]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/buffer.c
mm: page_mkwrite change prototype to match fault
[net-next-2.6.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55
56static int sync_buffer(void *word)
57{
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68}
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4
LT
71{
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
fc9b52cd 77void unlock_buffer(struct buffer_head *bh)
1da177e4 78{
51b07fc3 79 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82}
83
84/*
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
88 */
89void __wait_on_buffer(struct buffer_head * bh)
90{
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92}
93
94static void
95__clear_page_buffers(struct page *page)
96{
97 ClearPagePrivate(page);
4c21e2f2 98 set_page_private(page, 0);
1da177e4
LT
99 page_cache_release(page);
100}
101
08bafc03
KM
102
103static int quiet_error(struct buffer_head *bh)
104{
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 return 0;
107 return 1;
108}
109
110
1da177e4
LT
111static void buffer_io_error(struct buffer_head *bh)
112{
113 char b[BDEVNAME_SIZE];
1da177e4
LT
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
117}
118
119/*
68671f35
DM
120 * End-of-IO handler helper function which does not touch the bh after
121 * unlocking it.
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
125 * itself.
1da177e4 126 */
68671f35 127static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
128{
129 if (uptodate) {
130 set_buffer_uptodate(bh);
131 } else {
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
134 }
135 unlock_buffer(bh);
68671f35
DM
136}
137
138/*
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
141 */
142void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143{
144 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
145 put_bh(bh);
146}
147
148void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149{
150 char b[BDEVNAME_SIZE];
151
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
08bafc03 155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
1da177e4
LT
156 buffer_io_error(bh);
157 printk(KERN_WARNING "lost page write due to "
158 "I/O error on %s\n",
159 bdevname(bh->b_bdev, b));
160 }
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
165 put_bh(bh);
166}
167
1da177e4
LT
168/*
169 * Various filesystems appear to want __find_get_block to be non-blocking.
170 * But it's the page lock which protects the buffers. To get around this,
171 * we get exclusion from try_to_free_buffers with the blockdev mapping's
172 * private_lock.
173 *
174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175 * may be quite high. This code could TryLock the page, and if that
176 * succeeds, there is no need to take private_lock. (But if
177 * private_lock is contended then so is mapping->tree_lock).
178 */
179static struct buffer_head *
385fd4c5 180__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
181{
182 struct inode *bd_inode = bdev->bd_inode;
183 struct address_space *bd_mapping = bd_inode->i_mapping;
184 struct buffer_head *ret = NULL;
185 pgoff_t index;
186 struct buffer_head *bh;
187 struct buffer_head *head;
188 struct page *page;
189 int all_mapped = 1;
190
191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 page = find_get_page(bd_mapping, index);
193 if (!page)
194 goto out;
195
196 spin_lock(&bd_mapping->private_lock);
197 if (!page_has_buffers(page))
198 goto out_unlock;
199 head = page_buffers(page);
200 bh = head;
201 do {
202 if (bh->b_blocknr == block) {
203 ret = bh;
204 get_bh(bh);
205 goto out_unlock;
206 }
207 if (!buffer_mapped(bh))
208 all_mapped = 0;
209 bh = bh->b_this_page;
210 } while (bh != head);
211
212 /* we might be here because some of the buffers on this page are
213 * not mapped. This is due to various races between
214 * file io on the block device and getblk. It gets dealt with
215 * elsewhere, don't buffer_error if we had some unmapped buffers
216 */
217 if (all_mapped) {
218 printk("__find_get_block_slow() failed. "
219 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
220 (unsigned long long)block,
221 (unsigned long long)bh->b_blocknr);
222 printk("b_state=0x%08lx, b_size=%zu\n",
223 bh->b_state, bh->b_size);
1da177e4
LT
224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225 }
226out_unlock:
227 spin_unlock(&bd_mapping->private_lock);
228 page_cache_release(page);
229out:
230 return ret;
231}
232
233/* If invalidate_buffers() will trash dirty buffers, it means some kind
234 of fs corruption is going on. Trashing dirty data always imply losing
235 information that was supposed to be just stored on the physical layer
236 by the user.
237
238 Thus invalidate_buffers in general usage is not allwowed to trash
239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240 be preserved. These buffers are simply skipped.
241
242 We also skip buffers which are still in use. For example this can
243 happen if a userspace program is reading the block device.
244
245 NOTE: In the case where the user removed a removable-media-disk even if
246 there's still dirty data not synced on disk (due a bug in the device driver
247 or due an error of the user), by not destroying the dirty buffers we could
248 generate corruption also on the next media inserted, thus a parameter is
249 necessary to handle this case in the most safe way possible (trying
250 to not corrupt also the new disk inserted with the data belonging to
251 the old now corrupted disk). Also for the ramdisk the natural thing
252 to do in order to release the ramdisk memory is to destroy dirty buffers.
253
254 These are two special cases. Normal usage imply the device driver
255 to issue a sync on the device (without waiting I/O completion) and
256 then an invalidate_buffers call that doesn't trash dirty buffers.
257
258 For handling cache coherency with the blkdev pagecache the 'update' case
259 is been introduced. It is needed to re-read from disk any pinned
260 buffer. NOTE: re-reading from disk is destructive so we can do it only
261 when we assume nobody is changing the buffercache under our I/O and when
262 we think the disk contains more recent information than the buffercache.
263 The update == 1 pass marks the buffers we need to update, the update == 2
264 pass does the actual I/O. */
f98393a6 265void invalidate_bdev(struct block_device *bdev)
1da177e4 266{
0e1dfc66
AM
267 struct address_space *mapping = bdev->bd_inode->i_mapping;
268
269 if (mapping->nrpages == 0)
270 return;
271
1da177e4 272 invalidate_bh_lrus();
fc0ecff6 273 invalidate_mapping_pages(mapping, 0, -1);
1da177e4
LT
274}
275
276/*
277 * Kick pdflush then try to free up some ZONE_NORMAL memory.
278 */
279static void free_more_memory(void)
280{
19770b32 281 struct zone *zone;
0e88460d 282 int nid;
1da177e4 283
687a21ce 284 wakeup_pdflush(1024);
1da177e4
LT
285 yield();
286
0e88460d 287 for_each_online_node(nid) {
19770b32
MG
288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 gfp_zone(GFP_NOFS), NULL,
290 &zone);
291 if (zone)
54a6eb5c
MG
292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 GFP_NOFS);
1da177e4
LT
294 }
295}
296
297/*
298 * I/O completion handler for block_read_full_page() - pages
299 * which come unlocked at the end of I/O.
300 */
301static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302{
1da177e4 303 unsigned long flags;
a3972203 304 struct buffer_head *first;
1da177e4
LT
305 struct buffer_head *tmp;
306 struct page *page;
307 int page_uptodate = 1;
308
309 BUG_ON(!buffer_async_read(bh));
310
311 page = bh->b_page;
312 if (uptodate) {
313 set_buffer_uptodate(bh);
314 } else {
315 clear_buffer_uptodate(bh);
08bafc03 316 if (!quiet_error(bh))
1da177e4
LT
317 buffer_io_error(bh);
318 SetPageError(page);
319 }
320
321 /*
322 * Be _very_ careful from here on. Bad things can happen if
323 * two buffer heads end IO at almost the same time and both
324 * decide that the page is now completely done.
325 */
a3972203
NP
326 first = page_buffers(page);
327 local_irq_save(flags);
328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
329 clear_buffer_async_read(bh);
330 unlock_buffer(bh);
331 tmp = bh;
332 do {
333 if (!buffer_uptodate(tmp))
334 page_uptodate = 0;
335 if (buffer_async_read(tmp)) {
336 BUG_ON(!buffer_locked(tmp));
337 goto still_busy;
338 }
339 tmp = tmp->b_this_page;
340 } while (tmp != bh);
a3972203
NP
341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 local_irq_restore(flags);
1da177e4
LT
343
344 /*
345 * If none of the buffers had errors and they are all
346 * uptodate then we can set the page uptodate.
347 */
348 if (page_uptodate && !PageError(page))
349 SetPageUptodate(page);
350 unlock_page(page);
351 return;
352
353still_busy:
a3972203
NP
354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 local_irq_restore(flags);
1da177e4
LT
356 return;
357}
358
359/*
360 * Completion handler for block_write_full_page() - pages which are unlocked
361 * during I/O, and which have PageWriteback cleared upon I/O completion.
362 */
b6cd0b77 363static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
364{
365 char b[BDEVNAME_SIZE];
1da177e4 366 unsigned long flags;
a3972203 367 struct buffer_head *first;
1da177e4
LT
368 struct buffer_head *tmp;
369 struct page *page;
370
371 BUG_ON(!buffer_async_write(bh));
372
373 page = bh->b_page;
374 if (uptodate) {
375 set_buffer_uptodate(bh);
376 } else {
08bafc03 377 if (!quiet_error(bh)) {
1da177e4
LT
378 buffer_io_error(bh);
379 printk(KERN_WARNING "lost page write due to "
380 "I/O error on %s\n",
381 bdevname(bh->b_bdev, b));
382 }
383 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 384 set_buffer_write_io_error(bh);
1da177e4
LT
385 clear_buffer_uptodate(bh);
386 SetPageError(page);
387 }
388
a3972203
NP
389 first = page_buffers(page);
390 local_irq_save(flags);
391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392
1da177e4
LT
393 clear_buffer_async_write(bh);
394 unlock_buffer(bh);
395 tmp = bh->b_this_page;
396 while (tmp != bh) {
397 if (buffer_async_write(tmp)) {
398 BUG_ON(!buffer_locked(tmp));
399 goto still_busy;
400 }
401 tmp = tmp->b_this_page;
402 }
a3972203
NP
403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 local_irq_restore(flags);
1da177e4
LT
405 end_page_writeback(page);
406 return;
407
408still_busy:
a3972203
NP
409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
1da177e4
LT
411 return;
412}
413
414/*
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
422 *
423 * The page comes unlocked when it has no locked buffer_async buffers
424 * left.
425 *
426 * PageLocked prevents anyone starting new async I/O reads any of
427 * the buffers.
428 *
429 * PageWriteback is used to prevent simultaneous writeout of the same
430 * page.
431 *
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
434 */
435static void mark_buffer_async_read(struct buffer_head *bh)
436{
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
439}
440
441void mark_buffer_async_write(struct buffer_head *bh)
442{
443 bh->b_end_io = end_buffer_async_write;
444 set_buffer_async_write(bh);
445}
446EXPORT_SYMBOL(mark_buffer_async_write);
447
448
449/*
450 * fs/buffer.c contains helper functions for buffer-backed address space's
451 * fsync functions. A common requirement for buffer-based filesystems is
452 * that certain data from the backing blockdev needs to be written out for
453 * a successful fsync(). For example, ext2 indirect blocks need to be
454 * written back and waited upon before fsync() returns.
455 *
456 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458 * management of a list of dependent buffers at ->i_mapping->private_list.
459 *
460 * Locking is a little subtle: try_to_free_buffers() will remove buffers
461 * from their controlling inode's queue when they are being freed. But
462 * try_to_free_buffers() will be operating against the *blockdev* mapping
463 * at the time, not against the S_ISREG file which depends on those buffers.
464 * So the locking for private_list is via the private_lock in the address_space
465 * which backs the buffers. Which is different from the address_space
466 * against which the buffers are listed. So for a particular address_space,
467 * mapping->private_lock does *not* protect mapping->private_list! In fact,
468 * mapping->private_list will always be protected by the backing blockdev's
469 * ->private_lock.
470 *
471 * Which introduces a requirement: all buffers on an address_space's
472 * ->private_list must be from the same address_space: the blockdev's.
473 *
474 * address_spaces which do not place buffers at ->private_list via these
475 * utility functions are free to use private_lock and private_list for
476 * whatever they want. The only requirement is that list_empty(private_list)
477 * be true at clear_inode() time.
478 *
479 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
480 * filesystems should do that. invalidate_inode_buffers() should just go
481 * BUG_ON(!list_empty).
482 *
483 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
484 * take an address_space, not an inode. And it should be called
485 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486 * queued up.
487 *
488 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489 * list if it is already on a list. Because if the buffer is on a list,
490 * it *must* already be on the right one. If not, the filesystem is being
491 * silly. This will save a ton of locking. But first we have to ensure
492 * that buffers are taken *off* the old inode's list when they are freed
493 * (presumably in truncate). That requires careful auditing of all
494 * filesystems (do it inside bforget()). It could also be done by bringing
495 * b_inode back.
496 */
497
498/*
499 * The buffer's backing address_space's private_lock must be held
500 */
dbacefc9 501static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
502{
503 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
504 WARN_ON(!bh->b_assoc_map);
505 if (buffer_write_io_error(bh))
506 set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 bh->b_assoc_map = NULL;
1da177e4
LT
508}
509
510int inode_has_buffers(struct inode *inode)
511{
512 return !list_empty(&inode->i_data.private_list);
513}
514
515/*
516 * osync is designed to support O_SYNC io. It waits synchronously for
517 * all already-submitted IO to complete, but does not queue any new
518 * writes to the disk.
519 *
520 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521 * you dirty the buffers, and then use osync_inode_buffers to wait for
522 * completion. Any other dirty buffers which are not yet queued for
523 * write will not be flushed to disk by the osync.
524 */
525static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
526{
527 struct buffer_head *bh;
528 struct list_head *p;
529 int err = 0;
530
531 spin_lock(lock);
532repeat:
533 list_for_each_prev(p, list) {
534 bh = BH_ENTRY(p);
535 if (buffer_locked(bh)) {
536 get_bh(bh);
537 spin_unlock(lock);
538 wait_on_buffer(bh);
539 if (!buffer_uptodate(bh))
540 err = -EIO;
541 brelse(bh);
542 spin_lock(lock);
543 goto repeat;
544 }
545 }
546 spin_unlock(lock);
547 return err;
548}
549
550/**
78a4a50a 551 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 552 * @mapping: the mapping which wants those buffers written
1da177e4
LT
553 *
554 * Starts I/O against the buffers at mapping->private_list, and waits upon
555 * that I/O.
556 *
67be2dd1
MW
557 * Basically, this is a convenience function for fsync().
558 * @mapping is a file or directory which needs those buffers to be written for
559 * a successful fsync().
1da177e4
LT
560 */
561int sync_mapping_buffers(struct address_space *mapping)
562{
563 struct address_space *buffer_mapping = mapping->assoc_mapping;
564
565 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
566 return 0;
567
568 return fsync_buffers_list(&buffer_mapping->private_lock,
569 &mapping->private_list);
570}
571EXPORT_SYMBOL(sync_mapping_buffers);
572
573/*
574 * Called when we've recently written block `bblock', and it is known that
575 * `bblock' was for a buffer_boundary() buffer. This means that the block at
576 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
577 * dirty, schedule it for IO. So that indirects merge nicely with their data.
578 */
579void write_boundary_block(struct block_device *bdev,
580 sector_t bblock, unsigned blocksize)
581{
582 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
583 if (bh) {
584 if (buffer_dirty(bh))
585 ll_rw_block(WRITE, 1, &bh);
586 put_bh(bh);
587 }
588}
589
590void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
591{
592 struct address_space *mapping = inode->i_mapping;
593 struct address_space *buffer_mapping = bh->b_page->mapping;
594
595 mark_buffer_dirty(bh);
596 if (!mapping->assoc_mapping) {
597 mapping->assoc_mapping = buffer_mapping;
598 } else {
e827f923 599 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4 600 }
535ee2fb 601 if (!bh->b_assoc_map) {
1da177e4
LT
602 spin_lock(&buffer_mapping->private_lock);
603 list_move_tail(&bh->b_assoc_buffers,
604 &mapping->private_list);
58ff407b 605 bh->b_assoc_map = mapping;
1da177e4
LT
606 spin_unlock(&buffer_mapping->private_lock);
607 }
608}
609EXPORT_SYMBOL(mark_buffer_dirty_inode);
610
787d2214
NP
611/*
612 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
613 * dirty.
614 *
615 * If warn is true, then emit a warning if the page is not uptodate and has
616 * not been truncated.
617 */
a8e7d49a 618static void __set_page_dirty(struct page *page,
787d2214
NP
619 struct address_space *mapping, int warn)
620{
19fd6231 621 spin_lock_irq(&mapping->tree_lock);
787d2214
NP
622 if (page->mapping) { /* Race with truncate? */
623 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 624 account_page_dirtied(page, mapping);
787d2214
NP
625 radix_tree_tag_set(&mapping->page_tree,
626 page_index(page), PAGECACHE_TAG_DIRTY);
627 }
19fd6231 628 spin_unlock_irq(&mapping->tree_lock);
787d2214 629 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
630}
631
1da177e4
LT
632/*
633 * Add a page to the dirty page list.
634 *
635 * It is a sad fact of life that this function is called from several places
636 * deeply under spinlocking. It may not sleep.
637 *
638 * If the page has buffers, the uptodate buffers are set dirty, to preserve
639 * dirty-state coherency between the page and the buffers. It the page does
640 * not have buffers then when they are later attached they will all be set
641 * dirty.
642 *
643 * The buffers are dirtied before the page is dirtied. There's a small race
644 * window in which a writepage caller may see the page cleanness but not the
645 * buffer dirtiness. That's fine. If this code were to set the page dirty
646 * before the buffers, a concurrent writepage caller could clear the page dirty
647 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
648 * page on the dirty page list.
649 *
650 * We use private_lock to lock against try_to_free_buffers while using the
651 * page's buffer list. Also use this to protect against clean buffers being
652 * added to the page after it was set dirty.
653 *
654 * FIXME: may need to call ->reservepage here as well. That's rather up to the
655 * address_space though.
656 */
657int __set_page_dirty_buffers(struct page *page)
658{
a8e7d49a 659 int newly_dirty;
787d2214 660 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
661
662 if (unlikely(!mapping))
663 return !TestSetPageDirty(page);
1da177e4
LT
664
665 spin_lock(&mapping->private_lock);
666 if (page_has_buffers(page)) {
667 struct buffer_head *head = page_buffers(page);
668 struct buffer_head *bh = head;
669
670 do {
671 set_buffer_dirty(bh);
672 bh = bh->b_this_page;
673 } while (bh != head);
674 }
a8e7d49a 675 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
676 spin_unlock(&mapping->private_lock);
677
a8e7d49a
LT
678 if (newly_dirty)
679 __set_page_dirty(page, mapping, 1);
680 return newly_dirty;
1da177e4
LT
681}
682EXPORT_SYMBOL(__set_page_dirty_buffers);
683
684/*
685 * Write out and wait upon a list of buffers.
686 *
687 * We have conflicting pressures: we want to make sure that all
688 * initially dirty buffers get waited on, but that any subsequently
689 * dirtied buffers don't. After all, we don't want fsync to last
690 * forever if somebody is actively writing to the file.
691 *
692 * Do this in two main stages: first we copy dirty buffers to a
693 * temporary inode list, queueing the writes as we go. Then we clean
694 * up, waiting for those writes to complete.
695 *
696 * During this second stage, any subsequent updates to the file may end
697 * up refiling the buffer on the original inode's dirty list again, so
698 * there is a chance we will end up with a buffer queued for write but
699 * not yet completed on that list. So, as a final cleanup we go through
700 * the osync code to catch these locked, dirty buffers without requeuing
701 * any newly dirty buffers for write.
702 */
703static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
704{
705 struct buffer_head *bh;
706 struct list_head tmp;
535ee2fb 707 struct address_space *mapping;
1da177e4
LT
708 int err = 0, err2;
709
710 INIT_LIST_HEAD(&tmp);
711
712 spin_lock(lock);
713 while (!list_empty(list)) {
714 bh = BH_ENTRY(list->next);
535ee2fb 715 mapping = bh->b_assoc_map;
58ff407b 716 __remove_assoc_queue(bh);
535ee2fb
JK
717 /* Avoid race with mark_buffer_dirty_inode() which does
718 * a lockless check and we rely on seeing the dirty bit */
719 smp_mb();
1da177e4
LT
720 if (buffer_dirty(bh) || buffer_locked(bh)) {
721 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 722 bh->b_assoc_map = mapping;
1da177e4
LT
723 if (buffer_dirty(bh)) {
724 get_bh(bh);
725 spin_unlock(lock);
726 /*
727 * Ensure any pending I/O completes so that
728 * ll_rw_block() actually writes the current
729 * contents - it is a noop if I/O is still in
730 * flight on potentially older contents.
731 */
18ce3751 732 ll_rw_block(SWRITE_SYNC, 1, &bh);
1da177e4
LT
733 brelse(bh);
734 spin_lock(lock);
735 }
736 }
737 }
738
739 while (!list_empty(&tmp)) {
740 bh = BH_ENTRY(tmp.prev);
1da177e4 741 get_bh(bh);
535ee2fb
JK
742 mapping = bh->b_assoc_map;
743 __remove_assoc_queue(bh);
744 /* Avoid race with mark_buffer_dirty_inode() which does
745 * a lockless check and we rely on seeing the dirty bit */
746 smp_mb();
747 if (buffer_dirty(bh)) {
748 list_add(&bh->b_assoc_buffers,
e3892296 749 &mapping->private_list);
535ee2fb
JK
750 bh->b_assoc_map = mapping;
751 }
1da177e4
LT
752 spin_unlock(lock);
753 wait_on_buffer(bh);
754 if (!buffer_uptodate(bh))
755 err = -EIO;
756 brelse(bh);
757 spin_lock(lock);
758 }
759
760 spin_unlock(lock);
761 err2 = osync_buffers_list(lock, list);
762 if (err)
763 return err;
764 else
765 return err2;
766}
767
768/*
769 * Invalidate any and all dirty buffers on a given inode. We are
770 * probably unmounting the fs, but that doesn't mean we have already
771 * done a sync(). Just drop the buffers from the inode list.
772 *
773 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
774 * assumes that all the buffers are against the blockdev. Not true
775 * for reiserfs.
776 */
777void invalidate_inode_buffers(struct inode *inode)
778{
779 if (inode_has_buffers(inode)) {
780 struct address_space *mapping = &inode->i_data;
781 struct list_head *list = &mapping->private_list;
782 struct address_space *buffer_mapping = mapping->assoc_mapping;
783
784 spin_lock(&buffer_mapping->private_lock);
785 while (!list_empty(list))
786 __remove_assoc_queue(BH_ENTRY(list->next));
787 spin_unlock(&buffer_mapping->private_lock);
788 }
789}
52b19ac9 790EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
791
792/*
793 * Remove any clean buffers from the inode's buffer list. This is called
794 * when we're trying to free the inode itself. Those buffers can pin it.
795 *
796 * Returns true if all buffers were removed.
797 */
798int remove_inode_buffers(struct inode *inode)
799{
800 int ret = 1;
801
802 if (inode_has_buffers(inode)) {
803 struct address_space *mapping = &inode->i_data;
804 struct list_head *list = &mapping->private_list;
805 struct address_space *buffer_mapping = mapping->assoc_mapping;
806
807 spin_lock(&buffer_mapping->private_lock);
808 while (!list_empty(list)) {
809 struct buffer_head *bh = BH_ENTRY(list->next);
810 if (buffer_dirty(bh)) {
811 ret = 0;
812 break;
813 }
814 __remove_assoc_queue(bh);
815 }
816 spin_unlock(&buffer_mapping->private_lock);
817 }
818 return ret;
819}
820
821/*
822 * Create the appropriate buffers when given a page for data area and
823 * the size of each buffer.. Use the bh->b_this_page linked list to
824 * follow the buffers created. Return NULL if unable to create more
825 * buffers.
826 *
827 * The retry flag is used to differentiate async IO (paging, swapping)
828 * which may not fail from ordinary buffer allocations.
829 */
830struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
831 int retry)
832{
833 struct buffer_head *bh, *head;
834 long offset;
835
836try_again:
837 head = NULL;
838 offset = PAGE_SIZE;
839 while ((offset -= size) >= 0) {
840 bh = alloc_buffer_head(GFP_NOFS);
841 if (!bh)
842 goto no_grow;
843
844 bh->b_bdev = NULL;
845 bh->b_this_page = head;
846 bh->b_blocknr = -1;
847 head = bh;
848
849 bh->b_state = 0;
850 atomic_set(&bh->b_count, 0);
fc5cd582 851 bh->b_private = NULL;
1da177e4
LT
852 bh->b_size = size;
853
854 /* Link the buffer to its page */
855 set_bh_page(bh, page, offset);
856
01ffe339 857 init_buffer(bh, NULL, NULL);
1da177e4
LT
858 }
859 return head;
860/*
861 * In case anything failed, we just free everything we got.
862 */
863no_grow:
864 if (head) {
865 do {
866 bh = head;
867 head = head->b_this_page;
868 free_buffer_head(bh);
869 } while (head);
870 }
871
872 /*
873 * Return failure for non-async IO requests. Async IO requests
874 * are not allowed to fail, so we have to wait until buffer heads
875 * become available. But we don't want tasks sleeping with
876 * partially complete buffers, so all were released above.
877 */
878 if (!retry)
879 return NULL;
880
881 /* We're _really_ low on memory. Now we just
882 * wait for old buffer heads to become free due to
883 * finishing IO. Since this is an async request and
884 * the reserve list is empty, we're sure there are
885 * async buffer heads in use.
886 */
887 free_more_memory();
888 goto try_again;
889}
890EXPORT_SYMBOL_GPL(alloc_page_buffers);
891
892static inline void
893link_dev_buffers(struct page *page, struct buffer_head *head)
894{
895 struct buffer_head *bh, *tail;
896
897 bh = head;
898 do {
899 tail = bh;
900 bh = bh->b_this_page;
901 } while (bh);
902 tail->b_this_page = head;
903 attach_page_buffers(page, head);
904}
905
906/*
907 * Initialise the state of a blockdev page's buffers.
908 */
909static void
910init_page_buffers(struct page *page, struct block_device *bdev,
911 sector_t block, int size)
912{
913 struct buffer_head *head = page_buffers(page);
914 struct buffer_head *bh = head;
915 int uptodate = PageUptodate(page);
916
917 do {
918 if (!buffer_mapped(bh)) {
919 init_buffer(bh, NULL, NULL);
920 bh->b_bdev = bdev;
921 bh->b_blocknr = block;
922 if (uptodate)
923 set_buffer_uptodate(bh);
924 set_buffer_mapped(bh);
925 }
926 block++;
927 bh = bh->b_this_page;
928 } while (bh != head);
929}
930
931/*
932 * Create the page-cache page that contains the requested block.
933 *
934 * This is user purely for blockdev mappings.
935 */
936static struct page *
937grow_dev_page(struct block_device *bdev, sector_t block,
938 pgoff_t index, int size)
939{
940 struct inode *inode = bdev->bd_inode;
941 struct page *page;
942 struct buffer_head *bh;
943
ea125892 944 page = find_or_create_page(inode->i_mapping, index,
769848c0 945 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
946 if (!page)
947 return NULL;
948
e827f923 949 BUG_ON(!PageLocked(page));
1da177e4
LT
950
951 if (page_has_buffers(page)) {
952 bh = page_buffers(page);
953 if (bh->b_size == size) {
954 init_page_buffers(page, bdev, block, size);
955 return page;
956 }
957 if (!try_to_free_buffers(page))
958 goto failed;
959 }
960
961 /*
962 * Allocate some buffers for this page
963 */
964 bh = alloc_page_buffers(page, size, 0);
965 if (!bh)
966 goto failed;
967
968 /*
969 * Link the page to the buffers and initialise them. Take the
970 * lock to be atomic wrt __find_get_block(), which does not
971 * run under the page lock.
972 */
973 spin_lock(&inode->i_mapping->private_lock);
974 link_dev_buffers(page, bh);
975 init_page_buffers(page, bdev, block, size);
976 spin_unlock(&inode->i_mapping->private_lock);
977 return page;
978
979failed:
980 BUG();
981 unlock_page(page);
982 page_cache_release(page);
983 return NULL;
984}
985
986/*
987 * Create buffers for the specified block device block's page. If
988 * that page was dirty, the buffers are set dirty also.
1da177e4 989 */
858119e1 990static int
1da177e4
LT
991grow_buffers(struct block_device *bdev, sector_t block, int size)
992{
993 struct page *page;
994 pgoff_t index;
995 int sizebits;
996
997 sizebits = -1;
998 do {
999 sizebits++;
1000 } while ((size << sizebits) < PAGE_SIZE);
1001
1002 index = block >> sizebits;
1da177e4 1003
e5657933
AM
1004 /*
1005 * Check for a block which wants to lie outside our maximum possible
1006 * pagecache index. (this comparison is done using sector_t types).
1007 */
1008 if (unlikely(index != block >> sizebits)) {
1009 char b[BDEVNAME_SIZE];
1010
1011 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1012 "device %s\n",
8e24eea7 1013 __func__, (unsigned long long)block,
e5657933
AM
1014 bdevname(bdev, b));
1015 return -EIO;
1016 }
1017 block = index << sizebits;
1da177e4
LT
1018 /* Create a page with the proper size buffers.. */
1019 page = grow_dev_page(bdev, block, index, size);
1020 if (!page)
1021 return 0;
1022 unlock_page(page);
1023 page_cache_release(page);
1024 return 1;
1025}
1026
75c96f85 1027static struct buffer_head *
1da177e4
LT
1028__getblk_slow(struct block_device *bdev, sector_t block, int size)
1029{
1030 /* Size must be multiple of hard sectorsize */
1031 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1032 (size < 512 || size > PAGE_SIZE))) {
1033 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1034 size);
1035 printk(KERN_ERR "hardsect size: %d\n",
1036 bdev_hardsect_size(bdev));
1037
1038 dump_stack();
1039 return NULL;
1040 }
1041
1042 for (;;) {
1043 struct buffer_head * bh;
e5657933 1044 int ret;
1da177e4
LT
1045
1046 bh = __find_get_block(bdev, block, size);
1047 if (bh)
1048 return bh;
1049
e5657933
AM
1050 ret = grow_buffers(bdev, block, size);
1051 if (ret < 0)
1052 return NULL;
1053 if (ret == 0)
1da177e4
LT
1054 free_more_memory();
1055 }
1056}
1057
1058/*
1059 * The relationship between dirty buffers and dirty pages:
1060 *
1061 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1062 * the page is tagged dirty in its radix tree.
1063 *
1064 * At all times, the dirtiness of the buffers represents the dirtiness of
1065 * subsections of the page. If the page has buffers, the page dirty bit is
1066 * merely a hint about the true dirty state.
1067 *
1068 * When a page is set dirty in its entirety, all its buffers are marked dirty
1069 * (if the page has buffers).
1070 *
1071 * When a buffer is marked dirty, its page is dirtied, but the page's other
1072 * buffers are not.
1073 *
1074 * Also. When blockdev buffers are explicitly read with bread(), they
1075 * individually become uptodate. But their backing page remains not
1076 * uptodate - even if all of its buffers are uptodate. A subsequent
1077 * block_read_full_page() against that page will discover all the uptodate
1078 * buffers, will set the page uptodate and will perform no I/O.
1079 */
1080
1081/**
1082 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1083 * @bh: the buffer_head to mark dirty
1da177e4
LT
1084 *
1085 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1086 * backing page dirty, then tag the page as dirty in its address_space's radix
1087 * tree and then attach the address_space's inode to its superblock's dirty
1088 * inode list.
1089 *
1090 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1091 * mapping->tree_lock and the global inode_lock.
1092 */
fc9b52cd 1093void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1094{
787d2214 1095 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1
LT
1096
1097 /*
1098 * Very *carefully* optimize the it-is-already-dirty case.
1099 *
1100 * Don't let the final "is it dirty" escape to before we
1101 * perhaps modified the buffer.
1102 */
1103 if (buffer_dirty(bh)) {
1104 smp_mb();
1105 if (buffer_dirty(bh))
1106 return;
1107 }
1108
a8e7d49a
LT
1109 if (!test_set_buffer_dirty(bh)) {
1110 struct page *page = bh->b_page;
1111 if (!TestSetPageDirty(page))
1112 __set_page_dirty(page, page_mapping(page), 0);
1113 }
1da177e4
LT
1114}
1115
1116/*
1117 * Decrement a buffer_head's reference count. If all buffers against a page
1118 * have zero reference count, are clean and unlocked, and if the page is clean
1119 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1120 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1121 * a page but it ends up not being freed, and buffers may later be reattached).
1122 */
1123void __brelse(struct buffer_head * buf)
1124{
1125 if (atomic_read(&buf->b_count)) {
1126 put_bh(buf);
1127 return;
1128 }
5c752ad9 1129 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4
LT
1130}
1131
1132/*
1133 * bforget() is like brelse(), except it discards any
1134 * potentially dirty data.
1135 */
1136void __bforget(struct buffer_head *bh)
1137{
1138 clear_buffer_dirty(bh);
535ee2fb 1139 if (bh->b_assoc_map) {
1da177e4
LT
1140 struct address_space *buffer_mapping = bh->b_page->mapping;
1141
1142 spin_lock(&buffer_mapping->private_lock);
1143 list_del_init(&bh->b_assoc_buffers);
58ff407b 1144 bh->b_assoc_map = NULL;
1da177e4
LT
1145 spin_unlock(&buffer_mapping->private_lock);
1146 }
1147 __brelse(bh);
1148}
1149
1150static struct buffer_head *__bread_slow(struct buffer_head *bh)
1151{
1152 lock_buffer(bh);
1153 if (buffer_uptodate(bh)) {
1154 unlock_buffer(bh);
1155 return bh;
1156 } else {
1157 get_bh(bh);
1158 bh->b_end_io = end_buffer_read_sync;
1159 submit_bh(READ, bh);
1160 wait_on_buffer(bh);
1161 if (buffer_uptodate(bh))
1162 return bh;
1163 }
1164 brelse(bh);
1165 return NULL;
1166}
1167
1168/*
1169 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1170 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1171 * refcount elevated by one when they're in an LRU. A buffer can only appear
1172 * once in a particular CPU's LRU. A single buffer can be present in multiple
1173 * CPU's LRUs at the same time.
1174 *
1175 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1176 * sb_find_get_block().
1177 *
1178 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1179 * a local interrupt disable for that.
1180 */
1181
1182#define BH_LRU_SIZE 8
1183
1184struct bh_lru {
1185 struct buffer_head *bhs[BH_LRU_SIZE];
1186};
1187
1188static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1189
1190#ifdef CONFIG_SMP
1191#define bh_lru_lock() local_irq_disable()
1192#define bh_lru_unlock() local_irq_enable()
1193#else
1194#define bh_lru_lock() preempt_disable()
1195#define bh_lru_unlock() preempt_enable()
1196#endif
1197
1198static inline void check_irqs_on(void)
1199{
1200#ifdef irqs_disabled
1201 BUG_ON(irqs_disabled());
1202#endif
1203}
1204
1205/*
1206 * The LRU management algorithm is dopey-but-simple. Sorry.
1207 */
1208static void bh_lru_install(struct buffer_head *bh)
1209{
1210 struct buffer_head *evictee = NULL;
1211 struct bh_lru *lru;
1212
1213 check_irqs_on();
1214 bh_lru_lock();
1215 lru = &__get_cpu_var(bh_lrus);
1216 if (lru->bhs[0] != bh) {
1217 struct buffer_head *bhs[BH_LRU_SIZE];
1218 int in;
1219 int out = 0;
1220
1221 get_bh(bh);
1222 bhs[out++] = bh;
1223 for (in = 0; in < BH_LRU_SIZE; in++) {
1224 struct buffer_head *bh2 = lru->bhs[in];
1225
1226 if (bh2 == bh) {
1227 __brelse(bh2);
1228 } else {
1229 if (out >= BH_LRU_SIZE) {
1230 BUG_ON(evictee != NULL);
1231 evictee = bh2;
1232 } else {
1233 bhs[out++] = bh2;
1234 }
1235 }
1236 }
1237 while (out < BH_LRU_SIZE)
1238 bhs[out++] = NULL;
1239 memcpy(lru->bhs, bhs, sizeof(bhs));
1240 }
1241 bh_lru_unlock();
1242
1243 if (evictee)
1244 __brelse(evictee);
1245}
1246
1247/*
1248 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1249 */
858119e1 1250static struct buffer_head *
3991d3bd 1251lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1252{
1253 struct buffer_head *ret = NULL;
1254 struct bh_lru *lru;
3991d3bd 1255 unsigned int i;
1da177e4
LT
1256
1257 check_irqs_on();
1258 bh_lru_lock();
1259 lru = &__get_cpu_var(bh_lrus);
1260 for (i = 0; i < BH_LRU_SIZE; i++) {
1261 struct buffer_head *bh = lru->bhs[i];
1262
1263 if (bh && bh->b_bdev == bdev &&
1264 bh->b_blocknr == block && bh->b_size == size) {
1265 if (i) {
1266 while (i) {
1267 lru->bhs[i] = lru->bhs[i - 1];
1268 i--;
1269 }
1270 lru->bhs[0] = bh;
1271 }
1272 get_bh(bh);
1273 ret = bh;
1274 break;
1275 }
1276 }
1277 bh_lru_unlock();
1278 return ret;
1279}
1280
1281/*
1282 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1283 * it in the LRU and mark it as accessed. If it is not present then return
1284 * NULL
1285 */
1286struct buffer_head *
3991d3bd 1287__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1288{
1289 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1290
1291 if (bh == NULL) {
385fd4c5 1292 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1293 if (bh)
1294 bh_lru_install(bh);
1295 }
1296 if (bh)
1297 touch_buffer(bh);
1298 return bh;
1299}
1300EXPORT_SYMBOL(__find_get_block);
1301
1302/*
1303 * __getblk will locate (and, if necessary, create) the buffer_head
1304 * which corresponds to the passed block_device, block and size. The
1305 * returned buffer has its reference count incremented.
1306 *
1307 * __getblk() cannot fail - it just keeps trying. If you pass it an
1308 * illegal block number, __getblk() will happily return a buffer_head
1309 * which represents the non-existent block. Very weird.
1310 *
1311 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1312 * attempt is failing. FIXME, perhaps?
1313 */
1314struct buffer_head *
3991d3bd 1315__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1316{
1317 struct buffer_head *bh = __find_get_block(bdev, block, size);
1318
1319 might_sleep();
1320 if (bh == NULL)
1321 bh = __getblk_slow(bdev, block, size);
1322 return bh;
1323}
1324EXPORT_SYMBOL(__getblk);
1325
1326/*
1327 * Do async read-ahead on a buffer..
1328 */
3991d3bd 1329void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1330{
1331 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1332 if (likely(bh)) {
1333 ll_rw_block(READA, 1, &bh);
1334 brelse(bh);
1335 }
1da177e4
LT
1336}
1337EXPORT_SYMBOL(__breadahead);
1338
1339/**
1340 * __bread() - reads a specified block and returns the bh
67be2dd1 1341 * @bdev: the block_device to read from
1da177e4
LT
1342 * @block: number of block
1343 * @size: size (in bytes) to read
1344 *
1345 * Reads a specified block, and returns buffer head that contains it.
1346 * It returns NULL if the block was unreadable.
1347 */
1348struct buffer_head *
3991d3bd 1349__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1350{
1351 struct buffer_head *bh = __getblk(bdev, block, size);
1352
a3e713b5 1353 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1354 bh = __bread_slow(bh);
1355 return bh;
1356}
1357EXPORT_SYMBOL(__bread);
1358
1359/*
1360 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1361 * This doesn't race because it runs in each cpu either in irq
1362 * or with preempt disabled.
1363 */
1364static void invalidate_bh_lru(void *arg)
1365{
1366 struct bh_lru *b = &get_cpu_var(bh_lrus);
1367 int i;
1368
1369 for (i = 0; i < BH_LRU_SIZE; i++) {
1370 brelse(b->bhs[i]);
1371 b->bhs[i] = NULL;
1372 }
1373 put_cpu_var(bh_lrus);
1374}
1375
f9a14399 1376void invalidate_bh_lrus(void)
1da177e4 1377{
15c8b6c1 1378 on_each_cpu(invalidate_bh_lru, NULL, 1);
1da177e4 1379}
9db5579b 1380EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1381
1382void set_bh_page(struct buffer_head *bh,
1383 struct page *page, unsigned long offset)
1384{
1385 bh->b_page = page;
e827f923 1386 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1387 if (PageHighMem(page))
1388 /*
1389 * This catches illegal uses and preserves the offset:
1390 */
1391 bh->b_data = (char *)(0 + offset);
1392 else
1393 bh->b_data = page_address(page) + offset;
1394}
1395EXPORT_SYMBOL(set_bh_page);
1396
1397/*
1398 * Called when truncating a buffer on a page completely.
1399 */
858119e1 1400static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1401{
1402 lock_buffer(bh);
1403 clear_buffer_dirty(bh);
1404 bh->b_bdev = NULL;
1405 clear_buffer_mapped(bh);
1406 clear_buffer_req(bh);
1407 clear_buffer_new(bh);
1408 clear_buffer_delay(bh);
33a266dd 1409 clear_buffer_unwritten(bh);
1da177e4
LT
1410 unlock_buffer(bh);
1411}
1412
1da177e4
LT
1413/**
1414 * block_invalidatepage - invalidate part of all of a buffer-backed page
1415 *
1416 * @page: the page which is affected
1417 * @offset: the index of the truncation point
1418 *
1419 * block_invalidatepage() is called when all or part of the page has become
1420 * invalidatedby a truncate operation.
1421 *
1422 * block_invalidatepage() does not have to release all buffers, but it must
1423 * ensure that no dirty buffer is left outside @offset and that no I/O
1424 * is underway against any of the blocks which are outside the truncation
1425 * point. Because the caller is about to free (and possibly reuse) those
1426 * blocks on-disk.
1427 */
2ff28e22 1428void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1429{
1430 struct buffer_head *head, *bh, *next;
1431 unsigned int curr_off = 0;
1da177e4
LT
1432
1433 BUG_ON(!PageLocked(page));
1434 if (!page_has_buffers(page))
1435 goto out;
1436
1437 head = page_buffers(page);
1438 bh = head;
1439 do {
1440 unsigned int next_off = curr_off + bh->b_size;
1441 next = bh->b_this_page;
1442
1443 /*
1444 * is this block fully invalidated?
1445 */
1446 if (offset <= curr_off)
1447 discard_buffer(bh);
1448 curr_off = next_off;
1449 bh = next;
1450 } while (bh != head);
1451
1452 /*
1453 * We release buffers only if the entire page is being invalidated.
1454 * The get_block cached value has been unconditionally invalidated,
1455 * so real IO is not possible anymore.
1456 */
1457 if (offset == 0)
2ff28e22 1458 try_to_release_page(page, 0);
1da177e4 1459out:
2ff28e22 1460 return;
1da177e4
LT
1461}
1462EXPORT_SYMBOL(block_invalidatepage);
1463
1464/*
1465 * We attach and possibly dirty the buffers atomically wrt
1466 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1467 * is already excluded via the page lock.
1468 */
1469void create_empty_buffers(struct page *page,
1470 unsigned long blocksize, unsigned long b_state)
1471{
1472 struct buffer_head *bh, *head, *tail;
1473
1474 head = alloc_page_buffers(page, blocksize, 1);
1475 bh = head;
1476 do {
1477 bh->b_state |= b_state;
1478 tail = bh;
1479 bh = bh->b_this_page;
1480 } while (bh);
1481 tail->b_this_page = head;
1482
1483 spin_lock(&page->mapping->private_lock);
1484 if (PageUptodate(page) || PageDirty(page)) {
1485 bh = head;
1486 do {
1487 if (PageDirty(page))
1488 set_buffer_dirty(bh);
1489 if (PageUptodate(page))
1490 set_buffer_uptodate(bh);
1491 bh = bh->b_this_page;
1492 } while (bh != head);
1493 }
1494 attach_page_buffers(page, head);
1495 spin_unlock(&page->mapping->private_lock);
1496}
1497EXPORT_SYMBOL(create_empty_buffers);
1498
1499/*
1500 * We are taking a block for data and we don't want any output from any
1501 * buffer-cache aliases starting from return from that function and
1502 * until the moment when something will explicitly mark the buffer
1503 * dirty (hopefully that will not happen until we will free that block ;-)
1504 * We don't even need to mark it not-uptodate - nobody can expect
1505 * anything from a newly allocated buffer anyway. We used to used
1506 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1507 * don't want to mark the alias unmapped, for example - it would confuse
1508 * anyone who might pick it with bread() afterwards...
1509 *
1510 * Also.. Note that bforget() doesn't lock the buffer. So there can
1511 * be writeout I/O going on against recently-freed buffers. We don't
1512 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1513 * only if we really need to. That happens here.
1514 */
1515void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1516{
1517 struct buffer_head *old_bh;
1518
1519 might_sleep();
1520
385fd4c5 1521 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1522 if (old_bh) {
1523 clear_buffer_dirty(old_bh);
1524 wait_on_buffer(old_bh);
1525 clear_buffer_req(old_bh);
1526 __brelse(old_bh);
1527 }
1528}
1529EXPORT_SYMBOL(unmap_underlying_metadata);
1530
1531/*
1532 * NOTE! All mapped/uptodate combinations are valid:
1533 *
1534 * Mapped Uptodate Meaning
1535 *
1536 * No No "unknown" - must do get_block()
1537 * No Yes "hole" - zero-filled
1538 * Yes No "allocated" - allocated on disk, not read in
1539 * Yes Yes "valid" - allocated and up-to-date in memory.
1540 *
1541 * "Dirty" is valid only with the last case (mapped+uptodate).
1542 */
1543
1544/*
1545 * While block_write_full_page is writing back the dirty buffers under
1546 * the page lock, whoever dirtied the buffers may decide to clean them
1547 * again at any time. We handle that by only looking at the buffer
1548 * state inside lock_buffer().
1549 *
1550 * If block_write_full_page() is called for regular writeback
1551 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1552 * locked buffer. This only can happen if someone has written the buffer
1553 * directly, with submit_bh(). At the address_space level PageWriteback
1554 * prevents this contention from occurring.
1555 */
1556static int __block_write_full_page(struct inode *inode, struct page *page,
1557 get_block_t *get_block, struct writeback_control *wbc)
1558{
1559 int err;
1560 sector_t block;
1561 sector_t last_block;
f0fbd5fc 1562 struct buffer_head *bh, *head;
b0cf2321 1563 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4
LT
1564 int nr_underway = 0;
1565
1566 BUG_ON(!PageLocked(page));
1567
1568 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1569
1570 if (!page_has_buffers(page)) {
b0cf2321 1571 create_empty_buffers(page, blocksize,
1da177e4
LT
1572 (1 << BH_Dirty)|(1 << BH_Uptodate));
1573 }
1574
1575 /*
1576 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1577 * here, and the (potentially unmapped) buffers may become dirty at
1578 * any time. If a buffer becomes dirty here after we've inspected it
1579 * then we just miss that fact, and the page stays dirty.
1580 *
1581 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1582 * handle that here by just cleaning them.
1583 */
1584
54b21a79 1585 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1586 head = page_buffers(page);
1587 bh = head;
1588
1589 /*
1590 * Get all the dirty buffers mapped to disk addresses and
1591 * handle any aliases from the underlying blockdev's mapping.
1592 */
1593 do {
1594 if (block > last_block) {
1595 /*
1596 * mapped buffers outside i_size will occur, because
1597 * this page can be outside i_size when there is a
1598 * truncate in progress.
1599 */
1600 /*
1601 * The buffer was zeroed by block_write_full_page()
1602 */
1603 clear_buffer_dirty(bh);
1604 set_buffer_uptodate(bh);
29a814d2
AT
1605 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1606 buffer_dirty(bh)) {
b0cf2321 1607 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1608 err = get_block(inode, block, bh, 1);
1609 if (err)
1610 goto recover;
29a814d2 1611 clear_buffer_delay(bh);
1da177e4
LT
1612 if (buffer_new(bh)) {
1613 /* blockdev mappings never come here */
1614 clear_buffer_new(bh);
1615 unmap_underlying_metadata(bh->b_bdev,
1616 bh->b_blocknr);
1617 }
1618 }
1619 bh = bh->b_this_page;
1620 block++;
1621 } while (bh != head);
1622
1623 do {
1da177e4
LT
1624 if (!buffer_mapped(bh))
1625 continue;
1626 /*
1627 * If it's a fully non-blocking write attempt and we cannot
1628 * lock the buffer then redirty the page. Note that this can
1629 * potentially cause a busy-wait loop from pdflush and kswapd
1630 * activity, but those code paths have their own higher-level
1631 * throttling.
1632 */
1633 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1634 lock_buffer(bh);
ca5de404 1635 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1636 redirty_page_for_writepage(wbc, page);
1637 continue;
1638 }
1639 if (test_clear_buffer_dirty(bh)) {
1640 mark_buffer_async_write(bh);
1641 } else {
1642 unlock_buffer(bh);
1643 }
1644 } while ((bh = bh->b_this_page) != head);
1645
1646 /*
1647 * The page and its buffers are protected by PageWriteback(), so we can
1648 * drop the bh refcounts early.
1649 */
1650 BUG_ON(PageWriteback(page));
1651 set_page_writeback(page);
1da177e4
LT
1652
1653 do {
1654 struct buffer_head *next = bh->b_this_page;
1655 if (buffer_async_write(bh)) {
1656 submit_bh(WRITE, bh);
1657 nr_underway++;
1658 }
1da177e4
LT
1659 bh = next;
1660 } while (bh != head);
05937baa 1661 unlock_page(page);
1da177e4
LT
1662
1663 err = 0;
1664done:
1665 if (nr_underway == 0) {
1666 /*
1667 * The page was marked dirty, but the buffers were
1668 * clean. Someone wrote them back by hand with
1669 * ll_rw_block/submit_bh. A rare case.
1670 */
1da177e4 1671 end_page_writeback(page);
3d67f2d7 1672
1da177e4
LT
1673 /*
1674 * The page and buffer_heads can be released at any time from
1675 * here on.
1676 */
1da177e4
LT
1677 }
1678 return err;
1679
1680recover:
1681 /*
1682 * ENOSPC, or some other error. We may already have added some
1683 * blocks to the file, so we need to write these out to avoid
1684 * exposing stale data.
1685 * The page is currently locked and not marked for writeback
1686 */
1687 bh = head;
1688 /* Recovery: lock and submit the mapped buffers */
1689 do {
29a814d2
AT
1690 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1691 !buffer_delay(bh)) {
1da177e4
LT
1692 lock_buffer(bh);
1693 mark_buffer_async_write(bh);
1694 } else {
1695 /*
1696 * The buffer may have been set dirty during
1697 * attachment to a dirty page.
1698 */
1699 clear_buffer_dirty(bh);
1700 }
1701 } while ((bh = bh->b_this_page) != head);
1702 SetPageError(page);
1703 BUG_ON(PageWriteback(page));
7e4c3690 1704 mapping_set_error(page->mapping, err);
1da177e4 1705 set_page_writeback(page);
1da177e4
LT
1706 do {
1707 struct buffer_head *next = bh->b_this_page;
1708 if (buffer_async_write(bh)) {
1709 clear_buffer_dirty(bh);
1710 submit_bh(WRITE, bh);
1711 nr_underway++;
1712 }
1da177e4
LT
1713 bh = next;
1714 } while (bh != head);
ffda9d30 1715 unlock_page(page);
1da177e4
LT
1716 goto done;
1717}
1718
afddba49
NP
1719/*
1720 * If a page has any new buffers, zero them out here, and mark them uptodate
1721 * and dirty so they'll be written out (in order to prevent uninitialised
1722 * block data from leaking). And clear the new bit.
1723 */
1724void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1725{
1726 unsigned int block_start, block_end;
1727 struct buffer_head *head, *bh;
1728
1729 BUG_ON(!PageLocked(page));
1730 if (!page_has_buffers(page))
1731 return;
1732
1733 bh = head = page_buffers(page);
1734 block_start = 0;
1735 do {
1736 block_end = block_start + bh->b_size;
1737
1738 if (buffer_new(bh)) {
1739 if (block_end > from && block_start < to) {
1740 if (!PageUptodate(page)) {
1741 unsigned start, size;
1742
1743 start = max(from, block_start);
1744 size = min(to, block_end) - start;
1745
eebd2aa3 1746 zero_user(page, start, size);
afddba49
NP
1747 set_buffer_uptodate(bh);
1748 }
1749
1750 clear_buffer_new(bh);
1751 mark_buffer_dirty(bh);
1752 }
1753 }
1754
1755 block_start = block_end;
1756 bh = bh->b_this_page;
1757 } while (bh != head);
1758}
1759EXPORT_SYMBOL(page_zero_new_buffers);
1760
1da177e4
LT
1761static int __block_prepare_write(struct inode *inode, struct page *page,
1762 unsigned from, unsigned to, get_block_t *get_block)
1763{
1764 unsigned block_start, block_end;
1765 sector_t block;
1766 int err = 0;
1767 unsigned blocksize, bbits;
1768 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1769
1770 BUG_ON(!PageLocked(page));
1771 BUG_ON(from > PAGE_CACHE_SIZE);
1772 BUG_ON(to > PAGE_CACHE_SIZE);
1773 BUG_ON(from > to);
1774
1775 blocksize = 1 << inode->i_blkbits;
1776 if (!page_has_buffers(page))
1777 create_empty_buffers(page, blocksize, 0);
1778 head = page_buffers(page);
1779
1780 bbits = inode->i_blkbits;
1781 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1782
1783 for(bh = head, block_start = 0; bh != head || !block_start;
1784 block++, block_start=block_end, bh = bh->b_this_page) {
1785 block_end = block_start + blocksize;
1786 if (block_end <= from || block_start >= to) {
1787 if (PageUptodate(page)) {
1788 if (!buffer_uptodate(bh))
1789 set_buffer_uptodate(bh);
1790 }
1791 continue;
1792 }
1793 if (buffer_new(bh))
1794 clear_buffer_new(bh);
1795 if (!buffer_mapped(bh)) {
b0cf2321 1796 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1797 err = get_block(inode, block, bh, 1);
1798 if (err)
f3ddbdc6 1799 break;
1da177e4 1800 if (buffer_new(bh)) {
1da177e4
LT
1801 unmap_underlying_metadata(bh->b_bdev,
1802 bh->b_blocknr);
1803 if (PageUptodate(page)) {
637aff46 1804 clear_buffer_new(bh);
1da177e4 1805 set_buffer_uptodate(bh);
637aff46 1806 mark_buffer_dirty(bh);
1da177e4
LT
1807 continue;
1808 }
eebd2aa3
CL
1809 if (block_end > to || block_start < from)
1810 zero_user_segments(page,
1811 to, block_end,
1812 block_start, from);
1da177e4
LT
1813 continue;
1814 }
1815 }
1816 if (PageUptodate(page)) {
1817 if (!buffer_uptodate(bh))
1818 set_buffer_uptodate(bh);
1819 continue;
1820 }
1821 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1822 !buffer_unwritten(bh) &&
1da177e4
LT
1823 (block_start < from || block_end > to)) {
1824 ll_rw_block(READ, 1, &bh);
1825 *wait_bh++=bh;
1826 }
1827 }
1828 /*
1829 * If we issued read requests - let them complete.
1830 */
1831 while(wait_bh > wait) {
1832 wait_on_buffer(*--wait_bh);
1833 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1834 err = -EIO;
1da177e4 1835 }
afddba49
NP
1836 if (unlikely(err))
1837 page_zero_new_buffers(page, from, to);
1da177e4
LT
1838 return err;
1839}
1840
1841static int __block_commit_write(struct inode *inode, struct page *page,
1842 unsigned from, unsigned to)
1843{
1844 unsigned block_start, block_end;
1845 int partial = 0;
1846 unsigned blocksize;
1847 struct buffer_head *bh, *head;
1848
1849 blocksize = 1 << inode->i_blkbits;
1850
1851 for(bh = head = page_buffers(page), block_start = 0;
1852 bh != head || !block_start;
1853 block_start=block_end, bh = bh->b_this_page) {
1854 block_end = block_start + blocksize;
1855 if (block_end <= from || block_start >= to) {
1856 if (!buffer_uptodate(bh))
1857 partial = 1;
1858 } else {
1859 set_buffer_uptodate(bh);
1860 mark_buffer_dirty(bh);
1861 }
afddba49 1862 clear_buffer_new(bh);
1da177e4
LT
1863 }
1864
1865 /*
1866 * If this is a partial write which happened to make all buffers
1867 * uptodate then we can optimize away a bogus readpage() for
1868 * the next read(). Here we 'discover' whether the page went
1869 * uptodate as a result of this (potentially partial) write.
1870 */
1871 if (!partial)
1872 SetPageUptodate(page);
1873 return 0;
1874}
1875
afddba49
NP
1876/*
1877 * block_write_begin takes care of the basic task of block allocation and
1878 * bringing partial write blocks uptodate first.
1879 *
1880 * If *pagep is not NULL, then block_write_begin uses the locked page
1881 * at *pagep rather than allocating its own. In this case, the page will
1882 * not be unlocked or deallocated on failure.
1883 */
1884int block_write_begin(struct file *file, struct address_space *mapping,
1885 loff_t pos, unsigned len, unsigned flags,
1886 struct page **pagep, void **fsdata,
1887 get_block_t *get_block)
1888{
1889 struct inode *inode = mapping->host;
1890 int status = 0;
1891 struct page *page;
1892 pgoff_t index;
1893 unsigned start, end;
1894 int ownpage = 0;
1895
1896 index = pos >> PAGE_CACHE_SHIFT;
1897 start = pos & (PAGE_CACHE_SIZE - 1);
1898 end = start + len;
1899
1900 page = *pagep;
1901 if (page == NULL) {
1902 ownpage = 1;
54566b2c 1903 page = grab_cache_page_write_begin(mapping, index, flags);
afddba49
NP
1904 if (!page) {
1905 status = -ENOMEM;
1906 goto out;
1907 }
1908 *pagep = page;
1909 } else
1910 BUG_ON(!PageLocked(page));
1911
1912 status = __block_prepare_write(inode, page, start, end, get_block);
1913 if (unlikely(status)) {
1914 ClearPageUptodate(page);
1915
1916 if (ownpage) {
1917 unlock_page(page);
1918 page_cache_release(page);
1919 *pagep = NULL;
1920
1921 /*
1922 * prepare_write() may have instantiated a few blocks
1923 * outside i_size. Trim these off again. Don't need
1924 * i_size_read because we hold i_mutex.
1925 */
1926 if (pos + len > inode->i_size)
1927 vmtruncate(inode, inode->i_size);
1928 }
afddba49
NP
1929 }
1930
1931out:
1932 return status;
1933}
1934EXPORT_SYMBOL(block_write_begin);
1935
1936int block_write_end(struct file *file, struct address_space *mapping,
1937 loff_t pos, unsigned len, unsigned copied,
1938 struct page *page, void *fsdata)
1939{
1940 struct inode *inode = mapping->host;
1941 unsigned start;
1942
1943 start = pos & (PAGE_CACHE_SIZE - 1);
1944
1945 if (unlikely(copied < len)) {
1946 /*
1947 * The buffers that were written will now be uptodate, so we
1948 * don't have to worry about a readpage reading them and
1949 * overwriting a partial write. However if we have encountered
1950 * a short write and only partially written into a buffer, it
1951 * will not be marked uptodate, so a readpage might come in and
1952 * destroy our partial write.
1953 *
1954 * Do the simplest thing, and just treat any short write to a
1955 * non uptodate page as a zero-length write, and force the
1956 * caller to redo the whole thing.
1957 */
1958 if (!PageUptodate(page))
1959 copied = 0;
1960
1961 page_zero_new_buffers(page, start+copied, start+len);
1962 }
1963 flush_dcache_page(page);
1964
1965 /* This could be a short (even 0-length) commit */
1966 __block_commit_write(inode, page, start, start+copied);
1967
1968 return copied;
1969}
1970EXPORT_SYMBOL(block_write_end);
1971
1972int generic_write_end(struct file *file, struct address_space *mapping,
1973 loff_t pos, unsigned len, unsigned copied,
1974 struct page *page, void *fsdata)
1975{
1976 struct inode *inode = mapping->host;
c7d206b3 1977 int i_size_changed = 0;
afddba49
NP
1978
1979 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1980
1981 /*
1982 * No need to use i_size_read() here, the i_size
1983 * cannot change under us because we hold i_mutex.
1984 *
1985 * But it's important to update i_size while still holding page lock:
1986 * page writeout could otherwise come in and zero beyond i_size.
1987 */
1988 if (pos+copied > inode->i_size) {
1989 i_size_write(inode, pos+copied);
c7d206b3 1990 i_size_changed = 1;
afddba49
NP
1991 }
1992
1993 unlock_page(page);
1994 page_cache_release(page);
1995
c7d206b3
JK
1996 /*
1997 * Don't mark the inode dirty under page lock. First, it unnecessarily
1998 * makes the holding time of page lock longer. Second, it forces lock
1999 * ordering of page lock and transaction start for journaling
2000 * filesystems.
2001 */
2002 if (i_size_changed)
2003 mark_inode_dirty(inode);
2004
afddba49
NP
2005 return copied;
2006}
2007EXPORT_SYMBOL(generic_write_end);
2008
8ab22b9a
HH
2009/*
2010 * block_is_partially_uptodate checks whether buffers within a page are
2011 * uptodate or not.
2012 *
2013 * Returns true if all buffers which correspond to a file portion
2014 * we want to read are uptodate.
2015 */
2016int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2017 unsigned long from)
2018{
2019 struct inode *inode = page->mapping->host;
2020 unsigned block_start, block_end, blocksize;
2021 unsigned to;
2022 struct buffer_head *bh, *head;
2023 int ret = 1;
2024
2025 if (!page_has_buffers(page))
2026 return 0;
2027
2028 blocksize = 1 << inode->i_blkbits;
2029 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2030 to = from + to;
2031 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2032 return 0;
2033
2034 head = page_buffers(page);
2035 bh = head;
2036 block_start = 0;
2037 do {
2038 block_end = block_start + blocksize;
2039 if (block_end > from && block_start < to) {
2040 if (!buffer_uptodate(bh)) {
2041 ret = 0;
2042 break;
2043 }
2044 if (block_end >= to)
2045 break;
2046 }
2047 block_start = block_end;
2048 bh = bh->b_this_page;
2049 } while (bh != head);
2050
2051 return ret;
2052}
2053EXPORT_SYMBOL(block_is_partially_uptodate);
2054
1da177e4
LT
2055/*
2056 * Generic "read page" function for block devices that have the normal
2057 * get_block functionality. This is most of the block device filesystems.
2058 * Reads the page asynchronously --- the unlock_buffer() and
2059 * set/clear_buffer_uptodate() functions propagate buffer state into the
2060 * page struct once IO has completed.
2061 */
2062int block_read_full_page(struct page *page, get_block_t *get_block)
2063{
2064 struct inode *inode = page->mapping->host;
2065 sector_t iblock, lblock;
2066 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2067 unsigned int blocksize;
2068 int nr, i;
2069 int fully_mapped = 1;
2070
cd7619d6 2071 BUG_ON(!PageLocked(page));
1da177e4
LT
2072 blocksize = 1 << inode->i_blkbits;
2073 if (!page_has_buffers(page))
2074 create_empty_buffers(page, blocksize, 0);
2075 head = page_buffers(page);
2076
2077 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2078 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2079 bh = head;
2080 nr = 0;
2081 i = 0;
2082
2083 do {
2084 if (buffer_uptodate(bh))
2085 continue;
2086
2087 if (!buffer_mapped(bh)) {
c64610ba
AM
2088 int err = 0;
2089
1da177e4
LT
2090 fully_mapped = 0;
2091 if (iblock < lblock) {
b0cf2321 2092 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2093 err = get_block(inode, iblock, bh, 0);
2094 if (err)
1da177e4
LT
2095 SetPageError(page);
2096 }
2097 if (!buffer_mapped(bh)) {
eebd2aa3 2098 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2099 if (!err)
2100 set_buffer_uptodate(bh);
1da177e4
LT
2101 continue;
2102 }
2103 /*
2104 * get_block() might have updated the buffer
2105 * synchronously
2106 */
2107 if (buffer_uptodate(bh))
2108 continue;
2109 }
2110 arr[nr++] = bh;
2111 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2112
2113 if (fully_mapped)
2114 SetPageMappedToDisk(page);
2115
2116 if (!nr) {
2117 /*
2118 * All buffers are uptodate - we can set the page uptodate
2119 * as well. But not if get_block() returned an error.
2120 */
2121 if (!PageError(page))
2122 SetPageUptodate(page);
2123 unlock_page(page);
2124 return 0;
2125 }
2126
2127 /* Stage two: lock the buffers */
2128 for (i = 0; i < nr; i++) {
2129 bh = arr[i];
2130 lock_buffer(bh);
2131 mark_buffer_async_read(bh);
2132 }
2133
2134 /*
2135 * Stage 3: start the IO. Check for uptodateness
2136 * inside the buffer lock in case another process reading
2137 * the underlying blockdev brought it uptodate (the sct fix).
2138 */
2139 for (i = 0; i < nr; i++) {
2140 bh = arr[i];
2141 if (buffer_uptodate(bh))
2142 end_buffer_async_read(bh, 1);
2143 else
2144 submit_bh(READ, bh);
2145 }
2146 return 0;
2147}
2148
2149/* utility function for filesystems that need to do work on expanding
89e10787 2150 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2151 * deal with the hole.
2152 */
89e10787 2153int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2154{
2155 struct address_space *mapping = inode->i_mapping;
2156 struct page *page;
89e10787 2157 void *fsdata;
05eb0b51 2158 unsigned long limit;
1da177e4
LT
2159 int err;
2160
2161 err = -EFBIG;
2162 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2163 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2164 send_sig(SIGXFSZ, current, 0);
2165 goto out;
2166 }
2167 if (size > inode->i_sb->s_maxbytes)
2168 goto out;
2169
89e10787
NP
2170 err = pagecache_write_begin(NULL, mapping, size, 0,
2171 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2172 &page, &fsdata);
2173 if (err)
05eb0b51 2174 goto out;
05eb0b51 2175
89e10787
NP
2176 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2177 BUG_ON(err > 0);
05eb0b51 2178
1da177e4
LT
2179out:
2180 return err;
2181}
2182
f1e3af72
AB
2183static int cont_expand_zero(struct file *file, struct address_space *mapping,
2184 loff_t pos, loff_t *bytes)
1da177e4 2185{
1da177e4 2186 struct inode *inode = mapping->host;
1da177e4 2187 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2188 struct page *page;
2189 void *fsdata;
2190 pgoff_t index, curidx;
2191 loff_t curpos;
2192 unsigned zerofrom, offset, len;
2193 int err = 0;
1da177e4 2194
89e10787
NP
2195 index = pos >> PAGE_CACHE_SHIFT;
2196 offset = pos & ~PAGE_CACHE_MASK;
2197
2198 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2199 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2200 if (zerofrom & (blocksize-1)) {
2201 *bytes |= (blocksize-1);
2202 (*bytes)++;
2203 }
89e10787 2204 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2205
89e10787
NP
2206 err = pagecache_write_begin(file, mapping, curpos, len,
2207 AOP_FLAG_UNINTERRUPTIBLE,
2208 &page, &fsdata);
2209 if (err)
2210 goto out;
eebd2aa3 2211 zero_user(page, zerofrom, len);
89e10787
NP
2212 err = pagecache_write_end(file, mapping, curpos, len, len,
2213 page, fsdata);
2214 if (err < 0)
2215 goto out;
2216 BUG_ON(err != len);
2217 err = 0;
061e9746
OH
2218
2219 balance_dirty_pages_ratelimited(mapping);
89e10787 2220 }
1da177e4 2221
89e10787
NP
2222 /* page covers the boundary, find the boundary offset */
2223 if (index == curidx) {
2224 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2225 /* if we will expand the thing last block will be filled */
89e10787
NP
2226 if (offset <= zerofrom) {
2227 goto out;
2228 }
2229 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2230 *bytes |= (blocksize-1);
2231 (*bytes)++;
2232 }
89e10787 2233 len = offset - zerofrom;
1da177e4 2234
89e10787
NP
2235 err = pagecache_write_begin(file, mapping, curpos, len,
2236 AOP_FLAG_UNINTERRUPTIBLE,
2237 &page, &fsdata);
2238 if (err)
2239 goto out;
eebd2aa3 2240 zero_user(page, zerofrom, len);
89e10787
NP
2241 err = pagecache_write_end(file, mapping, curpos, len, len,
2242 page, fsdata);
2243 if (err < 0)
2244 goto out;
2245 BUG_ON(err != len);
2246 err = 0;
1da177e4 2247 }
89e10787
NP
2248out:
2249 return err;
2250}
2251
2252/*
2253 * For moronic filesystems that do not allow holes in file.
2254 * We may have to extend the file.
2255 */
2256int cont_write_begin(struct file *file, struct address_space *mapping,
2257 loff_t pos, unsigned len, unsigned flags,
2258 struct page **pagep, void **fsdata,
2259 get_block_t *get_block, loff_t *bytes)
2260{
2261 struct inode *inode = mapping->host;
2262 unsigned blocksize = 1 << inode->i_blkbits;
2263 unsigned zerofrom;
2264 int err;
2265
2266 err = cont_expand_zero(file, mapping, pos, bytes);
2267 if (err)
2268 goto out;
2269
2270 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2271 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2272 *bytes |= (blocksize-1);
2273 (*bytes)++;
1da177e4 2274 }
1da177e4 2275
89e10787
NP
2276 *pagep = NULL;
2277 err = block_write_begin(file, mapping, pos, len,
2278 flags, pagep, fsdata, get_block);
1da177e4 2279out:
89e10787 2280 return err;
1da177e4
LT
2281}
2282
2283int block_prepare_write(struct page *page, unsigned from, unsigned to,
2284 get_block_t *get_block)
2285{
2286 struct inode *inode = page->mapping->host;
2287 int err = __block_prepare_write(inode, page, from, to, get_block);
2288 if (err)
2289 ClearPageUptodate(page);
2290 return err;
2291}
2292
2293int block_commit_write(struct page *page, unsigned from, unsigned to)
2294{
2295 struct inode *inode = page->mapping->host;
2296 __block_commit_write(inode,page,from,to);
2297 return 0;
2298}
2299
54171690
DC
2300/*
2301 * block_page_mkwrite() is not allowed to change the file size as it gets
2302 * called from a page fault handler when a page is first dirtied. Hence we must
2303 * be careful to check for EOF conditions here. We set the page up correctly
2304 * for a written page which means we get ENOSPC checking when writing into
2305 * holes and correct delalloc and unwritten extent mapping on filesystems that
2306 * support these features.
2307 *
2308 * We are not allowed to take the i_mutex here so we have to play games to
2309 * protect against truncate races as the page could now be beyond EOF. Because
2310 * vmtruncate() writes the inode size before removing pages, once we have the
2311 * page lock we can determine safely if the page is beyond EOF. If it is not
2312 * beyond EOF, then the page is guaranteed safe against truncation until we
2313 * unlock the page.
2314 */
2315int
c2ec175c 2316block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
54171690
DC
2317 get_block_t get_block)
2318{
c2ec175c 2319 struct page *page = vmf->page;
54171690
DC
2320 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2321 unsigned long end;
2322 loff_t size;
2323 int ret = -EINVAL;
2324
2325 lock_page(page);
2326 size = i_size_read(inode);
2327 if ((page->mapping != inode->i_mapping) ||
18336338 2328 (page_offset(page) > size)) {
54171690
DC
2329 /* page got truncated out from underneath us */
2330 goto out_unlock;
2331 }
2332
2333 /* page is wholly or partially inside EOF */
2334 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2335 end = size & ~PAGE_CACHE_MASK;
2336 else
2337 end = PAGE_CACHE_SIZE;
2338
2339 ret = block_prepare_write(page, 0, end, get_block);
2340 if (!ret)
2341 ret = block_commit_write(page, 0, end);
2342
2343out_unlock:
c2ec175c
NP
2344 if (ret)
2345 ret = VM_FAULT_SIGBUS;
2346
54171690
DC
2347 unlock_page(page);
2348 return ret;
2349}
1da177e4
LT
2350
2351/*
03158cd7 2352 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2353 * immediately, while under the page lock. So it needs a special end_io
2354 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2355 */
2356static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2357{
68671f35 2358 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2359}
2360
03158cd7
NP
2361/*
2362 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2363 * the page (converting it to circular linked list and taking care of page
2364 * dirty races).
2365 */
2366static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2367{
2368 struct buffer_head *bh;
2369
2370 BUG_ON(!PageLocked(page));
2371
2372 spin_lock(&page->mapping->private_lock);
2373 bh = head;
2374 do {
2375 if (PageDirty(page))
2376 set_buffer_dirty(bh);
2377 if (!bh->b_this_page)
2378 bh->b_this_page = head;
2379 bh = bh->b_this_page;
2380 } while (bh != head);
2381 attach_page_buffers(page, head);
2382 spin_unlock(&page->mapping->private_lock);
2383}
2384
1da177e4
LT
2385/*
2386 * On entry, the page is fully not uptodate.
2387 * On exit the page is fully uptodate in the areas outside (from,to)
2388 */
03158cd7
NP
2389int nobh_write_begin(struct file *file, struct address_space *mapping,
2390 loff_t pos, unsigned len, unsigned flags,
2391 struct page **pagep, void **fsdata,
1da177e4
LT
2392 get_block_t *get_block)
2393{
03158cd7 2394 struct inode *inode = mapping->host;
1da177e4
LT
2395 const unsigned blkbits = inode->i_blkbits;
2396 const unsigned blocksize = 1 << blkbits;
a4b0672d 2397 struct buffer_head *head, *bh;
03158cd7
NP
2398 struct page *page;
2399 pgoff_t index;
2400 unsigned from, to;
1da177e4 2401 unsigned block_in_page;
a4b0672d 2402 unsigned block_start, block_end;
1da177e4 2403 sector_t block_in_file;
1da177e4 2404 int nr_reads = 0;
1da177e4
LT
2405 int ret = 0;
2406 int is_mapped_to_disk = 1;
1da177e4 2407
03158cd7
NP
2408 index = pos >> PAGE_CACHE_SHIFT;
2409 from = pos & (PAGE_CACHE_SIZE - 1);
2410 to = from + len;
2411
54566b2c 2412 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2413 if (!page)
2414 return -ENOMEM;
2415 *pagep = page;
2416 *fsdata = NULL;
2417
2418 if (page_has_buffers(page)) {
2419 unlock_page(page);
2420 page_cache_release(page);
2421 *pagep = NULL;
2422 return block_write_begin(file, mapping, pos, len, flags, pagep,
2423 fsdata, get_block);
2424 }
a4b0672d 2425
1da177e4
LT
2426 if (PageMappedToDisk(page))
2427 return 0;
2428
a4b0672d
NP
2429 /*
2430 * Allocate buffers so that we can keep track of state, and potentially
2431 * attach them to the page if an error occurs. In the common case of
2432 * no error, they will just be freed again without ever being attached
2433 * to the page (which is all OK, because we're under the page lock).
2434 *
2435 * Be careful: the buffer linked list is a NULL terminated one, rather
2436 * than the circular one we're used to.
2437 */
2438 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2439 if (!head) {
2440 ret = -ENOMEM;
2441 goto out_release;
2442 }
a4b0672d 2443
1da177e4 2444 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2445
2446 /*
2447 * We loop across all blocks in the page, whether or not they are
2448 * part of the affected region. This is so we can discover if the
2449 * page is fully mapped-to-disk.
2450 */
a4b0672d 2451 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2452 block_start < PAGE_CACHE_SIZE;
a4b0672d 2453 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2454 int create;
2455
a4b0672d
NP
2456 block_end = block_start + blocksize;
2457 bh->b_state = 0;
1da177e4
LT
2458 create = 1;
2459 if (block_start >= to)
2460 create = 0;
2461 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2462 bh, create);
1da177e4
LT
2463 if (ret)
2464 goto failed;
a4b0672d 2465 if (!buffer_mapped(bh))
1da177e4 2466 is_mapped_to_disk = 0;
a4b0672d
NP
2467 if (buffer_new(bh))
2468 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2469 if (PageUptodate(page)) {
2470 set_buffer_uptodate(bh);
1da177e4 2471 continue;
a4b0672d
NP
2472 }
2473 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2474 zero_user_segments(page, block_start, from,
2475 to, block_end);
1da177e4
LT
2476 continue;
2477 }
a4b0672d 2478 if (buffer_uptodate(bh))
1da177e4
LT
2479 continue; /* reiserfs does this */
2480 if (block_start < from || block_end > to) {
a4b0672d
NP
2481 lock_buffer(bh);
2482 bh->b_end_io = end_buffer_read_nobh;
2483 submit_bh(READ, bh);
2484 nr_reads++;
1da177e4
LT
2485 }
2486 }
2487
2488 if (nr_reads) {
1da177e4
LT
2489 /*
2490 * The page is locked, so these buffers are protected from
2491 * any VM or truncate activity. Hence we don't need to care
2492 * for the buffer_head refcounts.
2493 */
a4b0672d 2494 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2495 wait_on_buffer(bh);
2496 if (!buffer_uptodate(bh))
2497 ret = -EIO;
1da177e4
LT
2498 }
2499 if (ret)
2500 goto failed;
2501 }
2502
2503 if (is_mapped_to_disk)
2504 SetPageMappedToDisk(page);
1da177e4 2505
03158cd7 2506 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2507
1da177e4
LT
2508 return 0;
2509
2510failed:
03158cd7 2511 BUG_ON(!ret);
1da177e4 2512 /*
a4b0672d
NP
2513 * Error recovery is a bit difficult. We need to zero out blocks that
2514 * were newly allocated, and dirty them to ensure they get written out.
2515 * Buffers need to be attached to the page at this point, otherwise
2516 * the handling of potential IO errors during writeout would be hard
2517 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2518 */
03158cd7
NP
2519 attach_nobh_buffers(page, head);
2520 page_zero_new_buffers(page, from, to);
a4b0672d 2521
03158cd7
NP
2522out_release:
2523 unlock_page(page);
2524 page_cache_release(page);
2525 *pagep = NULL;
a4b0672d 2526
03158cd7
NP
2527 if (pos + len > inode->i_size)
2528 vmtruncate(inode, inode->i_size);
a4b0672d 2529
1da177e4
LT
2530 return ret;
2531}
03158cd7 2532EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2533
03158cd7
NP
2534int nobh_write_end(struct file *file, struct address_space *mapping,
2535 loff_t pos, unsigned len, unsigned copied,
2536 struct page *page, void *fsdata)
1da177e4
LT
2537{
2538 struct inode *inode = page->mapping->host;
efdc3131 2539 struct buffer_head *head = fsdata;
03158cd7 2540 struct buffer_head *bh;
5b41e74a 2541 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2542
d4cf109f 2543 if (unlikely(copied < len) && head)
5b41e74a
DM
2544 attach_nobh_buffers(page, head);
2545 if (page_has_buffers(page))
2546 return generic_write_end(file, mapping, pos, len,
2547 copied, page, fsdata);
a4b0672d 2548
22c8ca78 2549 SetPageUptodate(page);
1da177e4 2550 set_page_dirty(page);
03158cd7
NP
2551 if (pos+copied > inode->i_size) {
2552 i_size_write(inode, pos+copied);
1da177e4
LT
2553 mark_inode_dirty(inode);
2554 }
03158cd7
NP
2555
2556 unlock_page(page);
2557 page_cache_release(page);
2558
03158cd7
NP
2559 while (head) {
2560 bh = head;
2561 head = head->b_this_page;
2562 free_buffer_head(bh);
2563 }
2564
2565 return copied;
1da177e4 2566}
03158cd7 2567EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2568
2569/*
2570 * nobh_writepage() - based on block_full_write_page() except
2571 * that it tries to operate without attaching bufferheads to
2572 * the page.
2573 */
2574int nobh_writepage(struct page *page, get_block_t *get_block,
2575 struct writeback_control *wbc)
2576{
2577 struct inode * const inode = page->mapping->host;
2578 loff_t i_size = i_size_read(inode);
2579 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2580 unsigned offset;
1da177e4
LT
2581 int ret;
2582
2583 /* Is the page fully inside i_size? */
2584 if (page->index < end_index)
2585 goto out;
2586
2587 /* Is the page fully outside i_size? (truncate in progress) */
2588 offset = i_size & (PAGE_CACHE_SIZE-1);
2589 if (page->index >= end_index+1 || !offset) {
2590 /*
2591 * The page may have dirty, unmapped buffers. For example,
2592 * they may have been added in ext3_writepage(). Make them
2593 * freeable here, so the page does not leak.
2594 */
2595#if 0
2596 /* Not really sure about this - do we need this ? */
2597 if (page->mapping->a_ops->invalidatepage)
2598 page->mapping->a_ops->invalidatepage(page, offset);
2599#endif
2600 unlock_page(page);
2601 return 0; /* don't care */
2602 }
2603
2604 /*
2605 * The page straddles i_size. It must be zeroed out on each and every
2606 * writepage invocation because it may be mmapped. "A file is mapped
2607 * in multiples of the page size. For a file that is not a multiple of
2608 * the page size, the remaining memory is zeroed when mapped, and
2609 * writes to that region are not written out to the file."
2610 */
eebd2aa3 2611 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2612out:
2613 ret = mpage_writepage(page, get_block, wbc);
2614 if (ret == -EAGAIN)
2615 ret = __block_write_full_page(inode, page, get_block, wbc);
2616 return ret;
2617}
2618EXPORT_SYMBOL(nobh_writepage);
2619
03158cd7
NP
2620int nobh_truncate_page(struct address_space *mapping,
2621 loff_t from, get_block_t *get_block)
1da177e4 2622{
1da177e4
LT
2623 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2624 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2625 unsigned blocksize;
2626 sector_t iblock;
2627 unsigned length, pos;
2628 struct inode *inode = mapping->host;
1da177e4 2629 struct page *page;
03158cd7
NP
2630 struct buffer_head map_bh;
2631 int err;
1da177e4 2632
03158cd7
NP
2633 blocksize = 1 << inode->i_blkbits;
2634 length = offset & (blocksize - 1);
2635
2636 /* Block boundary? Nothing to do */
2637 if (!length)
2638 return 0;
2639
2640 length = blocksize - length;
2641 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2642
1da177e4 2643 page = grab_cache_page(mapping, index);
03158cd7 2644 err = -ENOMEM;
1da177e4
LT
2645 if (!page)
2646 goto out;
2647
03158cd7
NP
2648 if (page_has_buffers(page)) {
2649has_buffers:
2650 unlock_page(page);
2651 page_cache_release(page);
2652 return block_truncate_page(mapping, from, get_block);
2653 }
2654
2655 /* Find the buffer that contains "offset" */
2656 pos = blocksize;
2657 while (offset >= pos) {
2658 iblock++;
2659 pos += blocksize;
2660 }
2661
2662 err = get_block(inode, iblock, &map_bh, 0);
2663 if (err)
2664 goto unlock;
2665 /* unmapped? It's a hole - nothing to do */
2666 if (!buffer_mapped(&map_bh))
2667 goto unlock;
2668
2669 /* Ok, it's mapped. Make sure it's up-to-date */
2670 if (!PageUptodate(page)) {
2671 err = mapping->a_ops->readpage(NULL, page);
2672 if (err) {
2673 page_cache_release(page);
2674 goto out;
2675 }
2676 lock_page(page);
2677 if (!PageUptodate(page)) {
2678 err = -EIO;
2679 goto unlock;
2680 }
2681 if (page_has_buffers(page))
2682 goto has_buffers;
1da177e4 2683 }
eebd2aa3 2684 zero_user(page, offset, length);
03158cd7
NP
2685 set_page_dirty(page);
2686 err = 0;
2687
2688unlock:
1da177e4
LT
2689 unlock_page(page);
2690 page_cache_release(page);
2691out:
03158cd7 2692 return err;
1da177e4
LT
2693}
2694EXPORT_SYMBOL(nobh_truncate_page);
2695
2696int block_truncate_page(struct address_space *mapping,
2697 loff_t from, get_block_t *get_block)
2698{
2699 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2700 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2701 unsigned blocksize;
54b21a79 2702 sector_t iblock;
1da177e4
LT
2703 unsigned length, pos;
2704 struct inode *inode = mapping->host;
2705 struct page *page;
2706 struct buffer_head *bh;
1da177e4
LT
2707 int err;
2708
2709 blocksize = 1 << inode->i_blkbits;
2710 length = offset & (blocksize - 1);
2711
2712 /* Block boundary? Nothing to do */
2713 if (!length)
2714 return 0;
2715
2716 length = blocksize - length;
54b21a79 2717 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2718
2719 page = grab_cache_page(mapping, index);
2720 err = -ENOMEM;
2721 if (!page)
2722 goto out;
2723
2724 if (!page_has_buffers(page))
2725 create_empty_buffers(page, blocksize, 0);
2726
2727 /* Find the buffer that contains "offset" */
2728 bh = page_buffers(page);
2729 pos = blocksize;
2730 while (offset >= pos) {
2731 bh = bh->b_this_page;
2732 iblock++;
2733 pos += blocksize;
2734 }
2735
2736 err = 0;
2737 if (!buffer_mapped(bh)) {
b0cf2321 2738 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2739 err = get_block(inode, iblock, bh, 0);
2740 if (err)
2741 goto unlock;
2742 /* unmapped? It's a hole - nothing to do */
2743 if (!buffer_mapped(bh))
2744 goto unlock;
2745 }
2746
2747 /* Ok, it's mapped. Make sure it's up-to-date */
2748 if (PageUptodate(page))
2749 set_buffer_uptodate(bh);
2750
33a266dd 2751 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2752 err = -EIO;
2753 ll_rw_block(READ, 1, &bh);
2754 wait_on_buffer(bh);
2755 /* Uhhuh. Read error. Complain and punt. */
2756 if (!buffer_uptodate(bh))
2757 goto unlock;
2758 }
2759
eebd2aa3 2760 zero_user(page, offset, length);
1da177e4
LT
2761 mark_buffer_dirty(bh);
2762 err = 0;
2763
2764unlock:
2765 unlock_page(page);
2766 page_cache_release(page);
2767out:
2768 return err;
2769}
2770
2771/*
2772 * The generic ->writepage function for buffer-backed address_spaces
2773 */
2774int block_write_full_page(struct page *page, get_block_t *get_block,
2775 struct writeback_control *wbc)
2776{
2777 struct inode * const inode = page->mapping->host;
2778 loff_t i_size = i_size_read(inode);
2779 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2780 unsigned offset;
1da177e4
LT
2781
2782 /* Is the page fully inside i_size? */
2783 if (page->index < end_index)
2784 return __block_write_full_page(inode, page, get_block, wbc);
2785
2786 /* Is the page fully outside i_size? (truncate in progress) */
2787 offset = i_size & (PAGE_CACHE_SIZE-1);
2788 if (page->index >= end_index+1 || !offset) {
2789 /*
2790 * The page may have dirty, unmapped buffers. For example,
2791 * they may have been added in ext3_writepage(). Make them
2792 * freeable here, so the page does not leak.
2793 */
aaa4059b 2794 do_invalidatepage(page, 0);
1da177e4
LT
2795 unlock_page(page);
2796 return 0; /* don't care */
2797 }
2798
2799 /*
2800 * The page straddles i_size. It must be zeroed out on each and every
2801 * writepage invokation because it may be mmapped. "A file is mapped
2802 * in multiples of the page size. For a file that is not a multiple of
2803 * the page size, the remaining memory is zeroed when mapped, and
2804 * writes to that region are not written out to the file."
2805 */
eebd2aa3 2806 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2807 return __block_write_full_page(inode, page, get_block, wbc);
2808}
2809
2810sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2811 get_block_t *get_block)
2812{
2813 struct buffer_head tmp;
2814 struct inode *inode = mapping->host;
2815 tmp.b_state = 0;
2816 tmp.b_blocknr = 0;
b0cf2321 2817 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2818 get_block(inode, block, &tmp, 0);
2819 return tmp.b_blocknr;
2820}
2821
6712ecf8 2822static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2823{
2824 struct buffer_head *bh = bio->bi_private;
2825
1da177e4
LT
2826 if (err == -EOPNOTSUPP) {
2827 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2828 set_bit(BH_Eopnotsupp, &bh->b_state);
2829 }
2830
08bafc03
KM
2831 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2832 set_bit(BH_Quiet, &bh->b_state);
2833
1da177e4
LT
2834 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2835 bio_put(bio);
1da177e4
LT
2836}
2837
2838int submit_bh(int rw, struct buffer_head * bh)
2839{
2840 struct bio *bio;
2841 int ret = 0;
2842
2843 BUG_ON(!buffer_locked(bh));
2844 BUG_ON(!buffer_mapped(bh));
2845 BUG_ON(!bh->b_end_io);
2846
48fd4f93
JA
2847 /*
2848 * Mask in barrier bit for a write (could be either a WRITE or a
2849 * WRITE_SYNC
2850 */
2851 if (buffer_ordered(bh) && (rw & WRITE))
2852 rw |= WRITE_BARRIER;
1da177e4
LT
2853
2854 /*
48fd4f93 2855 * Only clear out a write error when rewriting
1da177e4 2856 */
48fd4f93 2857 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2858 clear_buffer_write_io_error(bh);
2859
2860 /*
2861 * from here on down, it's all bio -- do the initial mapping,
2862 * submit_bio -> generic_make_request may further map this bio around
2863 */
2864 bio = bio_alloc(GFP_NOIO, 1);
2865
2866 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2867 bio->bi_bdev = bh->b_bdev;
2868 bio->bi_io_vec[0].bv_page = bh->b_page;
2869 bio->bi_io_vec[0].bv_len = bh->b_size;
2870 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2871
2872 bio->bi_vcnt = 1;
2873 bio->bi_idx = 0;
2874 bio->bi_size = bh->b_size;
2875
2876 bio->bi_end_io = end_bio_bh_io_sync;
2877 bio->bi_private = bh;
2878
2879 bio_get(bio);
2880 submit_bio(rw, bio);
2881
2882 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2883 ret = -EOPNOTSUPP;
2884
2885 bio_put(bio);
2886 return ret;
2887}
2888
2889/**
2890 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2891 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2892 * @nr: number of &struct buffer_heads in the array
2893 * @bhs: array of pointers to &struct buffer_head
2894 *
a7662236
JK
2895 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2896 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2897 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2898 * are sent to disk. The fourth %READA option is described in the documentation
2899 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2900 *
2901 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2902 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2903 * clean when doing a write request, and any buffer that appears to be
2904 * up-to-date when doing read request. Further it marks as clean buffers that
2905 * are processed for writing (the buffer cache won't assume that they are
2906 * actually clean until the buffer gets unlocked).
1da177e4
LT
2907 *
2908 * ll_rw_block sets b_end_io to simple completion handler that marks
2909 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2910 * any waiters.
2911 *
2912 * All of the buffers must be for the same device, and must also be a
2913 * multiple of the current approved size for the device.
2914 */
2915void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2916{
2917 int i;
2918
2919 for (i = 0; i < nr; i++) {
2920 struct buffer_head *bh = bhs[i];
2921
18ce3751 2922 if (rw == SWRITE || rw == SWRITE_SYNC)
a7662236 2923 lock_buffer(bh);
ca5de404 2924 else if (!trylock_buffer(bh))
1da177e4
LT
2925 continue;
2926
18ce3751 2927 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
1da177e4 2928 if (test_clear_buffer_dirty(bh)) {
76c3073a 2929 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2930 get_bh(bh);
18ce3751
JA
2931 if (rw == SWRITE_SYNC)
2932 submit_bh(WRITE_SYNC, bh);
2933 else
2934 submit_bh(WRITE, bh);
1da177e4
LT
2935 continue;
2936 }
2937 } else {
1da177e4 2938 if (!buffer_uptodate(bh)) {
76c3073a 2939 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2940 get_bh(bh);
1da177e4
LT
2941 submit_bh(rw, bh);
2942 continue;
2943 }
2944 }
2945 unlock_buffer(bh);
1da177e4
LT
2946 }
2947}
2948
2949/*
2950 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2951 * and then start new I/O and then wait upon it. The caller must have a ref on
2952 * the buffer_head.
2953 */
2954int sync_dirty_buffer(struct buffer_head *bh)
2955{
2956 int ret = 0;
2957
2958 WARN_ON(atomic_read(&bh->b_count) < 1);
2959 lock_buffer(bh);
2960 if (test_clear_buffer_dirty(bh)) {
2961 get_bh(bh);
2962 bh->b_end_io = end_buffer_write_sync;
78f707bf 2963 ret = submit_bh(WRITE, bh);
1da177e4
LT
2964 wait_on_buffer(bh);
2965 if (buffer_eopnotsupp(bh)) {
2966 clear_buffer_eopnotsupp(bh);
2967 ret = -EOPNOTSUPP;
2968 }
2969 if (!ret && !buffer_uptodate(bh))
2970 ret = -EIO;
2971 } else {
2972 unlock_buffer(bh);
2973 }
2974 return ret;
2975}
2976
2977/*
2978 * try_to_free_buffers() checks if all the buffers on this particular page
2979 * are unused, and releases them if so.
2980 *
2981 * Exclusion against try_to_free_buffers may be obtained by either
2982 * locking the page or by holding its mapping's private_lock.
2983 *
2984 * If the page is dirty but all the buffers are clean then we need to
2985 * be sure to mark the page clean as well. This is because the page
2986 * may be against a block device, and a later reattachment of buffers
2987 * to a dirty page will set *all* buffers dirty. Which would corrupt
2988 * filesystem data on the same device.
2989 *
2990 * The same applies to regular filesystem pages: if all the buffers are
2991 * clean then we set the page clean and proceed. To do that, we require
2992 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2993 * private_lock.
2994 *
2995 * try_to_free_buffers() is non-blocking.
2996 */
2997static inline int buffer_busy(struct buffer_head *bh)
2998{
2999 return atomic_read(&bh->b_count) |
3000 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3001}
3002
3003static int
3004drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3005{
3006 struct buffer_head *head = page_buffers(page);
3007 struct buffer_head *bh;
3008
3009 bh = head;
3010 do {
de7d5a3b 3011 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3012 set_bit(AS_EIO, &page->mapping->flags);
3013 if (buffer_busy(bh))
3014 goto failed;
3015 bh = bh->b_this_page;
3016 } while (bh != head);
3017
3018 do {
3019 struct buffer_head *next = bh->b_this_page;
3020
535ee2fb 3021 if (bh->b_assoc_map)
1da177e4
LT
3022 __remove_assoc_queue(bh);
3023 bh = next;
3024 } while (bh != head);
3025 *buffers_to_free = head;
3026 __clear_page_buffers(page);
3027 return 1;
3028failed:
3029 return 0;
3030}
3031
3032int try_to_free_buffers(struct page *page)
3033{
3034 struct address_space * const mapping = page->mapping;
3035 struct buffer_head *buffers_to_free = NULL;
3036 int ret = 0;
3037
3038 BUG_ON(!PageLocked(page));
ecdfc978 3039 if (PageWriteback(page))
1da177e4
LT
3040 return 0;
3041
3042 if (mapping == NULL) { /* can this still happen? */
3043 ret = drop_buffers(page, &buffers_to_free);
3044 goto out;
3045 }
3046
3047 spin_lock(&mapping->private_lock);
3048 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3049
3050 /*
3051 * If the filesystem writes its buffers by hand (eg ext3)
3052 * then we can have clean buffers against a dirty page. We
3053 * clean the page here; otherwise the VM will never notice
3054 * that the filesystem did any IO at all.
3055 *
3056 * Also, during truncate, discard_buffer will have marked all
3057 * the page's buffers clean. We discover that here and clean
3058 * the page also.
87df7241
NP
3059 *
3060 * private_lock must be held over this entire operation in order
3061 * to synchronise against __set_page_dirty_buffers and prevent the
3062 * dirty bit from being lost.
ecdfc978
LT
3063 */
3064 if (ret)
3065 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3066 spin_unlock(&mapping->private_lock);
1da177e4
LT
3067out:
3068 if (buffers_to_free) {
3069 struct buffer_head *bh = buffers_to_free;
3070
3071 do {
3072 struct buffer_head *next = bh->b_this_page;
3073 free_buffer_head(bh);
3074 bh = next;
3075 } while (bh != buffers_to_free);
3076 }
3077 return ret;
3078}
3079EXPORT_SYMBOL(try_to_free_buffers);
3080
3978d717 3081void block_sync_page(struct page *page)
1da177e4
LT
3082{
3083 struct address_space *mapping;
3084
3085 smp_mb();
3086 mapping = page_mapping(page);
3087 if (mapping)
3088 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
3089}
3090
3091/*
3092 * There are no bdflush tunables left. But distributions are
3093 * still running obsolete flush daemons, so we terminate them here.
3094 *
3095 * Use of bdflush() is deprecated and will be removed in a future kernel.
3096 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3097 */
bdc480e3 3098SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3099{
3100 static int msg_count;
3101
3102 if (!capable(CAP_SYS_ADMIN))
3103 return -EPERM;
3104
3105 if (msg_count < 5) {
3106 msg_count++;
3107 printk(KERN_INFO
3108 "warning: process `%s' used the obsolete bdflush"
3109 " system call\n", current->comm);
3110 printk(KERN_INFO "Fix your initscripts?\n");
3111 }
3112
3113 if (func == 1)
3114 do_exit(0);
3115 return 0;
3116}
3117
3118/*
3119 * Buffer-head allocation
3120 */
e18b890b 3121static struct kmem_cache *bh_cachep;
1da177e4
LT
3122
3123/*
3124 * Once the number of bh's in the machine exceeds this level, we start
3125 * stripping them in writeback.
3126 */
3127static int max_buffer_heads;
3128
3129int buffer_heads_over_limit;
3130
3131struct bh_accounting {
3132 int nr; /* Number of live bh's */
3133 int ratelimit; /* Limit cacheline bouncing */
3134};
3135
3136static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3137
3138static void recalc_bh_state(void)
3139{
3140 int i;
3141 int tot = 0;
3142
3143 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3144 return;
3145 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3146 for_each_online_cpu(i)
1da177e4
LT
3147 tot += per_cpu(bh_accounting, i).nr;
3148 buffer_heads_over_limit = (tot > max_buffer_heads);
3149}
3150
dd0fc66f 3151struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3152{
488514d1 3153 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
1da177e4 3154 if (ret) {
a35afb83 3155 INIT_LIST_HEAD(&ret->b_assoc_buffers);
736c7b80 3156 get_cpu_var(bh_accounting).nr++;
1da177e4 3157 recalc_bh_state();
736c7b80 3158 put_cpu_var(bh_accounting);
1da177e4
LT
3159 }
3160 return ret;
3161}
3162EXPORT_SYMBOL(alloc_buffer_head);
3163
3164void free_buffer_head(struct buffer_head *bh)
3165{
3166 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3167 kmem_cache_free(bh_cachep, bh);
736c7b80 3168 get_cpu_var(bh_accounting).nr--;
1da177e4 3169 recalc_bh_state();
736c7b80 3170 put_cpu_var(bh_accounting);
1da177e4
LT
3171}
3172EXPORT_SYMBOL(free_buffer_head);
3173
1da177e4
LT
3174static void buffer_exit_cpu(int cpu)
3175{
3176 int i;
3177 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3178
3179 for (i = 0; i < BH_LRU_SIZE; i++) {
3180 brelse(b->bhs[i]);
3181 b->bhs[i] = NULL;
3182 }
8a143426
ED
3183 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3184 per_cpu(bh_accounting, cpu).nr = 0;
3185 put_cpu_var(bh_accounting);
1da177e4
LT
3186}
3187
3188static int buffer_cpu_notify(struct notifier_block *self,
3189 unsigned long action, void *hcpu)
3190{
8bb78442 3191 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3192 buffer_exit_cpu((unsigned long)hcpu);
3193 return NOTIFY_OK;
3194}
1da177e4 3195
389d1b08 3196/**
a6b91919 3197 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3198 * @bh: struct buffer_head
3199 *
3200 * Return true if the buffer is up-to-date and false,
3201 * with the buffer locked, if not.
3202 */
3203int bh_uptodate_or_lock(struct buffer_head *bh)
3204{
3205 if (!buffer_uptodate(bh)) {
3206 lock_buffer(bh);
3207 if (!buffer_uptodate(bh))
3208 return 0;
3209 unlock_buffer(bh);
3210 }
3211 return 1;
3212}
3213EXPORT_SYMBOL(bh_uptodate_or_lock);
3214
3215/**
a6b91919 3216 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3217 * @bh: struct buffer_head
3218 *
3219 * Returns zero on success and -EIO on error.
3220 */
3221int bh_submit_read(struct buffer_head *bh)
3222{
3223 BUG_ON(!buffer_locked(bh));
3224
3225 if (buffer_uptodate(bh)) {
3226 unlock_buffer(bh);
3227 return 0;
3228 }
3229
3230 get_bh(bh);
3231 bh->b_end_io = end_buffer_read_sync;
3232 submit_bh(READ, bh);
3233 wait_on_buffer(bh);
3234 if (buffer_uptodate(bh))
3235 return 0;
3236 return -EIO;
3237}
3238EXPORT_SYMBOL(bh_submit_read);
3239
b98938c3 3240static void
51cc5068 3241init_buffer_head(void *data)
b98938c3
CL
3242{
3243 struct buffer_head *bh = data;
3244
3245 memset(bh, 0, sizeof(*bh));
3246 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3247}
3248
1da177e4
LT
3249void __init buffer_init(void)
3250{
3251 int nrpages;
3252
b98938c3
CL
3253 bh_cachep = kmem_cache_create("buffer_head",
3254 sizeof(struct buffer_head), 0,
3255 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3256 SLAB_MEM_SPREAD),
3257 init_buffer_head);
1da177e4
LT
3258
3259 /*
3260 * Limit the bh occupancy to 10% of ZONE_NORMAL
3261 */
3262 nrpages = (nr_free_buffer_pages() * 10) / 100;
3263 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3264 hotcpu_notifier(buffer_cpu_notify, 0);
3265}
3266
3267EXPORT_SYMBOL(__bforget);
3268EXPORT_SYMBOL(__brelse);
3269EXPORT_SYMBOL(__wait_on_buffer);
3270EXPORT_SYMBOL(block_commit_write);
3271EXPORT_SYMBOL(block_prepare_write);
54171690 3272EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
3273EXPORT_SYMBOL(block_read_full_page);
3274EXPORT_SYMBOL(block_sync_page);
3275EXPORT_SYMBOL(block_truncate_page);
3276EXPORT_SYMBOL(block_write_full_page);
89e10787 3277EXPORT_SYMBOL(cont_write_begin);
1da177e4
LT
3278EXPORT_SYMBOL(end_buffer_read_sync);
3279EXPORT_SYMBOL(end_buffer_write_sync);
3280EXPORT_SYMBOL(file_fsync);
3281EXPORT_SYMBOL(fsync_bdev);
3282EXPORT_SYMBOL(generic_block_bmap);
05eb0b51 3283EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3284EXPORT_SYMBOL(init_buffer);
3285EXPORT_SYMBOL(invalidate_bdev);
3286EXPORT_SYMBOL(ll_rw_block);
3287EXPORT_SYMBOL(mark_buffer_dirty);
3288EXPORT_SYMBOL(submit_bh);
3289EXPORT_SYMBOL(sync_dirty_buffer);
3290EXPORT_SYMBOL(unlock_buffer);