756repeat:
757 list_for_each_prev(p, list) {
758 bh = BH_ENTRY(p);
759 if (buffer_locked(bh)) {
760 get_bh(bh);
761 spin_unlock(lock);
762 wait_on_buffer(bh);
763 if (!buffer_uptodate(bh))
764 err = -EIO;
765 brelse(bh);
766 spin_lock(lock);
767 goto repeat;
768 }
769 }
770 spin_unlock(lock);
771 return err;
772}
773
774/**
775 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
776 * buffers
67be2dd1 777 * @mapping: the mapping which wants those buffers written
1da177e4
LT
778 *
779 * Starts I/O against the buffers at mapping->private_list, and waits upon
780 * that I/O.
781 *
67be2dd1
MW
782 * Basically, this is a convenience function for fsync().
783 * @mapping is a file or directory which needs those buffers to be written for
784 * a successful fsync().
1da177e4
LT
785 */
786int sync_mapping_buffers(struct address_space *mapping)
787{
788 struct address_space *buffer_mapping = mapping->assoc_mapping;
789
790 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
791 return 0;
792
793 return fsync_buffers_list(&buffer_mapping->private_lock,
794 &mapping->private_list);
795}
796EXPORT_SYMBOL(sync_mapping_buffers);
797
798/*
799 * Called when we've recently written block `bblock', and it is known that
800 * `bblock' was for a buffer_boundary() buffer. This means that the block at
801 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
802 * dirty, schedule it for IO. So that indirects merge nicely with their data.
803 */
804void write_boundary_block(struct block_device *bdev,
805 sector_t bblock, unsigned blocksize)
806{
807 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
808 if (bh) {
809 if (buffer_dirty(bh))
810 ll_rw_block(WRITE, 1, &bh);
811 put_bh(bh);
812 }
813}
814
815void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
816{
817 struct address_space *mapping = inode->i_mapping;
818 struct address_space *buffer_mapping = bh->b_page->mapping;
819
820 mark_buffer_dirty(bh);
821 if (!mapping->assoc_mapping) {
822 mapping->assoc_mapping = buffer_mapping;
823 } else {
824 if (mapping->assoc_mapping != buffer_mapping)
825 BUG();
826 }
827 if (list_empty(&bh->b_assoc_buffers)) {
828 spin_lock(&buffer_mapping->private_lock);
829 list_move_tail(&bh->b_assoc_buffers,
830 &mapping->private_list);
831 spin_unlock(&buffer_mapping->private_lock);
832 }
833}
834EXPORT_SYMBOL(mark_buffer_dirty_inode);
835
836/*
837 * Add a page to the dirty page list.
838 *
839 * It is a sad fact of life that this function is called from several places
840 * deeply under spinlocking. It may not sleep.
841 *
842 * If the page has buffers, the uptodate buffers are set dirty, to preserve
843 * dirty-state coherency between the page and the buffers. It the page does
844 * not have buffers then when they are later attached they will all be set
845 * dirty.
846 *
847 * The buffers are dirtied before the page is dirtied. There's a small race
848 * window in which a writepage caller may see the page cleanness but not the
849 * buffer dirtiness. That's fine. If this code were to set the page dirty
850 * before the buffers, a concurrent writepage caller could clear the page dirty
851 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
852 * page on the dirty page list.
853 *
854 * We use private_lock to lock against try_to_free_buffers while using the
855 * page's buffer list. Also use this to protect against clean buffers being
856 * added to the page after it was set dirty.
857 *
858 * FIXME: may need to call ->reservepage here as well. That's rather up to the
859 * address_space though.
860 */
861int __set_page_dirty_buffers(struct page *page)
862{
863 struct address_space * const mapping = page->mapping;
864
865 spin_lock(&mapping->private_lock);
866 if (page_has_buffers(page)) {
867 struct buffer_head *head = page_buffers(page);
868 struct buffer_head *bh = head;
869
870 do {
871 set_buffer_dirty(bh);
872 bh = bh->b_this_page;
873 } while (bh != head);
874 }
875 spin_unlock(&mapping->private_lock);
876
877 if (!TestSetPageDirty(page)) {
878 write_lock_irq(&mapping->tree_lock);
879 if (page->mapping) { /* Race with truncate? */
880 if (mapping_cap_account_dirty(mapping))
881 inc_page_state(nr_dirty);
882 radix_tree_tag_set(&mapping->page_tree,
883 page_index(page),
884 PAGECACHE_TAG_DIRTY);
885 }
886 write_unlock_irq(&mapping->tree_lock);
887 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
888 }
889
890 return 0;
891}
892EXPORT_SYMBOL(__set_page_dirty_buffers);
893
894/*
895 * Write out and wait upon a list of buffers.
896 *
897 * We have conflicting pressures: we want to make sure that all
898 * initially dirty buffers get waited on, but that any subsequently
899 * dirtied buffers don't. After all, we don't want fsync to last
900 * forever if somebody is actively writing to the file.
901 *
902 * Do this in two main stages: first we copy dirty buffers to a
903 * temporary inode list, queueing the writes as we go. Then we clean
904 * up, waiting for those writes to complete.
905 *
906 * During this second stage, any subsequent updates to the file may end
907 * up refiling the buffer on the original inode's dirty list again, so
908 * there is a chance we will end up with a buffer queued for write but
909 * not yet completed on that list. So, as a final cleanup we go through
910 * the osync code to catch these locked, dirty buffers without requeuing
911 * any newly dirty buffers for write.
912 */
913static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
914{
915 struct buffer_head *bh;
916 struct list_head tmp;
917 int err = 0, err2;
918
919 INIT_LIST_HEAD(&tmp);
920
921 spin_lock(lock);
922 while (!list_empty(list)) {
923 bh = BH_ENTRY(list->next);
924 list_del_init(&bh->b_assoc_buffers);
925 if (buffer_dirty(bh) || buffer_locked(bh)) {
926 list_add(&bh->b_assoc_buffers, &tmp);
927 if (buffer_dirty(bh)) {
928 get_bh(bh);
929 spin_unlock(lock);
930 /*
931 * Ensure any pending I/O completes so that
932 * ll_rw_block() actually writes the current
933 * contents - it is a noop if I/O is still in
934 * flight on potentially older contents.
935 */
936 wait_on_buffer(bh);
937 ll_rw_block(WRITE, 1, &bh);
938 brelse(bh);
939 spin_lock(lock);
940 }
941 }
942 }
943
944 while (!list_empty(&tmp)) {
945 bh = BH_ENTRY(tmp.prev);
946 __remove_assoc_queue(bh);
947 get_bh(bh);
948 spin_unlock(lock);
949 wait_on_buffer(bh);
950 if (!buffer_uptodate(bh))
951 err = -EIO;
952 brelse(bh);
953 spin_lock(lock);
954 }
955
956 spin_unlock(lock);
957 err2 = osync_buffers_list(lock, list);
958 if (err)
959 return err;
960 else
961 return err2;
962}
963
964/*
965 * Invalidate any and all dirty buffers on a given inode. We are
966 * probably unmounting the fs, but that doesn't mean we have already
967 * done a sync(). Just drop the buffers from the inode list.
968 *
969 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
970 * assumes that all the buffers are against the blockdev. Not true
971 * for reiserfs.
972 */
973void invalidate_inode_buffers(struct inode *inode)
974{
975 if (inode_has_buffers(inode)) {
976 struct address_space *mapping = &inode->i_data;
977 struct list_head *list = &mapping->private_list;
978 struct address_space *buffer_mapping = mapping->assoc_mapping;
979
980 spin_lock(&buffer_mapping->private_lock);
981 while (!list_empty(list))
982 __remove_assoc_queue(BH_ENTRY(list->next));
983 spin_unlock(&buffer_mapping->private_lock);
984 }
985}
986
987/*
988 * Remove any clean buffers from the inode's buffer list. This is called
989 * when we're trying to free the inode itself. Those buffers can pin it.
990 *
991 * Returns true if all buffers were removed.
992 */
993int remove_inode_buffers(struct inode *inode)
994{
995 int ret = 1;
996
997 if (inode_has_buffers(inode)) {
998 struct address_space *mapping = &inode->i_data;
999 struct list_head *list = &mapping->private_list;
1000 struct address_space *buffer_mapping = mapping->assoc_mapping;
1001
1002 spin_lock(&buffer_mapping->private_lock);
1003 while (!list_empty(list)) {
1004 struct buffer_head *bh = BH_ENTRY(list->next);
1005 if (buffer_dirty(bh)) {
1006 ret = 0;
1007 break;
1008 }
1009 __remove_assoc_queue(bh);
1010 }
1011 spin_unlock(&buffer_mapping->private_lock);
1012 }
1013 return ret;
1014}
1015
1016/*
1017 * Create the appropriate buffers when given a page for data area and
1018 * the size of each buffer.. Use the bh->b_this_page linked list to
1019 * follow the buffers created. Return NULL if unable to create more
1020 * buffers.
1021 *
1022 * The retry flag is used to differentiate async IO (paging, swapping)
1023 * which may not fail from ordinary buffer allocations.
1024 */
1025struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1026 int retry)
1027{
1028 struct buffer_head *bh, *head;
1029 long offset;
1030
1031try_again:
1032 head = NULL;
1033 offset = PAGE_SIZE;
1034 while ((offset -= size) >= 0) {
1035 bh = alloc_buffer_head(GFP_NOFS);
1036 if (!bh)
1037 goto no_grow;
1038
1039 bh->b_bdev = NULL;
1040 bh->b_this_page = head;
1041 bh->b_blocknr = -1;
1042 head = bh;
1043
1044 bh->b_state = 0;
1045 atomic_set(&bh->b_count, 0);
1046 bh->b_size = size;
1047
1048 /* Link the buffer to its page */
1049 set_bh_page(bh, page, offset);
1050
1051 bh->b_end_io = NULL;
1052 }
1053 return head;
1054/*
1055 * In case anything failed, we just free everything we got.
1056 */
1057no_grow:
1058 if (head) {
1059 do {
1060 bh = head;
1061 head = head->b_this_page;
1062 free_buffer_head(bh);
1063 } while (head);
1064 }
1065
1066 /*
1067 * Return failure for non-async IO requests. Async IO requests
1068 * are not allowed to fail, so we have to wait until buffer heads
1069 * become available. But we don't want tasks sleeping with
1070 * partially complete buffers, so all were released above.
1071 */
1072 if (!retry)
1073 return NULL;
1074
1075 /* We're _really_ low on memory. Now we just
1076 * wait for old buffer heads to become free due to
1077 * finishing IO. Since this is an async request and
1078 * the reserve list is empty, we're sure there are
1079 * async buffer heads in use.
1080 */
1081 free_more_memory();
1082 goto try_again;
1083}
1084EXPORT_SYMBOL_GPL(alloc_page_buffers);
1085
1086static inline void
1087link_dev_buffers(struct page *page, struct buffer_head *head)
1088{
1089 struct buffer_head *bh, *tail;
1090
1091 bh = head;
1092 do {
1093 tail = bh;
1094 bh = bh->b_this_page;
1095 } while (bh);
1096 tail->b_this_page = head;
1097 attach_page_buffers(page, head);
1098}
1099
1100/*
1101 * Initialise the state of a blockdev page's buffers.
1102 */
1103static void
1104init_page_buffers(struct page *page, struct block_device *bdev,
1105 sector_t block, int size)
1106{
1107 struct buffer_head *head = page_buffers(page);
1108 struct buffer_head *bh = head;
1109 int uptodate = PageUptodate(page);
1110
1111 do {
1112 if (!buffer_mapped(bh)) {
1113 init_buffer(bh, NULL, NULL);
1114 bh->b_bdev = bdev;
1115 bh->b_blocknr = block;
1116 if (uptodate)
1117 set_buffer_uptodate(bh);
1118 set_buffer_mapped(bh);
1119 }
1120 block++;
1121 bh = bh->b_this_page;
1122 } while (bh != head);
1123}
1124
1125/*
1126 * Create the page-cache page that contains the requested block.
1127 *
1128 * This is user purely for blockdev mappings.
1129 */
1130static struct page *
1131grow_dev_page(struct block_device *bdev, sector_t block,
1132 pgoff_t index, int size)
1133{
1134 struct inode *inode = bdev->bd_inode;
1135 struct page *page;
1136 struct buffer_head *bh;
1137
1138 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1139 if (!page)
1140 return NULL;
1141
1142 if (!PageLocked(page))
1143 BUG();
1144
1145 if (page_has_buffers(page)) {
1146 bh = page_buffers(page);
1147 if (bh->b_size == size) {
1148 init_page_buffers(page, bdev, block, size);
1149 return page;
1150 }
1151 if (!try_to_free_buffers(page))
1152 goto failed;
1153 }
1154
1155 /*
1156 * Allocate some buffers for this page
1157 */
1158 bh = alloc_page_buffers(page, size, 0);
1159 if (!bh)
1160 goto failed;
1161
1162 /*
1163 * Link the page to the buffers and initialise them. Take the
1164 * lock to be atomic wrt __find_get_block(), which does not
1165 * run under the page lock.
1166 */
1167 spin_lock(&inode->i_mapping->private_lock);
1168 link_dev_buffers(page, bh);
1169 init_page_buffers(page, bdev, block, size);
1170 spin_unlock(&inode->i_mapping->private_lock);
1171 return page;
1172
1173failed:
1174 BUG();
1175 unlock_page(page);
1176 page_cache_release(page);
1177 return NULL;
1178}
1179
1180/*
1181 * Create buffers for the specified block device block's page. If
1182 * that page was dirty, the buffers are set dirty also.
1183 *
1184 * Except that's a bug. Attaching dirty buffers to a dirty
1185 * blockdev's page can result in filesystem corruption, because
1186 * some of those buffers may be aliases of filesystem data.
1187 * grow_dev_page() will go BUG() if this happens.
1188 */
1189static inline int
1190grow_buffers(struct block_device *bdev, sector_t block, int size)
1191{
1192 struct page *page;
1193 pgoff_t index;
1194 int sizebits;
1195
1196 sizebits = -1;
1197 do {
1198 sizebits++;
1199 } while ((size << sizebits) < PAGE_SIZE);
1200
1201 index = block >> sizebits;
1202 block = index << sizebits;
1203
1204 /* Create a page with the proper size buffers.. */
1205 page = grow_dev_page(bdev, block, index, size);
1206 if (!page)
1207 return 0;
1208 unlock_page(page);
1209 page_cache_release(page);
1210 return 1;
1211}
1212
1213struct buffer_head *
1214__getblk_slow(struct block_device *bdev, sector_t block, int size)
1215{
1216 /* Size must be multiple of hard sectorsize */
1217 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1218 (size < 512 || size > PAGE_SIZE))) {
1219 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1220 size);
1221 printk(KERN_ERR "hardsect size: %d\n",
1222 bdev_hardsect_size(bdev));
1223
1224 dump_stack();
1225 return NULL;
1226 }
1227
1228 for (;;) {
1229 struct buffer_head * bh;
1230
1231 bh = __find_get_block(bdev, block, size);
1232 if (bh)
1233 return bh;
1234
1235 if (!grow_buffers(bdev, block, size))
1236 free_more_memory();
1237 }
1238}
1239
1240/*
1241 * The relationship between dirty buffers and dirty pages:
1242 *
1243 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1244 * the page is tagged dirty in its radix tree.
1245 *
1246 * At all times, the dirtiness of the buffers represents the dirtiness of
1247 * subsections of the page. If the page has buffers, the page dirty bit is
1248 * merely a hint about the true dirty state.
1249 *
1250 * When a page is set dirty in its entirety, all its buffers are marked dirty
1251 * (if the page has buffers).
1252 *
1253 * When a buffer is marked dirty, its page is dirtied, but the page's other
1254 * buffers are not.
1255 *
1256 * Also. When blockdev buffers are explicitly read with bread(), they
1257 * individually become uptodate. But their backing page remains not
1258 * uptodate - even if all of its buffers are uptodate. A subsequent
1259 * block_read_full_page() against that page will discover all the uptodate
1260 * buffers, will set the page uptodate and will perform no I/O.
1261 */
1262
1263/**
1264 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1265 * @bh: the buffer_head to mark dirty
1da177e4
LT
1266 *
1267 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1268 * backing page dirty, then tag the page as dirty in its address_space's radix
1269 * tree and then attach the address_space's inode to its superblock's dirty
1270 * inode list.
1271 *
1272 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1273 * mapping->tree_lock and the global inode_lock.
1274 */
1275void fastcall mark_buffer_dirty(struct buffer_head *bh)
1276{
1277 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1278 __set_page_dirty_nobuffers(bh->b_page);
1279}
1280
1281/*
1282 * Decrement a buffer_head's reference count. If all buffers against a page
1283 * have zero reference count, are clean and unlocked, and if the page is clean
1284 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1285 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1286 * a page but it ends up not being freed, and buffers may later be reattached).
1287 */
1288void __brelse(struct buffer_head * buf)
1289{
1290 if (atomic_read(&buf->b_count)) {
1291 put_bh(buf);
1292 return;
1293 }
1294 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1295 WARN_ON(1);
1296}
1297
1298/*
1299 * bforget() is like brelse(), except it discards any
1300 * potentially dirty data.
1301 */
1302void __bforget(struct buffer_head *bh)
1303{
1304 clear_buffer_dirty(bh);
1305 if (!list_empty(&bh->b_assoc_buffers)) {
1306 struct address_space *buffer_mapping = bh->b_page->mapping;
1307
1308 spin_lock(&buffer_mapping->private_lock);
1309 list_del_init(&bh->b_assoc_buffers);
1310 spin_unlock(&buffer_mapping->private_lock);
1311 }
1312 __brelse(bh);
1313}
1314
1315static struct buffer_head *__bread_slow(struct buffer_head *bh)
1316{
1317 lock_buffer(bh);
1318 if (buffer_uptodate(bh)) {
1319 unlock_buffer(bh);
1320 return bh;
1321 } else {
1322 get_bh(bh);
1323 bh->b_end_io = end_buffer_read_sync;
1324 submit_bh(READ, bh);
1325 wait_on_buffer(bh);
1326 if (buffer_uptodate(bh))
1327 return bh;
1328 }
1329 brelse(bh);
1330 return NULL;
1331}
1332
1333/*
1334 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1335 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1336 * refcount elevated by one when they're in an LRU. A buffer can only appear
1337 * once in a particular CPU's LRU. A single buffer can be present in multiple
1338 * CPU's LRUs at the same time.
1339 *
1340 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1341 * sb_find_get_block().
1342 *
1343 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1344 * a local interrupt disable for that.
1345 */
1346
1347#define BH_LRU_SIZE 8
1348
1349struct bh_lru {
1350 struct buffer_head *bhs[BH_LRU_SIZE];
1351};
1352
1353static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1354
1355#ifdef CONFIG_SMP
1356#define bh_lru_lock() local_irq_disable()
1357#define bh_lru_unlock() local_irq_enable()
1358#else
1359#define bh_lru_lock() preempt_disable()
1360#define bh_lru_unlock() preempt_enable()
1361#endif
1362
1363static inline void check_irqs_on(void)
1364{
1365#ifdef irqs_disabled
1366 BUG_ON(irqs_disabled());
1367#endif
1368}
1369
1370/*
1371 * The LRU management algorithm is dopey-but-simple. Sorry.
1372 */
1373static void bh_lru_install(struct buffer_head *bh)
1374{
1375 struct buffer_head *evictee = NULL;
1376 struct bh_lru *lru;
1377
1378 check_irqs_on();
1379 bh_lru_lock();
1380 lru = &__get_cpu_var(bh_lrus);
1381 if (lru->bhs[0] != bh) {
1382 struct buffer_head *bhs[BH_LRU_SIZE];
1383 int in;
1384 int out = 0;
1385
1386 get_bh(bh);
1387 bhs[out++] = bh;
1388 for (in = 0; in < BH_LRU_SIZE; in++) {
1389 struct buffer_head *bh2 = lru->bhs[in];
1390
1391 if (bh2 == bh) {
1392 __brelse(bh2);
1393 } else {
1394 if (out >= BH_LRU_SIZE) {
1395 BUG_ON(evictee != NULL);
1396 evictee = bh2;
1397 } else {
1398 bhs[out++] = bh2;
1399 }
1400 }
1401 }
1402 while (out < BH_LRU_SIZE)
1403 bhs[out++] = NULL;
1404 memcpy(lru->bhs, bhs, sizeof(bhs));
1405 }
1406 bh_lru_unlock();
1407
1408 if (evictee)
1409 __brelse(evictee);
1410}
1411
1412/*
1413 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1414 */
1415static inline struct buffer_head *
1416lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1417{
1418 struct buffer_head *ret = NULL;
1419 struct bh_lru *lru;
1420 int i;
1421
1422 check_irqs_on();
1423 bh_lru_lock();
1424 lru = &__get_cpu_var(bh_lrus);
1425 for (i = 0; i < BH_LRU_SIZE; i++) {
1426 struct buffer_head *bh = lru->bhs[i];
1427
1428 if (bh && bh->b_bdev == bdev &&
1429 bh->b_blocknr == block && bh->b_size == size) {
1430 if (i) {
1431 while (i) {
1432 lru->bhs[i] = lru->bhs[i - 1];
1433 i--;
1434 }
1435 lru->bhs[0] = bh;
1436 }
1437 get_bh(bh);
1438 ret = bh;
1439 break;
1440 }
1441 }
1442 bh_lru_unlock();
1443 return ret;
1444}
1445
1446/*
1447 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1448 * it in the LRU and mark it as accessed. If it is not present then return
1449 * NULL
1450 */
1451struct buffer_head *
1452__find_get_block(struct block_device *bdev, sector_t block, int size)
1453{
1454 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1455
1456 if (bh == NULL) {
1457 bh = __find_get_block_slow(bdev, block, size);
1458 if (bh)
1459 bh_lru_install(bh);
1460 }
1461 if (bh)
1462 touch_buffer(bh);
1463 return bh;
1464}
1465EXPORT_SYMBOL(__find_get_block);
1466
1467/*
1468 * __getblk will locate (and, if necessary, create) the buffer_head
1469 * which corresponds to the passed block_device, block and size. The
1470 * returned buffer has its reference count incremented.
1471 *
1472 * __getblk() cannot fail - it just keeps trying. If you pass it an
1473 * illegal block number, __getblk() will happily return a buffer_head
1474 * which represents the non-existent block. Very weird.
1475 *
1476 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1477 * attempt is failing. FIXME, perhaps?
1478 */
1479struct buffer_head *
1480__getblk(struct block_device *bdev, sector_t block, int size)
1481{
1482 struct buffer_head *bh = __find_get_block(bdev, block, size);
1483
1484 might_sleep();
1485 if (bh == NULL)
1486 bh = __getblk_slow(bdev, block, size);
1487 return bh;
1488}
1489EXPORT_SYMBOL(__getblk);
1490
1491/*
1492 * Do async read-ahead on a buffer..
1493 */
1494void __breadahead(struct block_device *bdev, sector_t block, int size)
1495{
1496 struct buffer_head *bh = __getblk(bdev, block, size);
1497 ll_rw_block(READA, 1, &bh);
1498 brelse(bh);
1499}
1500EXPORT_SYMBOL(__breadahead);
1501
1502/**
1503 * __bread() - reads a specified block and returns the bh
67be2dd1 1504 * @bdev: the block_device to read from
1da177e4
LT
1505 * @block: number of block
1506 * @size: size (in bytes) to read
1507 *
1508 * Reads a specified block, and returns buffer head that contains it.
1509 * It returns NULL if the block was unreadable.
1510 */
1511struct buffer_head *
1512__bread(struct block_device *bdev, sector_t block, int size)
1513{
1514 struct buffer_head *bh = __getblk(bdev, block, size);
1515
1516 if (!buffer_uptodate(bh))
1517 bh = __bread_slow(bh);
1518 return bh;
1519}
1520EXPORT_SYMBOL(__bread);
1521
1522/*
1523 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1524 * This doesn't race because it runs in each cpu either in irq
1525 * or with preempt disabled.
1526 */
1527static void invalidate_bh_lru(void *arg)
1528{
1529 struct bh_lru *b = &get_cpu_var(bh_lrus);
1530 int i;
1531
1532 for (i = 0; i < BH_LRU_SIZE; i++) {
1533 brelse(b->bhs[i]);
1534 b->bhs[i] = NULL;
1535 }
1536 put_cpu_var(bh_lrus);
1537}
1538
1539static void invalidate_bh_lrus(void)
1540{
1541 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1542}
1543
1544void set_bh_page(struct buffer_head *bh,
1545 struct page *page, unsigned long offset)
1546{
1547 bh->b_page = page;
1548 if (offset >= PAGE_SIZE)
1549 BUG();
1550 if (PageHighMem(page))
1551 /*
1552 * This catches illegal uses and preserves the offset:
1553 */
1554 bh->b_data = (char *)(0 + offset);
1555 else
1556 bh->b_data = page_address(page) + offset;
1557}
1558EXPORT_SYMBOL(set_bh_page);
1559
1560/*
1561 * Called when truncating a buffer on a page completely.
1562 */
1563static inline void discard_buffer(struct buffer_head * bh)
1564{
1565 lock_buffer(bh);
1566 clear_buffer_dirty(bh);
1567 bh->b_bdev = NULL;
1568 clear_buffer_mapped(bh);
1569 clear_buffer_req(bh);
1570 clear_buffer_new(bh);
1571 clear_buffer_delay(bh);
1572 unlock_buffer(bh);
1573}
1574
1575/**
1576 * try_to_release_page() - release old fs-specific metadata on a page
1577 *
1578 * @page: the page which the kernel is trying to free
1579 * @gfp_mask: memory allocation flags (and I/O mode)
1580 *
1581 * The address_space is to try to release any data against the page
1582 * (presumably at page->private). If the release was successful, return `1'.
1583 * Otherwise return zero.
1584 *
1585 * The @gfp_mask argument specifies whether I/O may be performed to release
1586 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1587 *
1588 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1589 */
1590int try_to_release_page(struct page *page, int gfp_mask)
1591{
1592 struct address_space * const mapping = page->mapping;
1593
1594 BUG_ON(!PageLocked(page));
1595 if (PageWriteback(page))
1596 return 0;
1597
1598 if (mapping && mapping->a_ops->releasepage)
1599 return mapping->a_ops->releasepage(page, gfp_mask);
1600 return try_to_free_buffers(page);
1601}
1602EXPORT_SYMBOL(try_to_release_page);
1603
1604/**
1605 * block_invalidatepage - invalidate part of all of a buffer-backed page
1606 *
1607 * @page: the page which is affected
1608 * @offset: the index of the truncation point
1609 *
1610 * block_invalidatepage() is called when all or part of the page has become
1611 * invalidatedby a truncate operation.
1612 *
1613 * block_invalidatepage() does not have to release all buffers, but it must
1614 * ensure that no dirty buffer is left outside @offset and that no I/O
1615 * is underway against any of the blocks which are outside the truncation
1616 * point. Because the caller is about to free (and possibly reuse) those
1617 * blocks on-disk.
1618 */
1619int block_invalidatepage(struct page *page, unsigned long offset)
1620{
1621 struct buffer_head *head, *bh, *next;
1622 unsigned int curr_off = 0;
1623 int ret = 1;
1624
1625 BUG_ON(!PageLocked(page));
1626 if (!page_has_buffers(page))
1627 goto out;
1628
1629 head = page_buffers(page);
1630 bh = head;
1631 do {
1632 unsigned int next_off = curr_off + bh->b_size;
1633 next = bh->b_this_page;
1634
1635 /*
1636 * is this block fully invalidated?
1637 */
1638 if (offset <= curr_off)
1639 discard_buffer(bh);
1640 curr_off = next_off;
1641 bh = next;
1642 } while (bh != head);
1643
1644 /*
1645 * We release buffers only if the entire page is being invalidated.
1646 * The get_block cached value has been unconditionally invalidated,
1647 * so real IO is not possible anymore.
1648 */
1649 if (offset == 0)
1650 ret = try_to_release_page(page, 0);
1651out:
1652 return ret;
1653}
1654EXPORT_SYMBOL(block_invalidatepage);
1655
1656/*
1657 * We attach and possibly dirty the buffers atomically wrt
1658 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1659 * is already excluded via the page lock.
1660 */
1661void create_empty_buffers(struct page *page,
1662 unsigned long blocksize, unsigned long b_state)
1663{
1664 struct buffer_head *bh, *head, *tail;
1665
1666 head = alloc_page_buffers(page, blocksize, 1);
1667 bh = head;
1668 do {
1669 bh->b_state |= b_state;
1670 tail = bh;
1671 bh = bh->b_this_page;
1672 } while (bh);
1673 tail->b_this_page = head;
1674
1675 spin_lock(&page->mapping->private_lock);
1676 if (PageUptodate(page) || PageDirty(page)) {
1677 bh = head;
1678 do {
1679 if (PageDirty(page))
1680 set_buffer_dirty(bh);
1681 if (PageUptodate(page))
1682 set_buffer_uptodate(bh);
1683 bh = bh->b_this_page;
1684 } while (bh != head);
1685 }
1686 attach_page_buffers(page, head);
1687 spin_unlock(&page->mapping->private_lock);
1688}
1689EXPORT_SYMBOL(create_empty_buffers);
1690
1691/*
1692 * We are taking a block for data and we don't want any output from any
1693 * buffer-cache aliases starting from return from that function and
1694 * until the moment when something will explicitly mark the buffer
1695 * dirty (hopefully that will not happen until we will free that block ;-)
1696 * We don't even need to mark it not-uptodate - nobody can expect
1697 * anything from a newly allocated buffer anyway. We used to used
1698 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1699 * don't want to mark the alias unmapped, for example - it would confuse
1700 * anyone who might pick it with bread() afterwards...
1701 *
1702 * Also.. Note that bforget() doesn't lock the buffer. So there can
1703 * be writeout I/O going on against recently-freed buffers. We don't
1704 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1705 * only if we really need to. That happens here.
1706 */
1707void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1708{
1709 struct buffer_head *old_bh;
1710
1711 might_sleep();
1712
1713 old_bh = __find_get_block_slow(bdev, block, 0);
1714 if (old_bh) {
1715 clear_buffer_dirty(old_bh);
1716 wait_on_buffer(old_bh);
1717 clear_buffer_req(old_bh);
1718 __brelse(old_bh);
1719 }
1720}
1721EXPORT_SYMBOL(unmap_underlying_metadata);
1722
1723/*
1724 * NOTE! All mapped/uptodate combinations are valid:
1725 *
1726 * Mapped Uptodate Meaning
1727 *
1728 * No No "unknown" - must do get_block()
1729 * No Yes "hole" - zero-filled
1730 * Yes No "allocated" - allocated on disk, not read in
1731 * Yes Yes "valid" - allocated and up-to-date in memory.
1732 *
1733 * "Dirty" is valid only with the last case (mapped+uptodate).
1734 */
1735
1736/*
1737 * While block_write_full_page is writing back the dirty buffers under
1738 * the page lock, whoever dirtied the buffers may decide to clean them
1739 * again at any time. We handle that by only looking at the buffer
1740 * state inside lock_buffer().
1741 *
1742 * If block_write_full_page() is called for regular writeback
1743 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1744 * locked buffer. This only can happen if someone has written the buffer
1745 * directly, with submit_bh(). At the address_space level PageWriteback
1746 * prevents this contention from occurring.
1747 */
1748static int __block_write_full_page(struct inode *inode, struct page *page,
1749 get_block_t *get_block, struct writeback_control *wbc)
1750{
1751 int err;
1752 sector_t block;
1753 sector_t last_block;
ad576e63 1754 struct buffer_head *bh, *head, *last_bh = NULL;
1da177e4
LT
1755 int nr_underway = 0;
1756
1757 BUG_ON(!PageLocked(page));
1758
1759 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1760
1761 if (!page_has_buffers(page)) {
1762 create_empty_buffers(page, 1 << inode->i_blkbits,
1763 (1 << BH_Dirty)|(1 << BH_Uptodate));
1764 }
1765
1766 /*
1767 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1768 * here, and the (potentially unmapped) buffers may become dirty at
1769 * any time. If a buffer becomes dirty here after we've inspected it
1770 * then we just miss that fact, and the page stays dirty.
1771 *
1772 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1773 * handle that here by just cleaning them.
1774 */
1775
1776 block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1777 head = page_buffers(page);
1778 bh = head;
1779
1780 /*
1781 * Get all the dirty buffers mapped to disk addresses and
1782 * handle any aliases from the underlying blockdev's mapping.
1783 */
1784 do {
1785 if (block > last_block) {
1786 /*
1787 * mapped buffers outside i_size will occur, because
1788 * this page can be outside i_size when there is a
1789 * truncate in progress.
1790 */
1791 /*
1792 * The buffer was zeroed by block_write_full_page()
1793 */
1794 clear_buffer_dirty(bh);
1795 set_buffer_uptodate(bh);
1796 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1797 err = get_block(inode, block, bh, 1);
1798 if (err)
1799 goto recover;
1800 if (buffer_new(bh)) {
1801 /* blockdev mappings never come here */
1802 clear_buffer_new(bh);
1803 unmap_underlying_metadata(bh->b_bdev,
1804 bh->b_blocknr);
1805 }
1806 }
1807 bh = bh->b_this_page;
1808 block++;
1809 } while (bh != head);
1810
1811 do {
1da177e4
LT
1812 if (!buffer_mapped(bh))
1813 continue;
1814 /*
1815 * If it's a fully non-blocking write attempt and we cannot
1816 * lock the buffer then redirty the page. Note that this can
1817 * potentially cause a busy-wait loop from pdflush and kswapd
1818 * activity, but those code paths have their own higher-level
1819 * throttling.
1820 */
1821 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1822 lock_buffer(bh);
1823 } else if (test_set_buffer_locked(bh)) {
1824 redirty_page_for_writepage(wbc, page);
1825 continue;
1826 }
1827 if (test_clear_buffer_dirty(bh)) {
1828 mark_buffer_async_write(bh);
ad576e63
NP
1829 get_bh(bh);
1830 last_bh = bh;
1da177e4
LT
1831 } else {
1832 unlock_buffer(bh);
1833 }
1834 } while ((bh = bh->b_this_page) != head);
1835
1836 /*
1837 * The page and its buffers are protected by PageWriteback(), so we can
1838 * drop the bh refcounts early.
1839 */
1840 BUG_ON(PageWriteback(page));
1841 set_page_writeback(page);
1842 unlock_page(page);
1843
1844 do {
1845 struct buffer_head *next = bh->b_this_page;
1846 if (buffer_async_write(bh)) {
1847 submit_bh(WRITE, bh);
1848 nr_underway++;
ad576e63
NP
1849 put_bh(bh);
1850 if (bh == last_bh)
1851 break;
1da177e4 1852 }
1da177e4
LT
1853 bh = next;
1854 } while (bh != head);
ad576e63 1855 bh = head;
1da177e4
LT
1856
1857 err = 0;
1858done:
1859 if (nr_underway == 0) {
1860 /*
1861 * The page was marked dirty, but the buffers were
1862 * clean. Someone wrote them back by hand with
1863 * ll_rw_block/submit_bh. A rare case.
1864 */
1865 int uptodate = 1;
1866 do {
1867 if (!buffer_uptodate(bh)) {
1868 uptodate = 0;
1869 break;
1870 }
1871 bh = bh->b_this_page;
1872 } while (bh != head);
1873 if (uptodate)
1874 SetPageUptodate(page);
1875 end_page_writeback(page);
1876 /*
1877 * The page and buffer_heads can be released at any time from
1878 * here on.
1879 */
1880 wbc->pages_skipped++; /* We didn't write this page */
1881 }
1882 return err;
1883
1884recover:
1885 /*
1886 * ENOSPC, or some other error. We may already have added some
1887 * blocks to the file, so we need to write these out to avoid
1888 * exposing stale data.
1889 * The page is currently locked and not marked for writeback
1890 */
1891 bh = head;
1892 /* Recovery: lock and submit the mapped buffers */
1893 do {
1da177e4
LT
1894 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1895 lock_buffer(bh);
1896 mark_buffer_async_write(bh);
ad576e63
NP
1897 get_bh(bh);
1898 last_bh = bh;
1da177e4
LT
1899 } else {
1900 /*
1901 * The buffer may have been set dirty during
1902 * attachment to a dirty page.
1903 */
1904 clear_buffer_dirty(bh);
1905 }
1906 } while ((bh = bh->b_this_page) != head);
1907 SetPageError(page);
1908 BUG_ON(PageWriteback(page));
1909 set_page_writeback(page);
1910 unlock_page(page);
1911 do {
1912 struct buffer_head *next = bh->b_this_page;
1913 if (buffer_async_write(bh)) {
1914 clear_buffer_dirty(bh);
1915 submit_bh(WRITE, bh);
1916 nr_underway++;
ad576e63
NP
1917 put_bh(bh);
1918 if (bh == last_bh)
1919 break;
1da177e4 1920 }
1da177e4
LT
1921 bh = next;
1922 } while (bh != head);
ad576e63 1923 bh = head;
1da177e4
LT
1924 goto done;
1925}
1926
1927static int __block_prepare_write(struct inode *inode, struct page *page,
1928 unsigned from, unsigned to, get_block_t *get_block)
1929{
1930 unsigned block_start, block_end;
1931 sector_t block;
1932 int err = 0;
1933 unsigned blocksize, bbits;
1934 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1935
1936 BUG_ON(!PageLocked(page));
1937 BUG_ON(from > PAGE_CACHE_SIZE);
1938 BUG_ON(to > PAGE_CACHE_SIZE);
1939 BUG_ON(from > to);
1940
1941 blocksize = 1 << inode->i_blkbits;
1942 if (!page_has_buffers(page))
1943 create_empty_buffers(page, blocksize, 0);
1944 head = page_buffers(page);
1945
1946 bbits = inode->i_blkbits;
1947 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1948
1949 for(bh = head, block_start = 0; bh != head || !block_start;
1950 block++, block_start=block_end, bh = bh->b_this_page) {
1951 block_end = block_start + blocksize;
1952 if (block_end <= from || block_start >= to) {
1953 if (PageUptodate(page)) {
1954 if (!buffer_uptodate(bh))
1955 set_buffer_uptodate(bh);
1956 }
1957 continue;
1958 }
1959 if (buffer_new(bh))
1960 clear_buffer_new(bh);
1961 if (!buffer_mapped(bh)) {
1962 err = get_block(inode, block, bh, 1);
1963 if (err)
f3ddbdc6 1964 break;
1da177e4
LT
1965 if (buffer_new(bh)) {
1966 clear_buffer_new(bh);
1967 unmap_underlying_metadata(bh->b_bdev,
1968 bh->b_blocknr);
1969 if (PageUptodate(page)) {
1970 set_buffer_uptodate(bh);
1971 continue;
1972 }
1973 if (block_end > to || block_start < from) {
1974 void *kaddr;
1975
1976 kaddr = kmap_atomic(page, KM_USER0);
1977 if (block_end > to)
1978 memset(kaddr+to, 0,
1979 block_end-to);
1980 if (block_start < from)
1981 memset(kaddr+block_start,
1982 0, from-block_start);
1983 flush_dcache_page(page);
1984 kunmap_atomic(kaddr, KM_USER0);
1985 }
1986 continue;
1987 }
1988 }
1989 if (PageUptodate(page)) {
1990 if (!buffer_uptodate(bh))
1991 set_buffer_uptodate(bh);
1992 continue;
1993 }
1994 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1995 (block_start < from || block_end > to)) {
1996 ll_rw_block(READ, 1, &bh);
1997 *wait_bh++=bh;
1998 }
1999 }
2000 /*
2001 * If we issued read requests - let them complete.
2002 */
2003 while(wait_bh > wait) {
2004 wait_on_buffer(*--wait_bh);
2005 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2006 err = -EIO;
1da177e4 2007 }
f3ddbdc6
NP
2008 if (!err)
2009 return err;
2010
2011 /* Error case: */
1da177e4
LT
2012 /*
2013 * Zero out any newly allocated blocks to avoid exposing stale
2014 * data. If BH_New is set, we know that the block was newly
2015 * allocated in the above loop.
2016 */
2017 bh = head;
2018 block_start = 0;
2019 do {
2020 block_end = block_start+blocksize;
2021 if (block_end <= from)
2022 goto next_bh;
2023 if (block_start >= to)
2024 break;
2025 if (buffer_new(bh)) {
2026 void *kaddr;
2027
2028 clear_buffer_new(bh);
2029 kaddr = kmap_atomic(page, KM_USER0);
2030 memset(kaddr+block_start, 0, bh->b_size);
2031 kunmap_atomic(kaddr, KM_USER0);
2032 set_buffer_uptodate(bh);
2033 mark_buffer_dirty(bh);
2034 }
2035next_bh:
2036 block_start = block_end;
2037 bh = bh->b_this_page;
2038 } while (bh != head);
2039 return err;
2040}
2041
2042static int __block_commit_write(struct inode *inode, struct page *page,
2043 unsigned from, unsigned to)
2044{
2045 unsigned block_start, block_end;
2046 int partial = 0;
2047 unsigned blocksize;
2048 struct buffer_head *bh, *head;
2049
2050 blocksize = 1 << inode->i_blkbits;
2051
2052 for(bh = head = page_buffers(page), block_start = 0;
2053 bh != head || !block_start;
2054 block_start=block_end, bh = bh->b_this_page) {
2055 block_end = block_start + blocksize;
2056 if (block_end <= from || block_start >= to) {
2057 if (!buffer_uptodate(bh))
2058 partial = 1;
2059 } else {
2060 set_buffer_uptodate(bh);
2061 mark_buffer_dirty(bh);
2062 }
2063 }
2064
2065 /*
2066 * If this is a partial write which happened to make all buffers
2067 * uptodate then we can optimize away a bogus readpage() for
2068 * the next read(). Here we 'discover' whether the page went
2069 * uptodate as a result of this (potentially partial) write.
2070 */
2071 if (!partial)
2072 SetPageUptodate(page);
2073 return 0;
2074}
2075
2076/*
2077 * Generic "read page" function for block devices that have the normal
2078 * get_block functionality. This is most of the block device filesystems.
2079 * Reads the page asynchronously --- the unlock_buffer() and
2080 * set/clear_buffer_uptodate() functions propagate buffer state into the
2081 * page struct once IO has completed.
2082 */
2083int block_read_full_page(struct page *page, get_block_t *get_block)
2084{
2085 struct inode *inode = page->mapping->host;
2086 sector_t iblock, lblock;
2087 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2088 unsigned int blocksize;
2089 int nr, i;
2090 int fully_mapped = 1;
2091
cd7619d6 2092 BUG_ON(!PageLocked(page));
1da177e4
LT
2093 blocksize = 1 << inode->i_blkbits;
2094 if (!page_has_buffers(page))
2095 create_empty_buffers(page, blocksize, 0);
2096 head = page_buffers(page);
2097
2098 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2099 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2100 bh = head;
2101 nr = 0;
2102 i = 0;
2103
2104 do {
2105 if (buffer_uptodate(bh))
2106 continue;
2107
2108 if (!buffer_mapped(bh)) {
2109 fully_mapped = 0;
2110 if (iblock < lblock) {
2111 if (get_block(inode, iblock, bh, 0))
2112 SetPageError(page);
2113 }
2114 if (!buffer_mapped(bh)) {
2115 void *kaddr = kmap_atomic(page, KM_USER0);
2116 memset(kaddr + i * blocksize, 0, blocksize);
2117 flush_dcache_page(page);
2118 kunmap_atomic(kaddr, KM_USER0);
2119 set_buffer_uptodate(bh);
2120 continue;
2121 }
2122 /*
2123 * get_block() might have updated the buffer
2124 * synchronously
2125 */
2126 if (buffer_uptodate(bh))
2127 continue;
2128 }
2129 arr[nr++] = bh;
2130 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2131
2132 if (fully_mapped)
2133 SetPageMappedToDisk(page);
2134
2135 if (!nr) {
2136 /*
2137 * All buffers are uptodate - we can set the page uptodate
2138 * as well. But not if get_block() returned an error.
2139 */
2140 if (!PageError(page))
2141 SetPageUptodate(page);
2142 unlock_page(page);
2143 return 0;
2144 }
2145
2146 /* Stage two: lock the buffers */
2147 for (i = 0; i < nr; i++) {
2148 bh = arr[i];
2149 lock_buffer(bh);
2150 mark_buffer_async_read(bh);
2151 }
2152
2153 /*
2154 * Stage 3: start the IO. Check for uptodateness
2155 * inside the buffer lock in case another process reading
2156 * the underlying blockdev brought it uptodate (the sct fix).
2157 */
2158 for (i = 0; i < nr; i++) {
2159 bh = arr[i];
2160 if (buffer_uptodate(bh))
2161 end_buffer_async_read(bh, 1);
2162 else
2163 submit_bh(READ, bh);
2164 }
2165 return 0;
2166}
2167
2168/* utility function for filesystems that need to do work on expanding
2169 * truncates. Uses prepare/commit_write to allow the filesystem to
2170 * deal with the hole.
2171 */
2172int generic_cont_expand(struct inode *inode, loff_t size)
2173{
2174 struct address_space *mapping = inode->i_mapping;
2175 struct page *page;
2176 unsigned long index, offset, limit;
2177 int err;
2178
2179 err = -EFBIG;
2180 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2181 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2182 send_sig(SIGXFSZ, current, 0);
2183 goto out;
2184 }
2185 if (size > inode->i_sb->s_maxbytes)
2186 goto out;
2187
2188 offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
2189
2190 /* ugh. in prepare/commit_write, if from==to==start of block, we
2191 ** skip the prepare. make sure we never send an offset for the start
2192 ** of a block
2193 */
2194 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2195 offset++;
2196 }
2197 index = size >> PAGE_CACHE_SHIFT;
2198 err = -ENOMEM;
2199 page = grab_cache_page(mapping, index);
2200 if (!page)
2201 goto out;
2202 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2203 if (!err) {
2204 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2205 }
2206 unlock_page(page);
2207 page_cache_release(page);
2208 if (err > 0)
2209 err = 0;
2210out:
2211 return err;
2212}
2213
2214/*
2215 * For moronic filesystems that do not allow holes in file.
2216 * We may have to extend the file.
2217 */
2218
2219int cont_prepare_write(struct page *page, unsigned offset,
2220 unsigned to, get_block_t *get_block, loff_t *bytes)
2221{
2222 struct address_space *mapping = page->mapping;
2223 struct inode *inode = mapping->host;
2224 struct page *new_page;
2225 pgoff_t pgpos;
2226 long status;
2227 unsigned zerofrom;
2228 unsigned blocksize = 1 << inode->i_blkbits;
2229 void *kaddr;
2230
2231 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2232 status = -ENOMEM;
2233 new_page = grab_cache_page(mapping, pgpos);
2234 if (!new_page)
2235 goto out;
2236 /* we might sleep */
2237 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2238 unlock_page(new_page);
2239 page_cache_release(new_page);
2240 continue;
2241 }
2242 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2243 if (zerofrom & (blocksize-1)) {
2244 *bytes |= (blocksize-1);
2245 (*bytes)++;
2246 }
2247 status = __block_prepare_write(inode, new_page, zerofrom,
2248 PAGE_CACHE_SIZE, get_block);
2249 if (status)
2250 goto out_unmap;
2251 kaddr = kmap_atomic(new_page, KM_USER0);
2252 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2253 flush_dcache_page(new_page);
2254 kunmap_atomic(kaddr, KM_USER0);
2255 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2256 unlock_page(new_page);
2257 page_cache_release(new_page);
2258 }
2259
2260 if (page->index < pgpos) {
2261 /* completely inside the area */
2262 zerofrom = offset;
2263 } else {
2264 /* page covers the boundary, find the boundary offset */
2265 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2266
2267 /* if we will expand the thing last block will be filled */
2268 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2269 *bytes |= (blocksize-1);
2270 (*bytes)++;
2271 }
2272
2273 /* starting below the boundary? Nothing to zero out */
2274 if (offset <= zerofrom)
2275 zerofrom = offset;
2276 }
2277 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2278 if (status)
2279 goto out1;
2280 if (zerofrom < offset) {
2281 kaddr = kmap_atomic(page, KM_USER0);
2282 memset(kaddr+zerofrom, 0, offset-zerofrom);
2283 flush_dcache_page(page);
2284 kunmap_atomic(kaddr, KM_USER0);
2285 __block_commit_write(inode, page, zerofrom, offset);
2286 }
2287 return 0;
2288out1:
2289 ClearPageUptodate(page);
2290 return status;
2291
2292out_unmap:
2293 ClearPageUptodate(new_page);
2294 unlock_page(new_page);
2295 page_cache_release(new_page);
2296out:
2297 return status;
2298}
2299
2300int block_prepare_write(struct page *page, unsigned from, unsigned to,
2301 get_block_t *get_block)
2302{
2303 struct inode *inode = page->mapping->host;
2304 int err = __block_prepare_write(inode, page, from, to, get_block);
2305 if (err)
2306 ClearPageUptodate(page);
2307 return err;
2308}
2309
2310int block_commit_write(struct page *page, unsigned from, unsigned to)
2311{
2312 struct inode *inode = page->mapping->host;
2313 __block_commit_write(inode,page,from,to);
2314 return 0;
2315}
2316
2317int generic_commit_write(struct file *file, struct page *page,
2318 unsigned from, unsigned to)
2319{
2320 struct inode *inode = page->mapping->host;
2321 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2322 __block_commit_write(inode,page,from,to);
2323 /*
2324 * No need to use i_size_read() here, the i_size
2325 * cannot change under us because we hold i_sem.
2326 */
2327 if (pos > inode->i_size) {
2328 i_size_write(inode, pos);
2329 mark_inode_dirty(inode);
2330 }
2331 return 0;
2332}
2333
2334
2335/*
2336 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2337 * immediately, while under the page lock. So it needs a special end_io
2338 * handler which does not touch the bh after unlocking it.
2339 *
2340 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2341 * a race there is benign: unlock_buffer() only use the bh's address for
2342 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2343 * itself.
2344 */
2345static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2346{
2347 if (uptodate) {
2348 set_buffer_uptodate(bh);
2349 } else {
2350 /* This happens, due to failed READA attempts. */
2351 clear_buffer_uptodate(bh);
2352 }
2353 unlock_buffer(bh);
2354}
2355
2356/*
2357 * On entry, the page is fully not uptodate.
2358 * On exit the page is fully uptodate in the areas outside (from,to)
2359 */
2360int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2361 get_block_t *get_block)
2362{
2363 struct inode *inode = page->mapping->host;
2364 const unsigned blkbits = inode->i_blkbits;
2365 const unsigned blocksize = 1 << blkbits;
2366 struct buffer_head map_bh;
2367 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2368 unsigned block_in_page;
2369 unsigned block_start;
2370 sector_t block_in_file;
2371 char *kaddr;
2372 int nr_reads = 0;
2373 int i;
2374 int ret = 0;
2375 int is_mapped_to_disk = 1;
2376 int dirtied_it = 0;
2377
2378 if (PageMappedToDisk(page))
2379 return 0;
2380
2381 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2382 map_bh.b_page = page;
2383
2384 /*
2385 * We loop across all blocks in the page, whether or not they are
2386 * part of the affected region. This is so we can discover if the
2387 * page is fully mapped-to-disk.
2388 */
2389 for (block_start = 0, block_in_page = 0;
2390 block_start < PAGE_CACHE_SIZE;
2391 block_in_page++, block_start += blocksize) {
2392 unsigned block_end = block_start + blocksize;
2393 int create;
2394
2395 map_bh.b_state = 0;
2396 create = 1;
2397 if (block_start >= to)
2398 create = 0;
2399 ret = get_block(inode, block_in_file + block_in_page,
2400 &map_bh, create);
2401 if (ret)
2402 goto failed;
2403 if (!buffer_mapped(&map_bh))
2404 is_mapped_to_disk = 0;
2405 if (buffer_new(&map_bh))
2406 unmap_underlying_metadata(map_bh.b_bdev,
2407 map_bh.b_blocknr);
2408 if (PageUptodate(page))
2409 continue;
2410 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2411 kaddr = kmap_atomic(page, KM_USER0);
2412 if (block_start < from) {
2413 memset(kaddr+block_start, 0, from-block_start);
2414 dirtied_it = 1;
2415 }
2416 if (block_end > to) {
2417 memset(kaddr + to, 0, block_end - to);
2418 dirtied_it = 1;
2419 }
2420 flush_dcache_page(page);
2421 kunmap_atomic(kaddr, KM_USER0);
2422 continue;
2423 }
2424 if (buffer_uptodate(&map_bh))
2425 continue; /* reiserfs does this */
2426 if (block_start < from || block_end > to) {
2427 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2428
2429 if (!bh) {
2430 ret = -ENOMEM;
2431 goto failed;
2432 }
2433 bh->b_state = map_bh.b_state;
2434 atomic_set(&bh->b_count, 0);
2435 bh->b_this_page = NULL;
2436 bh->b_page = page;
2437 bh->b_blocknr = map_bh.b_blocknr;
2438 bh->b_size = blocksize;
2439 bh->b_data = (char *)(long)block_start;
2440 bh->b_bdev = map_bh.b_bdev;
2441 bh->b_private = NULL;
2442 read_bh[nr_reads++] = bh;
2443 }
2444 }
2445
2446 if (nr_reads) {
2447 struct buffer_head *bh;
2448
2449 /*
2450 * The page is locked, so these buffers are protected from
2451 * any VM or truncate activity. Hence we don't need to care
2452 * for the buffer_head refcounts.
2453 */
2454 for (i = 0; i < nr_reads; i++) {
2455 bh = read_bh[i];
2456 lock_buffer(bh);
2457 bh->b_end_io = end_buffer_read_nobh;
2458 submit_bh(READ, bh);
2459 }
2460 for (i = 0; i < nr_reads; i++) {
2461 bh = read_bh[i];
2462 wait_on_buffer(bh);
2463 if (!buffer_uptodate(bh))
2464 ret = -EIO;
2465 free_buffer_head(bh);
2466 read_bh[i] = NULL;
2467 }
2468 if (ret)
2469 goto failed;
2470 }
2471
2472 if (is_mapped_to_disk)
2473 SetPageMappedToDisk(page);
2474 SetPageUptodate(page);
2475
2476 /*
2477 * Setting the page dirty here isn't necessary for the prepare_write
2478 * function - commit_write will do that. But if/when this function is
2479 * used within the pagefault handler to ensure that all mmapped pages
2480 * have backing space in the filesystem, we will need to dirty the page
2481 * if its contents were altered.
2482 */
2483 if (dirtied_it)
2484 set_page_dirty(page);
2485
2486 return 0;
2487
2488failed:
2489 for (i = 0; i < nr_reads; i++) {
2490 if (read_bh[i])
2491 free_buffer_head(read_bh[i]);
2492 }
2493
2494 /*
2495 * Error recovery is pretty slack. Clear the page and mark it dirty
2496 * so we'll later zero out any blocks which _were_ allocated.
2497 */
2498 kaddr = kmap_atomic(page, KM_USER0);
2499 memset(kaddr, 0, PAGE_CACHE_SIZE);
2500 kunmap_atomic(kaddr, KM_USER0);
2501 SetPageUptodate(page);
2502 set_page_dirty(page);
2503 return ret;
2504}
2505EXPORT_SYMBOL(nobh_prepare_write);
2506
2507int nobh_commit_write(struct file *file, struct page *page,
2508 unsigned from, unsigned to)
2509{
2510 struct inode *inode = page->mapping->host;
2511 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2512
2513 set_page_dirty(page);
2514 if (pos > inode->i_size) {
2515 i_size_write(inode, pos);
2516 mark_inode_dirty(inode);
2517 }
2518 return 0;
2519}
2520EXPORT_SYMBOL(nobh_commit_write);
2521
2522/*
2523 * nobh_writepage() - based on block_full_write_page() except
2524 * that it tries to operate without attaching bufferheads to
2525 * the page.
2526 */
2527int nobh_writepage(struct page *page, get_block_t *get_block,
2528 struct writeback_control *wbc)
2529{
2530 struct inode * const inode = page->mapping->host;
2531 loff_t i_size = i_size_read(inode);
2532 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2533 unsigned offset;
2534 void *kaddr;
2535 int ret;
2536
2537 /* Is the page fully inside i_size? */
2538 if (page->index < end_index)
2539 goto out;
2540
2541 /* Is the page fully outside i_size? (truncate in progress) */
2542 offset = i_size & (PAGE_CACHE_SIZE-1);
2543 if (page->index >= end_index+1 || !offset) {
2544 /*
2545 * The page may have dirty, unmapped buffers. For example,
2546 * they may have been added in ext3_writepage(). Make them
2547 * freeable here, so the page does not leak.
2548 */
2549#if 0
2550 /* Not really sure about this - do we need this ? */
2551 if (page->mapping->a_ops->invalidatepage)
2552 page->mapping->a_ops->invalidatepage(page, offset);
2553#endif
2554 unlock_page(page);
2555 return 0; /* don't care */
2556 }
2557
2558 /*
2559 * The page straddles i_size. It must be zeroed out on each and every
2560 * writepage invocation because it may be mmapped. "A file is mapped
2561 * in multiples of the page size. For a file that is not a multiple of
2562 * the page size, the remaining memory is zeroed when mapped, and
2563 * writes to that region are not written out to the file."
2564 */
2565 kaddr = kmap_atomic(page, KM_USER0);
2566 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2567 flush_dcache_page(page);
2568 kunmap_atomic(kaddr, KM_USER0);
2569out:
2570 ret = mpage_writepage(page, get_block, wbc);
2571 if (ret == -EAGAIN)
2572 ret = __block_write_full_page(inode, page, get_block, wbc);
2573 return ret;
2574}
2575EXPORT_SYMBOL(nobh_writepage);
2576
2577/*
2578 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2579 */
2580int nobh_truncate_page(struct address_space *mapping, loff_t from)
2581{
2582 struct inode *inode = mapping->host;
2583 unsigned blocksize = 1 << inode->i_blkbits;
2584 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2585 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2586 unsigned to;
2587 struct page *page;
2588 struct address_space_operations *a_ops = mapping->a_ops;
2589 char *kaddr;
2590 int ret = 0;
2591
2592 if ((offset & (blocksize - 1)) == 0)
2593 goto out;
2594
2595 ret = -ENOMEM;
2596 page = grab_cache_page(mapping, index);
2597 if (!page)
2598 goto out;
2599
2600 to = (offset + blocksize) & ~(blocksize - 1);
2601 ret = a_ops->prepare_write(NULL, page, offset, to);
2602 if (ret == 0) {
2603 kaddr = kmap_atomic(page, KM_USER0);
2604 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2605 flush_dcache_page(page);
2606 kunmap_atomic(kaddr, KM_USER0);
2607 set_page_dirty(page);
2608 }
2609 unlock_page(page);
2610 page_cache_release(page);
2611out:
2612 return ret;
2613}
2614EXPORT_SYMBOL(nobh_truncate_page);
2615
2616int block_truncate_page(struct address_space *mapping,
2617 loff_t from, get_block_t *get_block)
2618{
2619 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2620 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2621 unsigned blocksize;
2622 pgoff_t iblock;
2623 unsigned length, pos;
2624 struct inode *inode = mapping->host;
2625 struct page *page;
2626 struct buffer_head *bh;
2627 void *kaddr;
2628 int err;
2629
2630 blocksize = 1 << inode->i_blkbits;
2631 length = offset & (blocksize - 1);
2632
2633 /* Block boundary? Nothing to do */
2634 if (!length)
2635 return 0;
2636
2637 length = blocksize - length;
2638 iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2639
2640 page = grab_cache_page(mapping, index);
2641 err = -ENOMEM;
2642 if (!page)
2643 goto out;
2644
2645 if (!page_has_buffers(page))
2646 create_empty_buffers(page, blocksize, 0);
2647
2648 /* Find the buffer that contains "offset" */
2649 bh = page_buffers(page);
2650 pos = blocksize;
2651 while (offset >= pos) {
2652 bh = bh->b_this_page;
2653 iblock++;
2654 pos += blocksize;
2655 }
2656
2657 err = 0;
2658 if (!buffer_mapped(bh)) {
2659 err = get_block(inode, iblock, bh, 0);
2660 if (err)
2661 goto unlock;
2662 /* unmapped? It's a hole - nothing to do */
2663 if (!buffer_mapped(bh))
2664 goto unlock;
2665 }
2666
2667 /* Ok, it's mapped. Make sure it's up-to-date */
2668 if (PageUptodate(page))
2669 set_buffer_uptodate(bh);
2670
2671 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2672 err = -EIO;
2673 ll_rw_block(READ, 1, &bh);
2674 wait_on_buffer(bh);
2675 /* Uhhuh. Read error. Complain and punt. */
2676 if (!buffer_uptodate(bh))
2677 goto unlock;
2678 }
2679
2680 kaddr = kmap_atomic(page, KM_USER0);
2681 memset(kaddr + offset, 0, length);
2682 flush_dcache_page(page);
2683 kunmap_atomic(kaddr, KM_USER0);
2684
2685 mark_buffer_dirty(bh);
2686 err = 0;
2687
2688unlock:
2689 unlock_page(page);
2690 page_cache_release(page);
2691out:
2692 return err;
2693}
2694
2695/*
2696 * The generic ->writepage function for buffer-backed address_spaces
2697 */
2698int block_write_full_page(struct page *page, get_block_t *get_block,
2699 struct writeback_control *wbc)
2700{
2701 struct inode * const inode = page->mapping->host;
2702 loff_t i_size = i_size_read(inode);
2703 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2704 unsigned offset;
2705 void *kaddr;
2706
2707 /* Is the page fully inside i_size? */
2708 if (page->index < end_index)
2709 return __block_write_full_page(inode, page, get_block, wbc);
2710
2711 /* Is the page fully outside i_size? (truncate in progress) */
2712 offset = i_size & (PAGE_CACHE_SIZE-1);
2713 if (page->index >= end_index+1 || !offset) {
2714 /*
2715 * The page may have dirty, unmapped buffers. For example,
2716 * they may have been added in ext3_writepage(). Make them
2717 * freeable here, so the page does not leak.
2718 */
2719 block_invalidatepage(page, 0);
2720 unlock_page(page);
2721 return 0; /* don't care */
2722 }
2723
2724 /*
2725 * The page straddles i_size. It must be zeroed out on each and every
2726 * writepage invokation because it may be mmapped. "A file is mapped
2727 * in multiples of the page size. For a file that is not a multiple of
2728 * the page size, the remaining memory is zeroed when mapped, and
2729 * writes to that region are not written out to the file."
2730 */
2731 kaddr = kmap_atomic(page, KM_USER0);
2732 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2733 flush_dcache_page(page);
2734 kunmap_atomic(kaddr, KM_USER0);
2735 return __block_write_full_page(inode, page, get_block, wbc);
2736}
2737
2738sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2739 get_block_t *get_block)
2740{
2741 struct buffer_head tmp;
2742 struct inode *inode = mapping->host;
2743 tmp.b_state = 0;
2744 tmp.b_blocknr = 0;
2745 get_block(inode, block, &tmp, 0);
2746 return tmp.b_blocknr;
2747}
2748
2749static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2750{
2751 struct buffer_head *bh = bio->bi_private;
2752
2753 if (bio->bi_size)
2754 return 1;
2755
2756 if (err == -EOPNOTSUPP) {
2757 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2758 set_bit(BH_Eopnotsupp, &bh->b_state);
2759 }
2760
2761 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2762 bio_put(bio);
2763 return 0;
2764}
2765
2766int submit_bh(int rw, struct buffer_head * bh)
2767{
2768 struct bio *bio;
2769 int ret = 0;
2770
2771 BUG_ON(!buffer_locked(bh));
2772 BUG_ON(!buffer_mapped(bh));
2773 BUG_ON(!bh->b_end_io);
2774
2775 if (buffer_ordered(bh) && (rw == WRITE))
2776 rw = WRITE_BARRIER;
2777
2778 /*
2779 * Only clear out a write error when rewriting, should this
2780 * include WRITE_SYNC as well?
2781 */
2782 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2783 clear_buffer_write_io_error(bh);
2784
2785 /*
2786 * from here on down, it's all bio -- do the initial mapping,
2787 * submit_bio -> generic_make_request may further map this bio around
2788 */
2789 bio = bio_alloc(GFP_NOIO, 1);
2790
2791 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2792 bio->bi_bdev = bh->b_bdev;
2793 bio->bi_io_vec[0].bv_page = bh->b_page;
2794 bio->bi_io_vec[0].bv_len = bh->b_size;
2795 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2796
2797 bio->bi_vcnt = 1;
2798 bio->bi_idx = 0;
2799 bio->bi_size = bh->b_size;
2800
2801 bio->bi_end_io = end_bio_bh_io_sync;
2802 bio->bi_private = bh;
2803
2804 bio_get(bio);
2805 submit_bio(rw, bio);
2806
2807 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2808 ret = -EOPNOTSUPP;
2809
2810 bio_put(bio);
2811 return ret;
2812}
2813
2814/**
2815 * ll_rw_block: low-level access to block devices (DEPRECATED)
2816 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2817 * @nr: number of &struct buffer_heads in the array
2818 * @bhs: array of pointers to &struct buffer_head
2819 *
2820 * ll_rw_block() takes an array of pointers to &struct buffer_heads,
2821 * and requests an I/O operation on them, either a %READ or a %WRITE.
2822 * The third %READA option is described in the documentation for
2823 * generic_make_request() which ll_rw_block() calls.
2824 *
2825 * This function drops any buffer that it cannot get a lock on (with the
2826 * BH_Lock state bit), any buffer that appears to be clean when doing a
2827 * write request, and any buffer that appears to be up-to-date when doing
2828 * read request. Further it marks as clean buffers that are processed for
2829 * writing (the buffer cache won't assume that they are actually clean until
2830 * the buffer gets unlocked).
2831 *
2832 * ll_rw_block sets b_end_io to simple completion handler that marks
2833 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2834 * any waiters.
2835 *
2836 * All of the buffers must be for the same device, and must also be a
2837 * multiple of the current approved size for the device.
2838 */
2839void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2840{
2841 int i;
2842
2843 for (i = 0; i < nr; i++) {
2844 struct buffer_head *bh = bhs[i];
2845
2846 if (test_set_buffer_locked(bh))
2847 continue;
2848
2849 get_bh(bh);
2850 if (rw == WRITE) {
1da177e4 2851 if (test_clear_buffer_dirty(bh)) {
76c3073a 2852 bh->b_end_io = end_buffer_write_sync;
1da177e4
LT
2853 submit_bh(WRITE, bh);
2854 continue;
2855 }
2856 } else {
1da177e4 2857 if (!buffer_uptodate(bh)) {
76c3073a 2858 bh->b_end_io = end_buffer_read_sync;
1da177e4
LT
2859 submit_bh(rw, bh);
2860 continue;
2861 }
2862 }
2863 unlock_buffer(bh);
2864 put_bh(bh);
2865 }
2866}
2867
2868/*
2869 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2870 * and then start new I/O and then wait upon it. The caller must have a ref on
2871 * the buffer_head.
2872 */
2873int sync_dirty_buffer(struct buffer_head *bh)
2874{
2875 int ret = 0;
2876
2877 WARN_ON(atomic_read(&bh->b_count) < 1);
2878 lock_buffer(bh);
2879 if (test_clear_buffer_dirty(bh)) {
2880 get_bh(bh);
2881 bh->b_end_io = end_buffer_write_sync;
2882 ret = submit_bh(WRITE, bh);
2883 wait_on_buffer(bh);
2884 if (buffer_eopnotsupp(bh)) {
2885 clear_buffer_eopnotsupp(bh);
2886 ret = -EOPNOTSUPP;
2887 }
2888 if (!ret && !buffer_uptodate(bh))
2889 ret = -EIO;
2890 } else {
2891 unlock_buffer(bh);
2892 }
2893 return ret;
2894}
2895
2896/*
2897 * try_to_free_buffers() checks if all the buffers on this particular page
2898 * are unused, and releases them if so.
2899 *
2900 * Exclusion against try_to_free_buffers may be obtained by either
2901 * locking the page or by holding its mapping's private_lock.
2902 *
2903 * If the page is dirty but all the buffers are clean then we need to
2904 * be sure to mark the page clean as well. This is because the page
2905 * may be against a block device, and a later reattachment of buffers
2906 * to a dirty page will set *all* buffers dirty. Which would corrupt
2907 * filesystem data on the same device.
2908 *
2909 * The same applies to regular filesystem pages: if all the buffers are
2910 * clean then we set the page clean and proceed. To do that, we require
2911 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2912 * private_lock.
2913 *
2914 * try_to_free_buffers() is non-blocking.
2915 */
2916static inline int buffer_busy(struct buffer_head *bh)
2917{
2918 return atomic_read(&bh->b_count) |
2919 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2920}
2921
2922static int
2923drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2924{
2925 struct buffer_head *head = page_buffers(page);
2926 struct buffer_head *bh;
2927
2928 bh = head;
2929 do {
de7d5a3b 2930 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
2931 set_bit(AS_EIO, &page->mapping->flags);
2932 if (buffer_busy(bh))
2933 goto failed;
2934 bh = bh->b_this_page;
2935 } while (bh != head);
2936
2937 do {
2938 struct buffer_head *next = bh->b_this_page;
2939
2940 if (!list_empty(&bh->b_assoc_buffers))
2941 __remove_assoc_queue(bh);
2942 bh = next;
2943 } while (bh != head);
2944 *buffers_to_free = head;
2945 __clear_page_buffers(page);
2946 return 1;
2947failed:
2948 return 0;
2949}
2950
2951int try_to_free_buffers(struct page *page)
2952{
2953 struct address_space * const mapping = page->mapping;
2954 struct buffer_head *buffers_to_free = NULL;
2955 int ret = 0;
2956
2957 BUG_ON(!PageLocked(page));
2958 if (PageWriteback(page))
2959 return 0;
2960
2961 if (mapping == NULL) { /* can this still happen? */
2962 ret = drop_buffers(page, &buffers_to_free);
2963 goto out;
2964 }
2965
2966 spin_lock(&mapping->private_lock);
2967 ret = drop_buffers(page, &buffers_to_free);
2968 if (ret) {
2969 /*
2970 * If the filesystem writes its buffers by hand (eg ext3)
2971 * then we can have clean buffers against a dirty page. We
2972 * clean the page here; otherwise later reattachment of buffers
2973 * could encounter a non-uptodate page, which is unresolvable.
2974 * This only applies in the rare case where try_to_free_buffers
2975 * succeeds but the page is not freed.
2976 */
2977 clear_page_dirty(page);
2978 }
2979 spin_unlock(&mapping->private_lock);
2980out:
2981 if (buffers_to_free) {
2982 struct buffer_head *bh = buffers_to_free;
2983
2984 do {
2985 struct buffer_head *next = bh->b_this_page;
2986 free_buffer_head(bh);
2987 bh = next;
2988 } while (bh != buffers_to_free);
2989 }
2990 return ret;
2991}
2992EXPORT_SYMBOL(try_to_free_buffers);
2993
2994int block_sync_page(struct page *page)
2995{
2996 struct address_space *mapping;
2997
2998 smp_mb();
2999 mapping = page_mapping(page);
3000 if (mapping)
3001 blk_run_backing_dev(mapping->backing_dev_info, page);
3002 return 0;
3003}
3004
3005/*
3006 * There are no bdflush tunables left. But distributions are
3007 * still running obsolete flush daemons, so we terminate them here.
3008 *
3009 * Use of bdflush() is deprecated and will be removed in a future kernel.
3010 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3011 */
3012asmlinkage long sys_bdflush(int func, long data)
3013{
3014 static int msg_count;
3015
3016 if (!capable(CAP_SYS_ADMIN))
3017 return -EPERM;
3018
3019 if (msg_count < 5) {
3020 msg_count++;
3021 printk(KERN_INFO
3022 "warning: process `%s' used the obsolete bdflush"
3023 " system call\n", current->comm);
3024 printk(KERN_INFO "Fix your initscripts?\n");
3025 }
3026
3027 if (func == 1)
3028 do_exit(0);
3029 return 0;
3030}
3031
3032/*
3033 * Buffer-head allocation
3034 */
3035static kmem_cache_t *bh_cachep;
3036
3037/*
3038 * Once the number of bh's in the machine exceeds this level, we start
3039 * stripping them in writeback.
3040 */
3041static int max_buffer_heads;
3042
3043int buffer_heads_over_limit;
3044
3045struct bh_accounting {
3046 int nr; /* Number of live bh's */
3047 int ratelimit; /* Limit cacheline bouncing */
3048};
3049
3050static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3051
3052static void recalc_bh_state(void)
3053{
3054 int i;
3055 int tot = 0;
3056
3057 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3058 return;
3059 __get_cpu_var(bh_accounting).ratelimit = 0;
3060 for_each_cpu(i)
3061 tot += per_cpu(bh_accounting, i).nr;
3062 buffer_heads_over_limit = (tot > max_buffer_heads);
3063}
3064
3065struct buffer_head *alloc_buffer_head(unsigned int __nocast gfp_flags)
3066{
3067 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3068 if (ret) {
3069 preempt_disable();
3070 __get_cpu_var(bh_accounting).nr++;
3071 recalc_bh_state();
3072 preempt_enable();
3073 }
3074 return ret;
3075}
3076EXPORT_SYMBOL(alloc_buffer_head);
3077
3078void free_buffer_head(struct buffer_head *bh)
3079{
3080 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3081 kmem_cache_free(bh_cachep, bh);
3082 preempt_disable();
3083 __get_cpu_var(bh_accounting).nr--;
3084 recalc_bh_state();
3085 preempt_enable();
3086}
3087EXPORT_SYMBOL(free_buffer_head);
3088
3089static void
3090init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3091{
3092 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3093 SLAB_CTOR_CONSTRUCTOR) {
3094 struct buffer_head * bh = (struct buffer_head *)data;
3095
3096 memset(bh, 0, sizeof(*bh));
3097 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3098 }
3099}
3100
3101#ifdef CONFIG_HOTPLUG_CPU
3102static void buffer_exit_cpu(int cpu)
3103{
3104 int i;
3105 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3106
3107 for (i = 0; i < BH_LRU_SIZE; i++) {
3108 brelse(b->bhs[i]);
3109 b->bhs[i] = NULL;
3110 }
3111}
3112
3113static int buffer_cpu_notify(struct notifier_block *self,
3114 unsigned long action, void *hcpu)
3115{
3116 if (action == CPU_DEAD)
3117 buffer_exit_cpu((unsigned long)hcpu);
3118 return NOTIFY_OK;
3119}
3120#endif /* CONFIG_HOTPLUG_CPU */
3121
3122void __init buffer_init(void)
3123{
3124 int nrpages;
3125
3126 bh_cachep = kmem_cache_create("buffer_head",
3127 sizeof(struct buffer_head), 0,
e422fd2c 3128 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
1da177e4
LT
3129
3130 /*
3131 * Limit the bh occupancy to 10% of ZONE_NORMAL
3132 */
3133 nrpages = (nr_free_buffer_pages() * 10) / 100;
3134 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3135 hotcpu_notifier(buffer_cpu_notify, 0);
3136}
3137
3138EXPORT_SYMBOL(__bforget);
3139EXPORT_SYMBOL(__brelse);
3140EXPORT_SYMBOL(__wait_on_buffer);
3141EXPORT_SYMBOL(block_commit_write);
3142EXPORT_SYMBOL(block_prepare_write);
3143EXPORT_SYMBOL(block_read_full_page);
3144EXPORT_SYMBOL(block_sync_page);
3145EXPORT_SYMBOL(block_truncate_page);
3146EXPORT_SYMBOL(block_write_full_page);
3147EXPORT_SYMBOL(cont_prepare_write);
3148EXPORT_SYMBOL(end_buffer_async_write);
3149EXPORT_SYMBOL(end_buffer_read_sync);
3150EXPORT_SYMBOL(end_buffer_write_sync);
3151EXPORT_SYMBOL(file_fsync);
3152EXPORT_SYMBOL(fsync_bdev);
3153EXPORT_SYMBOL(generic_block_bmap);
3154EXPORT_SYMBOL(generic_commit_write);
3155EXPORT_SYMBOL(generic_cont_expand);
3156EXPORT_SYMBOL(init_buffer);
3157EXPORT_SYMBOL(invalidate_bdev);
3158EXPORT_SYMBOL(ll_rw_block);
3159EXPORT_SYMBOL(mark_buffer_dirty);
3160EXPORT_SYMBOL(submit_bh);
3161EXPORT_SYMBOL(sync_dirty_buffer);
3162EXPORT_SYMBOL(unlock_buffer);