]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
slab: NUMA slab allocator migration bugfix
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
87a927c7 140#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4
LT
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 182#else
ac2b898c 183# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 184 SLAB_CACHE_DMA | \
1da177e4 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
fa5b08d5 208typedef unsigned int kmem_bufctl_t;
1da177e4
LT
209#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
211#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 213
1da177e4
LT
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
b28a02de
PE
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
1da177e4
LT
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
b28a02de 247 struct rcu_head head;
343e0d7a 248 struct kmem_cache *cachep;
b28a02de 249 void *addr;
1da177e4
LT
250};
251
252/*
253 * struct array_cache
254 *
1da177e4
LT
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
e498be7d 269 spinlock_t lock;
bda5b655 270 void *entry[]; /*
a737b3e2
AM
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
a737b3e2 274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
556a169d 307#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
556a169d
PE
310#define SIZE_AC MAX_NUMNODES
311#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
1c61fc40 336#include <linux/kmalloc_sizes.h>
e498be7d 337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
4ba9b9d0 410 void (*ctor)(struct kmem_cache *, void *);
1da177e4 411
b5d8ca7c 412/* 5) cache creation/removal */
b28a02de
PE
413 const char *name;
414 struct list_head next;
1da177e4 415
b5d8ca7c 416/* 6) statistics */
1da177e4 417#if STATS
b28a02de
PE
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
fb7faf33 427 unsigned long node_overflow;
b28a02de
PE
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
1da177e4
LT
432#endif
433#if DEBUG
3dafccf2
MS
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
1da177e4 442#endif
8da3430d
ED
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
1da177e4
LT
454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
a737b3e2
AM
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
1da177e4 463 *
dc6f3f27 464 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
1da177e4
LT
490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 499#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 503#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 505#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
1da177e4 513
a737b3e2
AM
514/*
515 * memory layout of objects:
1da177e4 516 * 0 : objp
3dafccf2 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
3dafccf2 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 521 * redzone word.
3dafccf2
MS
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
1da177e4 526 */
343e0d7a 527static int obj_offset(struct kmem_cache *cachep)
1da177e4 528{
3dafccf2 529 return cachep->obj_offset;
1da177e4
LT
530}
531
343e0d7a 532static int obj_size(struct kmem_cache *cachep)
1da177e4 533{
3dafccf2 534 return cachep->obj_size;
1da177e4
LT
535}
536
b46b8f19 537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
1da177e4
LT
542}
543
b46b8f19 544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
87a927c7 550 REDZONE_ALIGN);
b46b8f19
DW
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
1da177e4
LT
571/*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574#define BREAK_GFP_ORDER_HI 1
575#define BREAK_GFP_ORDER_LO 0
576static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
a737b3e2
AM
578/*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
1da177e4 582 */
065d41cb
PE
583static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584{
585 page->lru.next = (struct list_head *)cache;
586}
587
588static inline struct kmem_cache *page_get_cache(struct page *page)
589{
d85f3385 590 page = compound_head(page);
ddc2e812 591 BUG_ON(!PageSlab(page));
065d41cb
PE
592 return (struct kmem_cache *)page->lru.next;
593}
594
595static inline void page_set_slab(struct page *page, struct slab *slab)
596{
597 page->lru.prev = (struct list_head *)slab;
598}
599
600static inline struct slab *page_get_slab(struct page *page)
601{
ddc2e812 602 BUG_ON(!PageSlab(page));
065d41cb
PE
603 return (struct slab *)page->lru.prev;
604}
1da177e4 605
6ed5eb22
PE
606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
b49af68f 608 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
b49af68f 614 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
615 return page_get_slab(page);
616}
617
8fea4e96
PE
618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
6a2d7a95
ED
624/*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
8fea4e96 632{
6a2d7a95
ED
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
635}
636
a737b3e2
AM
637/*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
1da177e4
LT
640struct cache_sizes malloc_sizes[] = {
641#define CACHE(x) { .cs_size = (x) },
642#include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644#undef CACHE
645};
646EXPORT_SYMBOL(malloc_sizes);
647
648/* Must match cache_sizes above. Out of line to keep cache footprint low. */
649struct cache_names {
650 char *name;
651 char *name_dma;
652};
653
654static struct cache_names __initdata cache_names[] = {
655#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656#include <linux/kmalloc_sizes.h>
b28a02de 657 {NULL,}
1da177e4
LT
658#undef CACHE
659};
660
661static struct arraycache_init initarray_cache __initdata =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 663static struct arraycache_init initarray_generic =
b28a02de 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
665
666/* internal cache of cache description objs */
343e0d7a 667static struct kmem_cache cache_cache = {
b28a02de
PE
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
343e0d7a 671 .buffer_size = sizeof(struct kmem_cache),
b28a02de 672 .name = "kmem_cache",
1da177e4
LT
673};
674
056c6241
RT
675#define BAD_ALIEN_MAGIC 0x01020304ul
676
f1aaee53
AV
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
f1aaee53 689 */
056c6241
RT
690static struct lock_class_key on_slab_l3_key;
691static struct lock_class_key on_slab_alc_key;
692
693static inline void init_lock_keys(void)
f1aaee53 694
f1aaee53
AV
695{
696 int q;
056c6241
RT
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
f1aaee53
AV
724 }
725}
f1aaee53 726#else
056c6241 727static inline void init_lock_keys(void)
f1aaee53
AV
728{
729}
730#endif
731
8f5be20b 732/*
95402b38 733 * Guard access to the cache-chain.
8f5be20b 734 */
fc0abb14 735static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
736static struct list_head cache_chain;
737
1da177e4
LT
738/*
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742static enum {
743 NONE,
e498be7d
CL
744 PARTIAL_AC,
745 PARTIAL_L3,
1da177e4
LT
746 FULL
747} g_cpucache_up;
748
39d24e64
MK
749/*
750 * used by boot code to determine if it can use slab based allocator
751 */
752int slab_is_available(void)
753{
754 return g_cpucache_up == FULL;
755}
756
52bad64d 757static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 758
343e0d7a 759static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
760{
761 return cachep->array[smp_processor_id()];
762}
763
a737b3e2
AM
764static inline struct kmem_cache *__find_general_cachep(size_t size,
765 gfp_t gfpflags)
1da177e4
LT
766{
767 struct cache_sizes *csizep = malloc_sizes;
768
769#if DEBUG
770 /* This happens if someone tries to call
b28a02de
PE
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
773 */
c7e43c78 774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 775#endif
6cb8f913
CL
776 if (!size)
777 return ZERO_SIZE_PTR;
778
1da177e4
LT
779 while (size > csizep->cs_size)
780 csizep++;
781
782 /*
0abf40c1 783 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
784 * has cs_{dma,}cachep==NULL. Thus no special case
785 * for large kmalloc calls required.
786 */
4b51d669 787#ifdef CONFIG_ZONE_DMA
1da177e4
LT
788 if (unlikely(gfpflags & GFP_DMA))
789 return csizep->cs_dmacachep;
4b51d669 790#endif
1da177e4
LT
791 return csizep->cs_cachep;
792}
793
b221385b 794static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
795{
796 return __find_general_cachep(size, gfpflags);
797}
97e2bde4 798
fbaccacf 799static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 800{
fbaccacf
SR
801 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
802}
1da177e4 803
a737b3e2
AM
804/*
805 * Calculate the number of objects and left-over bytes for a given buffer size.
806 */
fbaccacf
SR
807static void cache_estimate(unsigned long gfporder, size_t buffer_size,
808 size_t align, int flags, size_t *left_over,
809 unsigned int *num)
810{
811 int nr_objs;
812 size_t mgmt_size;
813 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 814
fbaccacf
SR
815 /*
816 * The slab management structure can be either off the slab or
817 * on it. For the latter case, the memory allocated for a
818 * slab is used for:
819 *
820 * - The struct slab
821 * - One kmem_bufctl_t for each object
822 * - Padding to respect alignment of @align
823 * - @buffer_size bytes for each object
824 *
825 * If the slab management structure is off the slab, then the
826 * alignment will already be calculated into the size. Because
827 * the slabs are all pages aligned, the objects will be at the
828 * correct alignment when allocated.
829 */
830 if (flags & CFLGS_OFF_SLAB) {
831 mgmt_size = 0;
832 nr_objs = slab_size / buffer_size;
833
834 if (nr_objs > SLAB_LIMIT)
835 nr_objs = SLAB_LIMIT;
836 } else {
837 /*
838 * Ignore padding for the initial guess. The padding
839 * is at most @align-1 bytes, and @buffer_size is at
840 * least @align. In the worst case, this result will
841 * be one greater than the number of objects that fit
842 * into the memory allocation when taking the padding
843 * into account.
844 */
845 nr_objs = (slab_size - sizeof(struct slab)) /
846 (buffer_size + sizeof(kmem_bufctl_t));
847
848 /*
849 * This calculated number will be either the right
850 * amount, or one greater than what we want.
851 */
852 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
853 > slab_size)
854 nr_objs--;
855
856 if (nr_objs > SLAB_LIMIT)
857 nr_objs = SLAB_LIMIT;
858
859 mgmt_size = slab_mgmt_size(nr_objs, align);
860 }
861 *num = nr_objs;
862 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
863}
864
865#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
866
a737b3e2
AM
867static void __slab_error(const char *function, struct kmem_cache *cachep,
868 char *msg)
1da177e4
LT
869{
870 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 871 function, cachep->name, msg);
1da177e4
LT
872 dump_stack();
873}
874
3395ee05
PM
875/*
876 * By default on NUMA we use alien caches to stage the freeing of
877 * objects allocated from other nodes. This causes massive memory
878 * inefficiencies when using fake NUMA setup to split memory into a
879 * large number of small nodes, so it can be disabled on the command
880 * line
881 */
882
883static int use_alien_caches __read_mostly = 1;
1807a1aa 884static int numa_platform __read_mostly = 1;
3395ee05
PM
885static int __init noaliencache_setup(char *s)
886{
887 use_alien_caches = 0;
888 return 1;
889}
890__setup("noaliencache", noaliencache_setup);
891
8fce4d8e
CL
892#ifdef CONFIG_NUMA
893/*
894 * Special reaping functions for NUMA systems called from cache_reap().
895 * These take care of doing round robin flushing of alien caches (containing
896 * objects freed on different nodes from which they were allocated) and the
897 * flushing of remote pcps by calling drain_node_pages.
898 */
899static DEFINE_PER_CPU(unsigned long, reap_node);
900
901static void init_reap_node(int cpu)
902{
903 int node;
904
905 node = next_node(cpu_to_node(cpu), node_online_map);
906 if (node == MAX_NUMNODES)
442295c9 907 node = first_node(node_online_map);
8fce4d8e 908
7f6b8876 909 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
910}
911
912static void next_reap_node(void)
913{
914 int node = __get_cpu_var(reap_node);
915
8fce4d8e
CL
916 node = next_node(node, node_online_map);
917 if (unlikely(node >= MAX_NUMNODES))
918 node = first_node(node_online_map);
919 __get_cpu_var(reap_node) = node;
920}
921
922#else
923#define init_reap_node(cpu) do { } while (0)
924#define next_reap_node(void) do { } while (0)
925#endif
926
1da177e4
LT
927/*
928 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
929 * via the workqueue/eventd.
930 * Add the CPU number into the expiration time to minimize the possibility of
931 * the CPUs getting into lockstep and contending for the global cache chain
932 * lock.
933 */
897e679b 934static void __cpuinit start_cpu_timer(int cpu)
1da177e4 935{
52bad64d 936 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
937
938 /*
939 * When this gets called from do_initcalls via cpucache_init(),
940 * init_workqueues() has already run, so keventd will be setup
941 * at that time.
942 */
52bad64d 943 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 944 init_reap_node(cpu);
65f27f38 945 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
946 schedule_delayed_work_on(cpu, reap_work,
947 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
948 }
949}
950
e498be7d 951static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 952 int batchcount)
1da177e4 953{
b28a02de 954 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
955 struct array_cache *nc = NULL;
956
e498be7d 957 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
958 if (nc) {
959 nc->avail = 0;
960 nc->limit = entries;
961 nc->batchcount = batchcount;
962 nc->touched = 0;
e498be7d 963 spin_lock_init(&nc->lock);
1da177e4
LT
964 }
965 return nc;
966}
967
3ded175a
CL
968/*
969 * Transfer objects in one arraycache to another.
970 * Locking must be handled by the caller.
971 *
972 * Return the number of entries transferred.
973 */
974static int transfer_objects(struct array_cache *to,
975 struct array_cache *from, unsigned int max)
976{
977 /* Figure out how many entries to transfer */
978 int nr = min(min(from->avail, max), to->limit - to->avail);
979
980 if (!nr)
981 return 0;
982
983 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
984 sizeof(void *) *nr);
985
986 from->avail -= nr;
987 to->avail += nr;
988 to->touched = 1;
989 return nr;
990}
991
765c4507
CL
992#ifndef CONFIG_NUMA
993
994#define drain_alien_cache(cachep, alien) do { } while (0)
995#define reap_alien(cachep, l3) do { } while (0)
996
997static inline struct array_cache **alloc_alien_cache(int node, int limit)
998{
999 return (struct array_cache **)BAD_ALIEN_MAGIC;
1000}
1001
1002static inline void free_alien_cache(struct array_cache **ac_ptr)
1003{
1004}
1005
1006static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1007{
1008 return 0;
1009}
1010
1011static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1012 gfp_t flags)
1013{
1014 return NULL;
1015}
1016
8b98c169 1017static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1018 gfp_t flags, int nodeid)
1019{
1020 return NULL;
1021}
1022
1023#else /* CONFIG_NUMA */
1024
8b98c169 1025static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1026static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1027
5295a74c 1028static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1029{
1030 struct array_cache **ac_ptr;
8ef82866 1031 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1032 int i;
1033
1034 if (limit > 1)
1035 limit = 12;
1036 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1037 if (ac_ptr) {
1038 for_each_node(i) {
1039 if (i == node || !node_online(i)) {
1040 ac_ptr[i] = NULL;
1041 continue;
1042 }
1043 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1044 if (!ac_ptr[i]) {
cc550def 1045 for (i--; i >= 0; i--)
e498be7d
CL
1046 kfree(ac_ptr[i]);
1047 kfree(ac_ptr);
1048 return NULL;
1049 }
1050 }
1051 }
1052 return ac_ptr;
1053}
1054
5295a74c 1055static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1056{
1057 int i;
1058
1059 if (!ac_ptr)
1060 return;
e498be7d 1061 for_each_node(i)
b28a02de 1062 kfree(ac_ptr[i]);
e498be7d
CL
1063 kfree(ac_ptr);
1064}
1065
343e0d7a 1066static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1067 struct array_cache *ac, int node)
e498be7d
CL
1068{
1069 struct kmem_list3 *rl3 = cachep->nodelists[node];
1070
1071 if (ac->avail) {
1072 spin_lock(&rl3->list_lock);
e00946fe
CL
1073 /*
1074 * Stuff objects into the remote nodes shared array first.
1075 * That way we could avoid the overhead of putting the objects
1076 * into the free lists and getting them back later.
1077 */
693f7d36
JS
1078 if (rl3->shared)
1079 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1080
ff69416e 1081 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1082 ac->avail = 0;
1083 spin_unlock(&rl3->list_lock);
1084 }
1085}
1086
8fce4d8e
CL
1087/*
1088 * Called from cache_reap() to regularly drain alien caches round robin.
1089 */
1090static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1091{
1092 int node = __get_cpu_var(reap_node);
1093
1094 if (l3->alien) {
1095 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1096
1097 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1098 __drain_alien_cache(cachep, ac, node);
1099 spin_unlock_irq(&ac->lock);
1100 }
1101 }
1102}
1103
a737b3e2
AM
1104static void drain_alien_cache(struct kmem_cache *cachep,
1105 struct array_cache **alien)
e498be7d 1106{
b28a02de 1107 int i = 0;
e498be7d
CL
1108 struct array_cache *ac;
1109 unsigned long flags;
1110
1111 for_each_online_node(i) {
4484ebf1 1112 ac = alien[i];
e498be7d
CL
1113 if (ac) {
1114 spin_lock_irqsave(&ac->lock, flags);
1115 __drain_alien_cache(cachep, ac, i);
1116 spin_unlock_irqrestore(&ac->lock, flags);
1117 }
1118 }
1119}
729bd0b7 1120
873623df 1121static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1122{
1123 struct slab *slabp = virt_to_slab(objp);
1124 int nodeid = slabp->nodeid;
1125 struct kmem_list3 *l3;
1126 struct array_cache *alien = NULL;
1ca4cb24
PE
1127 int node;
1128
1129 node = numa_node_id();
729bd0b7
PE
1130
1131 /*
1132 * Make sure we are not freeing a object from another node to the array
1133 * cache on this cpu.
1134 */
62918a03 1135 if (likely(slabp->nodeid == node))
729bd0b7
PE
1136 return 0;
1137
1ca4cb24 1138 l3 = cachep->nodelists[node];
729bd0b7
PE
1139 STATS_INC_NODEFREES(cachep);
1140 if (l3->alien && l3->alien[nodeid]) {
1141 alien = l3->alien[nodeid];
873623df 1142 spin_lock(&alien->lock);
729bd0b7
PE
1143 if (unlikely(alien->avail == alien->limit)) {
1144 STATS_INC_ACOVERFLOW(cachep);
1145 __drain_alien_cache(cachep, alien, nodeid);
1146 }
1147 alien->entry[alien->avail++] = objp;
1148 spin_unlock(&alien->lock);
1149 } else {
1150 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1151 free_block(cachep, &objp, 1, nodeid);
1152 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1153 }
1154 return 1;
1155}
e498be7d
CL
1156#endif
1157
fbf1e473
AM
1158static void __cpuinit cpuup_canceled(long cpu)
1159{
1160 struct kmem_cache *cachep;
1161 struct kmem_list3 *l3 = NULL;
1162 int node = cpu_to_node(cpu);
1163
1164 list_for_each_entry(cachep, &cache_chain, next) {
1165 struct array_cache *nc;
1166 struct array_cache *shared;
1167 struct array_cache **alien;
1168 cpumask_t mask;
1169
1170 mask = node_to_cpumask(node);
1171 /* cpu is dead; no one can alloc from it. */
1172 nc = cachep->array[cpu];
1173 cachep->array[cpu] = NULL;
1174 l3 = cachep->nodelists[node];
1175
1176 if (!l3)
1177 goto free_array_cache;
1178
1179 spin_lock_irq(&l3->list_lock);
1180
1181 /* Free limit for this kmem_list3 */
1182 l3->free_limit -= cachep->batchcount;
1183 if (nc)
1184 free_block(cachep, nc->entry, nc->avail, node);
1185
1186 if (!cpus_empty(mask)) {
1187 spin_unlock_irq(&l3->list_lock);
1188 goto free_array_cache;
1189 }
1190
1191 shared = l3->shared;
1192 if (shared) {
1193 free_block(cachep, shared->entry,
1194 shared->avail, node);
1195 l3->shared = NULL;
1196 }
1197
1198 alien = l3->alien;
1199 l3->alien = NULL;
1200
1201 spin_unlock_irq(&l3->list_lock);
1202
1203 kfree(shared);
1204 if (alien) {
1205 drain_alien_cache(cachep, alien);
1206 free_alien_cache(alien);
1207 }
1208free_array_cache:
1209 kfree(nc);
1210 }
1211 /*
1212 * In the previous loop, all the objects were freed to
1213 * the respective cache's slabs, now we can go ahead and
1214 * shrink each nodelist to its limit.
1215 */
1216 list_for_each_entry(cachep, &cache_chain, next) {
1217 l3 = cachep->nodelists[node];
1218 if (!l3)
1219 continue;
1220 drain_freelist(cachep, l3, l3->free_objects);
1221 }
1222}
1223
1224static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1225{
343e0d7a 1226 struct kmem_cache *cachep;
e498be7d
CL
1227 struct kmem_list3 *l3 = NULL;
1228 int node = cpu_to_node(cpu);
ea02e3dd 1229 const int memsize = sizeof(struct kmem_list3);
1da177e4 1230
fbf1e473
AM
1231 /*
1232 * We need to do this right in the beginning since
1233 * alloc_arraycache's are going to use this list.
1234 * kmalloc_node allows us to add the slab to the right
1235 * kmem_list3 and not this cpu's kmem_list3
1236 */
1237
1238 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1239 /*
fbf1e473
AM
1240 * Set up the size64 kmemlist for cpu before we can
1241 * begin anything. Make sure some other cpu on this
1242 * node has not already allocated this
e498be7d 1243 */
fbf1e473
AM
1244 if (!cachep->nodelists[node]) {
1245 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1246 if (!l3)
1247 goto bad;
1248 kmem_list3_init(l3);
1249 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1250 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1251
a737b3e2 1252 /*
fbf1e473
AM
1253 * The l3s don't come and go as CPUs come and
1254 * go. cache_chain_mutex is sufficient
1255 * protection here.
e498be7d 1256 */
fbf1e473 1257 cachep->nodelists[node] = l3;
e498be7d
CL
1258 }
1259
fbf1e473
AM
1260 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1261 cachep->nodelists[node]->free_limit =
1262 (1 + nr_cpus_node(node)) *
1263 cachep->batchcount + cachep->num;
1264 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1265 }
1266
1267 /*
1268 * Now we can go ahead with allocating the shared arrays and
1269 * array caches
1270 */
1271 list_for_each_entry(cachep, &cache_chain, next) {
1272 struct array_cache *nc;
1273 struct array_cache *shared = NULL;
1274 struct array_cache **alien = NULL;
1275
1276 nc = alloc_arraycache(node, cachep->limit,
1277 cachep->batchcount);
1278 if (!nc)
1279 goto bad;
1280 if (cachep->shared) {
1281 shared = alloc_arraycache(node,
1282 cachep->shared * cachep->batchcount,
1283 0xbaadf00d);
12d00f6a
AM
1284 if (!shared) {
1285 kfree(nc);
1da177e4 1286 goto bad;
12d00f6a 1287 }
fbf1e473
AM
1288 }
1289 if (use_alien_caches) {
1290 alien = alloc_alien_cache(node, cachep->limit);
12d00f6a
AM
1291 if (!alien) {
1292 kfree(shared);
1293 kfree(nc);
fbf1e473 1294 goto bad;
12d00f6a 1295 }
fbf1e473
AM
1296 }
1297 cachep->array[cpu] = nc;
1298 l3 = cachep->nodelists[node];
1299 BUG_ON(!l3);
1300
1301 spin_lock_irq(&l3->list_lock);
1302 if (!l3->shared) {
1303 /*
1304 * We are serialised from CPU_DEAD or
1305 * CPU_UP_CANCELLED by the cpucontrol lock
1306 */
1307 l3->shared = shared;
1308 shared = NULL;
1309 }
4484ebf1 1310#ifdef CONFIG_NUMA
fbf1e473
AM
1311 if (!l3->alien) {
1312 l3->alien = alien;
1313 alien = NULL;
1da177e4 1314 }
fbf1e473
AM
1315#endif
1316 spin_unlock_irq(&l3->list_lock);
1317 kfree(shared);
1318 free_alien_cache(alien);
1319 }
1320 return 0;
1321bad:
12d00f6a 1322 cpuup_canceled(cpu);
fbf1e473
AM
1323 return -ENOMEM;
1324}
1325
1326static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1327 unsigned long action, void *hcpu)
1328{
1329 long cpu = (long)hcpu;
1330 int err = 0;
1331
1332 switch (action) {
fbf1e473
AM
1333 case CPU_UP_PREPARE:
1334 case CPU_UP_PREPARE_FROZEN:
95402b38 1335 mutex_lock(&cache_chain_mutex);
fbf1e473 1336 err = cpuup_prepare(cpu);
95402b38 1337 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1338 break;
1339 case CPU_ONLINE:
8bb78442 1340 case CPU_ONLINE_FROZEN:
1da177e4
LT
1341 start_cpu_timer(cpu);
1342 break;
1343#ifdef CONFIG_HOTPLUG_CPU
5830c590 1344 case CPU_DOWN_PREPARE:
8bb78442 1345 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1346 /*
1347 * Shutdown cache reaper. Note that the cache_chain_mutex is
1348 * held so that if cache_reap() is invoked it cannot do
1349 * anything expensive but will only modify reap_work
1350 * and reschedule the timer.
1351 */
1352 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1353 /* Now the cache_reaper is guaranteed to be not running. */
1354 per_cpu(reap_work, cpu).work.func = NULL;
1355 break;
1356 case CPU_DOWN_FAILED:
8bb78442 1357 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1358 start_cpu_timer(cpu);
1359 break;
1da177e4 1360 case CPU_DEAD:
8bb78442 1361 case CPU_DEAD_FROZEN:
4484ebf1
RT
1362 /*
1363 * Even if all the cpus of a node are down, we don't free the
1364 * kmem_list3 of any cache. This to avoid a race between
1365 * cpu_down, and a kmalloc allocation from another cpu for
1366 * memory from the node of the cpu going down. The list3
1367 * structure is usually allocated from kmem_cache_create() and
1368 * gets destroyed at kmem_cache_destroy().
1369 */
183ff22b 1370 /* fall through */
8f5be20b 1371#endif
1da177e4 1372 case CPU_UP_CANCELED:
8bb78442 1373 case CPU_UP_CANCELED_FROZEN:
95402b38 1374 mutex_lock(&cache_chain_mutex);
fbf1e473 1375 cpuup_canceled(cpu);
fc0abb14 1376 mutex_unlock(&cache_chain_mutex);
1da177e4 1377 break;
1da177e4 1378 }
fbf1e473 1379 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1380}
1381
74b85f37
CS
1382static struct notifier_block __cpuinitdata cpucache_notifier = {
1383 &cpuup_callback, NULL, 0
1384};
1da177e4 1385
e498be7d
CL
1386/*
1387 * swap the static kmem_list3 with kmalloced memory
1388 */
a737b3e2
AM
1389static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1390 int nodeid)
e498be7d
CL
1391{
1392 struct kmem_list3 *ptr;
1393
e498be7d
CL
1394 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1395 BUG_ON(!ptr);
1396
1397 local_irq_disable();
1398 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1399 /*
1400 * Do not assume that spinlocks can be initialized via memcpy:
1401 */
1402 spin_lock_init(&ptr->list_lock);
1403
e498be7d
CL
1404 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1405 cachep->nodelists[nodeid] = ptr;
1406 local_irq_enable();
1407}
1408
556a169d
PE
1409/*
1410 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1411 * size of kmem_list3.
1412 */
1413static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1414{
1415 int node;
1416
1417 for_each_online_node(node) {
1418 cachep->nodelists[node] = &initkmem_list3[index + node];
1419 cachep->nodelists[node]->next_reap = jiffies +
1420 REAPTIMEOUT_LIST3 +
1421 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1422 }
1423}
1424
a737b3e2
AM
1425/*
1426 * Initialisation. Called after the page allocator have been initialised and
1427 * before smp_init().
1da177e4
LT
1428 */
1429void __init kmem_cache_init(void)
1430{
1431 size_t left_over;
1432 struct cache_sizes *sizes;
1433 struct cache_names *names;
e498be7d 1434 int i;
07ed76b2 1435 int order;
1ca4cb24 1436 int node;
e498be7d 1437
1807a1aa 1438 if (num_possible_nodes() == 1) {
62918a03 1439 use_alien_caches = 0;
1807a1aa
SS
1440 numa_platform = 0;
1441 }
62918a03 1442
e498be7d
CL
1443 for (i = 0; i < NUM_INIT_LISTS; i++) {
1444 kmem_list3_init(&initkmem_list3[i]);
1445 if (i < MAX_NUMNODES)
1446 cache_cache.nodelists[i] = NULL;
1447 }
556a169d 1448 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1449
1450 /*
1451 * Fragmentation resistance on low memory - only use bigger
1452 * page orders on machines with more than 32MB of memory.
1453 */
1454 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1455 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1456
1da177e4
LT
1457 /* Bootstrap is tricky, because several objects are allocated
1458 * from caches that do not exist yet:
a737b3e2
AM
1459 * 1) initialize the cache_cache cache: it contains the struct
1460 * kmem_cache structures of all caches, except cache_cache itself:
1461 * cache_cache is statically allocated.
e498be7d
CL
1462 * Initially an __init data area is used for the head array and the
1463 * kmem_list3 structures, it's replaced with a kmalloc allocated
1464 * array at the end of the bootstrap.
1da177e4 1465 * 2) Create the first kmalloc cache.
343e0d7a 1466 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1467 * An __init data area is used for the head array.
1468 * 3) Create the remaining kmalloc caches, with minimally sized
1469 * head arrays.
1da177e4
LT
1470 * 4) Replace the __init data head arrays for cache_cache and the first
1471 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1472 * 5) Replace the __init data for kmem_list3 for cache_cache and
1473 * the other cache's with kmalloc allocated memory.
1474 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1475 */
1476
1ca4cb24
PE
1477 node = numa_node_id();
1478
1da177e4 1479 /* 1) create the cache_cache */
1da177e4
LT
1480 INIT_LIST_HEAD(&cache_chain);
1481 list_add(&cache_cache.next, &cache_chain);
1482 cache_cache.colour_off = cache_line_size();
1483 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1484 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1485
8da3430d
ED
1486 /*
1487 * struct kmem_cache size depends on nr_node_ids, which
1488 * can be less than MAX_NUMNODES.
1489 */
1490 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1491 nr_node_ids * sizeof(struct kmem_list3 *);
1492#if DEBUG
1493 cache_cache.obj_size = cache_cache.buffer_size;
1494#endif
a737b3e2
AM
1495 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1496 cache_line_size());
6a2d7a95
ED
1497 cache_cache.reciprocal_buffer_size =
1498 reciprocal_value(cache_cache.buffer_size);
1da177e4 1499
07ed76b2
JS
1500 for (order = 0; order < MAX_ORDER; order++) {
1501 cache_estimate(order, cache_cache.buffer_size,
1502 cache_line_size(), 0, &left_over, &cache_cache.num);
1503 if (cache_cache.num)
1504 break;
1505 }
40094fa6 1506 BUG_ON(!cache_cache.num);
07ed76b2 1507 cache_cache.gfporder = order;
b28a02de 1508 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1509 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1510 sizeof(struct slab), cache_line_size());
1da177e4
LT
1511
1512 /* 2+3) create the kmalloc caches */
1513 sizes = malloc_sizes;
1514 names = cache_names;
1515
a737b3e2
AM
1516 /*
1517 * Initialize the caches that provide memory for the array cache and the
1518 * kmem_list3 structures first. Without this, further allocations will
1519 * bug.
e498be7d
CL
1520 */
1521
1522 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1523 sizes[INDEX_AC].cs_size,
1524 ARCH_KMALLOC_MINALIGN,
1525 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1526 NULL);
e498be7d 1527
a737b3e2 1528 if (INDEX_AC != INDEX_L3) {
e498be7d 1529 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1530 kmem_cache_create(names[INDEX_L3].name,
1531 sizes[INDEX_L3].cs_size,
1532 ARCH_KMALLOC_MINALIGN,
1533 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1534 NULL);
a737b3e2 1535 }
e498be7d 1536
e0a42726
IM
1537 slab_early_init = 0;
1538
1da177e4 1539 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1540 /*
1541 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1542 * This should be particularly beneficial on SMP boxes, as it
1543 * eliminates "false sharing".
1544 * Note for systems short on memory removing the alignment will
e498be7d
CL
1545 * allow tighter packing of the smaller caches.
1546 */
a737b3e2 1547 if (!sizes->cs_cachep) {
e498be7d 1548 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1549 sizes->cs_size,
1550 ARCH_KMALLOC_MINALIGN,
1551 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1552 NULL);
a737b3e2 1553 }
4b51d669
CL
1554#ifdef CONFIG_ZONE_DMA
1555 sizes->cs_dmacachep = kmem_cache_create(
1556 names->name_dma,
a737b3e2
AM
1557 sizes->cs_size,
1558 ARCH_KMALLOC_MINALIGN,
1559 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1560 SLAB_PANIC,
20c2df83 1561 NULL);
4b51d669 1562#endif
1da177e4
LT
1563 sizes++;
1564 names++;
1565 }
1566 /* 4) Replace the bootstrap head arrays */
1567 {
2b2d5493 1568 struct array_cache *ptr;
e498be7d 1569
1da177e4 1570 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1571
1da177e4 1572 local_irq_disable();
9a2dba4b
PE
1573 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1574 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1575 sizeof(struct arraycache_init));
2b2d5493
IM
1576 /*
1577 * Do not assume that spinlocks can be initialized via memcpy:
1578 */
1579 spin_lock_init(&ptr->lock);
1580
1da177e4
LT
1581 cache_cache.array[smp_processor_id()] = ptr;
1582 local_irq_enable();
e498be7d 1583
1da177e4 1584 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1585
1da177e4 1586 local_irq_disable();
9a2dba4b 1587 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1588 != &initarray_generic.cache);
9a2dba4b 1589 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1590 sizeof(struct arraycache_init));
2b2d5493
IM
1591 /*
1592 * Do not assume that spinlocks can be initialized via memcpy:
1593 */
1594 spin_lock_init(&ptr->lock);
1595
e498be7d 1596 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1597 ptr;
1da177e4
LT
1598 local_irq_enable();
1599 }
e498be7d
CL
1600 /* 5) Replace the bootstrap kmem_list3's */
1601 {
1ca4cb24
PE
1602 int nid;
1603
9c09a95c 1604 for_each_online_node(nid) {
556a169d
PE
1605 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], nid);
1606
e498be7d 1607 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1608 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1609
1610 if (INDEX_AC != INDEX_L3) {
1611 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1612 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1613 }
1614 }
1615 }
1da177e4 1616
e498be7d 1617 /* 6) resize the head arrays to their final sizes */
1da177e4 1618 {
343e0d7a 1619 struct kmem_cache *cachep;
fc0abb14 1620 mutex_lock(&cache_chain_mutex);
1da177e4 1621 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1622 if (enable_cpucache(cachep))
1623 BUG();
fc0abb14 1624 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1625 }
1626
056c6241
RT
1627 /* Annotate slab for lockdep -- annotate the malloc caches */
1628 init_lock_keys();
1629
1630
1da177e4
LT
1631 /* Done! */
1632 g_cpucache_up = FULL;
1633
a737b3e2
AM
1634 /*
1635 * Register a cpu startup notifier callback that initializes
1636 * cpu_cache_get for all new cpus
1da177e4
LT
1637 */
1638 register_cpu_notifier(&cpucache_notifier);
1da177e4 1639
a737b3e2
AM
1640 /*
1641 * The reap timers are started later, with a module init call: That part
1642 * of the kernel is not yet operational.
1da177e4
LT
1643 */
1644}
1645
1646static int __init cpucache_init(void)
1647{
1648 int cpu;
1649
a737b3e2
AM
1650 /*
1651 * Register the timers that return unneeded pages to the page allocator
1da177e4 1652 */
e498be7d 1653 for_each_online_cpu(cpu)
a737b3e2 1654 start_cpu_timer(cpu);
1da177e4
LT
1655 return 0;
1656}
1da177e4
LT
1657__initcall(cpucache_init);
1658
1659/*
1660 * Interface to system's page allocator. No need to hold the cache-lock.
1661 *
1662 * If we requested dmaable memory, we will get it. Even if we
1663 * did not request dmaable memory, we might get it, but that
1664 * would be relatively rare and ignorable.
1665 */
343e0d7a 1666static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1667{
1668 struct page *page;
e1b6aa6f 1669 int nr_pages;
1da177e4
LT
1670 int i;
1671
d6fef9da 1672#ifndef CONFIG_MMU
e1b6aa6f
CH
1673 /*
1674 * Nommu uses slab's for process anonymous memory allocations, and thus
1675 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1676 */
e1b6aa6f 1677 flags |= __GFP_COMP;
d6fef9da 1678#endif
765c4507 1679
3c517a61 1680 flags |= cachep->gfpflags;
e12ba74d
MG
1681 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1682 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1683
1684 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1685 if (!page)
1686 return NULL;
1da177e4 1687
e1b6aa6f 1688 nr_pages = (1 << cachep->gfporder);
1da177e4 1689 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1690 add_zone_page_state(page_zone(page),
1691 NR_SLAB_RECLAIMABLE, nr_pages);
1692 else
1693 add_zone_page_state(page_zone(page),
1694 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1695 for (i = 0; i < nr_pages; i++)
1696 __SetPageSlab(page + i);
1697 return page_address(page);
1da177e4
LT
1698}
1699
1700/*
1701 * Interface to system's page release.
1702 */
343e0d7a 1703static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1704{
b28a02de 1705 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1706 struct page *page = virt_to_page(addr);
1707 const unsigned long nr_freed = i;
1708
972d1a7b
CL
1709 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1710 sub_zone_page_state(page_zone(page),
1711 NR_SLAB_RECLAIMABLE, nr_freed);
1712 else
1713 sub_zone_page_state(page_zone(page),
1714 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1715 while (i--) {
f205b2fe
NP
1716 BUG_ON(!PageSlab(page));
1717 __ClearPageSlab(page);
1da177e4
LT
1718 page++;
1719 }
1da177e4
LT
1720 if (current->reclaim_state)
1721 current->reclaim_state->reclaimed_slab += nr_freed;
1722 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1723}
1724
1725static void kmem_rcu_free(struct rcu_head *head)
1726{
b28a02de 1727 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1728 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1729
1730 kmem_freepages(cachep, slab_rcu->addr);
1731 if (OFF_SLAB(cachep))
1732 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1733}
1734
1735#if DEBUG
1736
1737#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1738static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1739 unsigned long caller)
1da177e4 1740{
3dafccf2 1741 int size = obj_size(cachep);
1da177e4 1742
3dafccf2 1743 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1744
b28a02de 1745 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1746 return;
1747
b28a02de
PE
1748 *addr++ = 0x12345678;
1749 *addr++ = caller;
1750 *addr++ = smp_processor_id();
1751 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1752 {
1753 unsigned long *sptr = &caller;
1754 unsigned long svalue;
1755
1756 while (!kstack_end(sptr)) {
1757 svalue = *sptr++;
1758 if (kernel_text_address(svalue)) {
b28a02de 1759 *addr++ = svalue;
1da177e4
LT
1760 size -= sizeof(unsigned long);
1761 if (size <= sizeof(unsigned long))
1762 break;
1763 }
1764 }
1765
1766 }
b28a02de 1767 *addr++ = 0x87654321;
1da177e4
LT
1768}
1769#endif
1770
343e0d7a 1771static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1772{
3dafccf2
MS
1773 int size = obj_size(cachep);
1774 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1775
1776 memset(addr, val, size);
b28a02de 1777 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1778}
1779
1780static void dump_line(char *data, int offset, int limit)
1781{
1782 int i;
aa83aa40
DJ
1783 unsigned char error = 0;
1784 int bad_count = 0;
1785
1da177e4 1786 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1787 for (i = 0; i < limit; i++) {
1788 if (data[offset + i] != POISON_FREE) {
1789 error = data[offset + i];
1790 bad_count++;
1791 }
b28a02de 1792 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1793 }
1da177e4 1794 printk("\n");
aa83aa40
DJ
1795
1796 if (bad_count == 1) {
1797 error ^= POISON_FREE;
1798 if (!(error & (error - 1))) {
1799 printk(KERN_ERR "Single bit error detected. Probably "
1800 "bad RAM.\n");
1801#ifdef CONFIG_X86
1802 printk(KERN_ERR "Run memtest86+ or a similar memory "
1803 "test tool.\n");
1804#else
1805 printk(KERN_ERR "Run a memory test tool.\n");
1806#endif
1807 }
1808 }
1da177e4
LT
1809}
1810#endif
1811
1812#if DEBUG
1813
343e0d7a 1814static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1815{
1816 int i, size;
1817 char *realobj;
1818
1819 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1820 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1821 *dbg_redzone1(cachep, objp),
1822 *dbg_redzone2(cachep, objp));
1da177e4
LT
1823 }
1824
1825 if (cachep->flags & SLAB_STORE_USER) {
1826 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1827 *dbg_userword(cachep, objp));
1da177e4 1828 print_symbol("(%s)",
a737b3e2 1829 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1830 printk("\n");
1831 }
3dafccf2
MS
1832 realobj = (char *)objp + obj_offset(cachep);
1833 size = obj_size(cachep);
b28a02de 1834 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1835 int limit;
1836 limit = 16;
b28a02de
PE
1837 if (i + limit > size)
1838 limit = size - i;
1da177e4
LT
1839 dump_line(realobj, i, limit);
1840 }
1841}
1842
343e0d7a 1843static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1844{
1845 char *realobj;
1846 int size, i;
1847 int lines = 0;
1848
3dafccf2
MS
1849 realobj = (char *)objp + obj_offset(cachep);
1850 size = obj_size(cachep);
1da177e4 1851
b28a02de 1852 for (i = 0; i < size; i++) {
1da177e4 1853 char exp = POISON_FREE;
b28a02de 1854 if (i == size - 1)
1da177e4
LT
1855 exp = POISON_END;
1856 if (realobj[i] != exp) {
1857 int limit;
1858 /* Mismatch ! */
1859 /* Print header */
1860 if (lines == 0) {
b28a02de 1861 printk(KERN_ERR
e94a40c5
DH
1862 "Slab corruption: %s start=%p, len=%d\n",
1863 cachep->name, realobj, size);
1da177e4
LT
1864 print_objinfo(cachep, objp, 0);
1865 }
1866 /* Hexdump the affected line */
b28a02de 1867 i = (i / 16) * 16;
1da177e4 1868 limit = 16;
b28a02de
PE
1869 if (i + limit > size)
1870 limit = size - i;
1da177e4
LT
1871 dump_line(realobj, i, limit);
1872 i += 16;
1873 lines++;
1874 /* Limit to 5 lines */
1875 if (lines > 5)
1876 break;
1877 }
1878 }
1879 if (lines != 0) {
1880 /* Print some data about the neighboring objects, if they
1881 * exist:
1882 */
6ed5eb22 1883 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1884 unsigned int objnr;
1da177e4 1885
8fea4e96 1886 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1887 if (objnr) {
8fea4e96 1888 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1889 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1890 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1891 realobj, size);
1da177e4
LT
1892 print_objinfo(cachep, objp, 2);
1893 }
b28a02de 1894 if (objnr + 1 < cachep->num) {
8fea4e96 1895 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1896 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1897 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1898 realobj, size);
1da177e4
LT
1899 print_objinfo(cachep, objp, 2);
1900 }
1901 }
1902}
1903#endif
1904
12dd36fa
MD
1905#if DEBUG
1906/**
911851e6
RD
1907 * slab_destroy_objs - destroy a slab and its objects
1908 * @cachep: cache pointer being destroyed
1909 * @slabp: slab pointer being destroyed
1910 *
1911 * Call the registered destructor for each object in a slab that is being
1912 * destroyed.
1da177e4 1913 */
343e0d7a 1914static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1915{
1da177e4
LT
1916 int i;
1917 for (i = 0; i < cachep->num; i++) {
8fea4e96 1918 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1919
1920 if (cachep->flags & SLAB_POISON) {
1921#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1922 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1923 OFF_SLAB(cachep))
b28a02de 1924 kernel_map_pages(virt_to_page(objp),
a737b3e2 1925 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1926 else
1927 check_poison_obj(cachep, objp);
1928#else
1929 check_poison_obj(cachep, objp);
1930#endif
1931 }
1932 if (cachep->flags & SLAB_RED_ZONE) {
1933 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1934 slab_error(cachep, "start of a freed object "
b28a02de 1935 "was overwritten");
1da177e4
LT
1936 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1937 slab_error(cachep, "end of a freed object "
b28a02de 1938 "was overwritten");
1da177e4 1939 }
1da177e4 1940 }
12dd36fa 1941}
1da177e4 1942#else
343e0d7a 1943static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1944{
12dd36fa 1945}
1da177e4
LT
1946#endif
1947
911851e6
RD
1948/**
1949 * slab_destroy - destroy and release all objects in a slab
1950 * @cachep: cache pointer being destroyed
1951 * @slabp: slab pointer being destroyed
1952 *
12dd36fa 1953 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1954 * Before calling the slab must have been unlinked from the cache. The
1955 * cache-lock is not held/needed.
12dd36fa 1956 */
343e0d7a 1957static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1958{
1959 void *addr = slabp->s_mem - slabp->colouroff;
1960
1961 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1962 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1963 struct slab_rcu *slab_rcu;
1964
b28a02de 1965 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1966 slab_rcu->cachep = cachep;
1967 slab_rcu->addr = addr;
1968 call_rcu(&slab_rcu->head, kmem_rcu_free);
1969 } else {
1970 kmem_freepages(cachep, addr);
873623df
IM
1971 if (OFF_SLAB(cachep))
1972 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1973 }
1974}
1975
117f6eb1
CL
1976static void __kmem_cache_destroy(struct kmem_cache *cachep)
1977{
1978 int i;
1979 struct kmem_list3 *l3;
1980
1981 for_each_online_cpu(i)
1982 kfree(cachep->array[i]);
1983
1984 /* NUMA: free the list3 structures */
1985 for_each_online_node(i) {
1986 l3 = cachep->nodelists[i];
1987 if (l3) {
1988 kfree(l3->shared);
1989 free_alien_cache(l3->alien);
1990 kfree(l3);
1991 }
1992 }
1993 kmem_cache_free(&cache_cache, cachep);
1994}
1995
1996
4d268eba 1997/**
a70773dd
RD
1998 * calculate_slab_order - calculate size (page order) of slabs
1999 * @cachep: pointer to the cache that is being created
2000 * @size: size of objects to be created in this cache.
2001 * @align: required alignment for the objects.
2002 * @flags: slab allocation flags
2003 *
2004 * Also calculates the number of objects per slab.
4d268eba
PE
2005 *
2006 * This could be made much more intelligent. For now, try to avoid using
2007 * high order pages for slabs. When the gfp() functions are more friendly
2008 * towards high-order requests, this should be changed.
2009 */
a737b3e2 2010static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2011 size_t size, size_t align, unsigned long flags)
4d268eba 2012{
b1ab41c4 2013 unsigned long offslab_limit;
4d268eba 2014 size_t left_over = 0;
9888e6fa 2015 int gfporder;
4d268eba 2016
0aa817f0 2017 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2018 unsigned int num;
2019 size_t remainder;
2020
9888e6fa 2021 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2022 if (!num)
2023 continue;
9888e6fa 2024
b1ab41c4
IM
2025 if (flags & CFLGS_OFF_SLAB) {
2026 /*
2027 * Max number of objs-per-slab for caches which
2028 * use off-slab slabs. Needed to avoid a possible
2029 * looping condition in cache_grow().
2030 */
2031 offslab_limit = size - sizeof(struct slab);
2032 offslab_limit /= sizeof(kmem_bufctl_t);
2033
2034 if (num > offslab_limit)
2035 break;
2036 }
4d268eba 2037
9888e6fa 2038 /* Found something acceptable - save it away */
4d268eba 2039 cachep->num = num;
9888e6fa 2040 cachep->gfporder = gfporder;
4d268eba
PE
2041 left_over = remainder;
2042
f78bb8ad
LT
2043 /*
2044 * A VFS-reclaimable slab tends to have most allocations
2045 * as GFP_NOFS and we really don't want to have to be allocating
2046 * higher-order pages when we are unable to shrink dcache.
2047 */
2048 if (flags & SLAB_RECLAIM_ACCOUNT)
2049 break;
2050
4d268eba
PE
2051 /*
2052 * Large number of objects is good, but very large slabs are
2053 * currently bad for the gfp()s.
2054 */
9888e6fa 2055 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2056 break;
2057
9888e6fa
LT
2058 /*
2059 * Acceptable internal fragmentation?
2060 */
a737b3e2 2061 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2062 break;
2063 }
2064 return left_over;
2065}
2066
38bdc32a 2067static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2068{
2ed3a4ef
CL
2069 if (g_cpucache_up == FULL)
2070 return enable_cpucache(cachep);
2071
f30cf7d1
PE
2072 if (g_cpucache_up == NONE) {
2073 /*
2074 * Note: the first kmem_cache_create must create the cache
2075 * that's used by kmalloc(24), otherwise the creation of
2076 * further caches will BUG().
2077 */
2078 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2079
2080 /*
2081 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2082 * the first cache, then we need to set up all its list3s,
2083 * otherwise the creation of further caches will BUG().
2084 */
2085 set_up_list3s(cachep, SIZE_AC);
2086 if (INDEX_AC == INDEX_L3)
2087 g_cpucache_up = PARTIAL_L3;
2088 else
2089 g_cpucache_up = PARTIAL_AC;
2090 } else {
2091 cachep->array[smp_processor_id()] =
2092 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2093
2094 if (g_cpucache_up == PARTIAL_AC) {
2095 set_up_list3s(cachep, SIZE_L3);
2096 g_cpucache_up = PARTIAL_L3;
2097 } else {
2098 int node;
556a169d 2099 for_each_online_node(node) {
f30cf7d1
PE
2100 cachep->nodelists[node] =
2101 kmalloc_node(sizeof(struct kmem_list3),
2102 GFP_KERNEL, node);
2103 BUG_ON(!cachep->nodelists[node]);
2104 kmem_list3_init(cachep->nodelists[node]);
2105 }
2106 }
2107 }
2108 cachep->nodelists[numa_node_id()]->next_reap =
2109 jiffies + REAPTIMEOUT_LIST3 +
2110 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2111
2112 cpu_cache_get(cachep)->avail = 0;
2113 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2114 cpu_cache_get(cachep)->batchcount = 1;
2115 cpu_cache_get(cachep)->touched = 0;
2116 cachep->batchcount = 1;
2117 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2118 return 0;
f30cf7d1
PE
2119}
2120
1da177e4
LT
2121/**
2122 * kmem_cache_create - Create a cache.
2123 * @name: A string which is used in /proc/slabinfo to identify this cache.
2124 * @size: The size of objects to be created in this cache.
2125 * @align: The required alignment for the objects.
2126 * @flags: SLAB flags
2127 * @ctor: A constructor for the objects.
1da177e4
LT
2128 *
2129 * Returns a ptr to the cache on success, NULL on failure.
2130 * Cannot be called within a int, but can be interrupted.
20c2df83 2131 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2132 *
2133 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2134 * the module calling this has to destroy the cache before getting unloaded.
2135 *
1da177e4
LT
2136 * The flags are
2137 *
2138 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2139 * to catch references to uninitialised memory.
2140 *
2141 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2142 * for buffer overruns.
2143 *
1da177e4
LT
2144 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2145 * cacheline. This can be beneficial if you're counting cycles as closely
2146 * as davem.
2147 */
343e0d7a 2148struct kmem_cache *
1da177e4 2149kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2 2150 unsigned long flags,
4ba9b9d0 2151 void (*ctor)(struct kmem_cache *, void *))
1da177e4
LT
2152{
2153 size_t left_over, slab_size, ralign;
7a7c381d 2154 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2155
2156 /*
2157 * Sanity checks... these are all serious usage bugs.
2158 */
a737b3e2 2159 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2160 size > KMALLOC_MAX_SIZE) {
a737b3e2
AM
2161 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2162 name);
b28a02de
PE
2163 BUG();
2164 }
1da177e4 2165
f0188f47 2166 /*
8f5be20b
RT
2167 * We use cache_chain_mutex to ensure a consistent view of
2168 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2169 */
95402b38 2170 get_online_cpus();
fc0abb14 2171 mutex_lock(&cache_chain_mutex);
4f12bb4f 2172
7a7c381d 2173 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2174 char tmp;
2175 int res;
2176
2177 /*
2178 * This happens when the module gets unloaded and doesn't
2179 * destroy its slab cache and no-one else reuses the vmalloc
2180 * area of the module. Print a warning.
2181 */
138ae663 2182 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2183 if (res) {
b4169525 2184 printk(KERN_ERR
2185 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2186 pc->buffer_size);
4f12bb4f
AM
2187 continue;
2188 }
2189
b28a02de 2190 if (!strcmp(pc->name, name)) {
b4169525 2191 printk(KERN_ERR
2192 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2193 dump_stack();
2194 goto oops;
2195 }
2196 }
2197
1da177e4
LT
2198#if DEBUG
2199 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2200#if FORCED_DEBUG
2201 /*
2202 * Enable redzoning and last user accounting, except for caches with
2203 * large objects, if the increased size would increase the object size
2204 * above the next power of two: caches with object sizes just above a
2205 * power of two have a significant amount of internal fragmentation.
2206 */
87a927c7
DW
2207 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2208 2 * sizeof(unsigned long long)))
b28a02de 2209 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2210 if (!(flags & SLAB_DESTROY_BY_RCU))
2211 flags |= SLAB_POISON;
2212#endif
2213 if (flags & SLAB_DESTROY_BY_RCU)
2214 BUG_ON(flags & SLAB_POISON);
2215#endif
1da177e4 2216 /*
a737b3e2
AM
2217 * Always checks flags, a caller might be expecting debug support which
2218 * isn't available.
1da177e4 2219 */
40094fa6 2220 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2221
a737b3e2
AM
2222 /*
2223 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2224 * unaligned accesses for some archs when redzoning is used, and makes
2225 * sure any on-slab bufctl's are also correctly aligned.
2226 */
b28a02de
PE
2227 if (size & (BYTES_PER_WORD - 1)) {
2228 size += (BYTES_PER_WORD - 1);
2229 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2230 }
2231
a737b3e2
AM
2232 /* calculate the final buffer alignment: */
2233
1da177e4
LT
2234 /* 1) arch recommendation: can be overridden for debug */
2235 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2236 /*
2237 * Default alignment: as specified by the arch code. Except if
2238 * an object is really small, then squeeze multiple objects into
2239 * one cacheline.
1da177e4
LT
2240 */
2241 ralign = cache_line_size();
b28a02de 2242 while (size <= ralign / 2)
1da177e4
LT
2243 ralign /= 2;
2244 } else {
2245 ralign = BYTES_PER_WORD;
2246 }
ca5f9703
PE
2247
2248 /*
87a927c7
DW
2249 * Redzoning and user store require word alignment or possibly larger.
2250 * Note this will be overridden by architecture or caller mandated
2251 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2252 */
87a927c7
DW
2253 if (flags & SLAB_STORE_USER)
2254 ralign = BYTES_PER_WORD;
2255
2256 if (flags & SLAB_RED_ZONE) {
2257 ralign = REDZONE_ALIGN;
2258 /* If redzoning, ensure that the second redzone is suitably
2259 * aligned, by adjusting the object size accordingly. */
2260 size += REDZONE_ALIGN - 1;
2261 size &= ~(REDZONE_ALIGN - 1);
2262 }
ca5f9703 2263
a44b56d3 2264 /* 2) arch mandated alignment */
1da177e4
LT
2265 if (ralign < ARCH_SLAB_MINALIGN) {
2266 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2267 }
a44b56d3 2268 /* 3) caller mandated alignment */
1da177e4
LT
2269 if (ralign < align) {
2270 ralign = align;
1da177e4 2271 }
a44b56d3 2272 /* disable debug if necessary */
b46b8f19 2273 if (ralign > __alignof__(unsigned long long))
a44b56d3 2274 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2275 /*
ca5f9703 2276 * 4) Store it.
1da177e4
LT
2277 */
2278 align = ralign;
2279
2280 /* Get cache's description obj. */
e94b1766 2281 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2282 if (!cachep)
4f12bb4f 2283 goto oops;
1da177e4
LT
2284
2285#if DEBUG
3dafccf2 2286 cachep->obj_size = size;
1da177e4 2287
ca5f9703
PE
2288 /*
2289 * Both debugging options require word-alignment which is calculated
2290 * into align above.
2291 */
1da177e4 2292 if (flags & SLAB_RED_ZONE) {
1da177e4 2293 /* add space for red zone words */
b46b8f19
DW
2294 cachep->obj_offset += sizeof(unsigned long long);
2295 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2296 }
2297 if (flags & SLAB_STORE_USER) {
ca5f9703 2298 /* user store requires one word storage behind the end of
87a927c7
DW
2299 * the real object. But if the second red zone needs to be
2300 * aligned to 64 bits, we must allow that much space.
1da177e4 2301 */
87a927c7
DW
2302 if (flags & SLAB_RED_ZONE)
2303 size += REDZONE_ALIGN;
2304 else
2305 size += BYTES_PER_WORD;
1da177e4
LT
2306 }
2307#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2308 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2309 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2310 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2311 size = PAGE_SIZE;
2312 }
2313#endif
2314#endif
2315
e0a42726
IM
2316 /*
2317 * Determine if the slab management is 'on' or 'off' slab.
2318 * (bootstrapping cannot cope with offslab caches so don't do
2319 * it too early on.)
2320 */
2321 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2322 /*
2323 * Size is large, assume best to place the slab management obj
2324 * off-slab (should allow better packing of objs).
2325 */
2326 flags |= CFLGS_OFF_SLAB;
2327
2328 size = ALIGN(size, align);
2329
f78bb8ad 2330 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2331
2332 if (!cachep->num) {
b4169525 2333 printk(KERN_ERR
2334 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2335 kmem_cache_free(&cache_cache, cachep);
2336 cachep = NULL;
4f12bb4f 2337 goto oops;
1da177e4 2338 }
b28a02de
PE
2339 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2340 + sizeof(struct slab), align);
1da177e4
LT
2341
2342 /*
2343 * If the slab has been placed off-slab, and we have enough space then
2344 * move it on-slab. This is at the expense of any extra colouring.
2345 */
2346 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2347 flags &= ~CFLGS_OFF_SLAB;
2348 left_over -= slab_size;
2349 }
2350
2351 if (flags & CFLGS_OFF_SLAB) {
2352 /* really off slab. No need for manual alignment */
b28a02de
PE
2353 slab_size =
2354 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2355 }
2356
2357 cachep->colour_off = cache_line_size();
2358 /* Offset must be a multiple of the alignment. */
2359 if (cachep->colour_off < align)
2360 cachep->colour_off = align;
b28a02de 2361 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2362 cachep->slab_size = slab_size;
2363 cachep->flags = flags;
2364 cachep->gfpflags = 0;
4b51d669 2365 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2366 cachep->gfpflags |= GFP_DMA;
3dafccf2 2367 cachep->buffer_size = size;
6a2d7a95 2368 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2369
e5ac9c5a 2370 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2371 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2372 /*
2373 * This is a possibility for one of the malloc_sizes caches.
2374 * But since we go off slab only for object size greater than
2375 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2376 * this should not happen at all.
2377 * But leave a BUG_ON for some lucky dude.
2378 */
6cb8f913 2379 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2380 }
1da177e4 2381 cachep->ctor = ctor;
1da177e4
LT
2382 cachep->name = name;
2383
2ed3a4ef
CL
2384 if (setup_cpu_cache(cachep)) {
2385 __kmem_cache_destroy(cachep);
2386 cachep = NULL;
2387 goto oops;
2388 }
1da177e4 2389
1da177e4
LT
2390 /* cache setup completed, link it into the list */
2391 list_add(&cachep->next, &cache_chain);
a737b3e2 2392oops:
1da177e4
LT
2393 if (!cachep && (flags & SLAB_PANIC))
2394 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2395 name);
fc0abb14 2396 mutex_unlock(&cache_chain_mutex);
95402b38 2397 put_online_cpus();
1da177e4
LT
2398 return cachep;
2399}
2400EXPORT_SYMBOL(kmem_cache_create);
2401
2402#if DEBUG
2403static void check_irq_off(void)
2404{
2405 BUG_ON(!irqs_disabled());
2406}
2407
2408static void check_irq_on(void)
2409{
2410 BUG_ON(irqs_disabled());
2411}
2412
343e0d7a 2413static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2414{
2415#ifdef CONFIG_SMP
2416 check_irq_off();
e498be7d 2417 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2418#endif
2419}
e498be7d 2420
343e0d7a 2421static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2422{
2423#ifdef CONFIG_SMP
2424 check_irq_off();
2425 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2426#endif
2427}
2428
1da177e4
LT
2429#else
2430#define check_irq_off() do { } while(0)
2431#define check_irq_on() do { } while(0)
2432#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2433#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2434#endif
2435
aab2207c
CL
2436static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2437 struct array_cache *ac,
2438 int force, int node);
2439
1da177e4
LT
2440static void do_drain(void *arg)
2441{
a737b3e2 2442 struct kmem_cache *cachep = arg;
1da177e4 2443 struct array_cache *ac;
ff69416e 2444 int node = numa_node_id();
1da177e4
LT
2445
2446 check_irq_off();
9a2dba4b 2447 ac = cpu_cache_get(cachep);
ff69416e
CL
2448 spin_lock(&cachep->nodelists[node]->list_lock);
2449 free_block(cachep, ac->entry, ac->avail, node);
2450 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2451 ac->avail = 0;
2452}
2453
343e0d7a 2454static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2455{
e498be7d
CL
2456 struct kmem_list3 *l3;
2457 int node;
2458
a07fa394 2459 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2460 check_irq_on();
b28a02de 2461 for_each_online_node(node) {
e498be7d 2462 l3 = cachep->nodelists[node];
a4523a8b
RD
2463 if (l3 && l3->alien)
2464 drain_alien_cache(cachep, l3->alien);
2465 }
2466
2467 for_each_online_node(node) {
2468 l3 = cachep->nodelists[node];
2469 if (l3)
aab2207c 2470 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2471 }
1da177e4
LT
2472}
2473
ed11d9eb
CL
2474/*
2475 * Remove slabs from the list of free slabs.
2476 * Specify the number of slabs to drain in tofree.
2477 *
2478 * Returns the actual number of slabs released.
2479 */
2480static int drain_freelist(struct kmem_cache *cache,
2481 struct kmem_list3 *l3, int tofree)
1da177e4 2482{
ed11d9eb
CL
2483 struct list_head *p;
2484 int nr_freed;
1da177e4 2485 struct slab *slabp;
1da177e4 2486
ed11d9eb
CL
2487 nr_freed = 0;
2488 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2489
ed11d9eb 2490 spin_lock_irq(&l3->list_lock);
e498be7d 2491 p = l3->slabs_free.prev;
ed11d9eb
CL
2492 if (p == &l3->slabs_free) {
2493 spin_unlock_irq(&l3->list_lock);
2494 goto out;
2495 }
1da177e4 2496
ed11d9eb 2497 slabp = list_entry(p, struct slab, list);
1da177e4 2498#if DEBUG
40094fa6 2499 BUG_ON(slabp->inuse);
1da177e4
LT
2500#endif
2501 list_del(&slabp->list);
ed11d9eb
CL
2502 /*
2503 * Safe to drop the lock. The slab is no longer linked
2504 * to the cache.
2505 */
2506 l3->free_objects -= cache->num;
e498be7d 2507 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2508 slab_destroy(cache, slabp);
2509 nr_freed++;
1da177e4 2510 }
ed11d9eb
CL
2511out:
2512 return nr_freed;
1da177e4
LT
2513}
2514
8f5be20b 2515/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2516static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2517{
2518 int ret = 0, i = 0;
2519 struct kmem_list3 *l3;
2520
2521 drain_cpu_caches(cachep);
2522
2523 check_irq_on();
2524 for_each_online_node(i) {
2525 l3 = cachep->nodelists[i];
ed11d9eb
CL
2526 if (!l3)
2527 continue;
2528
2529 drain_freelist(cachep, l3, l3->free_objects);
2530
2531 ret += !list_empty(&l3->slabs_full) ||
2532 !list_empty(&l3->slabs_partial);
e498be7d
CL
2533 }
2534 return (ret ? 1 : 0);
2535}
2536
1da177e4
LT
2537/**
2538 * kmem_cache_shrink - Shrink a cache.
2539 * @cachep: The cache to shrink.
2540 *
2541 * Releases as many slabs as possible for a cache.
2542 * To help debugging, a zero exit status indicates all slabs were released.
2543 */
343e0d7a 2544int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2545{
8f5be20b 2546 int ret;
40094fa6 2547 BUG_ON(!cachep || in_interrupt());
1da177e4 2548
95402b38 2549 get_online_cpus();
8f5be20b
RT
2550 mutex_lock(&cache_chain_mutex);
2551 ret = __cache_shrink(cachep);
2552 mutex_unlock(&cache_chain_mutex);
95402b38 2553 put_online_cpus();
8f5be20b 2554 return ret;
1da177e4
LT
2555}
2556EXPORT_SYMBOL(kmem_cache_shrink);
2557
2558/**
2559 * kmem_cache_destroy - delete a cache
2560 * @cachep: the cache to destroy
2561 *
72fd4a35 2562 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2563 *
2564 * It is expected this function will be called by a module when it is
2565 * unloaded. This will remove the cache completely, and avoid a duplicate
2566 * cache being allocated each time a module is loaded and unloaded, if the
2567 * module doesn't have persistent in-kernel storage across loads and unloads.
2568 *
2569 * The cache must be empty before calling this function.
2570 *
2571 * The caller must guarantee that noone will allocate memory from the cache
2572 * during the kmem_cache_destroy().
2573 */
133d205a 2574void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2575{
40094fa6 2576 BUG_ON(!cachep || in_interrupt());
1da177e4 2577
1da177e4 2578 /* Find the cache in the chain of caches. */
95402b38 2579 get_online_cpus();
fc0abb14 2580 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2581 /*
2582 * the chain is never empty, cache_cache is never destroyed
2583 */
2584 list_del(&cachep->next);
1da177e4
LT
2585 if (__cache_shrink(cachep)) {
2586 slab_error(cachep, "Can't free all objects");
b28a02de 2587 list_add(&cachep->next, &cache_chain);
fc0abb14 2588 mutex_unlock(&cache_chain_mutex);
95402b38 2589 put_online_cpus();
133d205a 2590 return;
1da177e4
LT
2591 }
2592
2593 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2594 synchronize_rcu();
1da177e4 2595
117f6eb1 2596 __kmem_cache_destroy(cachep);
8f5be20b 2597 mutex_unlock(&cache_chain_mutex);
95402b38 2598 put_online_cpus();
1da177e4
LT
2599}
2600EXPORT_SYMBOL(kmem_cache_destroy);
2601
e5ac9c5a
RT
2602/*
2603 * Get the memory for a slab management obj.
2604 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2605 * always come from malloc_sizes caches. The slab descriptor cannot
2606 * come from the same cache which is getting created because,
2607 * when we are searching for an appropriate cache for these
2608 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2609 * If we are creating a malloc_sizes cache here it would not be visible to
2610 * kmem_find_general_cachep till the initialization is complete.
2611 * Hence we cannot have slabp_cache same as the original cache.
2612 */
343e0d7a 2613static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2614 int colour_off, gfp_t local_flags,
2615 int nodeid)
1da177e4
LT
2616{
2617 struct slab *slabp;
b28a02de 2618
1da177e4
LT
2619 if (OFF_SLAB(cachep)) {
2620 /* Slab management obj is off-slab. */
5b74ada7 2621 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2622 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2623 if (!slabp)
2624 return NULL;
2625 } else {
b28a02de 2626 slabp = objp + colour_off;
1da177e4
LT
2627 colour_off += cachep->slab_size;
2628 }
2629 slabp->inuse = 0;
2630 slabp->colouroff = colour_off;
b28a02de 2631 slabp->s_mem = objp + colour_off;
5b74ada7 2632 slabp->nodeid = nodeid;
e51bfd0a 2633 slabp->free = 0;
1da177e4
LT
2634 return slabp;
2635}
2636
2637static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2638{
b28a02de 2639 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2640}
2641
343e0d7a 2642static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2643 struct slab *slabp)
1da177e4
LT
2644{
2645 int i;
2646
2647 for (i = 0; i < cachep->num; i++) {
8fea4e96 2648 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2649#if DEBUG
2650 /* need to poison the objs? */
2651 if (cachep->flags & SLAB_POISON)
2652 poison_obj(cachep, objp, POISON_FREE);
2653 if (cachep->flags & SLAB_STORE_USER)
2654 *dbg_userword(cachep, objp) = NULL;
2655
2656 if (cachep->flags & SLAB_RED_ZONE) {
2657 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2658 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2659 }
2660 /*
a737b3e2
AM
2661 * Constructors are not allowed to allocate memory from the same
2662 * cache which they are a constructor for. Otherwise, deadlock.
2663 * They must also be threaded.
1da177e4
LT
2664 */
2665 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
4ba9b9d0 2666 cachep->ctor(cachep, objp + obj_offset(cachep));
1da177e4
LT
2667
2668 if (cachep->flags & SLAB_RED_ZONE) {
2669 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2670 slab_error(cachep, "constructor overwrote the"
b28a02de 2671 " end of an object");
1da177e4
LT
2672 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2673 slab_error(cachep, "constructor overwrote the"
b28a02de 2674 " start of an object");
1da177e4 2675 }
a737b3e2
AM
2676 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2677 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2678 kernel_map_pages(virt_to_page(objp),
3dafccf2 2679 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2680#else
2681 if (cachep->ctor)
4ba9b9d0 2682 cachep->ctor(cachep, objp);
1da177e4 2683#endif
b28a02de 2684 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2685 }
b28a02de 2686 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2687}
2688
343e0d7a 2689static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2690{
4b51d669
CL
2691 if (CONFIG_ZONE_DMA_FLAG) {
2692 if (flags & GFP_DMA)
2693 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2694 else
2695 BUG_ON(cachep->gfpflags & GFP_DMA);
2696 }
1da177e4
LT
2697}
2698
a737b3e2
AM
2699static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2700 int nodeid)
78d382d7 2701{
8fea4e96 2702 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2703 kmem_bufctl_t next;
2704
2705 slabp->inuse++;
2706 next = slab_bufctl(slabp)[slabp->free];
2707#if DEBUG
2708 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2709 WARN_ON(slabp->nodeid != nodeid);
2710#endif
2711 slabp->free = next;
2712
2713 return objp;
2714}
2715
a737b3e2
AM
2716static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2717 void *objp, int nodeid)
78d382d7 2718{
8fea4e96 2719 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2720
2721#if DEBUG
2722 /* Verify that the slab belongs to the intended node */
2723 WARN_ON(slabp->nodeid != nodeid);
2724
871751e2 2725 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2726 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2727 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2728 BUG();
2729 }
2730#endif
2731 slab_bufctl(slabp)[objnr] = slabp->free;
2732 slabp->free = objnr;
2733 slabp->inuse--;
2734}
2735
4776874f
PE
2736/*
2737 * Map pages beginning at addr to the given cache and slab. This is required
2738 * for the slab allocator to be able to lookup the cache and slab of a
2739 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2740 */
2741static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2742 void *addr)
1da177e4 2743{
4776874f 2744 int nr_pages;
1da177e4
LT
2745 struct page *page;
2746
4776874f 2747 page = virt_to_page(addr);
84097518 2748
4776874f 2749 nr_pages = 1;
84097518 2750 if (likely(!PageCompound(page)))
4776874f
PE
2751 nr_pages <<= cache->gfporder;
2752
1da177e4 2753 do {
4776874f
PE
2754 page_set_cache(page, cache);
2755 page_set_slab(page, slab);
1da177e4 2756 page++;
4776874f 2757 } while (--nr_pages);
1da177e4
LT
2758}
2759
2760/*
2761 * Grow (by 1) the number of slabs within a cache. This is called by
2762 * kmem_cache_alloc() when there are no active objs left in a cache.
2763 */
3c517a61
CL
2764static int cache_grow(struct kmem_cache *cachep,
2765 gfp_t flags, int nodeid, void *objp)
1da177e4 2766{
b28a02de 2767 struct slab *slabp;
b28a02de
PE
2768 size_t offset;
2769 gfp_t local_flags;
e498be7d 2770 struct kmem_list3 *l3;
1da177e4 2771
a737b3e2
AM
2772 /*
2773 * Be lazy and only check for valid flags here, keeping it out of the
2774 * critical path in kmem_cache_alloc().
1da177e4 2775 */
6cb06229
CL
2776 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2777 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2778
2e1217cf 2779 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2780 check_irq_off();
2e1217cf
RT
2781 l3 = cachep->nodelists[nodeid];
2782 spin_lock(&l3->list_lock);
1da177e4
LT
2783
2784 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2785 offset = l3->colour_next;
2786 l3->colour_next++;
2787 if (l3->colour_next >= cachep->colour)
2788 l3->colour_next = 0;
2789 spin_unlock(&l3->list_lock);
1da177e4 2790
2e1217cf 2791 offset *= cachep->colour_off;
1da177e4
LT
2792
2793 if (local_flags & __GFP_WAIT)
2794 local_irq_enable();
2795
2796 /*
2797 * The test for missing atomic flag is performed here, rather than
2798 * the more obvious place, simply to reduce the critical path length
2799 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2800 * will eventually be caught here (where it matters).
2801 */
2802 kmem_flagcheck(cachep, flags);
2803
a737b3e2
AM
2804 /*
2805 * Get mem for the objs. Attempt to allocate a physical page from
2806 * 'nodeid'.
e498be7d 2807 */
3c517a61 2808 if (!objp)
b8c1c5da 2809 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2810 if (!objp)
1da177e4
LT
2811 goto failed;
2812
2813 /* Get slab management. */
3c517a61 2814 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2815 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2816 if (!slabp)
1da177e4
LT
2817 goto opps1;
2818
4776874f 2819 slab_map_pages(cachep, slabp, objp);
1da177e4 2820
a35afb83 2821 cache_init_objs(cachep, slabp);
1da177e4
LT
2822
2823 if (local_flags & __GFP_WAIT)
2824 local_irq_disable();
2825 check_irq_off();
e498be7d 2826 spin_lock(&l3->list_lock);
1da177e4
LT
2827
2828 /* Make slab active. */
e498be7d 2829 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2830 STATS_INC_GROWN(cachep);
e498be7d
CL
2831 l3->free_objects += cachep->num;
2832 spin_unlock(&l3->list_lock);
1da177e4 2833 return 1;
a737b3e2 2834opps1:
1da177e4 2835 kmem_freepages(cachep, objp);
a737b3e2 2836failed:
1da177e4
LT
2837 if (local_flags & __GFP_WAIT)
2838 local_irq_disable();
2839 return 0;
2840}
2841
2842#if DEBUG
2843
2844/*
2845 * Perform extra freeing checks:
2846 * - detect bad pointers.
2847 * - POISON/RED_ZONE checking
1da177e4
LT
2848 */
2849static void kfree_debugcheck(const void *objp)
2850{
1da177e4
LT
2851 if (!virt_addr_valid(objp)) {
2852 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2853 (unsigned long)objp);
2854 BUG();
1da177e4 2855 }
1da177e4
LT
2856}
2857
58ce1fd5
PE
2858static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2859{
b46b8f19 2860 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2861
2862 redzone1 = *dbg_redzone1(cache, obj);
2863 redzone2 = *dbg_redzone2(cache, obj);
2864
2865 /*
2866 * Redzone is ok.
2867 */
2868 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2869 return;
2870
2871 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2872 slab_error(cache, "double free detected");
2873 else
2874 slab_error(cache, "memory outside object was overwritten");
2875
b46b8f19 2876 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2877 obj, redzone1, redzone2);
2878}
2879
343e0d7a 2880static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2881 void *caller)
1da177e4
LT
2882{
2883 struct page *page;
2884 unsigned int objnr;
2885 struct slab *slabp;
2886
80cbd911
MW
2887 BUG_ON(virt_to_cache(objp) != cachep);
2888
3dafccf2 2889 objp -= obj_offset(cachep);
1da177e4 2890 kfree_debugcheck(objp);
b49af68f 2891 page = virt_to_head_page(objp);
1da177e4 2892
065d41cb 2893 slabp = page_get_slab(page);
1da177e4
LT
2894
2895 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2896 verify_redzone_free(cachep, objp);
1da177e4
LT
2897 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2898 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2899 }
2900 if (cachep->flags & SLAB_STORE_USER)
2901 *dbg_userword(cachep, objp) = caller;
2902
8fea4e96 2903 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2904
2905 BUG_ON(objnr >= cachep->num);
8fea4e96 2906 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2907
871751e2
AV
2908#ifdef CONFIG_DEBUG_SLAB_LEAK
2909 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2910#endif
1da177e4
LT
2911 if (cachep->flags & SLAB_POISON) {
2912#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2913 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2914 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2915 kernel_map_pages(virt_to_page(objp),
3dafccf2 2916 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2917 } else {
2918 poison_obj(cachep, objp, POISON_FREE);
2919 }
2920#else
2921 poison_obj(cachep, objp, POISON_FREE);
2922#endif
2923 }
2924 return objp;
2925}
2926
343e0d7a 2927static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2928{
2929 kmem_bufctl_t i;
2930 int entries = 0;
b28a02de 2931
1da177e4
LT
2932 /* Check slab's freelist to see if this obj is there. */
2933 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2934 entries++;
2935 if (entries > cachep->num || i >= cachep->num)
2936 goto bad;
2937 }
2938 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2939bad:
2940 printk(KERN_ERR "slab: Internal list corruption detected in "
2941 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2942 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2943 for (i = 0;
264132bc 2944 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2945 i++) {
a737b3e2 2946 if (i % 16 == 0)
1da177e4 2947 printk("\n%03x:", i);
b28a02de 2948 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2949 }
2950 printk("\n");
2951 BUG();
2952 }
2953}
2954#else
2955#define kfree_debugcheck(x) do { } while(0)
2956#define cache_free_debugcheck(x,objp,z) (objp)
2957#define check_slabp(x,y) do { } while(0)
2958#endif
2959
343e0d7a 2960static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2961{
2962 int batchcount;
2963 struct kmem_list3 *l3;
2964 struct array_cache *ac;
1ca4cb24
PE
2965 int node;
2966
6d2144d3 2967retry:
1da177e4 2968 check_irq_off();
6d2144d3 2969 node = numa_node_id();
9a2dba4b 2970 ac = cpu_cache_get(cachep);
1da177e4
LT
2971 batchcount = ac->batchcount;
2972 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2973 /*
2974 * If there was little recent activity on this cache, then
2975 * perform only a partial refill. Otherwise we could generate
2976 * refill bouncing.
1da177e4
LT
2977 */
2978 batchcount = BATCHREFILL_LIMIT;
2979 }
1ca4cb24 2980 l3 = cachep->nodelists[node];
e498be7d
CL
2981
2982 BUG_ON(ac->avail > 0 || !l3);
2983 spin_lock(&l3->list_lock);
1da177e4 2984
3ded175a
CL
2985 /* See if we can refill from the shared array */
2986 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2987 goto alloc_done;
2988
1da177e4
LT
2989 while (batchcount > 0) {
2990 struct list_head *entry;
2991 struct slab *slabp;
2992 /* Get slab alloc is to come from. */
2993 entry = l3->slabs_partial.next;
2994 if (entry == &l3->slabs_partial) {
2995 l3->free_touched = 1;
2996 entry = l3->slabs_free.next;
2997 if (entry == &l3->slabs_free)
2998 goto must_grow;
2999 }
3000
3001 slabp = list_entry(entry, struct slab, list);
3002 check_slabp(cachep, slabp);
3003 check_spinlock_acquired(cachep);
714b8171
PE
3004
3005 /*
3006 * The slab was either on partial or free list so
3007 * there must be at least one object available for
3008 * allocation.
3009 */
3010 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3011
1da177e4 3012 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3013 STATS_INC_ALLOCED(cachep);
3014 STATS_INC_ACTIVE(cachep);
3015 STATS_SET_HIGH(cachep);
3016
78d382d7 3017 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3018 node);
1da177e4
LT
3019 }
3020 check_slabp(cachep, slabp);
3021
3022 /* move slabp to correct slabp list: */
3023 list_del(&slabp->list);
3024 if (slabp->free == BUFCTL_END)
3025 list_add(&slabp->list, &l3->slabs_full);
3026 else
3027 list_add(&slabp->list, &l3->slabs_partial);
3028 }
3029
a737b3e2 3030must_grow:
1da177e4 3031 l3->free_objects -= ac->avail;
a737b3e2 3032alloc_done:
e498be7d 3033 spin_unlock(&l3->list_lock);
1da177e4
LT
3034
3035 if (unlikely(!ac->avail)) {
3036 int x;
3c517a61 3037 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3038
a737b3e2 3039 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3040 ac = cpu_cache_get(cachep);
a737b3e2 3041 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3042 return NULL;
3043
a737b3e2 3044 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3045 goto retry;
3046 }
3047 ac->touched = 1;
e498be7d 3048 return ac->entry[--ac->avail];
1da177e4
LT
3049}
3050
a737b3e2
AM
3051static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3052 gfp_t flags)
1da177e4
LT
3053{
3054 might_sleep_if(flags & __GFP_WAIT);
3055#if DEBUG
3056 kmem_flagcheck(cachep, flags);
3057#endif
3058}
3059
3060#if DEBUG
a737b3e2
AM
3061static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3062 gfp_t flags, void *objp, void *caller)
1da177e4 3063{
b28a02de 3064 if (!objp)
1da177e4 3065 return objp;
b28a02de 3066 if (cachep->flags & SLAB_POISON) {
1da177e4 3067#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3068 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3069 kernel_map_pages(virt_to_page(objp),
3dafccf2 3070 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3071 else
3072 check_poison_obj(cachep, objp);
3073#else
3074 check_poison_obj(cachep, objp);
3075#endif
3076 poison_obj(cachep, objp, POISON_INUSE);
3077 }
3078 if (cachep->flags & SLAB_STORE_USER)
3079 *dbg_userword(cachep, objp) = caller;
3080
3081 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3082 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3083 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3084 slab_error(cachep, "double free, or memory outside"
3085 " object was overwritten");
b28a02de 3086 printk(KERN_ERR
b46b8f19 3087 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3088 objp, *dbg_redzone1(cachep, objp),
3089 *dbg_redzone2(cachep, objp));
1da177e4
LT
3090 }
3091 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3092 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3093 }
871751e2
AV
3094#ifdef CONFIG_DEBUG_SLAB_LEAK
3095 {
3096 struct slab *slabp;
3097 unsigned objnr;
3098
b49af68f 3099 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3100 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3101 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3102 }
3103#endif
3dafccf2 3104 objp += obj_offset(cachep);
4f104934 3105 if (cachep->ctor && cachep->flags & SLAB_POISON)
4ba9b9d0 3106 cachep->ctor(cachep, objp);
a44b56d3
KH
3107#if ARCH_SLAB_MINALIGN
3108 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3109 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3110 objp, ARCH_SLAB_MINALIGN);
3111 }
3112#endif
1da177e4
LT
3113 return objp;
3114}
3115#else
3116#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3117#endif
3118
8a8b6502
AM
3119#ifdef CONFIG_FAILSLAB
3120
3121static struct failslab_attr {
3122
3123 struct fault_attr attr;
3124
3125 u32 ignore_gfp_wait;
3126#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3127 struct dentry *ignore_gfp_wait_file;
3128#endif
3129
3130} failslab = {
3131 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3132 .ignore_gfp_wait = 1,
8a8b6502
AM
3133};
3134
3135static int __init setup_failslab(char *str)
3136{
3137 return setup_fault_attr(&failslab.attr, str);
3138}
3139__setup("failslab=", setup_failslab);
3140
3141static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3142{
3143 if (cachep == &cache_cache)
3144 return 0;
3145 if (flags & __GFP_NOFAIL)
3146 return 0;
3147 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3148 return 0;
3149
3150 return should_fail(&failslab.attr, obj_size(cachep));
3151}
3152
3153#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3154
3155static int __init failslab_debugfs(void)
3156{
3157 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3158 struct dentry *dir;
3159 int err;
3160
824ebef1 3161 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3162 if (err)
3163 return err;
3164 dir = failslab.attr.dentries.dir;
3165
3166 failslab.ignore_gfp_wait_file =
3167 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3168 &failslab.ignore_gfp_wait);
3169
3170 if (!failslab.ignore_gfp_wait_file) {
3171 err = -ENOMEM;
3172 debugfs_remove(failslab.ignore_gfp_wait_file);
3173 cleanup_fault_attr_dentries(&failslab.attr);
3174 }
3175
3176 return err;
3177}
3178
3179late_initcall(failslab_debugfs);
3180
3181#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3182
3183#else /* CONFIG_FAILSLAB */
3184
3185static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3186{
3187 return 0;
3188}
3189
3190#endif /* CONFIG_FAILSLAB */
3191
343e0d7a 3192static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3193{
b28a02de 3194 void *objp;
1da177e4
LT
3195 struct array_cache *ac;
3196
5c382300 3197 check_irq_off();
8a8b6502 3198
9a2dba4b 3199 ac = cpu_cache_get(cachep);
1da177e4
LT
3200 if (likely(ac->avail)) {
3201 STATS_INC_ALLOCHIT(cachep);
3202 ac->touched = 1;
e498be7d 3203 objp = ac->entry[--ac->avail];
1da177e4
LT
3204 } else {
3205 STATS_INC_ALLOCMISS(cachep);
3206 objp = cache_alloc_refill(cachep, flags);
3207 }
5c382300
AK
3208 return objp;
3209}
3210
e498be7d 3211#ifdef CONFIG_NUMA
c61afb18 3212/*
b2455396 3213 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3214 *
3215 * If we are in_interrupt, then process context, including cpusets and
3216 * mempolicy, may not apply and should not be used for allocation policy.
3217 */
3218static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3219{
3220 int nid_alloc, nid_here;
3221
765c4507 3222 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3223 return NULL;
3224 nid_alloc = nid_here = numa_node_id();
3225 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3226 nid_alloc = cpuset_mem_spread_node();
3227 else if (current->mempolicy)
3228 nid_alloc = slab_node(current->mempolicy);
3229 if (nid_alloc != nid_here)
8b98c169 3230 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3231 return NULL;
3232}
3233
765c4507
CL
3234/*
3235 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3236 * certain node and fall back is permitted. First we scan all the
3237 * available nodelists for available objects. If that fails then we
3238 * perform an allocation without specifying a node. This allows the page
3239 * allocator to do its reclaim / fallback magic. We then insert the
3240 * slab into the proper nodelist and then allocate from it.
765c4507 3241 */
8c8cc2c1 3242static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3243{
8c8cc2c1
PE
3244 struct zonelist *zonelist;
3245 gfp_t local_flags;
765c4507
CL
3246 struct zone **z;
3247 void *obj = NULL;
3c517a61 3248 int nid;
8c8cc2c1
PE
3249
3250 if (flags & __GFP_THISNODE)
3251 return NULL;
3252
3253 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3254 ->node_zonelists[gfp_zone(flags)];
6cb06229 3255 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3256
3c517a61
CL
3257retry:
3258 /*
3259 * Look through allowed nodes for objects available
3260 * from existing per node queues.
3261 */
aedb0eb1 3262 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3263 nid = zone_to_nid(*z);
aedb0eb1 3264
02a0e53d 3265 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3266 cache->nodelists[nid] &&
3267 cache->nodelists[nid]->free_objects)
3268 obj = ____cache_alloc_node(cache,
3269 flags | GFP_THISNODE, nid);
3270 }
3271
cfce6604 3272 if (!obj) {
3c517a61
CL
3273 /*
3274 * This allocation will be performed within the constraints
3275 * of the current cpuset / memory policy requirements.
3276 * We may trigger various forms of reclaim on the allowed
3277 * set and go into memory reserves if necessary.
3278 */
dd47ea75
CL
3279 if (local_flags & __GFP_WAIT)
3280 local_irq_enable();
3281 kmem_flagcheck(cache, flags);
9ac33b2b 3282 obj = kmem_getpages(cache, local_flags, -1);
dd47ea75
CL
3283 if (local_flags & __GFP_WAIT)
3284 local_irq_disable();
3c517a61
CL
3285 if (obj) {
3286 /*
3287 * Insert into the appropriate per node queues
3288 */
3289 nid = page_to_nid(virt_to_page(obj));
3290 if (cache_grow(cache, flags, nid, obj)) {
3291 obj = ____cache_alloc_node(cache,
3292 flags | GFP_THISNODE, nid);
3293 if (!obj)
3294 /*
3295 * Another processor may allocate the
3296 * objects in the slab since we are
3297 * not holding any locks.
3298 */
3299 goto retry;
3300 } else {
b6a60451 3301 /* cache_grow already freed obj */
3c517a61
CL
3302 obj = NULL;
3303 }
3304 }
aedb0eb1 3305 }
765c4507
CL
3306 return obj;
3307}
3308
e498be7d
CL
3309/*
3310 * A interface to enable slab creation on nodeid
1da177e4 3311 */
8b98c169 3312static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3313 int nodeid)
e498be7d
CL
3314{
3315 struct list_head *entry;
b28a02de
PE
3316 struct slab *slabp;
3317 struct kmem_list3 *l3;
3318 void *obj;
b28a02de
PE
3319 int x;
3320
3321 l3 = cachep->nodelists[nodeid];
3322 BUG_ON(!l3);
3323
a737b3e2 3324retry:
ca3b9b91 3325 check_irq_off();
b28a02de
PE
3326 spin_lock(&l3->list_lock);
3327 entry = l3->slabs_partial.next;
3328 if (entry == &l3->slabs_partial) {
3329 l3->free_touched = 1;
3330 entry = l3->slabs_free.next;
3331 if (entry == &l3->slabs_free)
3332 goto must_grow;
3333 }
3334
3335 slabp = list_entry(entry, struct slab, list);
3336 check_spinlock_acquired_node(cachep, nodeid);
3337 check_slabp(cachep, slabp);
3338
3339 STATS_INC_NODEALLOCS(cachep);
3340 STATS_INC_ACTIVE(cachep);
3341 STATS_SET_HIGH(cachep);
3342
3343 BUG_ON(slabp->inuse == cachep->num);
3344
78d382d7 3345 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3346 check_slabp(cachep, slabp);
3347 l3->free_objects--;
3348 /* move slabp to correct slabp list: */
3349 list_del(&slabp->list);
3350
a737b3e2 3351 if (slabp->free == BUFCTL_END)
b28a02de 3352 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3353 else
b28a02de 3354 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3355
b28a02de
PE
3356 spin_unlock(&l3->list_lock);
3357 goto done;
e498be7d 3358
a737b3e2 3359must_grow:
b28a02de 3360 spin_unlock(&l3->list_lock);
3c517a61 3361 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3362 if (x)
3363 goto retry;
1da177e4 3364
8c8cc2c1 3365 return fallback_alloc(cachep, flags);
e498be7d 3366
a737b3e2 3367done:
b28a02de 3368 return obj;
e498be7d 3369}
8c8cc2c1
PE
3370
3371/**
3372 * kmem_cache_alloc_node - Allocate an object on the specified node
3373 * @cachep: The cache to allocate from.
3374 * @flags: See kmalloc().
3375 * @nodeid: node number of the target node.
3376 * @caller: return address of caller, used for debug information
3377 *
3378 * Identical to kmem_cache_alloc but it will allocate memory on the given
3379 * node, which can improve the performance for cpu bound structures.
3380 *
3381 * Fallback to other node is possible if __GFP_THISNODE is not set.
3382 */
3383static __always_inline void *
3384__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3385 void *caller)
3386{
3387 unsigned long save_flags;
3388 void *ptr;
3389
824ebef1
AM
3390 if (should_failslab(cachep, flags))
3391 return NULL;
3392
8c8cc2c1
PE
3393 cache_alloc_debugcheck_before(cachep, flags);
3394 local_irq_save(save_flags);
3395
3396 if (unlikely(nodeid == -1))
3397 nodeid = numa_node_id();
3398
3399 if (unlikely(!cachep->nodelists[nodeid])) {
3400 /* Node not bootstrapped yet */
3401 ptr = fallback_alloc(cachep, flags);
3402 goto out;
3403 }
3404
3405 if (nodeid == numa_node_id()) {
3406 /*
3407 * Use the locally cached objects if possible.
3408 * However ____cache_alloc does not allow fallback
3409 * to other nodes. It may fail while we still have
3410 * objects on other nodes available.
3411 */
3412 ptr = ____cache_alloc(cachep, flags);
3413 if (ptr)
3414 goto out;
3415 }
3416 /* ___cache_alloc_node can fall back to other nodes */
3417 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3418 out:
3419 local_irq_restore(save_flags);
3420 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3421
d07dbea4
CL
3422 if (unlikely((flags & __GFP_ZERO) && ptr))
3423 memset(ptr, 0, obj_size(cachep));
3424
8c8cc2c1
PE
3425 return ptr;
3426}
3427
3428static __always_inline void *
3429__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3430{
3431 void *objp;
3432
3433 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3434 objp = alternate_node_alloc(cache, flags);
3435 if (objp)
3436 goto out;
3437 }
3438 objp = ____cache_alloc(cache, flags);
3439
3440 /*
3441 * We may just have run out of memory on the local node.
3442 * ____cache_alloc_node() knows how to locate memory on other nodes
3443 */
3444 if (!objp)
3445 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3446
3447 out:
3448 return objp;
3449}
3450#else
3451
3452static __always_inline void *
3453__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3454{
3455 return ____cache_alloc(cachep, flags);
3456}
3457
3458#endif /* CONFIG_NUMA */
3459
3460static __always_inline void *
3461__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3462{
3463 unsigned long save_flags;
3464 void *objp;
3465
824ebef1
AM
3466 if (should_failslab(cachep, flags))
3467 return NULL;
3468
8c8cc2c1
PE
3469 cache_alloc_debugcheck_before(cachep, flags);
3470 local_irq_save(save_flags);
3471 objp = __do_cache_alloc(cachep, flags);
3472 local_irq_restore(save_flags);
3473 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3474 prefetchw(objp);
3475
d07dbea4
CL
3476 if (unlikely((flags & __GFP_ZERO) && objp))
3477 memset(objp, 0, obj_size(cachep));
3478
8c8cc2c1
PE
3479 return objp;
3480}
e498be7d
CL
3481
3482/*
3483 * Caller needs to acquire correct kmem_list's list_lock
3484 */
343e0d7a 3485static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3486 int node)
1da177e4
LT
3487{
3488 int i;
e498be7d 3489 struct kmem_list3 *l3;
1da177e4
LT
3490
3491 for (i = 0; i < nr_objects; i++) {
3492 void *objp = objpp[i];
3493 struct slab *slabp;
1da177e4 3494
6ed5eb22 3495 slabp = virt_to_slab(objp);
ff69416e 3496 l3 = cachep->nodelists[node];
1da177e4 3497 list_del(&slabp->list);
ff69416e 3498 check_spinlock_acquired_node(cachep, node);
1da177e4 3499 check_slabp(cachep, slabp);
78d382d7 3500 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3501 STATS_DEC_ACTIVE(cachep);
e498be7d 3502 l3->free_objects++;
1da177e4
LT
3503 check_slabp(cachep, slabp);
3504
3505 /* fixup slab chains */
3506 if (slabp->inuse == 0) {
e498be7d
CL
3507 if (l3->free_objects > l3->free_limit) {
3508 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3509 /* No need to drop any previously held
3510 * lock here, even if we have a off-slab slab
3511 * descriptor it is guaranteed to come from
3512 * a different cache, refer to comments before
3513 * alloc_slabmgmt.
3514 */
1da177e4
LT
3515 slab_destroy(cachep, slabp);
3516 } else {
e498be7d 3517 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3518 }
3519 } else {
3520 /* Unconditionally move a slab to the end of the
3521 * partial list on free - maximum time for the
3522 * other objects to be freed, too.
3523 */
e498be7d 3524 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3525 }
3526 }
3527}
3528
343e0d7a 3529static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3530{
3531 int batchcount;
e498be7d 3532 struct kmem_list3 *l3;
ff69416e 3533 int node = numa_node_id();
1da177e4
LT
3534
3535 batchcount = ac->batchcount;
3536#if DEBUG
3537 BUG_ON(!batchcount || batchcount > ac->avail);
3538#endif
3539 check_irq_off();
ff69416e 3540 l3 = cachep->nodelists[node];
873623df 3541 spin_lock(&l3->list_lock);
e498be7d
CL
3542 if (l3->shared) {
3543 struct array_cache *shared_array = l3->shared;
b28a02de 3544 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3545 if (max) {
3546 if (batchcount > max)
3547 batchcount = max;
e498be7d 3548 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3549 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3550 shared_array->avail += batchcount;
3551 goto free_done;
3552 }
3553 }
3554
ff69416e 3555 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3556free_done:
1da177e4
LT
3557#if STATS
3558 {
3559 int i = 0;
3560 struct list_head *p;
3561
e498be7d
CL
3562 p = l3->slabs_free.next;
3563 while (p != &(l3->slabs_free)) {
1da177e4
LT
3564 struct slab *slabp;
3565
3566 slabp = list_entry(p, struct slab, list);
3567 BUG_ON(slabp->inuse);
3568
3569 i++;
3570 p = p->next;
3571 }
3572 STATS_SET_FREEABLE(cachep, i);
3573 }
3574#endif
e498be7d 3575 spin_unlock(&l3->list_lock);
1da177e4 3576 ac->avail -= batchcount;
a737b3e2 3577 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3578}
3579
3580/*
a737b3e2
AM
3581 * Release an obj back to its cache. If the obj has a constructed state, it must
3582 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3583 */
873623df 3584static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3585{
9a2dba4b 3586 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3587
3588 check_irq_off();
3589 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3590
1807a1aa
SS
3591 /*
3592 * Skip calling cache_free_alien() when the platform is not numa.
3593 * This will avoid cache misses that happen while accessing slabp (which
3594 * is per page memory reference) to get nodeid. Instead use a global
3595 * variable to skip the call, which is mostly likely to be present in
3596 * the cache.
3597 */
3598 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3599 return;
3600
1da177e4
LT
3601 if (likely(ac->avail < ac->limit)) {
3602 STATS_INC_FREEHIT(cachep);
e498be7d 3603 ac->entry[ac->avail++] = objp;
1da177e4
LT
3604 return;
3605 } else {
3606 STATS_INC_FREEMISS(cachep);
3607 cache_flusharray(cachep, ac);
e498be7d 3608 ac->entry[ac->avail++] = objp;
1da177e4
LT
3609 }
3610}
3611
3612/**
3613 * kmem_cache_alloc - Allocate an object
3614 * @cachep: The cache to allocate from.
3615 * @flags: See kmalloc().
3616 *
3617 * Allocate an object from this cache. The flags are only relevant
3618 * if the cache has no available objects.
3619 */
343e0d7a 3620void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3621{
7fd6b141 3622 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3623}
3624EXPORT_SYMBOL(kmem_cache_alloc);
3625
3626/**
3627 * kmem_ptr_validate - check if an untrusted pointer might
3628 * be a slab entry.
3629 * @cachep: the cache we're checking against
3630 * @ptr: pointer to validate
3631 *
3632 * This verifies that the untrusted pointer looks sane:
3633 * it is _not_ a guarantee that the pointer is actually
3634 * part of the slab cache in question, but it at least
3635 * validates that the pointer can be dereferenced and
3636 * looks half-way sane.
3637 *
3638 * Currently only used for dentry validation.
3639 */
b7f869a2 3640int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3641{
b28a02de 3642 unsigned long addr = (unsigned long)ptr;
1da177e4 3643 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3644 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3645 unsigned long size = cachep->buffer_size;
1da177e4
LT
3646 struct page *page;
3647
3648 if (unlikely(addr < min_addr))
3649 goto out;
3650 if (unlikely(addr > (unsigned long)high_memory - size))
3651 goto out;
3652 if (unlikely(addr & align_mask))
3653 goto out;
3654 if (unlikely(!kern_addr_valid(addr)))
3655 goto out;
3656 if (unlikely(!kern_addr_valid(addr + size - 1)))
3657 goto out;
3658 page = virt_to_page(ptr);
3659 if (unlikely(!PageSlab(page)))
3660 goto out;
065d41cb 3661 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3662 goto out;
3663 return 1;
a737b3e2 3664out:
1da177e4
LT
3665 return 0;
3666}
3667
3668#ifdef CONFIG_NUMA
8b98c169
CH
3669void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3670{
3671 return __cache_alloc_node(cachep, flags, nodeid,
3672 __builtin_return_address(0));
3673}
1da177e4
LT
3674EXPORT_SYMBOL(kmem_cache_alloc_node);
3675
8b98c169
CH
3676static __always_inline void *
3677__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3678{
343e0d7a 3679 struct kmem_cache *cachep;
97e2bde4
MS
3680
3681 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3682 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3683 return cachep;
97e2bde4
MS
3684 return kmem_cache_alloc_node(cachep, flags, node);
3685}
8b98c169
CH
3686
3687#ifdef CONFIG_DEBUG_SLAB
3688void *__kmalloc_node(size_t size, gfp_t flags, int node)
3689{
3690 return __do_kmalloc_node(size, flags, node,
3691 __builtin_return_address(0));
3692}
dbe5e69d 3693EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3694
3695void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3696 int node, void *caller)
3697{
3698 return __do_kmalloc_node(size, flags, node, caller);
3699}
3700EXPORT_SYMBOL(__kmalloc_node_track_caller);
3701#else
3702void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703{
3704 return __do_kmalloc_node(size, flags, node, NULL);
3705}
3706EXPORT_SYMBOL(__kmalloc_node);
3707#endif /* CONFIG_DEBUG_SLAB */
3708#endif /* CONFIG_NUMA */
1da177e4
LT
3709
3710/**
800590f5 3711 * __do_kmalloc - allocate memory
1da177e4 3712 * @size: how many bytes of memory are required.
800590f5 3713 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3714 * @caller: function caller for debug tracking of the caller
1da177e4 3715 */
7fd6b141
PE
3716static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3717 void *caller)
1da177e4 3718{
343e0d7a 3719 struct kmem_cache *cachep;
1da177e4 3720
97e2bde4
MS
3721 /* If you want to save a few bytes .text space: replace
3722 * __ with kmem_.
3723 * Then kmalloc uses the uninlined functions instead of the inline
3724 * functions.
3725 */
3726 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3727 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3728 return cachep;
7fd6b141
PE
3729 return __cache_alloc(cachep, flags, caller);
3730}
3731
7fd6b141 3732
1d2c8eea 3733#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3734void *__kmalloc(size_t size, gfp_t flags)
3735{
871751e2 3736 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3737}
3738EXPORT_SYMBOL(__kmalloc);
3739
7fd6b141
PE
3740void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3741{
3742 return __do_kmalloc(size, flags, caller);
3743}
3744EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3745
3746#else
3747void *__kmalloc(size_t size, gfp_t flags)
3748{
3749 return __do_kmalloc(size, flags, NULL);
3750}
3751EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3752#endif
3753
1da177e4
LT
3754/**
3755 * kmem_cache_free - Deallocate an object
3756 * @cachep: The cache the allocation was from.
3757 * @objp: The previously allocated object.
3758 *
3759 * Free an object which was previously allocated from this
3760 * cache.
3761 */
343e0d7a 3762void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3763{
3764 unsigned long flags;
3765
3766 local_irq_save(flags);
898552c9 3767 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3768 __cache_free(cachep, objp);
1da177e4
LT
3769 local_irq_restore(flags);
3770}
3771EXPORT_SYMBOL(kmem_cache_free);
3772
1da177e4
LT
3773/**
3774 * kfree - free previously allocated memory
3775 * @objp: pointer returned by kmalloc.
3776 *
80e93eff
PE
3777 * If @objp is NULL, no operation is performed.
3778 *
1da177e4
LT
3779 * Don't free memory not originally allocated by kmalloc()
3780 * or you will run into trouble.
3781 */
3782void kfree(const void *objp)
3783{
343e0d7a 3784 struct kmem_cache *c;
1da177e4
LT
3785 unsigned long flags;
3786
6cb8f913 3787 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3788 return;
3789 local_irq_save(flags);
3790 kfree_debugcheck(objp);
6ed5eb22 3791 c = virt_to_cache(objp);
f9b8404c 3792 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3793 __cache_free(c, (void *)objp);
1da177e4
LT
3794 local_irq_restore(flags);
3795}
3796EXPORT_SYMBOL(kfree);
3797
343e0d7a 3798unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3799{
3dafccf2 3800 return obj_size(cachep);
1da177e4
LT
3801}
3802EXPORT_SYMBOL(kmem_cache_size);
3803
343e0d7a 3804const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3805{
3806 return cachep->name;
3807}
3808EXPORT_SYMBOL_GPL(kmem_cache_name);
3809
e498be7d 3810/*
183ff22b 3811 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3812 */
343e0d7a 3813static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3814{
3815 int node;
3816 struct kmem_list3 *l3;
cafeb02e 3817 struct array_cache *new_shared;
3395ee05 3818 struct array_cache **new_alien = NULL;
e498be7d 3819
9c09a95c 3820 for_each_online_node(node) {
cafeb02e 3821
3395ee05
PM
3822 if (use_alien_caches) {
3823 new_alien = alloc_alien_cache(node, cachep->limit);
3824 if (!new_alien)
3825 goto fail;
3826 }
cafeb02e 3827
63109846
ED
3828 new_shared = NULL;
3829 if (cachep->shared) {
3830 new_shared = alloc_arraycache(node,
0718dc2a 3831 cachep->shared*cachep->batchcount,
a737b3e2 3832 0xbaadf00d);
63109846
ED
3833 if (!new_shared) {
3834 free_alien_cache(new_alien);
3835 goto fail;
3836 }
0718dc2a 3837 }
cafeb02e 3838
a737b3e2
AM
3839 l3 = cachep->nodelists[node];
3840 if (l3) {
cafeb02e
CL
3841 struct array_cache *shared = l3->shared;
3842
e498be7d
CL
3843 spin_lock_irq(&l3->list_lock);
3844
cafeb02e 3845 if (shared)
0718dc2a
CL
3846 free_block(cachep, shared->entry,
3847 shared->avail, node);
e498be7d 3848
cafeb02e
CL
3849 l3->shared = new_shared;
3850 if (!l3->alien) {
e498be7d
CL
3851 l3->alien = new_alien;
3852 new_alien = NULL;
3853 }
b28a02de 3854 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3855 cachep->batchcount + cachep->num;
e498be7d 3856 spin_unlock_irq(&l3->list_lock);
cafeb02e 3857 kfree(shared);
e498be7d
CL
3858 free_alien_cache(new_alien);
3859 continue;
3860 }
a737b3e2 3861 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3862 if (!l3) {
3863 free_alien_cache(new_alien);
3864 kfree(new_shared);
e498be7d 3865 goto fail;
0718dc2a 3866 }
e498be7d
CL
3867
3868 kmem_list3_init(l3);
3869 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3870 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3871 l3->shared = new_shared;
e498be7d 3872 l3->alien = new_alien;
b28a02de 3873 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3874 cachep->batchcount + cachep->num;
e498be7d
CL
3875 cachep->nodelists[node] = l3;
3876 }
cafeb02e 3877 return 0;
0718dc2a 3878
a737b3e2 3879fail:
0718dc2a
CL
3880 if (!cachep->next.next) {
3881 /* Cache is not active yet. Roll back what we did */
3882 node--;
3883 while (node >= 0) {
3884 if (cachep->nodelists[node]) {
3885 l3 = cachep->nodelists[node];
3886
3887 kfree(l3->shared);
3888 free_alien_cache(l3->alien);
3889 kfree(l3);
3890 cachep->nodelists[node] = NULL;
3891 }
3892 node--;
3893 }
3894 }
cafeb02e 3895 return -ENOMEM;
e498be7d
CL
3896}
3897
1da177e4 3898struct ccupdate_struct {
343e0d7a 3899 struct kmem_cache *cachep;
1da177e4
LT
3900 struct array_cache *new[NR_CPUS];
3901};
3902
3903static void do_ccupdate_local(void *info)
3904{
a737b3e2 3905 struct ccupdate_struct *new = info;
1da177e4
LT
3906 struct array_cache *old;
3907
3908 check_irq_off();
9a2dba4b 3909 old = cpu_cache_get(new->cachep);
e498be7d 3910
1da177e4
LT
3911 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3912 new->new[smp_processor_id()] = old;
3913}
3914
b5d8ca7c 3915/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3916static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3917 int batchcount, int shared)
1da177e4 3918{
d2e7b7d0 3919 struct ccupdate_struct *new;
2ed3a4ef 3920 int i;
1da177e4 3921
d2e7b7d0
SS
3922 new = kzalloc(sizeof(*new), GFP_KERNEL);
3923 if (!new)
3924 return -ENOMEM;
3925
e498be7d 3926 for_each_online_cpu(i) {
d2e7b7d0 3927 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3928 batchcount);
d2e7b7d0 3929 if (!new->new[i]) {
b28a02de 3930 for (i--; i >= 0; i--)
d2e7b7d0
SS
3931 kfree(new->new[i]);
3932 kfree(new);
e498be7d 3933 return -ENOMEM;
1da177e4
LT
3934 }
3935 }
d2e7b7d0 3936 new->cachep = cachep;
1da177e4 3937
d2e7b7d0 3938 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3939
1da177e4 3940 check_irq_on();
1da177e4
LT
3941 cachep->batchcount = batchcount;
3942 cachep->limit = limit;
e498be7d 3943 cachep->shared = shared;
1da177e4 3944
e498be7d 3945 for_each_online_cpu(i) {
d2e7b7d0 3946 struct array_cache *ccold = new->new[i];
1da177e4
LT
3947 if (!ccold)
3948 continue;
e498be7d 3949 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3950 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3951 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3952 kfree(ccold);
3953 }
d2e7b7d0 3954 kfree(new);
2ed3a4ef 3955 return alloc_kmemlist(cachep);
1da177e4
LT
3956}
3957
b5d8ca7c 3958/* Called with cache_chain_mutex held always */
2ed3a4ef 3959static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3960{
3961 int err;
3962 int limit, shared;
3963
a737b3e2
AM
3964 /*
3965 * The head array serves three purposes:
1da177e4
LT
3966 * - create a LIFO ordering, i.e. return objects that are cache-warm
3967 * - reduce the number of spinlock operations.
a737b3e2 3968 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3969 * bufctl chains: array operations are cheaper.
3970 * The numbers are guessed, we should auto-tune as described by
3971 * Bonwick.
3972 */
3dafccf2 3973 if (cachep->buffer_size > 131072)
1da177e4 3974 limit = 1;
3dafccf2 3975 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3976 limit = 8;
3dafccf2 3977 else if (cachep->buffer_size > 1024)
1da177e4 3978 limit = 24;
3dafccf2 3979 else if (cachep->buffer_size > 256)
1da177e4
LT
3980 limit = 54;
3981 else
3982 limit = 120;
3983
a737b3e2
AM
3984 /*
3985 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3986 * allocation behaviour: Most allocs on one cpu, most free operations
3987 * on another cpu. For these cases, an efficient object passing between
3988 * cpus is necessary. This is provided by a shared array. The array
3989 * replaces Bonwick's magazine layer.
3990 * On uniprocessor, it's functionally equivalent (but less efficient)
3991 * to a larger limit. Thus disabled by default.
3992 */
3993 shared = 0;
364fbb29 3994 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3995 shared = 8;
1da177e4
LT
3996
3997#if DEBUG
a737b3e2
AM
3998 /*
3999 * With debugging enabled, large batchcount lead to excessively long
4000 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4001 */
4002 if (limit > 32)
4003 limit = 32;
4004#endif
b28a02de 4005 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4006 if (err)
4007 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4008 cachep->name, -err);
2ed3a4ef 4009 return err;
1da177e4
LT
4010}
4011
1b55253a
CL
4012/*
4013 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4014 * necessary. Note that the l3 listlock also protects the array_cache
4015 * if drain_array() is used on the shared array.
1b55253a
CL
4016 */
4017void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4018 struct array_cache *ac, int force, int node)
1da177e4
LT
4019{
4020 int tofree;
4021
1b55253a
CL
4022 if (!ac || !ac->avail)
4023 return;
1da177e4
LT
4024 if (ac->touched && !force) {
4025 ac->touched = 0;
b18e7e65 4026 } else {
1b55253a 4027 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4028 if (ac->avail) {
4029 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4030 if (tofree > ac->avail)
4031 tofree = (ac->avail + 1) / 2;
4032 free_block(cachep, ac->entry, tofree, node);
4033 ac->avail -= tofree;
4034 memmove(ac->entry, &(ac->entry[tofree]),
4035 sizeof(void *) * ac->avail);
4036 }
1b55253a 4037 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4038 }
4039}
4040
4041/**
4042 * cache_reap - Reclaim memory from caches.
05fb6bf0 4043 * @w: work descriptor
1da177e4
LT
4044 *
4045 * Called from workqueue/eventd every few seconds.
4046 * Purpose:
4047 * - clear the per-cpu caches for this CPU.
4048 * - return freeable pages to the main free memory pool.
4049 *
a737b3e2
AM
4050 * If we cannot acquire the cache chain mutex then just give up - we'll try
4051 * again on the next iteration.
1da177e4 4052 */
7c5cae36 4053static void cache_reap(struct work_struct *w)
1da177e4 4054{
7a7c381d 4055 struct kmem_cache *searchp;
e498be7d 4056 struct kmem_list3 *l3;
aab2207c 4057 int node = numa_node_id();
7c5cae36
CL
4058 struct delayed_work *work =
4059 container_of(w, struct delayed_work, work);
1da177e4 4060
7c5cae36 4061 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4062 /* Give up. Setup the next iteration. */
7c5cae36 4063 goto out;
1da177e4 4064
7a7c381d 4065 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4066 check_irq_on();
4067
35386e3b
CL
4068 /*
4069 * We only take the l3 lock if absolutely necessary and we
4070 * have established with reasonable certainty that
4071 * we can do some work if the lock was obtained.
4072 */
aab2207c 4073 l3 = searchp->nodelists[node];
35386e3b 4074
8fce4d8e 4075 reap_alien(searchp, l3);
1da177e4 4076
aab2207c 4077 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4078
35386e3b
CL
4079 /*
4080 * These are racy checks but it does not matter
4081 * if we skip one check or scan twice.
4082 */
e498be7d 4083 if (time_after(l3->next_reap, jiffies))
35386e3b 4084 goto next;
1da177e4 4085
e498be7d 4086 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4087
aab2207c 4088 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4089
ed11d9eb 4090 if (l3->free_touched)
e498be7d 4091 l3->free_touched = 0;
ed11d9eb
CL
4092 else {
4093 int freed;
1da177e4 4094
ed11d9eb
CL
4095 freed = drain_freelist(searchp, l3, (l3->free_limit +
4096 5 * searchp->num - 1) / (5 * searchp->num));
4097 STATS_ADD_REAPED(searchp, freed);
4098 }
35386e3b 4099next:
1da177e4
LT
4100 cond_resched();
4101 }
4102 check_irq_on();
fc0abb14 4103 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4104 next_reap_node();
7c5cae36 4105out:
a737b3e2 4106 /* Set up the next iteration */
7c5cae36 4107 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4108}
4109
158a9624 4110#ifdef CONFIG_SLABINFO
1da177e4 4111
85289f98 4112static void print_slabinfo_header(struct seq_file *m)
1da177e4 4113{
85289f98
PE
4114 /*
4115 * Output format version, so at least we can change it
4116 * without _too_ many complaints.
4117 */
1da177e4 4118#if STATS
85289f98 4119 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4120#else
85289f98 4121 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4122#endif
85289f98
PE
4123 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4124 "<objperslab> <pagesperslab>");
4125 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4126 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4127#if STATS
85289f98 4128 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4129 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4130 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4131#endif
85289f98
PE
4132 seq_putc(m, '\n');
4133}
4134
4135static void *s_start(struct seq_file *m, loff_t *pos)
4136{
4137 loff_t n = *pos;
85289f98 4138
fc0abb14 4139 mutex_lock(&cache_chain_mutex);
85289f98
PE
4140 if (!n)
4141 print_slabinfo_header(m);
b92151ba
PE
4142
4143 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4144}
4145
4146static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4147{
b92151ba 4148 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4149}
4150
4151static void s_stop(struct seq_file *m, void *p)
4152{
fc0abb14 4153 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4154}
4155
4156static int s_show(struct seq_file *m, void *p)
4157{
b92151ba 4158 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4159 struct slab *slabp;
4160 unsigned long active_objs;
4161 unsigned long num_objs;
4162 unsigned long active_slabs = 0;
4163 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4164 const char *name;
1da177e4 4165 char *error = NULL;
e498be7d
CL
4166 int node;
4167 struct kmem_list3 *l3;
1da177e4 4168
1da177e4
LT
4169 active_objs = 0;
4170 num_slabs = 0;
e498be7d
CL
4171 for_each_online_node(node) {
4172 l3 = cachep->nodelists[node];
4173 if (!l3)
4174 continue;
4175
ca3b9b91
RT
4176 check_irq_on();
4177 spin_lock_irq(&l3->list_lock);
e498be7d 4178
7a7c381d 4179 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4180 if (slabp->inuse != cachep->num && !error)
4181 error = "slabs_full accounting error";
4182 active_objs += cachep->num;
4183 active_slabs++;
4184 }
7a7c381d 4185 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4186 if (slabp->inuse == cachep->num && !error)
4187 error = "slabs_partial inuse accounting error";
4188 if (!slabp->inuse && !error)
4189 error = "slabs_partial/inuse accounting error";
4190 active_objs += slabp->inuse;
4191 active_slabs++;
4192 }
7a7c381d 4193 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4194 if (slabp->inuse && !error)
4195 error = "slabs_free/inuse accounting error";
4196 num_slabs++;
4197 }
4198 free_objects += l3->free_objects;
4484ebf1
RT
4199 if (l3->shared)
4200 shared_avail += l3->shared->avail;
e498be7d 4201
ca3b9b91 4202 spin_unlock_irq(&l3->list_lock);
1da177e4 4203 }
b28a02de
PE
4204 num_slabs += active_slabs;
4205 num_objs = num_slabs * cachep->num;
e498be7d 4206 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4207 error = "free_objects accounting error";
4208
b28a02de 4209 name = cachep->name;
1da177e4
LT
4210 if (error)
4211 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4212
4213 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4214 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4215 cachep->num, (1 << cachep->gfporder));
1da177e4 4216 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4217 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4218 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4219 active_slabs, num_slabs, shared_avail);
1da177e4 4220#if STATS
b28a02de 4221 { /* list3 stats */
1da177e4
LT
4222 unsigned long high = cachep->high_mark;
4223 unsigned long allocs = cachep->num_allocations;
4224 unsigned long grown = cachep->grown;
4225 unsigned long reaped = cachep->reaped;
4226 unsigned long errors = cachep->errors;
4227 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4228 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4229 unsigned long node_frees = cachep->node_frees;
fb7faf33 4230 unsigned long overflows = cachep->node_overflow;
1da177e4 4231
e498be7d 4232 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4233 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4234 reaped, errors, max_freeable, node_allocs,
fb7faf33 4235 node_frees, overflows);
1da177e4
LT
4236 }
4237 /* cpu stats */
4238 {
4239 unsigned long allochit = atomic_read(&cachep->allochit);
4240 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4241 unsigned long freehit = atomic_read(&cachep->freehit);
4242 unsigned long freemiss = atomic_read(&cachep->freemiss);
4243
4244 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4245 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4246 }
4247#endif
4248 seq_putc(m, '\n');
1da177e4
LT
4249 return 0;
4250}
4251
4252/*
4253 * slabinfo_op - iterator that generates /proc/slabinfo
4254 *
4255 * Output layout:
4256 * cache-name
4257 * num-active-objs
4258 * total-objs
4259 * object size
4260 * num-active-slabs
4261 * total-slabs
4262 * num-pages-per-slab
4263 * + further values on SMP and with statistics enabled
4264 */
4265
15ad7cdc 4266const struct seq_operations slabinfo_op = {
b28a02de
PE
4267 .start = s_start,
4268 .next = s_next,
4269 .stop = s_stop,
4270 .show = s_show,
1da177e4
LT
4271};
4272
4273#define MAX_SLABINFO_WRITE 128
4274/**
4275 * slabinfo_write - Tuning for the slab allocator
4276 * @file: unused
4277 * @buffer: user buffer
4278 * @count: data length
4279 * @ppos: unused
4280 */
b28a02de
PE
4281ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4282 size_t count, loff_t *ppos)
1da177e4 4283{
b28a02de 4284 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4285 int limit, batchcount, shared, res;
7a7c381d 4286 struct kmem_cache *cachep;
b28a02de 4287
1da177e4
LT
4288 if (count > MAX_SLABINFO_WRITE)
4289 return -EINVAL;
4290 if (copy_from_user(&kbuf, buffer, count))
4291 return -EFAULT;
b28a02de 4292 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4293
4294 tmp = strchr(kbuf, ' ');
4295 if (!tmp)
4296 return -EINVAL;
4297 *tmp = '\0';
4298 tmp++;
4299 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4300 return -EINVAL;
4301
4302 /* Find the cache in the chain of caches. */
fc0abb14 4303 mutex_lock(&cache_chain_mutex);
1da177e4 4304 res = -EINVAL;
7a7c381d 4305 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4306 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4307 if (limit < 1 || batchcount < 1 ||
4308 batchcount > limit || shared < 0) {
e498be7d 4309 res = 0;
1da177e4 4310 } else {
e498be7d 4311 res = do_tune_cpucache(cachep, limit,
b28a02de 4312 batchcount, shared);
1da177e4
LT
4313 }
4314 break;
4315 }
4316 }
fc0abb14 4317 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4318 if (res >= 0)
4319 res = count;
4320 return res;
4321}
871751e2
AV
4322
4323#ifdef CONFIG_DEBUG_SLAB_LEAK
4324
4325static void *leaks_start(struct seq_file *m, loff_t *pos)
4326{
871751e2 4327 mutex_lock(&cache_chain_mutex);
b92151ba 4328 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4329}
4330
4331static inline int add_caller(unsigned long *n, unsigned long v)
4332{
4333 unsigned long *p;
4334 int l;
4335 if (!v)
4336 return 1;
4337 l = n[1];
4338 p = n + 2;
4339 while (l) {
4340 int i = l/2;
4341 unsigned long *q = p + 2 * i;
4342 if (*q == v) {
4343 q[1]++;
4344 return 1;
4345 }
4346 if (*q > v) {
4347 l = i;
4348 } else {
4349 p = q + 2;
4350 l -= i + 1;
4351 }
4352 }
4353 if (++n[1] == n[0])
4354 return 0;
4355 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4356 p[0] = v;
4357 p[1] = 1;
4358 return 1;
4359}
4360
4361static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4362{
4363 void *p;
4364 int i;
4365 if (n[0] == n[1])
4366 return;
4367 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4368 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4369 continue;
4370 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4371 return;
4372 }
4373}
4374
4375static void show_symbol(struct seq_file *m, unsigned long address)
4376{
4377#ifdef CONFIG_KALLSYMS
871751e2 4378 unsigned long offset, size;
9281acea 4379 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4380
a5c43dae 4381 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4382 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4383 if (modname[0])
871751e2
AV
4384 seq_printf(m, " [%s]", modname);
4385 return;
4386 }
4387#endif
4388 seq_printf(m, "%p", (void *)address);
4389}
4390
4391static int leaks_show(struct seq_file *m, void *p)
4392{
b92151ba 4393 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4394 struct slab *slabp;
4395 struct kmem_list3 *l3;
4396 const char *name;
4397 unsigned long *n = m->private;
4398 int node;
4399 int i;
4400
4401 if (!(cachep->flags & SLAB_STORE_USER))
4402 return 0;
4403 if (!(cachep->flags & SLAB_RED_ZONE))
4404 return 0;
4405
4406 /* OK, we can do it */
4407
4408 n[1] = 0;
4409
4410 for_each_online_node(node) {
4411 l3 = cachep->nodelists[node];
4412 if (!l3)
4413 continue;
4414
4415 check_irq_on();
4416 spin_lock_irq(&l3->list_lock);
4417
7a7c381d 4418 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4419 handle_slab(n, cachep, slabp);
7a7c381d 4420 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4421 handle_slab(n, cachep, slabp);
871751e2
AV
4422 spin_unlock_irq(&l3->list_lock);
4423 }
4424 name = cachep->name;
4425 if (n[0] == n[1]) {
4426 /* Increase the buffer size */
4427 mutex_unlock(&cache_chain_mutex);
4428 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4429 if (!m->private) {
4430 /* Too bad, we are really out */
4431 m->private = n;
4432 mutex_lock(&cache_chain_mutex);
4433 return -ENOMEM;
4434 }
4435 *(unsigned long *)m->private = n[0] * 2;
4436 kfree(n);
4437 mutex_lock(&cache_chain_mutex);
4438 /* Now make sure this entry will be retried */
4439 m->count = m->size;
4440 return 0;
4441 }
4442 for (i = 0; i < n[1]; i++) {
4443 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4444 show_symbol(m, n[2*i+2]);
4445 seq_putc(m, '\n');
4446 }
d2e7b7d0 4447
871751e2
AV
4448 return 0;
4449}
4450
15ad7cdc 4451const struct seq_operations slabstats_op = {
871751e2
AV
4452 .start = leaks_start,
4453 .next = s_next,
4454 .stop = s_stop,
4455 .show = leaks_show,
4456};
4457#endif
1da177e4
LT
4458#endif
4459
00e145b6
MS
4460/**
4461 * ksize - get the actual amount of memory allocated for a given object
4462 * @objp: Pointer to the object
4463 *
4464 * kmalloc may internally round up allocations and return more memory
4465 * than requested. ksize() can be used to determine the actual amount of
4466 * memory allocated. The caller may use this additional memory, even though
4467 * a smaller amount of memory was initially specified with the kmalloc call.
4468 * The caller must guarantee that objp points to a valid object previously
4469 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4470 * must not be freed during the duration of the call.
4471 */
fd76bab2 4472size_t ksize(const void *objp)
1da177e4 4473{
ef8b4520
CL
4474 BUG_ON(!objp);
4475 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4476 return 0;
1da177e4 4477
6ed5eb22 4478 return obj_size(virt_to_cache(objp));
1da177e4 4479}
f8fcc933 4480EXPORT_SYMBOL(ksize);