]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/buffer.c
Merge branch 'isdn-fix' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/misc-2.6
[net-next-2.6.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55
56static int sync_buffer(void *word)
57{
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68}
69
70void fastcall __lock_buffer(struct buffer_head *bh)
71{
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
77void fastcall unlock_buffer(struct buffer_head *bh)
78{
72ed3d03 79 smp_mb__before_clear_bit();
1da177e4
LT
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
84
85/*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90void __wait_on_buffer(struct buffer_head * bh)
91{
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93}
94
95static void
96__clear_page_buffers(struct page *page)
97{
98 ClearPagePrivate(page);
4c21e2f2 99 set_page_private(page, 0);
1da177e4
LT
100 page_cache_release(page);
101}
102
103static void buffer_io_error(struct buffer_head *bh)
104{
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110}
111
112/*
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
115 */
116void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117{
118 if (uptodate) {
119 set_buffer_uptodate(bh);
120 } else {
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
123 }
124 unlock_buffer(bh);
125 put_bh(bh);
126}
127
128void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129{
130 char b[BDEVNAME_SIZE];
131
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 buffer_io_error(bh);
137 printk(KERN_WARNING "lost page write due to "
138 "I/O error on %s\n",
139 bdevname(bh->b_bdev, b));
140 }
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
143 }
144 unlock_buffer(bh);
145 put_bh(bh);
146}
147
148/*
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
151 */
152int sync_blockdev(struct block_device *bdev)
153{
154 int ret = 0;
155
28fd1298
OH
156 if (bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
1da177e4
LT
158 return ret;
159}
160EXPORT_SYMBOL(sync_blockdev);
161
1da177e4
LT
162/*
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
166 */
167int fsync_bdev(struct block_device *bdev)
168{
169 struct super_block *sb = get_super(bdev);
170 if (sb) {
171 int res = fsync_super(sb);
172 drop_super(sb);
173 return res;
174 }
175 return sync_blockdev(bdev);
176}
177
178/**
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
181 *
f73ca1b7 182 * This takes the block device bd_mount_sem to make sure no new mounts
1da177e4
LT
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
186 */
187struct super_block *freeze_bdev(struct block_device *bdev)
188{
189 struct super_block *sb;
190
f73ca1b7 191 down(&bdev->bd_mount_sem);
1da177e4
LT
192 sb = get_super(bdev);
193 if (sb && !(sb->s_flags & MS_RDONLY)) {
194 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 195 smp_wmb();
1da177e4 196
d25b9a1f 197 __fsync_super(sb);
1da177e4
LT
198
199 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 200 smp_wmb();
1da177e4
LT
201
202 sync_blockdev(sb->s_bdev);
203
204 if (sb->s_op->write_super_lockfs)
205 sb->s_op->write_super_lockfs(sb);
206 }
207
208 sync_blockdev(bdev);
209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
210}
211EXPORT_SYMBOL(freeze_bdev);
212
213/**
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
217 *
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219 */
220void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221{
222 if (sb) {
223 BUG_ON(sb->s_bdev != bdev);
224
225 if (sb->s_op->unlockfs)
226 sb->s_op->unlockfs(sb);
227 sb->s_frozen = SB_UNFROZEN;
d59dd462 228 smp_wmb();
1da177e4
LT
229 wake_up(&sb->s_wait_unfrozen);
230 drop_super(sb);
231 }
232
f73ca1b7 233 up(&bdev->bd_mount_sem);
1da177e4
LT
234}
235EXPORT_SYMBOL(thaw_bdev);
236
1da177e4
LT
237/*
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
241 * private_lock.
242 *
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
247 */
248static struct buffer_head *
385fd4c5 249__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
250{
251 struct inode *bd_inode = bdev->bd_inode;
252 struct address_space *bd_mapping = bd_inode->i_mapping;
253 struct buffer_head *ret = NULL;
254 pgoff_t index;
255 struct buffer_head *bh;
256 struct buffer_head *head;
257 struct page *page;
258 int all_mapped = 1;
259
260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 page = find_get_page(bd_mapping, index);
262 if (!page)
263 goto out;
264
265 spin_lock(&bd_mapping->private_lock);
266 if (!page_has_buffers(page))
267 goto out_unlock;
268 head = page_buffers(page);
269 bh = head;
270 do {
271 if (bh->b_blocknr == block) {
272 ret = bh;
273 get_bh(bh);
274 goto out_unlock;
275 }
276 if (!buffer_mapped(bh))
277 all_mapped = 0;
278 bh = bh->b_this_page;
279 } while (bh != head);
280
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
285 */
286 if (all_mapped) {
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
289 (unsigned long long)block,
290 (unsigned long long)bh->b_blocknr);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh->b_state, bh->b_size);
1da177e4
LT
293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294 }
295out_unlock:
296 spin_unlock(&bd_mapping->private_lock);
297 page_cache_release(page);
298out:
299 return ret;
300}
301
302/* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
305 by the user.
306
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
310
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
313
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
322
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
326
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
f98393a6 334void invalidate_bdev(struct block_device *bdev)
1da177e4 335{
0e1dfc66
AM
336 struct address_space *mapping = bdev->bd_inode->i_mapping;
337
338 if (mapping->nrpages == 0)
339 return;
340
1da177e4 341 invalidate_bh_lrus();
fc0ecff6 342 invalidate_mapping_pages(mapping, 0, -1);
1da177e4
LT
343}
344
345/*
346 * Kick pdflush then try to free up some ZONE_NORMAL memory.
347 */
348static void free_more_memory(void)
349{
350 struct zone **zones;
351 pg_data_t *pgdat;
352
687a21ce 353 wakeup_pdflush(1024);
1da177e4
LT
354 yield();
355
ec936fc5 356 for_each_online_pgdat(pgdat) {
af4ca457 357 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
1da177e4 358 if (*zones)
5ad333eb 359 try_to_free_pages(zones, 0, GFP_NOFS);
1da177e4
LT
360 }
361}
362
363/*
364 * I/O completion handler for block_read_full_page() - pages
365 * which come unlocked at the end of I/O.
366 */
367static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
368{
1da177e4 369 unsigned long flags;
a3972203 370 struct buffer_head *first;
1da177e4
LT
371 struct buffer_head *tmp;
372 struct page *page;
373 int page_uptodate = 1;
374
375 BUG_ON(!buffer_async_read(bh));
376
377 page = bh->b_page;
378 if (uptodate) {
379 set_buffer_uptodate(bh);
380 } else {
381 clear_buffer_uptodate(bh);
382 if (printk_ratelimit())
383 buffer_io_error(bh);
384 SetPageError(page);
385 }
386
387 /*
388 * Be _very_ careful from here on. Bad things can happen if
389 * two buffer heads end IO at almost the same time and both
390 * decide that the page is now completely done.
391 */
a3972203
NP
392 first = page_buffers(page);
393 local_irq_save(flags);
394 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
395 clear_buffer_async_read(bh);
396 unlock_buffer(bh);
397 tmp = bh;
398 do {
399 if (!buffer_uptodate(tmp))
400 page_uptodate = 0;
401 if (buffer_async_read(tmp)) {
402 BUG_ON(!buffer_locked(tmp));
403 goto still_busy;
404 }
405 tmp = tmp->b_this_page;
406 } while (tmp != bh);
a3972203
NP
407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 local_irq_restore(flags);
1da177e4
LT
409
410 /*
411 * If none of the buffers had errors and they are all
412 * uptodate then we can set the page uptodate.
413 */
414 if (page_uptodate && !PageError(page))
415 SetPageUptodate(page);
416 unlock_page(page);
417 return;
418
419still_busy:
a3972203
NP
420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 local_irq_restore(flags);
1da177e4
LT
422 return;
423}
424
425/*
426 * Completion handler for block_write_full_page() - pages which are unlocked
427 * during I/O, and which have PageWriteback cleared upon I/O completion.
428 */
b6cd0b77 429static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
430{
431 char b[BDEVNAME_SIZE];
1da177e4 432 unsigned long flags;
a3972203 433 struct buffer_head *first;
1da177e4
LT
434 struct buffer_head *tmp;
435 struct page *page;
436
437 BUG_ON(!buffer_async_write(bh));
438
439 page = bh->b_page;
440 if (uptodate) {
441 set_buffer_uptodate(bh);
442 } else {
443 if (printk_ratelimit()) {
444 buffer_io_error(bh);
445 printk(KERN_WARNING "lost page write due to "
446 "I/O error on %s\n",
447 bdevname(bh->b_bdev, b));
448 }
449 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 450 set_buffer_write_io_error(bh);
1da177e4
LT
451 clear_buffer_uptodate(bh);
452 SetPageError(page);
453 }
454
a3972203
NP
455 first = page_buffers(page);
456 local_irq_save(flags);
457 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
458
1da177e4
LT
459 clear_buffer_async_write(bh);
460 unlock_buffer(bh);
461 tmp = bh->b_this_page;
462 while (tmp != bh) {
463 if (buffer_async_write(tmp)) {
464 BUG_ON(!buffer_locked(tmp));
465 goto still_busy;
466 }
467 tmp = tmp->b_this_page;
468 }
a3972203
NP
469 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
470 local_irq_restore(flags);
1da177e4
LT
471 end_page_writeback(page);
472 return;
473
474still_busy:
a3972203
NP
475 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
476 local_irq_restore(flags);
1da177e4
LT
477 return;
478}
479
480/*
481 * If a page's buffers are under async readin (end_buffer_async_read
482 * completion) then there is a possibility that another thread of
483 * control could lock one of the buffers after it has completed
484 * but while some of the other buffers have not completed. This
485 * locked buffer would confuse end_buffer_async_read() into not unlocking
486 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
487 * that this buffer is not under async I/O.
488 *
489 * The page comes unlocked when it has no locked buffer_async buffers
490 * left.
491 *
492 * PageLocked prevents anyone starting new async I/O reads any of
493 * the buffers.
494 *
495 * PageWriteback is used to prevent simultaneous writeout of the same
496 * page.
497 *
498 * PageLocked prevents anyone from starting writeback of a page which is
499 * under read I/O (PageWriteback is only ever set against a locked page).
500 */
501static void mark_buffer_async_read(struct buffer_head *bh)
502{
503 bh->b_end_io = end_buffer_async_read;
504 set_buffer_async_read(bh);
505}
506
507void mark_buffer_async_write(struct buffer_head *bh)
508{
509 bh->b_end_io = end_buffer_async_write;
510 set_buffer_async_write(bh);
511}
512EXPORT_SYMBOL(mark_buffer_async_write);
513
514
515/*
516 * fs/buffer.c contains helper functions for buffer-backed address space's
517 * fsync functions. A common requirement for buffer-based filesystems is
518 * that certain data from the backing blockdev needs to be written out for
519 * a successful fsync(). For example, ext2 indirect blocks need to be
520 * written back and waited upon before fsync() returns.
521 *
522 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
523 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
524 * management of a list of dependent buffers at ->i_mapping->private_list.
525 *
526 * Locking is a little subtle: try_to_free_buffers() will remove buffers
527 * from their controlling inode's queue when they are being freed. But
528 * try_to_free_buffers() will be operating against the *blockdev* mapping
529 * at the time, not against the S_ISREG file which depends on those buffers.
530 * So the locking for private_list is via the private_lock in the address_space
531 * which backs the buffers. Which is different from the address_space
532 * against which the buffers are listed. So for a particular address_space,
533 * mapping->private_lock does *not* protect mapping->private_list! In fact,
534 * mapping->private_list will always be protected by the backing blockdev's
535 * ->private_lock.
536 *
537 * Which introduces a requirement: all buffers on an address_space's
538 * ->private_list must be from the same address_space: the blockdev's.
539 *
540 * address_spaces which do not place buffers at ->private_list via these
541 * utility functions are free to use private_lock and private_list for
542 * whatever they want. The only requirement is that list_empty(private_list)
543 * be true at clear_inode() time.
544 *
545 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
546 * filesystems should do that. invalidate_inode_buffers() should just go
547 * BUG_ON(!list_empty).
548 *
549 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
550 * take an address_space, not an inode. And it should be called
551 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
552 * queued up.
553 *
554 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
555 * list if it is already on a list. Because if the buffer is on a list,
556 * it *must* already be on the right one. If not, the filesystem is being
557 * silly. This will save a ton of locking. But first we have to ensure
558 * that buffers are taken *off* the old inode's list when they are freed
559 * (presumably in truncate). That requires careful auditing of all
560 * filesystems (do it inside bforget()). It could also be done by bringing
561 * b_inode back.
562 */
563
564/*
565 * The buffer's backing address_space's private_lock must be held
566 */
567static inline void __remove_assoc_queue(struct buffer_head *bh)
568{
569 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
570 WARN_ON(!bh->b_assoc_map);
571 if (buffer_write_io_error(bh))
572 set_bit(AS_EIO, &bh->b_assoc_map->flags);
573 bh->b_assoc_map = NULL;
1da177e4
LT
574}
575
576int inode_has_buffers(struct inode *inode)
577{
578 return !list_empty(&inode->i_data.private_list);
579}
580
581/*
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
585 *
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
590 */
591static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
592{
593 struct buffer_head *bh;
594 struct list_head *p;
595 int err = 0;
596
597 spin_lock(lock);
598repeat:
599 list_for_each_prev(p, list) {
600 bh = BH_ENTRY(p);
601 if (buffer_locked(bh)) {
602 get_bh(bh);
603 spin_unlock(lock);
604 wait_on_buffer(bh);
605 if (!buffer_uptodate(bh))
606 err = -EIO;
607 brelse(bh);
608 spin_lock(lock);
609 goto repeat;
610 }
611 }
612 spin_unlock(lock);
613 return err;
614}
615
616/**
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
618 * buffers
67be2dd1 619 * @mapping: the mapping which wants those buffers written
1da177e4
LT
620 *
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
622 * that I/O.
623 *
67be2dd1
MW
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
1da177e4
LT
627 */
628int sync_mapping_buffers(struct address_space *mapping)
629{
630 struct address_space *buffer_mapping = mapping->assoc_mapping;
631
632 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
633 return 0;
634
635 return fsync_buffers_list(&buffer_mapping->private_lock,
636 &mapping->private_list);
637}
638EXPORT_SYMBOL(sync_mapping_buffers);
639
640/*
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
645 */
646void write_boundary_block(struct block_device *bdev,
647 sector_t bblock, unsigned blocksize)
648{
649 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
650 if (bh) {
651 if (buffer_dirty(bh))
652 ll_rw_block(WRITE, 1, &bh);
653 put_bh(bh);
654 }
655}
656
657void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
658{
659 struct address_space *mapping = inode->i_mapping;
660 struct address_space *buffer_mapping = bh->b_page->mapping;
661
662 mark_buffer_dirty(bh);
663 if (!mapping->assoc_mapping) {
664 mapping->assoc_mapping = buffer_mapping;
665 } else {
e827f923 666 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4
LT
667 }
668 if (list_empty(&bh->b_assoc_buffers)) {
669 spin_lock(&buffer_mapping->private_lock);
670 list_move_tail(&bh->b_assoc_buffers,
671 &mapping->private_list);
58ff407b 672 bh->b_assoc_map = mapping;
1da177e4
LT
673 spin_unlock(&buffer_mapping->private_lock);
674 }
675}
676EXPORT_SYMBOL(mark_buffer_dirty_inode);
677
787d2214
NP
678/*
679 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
680 * dirty.
681 *
682 * If warn is true, then emit a warning if the page is not uptodate and has
683 * not been truncated.
684 */
685static int __set_page_dirty(struct page *page,
686 struct address_space *mapping, int warn)
687{
688 if (unlikely(!mapping))
689 return !TestSetPageDirty(page);
690
691 if (TestSetPageDirty(page))
692 return 0;
693
694 write_lock_irq(&mapping->tree_lock);
695 if (page->mapping) { /* Race with truncate? */
696 WARN_ON_ONCE(warn && !PageUptodate(page));
697
698 if (mapping_cap_account_dirty(mapping)) {
699 __inc_zone_page_state(page, NR_FILE_DIRTY);
700 task_io_account_write(PAGE_CACHE_SIZE);
701 }
702 radix_tree_tag_set(&mapping->page_tree,
703 page_index(page), PAGECACHE_TAG_DIRTY);
704 }
705 write_unlock_irq(&mapping->tree_lock);
706 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
707
708 return 1;
709}
710
1da177e4
LT
711/*
712 * Add a page to the dirty page list.
713 *
714 * It is a sad fact of life that this function is called from several places
715 * deeply under spinlocking. It may not sleep.
716 *
717 * If the page has buffers, the uptodate buffers are set dirty, to preserve
718 * dirty-state coherency between the page and the buffers. It the page does
719 * not have buffers then when they are later attached they will all be set
720 * dirty.
721 *
722 * The buffers are dirtied before the page is dirtied. There's a small race
723 * window in which a writepage caller may see the page cleanness but not the
724 * buffer dirtiness. That's fine. If this code were to set the page dirty
725 * before the buffers, a concurrent writepage caller could clear the page dirty
726 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
727 * page on the dirty page list.
728 *
729 * We use private_lock to lock against try_to_free_buffers while using the
730 * page's buffer list. Also use this to protect against clean buffers being
731 * added to the page after it was set dirty.
732 *
733 * FIXME: may need to call ->reservepage here as well. That's rather up to the
734 * address_space though.
735 */
736int __set_page_dirty_buffers(struct page *page)
737{
787d2214 738 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
739
740 if (unlikely(!mapping))
741 return !TestSetPageDirty(page);
1da177e4
LT
742
743 spin_lock(&mapping->private_lock);
744 if (page_has_buffers(page)) {
745 struct buffer_head *head = page_buffers(page);
746 struct buffer_head *bh = head;
747
748 do {
749 set_buffer_dirty(bh);
750 bh = bh->b_this_page;
751 } while (bh != head);
752 }
753 spin_unlock(&mapping->private_lock);
754
787d2214 755 return __set_page_dirty(page, mapping, 1);
1da177e4
LT
756}
757EXPORT_SYMBOL(__set_page_dirty_buffers);
758
759/*
760 * Write out and wait upon a list of buffers.
761 *
762 * We have conflicting pressures: we want to make sure that all
763 * initially dirty buffers get waited on, but that any subsequently
764 * dirtied buffers don't. After all, we don't want fsync to last
765 * forever if somebody is actively writing to the file.
766 *
767 * Do this in two main stages: first we copy dirty buffers to a
768 * temporary inode list, queueing the writes as we go. Then we clean
769 * up, waiting for those writes to complete.
770 *
771 * During this second stage, any subsequent updates to the file may end
772 * up refiling the buffer on the original inode's dirty list again, so
773 * there is a chance we will end up with a buffer queued for write but
774 * not yet completed on that list. So, as a final cleanup we go through
775 * the osync code to catch these locked, dirty buffers without requeuing
776 * any newly dirty buffers for write.
777 */
778static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
779{
780 struct buffer_head *bh;
781 struct list_head tmp;
782 int err = 0, err2;
783
784 INIT_LIST_HEAD(&tmp);
785
786 spin_lock(lock);
787 while (!list_empty(list)) {
788 bh = BH_ENTRY(list->next);
58ff407b 789 __remove_assoc_queue(bh);
1da177e4
LT
790 if (buffer_dirty(bh) || buffer_locked(bh)) {
791 list_add(&bh->b_assoc_buffers, &tmp);
792 if (buffer_dirty(bh)) {
793 get_bh(bh);
794 spin_unlock(lock);
795 /*
796 * Ensure any pending I/O completes so that
797 * ll_rw_block() actually writes the current
798 * contents - it is a noop if I/O is still in
799 * flight on potentially older contents.
800 */
a7662236 801 ll_rw_block(SWRITE, 1, &bh);
1da177e4
LT
802 brelse(bh);
803 spin_lock(lock);
804 }
805 }
806 }
807
808 while (!list_empty(&tmp)) {
809 bh = BH_ENTRY(tmp.prev);
58ff407b 810 list_del_init(&bh->b_assoc_buffers);
1da177e4
LT
811 get_bh(bh);
812 spin_unlock(lock);
813 wait_on_buffer(bh);
814 if (!buffer_uptodate(bh))
815 err = -EIO;
816 brelse(bh);
817 spin_lock(lock);
818 }
819
820 spin_unlock(lock);
821 err2 = osync_buffers_list(lock, list);
822 if (err)
823 return err;
824 else
825 return err2;
826}
827
828/*
829 * Invalidate any and all dirty buffers on a given inode. We are
830 * probably unmounting the fs, but that doesn't mean we have already
831 * done a sync(). Just drop the buffers from the inode list.
832 *
833 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
834 * assumes that all the buffers are against the blockdev. Not true
835 * for reiserfs.
836 */
837void invalidate_inode_buffers(struct inode *inode)
838{
839 if (inode_has_buffers(inode)) {
840 struct address_space *mapping = &inode->i_data;
841 struct list_head *list = &mapping->private_list;
842 struct address_space *buffer_mapping = mapping->assoc_mapping;
843
844 spin_lock(&buffer_mapping->private_lock);
845 while (!list_empty(list))
846 __remove_assoc_queue(BH_ENTRY(list->next));
847 spin_unlock(&buffer_mapping->private_lock);
848 }
849}
850
851/*
852 * Remove any clean buffers from the inode's buffer list. This is called
853 * when we're trying to free the inode itself. Those buffers can pin it.
854 *
855 * Returns true if all buffers were removed.
856 */
857int remove_inode_buffers(struct inode *inode)
858{
859 int ret = 1;
860
861 if (inode_has_buffers(inode)) {
862 struct address_space *mapping = &inode->i_data;
863 struct list_head *list = &mapping->private_list;
864 struct address_space *buffer_mapping = mapping->assoc_mapping;
865
866 spin_lock(&buffer_mapping->private_lock);
867 while (!list_empty(list)) {
868 struct buffer_head *bh = BH_ENTRY(list->next);
869 if (buffer_dirty(bh)) {
870 ret = 0;
871 break;
872 }
873 __remove_assoc_queue(bh);
874 }
875 spin_unlock(&buffer_mapping->private_lock);
876 }
877 return ret;
878}
879
880/*
881 * Create the appropriate buffers when given a page for data area and
882 * the size of each buffer.. Use the bh->b_this_page linked list to
883 * follow the buffers created. Return NULL if unable to create more
884 * buffers.
885 *
886 * The retry flag is used to differentiate async IO (paging, swapping)
887 * which may not fail from ordinary buffer allocations.
888 */
889struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
890 int retry)
891{
892 struct buffer_head *bh, *head;
893 long offset;
894
895try_again:
896 head = NULL;
897 offset = PAGE_SIZE;
898 while ((offset -= size) >= 0) {
899 bh = alloc_buffer_head(GFP_NOFS);
900 if (!bh)
901 goto no_grow;
902
903 bh->b_bdev = NULL;
904 bh->b_this_page = head;
905 bh->b_blocknr = -1;
906 head = bh;
907
908 bh->b_state = 0;
909 atomic_set(&bh->b_count, 0);
fc5cd582 910 bh->b_private = NULL;
1da177e4
LT
911 bh->b_size = size;
912
913 /* Link the buffer to its page */
914 set_bh_page(bh, page, offset);
915
01ffe339 916 init_buffer(bh, NULL, NULL);
1da177e4
LT
917 }
918 return head;
919/*
920 * In case anything failed, we just free everything we got.
921 */
922no_grow:
923 if (head) {
924 do {
925 bh = head;
926 head = head->b_this_page;
927 free_buffer_head(bh);
928 } while (head);
929 }
930
931 /*
932 * Return failure for non-async IO requests. Async IO requests
933 * are not allowed to fail, so we have to wait until buffer heads
934 * become available. But we don't want tasks sleeping with
935 * partially complete buffers, so all were released above.
936 */
937 if (!retry)
938 return NULL;
939
940 /* We're _really_ low on memory. Now we just
941 * wait for old buffer heads to become free due to
942 * finishing IO. Since this is an async request and
943 * the reserve list is empty, we're sure there are
944 * async buffer heads in use.
945 */
946 free_more_memory();
947 goto try_again;
948}
949EXPORT_SYMBOL_GPL(alloc_page_buffers);
950
951static inline void
952link_dev_buffers(struct page *page, struct buffer_head *head)
953{
954 struct buffer_head *bh, *tail;
955
956 bh = head;
957 do {
958 tail = bh;
959 bh = bh->b_this_page;
960 } while (bh);
961 tail->b_this_page = head;
962 attach_page_buffers(page, head);
963}
964
965/*
966 * Initialise the state of a blockdev page's buffers.
967 */
968static void
969init_page_buffers(struct page *page, struct block_device *bdev,
970 sector_t block, int size)
971{
972 struct buffer_head *head = page_buffers(page);
973 struct buffer_head *bh = head;
974 int uptodate = PageUptodate(page);
975
976 do {
977 if (!buffer_mapped(bh)) {
978 init_buffer(bh, NULL, NULL);
979 bh->b_bdev = bdev;
980 bh->b_blocknr = block;
981 if (uptodate)
982 set_buffer_uptodate(bh);
983 set_buffer_mapped(bh);
984 }
985 block++;
986 bh = bh->b_this_page;
987 } while (bh != head);
988}
989
990/*
991 * Create the page-cache page that contains the requested block.
992 *
993 * This is user purely for blockdev mappings.
994 */
995static struct page *
996grow_dev_page(struct block_device *bdev, sector_t block,
997 pgoff_t index, int size)
998{
999 struct inode *inode = bdev->bd_inode;
1000 struct page *page;
1001 struct buffer_head *bh;
1002
ea125892 1003 page = find_or_create_page(inode->i_mapping, index,
769848c0 1004 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
1005 if (!page)
1006 return NULL;
1007
e827f923 1008 BUG_ON(!PageLocked(page));
1da177e4
LT
1009
1010 if (page_has_buffers(page)) {
1011 bh = page_buffers(page);
1012 if (bh->b_size == size) {
1013 init_page_buffers(page, bdev, block, size);
1014 return page;
1015 }
1016 if (!try_to_free_buffers(page))
1017 goto failed;
1018 }
1019
1020 /*
1021 * Allocate some buffers for this page
1022 */
1023 bh = alloc_page_buffers(page, size, 0);
1024 if (!bh)
1025 goto failed;
1026
1027 /*
1028 * Link the page to the buffers and initialise them. Take the
1029 * lock to be atomic wrt __find_get_block(), which does not
1030 * run under the page lock.
1031 */
1032 spin_lock(&inode->i_mapping->private_lock);
1033 link_dev_buffers(page, bh);
1034 init_page_buffers(page, bdev, block, size);
1035 spin_unlock(&inode->i_mapping->private_lock);
1036 return page;
1037
1038failed:
1039 BUG();
1040 unlock_page(page);
1041 page_cache_release(page);
1042 return NULL;
1043}
1044
1045/*
1046 * Create buffers for the specified block device block's page. If
1047 * that page was dirty, the buffers are set dirty also.
1da177e4 1048 */
858119e1 1049static int
1da177e4
LT
1050grow_buffers(struct block_device *bdev, sector_t block, int size)
1051{
1052 struct page *page;
1053 pgoff_t index;
1054 int sizebits;
1055
1056 sizebits = -1;
1057 do {
1058 sizebits++;
1059 } while ((size << sizebits) < PAGE_SIZE);
1060
1061 index = block >> sizebits;
1da177e4 1062
e5657933
AM
1063 /*
1064 * Check for a block which wants to lie outside our maximum possible
1065 * pagecache index. (this comparison is done using sector_t types).
1066 */
1067 if (unlikely(index != block >> sizebits)) {
1068 char b[BDEVNAME_SIZE];
1069
1070 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071 "device %s\n",
1072 __FUNCTION__, (unsigned long long)block,
1073 bdevname(bdev, b));
1074 return -EIO;
1075 }
1076 block = index << sizebits;
1da177e4
LT
1077 /* Create a page with the proper size buffers.. */
1078 page = grow_dev_page(bdev, block, index, size);
1079 if (!page)
1080 return 0;
1081 unlock_page(page);
1082 page_cache_release(page);
1083 return 1;
1084}
1085
75c96f85 1086static struct buffer_head *
1da177e4
LT
1087__getblk_slow(struct block_device *bdev, sector_t block, int size)
1088{
1089 /* Size must be multiple of hard sectorsize */
1090 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1091 (size < 512 || size > PAGE_SIZE))) {
1092 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1093 size);
1094 printk(KERN_ERR "hardsect size: %d\n",
1095 bdev_hardsect_size(bdev));
1096
1097 dump_stack();
1098 return NULL;
1099 }
1100
1101 for (;;) {
1102 struct buffer_head * bh;
e5657933 1103 int ret;
1da177e4
LT
1104
1105 bh = __find_get_block(bdev, block, size);
1106 if (bh)
1107 return bh;
1108
e5657933
AM
1109 ret = grow_buffers(bdev, block, size);
1110 if (ret < 0)
1111 return NULL;
1112 if (ret == 0)
1da177e4
LT
1113 free_more_memory();
1114 }
1115}
1116
1117/*
1118 * The relationship between dirty buffers and dirty pages:
1119 *
1120 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1121 * the page is tagged dirty in its radix tree.
1122 *
1123 * At all times, the dirtiness of the buffers represents the dirtiness of
1124 * subsections of the page. If the page has buffers, the page dirty bit is
1125 * merely a hint about the true dirty state.
1126 *
1127 * When a page is set dirty in its entirety, all its buffers are marked dirty
1128 * (if the page has buffers).
1129 *
1130 * When a buffer is marked dirty, its page is dirtied, but the page's other
1131 * buffers are not.
1132 *
1133 * Also. When blockdev buffers are explicitly read with bread(), they
1134 * individually become uptodate. But their backing page remains not
1135 * uptodate - even if all of its buffers are uptodate. A subsequent
1136 * block_read_full_page() against that page will discover all the uptodate
1137 * buffers, will set the page uptodate and will perform no I/O.
1138 */
1139
1140/**
1141 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1142 * @bh: the buffer_head to mark dirty
1da177e4
LT
1143 *
1144 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1145 * backing page dirty, then tag the page as dirty in its address_space's radix
1146 * tree and then attach the address_space's inode to its superblock's dirty
1147 * inode list.
1148 *
1149 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1150 * mapping->tree_lock and the global inode_lock.
1151 */
1152void fastcall mark_buffer_dirty(struct buffer_head *bh)
1153{
787d2214 1154 WARN_ON_ONCE(!buffer_uptodate(bh));
1da177e4 1155 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
787d2214 1156 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1da177e4
LT
1157}
1158
1159/*
1160 * Decrement a buffer_head's reference count. If all buffers against a page
1161 * have zero reference count, are clean and unlocked, and if the page is clean
1162 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1163 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1164 * a page but it ends up not being freed, and buffers may later be reattached).
1165 */
1166void __brelse(struct buffer_head * buf)
1167{
1168 if (atomic_read(&buf->b_count)) {
1169 put_bh(buf);
1170 return;
1171 }
1172 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1173 WARN_ON(1);
1174}
1175
1176/*
1177 * bforget() is like brelse(), except it discards any
1178 * potentially dirty data.
1179 */
1180void __bforget(struct buffer_head *bh)
1181{
1182 clear_buffer_dirty(bh);
1183 if (!list_empty(&bh->b_assoc_buffers)) {
1184 struct address_space *buffer_mapping = bh->b_page->mapping;
1185
1186 spin_lock(&buffer_mapping->private_lock);
1187 list_del_init(&bh->b_assoc_buffers);
58ff407b 1188 bh->b_assoc_map = NULL;
1da177e4
LT
1189 spin_unlock(&buffer_mapping->private_lock);
1190 }
1191 __brelse(bh);
1192}
1193
1194static struct buffer_head *__bread_slow(struct buffer_head *bh)
1195{
1196 lock_buffer(bh);
1197 if (buffer_uptodate(bh)) {
1198 unlock_buffer(bh);
1199 return bh;
1200 } else {
1201 get_bh(bh);
1202 bh->b_end_io = end_buffer_read_sync;
1203 submit_bh(READ, bh);
1204 wait_on_buffer(bh);
1205 if (buffer_uptodate(bh))
1206 return bh;
1207 }
1208 brelse(bh);
1209 return NULL;
1210}
1211
1212/*
1213 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1214 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1215 * refcount elevated by one when they're in an LRU. A buffer can only appear
1216 * once in a particular CPU's LRU. A single buffer can be present in multiple
1217 * CPU's LRUs at the same time.
1218 *
1219 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1220 * sb_find_get_block().
1221 *
1222 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1223 * a local interrupt disable for that.
1224 */
1225
1226#define BH_LRU_SIZE 8
1227
1228struct bh_lru {
1229 struct buffer_head *bhs[BH_LRU_SIZE];
1230};
1231
1232static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1233
1234#ifdef CONFIG_SMP
1235#define bh_lru_lock() local_irq_disable()
1236#define bh_lru_unlock() local_irq_enable()
1237#else
1238#define bh_lru_lock() preempt_disable()
1239#define bh_lru_unlock() preempt_enable()
1240#endif
1241
1242static inline void check_irqs_on(void)
1243{
1244#ifdef irqs_disabled
1245 BUG_ON(irqs_disabled());
1246#endif
1247}
1248
1249/*
1250 * The LRU management algorithm is dopey-but-simple. Sorry.
1251 */
1252static void bh_lru_install(struct buffer_head *bh)
1253{
1254 struct buffer_head *evictee = NULL;
1255 struct bh_lru *lru;
1256
1257 check_irqs_on();
1258 bh_lru_lock();
1259 lru = &__get_cpu_var(bh_lrus);
1260 if (lru->bhs[0] != bh) {
1261 struct buffer_head *bhs[BH_LRU_SIZE];
1262 int in;
1263 int out = 0;
1264
1265 get_bh(bh);
1266 bhs[out++] = bh;
1267 for (in = 0; in < BH_LRU_SIZE; in++) {
1268 struct buffer_head *bh2 = lru->bhs[in];
1269
1270 if (bh2 == bh) {
1271 __brelse(bh2);
1272 } else {
1273 if (out >= BH_LRU_SIZE) {
1274 BUG_ON(evictee != NULL);
1275 evictee = bh2;
1276 } else {
1277 bhs[out++] = bh2;
1278 }
1279 }
1280 }
1281 while (out < BH_LRU_SIZE)
1282 bhs[out++] = NULL;
1283 memcpy(lru->bhs, bhs, sizeof(bhs));
1284 }
1285 bh_lru_unlock();
1286
1287 if (evictee)
1288 __brelse(evictee);
1289}
1290
1291/*
1292 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1293 */
858119e1 1294static struct buffer_head *
3991d3bd 1295lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1296{
1297 struct buffer_head *ret = NULL;
1298 struct bh_lru *lru;
3991d3bd 1299 unsigned int i;
1da177e4
LT
1300
1301 check_irqs_on();
1302 bh_lru_lock();
1303 lru = &__get_cpu_var(bh_lrus);
1304 for (i = 0; i < BH_LRU_SIZE; i++) {
1305 struct buffer_head *bh = lru->bhs[i];
1306
1307 if (bh && bh->b_bdev == bdev &&
1308 bh->b_blocknr == block && bh->b_size == size) {
1309 if (i) {
1310 while (i) {
1311 lru->bhs[i] = lru->bhs[i - 1];
1312 i--;
1313 }
1314 lru->bhs[0] = bh;
1315 }
1316 get_bh(bh);
1317 ret = bh;
1318 break;
1319 }
1320 }
1321 bh_lru_unlock();
1322 return ret;
1323}
1324
1325/*
1326 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1327 * it in the LRU and mark it as accessed. If it is not present then return
1328 * NULL
1329 */
1330struct buffer_head *
3991d3bd 1331__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1332{
1333 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334
1335 if (bh == NULL) {
385fd4c5 1336 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1337 if (bh)
1338 bh_lru_install(bh);
1339 }
1340 if (bh)
1341 touch_buffer(bh);
1342 return bh;
1343}
1344EXPORT_SYMBOL(__find_get_block);
1345
1346/*
1347 * __getblk will locate (and, if necessary, create) the buffer_head
1348 * which corresponds to the passed block_device, block and size. The
1349 * returned buffer has its reference count incremented.
1350 *
1351 * __getblk() cannot fail - it just keeps trying. If you pass it an
1352 * illegal block number, __getblk() will happily return a buffer_head
1353 * which represents the non-existent block. Very weird.
1354 *
1355 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1356 * attempt is failing. FIXME, perhaps?
1357 */
1358struct buffer_head *
3991d3bd 1359__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1360{
1361 struct buffer_head *bh = __find_get_block(bdev, block, size);
1362
1363 might_sleep();
1364 if (bh == NULL)
1365 bh = __getblk_slow(bdev, block, size);
1366 return bh;
1367}
1368EXPORT_SYMBOL(__getblk);
1369
1370/*
1371 * Do async read-ahead on a buffer..
1372 */
3991d3bd 1373void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1374{
1375 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1376 if (likely(bh)) {
1377 ll_rw_block(READA, 1, &bh);
1378 brelse(bh);
1379 }
1da177e4
LT
1380}
1381EXPORT_SYMBOL(__breadahead);
1382
1383/**
1384 * __bread() - reads a specified block and returns the bh
67be2dd1 1385 * @bdev: the block_device to read from
1da177e4
LT
1386 * @block: number of block
1387 * @size: size (in bytes) to read
1388 *
1389 * Reads a specified block, and returns buffer head that contains it.
1390 * It returns NULL if the block was unreadable.
1391 */
1392struct buffer_head *
3991d3bd 1393__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1394{
1395 struct buffer_head *bh = __getblk(bdev, block, size);
1396
a3e713b5 1397 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1398 bh = __bread_slow(bh);
1399 return bh;
1400}
1401EXPORT_SYMBOL(__bread);
1402
1403/*
1404 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1405 * This doesn't race because it runs in each cpu either in irq
1406 * or with preempt disabled.
1407 */
1408static void invalidate_bh_lru(void *arg)
1409{
1410 struct bh_lru *b = &get_cpu_var(bh_lrus);
1411 int i;
1412
1413 for (i = 0; i < BH_LRU_SIZE; i++) {
1414 brelse(b->bhs[i]);
1415 b->bhs[i] = NULL;
1416 }
1417 put_cpu_var(bh_lrus);
1418}
1419
f9a14399 1420void invalidate_bh_lrus(void)
1da177e4
LT
1421{
1422 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1423}
1424
1425void set_bh_page(struct buffer_head *bh,
1426 struct page *page, unsigned long offset)
1427{
1428 bh->b_page = page;
e827f923 1429 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1430 if (PageHighMem(page))
1431 /*
1432 * This catches illegal uses and preserves the offset:
1433 */
1434 bh->b_data = (char *)(0 + offset);
1435 else
1436 bh->b_data = page_address(page) + offset;
1437}
1438EXPORT_SYMBOL(set_bh_page);
1439
1440/*
1441 * Called when truncating a buffer on a page completely.
1442 */
858119e1 1443static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1444{
1445 lock_buffer(bh);
1446 clear_buffer_dirty(bh);
1447 bh->b_bdev = NULL;
1448 clear_buffer_mapped(bh);
1449 clear_buffer_req(bh);
1450 clear_buffer_new(bh);
1451 clear_buffer_delay(bh);
33a266dd 1452 clear_buffer_unwritten(bh);
1da177e4
LT
1453 unlock_buffer(bh);
1454}
1455
1da177e4
LT
1456/**
1457 * block_invalidatepage - invalidate part of all of a buffer-backed page
1458 *
1459 * @page: the page which is affected
1460 * @offset: the index of the truncation point
1461 *
1462 * block_invalidatepage() is called when all or part of the page has become
1463 * invalidatedby a truncate operation.
1464 *
1465 * block_invalidatepage() does not have to release all buffers, but it must
1466 * ensure that no dirty buffer is left outside @offset and that no I/O
1467 * is underway against any of the blocks which are outside the truncation
1468 * point. Because the caller is about to free (and possibly reuse) those
1469 * blocks on-disk.
1470 */
2ff28e22 1471void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1472{
1473 struct buffer_head *head, *bh, *next;
1474 unsigned int curr_off = 0;
1da177e4
LT
1475
1476 BUG_ON(!PageLocked(page));
1477 if (!page_has_buffers(page))
1478 goto out;
1479
1480 head = page_buffers(page);
1481 bh = head;
1482 do {
1483 unsigned int next_off = curr_off + bh->b_size;
1484 next = bh->b_this_page;
1485
1486 /*
1487 * is this block fully invalidated?
1488 */
1489 if (offset <= curr_off)
1490 discard_buffer(bh);
1491 curr_off = next_off;
1492 bh = next;
1493 } while (bh != head);
1494
1495 /*
1496 * We release buffers only if the entire page is being invalidated.
1497 * The get_block cached value has been unconditionally invalidated,
1498 * so real IO is not possible anymore.
1499 */
1500 if (offset == 0)
2ff28e22 1501 try_to_release_page(page, 0);
1da177e4 1502out:
2ff28e22 1503 return;
1da177e4
LT
1504}
1505EXPORT_SYMBOL(block_invalidatepage);
1506
1507/*
1508 * We attach and possibly dirty the buffers atomically wrt
1509 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1510 * is already excluded via the page lock.
1511 */
1512void create_empty_buffers(struct page *page,
1513 unsigned long blocksize, unsigned long b_state)
1514{
1515 struct buffer_head *bh, *head, *tail;
1516
1517 head = alloc_page_buffers(page, blocksize, 1);
1518 bh = head;
1519 do {
1520 bh->b_state |= b_state;
1521 tail = bh;
1522 bh = bh->b_this_page;
1523 } while (bh);
1524 tail->b_this_page = head;
1525
1526 spin_lock(&page->mapping->private_lock);
1527 if (PageUptodate(page) || PageDirty(page)) {
1528 bh = head;
1529 do {
1530 if (PageDirty(page))
1531 set_buffer_dirty(bh);
1532 if (PageUptodate(page))
1533 set_buffer_uptodate(bh);
1534 bh = bh->b_this_page;
1535 } while (bh != head);
1536 }
1537 attach_page_buffers(page, head);
1538 spin_unlock(&page->mapping->private_lock);
1539}
1540EXPORT_SYMBOL(create_empty_buffers);
1541
1542/*
1543 * We are taking a block for data and we don't want any output from any
1544 * buffer-cache aliases starting from return from that function and
1545 * until the moment when something will explicitly mark the buffer
1546 * dirty (hopefully that will not happen until we will free that block ;-)
1547 * We don't even need to mark it not-uptodate - nobody can expect
1548 * anything from a newly allocated buffer anyway. We used to used
1549 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1550 * don't want to mark the alias unmapped, for example - it would confuse
1551 * anyone who might pick it with bread() afterwards...
1552 *
1553 * Also.. Note that bforget() doesn't lock the buffer. So there can
1554 * be writeout I/O going on against recently-freed buffers. We don't
1555 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1556 * only if we really need to. That happens here.
1557 */
1558void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1559{
1560 struct buffer_head *old_bh;
1561
1562 might_sleep();
1563
385fd4c5 1564 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1565 if (old_bh) {
1566 clear_buffer_dirty(old_bh);
1567 wait_on_buffer(old_bh);
1568 clear_buffer_req(old_bh);
1569 __brelse(old_bh);
1570 }
1571}
1572EXPORT_SYMBOL(unmap_underlying_metadata);
1573
1574/*
1575 * NOTE! All mapped/uptodate combinations are valid:
1576 *
1577 * Mapped Uptodate Meaning
1578 *
1579 * No No "unknown" - must do get_block()
1580 * No Yes "hole" - zero-filled
1581 * Yes No "allocated" - allocated on disk, not read in
1582 * Yes Yes "valid" - allocated and up-to-date in memory.
1583 *
1584 * "Dirty" is valid only with the last case (mapped+uptodate).
1585 */
1586
1587/*
1588 * While block_write_full_page is writing back the dirty buffers under
1589 * the page lock, whoever dirtied the buffers may decide to clean them
1590 * again at any time. We handle that by only looking at the buffer
1591 * state inside lock_buffer().
1592 *
1593 * If block_write_full_page() is called for regular writeback
1594 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1595 * locked buffer. This only can happen if someone has written the buffer
1596 * directly, with submit_bh(). At the address_space level PageWriteback
1597 * prevents this contention from occurring.
1598 */
1599static int __block_write_full_page(struct inode *inode, struct page *page,
1600 get_block_t *get_block, struct writeback_control *wbc)
1601{
1602 int err;
1603 sector_t block;
1604 sector_t last_block;
f0fbd5fc 1605 struct buffer_head *bh, *head;
b0cf2321 1606 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4
LT
1607 int nr_underway = 0;
1608
1609 BUG_ON(!PageLocked(page));
1610
1611 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1612
1613 if (!page_has_buffers(page)) {
b0cf2321 1614 create_empty_buffers(page, blocksize,
1da177e4
LT
1615 (1 << BH_Dirty)|(1 << BH_Uptodate));
1616 }
1617
1618 /*
1619 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1620 * here, and the (potentially unmapped) buffers may become dirty at
1621 * any time. If a buffer becomes dirty here after we've inspected it
1622 * then we just miss that fact, and the page stays dirty.
1623 *
1624 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1625 * handle that here by just cleaning them.
1626 */
1627
54b21a79 1628 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1629 head = page_buffers(page);
1630 bh = head;
1631
1632 /*
1633 * Get all the dirty buffers mapped to disk addresses and
1634 * handle any aliases from the underlying blockdev's mapping.
1635 */
1636 do {
1637 if (block > last_block) {
1638 /*
1639 * mapped buffers outside i_size will occur, because
1640 * this page can be outside i_size when there is a
1641 * truncate in progress.
1642 */
1643 /*
1644 * The buffer was zeroed by block_write_full_page()
1645 */
1646 clear_buffer_dirty(bh);
1647 set_buffer_uptodate(bh);
1648 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
b0cf2321 1649 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1650 err = get_block(inode, block, bh, 1);
1651 if (err)
1652 goto recover;
1653 if (buffer_new(bh)) {
1654 /* blockdev mappings never come here */
1655 clear_buffer_new(bh);
1656 unmap_underlying_metadata(bh->b_bdev,
1657 bh->b_blocknr);
1658 }
1659 }
1660 bh = bh->b_this_page;
1661 block++;
1662 } while (bh != head);
1663
1664 do {
1da177e4
LT
1665 if (!buffer_mapped(bh))
1666 continue;
1667 /*
1668 * If it's a fully non-blocking write attempt and we cannot
1669 * lock the buffer then redirty the page. Note that this can
1670 * potentially cause a busy-wait loop from pdflush and kswapd
1671 * activity, but those code paths have their own higher-level
1672 * throttling.
1673 */
1674 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1675 lock_buffer(bh);
1676 } else if (test_set_buffer_locked(bh)) {
1677 redirty_page_for_writepage(wbc, page);
1678 continue;
1679 }
1680 if (test_clear_buffer_dirty(bh)) {
1681 mark_buffer_async_write(bh);
1682 } else {
1683 unlock_buffer(bh);
1684 }
1685 } while ((bh = bh->b_this_page) != head);
1686
1687 /*
1688 * The page and its buffers are protected by PageWriteback(), so we can
1689 * drop the bh refcounts early.
1690 */
1691 BUG_ON(PageWriteback(page));
1692 set_page_writeback(page);
1da177e4
LT
1693
1694 do {
1695 struct buffer_head *next = bh->b_this_page;
1696 if (buffer_async_write(bh)) {
1697 submit_bh(WRITE, bh);
1698 nr_underway++;
1699 }
1da177e4
LT
1700 bh = next;
1701 } while (bh != head);
05937baa 1702 unlock_page(page);
1da177e4
LT
1703
1704 err = 0;
1705done:
1706 if (nr_underway == 0) {
1707 /*
1708 * The page was marked dirty, but the buffers were
1709 * clean. Someone wrote them back by hand with
1710 * ll_rw_block/submit_bh. A rare case.
1711 */
1da177e4 1712 end_page_writeback(page);
3d67f2d7 1713
1da177e4
LT
1714 /*
1715 * The page and buffer_heads can be released at any time from
1716 * here on.
1717 */
1718 wbc->pages_skipped++; /* We didn't write this page */
1719 }
1720 return err;
1721
1722recover:
1723 /*
1724 * ENOSPC, or some other error. We may already have added some
1725 * blocks to the file, so we need to write these out to avoid
1726 * exposing stale data.
1727 * The page is currently locked and not marked for writeback
1728 */
1729 bh = head;
1730 /* Recovery: lock and submit the mapped buffers */
1731 do {
1da177e4
LT
1732 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1733 lock_buffer(bh);
1734 mark_buffer_async_write(bh);
1735 } else {
1736 /*
1737 * The buffer may have been set dirty during
1738 * attachment to a dirty page.
1739 */
1740 clear_buffer_dirty(bh);
1741 }
1742 } while ((bh = bh->b_this_page) != head);
1743 SetPageError(page);
1744 BUG_ON(PageWriteback(page));
7e4c3690 1745 mapping_set_error(page->mapping, err);
1da177e4 1746 set_page_writeback(page);
1da177e4
LT
1747 do {
1748 struct buffer_head *next = bh->b_this_page;
1749 if (buffer_async_write(bh)) {
1750 clear_buffer_dirty(bh);
1751 submit_bh(WRITE, bh);
1752 nr_underway++;
1753 }
1da177e4
LT
1754 bh = next;
1755 } while (bh != head);
ffda9d30 1756 unlock_page(page);
1da177e4
LT
1757 goto done;
1758}
1759
1760static int __block_prepare_write(struct inode *inode, struct page *page,
1761 unsigned from, unsigned to, get_block_t *get_block)
1762{
1763 unsigned block_start, block_end;
1764 sector_t block;
1765 int err = 0;
1766 unsigned blocksize, bbits;
1767 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1768
1769 BUG_ON(!PageLocked(page));
1770 BUG_ON(from > PAGE_CACHE_SIZE);
1771 BUG_ON(to > PAGE_CACHE_SIZE);
1772 BUG_ON(from > to);
1773
1774 blocksize = 1 << inode->i_blkbits;
1775 if (!page_has_buffers(page))
1776 create_empty_buffers(page, blocksize, 0);
1777 head = page_buffers(page);
1778
1779 bbits = inode->i_blkbits;
1780 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1781
1782 for(bh = head, block_start = 0; bh != head || !block_start;
1783 block++, block_start=block_end, bh = bh->b_this_page) {
1784 block_end = block_start + blocksize;
1785 if (block_end <= from || block_start >= to) {
1786 if (PageUptodate(page)) {
1787 if (!buffer_uptodate(bh))
1788 set_buffer_uptodate(bh);
1789 }
1790 continue;
1791 }
1792 if (buffer_new(bh))
1793 clear_buffer_new(bh);
1794 if (!buffer_mapped(bh)) {
b0cf2321 1795 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1796 err = get_block(inode, block, bh, 1);
1797 if (err)
f3ddbdc6 1798 break;
1da177e4 1799 if (buffer_new(bh)) {
1da177e4
LT
1800 unmap_underlying_metadata(bh->b_bdev,
1801 bh->b_blocknr);
1802 if (PageUptodate(page)) {
1803 set_buffer_uptodate(bh);
1804 continue;
1805 }
1806 if (block_end > to || block_start < from) {
1807 void *kaddr;
1808
1809 kaddr = kmap_atomic(page, KM_USER0);
1810 if (block_end > to)
1811 memset(kaddr+to, 0,
1812 block_end-to);
1813 if (block_start < from)
1814 memset(kaddr+block_start,
1815 0, from-block_start);
1816 flush_dcache_page(page);
1817 kunmap_atomic(kaddr, KM_USER0);
1818 }
1819 continue;
1820 }
1821 }
1822 if (PageUptodate(page)) {
1823 if (!buffer_uptodate(bh))
1824 set_buffer_uptodate(bh);
1825 continue;
1826 }
1827 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1828 !buffer_unwritten(bh) &&
1da177e4
LT
1829 (block_start < from || block_end > to)) {
1830 ll_rw_block(READ, 1, &bh);
1831 *wait_bh++=bh;
1832 }
1833 }
1834 /*
1835 * If we issued read requests - let them complete.
1836 */
1837 while(wait_bh > wait) {
1838 wait_on_buffer(*--wait_bh);
1839 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1840 err = -EIO;
1da177e4 1841 }
152becd2
AA
1842 if (!err) {
1843 bh = head;
1844 do {
1845 if (buffer_new(bh))
1846 clear_buffer_new(bh);
1847 } while ((bh = bh->b_this_page) != head);
1848 return 0;
1849 }
f3ddbdc6 1850 /* Error case: */
1da177e4
LT
1851 /*
1852 * Zero out any newly allocated blocks to avoid exposing stale
1853 * data. If BH_New is set, we know that the block was newly
1854 * allocated in the above loop.
1855 */
1856 bh = head;
1857 block_start = 0;
1858 do {
1859 block_end = block_start+blocksize;
1860 if (block_end <= from)
1861 goto next_bh;
1862 if (block_start >= to)
1863 break;
1864 if (buffer_new(bh)) {
1da177e4 1865 clear_buffer_new(bh);
01f2705d 1866 zero_user_page(page, block_start, bh->b_size, KM_USER0);
1da177e4
LT
1867 set_buffer_uptodate(bh);
1868 mark_buffer_dirty(bh);
1869 }
1870next_bh:
1871 block_start = block_end;
1872 bh = bh->b_this_page;
1873 } while (bh != head);
1874 return err;
1875}
1876
1877static int __block_commit_write(struct inode *inode, struct page *page,
1878 unsigned from, unsigned to)
1879{
1880 unsigned block_start, block_end;
1881 int partial = 0;
1882 unsigned blocksize;
1883 struct buffer_head *bh, *head;
1884
1885 blocksize = 1 << inode->i_blkbits;
1886
1887 for(bh = head = page_buffers(page), block_start = 0;
1888 bh != head || !block_start;
1889 block_start=block_end, bh = bh->b_this_page) {
1890 block_end = block_start + blocksize;
1891 if (block_end <= from || block_start >= to) {
1892 if (!buffer_uptodate(bh))
1893 partial = 1;
1894 } else {
1895 set_buffer_uptodate(bh);
1896 mark_buffer_dirty(bh);
1897 }
1898 }
1899
1900 /*
1901 * If this is a partial write which happened to make all buffers
1902 * uptodate then we can optimize away a bogus readpage() for
1903 * the next read(). Here we 'discover' whether the page went
1904 * uptodate as a result of this (potentially partial) write.
1905 */
1906 if (!partial)
1907 SetPageUptodate(page);
1908 return 0;
1909}
1910
1911/*
1912 * Generic "read page" function for block devices that have the normal
1913 * get_block functionality. This is most of the block device filesystems.
1914 * Reads the page asynchronously --- the unlock_buffer() and
1915 * set/clear_buffer_uptodate() functions propagate buffer state into the
1916 * page struct once IO has completed.
1917 */
1918int block_read_full_page(struct page *page, get_block_t *get_block)
1919{
1920 struct inode *inode = page->mapping->host;
1921 sector_t iblock, lblock;
1922 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1923 unsigned int blocksize;
1924 int nr, i;
1925 int fully_mapped = 1;
1926
cd7619d6 1927 BUG_ON(!PageLocked(page));
1da177e4
LT
1928 blocksize = 1 << inode->i_blkbits;
1929 if (!page_has_buffers(page))
1930 create_empty_buffers(page, blocksize, 0);
1931 head = page_buffers(page);
1932
1933 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1934 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1935 bh = head;
1936 nr = 0;
1937 i = 0;
1938
1939 do {
1940 if (buffer_uptodate(bh))
1941 continue;
1942
1943 if (!buffer_mapped(bh)) {
c64610ba
AM
1944 int err = 0;
1945
1da177e4
LT
1946 fully_mapped = 0;
1947 if (iblock < lblock) {
b0cf2321 1948 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
1949 err = get_block(inode, iblock, bh, 0);
1950 if (err)
1da177e4
LT
1951 SetPageError(page);
1952 }
1953 if (!buffer_mapped(bh)) {
01f2705d
ND
1954 zero_user_page(page, i * blocksize, blocksize,
1955 KM_USER0);
c64610ba
AM
1956 if (!err)
1957 set_buffer_uptodate(bh);
1da177e4
LT
1958 continue;
1959 }
1960 /*
1961 * get_block() might have updated the buffer
1962 * synchronously
1963 */
1964 if (buffer_uptodate(bh))
1965 continue;
1966 }
1967 arr[nr++] = bh;
1968 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1969
1970 if (fully_mapped)
1971 SetPageMappedToDisk(page);
1972
1973 if (!nr) {
1974 /*
1975 * All buffers are uptodate - we can set the page uptodate
1976 * as well. But not if get_block() returned an error.
1977 */
1978 if (!PageError(page))
1979 SetPageUptodate(page);
1980 unlock_page(page);
1981 return 0;
1982 }
1983
1984 /* Stage two: lock the buffers */
1985 for (i = 0; i < nr; i++) {
1986 bh = arr[i];
1987 lock_buffer(bh);
1988 mark_buffer_async_read(bh);
1989 }
1990
1991 /*
1992 * Stage 3: start the IO. Check for uptodateness
1993 * inside the buffer lock in case another process reading
1994 * the underlying blockdev brought it uptodate (the sct fix).
1995 */
1996 for (i = 0; i < nr; i++) {
1997 bh = arr[i];
1998 if (buffer_uptodate(bh))
1999 end_buffer_async_read(bh, 1);
2000 else
2001 submit_bh(READ, bh);
2002 }
2003 return 0;
2004}
2005
2006/* utility function for filesystems that need to do work on expanding
2007 * truncates. Uses prepare/commit_write to allow the filesystem to
2008 * deal with the hole.
2009 */
05eb0b51
OH
2010static int __generic_cont_expand(struct inode *inode, loff_t size,
2011 pgoff_t index, unsigned int offset)
1da177e4
LT
2012{
2013 struct address_space *mapping = inode->i_mapping;
2014 struct page *page;
05eb0b51 2015 unsigned long limit;
1da177e4
LT
2016 int err;
2017
2018 err = -EFBIG;
2019 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2020 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2021 send_sig(SIGXFSZ, current, 0);
2022 goto out;
2023 }
2024 if (size > inode->i_sb->s_maxbytes)
2025 goto out;
2026
1da177e4
LT
2027 err = -ENOMEM;
2028 page = grab_cache_page(mapping, index);
2029 if (!page)
2030 goto out;
2031 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
05eb0b51
OH
2032 if (err) {
2033 /*
2034 * ->prepare_write() may have instantiated a few blocks
2035 * outside i_size. Trim these off again.
2036 */
2037 unlock_page(page);
2038 page_cache_release(page);
2039 vmtruncate(inode, inode->i_size);
2040 goto out;
1da177e4 2041 }
05eb0b51
OH
2042
2043 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2044
1da177e4
LT
2045 unlock_page(page);
2046 page_cache_release(page);
2047 if (err > 0)
2048 err = 0;
2049out:
2050 return err;
2051}
2052
05eb0b51
OH
2053int generic_cont_expand(struct inode *inode, loff_t size)
2054{
2055 pgoff_t index;
2056 unsigned int offset;
2057
2058 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2059
2060 /* ugh. in prepare/commit_write, if from==to==start of block, we
2061 ** skip the prepare. make sure we never send an offset for the start
2062 ** of a block
2063 */
2064 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2065 /* caller must handle this extra byte. */
2066 offset++;
2067 }
2068 index = size >> PAGE_CACHE_SHIFT;
2069
2070 return __generic_cont_expand(inode, size, index, offset);
2071}
2072
2073int generic_cont_expand_simple(struct inode *inode, loff_t size)
2074{
2075 loff_t pos = size - 1;
2076 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2077 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2078
2079 /* prepare/commit_write can handle even if from==to==start of block. */
2080 return __generic_cont_expand(inode, size, index, offset);
2081}
2082
1da177e4
LT
2083/*
2084 * For moronic filesystems that do not allow holes in file.
2085 * We may have to extend the file.
2086 */
2087
2088int cont_prepare_write(struct page *page, unsigned offset,
2089 unsigned to, get_block_t *get_block, loff_t *bytes)
2090{
2091 struct address_space *mapping = page->mapping;
2092 struct inode *inode = mapping->host;
2093 struct page *new_page;
2094 pgoff_t pgpos;
2095 long status;
2096 unsigned zerofrom;
2097 unsigned blocksize = 1 << inode->i_blkbits;
1da177e4
LT
2098
2099 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2100 status = -ENOMEM;
2101 new_page = grab_cache_page(mapping, pgpos);
2102 if (!new_page)
2103 goto out;
2104 /* we might sleep */
2105 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2106 unlock_page(new_page);
2107 page_cache_release(new_page);
2108 continue;
2109 }
2110 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2111 if (zerofrom & (blocksize-1)) {
2112 *bytes |= (blocksize-1);
2113 (*bytes)++;
2114 }
2115 status = __block_prepare_write(inode, new_page, zerofrom,
2116 PAGE_CACHE_SIZE, get_block);
2117 if (status)
2118 goto out_unmap;
ff1be9ad 2119 zero_user_page(new_page, zerofrom, PAGE_CACHE_SIZE - zerofrom,
01f2705d 2120 KM_USER0);
1da177e4
LT
2121 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2122 unlock_page(new_page);
2123 page_cache_release(new_page);
2124 }
2125
2126 if (page->index < pgpos) {
2127 /* completely inside the area */
2128 zerofrom = offset;
2129 } else {
2130 /* page covers the boundary, find the boundary offset */
2131 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2132
2133 /* if we will expand the thing last block will be filled */
2134 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2135 *bytes |= (blocksize-1);
2136 (*bytes)++;
2137 }
2138
2139 /* starting below the boundary? Nothing to zero out */
2140 if (offset <= zerofrom)
2141 zerofrom = offset;
2142 }
2143 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2144 if (status)
2145 goto out1;
2146 if (zerofrom < offset) {
01f2705d 2147 zero_user_page(page, zerofrom, offset - zerofrom, KM_USER0);
1da177e4
LT
2148 __block_commit_write(inode, page, zerofrom, offset);
2149 }
2150 return 0;
2151out1:
2152 ClearPageUptodate(page);
2153 return status;
2154
2155out_unmap:
2156 ClearPageUptodate(new_page);
2157 unlock_page(new_page);
2158 page_cache_release(new_page);
2159out:
2160 return status;
2161}
2162
2163int block_prepare_write(struct page *page, unsigned from, unsigned to,
2164 get_block_t *get_block)
2165{
2166 struct inode *inode = page->mapping->host;
2167 int err = __block_prepare_write(inode, page, from, to, get_block);
2168 if (err)
2169 ClearPageUptodate(page);
2170 return err;
2171}
2172
2173int block_commit_write(struct page *page, unsigned from, unsigned to)
2174{
2175 struct inode *inode = page->mapping->host;
2176 __block_commit_write(inode,page,from,to);
2177 return 0;
2178}
2179
2180int generic_commit_write(struct file *file, struct page *page,
2181 unsigned from, unsigned to)
2182{
2183 struct inode *inode = page->mapping->host;
2184 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2185 __block_commit_write(inode,page,from,to);
2186 /*
2187 * No need to use i_size_read() here, the i_size
1b1dcc1b 2188 * cannot change under us because we hold i_mutex.
1da177e4
LT
2189 */
2190 if (pos > inode->i_size) {
2191 i_size_write(inode, pos);
2192 mark_inode_dirty(inode);
2193 }
2194 return 0;
2195}
2196
2197
2198/*
2199 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2200 * immediately, while under the page lock. So it needs a special end_io
2201 * handler which does not touch the bh after unlocking it.
2202 *
2203 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2204 * a race there is benign: unlock_buffer() only use the bh's address for
2205 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2206 * itself.
2207 */
2208static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2209{
2210 if (uptodate) {
2211 set_buffer_uptodate(bh);
2212 } else {
2213 /* This happens, due to failed READA attempts. */
2214 clear_buffer_uptodate(bh);
2215 }
2216 unlock_buffer(bh);
2217}
2218
2219/*
2220 * On entry, the page is fully not uptodate.
2221 * On exit the page is fully uptodate in the areas outside (from,to)
2222 */
2223int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2224 get_block_t *get_block)
2225{
2226 struct inode *inode = page->mapping->host;
2227 const unsigned blkbits = inode->i_blkbits;
2228 const unsigned blocksize = 1 << blkbits;
2229 struct buffer_head map_bh;
2230 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2231 unsigned block_in_page;
2232 unsigned block_start;
2233 sector_t block_in_file;
2234 char *kaddr;
2235 int nr_reads = 0;
2236 int i;
2237 int ret = 0;
2238 int is_mapped_to_disk = 1;
1da177e4
LT
2239
2240 if (PageMappedToDisk(page))
2241 return 0;
2242
2243 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2244 map_bh.b_page = page;
2245
2246 /*
2247 * We loop across all blocks in the page, whether or not they are
2248 * part of the affected region. This is so we can discover if the
2249 * page is fully mapped-to-disk.
2250 */
2251 for (block_start = 0, block_in_page = 0;
2252 block_start < PAGE_CACHE_SIZE;
2253 block_in_page++, block_start += blocksize) {
2254 unsigned block_end = block_start + blocksize;
2255 int create;
2256
2257 map_bh.b_state = 0;
2258 create = 1;
2259 if (block_start >= to)
2260 create = 0;
b0cf2321 2261 map_bh.b_size = blocksize;
1da177e4
LT
2262 ret = get_block(inode, block_in_file + block_in_page,
2263 &map_bh, create);
2264 if (ret)
2265 goto failed;
2266 if (!buffer_mapped(&map_bh))
2267 is_mapped_to_disk = 0;
2268 if (buffer_new(&map_bh))
2269 unmap_underlying_metadata(map_bh.b_bdev,
2270 map_bh.b_blocknr);
2271 if (PageUptodate(page))
2272 continue;
2273 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2274 kaddr = kmap_atomic(page, KM_USER0);
22c8ca78 2275 if (block_start < from)
1da177e4 2276 memset(kaddr+block_start, 0, from-block_start);
22c8ca78 2277 if (block_end > to)
1da177e4 2278 memset(kaddr + to, 0, block_end - to);
1da177e4
LT
2279 flush_dcache_page(page);
2280 kunmap_atomic(kaddr, KM_USER0);
2281 continue;
2282 }
2283 if (buffer_uptodate(&map_bh))
2284 continue; /* reiserfs does this */
2285 if (block_start < from || block_end > to) {
2286 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2287
2288 if (!bh) {
2289 ret = -ENOMEM;
2290 goto failed;
2291 }
2292 bh->b_state = map_bh.b_state;
2293 atomic_set(&bh->b_count, 0);
2294 bh->b_this_page = NULL;
2295 bh->b_page = page;
2296 bh->b_blocknr = map_bh.b_blocknr;
2297 bh->b_size = blocksize;
2298 bh->b_data = (char *)(long)block_start;
2299 bh->b_bdev = map_bh.b_bdev;
2300 bh->b_private = NULL;
2301 read_bh[nr_reads++] = bh;
2302 }
2303 }
2304
2305 if (nr_reads) {
2306 struct buffer_head *bh;
2307
2308 /*
2309 * The page is locked, so these buffers are protected from
2310 * any VM or truncate activity. Hence we don't need to care
2311 * for the buffer_head refcounts.
2312 */
2313 for (i = 0; i < nr_reads; i++) {
2314 bh = read_bh[i];
2315 lock_buffer(bh);
2316 bh->b_end_io = end_buffer_read_nobh;
2317 submit_bh(READ, bh);
2318 }
2319 for (i = 0; i < nr_reads; i++) {
2320 bh = read_bh[i];
2321 wait_on_buffer(bh);
2322 if (!buffer_uptodate(bh))
2323 ret = -EIO;
2324 free_buffer_head(bh);
2325 read_bh[i] = NULL;
2326 }
2327 if (ret)
2328 goto failed;
2329 }
2330
2331 if (is_mapped_to_disk)
2332 SetPageMappedToDisk(page);
1da177e4
LT
2333
2334 return 0;
2335
2336failed:
2337 for (i = 0; i < nr_reads; i++) {
2338 if (read_bh[i])
2339 free_buffer_head(read_bh[i]);
2340 }
2341
2342 /*
2343 * Error recovery is pretty slack. Clear the page and mark it dirty
2344 * so we'll later zero out any blocks which _were_ allocated.
2345 */
01f2705d 2346 zero_user_page(page, 0, PAGE_CACHE_SIZE, KM_USER0);
1da177e4
LT
2347 SetPageUptodate(page);
2348 set_page_dirty(page);
2349 return ret;
2350}
2351EXPORT_SYMBOL(nobh_prepare_write);
2352
57bf63d6
DK
2353/*
2354 * Make sure any changes to nobh_commit_write() are reflected in
2355 * nobh_truncate_page(), since it doesn't call commit_write().
2356 */
1da177e4
LT
2357int nobh_commit_write(struct file *file, struct page *page,
2358 unsigned from, unsigned to)
2359{
2360 struct inode *inode = page->mapping->host;
2361 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2362
22c8ca78 2363 SetPageUptodate(page);
1da177e4
LT
2364 set_page_dirty(page);
2365 if (pos > inode->i_size) {
2366 i_size_write(inode, pos);
2367 mark_inode_dirty(inode);
2368 }
2369 return 0;
2370}
2371EXPORT_SYMBOL(nobh_commit_write);
2372
2373/*
2374 * nobh_writepage() - based on block_full_write_page() except
2375 * that it tries to operate without attaching bufferheads to
2376 * the page.
2377 */
2378int nobh_writepage(struct page *page, get_block_t *get_block,
2379 struct writeback_control *wbc)
2380{
2381 struct inode * const inode = page->mapping->host;
2382 loff_t i_size = i_size_read(inode);
2383 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2384 unsigned offset;
1da177e4
LT
2385 int ret;
2386
2387 /* Is the page fully inside i_size? */
2388 if (page->index < end_index)
2389 goto out;
2390
2391 /* Is the page fully outside i_size? (truncate in progress) */
2392 offset = i_size & (PAGE_CACHE_SIZE-1);
2393 if (page->index >= end_index+1 || !offset) {
2394 /*
2395 * The page may have dirty, unmapped buffers. For example,
2396 * they may have been added in ext3_writepage(). Make them
2397 * freeable here, so the page does not leak.
2398 */
2399#if 0
2400 /* Not really sure about this - do we need this ? */
2401 if (page->mapping->a_ops->invalidatepage)
2402 page->mapping->a_ops->invalidatepage(page, offset);
2403#endif
2404 unlock_page(page);
2405 return 0; /* don't care */
2406 }
2407
2408 /*
2409 * The page straddles i_size. It must be zeroed out on each and every
2410 * writepage invocation because it may be mmapped. "A file is mapped
2411 * in multiples of the page size. For a file that is not a multiple of
2412 * the page size, the remaining memory is zeroed when mapped, and
2413 * writes to that region are not written out to the file."
2414 */
01f2705d 2415 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
1da177e4
LT
2416out:
2417 ret = mpage_writepage(page, get_block, wbc);
2418 if (ret == -EAGAIN)
2419 ret = __block_write_full_page(inode, page, get_block, wbc);
2420 return ret;
2421}
2422EXPORT_SYMBOL(nobh_writepage);
2423
2424/*
2425 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2426 */
2427int nobh_truncate_page(struct address_space *mapping, loff_t from)
2428{
2429 struct inode *inode = mapping->host;
2430 unsigned blocksize = 1 << inode->i_blkbits;
2431 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2432 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2433 unsigned to;
2434 struct page *page;
f5e54d6e 2435 const struct address_space_operations *a_ops = mapping->a_ops;
1da177e4
LT
2436 int ret = 0;
2437
2438 if ((offset & (blocksize - 1)) == 0)
2439 goto out;
2440
2441 ret = -ENOMEM;
2442 page = grab_cache_page(mapping, index);
2443 if (!page)
2444 goto out;
2445
2446 to = (offset + blocksize) & ~(blocksize - 1);
2447 ret = a_ops->prepare_write(NULL, page, offset, to);
2448 if (ret == 0) {
01f2705d
ND
2449 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset,
2450 KM_USER0);
57bf63d6
DK
2451 /*
2452 * It would be more correct to call aops->commit_write()
2453 * here, but this is more efficient.
2454 */
2455 SetPageUptodate(page);
1da177e4
LT
2456 set_page_dirty(page);
2457 }
2458 unlock_page(page);
2459 page_cache_release(page);
2460out:
2461 return ret;
2462}
2463EXPORT_SYMBOL(nobh_truncate_page);
2464
2465int block_truncate_page(struct address_space *mapping,
2466 loff_t from, get_block_t *get_block)
2467{
2468 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2469 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2470 unsigned blocksize;
54b21a79 2471 sector_t iblock;
1da177e4
LT
2472 unsigned length, pos;
2473 struct inode *inode = mapping->host;
2474 struct page *page;
2475 struct buffer_head *bh;
1da177e4
LT
2476 int err;
2477
2478 blocksize = 1 << inode->i_blkbits;
2479 length = offset & (blocksize - 1);
2480
2481 /* Block boundary? Nothing to do */
2482 if (!length)
2483 return 0;
2484
2485 length = blocksize - length;
54b21a79 2486 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2487
2488 page = grab_cache_page(mapping, index);
2489 err = -ENOMEM;
2490 if (!page)
2491 goto out;
2492
2493 if (!page_has_buffers(page))
2494 create_empty_buffers(page, blocksize, 0);
2495
2496 /* Find the buffer that contains "offset" */
2497 bh = page_buffers(page);
2498 pos = blocksize;
2499 while (offset >= pos) {
2500 bh = bh->b_this_page;
2501 iblock++;
2502 pos += blocksize;
2503 }
2504
2505 err = 0;
2506 if (!buffer_mapped(bh)) {
b0cf2321 2507 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2508 err = get_block(inode, iblock, bh, 0);
2509 if (err)
2510 goto unlock;
2511 /* unmapped? It's a hole - nothing to do */
2512 if (!buffer_mapped(bh))
2513 goto unlock;
2514 }
2515
2516 /* Ok, it's mapped. Make sure it's up-to-date */
2517 if (PageUptodate(page))
2518 set_buffer_uptodate(bh);
2519
33a266dd 2520 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2521 err = -EIO;
2522 ll_rw_block(READ, 1, &bh);
2523 wait_on_buffer(bh);
2524 /* Uhhuh. Read error. Complain and punt. */
2525 if (!buffer_uptodate(bh))
2526 goto unlock;
2527 }
2528
01f2705d 2529 zero_user_page(page, offset, length, KM_USER0);
1da177e4
LT
2530 mark_buffer_dirty(bh);
2531 err = 0;
2532
2533unlock:
2534 unlock_page(page);
2535 page_cache_release(page);
2536out:
2537 return err;
2538}
2539
2540/*
2541 * The generic ->writepage function for buffer-backed address_spaces
2542 */
2543int block_write_full_page(struct page *page, get_block_t *get_block,
2544 struct writeback_control *wbc)
2545{
2546 struct inode * const inode = page->mapping->host;
2547 loff_t i_size = i_size_read(inode);
2548 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2549 unsigned offset;
1da177e4
LT
2550
2551 /* Is the page fully inside i_size? */
2552 if (page->index < end_index)
2553 return __block_write_full_page(inode, page, get_block, wbc);
2554
2555 /* Is the page fully outside i_size? (truncate in progress) */
2556 offset = i_size & (PAGE_CACHE_SIZE-1);
2557 if (page->index >= end_index+1 || !offset) {
2558 /*
2559 * The page may have dirty, unmapped buffers. For example,
2560 * they may have been added in ext3_writepage(). Make them
2561 * freeable here, so the page does not leak.
2562 */
aaa4059b 2563 do_invalidatepage(page, 0);
1da177e4
LT
2564 unlock_page(page);
2565 return 0; /* don't care */
2566 }
2567
2568 /*
2569 * The page straddles i_size. It must be zeroed out on each and every
2570 * writepage invokation because it may be mmapped. "A file is mapped
2571 * in multiples of the page size. For a file that is not a multiple of
2572 * the page size, the remaining memory is zeroed when mapped, and
2573 * writes to that region are not written out to the file."
2574 */
01f2705d 2575 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
1da177e4
LT
2576 return __block_write_full_page(inode, page, get_block, wbc);
2577}
2578
2579sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2580 get_block_t *get_block)
2581{
2582 struct buffer_head tmp;
2583 struct inode *inode = mapping->host;
2584 tmp.b_state = 0;
2585 tmp.b_blocknr = 0;
b0cf2321 2586 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2587 get_block(inode, block, &tmp, 0);
2588 return tmp.b_blocknr;
2589}
2590
2591static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2592{
2593 struct buffer_head *bh = bio->bi_private;
2594
2595 if (bio->bi_size)
2596 return 1;
2597
2598 if (err == -EOPNOTSUPP) {
2599 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2600 set_bit(BH_Eopnotsupp, &bh->b_state);
2601 }
2602
2603 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2604 bio_put(bio);
2605 return 0;
2606}
2607
2608int submit_bh(int rw, struct buffer_head * bh)
2609{
2610 struct bio *bio;
2611 int ret = 0;
2612
2613 BUG_ON(!buffer_locked(bh));
2614 BUG_ON(!buffer_mapped(bh));
2615 BUG_ON(!bh->b_end_io);
2616
2617 if (buffer_ordered(bh) && (rw == WRITE))
2618 rw = WRITE_BARRIER;
2619
2620 /*
2621 * Only clear out a write error when rewriting, should this
2622 * include WRITE_SYNC as well?
2623 */
2624 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2625 clear_buffer_write_io_error(bh);
2626
2627 /*
2628 * from here on down, it's all bio -- do the initial mapping,
2629 * submit_bio -> generic_make_request may further map this bio around
2630 */
2631 bio = bio_alloc(GFP_NOIO, 1);
2632
2633 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2634 bio->bi_bdev = bh->b_bdev;
2635 bio->bi_io_vec[0].bv_page = bh->b_page;
2636 bio->bi_io_vec[0].bv_len = bh->b_size;
2637 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2638
2639 bio->bi_vcnt = 1;
2640 bio->bi_idx = 0;
2641 bio->bi_size = bh->b_size;
2642
2643 bio->bi_end_io = end_bio_bh_io_sync;
2644 bio->bi_private = bh;
2645
2646 bio_get(bio);
2647 submit_bio(rw, bio);
2648
2649 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2650 ret = -EOPNOTSUPP;
2651
2652 bio_put(bio);
2653 return ret;
2654}
2655
2656/**
2657 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2658 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2659 * @nr: number of &struct buffer_heads in the array
2660 * @bhs: array of pointers to &struct buffer_head
2661 *
a7662236
JK
2662 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2663 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2664 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2665 * are sent to disk. The fourth %READA option is described in the documentation
2666 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2667 *
2668 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2669 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2670 * clean when doing a write request, and any buffer that appears to be
2671 * up-to-date when doing read request. Further it marks as clean buffers that
2672 * are processed for writing (the buffer cache won't assume that they are
2673 * actually clean until the buffer gets unlocked).
1da177e4
LT
2674 *
2675 * ll_rw_block sets b_end_io to simple completion handler that marks
2676 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2677 * any waiters.
2678 *
2679 * All of the buffers must be for the same device, and must also be a
2680 * multiple of the current approved size for the device.
2681 */
2682void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2683{
2684 int i;
2685
2686 for (i = 0; i < nr; i++) {
2687 struct buffer_head *bh = bhs[i];
2688
a7662236
JK
2689 if (rw == SWRITE)
2690 lock_buffer(bh);
2691 else if (test_set_buffer_locked(bh))
1da177e4
LT
2692 continue;
2693
a7662236 2694 if (rw == WRITE || rw == SWRITE) {
1da177e4 2695 if (test_clear_buffer_dirty(bh)) {
76c3073a 2696 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2697 get_bh(bh);
1da177e4
LT
2698 submit_bh(WRITE, bh);
2699 continue;
2700 }
2701 } else {
1da177e4 2702 if (!buffer_uptodate(bh)) {
76c3073a 2703 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2704 get_bh(bh);
1da177e4
LT
2705 submit_bh(rw, bh);
2706 continue;
2707 }
2708 }
2709 unlock_buffer(bh);
1da177e4
LT
2710 }
2711}
2712
2713/*
2714 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2715 * and then start new I/O and then wait upon it. The caller must have a ref on
2716 * the buffer_head.
2717 */
2718int sync_dirty_buffer(struct buffer_head *bh)
2719{
2720 int ret = 0;
2721
2722 WARN_ON(atomic_read(&bh->b_count) < 1);
2723 lock_buffer(bh);
2724 if (test_clear_buffer_dirty(bh)) {
2725 get_bh(bh);
2726 bh->b_end_io = end_buffer_write_sync;
2727 ret = submit_bh(WRITE, bh);
2728 wait_on_buffer(bh);
2729 if (buffer_eopnotsupp(bh)) {
2730 clear_buffer_eopnotsupp(bh);
2731 ret = -EOPNOTSUPP;
2732 }
2733 if (!ret && !buffer_uptodate(bh))
2734 ret = -EIO;
2735 } else {
2736 unlock_buffer(bh);
2737 }
2738 return ret;
2739}
2740
2741/*
2742 * try_to_free_buffers() checks if all the buffers on this particular page
2743 * are unused, and releases them if so.
2744 *
2745 * Exclusion against try_to_free_buffers may be obtained by either
2746 * locking the page or by holding its mapping's private_lock.
2747 *
2748 * If the page is dirty but all the buffers are clean then we need to
2749 * be sure to mark the page clean as well. This is because the page
2750 * may be against a block device, and a later reattachment of buffers
2751 * to a dirty page will set *all* buffers dirty. Which would corrupt
2752 * filesystem data on the same device.
2753 *
2754 * The same applies to regular filesystem pages: if all the buffers are
2755 * clean then we set the page clean and proceed. To do that, we require
2756 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2757 * private_lock.
2758 *
2759 * try_to_free_buffers() is non-blocking.
2760 */
2761static inline int buffer_busy(struct buffer_head *bh)
2762{
2763 return atomic_read(&bh->b_count) |
2764 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2765}
2766
2767static int
2768drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2769{
2770 struct buffer_head *head = page_buffers(page);
2771 struct buffer_head *bh;
2772
2773 bh = head;
2774 do {
de7d5a3b 2775 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
2776 set_bit(AS_EIO, &page->mapping->flags);
2777 if (buffer_busy(bh))
2778 goto failed;
2779 bh = bh->b_this_page;
2780 } while (bh != head);
2781
2782 do {
2783 struct buffer_head *next = bh->b_this_page;
2784
2785 if (!list_empty(&bh->b_assoc_buffers))
2786 __remove_assoc_queue(bh);
2787 bh = next;
2788 } while (bh != head);
2789 *buffers_to_free = head;
2790 __clear_page_buffers(page);
2791 return 1;
2792failed:
2793 return 0;
2794}
2795
2796int try_to_free_buffers(struct page *page)
2797{
2798 struct address_space * const mapping = page->mapping;
2799 struct buffer_head *buffers_to_free = NULL;
2800 int ret = 0;
2801
2802 BUG_ON(!PageLocked(page));
ecdfc978 2803 if (PageWriteback(page))
1da177e4
LT
2804 return 0;
2805
2806 if (mapping == NULL) { /* can this still happen? */
2807 ret = drop_buffers(page, &buffers_to_free);
2808 goto out;
2809 }
2810
2811 spin_lock(&mapping->private_lock);
2812 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
2813
2814 /*
2815 * If the filesystem writes its buffers by hand (eg ext3)
2816 * then we can have clean buffers against a dirty page. We
2817 * clean the page here; otherwise the VM will never notice
2818 * that the filesystem did any IO at all.
2819 *
2820 * Also, during truncate, discard_buffer will have marked all
2821 * the page's buffers clean. We discover that here and clean
2822 * the page also.
87df7241
NP
2823 *
2824 * private_lock must be held over this entire operation in order
2825 * to synchronise against __set_page_dirty_buffers and prevent the
2826 * dirty bit from being lost.
ecdfc978
LT
2827 */
2828 if (ret)
2829 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 2830 spin_unlock(&mapping->private_lock);
1da177e4
LT
2831out:
2832 if (buffers_to_free) {
2833 struct buffer_head *bh = buffers_to_free;
2834
2835 do {
2836 struct buffer_head *next = bh->b_this_page;
2837 free_buffer_head(bh);
2838 bh = next;
2839 } while (bh != buffers_to_free);
2840 }
2841 return ret;
2842}
2843EXPORT_SYMBOL(try_to_free_buffers);
2844
3978d717 2845void block_sync_page(struct page *page)
1da177e4
LT
2846{
2847 struct address_space *mapping;
2848
2849 smp_mb();
2850 mapping = page_mapping(page);
2851 if (mapping)
2852 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
2853}
2854
2855/*
2856 * There are no bdflush tunables left. But distributions are
2857 * still running obsolete flush daemons, so we terminate them here.
2858 *
2859 * Use of bdflush() is deprecated and will be removed in a future kernel.
2860 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2861 */
2862asmlinkage long sys_bdflush(int func, long data)
2863{
2864 static int msg_count;
2865
2866 if (!capable(CAP_SYS_ADMIN))
2867 return -EPERM;
2868
2869 if (msg_count < 5) {
2870 msg_count++;
2871 printk(KERN_INFO
2872 "warning: process `%s' used the obsolete bdflush"
2873 " system call\n", current->comm);
2874 printk(KERN_INFO "Fix your initscripts?\n");
2875 }
2876
2877 if (func == 1)
2878 do_exit(0);
2879 return 0;
2880}
2881
2882/*
2883 * Buffer-head allocation
2884 */
e18b890b 2885static struct kmem_cache *bh_cachep;
1da177e4
LT
2886
2887/*
2888 * Once the number of bh's in the machine exceeds this level, we start
2889 * stripping them in writeback.
2890 */
2891static int max_buffer_heads;
2892
2893int buffer_heads_over_limit;
2894
2895struct bh_accounting {
2896 int nr; /* Number of live bh's */
2897 int ratelimit; /* Limit cacheline bouncing */
2898};
2899
2900static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2901
2902static void recalc_bh_state(void)
2903{
2904 int i;
2905 int tot = 0;
2906
2907 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2908 return;
2909 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 2910 for_each_online_cpu(i)
1da177e4
LT
2911 tot += per_cpu(bh_accounting, i).nr;
2912 buffer_heads_over_limit = (tot > max_buffer_heads);
2913}
2914
dd0fc66f 2915struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 2916{
a35afb83 2917 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 2918 if (ret) {
a35afb83 2919 INIT_LIST_HEAD(&ret->b_assoc_buffers);
736c7b80 2920 get_cpu_var(bh_accounting).nr++;
1da177e4 2921 recalc_bh_state();
736c7b80 2922 put_cpu_var(bh_accounting);
1da177e4
LT
2923 }
2924 return ret;
2925}
2926EXPORT_SYMBOL(alloc_buffer_head);
2927
2928void free_buffer_head(struct buffer_head *bh)
2929{
2930 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2931 kmem_cache_free(bh_cachep, bh);
736c7b80 2932 get_cpu_var(bh_accounting).nr--;
1da177e4 2933 recalc_bh_state();
736c7b80 2934 put_cpu_var(bh_accounting);
1da177e4
LT
2935}
2936EXPORT_SYMBOL(free_buffer_head);
2937
1da177e4
LT
2938static void buffer_exit_cpu(int cpu)
2939{
2940 int i;
2941 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2942
2943 for (i = 0; i < BH_LRU_SIZE; i++) {
2944 brelse(b->bhs[i]);
2945 b->bhs[i] = NULL;
2946 }
8a143426
ED
2947 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2948 per_cpu(bh_accounting, cpu).nr = 0;
2949 put_cpu_var(bh_accounting);
1da177e4
LT
2950}
2951
2952static int buffer_cpu_notify(struct notifier_block *self,
2953 unsigned long action, void *hcpu)
2954{
8bb78442 2955 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
2956 buffer_exit_cpu((unsigned long)hcpu);
2957 return NOTIFY_OK;
2958}
1da177e4
LT
2959
2960void __init buffer_init(void)
2961{
2962 int nrpages;
2963
a35afb83
CL
2964 bh_cachep = KMEM_CACHE(buffer_head,
2965 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
2966
2967 /*
2968 * Limit the bh occupancy to 10% of ZONE_NORMAL
2969 */
2970 nrpages = (nr_free_buffer_pages() * 10) / 100;
2971 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
2972 hotcpu_notifier(buffer_cpu_notify, 0);
2973}
2974
2975EXPORT_SYMBOL(__bforget);
2976EXPORT_SYMBOL(__brelse);
2977EXPORT_SYMBOL(__wait_on_buffer);
2978EXPORT_SYMBOL(block_commit_write);
2979EXPORT_SYMBOL(block_prepare_write);
2980EXPORT_SYMBOL(block_read_full_page);
2981EXPORT_SYMBOL(block_sync_page);
2982EXPORT_SYMBOL(block_truncate_page);
2983EXPORT_SYMBOL(block_write_full_page);
2984EXPORT_SYMBOL(cont_prepare_write);
1da177e4
LT
2985EXPORT_SYMBOL(end_buffer_read_sync);
2986EXPORT_SYMBOL(end_buffer_write_sync);
2987EXPORT_SYMBOL(file_fsync);
2988EXPORT_SYMBOL(fsync_bdev);
2989EXPORT_SYMBOL(generic_block_bmap);
2990EXPORT_SYMBOL(generic_commit_write);
2991EXPORT_SYMBOL(generic_cont_expand);
05eb0b51 2992EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
2993EXPORT_SYMBOL(init_buffer);
2994EXPORT_SYMBOL(invalidate_bdev);
2995EXPORT_SYMBOL(ll_rw_block);
2996EXPORT_SYMBOL(mark_buffer_dirty);
2997EXPORT_SYMBOL(submit_bh);
2998EXPORT_SYMBOL(sync_dirty_buffer);
2999EXPORT_SYMBOL(unlock_buffer);