]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
spelling fixes: mm/
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
87a927c7 140#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4
LT
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 182#else
ac2b898c 183# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 184 SLAB_CACHE_DMA | \
1da177e4 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
fa5b08d5 208typedef unsigned int kmem_bufctl_t;
1da177e4
LT
209#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
211#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 213
1da177e4
LT
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
b28a02de
PE
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
1da177e4
LT
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
b28a02de 247 struct rcu_head head;
343e0d7a 248 struct kmem_cache *cachep;
b28a02de 249 void *addr;
1da177e4
LT
250};
251
252/*
253 * struct array_cache
254 *
1da177e4
LT
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
e498be7d 269 spinlock_t lock;
bda5b655 270 void *entry[]; /*
a737b3e2
AM
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
a737b3e2 274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
4ba9b9d0 410 void (*ctor)(struct kmem_cache *, void *);
1da177e4 411
b5d8ca7c 412/* 5) cache creation/removal */
b28a02de
PE
413 const char *name;
414 struct list_head next;
1da177e4 415
b5d8ca7c 416/* 6) statistics */
1da177e4 417#if STATS
b28a02de
PE
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
fb7faf33 427 unsigned long node_overflow;
b28a02de
PE
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
1da177e4
LT
432#endif
433#if DEBUG
3dafccf2
MS
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
1da177e4 442#endif
8da3430d
ED
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
1da177e4
LT
454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
a737b3e2
AM
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
1da177e4 463 *
dc6f3f27 464 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
1da177e4
LT
490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 499#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 503#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 505#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
1da177e4 513
a737b3e2
AM
514/*
515 * memory layout of objects:
1da177e4 516 * 0 : objp
3dafccf2 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
3dafccf2 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 521 * redzone word.
3dafccf2
MS
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
1da177e4 526 */
343e0d7a 527static int obj_offset(struct kmem_cache *cachep)
1da177e4 528{
3dafccf2 529 return cachep->obj_offset;
1da177e4
LT
530}
531
343e0d7a 532static int obj_size(struct kmem_cache *cachep)
1da177e4 533{
3dafccf2 534 return cachep->obj_size;
1da177e4
LT
535}
536
b46b8f19 537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
1da177e4
LT
542}
543
b46b8f19 544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
87a927c7 550 REDZONE_ALIGN);
b46b8f19
DW
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
1da177e4
LT
571/*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574#define BREAK_GFP_ORDER_HI 1
575#define BREAK_GFP_ORDER_LO 0
576static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
a737b3e2
AM
578/*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
1da177e4 582 */
065d41cb
PE
583static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584{
585 page->lru.next = (struct list_head *)cache;
586}
587
588static inline struct kmem_cache *page_get_cache(struct page *page)
589{
d85f3385 590 page = compound_head(page);
ddc2e812 591 BUG_ON(!PageSlab(page));
065d41cb
PE
592 return (struct kmem_cache *)page->lru.next;
593}
594
595static inline void page_set_slab(struct page *page, struct slab *slab)
596{
597 page->lru.prev = (struct list_head *)slab;
598}
599
600static inline struct slab *page_get_slab(struct page *page)
601{
ddc2e812 602 BUG_ON(!PageSlab(page));
065d41cb
PE
603 return (struct slab *)page->lru.prev;
604}
1da177e4 605
6ed5eb22
PE
606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
b49af68f 608 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
b49af68f 614 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
615 return page_get_slab(page);
616}
617
8fea4e96
PE
618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
6a2d7a95
ED
624/*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
8fea4e96 632{
6a2d7a95
ED
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
635}
636
a737b3e2
AM
637/*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
1da177e4
LT
640struct cache_sizes malloc_sizes[] = {
641#define CACHE(x) { .cs_size = (x) },
642#include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644#undef CACHE
645};
646EXPORT_SYMBOL(malloc_sizes);
647
648/* Must match cache_sizes above. Out of line to keep cache footprint low. */
649struct cache_names {
650 char *name;
651 char *name_dma;
652};
653
654static struct cache_names __initdata cache_names[] = {
655#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656#include <linux/kmalloc_sizes.h>
b28a02de 657 {NULL,}
1da177e4
LT
658#undef CACHE
659};
660
661static struct arraycache_init initarray_cache __initdata =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 663static struct arraycache_init initarray_generic =
b28a02de 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
665
666/* internal cache of cache description objs */
343e0d7a 667static struct kmem_cache cache_cache = {
b28a02de
PE
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
343e0d7a 671 .buffer_size = sizeof(struct kmem_cache),
b28a02de 672 .name = "kmem_cache",
1da177e4
LT
673};
674
056c6241
RT
675#define BAD_ALIEN_MAGIC 0x01020304ul
676
f1aaee53
AV
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
f1aaee53 689 */
056c6241
RT
690static struct lock_class_key on_slab_l3_key;
691static struct lock_class_key on_slab_alc_key;
692
693static inline void init_lock_keys(void)
f1aaee53 694
f1aaee53
AV
695{
696 int q;
056c6241
RT
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
f1aaee53
AV
724 }
725}
f1aaee53 726#else
056c6241 727static inline void init_lock_keys(void)
f1aaee53
AV
728{
729}
730#endif
731
8f5be20b
RT
732/*
733 * 1. Guard access to the cache-chain.
734 * 2. Protect sanity of cpu_online_map against cpu hotplug events
735 */
fc0abb14 736static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
737static struct list_head cache_chain;
738
1da177e4
LT
739/*
740 * chicken and egg problem: delay the per-cpu array allocation
741 * until the general caches are up.
742 */
743static enum {
744 NONE,
e498be7d
CL
745 PARTIAL_AC,
746 PARTIAL_L3,
1da177e4
LT
747 FULL
748} g_cpucache_up;
749
39d24e64
MK
750/*
751 * used by boot code to determine if it can use slab based allocator
752 */
753int slab_is_available(void)
754{
755 return g_cpucache_up == FULL;
756}
757
52bad64d 758static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 759
343e0d7a 760static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
761{
762 return cachep->array[smp_processor_id()];
763}
764
a737b3e2
AM
765static inline struct kmem_cache *__find_general_cachep(size_t size,
766 gfp_t gfpflags)
1da177e4
LT
767{
768 struct cache_sizes *csizep = malloc_sizes;
769
770#if DEBUG
771 /* This happens if someone tries to call
b28a02de
PE
772 * kmem_cache_create(), or __kmalloc(), before
773 * the generic caches are initialized.
774 */
c7e43c78 775 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 776#endif
6cb8f913
CL
777 if (!size)
778 return ZERO_SIZE_PTR;
779
1da177e4
LT
780 while (size > csizep->cs_size)
781 csizep++;
782
783 /*
0abf40c1 784 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
785 * has cs_{dma,}cachep==NULL. Thus no special case
786 * for large kmalloc calls required.
787 */
4b51d669 788#ifdef CONFIG_ZONE_DMA
1da177e4
LT
789 if (unlikely(gfpflags & GFP_DMA))
790 return csizep->cs_dmacachep;
4b51d669 791#endif
1da177e4
LT
792 return csizep->cs_cachep;
793}
794
b221385b 795static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
796{
797 return __find_general_cachep(size, gfpflags);
798}
97e2bde4 799
fbaccacf 800static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 801{
fbaccacf
SR
802 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
803}
1da177e4 804
a737b3e2
AM
805/*
806 * Calculate the number of objects and left-over bytes for a given buffer size.
807 */
fbaccacf
SR
808static void cache_estimate(unsigned long gfporder, size_t buffer_size,
809 size_t align, int flags, size_t *left_over,
810 unsigned int *num)
811{
812 int nr_objs;
813 size_t mgmt_size;
814 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 815
fbaccacf
SR
816 /*
817 * The slab management structure can be either off the slab or
818 * on it. For the latter case, the memory allocated for a
819 * slab is used for:
820 *
821 * - The struct slab
822 * - One kmem_bufctl_t for each object
823 * - Padding to respect alignment of @align
824 * - @buffer_size bytes for each object
825 *
826 * If the slab management structure is off the slab, then the
827 * alignment will already be calculated into the size. Because
828 * the slabs are all pages aligned, the objects will be at the
829 * correct alignment when allocated.
830 */
831 if (flags & CFLGS_OFF_SLAB) {
832 mgmt_size = 0;
833 nr_objs = slab_size / buffer_size;
834
835 if (nr_objs > SLAB_LIMIT)
836 nr_objs = SLAB_LIMIT;
837 } else {
838 /*
839 * Ignore padding for the initial guess. The padding
840 * is at most @align-1 bytes, and @buffer_size is at
841 * least @align. In the worst case, this result will
842 * be one greater than the number of objects that fit
843 * into the memory allocation when taking the padding
844 * into account.
845 */
846 nr_objs = (slab_size - sizeof(struct slab)) /
847 (buffer_size + sizeof(kmem_bufctl_t));
848
849 /*
850 * This calculated number will be either the right
851 * amount, or one greater than what we want.
852 */
853 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
854 > slab_size)
855 nr_objs--;
856
857 if (nr_objs > SLAB_LIMIT)
858 nr_objs = SLAB_LIMIT;
859
860 mgmt_size = slab_mgmt_size(nr_objs, align);
861 }
862 *num = nr_objs;
863 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
864}
865
866#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
867
a737b3e2
AM
868static void __slab_error(const char *function, struct kmem_cache *cachep,
869 char *msg)
1da177e4
LT
870{
871 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 872 function, cachep->name, msg);
1da177e4
LT
873 dump_stack();
874}
875
3395ee05
PM
876/*
877 * By default on NUMA we use alien caches to stage the freeing of
878 * objects allocated from other nodes. This causes massive memory
879 * inefficiencies when using fake NUMA setup to split memory into a
880 * large number of small nodes, so it can be disabled on the command
881 * line
882 */
883
884static int use_alien_caches __read_mostly = 1;
1807a1aa 885static int numa_platform __read_mostly = 1;
3395ee05
PM
886static int __init noaliencache_setup(char *s)
887{
888 use_alien_caches = 0;
889 return 1;
890}
891__setup("noaliencache", noaliencache_setup);
892
8fce4d8e
CL
893#ifdef CONFIG_NUMA
894/*
895 * Special reaping functions for NUMA systems called from cache_reap().
896 * These take care of doing round robin flushing of alien caches (containing
897 * objects freed on different nodes from which they were allocated) and the
898 * flushing of remote pcps by calling drain_node_pages.
899 */
900static DEFINE_PER_CPU(unsigned long, reap_node);
901
902static void init_reap_node(int cpu)
903{
904 int node;
905
906 node = next_node(cpu_to_node(cpu), node_online_map);
907 if (node == MAX_NUMNODES)
442295c9 908 node = first_node(node_online_map);
8fce4d8e 909
7f6b8876 910 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
911}
912
913static void next_reap_node(void)
914{
915 int node = __get_cpu_var(reap_node);
916
8fce4d8e
CL
917 node = next_node(node, node_online_map);
918 if (unlikely(node >= MAX_NUMNODES))
919 node = first_node(node_online_map);
920 __get_cpu_var(reap_node) = node;
921}
922
923#else
924#define init_reap_node(cpu) do { } while (0)
925#define next_reap_node(void) do { } while (0)
926#endif
927
1da177e4
LT
928/*
929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
930 * via the workqueue/eventd.
931 * Add the CPU number into the expiration time to minimize the possibility of
932 * the CPUs getting into lockstep and contending for the global cache chain
933 * lock.
934 */
897e679b 935static void __cpuinit start_cpu_timer(int cpu)
1da177e4 936{
52bad64d 937 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
938
939 /*
940 * When this gets called from do_initcalls via cpucache_init(),
941 * init_workqueues() has already run, so keventd will be setup
942 * at that time.
943 */
52bad64d 944 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 945 init_reap_node(cpu);
65f27f38 946 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
947 schedule_delayed_work_on(cpu, reap_work,
948 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
949 }
950}
951
e498be7d 952static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 953 int batchcount)
1da177e4 954{
b28a02de 955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
956 struct array_cache *nc = NULL;
957
e498be7d 958 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
959 if (nc) {
960 nc->avail = 0;
961 nc->limit = entries;
962 nc->batchcount = batchcount;
963 nc->touched = 0;
e498be7d 964 spin_lock_init(&nc->lock);
1da177e4
LT
965 }
966 return nc;
967}
968
3ded175a
CL
969/*
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
972 *
973 * Return the number of entries transferred.
974 */
975static int transfer_objects(struct array_cache *to,
976 struct array_cache *from, unsigned int max)
977{
978 /* Figure out how many entries to transfer */
979 int nr = min(min(from->avail, max), to->limit - to->avail);
980
981 if (!nr)
982 return 0;
983
984 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 sizeof(void *) *nr);
986
987 from->avail -= nr;
988 to->avail += nr;
989 to->touched = 1;
990 return nr;
991}
992
765c4507
CL
993#ifndef CONFIG_NUMA
994
995#define drain_alien_cache(cachep, alien) do { } while (0)
996#define reap_alien(cachep, l3) do { } while (0)
997
998static inline struct array_cache **alloc_alien_cache(int node, int limit)
999{
1000 return (struct array_cache **)BAD_ALIEN_MAGIC;
1001}
1002
1003static inline void free_alien_cache(struct array_cache **ac_ptr)
1004{
1005}
1006
1007static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008{
1009 return 0;
1010}
1011
1012static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 gfp_t flags)
1014{
1015 return NULL;
1016}
1017
8b98c169 1018static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1019 gfp_t flags, int nodeid)
1020{
1021 return NULL;
1022}
1023
1024#else /* CONFIG_NUMA */
1025
8b98c169 1026static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1027static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1028
5295a74c 1029static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1030{
1031 struct array_cache **ac_ptr;
8ef82866 1032 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1033 int i;
1034
1035 if (limit > 1)
1036 limit = 12;
1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 if (ac_ptr) {
1039 for_each_node(i) {
1040 if (i == node || !node_online(i)) {
1041 ac_ptr[i] = NULL;
1042 continue;
1043 }
1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 if (!ac_ptr[i]) {
b28a02de 1046 for (i--; i <= 0; i--)
e498be7d
CL
1047 kfree(ac_ptr[i]);
1048 kfree(ac_ptr);
1049 return NULL;
1050 }
1051 }
1052 }
1053 return ac_ptr;
1054}
1055
5295a74c 1056static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1057{
1058 int i;
1059
1060 if (!ac_ptr)
1061 return;
e498be7d 1062 for_each_node(i)
b28a02de 1063 kfree(ac_ptr[i]);
e498be7d
CL
1064 kfree(ac_ptr);
1065}
1066
343e0d7a 1067static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1068 struct array_cache *ac, int node)
e498be7d
CL
1069{
1070 struct kmem_list3 *rl3 = cachep->nodelists[node];
1071
1072 if (ac->avail) {
1073 spin_lock(&rl3->list_lock);
e00946fe
CL
1074 /*
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1078 */
693f7d36
JS
1079 if (rl3->shared)
1080 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1081
ff69416e 1082 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1083 ac->avail = 0;
1084 spin_unlock(&rl3->list_lock);
1085 }
1086}
1087
8fce4d8e
CL
1088/*
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1090 */
1091static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092{
1093 int node = __get_cpu_var(reap_node);
1094
1095 if (l3->alien) {
1096 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1097
1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1099 __drain_alien_cache(cachep, ac, node);
1100 spin_unlock_irq(&ac->lock);
1101 }
1102 }
1103}
1104
a737b3e2
AM
1105static void drain_alien_cache(struct kmem_cache *cachep,
1106 struct array_cache **alien)
e498be7d 1107{
b28a02de 1108 int i = 0;
e498be7d
CL
1109 struct array_cache *ac;
1110 unsigned long flags;
1111
1112 for_each_online_node(i) {
4484ebf1 1113 ac = alien[i];
e498be7d
CL
1114 if (ac) {
1115 spin_lock_irqsave(&ac->lock, flags);
1116 __drain_alien_cache(cachep, ac, i);
1117 spin_unlock_irqrestore(&ac->lock, flags);
1118 }
1119 }
1120}
729bd0b7 1121
873623df 1122static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1123{
1124 struct slab *slabp = virt_to_slab(objp);
1125 int nodeid = slabp->nodeid;
1126 struct kmem_list3 *l3;
1127 struct array_cache *alien = NULL;
1ca4cb24
PE
1128 int node;
1129
1130 node = numa_node_id();
729bd0b7
PE
1131
1132 /*
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1135 */
62918a03 1136 if (likely(slabp->nodeid == node))
729bd0b7
PE
1137 return 0;
1138
1ca4cb24 1139 l3 = cachep->nodelists[node];
729bd0b7
PE
1140 STATS_INC_NODEFREES(cachep);
1141 if (l3->alien && l3->alien[nodeid]) {
1142 alien = l3->alien[nodeid];
873623df 1143 spin_lock(&alien->lock);
729bd0b7
PE
1144 if (unlikely(alien->avail == alien->limit)) {
1145 STATS_INC_ACOVERFLOW(cachep);
1146 __drain_alien_cache(cachep, alien, nodeid);
1147 }
1148 alien->entry[alien->avail++] = objp;
1149 spin_unlock(&alien->lock);
1150 } else {
1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 free_block(cachep, &objp, 1, nodeid);
1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154 }
1155 return 1;
1156}
e498be7d
CL
1157#endif
1158
fbf1e473
AM
1159static void __cpuinit cpuup_canceled(long cpu)
1160{
1161 struct kmem_cache *cachep;
1162 struct kmem_list3 *l3 = NULL;
1163 int node = cpu_to_node(cpu);
1164
1165 list_for_each_entry(cachep, &cache_chain, next) {
1166 struct array_cache *nc;
1167 struct array_cache *shared;
1168 struct array_cache **alien;
1169 cpumask_t mask;
1170
1171 mask = node_to_cpumask(node);
1172 /* cpu is dead; no one can alloc from it. */
1173 nc = cachep->array[cpu];
1174 cachep->array[cpu] = NULL;
1175 l3 = cachep->nodelists[node];
1176
1177 if (!l3)
1178 goto free_array_cache;
1179
1180 spin_lock_irq(&l3->list_lock);
1181
1182 /* Free limit for this kmem_list3 */
1183 l3->free_limit -= cachep->batchcount;
1184 if (nc)
1185 free_block(cachep, nc->entry, nc->avail, node);
1186
1187 if (!cpus_empty(mask)) {
1188 spin_unlock_irq(&l3->list_lock);
1189 goto free_array_cache;
1190 }
1191
1192 shared = l3->shared;
1193 if (shared) {
1194 free_block(cachep, shared->entry,
1195 shared->avail, node);
1196 l3->shared = NULL;
1197 }
1198
1199 alien = l3->alien;
1200 l3->alien = NULL;
1201
1202 spin_unlock_irq(&l3->list_lock);
1203
1204 kfree(shared);
1205 if (alien) {
1206 drain_alien_cache(cachep, alien);
1207 free_alien_cache(alien);
1208 }
1209free_array_cache:
1210 kfree(nc);
1211 }
1212 /*
1213 * In the previous loop, all the objects were freed to
1214 * the respective cache's slabs, now we can go ahead and
1215 * shrink each nodelist to its limit.
1216 */
1217 list_for_each_entry(cachep, &cache_chain, next) {
1218 l3 = cachep->nodelists[node];
1219 if (!l3)
1220 continue;
1221 drain_freelist(cachep, l3, l3->free_objects);
1222 }
1223}
1224
1225static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1226{
343e0d7a 1227 struct kmem_cache *cachep;
e498be7d
CL
1228 struct kmem_list3 *l3 = NULL;
1229 int node = cpu_to_node(cpu);
ea02e3dd 1230 const int memsize = sizeof(struct kmem_list3);
1da177e4 1231
fbf1e473
AM
1232 /*
1233 * We need to do this right in the beginning since
1234 * alloc_arraycache's are going to use this list.
1235 * kmalloc_node allows us to add the slab to the right
1236 * kmem_list3 and not this cpu's kmem_list3
1237 */
1238
1239 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1240 /*
fbf1e473
AM
1241 * Set up the size64 kmemlist for cpu before we can
1242 * begin anything. Make sure some other cpu on this
1243 * node has not already allocated this
e498be7d 1244 */
fbf1e473
AM
1245 if (!cachep->nodelists[node]) {
1246 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1247 if (!l3)
1248 goto bad;
1249 kmem_list3_init(l3);
1250 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1251 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1252
a737b3e2 1253 /*
fbf1e473
AM
1254 * The l3s don't come and go as CPUs come and
1255 * go. cache_chain_mutex is sufficient
1256 * protection here.
e498be7d 1257 */
fbf1e473 1258 cachep->nodelists[node] = l3;
e498be7d
CL
1259 }
1260
fbf1e473
AM
1261 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1262 cachep->nodelists[node]->free_limit =
1263 (1 + nr_cpus_node(node)) *
1264 cachep->batchcount + cachep->num;
1265 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1266 }
1267
1268 /*
1269 * Now we can go ahead with allocating the shared arrays and
1270 * array caches
1271 */
1272 list_for_each_entry(cachep, &cache_chain, next) {
1273 struct array_cache *nc;
1274 struct array_cache *shared = NULL;
1275 struct array_cache **alien = NULL;
1276
1277 nc = alloc_arraycache(node, cachep->limit,
1278 cachep->batchcount);
1279 if (!nc)
1280 goto bad;
1281 if (cachep->shared) {
1282 shared = alloc_arraycache(node,
1283 cachep->shared * cachep->batchcount,
1284 0xbaadf00d);
12d00f6a
AM
1285 if (!shared) {
1286 kfree(nc);
1da177e4 1287 goto bad;
12d00f6a 1288 }
fbf1e473
AM
1289 }
1290 if (use_alien_caches) {
1291 alien = alloc_alien_cache(node, cachep->limit);
12d00f6a
AM
1292 if (!alien) {
1293 kfree(shared);
1294 kfree(nc);
fbf1e473 1295 goto bad;
12d00f6a 1296 }
fbf1e473
AM
1297 }
1298 cachep->array[cpu] = nc;
1299 l3 = cachep->nodelists[node];
1300 BUG_ON(!l3);
1301
1302 spin_lock_irq(&l3->list_lock);
1303 if (!l3->shared) {
1304 /*
1305 * We are serialised from CPU_DEAD or
1306 * CPU_UP_CANCELLED by the cpucontrol lock
1307 */
1308 l3->shared = shared;
1309 shared = NULL;
1310 }
4484ebf1 1311#ifdef CONFIG_NUMA
fbf1e473
AM
1312 if (!l3->alien) {
1313 l3->alien = alien;
1314 alien = NULL;
1da177e4 1315 }
fbf1e473
AM
1316#endif
1317 spin_unlock_irq(&l3->list_lock);
1318 kfree(shared);
1319 free_alien_cache(alien);
1320 }
1321 return 0;
1322bad:
12d00f6a 1323 cpuup_canceled(cpu);
fbf1e473
AM
1324 return -ENOMEM;
1325}
1326
1327static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1328 unsigned long action, void *hcpu)
1329{
1330 long cpu = (long)hcpu;
1331 int err = 0;
1332
1333 switch (action) {
1334 case CPU_LOCK_ACQUIRE:
1335 mutex_lock(&cache_chain_mutex);
1336 break;
1337 case CPU_UP_PREPARE:
1338 case CPU_UP_PREPARE_FROZEN:
1339 err = cpuup_prepare(cpu);
1da177e4
LT
1340 break;
1341 case CPU_ONLINE:
8bb78442 1342 case CPU_ONLINE_FROZEN:
1da177e4
LT
1343 start_cpu_timer(cpu);
1344 break;
1345#ifdef CONFIG_HOTPLUG_CPU
5830c590 1346 case CPU_DOWN_PREPARE:
8bb78442 1347 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1348 /*
1349 * Shutdown cache reaper. Note that the cache_chain_mutex is
1350 * held so that if cache_reap() is invoked it cannot do
1351 * anything expensive but will only modify reap_work
1352 * and reschedule the timer.
1353 */
1354 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1355 /* Now the cache_reaper is guaranteed to be not running. */
1356 per_cpu(reap_work, cpu).work.func = NULL;
1357 break;
1358 case CPU_DOWN_FAILED:
8bb78442 1359 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1360 start_cpu_timer(cpu);
1361 break;
1da177e4 1362 case CPU_DEAD:
8bb78442 1363 case CPU_DEAD_FROZEN:
4484ebf1
RT
1364 /*
1365 * Even if all the cpus of a node are down, we don't free the
1366 * kmem_list3 of any cache. This to avoid a race between
1367 * cpu_down, and a kmalloc allocation from another cpu for
1368 * memory from the node of the cpu going down. The list3
1369 * structure is usually allocated from kmem_cache_create() and
1370 * gets destroyed at kmem_cache_destroy().
1371 */
183ff22b 1372 /* fall through */
8f5be20b 1373#endif
1da177e4 1374 case CPU_UP_CANCELED:
8bb78442 1375 case CPU_UP_CANCELED_FROZEN:
fbf1e473 1376 cpuup_canceled(cpu);
38c3bd96
HC
1377 break;
1378 case CPU_LOCK_RELEASE:
fc0abb14 1379 mutex_unlock(&cache_chain_mutex);
1da177e4 1380 break;
1da177e4 1381 }
fbf1e473 1382 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1383}
1384
74b85f37
CS
1385static struct notifier_block __cpuinitdata cpucache_notifier = {
1386 &cpuup_callback, NULL, 0
1387};
1da177e4 1388
e498be7d
CL
1389/*
1390 * swap the static kmem_list3 with kmalloced memory
1391 */
a737b3e2
AM
1392static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1393 int nodeid)
e498be7d
CL
1394{
1395 struct kmem_list3 *ptr;
1396
e498be7d
CL
1397 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1398 BUG_ON(!ptr);
1399
1400 local_irq_disable();
1401 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1402 /*
1403 * Do not assume that spinlocks can be initialized via memcpy:
1404 */
1405 spin_lock_init(&ptr->list_lock);
1406
e498be7d
CL
1407 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1408 cachep->nodelists[nodeid] = ptr;
1409 local_irq_enable();
1410}
1411
a737b3e2
AM
1412/*
1413 * Initialisation. Called after the page allocator have been initialised and
1414 * before smp_init().
1da177e4
LT
1415 */
1416void __init kmem_cache_init(void)
1417{
1418 size_t left_over;
1419 struct cache_sizes *sizes;
1420 struct cache_names *names;
e498be7d 1421 int i;
07ed76b2 1422 int order;
1ca4cb24 1423 int node;
e498be7d 1424
1807a1aa 1425 if (num_possible_nodes() == 1) {
62918a03 1426 use_alien_caches = 0;
1807a1aa
SS
1427 numa_platform = 0;
1428 }
62918a03 1429
e498be7d
CL
1430 for (i = 0; i < NUM_INIT_LISTS; i++) {
1431 kmem_list3_init(&initkmem_list3[i]);
1432 if (i < MAX_NUMNODES)
1433 cache_cache.nodelists[i] = NULL;
1434 }
1da177e4
LT
1435
1436 /*
1437 * Fragmentation resistance on low memory - only use bigger
1438 * page orders on machines with more than 32MB of memory.
1439 */
1440 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1441 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1442
1da177e4
LT
1443 /* Bootstrap is tricky, because several objects are allocated
1444 * from caches that do not exist yet:
a737b3e2
AM
1445 * 1) initialize the cache_cache cache: it contains the struct
1446 * kmem_cache structures of all caches, except cache_cache itself:
1447 * cache_cache is statically allocated.
e498be7d
CL
1448 * Initially an __init data area is used for the head array and the
1449 * kmem_list3 structures, it's replaced with a kmalloc allocated
1450 * array at the end of the bootstrap.
1da177e4 1451 * 2) Create the first kmalloc cache.
343e0d7a 1452 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1453 * An __init data area is used for the head array.
1454 * 3) Create the remaining kmalloc caches, with minimally sized
1455 * head arrays.
1da177e4
LT
1456 * 4) Replace the __init data head arrays for cache_cache and the first
1457 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1458 * 5) Replace the __init data for kmem_list3 for cache_cache and
1459 * the other cache's with kmalloc allocated memory.
1460 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1461 */
1462
1ca4cb24
PE
1463 node = numa_node_id();
1464
1da177e4 1465 /* 1) create the cache_cache */
1da177e4
LT
1466 INIT_LIST_HEAD(&cache_chain);
1467 list_add(&cache_cache.next, &cache_chain);
1468 cache_cache.colour_off = cache_line_size();
1469 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1470 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1471
8da3430d
ED
1472 /*
1473 * struct kmem_cache size depends on nr_node_ids, which
1474 * can be less than MAX_NUMNODES.
1475 */
1476 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1477 nr_node_ids * sizeof(struct kmem_list3 *);
1478#if DEBUG
1479 cache_cache.obj_size = cache_cache.buffer_size;
1480#endif
a737b3e2
AM
1481 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1482 cache_line_size());
6a2d7a95
ED
1483 cache_cache.reciprocal_buffer_size =
1484 reciprocal_value(cache_cache.buffer_size);
1da177e4 1485
07ed76b2
JS
1486 for (order = 0; order < MAX_ORDER; order++) {
1487 cache_estimate(order, cache_cache.buffer_size,
1488 cache_line_size(), 0, &left_over, &cache_cache.num);
1489 if (cache_cache.num)
1490 break;
1491 }
40094fa6 1492 BUG_ON(!cache_cache.num);
07ed76b2 1493 cache_cache.gfporder = order;
b28a02de 1494 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1495 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1496 sizeof(struct slab), cache_line_size());
1da177e4
LT
1497
1498 /* 2+3) create the kmalloc caches */
1499 sizes = malloc_sizes;
1500 names = cache_names;
1501
a737b3e2
AM
1502 /*
1503 * Initialize the caches that provide memory for the array cache and the
1504 * kmem_list3 structures first. Without this, further allocations will
1505 * bug.
e498be7d
CL
1506 */
1507
1508 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1509 sizes[INDEX_AC].cs_size,
1510 ARCH_KMALLOC_MINALIGN,
1511 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1512 NULL);
e498be7d 1513
a737b3e2 1514 if (INDEX_AC != INDEX_L3) {
e498be7d 1515 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1516 kmem_cache_create(names[INDEX_L3].name,
1517 sizes[INDEX_L3].cs_size,
1518 ARCH_KMALLOC_MINALIGN,
1519 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1520 NULL);
a737b3e2 1521 }
e498be7d 1522
e0a42726
IM
1523 slab_early_init = 0;
1524
1da177e4 1525 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1526 /*
1527 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1528 * This should be particularly beneficial on SMP boxes, as it
1529 * eliminates "false sharing".
1530 * Note for systems short on memory removing the alignment will
e498be7d
CL
1531 * allow tighter packing of the smaller caches.
1532 */
a737b3e2 1533 if (!sizes->cs_cachep) {
e498be7d 1534 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1535 sizes->cs_size,
1536 ARCH_KMALLOC_MINALIGN,
1537 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1538 NULL);
a737b3e2 1539 }
4b51d669
CL
1540#ifdef CONFIG_ZONE_DMA
1541 sizes->cs_dmacachep = kmem_cache_create(
1542 names->name_dma,
a737b3e2
AM
1543 sizes->cs_size,
1544 ARCH_KMALLOC_MINALIGN,
1545 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1546 SLAB_PANIC,
20c2df83 1547 NULL);
4b51d669 1548#endif
1da177e4
LT
1549 sizes++;
1550 names++;
1551 }
1552 /* 4) Replace the bootstrap head arrays */
1553 {
2b2d5493 1554 struct array_cache *ptr;
e498be7d 1555
1da177e4 1556 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1557
1da177e4 1558 local_irq_disable();
9a2dba4b
PE
1559 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1560 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1561 sizeof(struct arraycache_init));
2b2d5493
IM
1562 /*
1563 * Do not assume that spinlocks can be initialized via memcpy:
1564 */
1565 spin_lock_init(&ptr->lock);
1566
1da177e4
LT
1567 cache_cache.array[smp_processor_id()] = ptr;
1568 local_irq_enable();
e498be7d 1569
1da177e4 1570 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1571
1da177e4 1572 local_irq_disable();
9a2dba4b 1573 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1574 != &initarray_generic.cache);
9a2dba4b 1575 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1576 sizeof(struct arraycache_init));
2b2d5493
IM
1577 /*
1578 * Do not assume that spinlocks can be initialized via memcpy:
1579 */
1580 spin_lock_init(&ptr->lock);
1581
e498be7d 1582 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1583 ptr;
1da177e4
LT
1584 local_irq_enable();
1585 }
e498be7d
CL
1586 /* 5) Replace the bootstrap kmem_list3's */
1587 {
1ca4cb24
PE
1588 int nid;
1589
e498be7d 1590 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1591 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1592
04231b30 1593 for_each_node_state(nid, N_NORMAL_MEMORY) {
e498be7d 1594 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1595 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1596
1597 if (INDEX_AC != INDEX_L3) {
1598 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1599 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1600 }
1601 }
1602 }
1da177e4 1603
e498be7d 1604 /* 6) resize the head arrays to their final sizes */
1da177e4 1605 {
343e0d7a 1606 struct kmem_cache *cachep;
fc0abb14 1607 mutex_lock(&cache_chain_mutex);
1da177e4 1608 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1609 if (enable_cpucache(cachep))
1610 BUG();
fc0abb14 1611 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1612 }
1613
056c6241
RT
1614 /* Annotate slab for lockdep -- annotate the malloc caches */
1615 init_lock_keys();
1616
1617
1da177e4
LT
1618 /* Done! */
1619 g_cpucache_up = FULL;
1620
a737b3e2
AM
1621 /*
1622 * Register a cpu startup notifier callback that initializes
1623 * cpu_cache_get for all new cpus
1da177e4
LT
1624 */
1625 register_cpu_notifier(&cpucache_notifier);
1da177e4 1626
a737b3e2
AM
1627 /*
1628 * The reap timers are started later, with a module init call: That part
1629 * of the kernel is not yet operational.
1da177e4
LT
1630 */
1631}
1632
1633static int __init cpucache_init(void)
1634{
1635 int cpu;
1636
a737b3e2
AM
1637 /*
1638 * Register the timers that return unneeded pages to the page allocator
1da177e4 1639 */
e498be7d 1640 for_each_online_cpu(cpu)
a737b3e2 1641 start_cpu_timer(cpu);
1da177e4
LT
1642 return 0;
1643}
1da177e4
LT
1644__initcall(cpucache_init);
1645
1646/*
1647 * Interface to system's page allocator. No need to hold the cache-lock.
1648 *
1649 * If we requested dmaable memory, we will get it. Even if we
1650 * did not request dmaable memory, we might get it, but that
1651 * would be relatively rare and ignorable.
1652 */
343e0d7a 1653static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1654{
1655 struct page *page;
e1b6aa6f 1656 int nr_pages;
1da177e4
LT
1657 int i;
1658
d6fef9da 1659#ifndef CONFIG_MMU
e1b6aa6f
CH
1660 /*
1661 * Nommu uses slab's for process anonymous memory allocations, and thus
1662 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1663 */
e1b6aa6f 1664 flags |= __GFP_COMP;
d6fef9da 1665#endif
765c4507 1666
3c517a61 1667 flags |= cachep->gfpflags;
e12ba74d
MG
1668 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1669 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1670
1671 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1672 if (!page)
1673 return NULL;
1da177e4 1674
e1b6aa6f 1675 nr_pages = (1 << cachep->gfporder);
1da177e4 1676 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1677 add_zone_page_state(page_zone(page),
1678 NR_SLAB_RECLAIMABLE, nr_pages);
1679 else
1680 add_zone_page_state(page_zone(page),
1681 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1682 for (i = 0; i < nr_pages; i++)
1683 __SetPageSlab(page + i);
1684 return page_address(page);
1da177e4
LT
1685}
1686
1687/*
1688 * Interface to system's page release.
1689 */
343e0d7a 1690static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1691{
b28a02de 1692 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1693 struct page *page = virt_to_page(addr);
1694 const unsigned long nr_freed = i;
1695
972d1a7b
CL
1696 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1697 sub_zone_page_state(page_zone(page),
1698 NR_SLAB_RECLAIMABLE, nr_freed);
1699 else
1700 sub_zone_page_state(page_zone(page),
1701 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1702 while (i--) {
f205b2fe
NP
1703 BUG_ON(!PageSlab(page));
1704 __ClearPageSlab(page);
1da177e4
LT
1705 page++;
1706 }
1da177e4
LT
1707 if (current->reclaim_state)
1708 current->reclaim_state->reclaimed_slab += nr_freed;
1709 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1710}
1711
1712static void kmem_rcu_free(struct rcu_head *head)
1713{
b28a02de 1714 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1715 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1716
1717 kmem_freepages(cachep, slab_rcu->addr);
1718 if (OFF_SLAB(cachep))
1719 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1720}
1721
1722#if DEBUG
1723
1724#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1725static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1726 unsigned long caller)
1da177e4 1727{
3dafccf2 1728 int size = obj_size(cachep);
1da177e4 1729
3dafccf2 1730 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1731
b28a02de 1732 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1733 return;
1734
b28a02de
PE
1735 *addr++ = 0x12345678;
1736 *addr++ = caller;
1737 *addr++ = smp_processor_id();
1738 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1739 {
1740 unsigned long *sptr = &caller;
1741 unsigned long svalue;
1742
1743 while (!kstack_end(sptr)) {
1744 svalue = *sptr++;
1745 if (kernel_text_address(svalue)) {
b28a02de 1746 *addr++ = svalue;
1da177e4
LT
1747 size -= sizeof(unsigned long);
1748 if (size <= sizeof(unsigned long))
1749 break;
1750 }
1751 }
1752
1753 }
b28a02de 1754 *addr++ = 0x87654321;
1da177e4
LT
1755}
1756#endif
1757
343e0d7a 1758static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1759{
3dafccf2
MS
1760 int size = obj_size(cachep);
1761 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1762
1763 memset(addr, val, size);
b28a02de 1764 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1765}
1766
1767static void dump_line(char *data, int offset, int limit)
1768{
1769 int i;
aa83aa40
DJ
1770 unsigned char error = 0;
1771 int bad_count = 0;
1772
1da177e4 1773 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1774 for (i = 0; i < limit; i++) {
1775 if (data[offset + i] != POISON_FREE) {
1776 error = data[offset + i];
1777 bad_count++;
1778 }
b28a02de 1779 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1780 }
1da177e4 1781 printk("\n");
aa83aa40
DJ
1782
1783 if (bad_count == 1) {
1784 error ^= POISON_FREE;
1785 if (!(error & (error - 1))) {
1786 printk(KERN_ERR "Single bit error detected. Probably "
1787 "bad RAM.\n");
1788#ifdef CONFIG_X86
1789 printk(KERN_ERR "Run memtest86+ or a similar memory "
1790 "test tool.\n");
1791#else
1792 printk(KERN_ERR "Run a memory test tool.\n");
1793#endif
1794 }
1795 }
1da177e4
LT
1796}
1797#endif
1798
1799#if DEBUG
1800
343e0d7a 1801static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1802{
1803 int i, size;
1804 char *realobj;
1805
1806 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1807 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1808 *dbg_redzone1(cachep, objp),
1809 *dbg_redzone2(cachep, objp));
1da177e4
LT
1810 }
1811
1812 if (cachep->flags & SLAB_STORE_USER) {
1813 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1814 *dbg_userword(cachep, objp));
1da177e4 1815 print_symbol("(%s)",
a737b3e2 1816 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1817 printk("\n");
1818 }
3dafccf2
MS
1819 realobj = (char *)objp + obj_offset(cachep);
1820 size = obj_size(cachep);
b28a02de 1821 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1822 int limit;
1823 limit = 16;
b28a02de
PE
1824 if (i + limit > size)
1825 limit = size - i;
1da177e4
LT
1826 dump_line(realobj, i, limit);
1827 }
1828}
1829
343e0d7a 1830static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1831{
1832 char *realobj;
1833 int size, i;
1834 int lines = 0;
1835
3dafccf2
MS
1836 realobj = (char *)objp + obj_offset(cachep);
1837 size = obj_size(cachep);
1da177e4 1838
b28a02de 1839 for (i = 0; i < size; i++) {
1da177e4 1840 char exp = POISON_FREE;
b28a02de 1841 if (i == size - 1)
1da177e4
LT
1842 exp = POISON_END;
1843 if (realobj[i] != exp) {
1844 int limit;
1845 /* Mismatch ! */
1846 /* Print header */
1847 if (lines == 0) {
b28a02de 1848 printk(KERN_ERR
e94a40c5
DH
1849 "Slab corruption: %s start=%p, len=%d\n",
1850 cachep->name, realobj, size);
1da177e4
LT
1851 print_objinfo(cachep, objp, 0);
1852 }
1853 /* Hexdump the affected line */
b28a02de 1854 i = (i / 16) * 16;
1da177e4 1855 limit = 16;
b28a02de
PE
1856 if (i + limit > size)
1857 limit = size - i;
1da177e4
LT
1858 dump_line(realobj, i, limit);
1859 i += 16;
1860 lines++;
1861 /* Limit to 5 lines */
1862 if (lines > 5)
1863 break;
1864 }
1865 }
1866 if (lines != 0) {
1867 /* Print some data about the neighboring objects, if they
1868 * exist:
1869 */
6ed5eb22 1870 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1871 unsigned int objnr;
1da177e4 1872
8fea4e96 1873 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1874 if (objnr) {
8fea4e96 1875 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1876 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1877 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1878 realobj, size);
1da177e4
LT
1879 print_objinfo(cachep, objp, 2);
1880 }
b28a02de 1881 if (objnr + 1 < cachep->num) {
8fea4e96 1882 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1883 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1884 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1885 realobj, size);
1da177e4
LT
1886 print_objinfo(cachep, objp, 2);
1887 }
1888 }
1889}
1890#endif
1891
12dd36fa
MD
1892#if DEBUG
1893/**
911851e6
RD
1894 * slab_destroy_objs - destroy a slab and its objects
1895 * @cachep: cache pointer being destroyed
1896 * @slabp: slab pointer being destroyed
1897 *
1898 * Call the registered destructor for each object in a slab that is being
1899 * destroyed.
1da177e4 1900 */
343e0d7a 1901static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1902{
1da177e4
LT
1903 int i;
1904 for (i = 0; i < cachep->num; i++) {
8fea4e96 1905 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1906
1907 if (cachep->flags & SLAB_POISON) {
1908#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1909 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1910 OFF_SLAB(cachep))
b28a02de 1911 kernel_map_pages(virt_to_page(objp),
a737b3e2 1912 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1913 else
1914 check_poison_obj(cachep, objp);
1915#else
1916 check_poison_obj(cachep, objp);
1917#endif
1918 }
1919 if (cachep->flags & SLAB_RED_ZONE) {
1920 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1921 slab_error(cachep, "start of a freed object "
b28a02de 1922 "was overwritten");
1da177e4
LT
1923 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1924 slab_error(cachep, "end of a freed object "
b28a02de 1925 "was overwritten");
1da177e4 1926 }
1da177e4 1927 }
12dd36fa 1928}
1da177e4 1929#else
343e0d7a 1930static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1931{
12dd36fa 1932}
1da177e4
LT
1933#endif
1934
911851e6
RD
1935/**
1936 * slab_destroy - destroy and release all objects in a slab
1937 * @cachep: cache pointer being destroyed
1938 * @slabp: slab pointer being destroyed
1939 *
12dd36fa 1940 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1941 * Before calling the slab must have been unlinked from the cache. The
1942 * cache-lock is not held/needed.
12dd36fa 1943 */
343e0d7a 1944static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1945{
1946 void *addr = slabp->s_mem - slabp->colouroff;
1947
1948 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1949 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1950 struct slab_rcu *slab_rcu;
1951
b28a02de 1952 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1953 slab_rcu->cachep = cachep;
1954 slab_rcu->addr = addr;
1955 call_rcu(&slab_rcu->head, kmem_rcu_free);
1956 } else {
1957 kmem_freepages(cachep, addr);
873623df
IM
1958 if (OFF_SLAB(cachep))
1959 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1960 }
1961}
1962
a737b3e2
AM
1963/*
1964 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1965 * size of kmem_list3.
1966 */
a3a02be7 1967static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1968{
1969 int node;
1970
04231b30 1971 for_each_node_state(node, N_NORMAL_MEMORY) {
b28a02de 1972 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1973 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1974 REAPTIMEOUT_LIST3 +
1975 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1976 }
1977}
1978
117f6eb1
CL
1979static void __kmem_cache_destroy(struct kmem_cache *cachep)
1980{
1981 int i;
1982 struct kmem_list3 *l3;
1983
1984 for_each_online_cpu(i)
1985 kfree(cachep->array[i]);
1986
1987 /* NUMA: free the list3 structures */
1988 for_each_online_node(i) {
1989 l3 = cachep->nodelists[i];
1990 if (l3) {
1991 kfree(l3->shared);
1992 free_alien_cache(l3->alien);
1993 kfree(l3);
1994 }
1995 }
1996 kmem_cache_free(&cache_cache, cachep);
1997}
1998
1999
4d268eba 2000/**
a70773dd
RD
2001 * calculate_slab_order - calculate size (page order) of slabs
2002 * @cachep: pointer to the cache that is being created
2003 * @size: size of objects to be created in this cache.
2004 * @align: required alignment for the objects.
2005 * @flags: slab allocation flags
2006 *
2007 * Also calculates the number of objects per slab.
4d268eba
PE
2008 *
2009 * This could be made much more intelligent. For now, try to avoid using
2010 * high order pages for slabs. When the gfp() functions are more friendly
2011 * towards high-order requests, this should be changed.
2012 */
a737b3e2 2013static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2014 size_t size, size_t align, unsigned long flags)
4d268eba 2015{
b1ab41c4 2016 unsigned long offslab_limit;
4d268eba 2017 size_t left_over = 0;
9888e6fa 2018 int gfporder;
4d268eba 2019
0aa817f0 2020 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2021 unsigned int num;
2022 size_t remainder;
2023
9888e6fa 2024 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2025 if (!num)
2026 continue;
9888e6fa 2027
b1ab41c4
IM
2028 if (flags & CFLGS_OFF_SLAB) {
2029 /*
2030 * Max number of objs-per-slab for caches which
2031 * use off-slab slabs. Needed to avoid a possible
2032 * looping condition in cache_grow().
2033 */
2034 offslab_limit = size - sizeof(struct slab);
2035 offslab_limit /= sizeof(kmem_bufctl_t);
2036
2037 if (num > offslab_limit)
2038 break;
2039 }
4d268eba 2040
9888e6fa 2041 /* Found something acceptable - save it away */
4d268eba 2042 cachep->num = num;
9888e6fa 2043 cachep->gfporder = gfporder;
4d268eba
PE
2044 left_over = remainder;
2045
f78bb8ad
LT
2046 /*
2047 * A VFS-reclaimable slab tends to have most allocations
2048 * as GFP_NOFS and we really don't want to have to be allocating
2049 * higher-order pages when we are unable to shrink dcache.
2050 */
2051 if (flags & SLAB_RECLAIM_ACCOUNT)
2052 break;
2053
4d268eba
PE
2054 /*
2055 * Large number of objects is good, but very large slabs are
2056 * currently bad for the gfp()s.
2057 */
9888e6fa 2058 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2059 break;
2060
9888e6fa
LT
2061 /*
2062 * Acceptable internal fragmentation?
2063 */
a737b3e2 2064 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2065 break;
2066 }
2067 return left_over;
2068}
2069
38bdc32a 2070static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2071{
2ed3a4ef
CL
2072 if (g_cpucache_up == FULL)
2073 return enable_cpucache(cachep);
2074
f30cf7d1
PE
2075 if (g_cpucache_up == NONE) {
2076 /*
2077 * Note: the first kmem_cache_create must create the cache
2078 * that's used by kmalloc(24), otherwise the creation of
2079 * further caches will BUG().
2080 */
2081 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2082
2083 /*
2084 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2085 * the first cache, then we need to set up all its list3s,
2086 * otherwise the creation of further caches will BUG().
2087 */
2088 set_up_list3s(cachep, SIZE_AC);
2089 if (INDEX_AC == INDEX_L3)
2090 g_cpucache_up = PARTIAL_L3;
2091 else
2092 g_cpucache_up = PARTIAL_AC;
2093 } else {
2094 cachep->array[smp_processor_id()] =
2095 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2096
2097 if (g_cpucache_up == PARTIAL_AC) {
2098 set_up_list3s(cachep, SIZE_L3);
2099 g_cpucache_up = PARTIAL_L3;
2100 } else {
2101 int node;
04231b30 2102 for_each_node_state(node, N_NORMAL_MEMORY) {
f30cf7d1
PE
2103 cachep->nodelists[node] =
2104 kmalloc_node(sizeof(struct kmem_list3),
2105 GFP_KERNEL, node);
2106 BUG_ON(!cachep->nodelists[node]);
2107 kmem_list3_init(cachep->nodelists[node]);
2108 }
2109 }
2110 }
2111 cachep->nodelists[numa_node_id()]->next_reap =
2112 jiffies + REAPTIMEOUT_LIST3 +
2113 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2114
2115 cpu_cache_get(cachep)->avail = 0;
2116 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2117 cpu_cache_get(cachep)->batchcount = 1;
2118 cpu_cache_get(cachep)->touched = 0;
2119 cachep->batchcount = 1;
2120 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2121 return 0;
f30cf7d1
PE
2122}
2123
1da177e4
LT
2124/**
2125 * kmem_cache_create - Create a cache.
2126 * @name: A string which is used in /proc/slabinfo to identify this cache.
2127 * @size: The size of objects to be created in this cache.
2128 * @align: The required alignment for the objects.
2129 * @flags: SLAB flags
2130 * @ctor: A constructor for the objects.
1da177e4
LT
2131 *
2132 * Returns a ptr to the cache on success, NULL on failure.
2133 * Cannot be called within a int, but can be interrupted.
20c2df83 2134 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2135 *
2136 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2137 * the module calling this has to destroy the cache before getting unloaded.
2138 *
1da177e4
LT
2139 * The flags are
2140 *
2141 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2142 * to catch references to uninitialised memory.
2143 *
2144 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2145 * for buffer overruns.
2146 *
1da177e4
LT
2147 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2148 * cacheline. This can be beneficial if you're counting cycles as closely
2149 * as davem.
2150 */
343e0d7a 2151struct kmem_cache *
1da177e4 2152kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2 2153 unsigned long flags,
4ba9b9d0 2154 void (*ctor)(struct kmem_cache *, void *))
1da177e4
LT
2155{
2156 size_t left_over, slab_size, ralign;
7a7c381d 2157 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2158
2159 /*
2160 * Sanity checks... these are all serious usage bugs.
2161 */
a737b3e2 2162 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2163 size > KMALLOC_MAX_SIZE) {
a737b3e2
AM
2164 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2165 name);
b28a02de
PE
2166 BUG();
2167 }
1da177e4 2168
f0188f47 2169 /*
8f5be20b
RT
2170 * We use cache_chain_mutex to ensure a consistent view of
2171 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2172 */
fc0abb14 2173 mutex_lock(&cache_chain_mutex);
4f12bb4f 2174
7a7c381d 2175 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2176 char tmp;
2177 int res;
2178
2179 /*
2180 * This happens when the module gets unloaded and doesn't
2181 * destroy its slab cache and no-one else reuses the vmalloc
2182 * area of the module. Print a warning.
2183 */
138ae663 2184 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2185 if (res) {
b4169525 2186 printk(KERN_ERR
2187 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2188 pc->buffer_size);
4f12bb4f
AM
2189 continue;
2190 }
2191
b28a02de 2192 if (!strcmp(pc->name, name)) {
b4169525 2193 printk(KERN_ERR
2194 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2195 dump_stack();
2196 goto oops;
2197 }
2198 }
2199
1da177e4
LT
2200#if DEBUG
2201 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2202#if FORCED_DEBUG
2203 /*
2204 * Enable redzoning and last user accounting, except for caches with
2205 * large objects, if the increased size would increase the object size
2206 * above the next power of two: caches with object sizes just above a
2207 * power of two have a significant amount of internal fragmentation.
2208 */
87a927c7
DW
2209 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2210 2 * sizeof(unsigned long long)))
b28a02de 2211 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2212 if (!(flags & SLAB_DESTROY_BY_RCU))
2213 flags |= SLAB_POISON;
2214#endif
2215 if (flags & SLAB_DESTROY_BY_RCU)
2216 BUG_ON(flags & SLAB_POISON);
2217#endif
1da177e4 2218 /*
a737b3e2
AM
2219 * Always checks flags, a caller might be expecting debug support which
2220 * isn't available.
1da177e4 2221 */
40094fa6 2222 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2223
a737b3e2
AM
2224 /*
2225 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2226 * unaligned accesses for some archs when redzoning is used, and makes
2227 * sure any on-slab bufctl's are also correctly aligned.
2228 */
b28a02de
PE
2229 if (size & (BYTES_PER_WORD - 1)) {
2230 size += (BYTES_PER_WORD - 1);
2231 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2232 }
2233
a737b3e2
AM
2234 /* calculate the final buffer alignment: */
2235
1da177e4
LT
2236 /* 1) arch recommendation: can be overridden for debug */
2237 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2238 /*
2239 * Default alignment: as specified by the arch code. Except if
2240 * an object is really small, then squeeze multiple objects into
2241 * one cacheline.
1da177e4
LT
2242 */
2243 ralign = cache_line_size();
b28a02de 2244 while (size <= ralign / 2)
1da177e4
LT
2245 ralign /= 2;
2246 } else {
2247 ralign = BYTES_PER_WORD;
2248 }
ca5f9703
PE
2249
2250 /*
87a927c7
DW
2251 * Redzoning and user store require word alignment or possibly larger.
2252 * Note this will be overridden by architecture or caller mandated
2253 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2254 */
87a927c7
DW
2255 if (flags & SLAB_STORE_USER)
2256 ralign = BYTES_PER_WORD;
2257
2258 if (flags & SLAB_RED_ZONE) {
2259 ralign = REDZONE_ALIGN;
2260 /* If redzoning, ensure that the second redzone is suitably
2261 * aligned, by adjusting the object size accordingly. */
2262 size += REDZONE_ALIGN - 1;
2263 size &= ~(REDZONE_ALIGN - 1);
2264 }
ca5f9703 2265
a44b56d3 2266 /* 2) arch mandated alignment */
1da177e4
LT
2267 if (ralign < ARCH_SLAB_MINALIGN) {
2268 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2269 }
a44b56d3 2270 /* 3) caller mandated alignment */
1da177e4
LT
2271 if (ralign < align) {
2272 ralign = align;
1da177e4 2273 }
a44b56d3 2274 /* disable debug if necessary */
b46b8f19 2275 if (ralign > __alignof__(unsigned long long))
a44b56d3 2276 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2277 /*
ca5f9703 2278 * 4) Store it.
1da177e4
LT
2279 */
2280 align = ralign;
2281
2282 /* Get cache's description obj. */
e94b1766 2283 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2284 if (!cachep)
4f12bb4f 2285 goto oops;
1da177e4
LT
2286
2287#if DEBUG
3dafccf2 2288 cachep->obj_size = size;
1da177e4 2289
ca5f9703
PE
2290 /*
2291 * Both debugging options require word-alignment which is calculated
2292 * into align above.
2293 */
1da177e4 2294 if (flags & SLAB_RED_ZONE) {
1da177e4 2295 /* add space for red zone words */
b46b8f19
DW
2296 cachep->obj_offset += sizeof(unsigned long long);
2297 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2298 }
2299 if (flags & SLAB_STORE_USER) {
ca5f9703 2300 /* user store requires one word storage behind the end of
87a927c7
DW
2301 * the real object. But if the second red zone needs to be
2302 * aligned to 64 bits, we must allow that much space.
1da177e4 2303 */
87a927c7
DW
2304 if (flags & SLAB_RED_ZONE)
2305 size += REDZONE_ALIGN;
2306 else
2307 size += BYTES_PER_WORD;
1da177e4
LT
2308 }
2309#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2310 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2311 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2312 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2313 size = PAGE_SIZE;
2314 }
2315#endif
2316#endif
2317
e0a42726
IM
2318 /*
2319 * Determine if the slab management is 'on' or 'off' slab.
2320 * (bootstrapping cannot cope with offslab caches so don't do
2321 * it too early on.)
2322 */
2323 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2324 /*
2325 * Size is large, assume best to place the slab management obj
2326 * off-slab (should allow better packing of objs).
2327 */
2328 flags |= CFLGS_OFF_SLAB;
2329
2330 size = ALIGN(size, align);
2331
f78bb8ad 2332 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2333
2334 if (!cachep->num) {
b4169525 2335 printk(KERN_ERR
2336 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2337 kmem_cache_free(&cache_cache, cachep);
2338 cachep = NULL;
4f12bb4f 2339 goto oops;
1da177e4 2340 }
b28a02de
PE
2341 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2342 + sizeof(struct slab), align);
1da177e4
LT
2343
2344 /*
2345 * If the slab has been placed off-slab, and we have enough space then
2346 * move it on-slab. This is at the expense of any extra colouring.
2347 */
2348 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2349 flags &= ~CFLGS_OFF_SLAB;
2350 left_over -= slab_size;
2351 }
2352
2353 if (flags & CFLGS_OFF_SLAB) {
2354 /* really off slab. No need for manual alignment */
b28a02de
PE
2355 slab_size =
2356 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2357 }
2358
2359 cachep->colour_off = cache_line_size();
2360 /* Offset must be a multiple of the alignment. */
2361 if (cachep->colour_off < align)
2362 cachep->colour_off = align;
b28a02de 2363 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2364 cachep->slab_size = slab_size;
2365 cachep->flags = flags;
2366 cachep->gfpflags = 0;
4b51d669 2367 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2368 cachep->gfpflags |= GFP_DMA;
3dafccf2 2369 cachep->buffer_size = size;
6a2d7a95 2370 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2371
e5ac9c5a 2372 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2373 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2374 /*
2375 * This is a possibility for one of the malloc_sizes caches.
2376 * But since we go off slab only for object size greater than
2377 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2378 * this should not happen at all.
2379 * But leave a BUG_ON for some lucky dude.
2380 */
6cb8f913 2381 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2382 }
1da177e4 2383 cachep->ctor = ctor;
1da177e4
LT
2384 cachep->name = name;
2385
2ed3a4ef
CL
2386 if (setup_cpu_cache(cachep)) {
2387 __kmem_cache_destroy(cachep);
2388 cachep = NULL;
2389 goto oops;
2390 }
1da177e4 2391
1da177e4
LT
2392 /* cache setup completed, link it into the list */
2393 list_add(&cachep->next, &cache_chain);
a737b3e2 2394oops:
1da177e4
LT
2395 if (!cachep && (flags & SLAB_PANIC))
2396 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2397 name);
fc0abb14 2398 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2399 return cachep;
2400}
2401EXPORT_SYMBOL(kmem_cache_create);
2402
2403#if DEBUG
2404static void check_irq_off(void)
2405{
2406 BUG_ON(!irqs_disabled());
2407}
2408
2409static void check_irq_on(void)
2410{
2411 BUG_ON(irqs_disabled());
2412}
2413
343e0d7a 2414static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2415{
2416#ifdef CONFIG_SMP
2417 check_irq_off();
e498be7d 2418 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2419#endif
2420}
e498be7d 2421
343e0d7a 2422static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2423{
2424#ifdef CONFIG_SMP
2425 check_irq_off();
2426 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2427#endif
2428}
2429
1da177e4
LT
2430#else
2431#define check_irq_off() do { } while(0)
2432#define check_irq_on() do { } while(0)
2433#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2434#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2435#endif
2436
aab2207c
CL
2437static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2438 struct array_cache *ac,
2439 int force, int node);
2440
1da177e4
LT
2441static void do_drain(void *arg)
2442{
a737b3e2 2443 struct kmem_cache *cachep = arg;
1da177e4 2444 struct array_cache *ac;
ff69416e 2445 int node = numa_node_id();
1da177e4
LT
2446
2447 check_irq_off();
9a2dba4b 2448 ac = cpu_cache_get(cachep);
ff69416e
CL
2449 spin_lock(&cachep->nodelists[node]->list_lock);
2450 free_block(cachep, ac->entry, ac->avail, node);
2451 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2452 ac->avail = 0;
2453}
2454
343e0d7a 2455static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2456{
e498be7d
CL
2457 struct kmem_list3 *l3;
2458 int node;
2459
a07fa394 2460 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2461 check_irq_on();
b28a02de 2462 for_each_online_node(node) {
e498be7d 2463 l3 = cachep->nodelists[node];
a4523a8b
RD
2464 if (l3 && l3->alien)
2465 drain_alien_cache(cachep, l3->alien);
2466 }
2467
2468 for_each_online_node(node) {
2469 l3 = cachep->nodelists[node];
2470 if (l3)
aab2207c 2471 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2472 }
1da177e4
LT
2473}
2474
ed11d9eb
CL
2475/*
2476 * Remove slabs from the list of free slabs.
2477 * Specify the number of slabs to drain in tofree.
2478 *
2479 * Returns the actual number of slabs released.
2480 */
2481static int drain_freelist(struct kmem_cache *cache,
2482 struct kmem_list3 *l3, int tofree)
1da177e4 2483{
ed11d9eb
CL
2484 struct list_head *p;
2485 int nr_freed;
1da177e4 2486 struct slab *slabp;
1da177e4 2487
ed11d9eb
CL
2488 nr_freed = 0;
2489 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2490
ed11d9eb 2491 spin_lock_irq(&l3->list_lock);
e498be7d 2492 p = l3->slabs_free.prev;
ed11d9eb
CL
2493 if (p == &l3->slabs_free) {
2494 spin_unlock_irq(&l3->list_lock);
2495 goto out;
2496 }
1da177e4 2497
ed11d9eb 2498 slabp = list_entry(p, struct slab, list);
1da177e4 2499#if DEBUG
40094fa6 2500 BUG_ON(slabp->inuse);
1da177e4
LT
2501#endif
2502 list_del(&slabp->list);
ed11d9eb
CL
2503 /*
2504 * Safe to drop the lock. The slab is no longer linked
2505 * to the cache.
2506 */
2507 l3->free_objects -= cache->num;
e498be7d 2508 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2509 slab_destroy(cache, slabp);
2510 nr_freed++;
1da177e4 2511 }
ed11d9eb
CL
2512out:
2513 return nr_freed;
1da177e4
LT
2514}
2515
8f5be20b 2516/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2517static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2518{
2519 int ret = 0, i = 0;
2520 struct kmem_list3 *l3;
2521
2522 drain_cpu_caches(cachep);
2523
2524 check_irq_on();
2525 for_each_online_node(i) {
2526 l3 = cachep->nodelists[i];
ed11d9eb
CL
2527 if (!l3)
2528 continue;
2529
2530 drain_freelist(cachep, l3, l3->free_objects);
2531
2532 ret += !list_empty(&l3->slabs_full) ||
2533 !list_empty(&l3->slabs_partial);
e498be7d
CL
2534 }
2535 return (ret ? 1 : 0);
2536}
2537
1da177e4
LT
2538/**
2539 * kmem_cache_shrink - Shrink a cache.
2540 * @cachep: The cache to shrink.
2541 *
2542 * Releases as many slabs as possible for a cache.
2543 * To help debugging, a zero exit status indicates all slabs were released.
2544 */
343e0d7a 2545int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2546{
8f5be20b 2547 int ret;
40094fa6 2548 BUG_ON(!cachep || in_interrupt());
1da177e4 2549
8f5be20b
RT
2550 mutex_lock(&cache_chain_mutex);
2551 ret = __cache_shrink(cachep);
2552 mutex_unlock(&cache_chain_mutex);
2553 return ret;
1da177e4
LT
2554}
2555EXPORT_SYMBOL(kmem_cache_shrink);
2556
2557/**
2558 * kmem_cache_destroy - delete a cache
2559 * @cachep: the cache to destroy
2560 *
72fd4a35 2561 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2562 *
2563 * It is expected this function will be called by a module when it is
2564 * unloaded. This will remove the cache completely, and avoid a duplicate
2565 * cache being allocated each time a module is loaded and unloaded, if the
2566 * module doesn't have persistent in-kernel storage across loads and unloads.
2567 *
2568 * The cache must be empty before calling this function.
2569 *
2570 * The caller must guarantee that noone will allocate memory from the cache
2571 * during the kmem_cache_destroy().
2572 */
133d205a 2573void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2574{
40094fa6 2575 BUG_ON(!cachep || in_interrupt());
1da177e4 2576
1da177e4 2577 /* Find the cache in the chain of caches. */
fc0abb14 2578 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2579 /*
2580 * the chain is never empty, cache_cache is never destroyed
2581 */
2582 list_del(&cachep->next);
1da177e4
LT
2583 if (__cache_shrink(cachep)) {
2584 slab_error(cachep, "Can't free all objects");
b28a02de 2585 list_add(&cachep->next, &cache_chain);
fc0abb14 2586 mutex_unlock(&cache_chain_mutex);
133d205a 2587 return;
1da177e4
LT
2588 }
2589
2590 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2591 synchronize_rcu();
1da177e4 2592
117f6eb1 2593 __kmem_cache_destroy(cachep);
8f5be20b 2594 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2595}
2596EXPORT_SYMBOL(kmem_cache_destroy);
2597
e5ac9c5a
RT
2598/*
2599 * Get the memory for a slab management obj.
2600 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2601 * always come from malloc_sizes caches. The slab descriptor cannot
2602 * come from the same cache which is getting created because,
2603 * when we are searching for an appropriate cache for these
2604 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2605 * If we are creating a malloc_sizes cache here it would not be visible to
2606 * kmem_find_general_cachep till the initialization is complete.
2607 * Hence we cannot have slabp_cache same as the original cache.
2608 */
343e0d7a 2609static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2610 int colour_off, gfp_t local_flags,
2611 int nodeid)
1da177e4
LT
2612{
2613 struct slab *slabp;
b28a02de 2614
1da177e4
LT
2615 if (OFF_SLAB(cachep)) {
2616 /* Slab management obj is off-slab. */
5b74ada7 2617 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2618 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2619 if (!slabp)
2620 return NULL;
2621 } else {
b28a02de 2622 slabp = objp + colour_off;
1da177e4
LT
2623 colour_off += cachep->slab_size;
2624 }
2625 slabp->inuse = 0;
2626 slabp->colouroff = colour_off;
b28a02de 2627 slabp->s_mem = objp + colour_off;
5b74ada7 2628 slabp->nodeid = nodeid;
1da177e4
LT
2629 return slabp;
2630}
2631
2632static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2633{
b28a02de 2634 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2635}
2636
343e0d7a 2637static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2638 struct slab *slabp)
1da177e4
LT
2639{
2640 int i;
2641
2642 for (i = 0; i < cachep->num; i++) {
8fea4e96 2643 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2644#if DEBUG
2645 /* need to poison the objs? */
2646 if (cachep->flags & SLAB_POISON)
2647 poison_obj(cachep, objp, POISON_FREE);
2648 if (cachep->flags & SLAB_STORE_USER)
2649 *dbg_userword(cachep, objp) = NULL;
2650
2651 if (cachep->flags & SLAB_RED_ZONE) {
2652 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2653 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2654 }
2655 /*
a737b3e2
AM
2656 * Constructors are not allowed to allocate memory from the same
2657 * cache which they are a constructor for. Otherwise, deadlock.
2658 * They must also be threaded.
1da177e4
LT
2659 */
2660 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
4ba9b9d0 2661 cachep->ctor(cachep, objp + obj_offset(cachep));
1da177e4
LT
2662
2663 if (cachep->flags & SLAB_RED_ZONE) {
2664 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2665 slab_error(cachep, "constructor overwrote the"
b28a02de 2666 " end of an object");
1da177e4
LT
2667 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2668 slab_error(cachep, "constructor overwrote the"
b28a02de 2669 " start of an object");
1da177e4 2670 }
a737b3e2
AM
2671 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2672 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2673 kernel_map_pages(virt_to_page(objp),
3dafccf2 2674 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2675#else
2676 if (cachep->ctor)
4ba9b9d0 2677 cachep->ctor(cachep, objp);
1da177e4 2678#endif
b28a02de 2679 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2680 }
b28a02de 2681 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2682 slabp->free = 0;
2683}
2684
343e0d7a 2685static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2686{
4b51d669
CL
2687 if (CONFIG_ZONE_DMA_FLAG) {
2688 if (flags & GFP_DMA)
2689 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2690 else
2691 BUG_ON(cachep->gfpflags & GFP_DMA);
2692 }
1da177e4
LT
2693}
2694
a737b3e2
AM
2695static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2696 int nodeid)
78d382d7 2697{
8fea4e96 2698 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2699 kmem_bufctl_t next;
2700
2701 slabp->inuse++;
2702 next = slab_bufctl(slabp)[slabp->free];
2703#if DEBUG
2704 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2705 WARN_ON(slabp->nodeid != nodeid);
2706#endif
2707 slabp->free = next;
2708
2709 return objp;
2710}
2711
a737b3e2
AM
2712static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2713 void *objp, int nodeid)
78d382d7 2714{
8fea4e96 2715 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2716
2717#if DEBUG
2718 /* Verify that the slab belongs to the intended node */
2719 WARN_ON(slabp->nodeid != nodeid);
2720
871751e2 2721 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2722 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2723 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2724 BUG();
2725 }
2726#endif
2727 slab_bufctl(slabp)[objnr] = slabp->free;
2728 slabp->free = objnr;
2729 slabp->inuse--;
2730}
2731
4776874f
PE
2732/*
2733 * Map pages beginning at addr to the given cache and slab. This is required
2734 * for the slab allocator to be able to lookup the cache and slab of a
2735 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2736 */
2737static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2738 void *addr)
1da177e4 2739{
4776874f 2740 int nr_pages;
1da177e4
LT
2741 struct page *page;
2742
4776874f 2743 page = virt_to_page(addr);
84097518 2744
4776874f 2745 nr_pages = 1;
84097518 2746 if (likely(!PageCompound(page)))
4776874f
PE
2747 nr_pages <<= cache->gfporder;
2748
1da177e4 2749 do {
4776874f
PE
2750 page_set_cache(page, cache);
2751 page_set_slab(page, slab);
1da177e4 2752 page++;
4776874f 2753 } while (--nr_pages);
1da177e4
LT
2754}
2755
2756/*
2757 * Grow (by 1) the number of slabs within a cache. This is called by
2758 * kmem_cache_alloc() when there are no active objs left in a cache.
2759 */
3c517a61
CL
2760static int cache_grow(struct kmem_cache *cachep,
2761 gfp_t flags, int nodeid, void *objp)
1da177e4 2762{
b28a02de 2763 struct slab *slabp;
b28a02de
PE
2764 size_t offset;
2765 gfp_t local_flags;
e498be7d 2766 struct kmem_list3 *l3;
1da177e4 2767
a737b3e2
AM
2768 /*
2769 * Be lazy and only check for valid flags here, keeping it out of the
2770 * critical path in kmem_cache_alloc().
1da177e4 2771 */
6cb06229
CL
2772 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2773 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2774
2e1217cf 2775 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2776 check_irq_off();
2e1217cf
RT
2777 l3 = cachep->nodelists[nodeid];
2778 spin_lock(&l3->list_lock);
1da177e4
LT
2779
2780 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2781 offset = l3->colour_next;
2782 l3->colour_next++;
2783 if (l3->colour_next >= cachep->colour)
2784 l3->colour_next = 0;
2785 spin_unlock(&l3->list_lock);
1da177e4 2786
2e1217cf 2787 offset *= cachep->colour_off;
1da177e4
LT
2788
2789 if (local_flags & __GFP_WAIT)
2790 local_irq_enable();
2791
2792 /*
2793 * The test for missing atomic flag is performed here, rather than
2794 * the more obvious place, simply to reduce the critical path length
2795 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2796 * will eventually be caught here (where it matters).
2797 */
2798 kmem_flagcheck(cachep, flags);
2799
a737b3e2
AM
2800 /*
2801 * Get mem for the objs. Attempt to allocate a physical page from
2802 * 'nodeid'.
e498be7d 2803 */
3c517a61 2804 if (!objp)
b8c1c5da 2805 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2806 if (!objp)
1da177e4
LT
2807 goto failed;
2808
2809 /* Get slab management. */
3c517a61 2810 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2811 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2812 if (!slabp)
1da177e4
LT
2813 goto opps1;
2814
e498be7d 2815 slabp->nodeid = nodeid;
4776874f 2816 slab_map_pages(cachep, slabp, objp);
1da177e4 2817
a35afb83 2818 cache_init_objs(cachep, slabp);
1da177e4
LT
2819
2820 if (local_flags & __GFP_WAIT)
2821 local_irq_disable();
2822 check_irq_off();
e498be7d 2823 spin_lock(&l3->list_lock);
1da177e4
LT
2824
2825 /* Make slab active. */
e498be7d 2826 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2827 STATS_INC_GROWN(cachep);
e498be7d
CL
2828 l3->free_objects += cachep->num;
2829 spin_unlock(&l3->list_lock);
1da177e4 2830 return 1;
a737b3e2 2831opps1:
1da177e4 2832 kmem_freepages(cachep, objp);
a737b3e2 2833failed:
1da177e4
LT
2834 if (local_flags & __GFP_WAIT)
2835 local_irq_disable();
2836 return 0;
2837}
2838
2839#if DEBUG
2840
2841/*
2842 * Perform extra freeing checks:
2843 * - detect bad pointers.
2844 * - POISON/RED_ZONE checking
1da177e4
LT
2845 */
2846static void kfree_debugcheck(const void *objp)
2847{
1da177e4
LT
2848 if (!virt_addr_valid(objp)) {
2849 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2850 (unsigned long)objp);
2851 BUG();
1da177e4 2852 }
1da177e4
LT
2853}
2854
58ce1fd5
PE
2855static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2856{
b46b8f19 2857 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2858
2859 redzone1 = *dbg_redzone1(cache, obj);
2860 redzone2 = *dbg_redzone2(cache, obj);
2861
2862 /*
2863 * Redzone is ok.
2864 */
2865 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2866 return;
2867
2868 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2869 slab_error(cache, "double free detected");
2870 else
2871 slab_error(cache, "memory outside object was overwritten");
2872
b46b8f19 2873 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2874 obj, redzone1, redzone2);
2875}
2876
343e0d7a 2877static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2878 void *caller)
1da177e4
LT
2879{
2880 struct page *page;
2881 unsigned int objnr;
2882 struct slab *slabp;
2883
3dafccf2 2884 objp -= obj_offset(cachep);
1da177e4 2885 kfree_debugcheck(objp);
b49af68f 2886 page = virt_to_head_page(objp);
1da177e4 2887
065d41cb 2888 slabp = page_get_slab(page);
1da177e4
LT
2889
2890 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2891 verify_redzone_free(cachep, objp);
1da177e4
LT
2892 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2893 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2894 }
2895 if (cachep->flags & SLAB_STORE_USER)
2896 *dbg_userword(cachep, objp) = caller;
2897
8fea4e96 2898 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2899
2900 BUG_ON(objnr >= cachep->num);
8fea4e96 2901 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2902
871751e2
AV
2903#ifdef CONFIG_DEBUG_SLAB_LEAK
2904 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2905#endif
1da177e4
LT
2906 if (cachep->flags & SLAB_POISON) {
2907#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2908 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2909 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2910 kernel_map_pages(virt_to_page(objp),
3dafccf2 2911 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2912 } else {
2913 poison_obj(cachep, objp, POISON_FREE);
2914 }
2915#else
2916 poison_obj(cachep, objp, POISON_FREE);
2917#endif
2918 }
2919 return objp;
2920}
2921
343e0d7a 2922static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2923{
2924 kmem_bufctl_t i;
2925 int entries = 0;
b28a02de 2926
1da177e4
LT
2927 /* Check slab's freelist to see if this obj is there. */
2928 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2929 entries++;
2930 if (entries > cachep->num || i >= cachep->num)
2931 goto bad;
2932 }
2933 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2934bad:
2935 printk(KERN_ERR "slab: Internal list corruption detected in "
2936 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2937 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2938 for (i = 0;
264132bc 2939 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2940 i++) {
a737b3e2 2941 if (i % 16 == 0)
1da177e4 2942 printk("\n%03x:", i);
b28a02de 2943 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2944 }
2945 printk("\n");
2946 BUG();
2947 }
2948}
2949#else
2950#define kfree_debugcheck(x) do { } while(0)
2951#define cache_free_debugcheck(x,objp,z) (objp)
2952#define check_slabp(x,y) do { } while(0)
2953#endif
2954
343e0d7a 2955static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2956{
2957 int batchcount;
2958 struct kmem_list3 *l3;
2959 struct array_cache *ac;
1ca4cb24
PE
2960 int node;
2961
2962 node = numa_node_id();
1da177e4
LT
2963
2964 check_irq_off();
9a2dba4b 2965 ac = cpu_cache_get(cachep);
a737b3e2 2966retry:
1da177e4
LT
2967 batchcount = ac->batchcount;
2968 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2969 /*
2970 * If there was little recent activity on this cache, then
2971 * perform only a partial refill. Otherwise we could generate
2972 * refill bouncing.
1da177e4
LT
2973 */
2974 batchcount = BATCHREFILL_LIMIT;
2975 }
1ca4cb24 2976 l3 = cachep->nodelists[node];
e498be7d
CL
2977
2978 BUG_ON(ac->avail > 0 || !l3);
2979 spin_lock(&l3->list_lock);
1da177e4 2980
3ded175a
CL
2981 /* See if we can refill from the shared array */
2982 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2983 goto alloc_done;
2984
1da177e4
LT
2985 while (batchcount > 0) {
2986 struct list_head *entry;
2987 struct slab *slabp;
2988 /* Get slab alloc is to come from. */
2989 entry = l3->slabs_partial.next;
2990 if (entry == &l3->slabs_partial) {
2991 l3->free_touched = 1;
2992 entry = l3->slabs_free.next;
2993 if (entry == &l3->slabs_free)
2994 goto must_grow;
2995 }
2996
2997 slabp = list_entry(entry, struct slab, list);
2998 check_slabp(cachep, slabp);
2999 check_spinlock_acquired(cachep);
714b8171
PE
3000
3001 /*
3002 * The slab was either on partial or free list so
3003 * there must be at least one object available for
3004 * allocation.
3005 */
3006 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3007
1da177e4 3008 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3009 STATS_INC_ALLOCED(cachep);
3010 STATS_INC_ACTIVE(cachep);
3011 STATS_SET_HIGH(cachep);
3012
78d382d7 3013 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3014 node);
1da177e4
LT
3015 }
3016 check_slabp(cachep, slabp);
3017
3018 /* move slabp to correct slabp list: */
3019 list_del(&slabp->list);
3020 if (slabp->free == BUFCTL_END)
3021 list_add(&slabp->list, &l3->slabs_full);
3022 else
3023 list_add(&slabp->list, &l3->slabs_partial);
3024 }
3025
a737b3e2 3026must_grow:
1da177e4 3027 l3->free_objects -= ac->avail;
a737b3e2 3028alloc_done:
e498be7d 3029 spin_unlock(&l3->list_lock);
1da177e4
LT
3030
3031 if (unlikely(!ac->avail)) {
3032 int x;
3c517a61 3033 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3034
a737b3e2 3035 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3036 ac = cpu_cache_get(cachep);
a737b3e2 3037 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3038 return NULL;
3039
a737b3e2 3040 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3041 goto retry;
3042 }
3043 ac->touched = 1;
e498be7d 3044 return ac->entry[--ac->avail];
1da177e4
LT
3045}
3046
a737b3e2
AM
3047static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3048 gfp_t flags)
1da177e4
LT
3049{
3050 might_sleep_if(flags & __GFP_WAIT);
3051#if DEBUG
3052 kmem_flagcheck(cachep, flags);
3053#endif
3054}
3055
3056#if DEBUG
a737b3e2
AM
3057static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3058 gfp_t flags, void *objp, void *caller)
1da177e4 3059{
b28a02de 3060 if (!objp)
1da177e4 3061 return objp;
b28a02de 3062 if (cachep->flags & SLAB_POISON) {
1da177e4 3063#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3064 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3065 kernel_map_pages(virt_to_page(objp),
3dafccf2 3066 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3067 else
3068 check_poison_obj(cachep, objp);
3069#else
3070 check_poison_obj(cachep, objp);
3071#endif
3072 poison_obj(cachep, objp, POISON_INUSE);
3073 }
3074 if (cachep->flags & SLAB_STORE_USER)
3075 *dbg_userword(cachep, objp) = caller;
3076
3077 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3078 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3079 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3080 slab_error(cachep, "double free, or memory outside"
3081 " object was overwritten");
b28a02de 3082 printk(KERN_ERR
b46b8f19 3083 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3084 objp, *dbg_redzone1(cachep, objp),
3085 *dbg_redzone2(cachep, objp));
1da177e4
LT
3086 }
3087 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3088 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3089 }
871751e2
AV
3090#ifdef CONFIG_DEBUG_SLAB_LEAK
3091 {
3092 struct slab *slabp;
3093 unsigned objnr;
3094
b49af68f 3095 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3096 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3097 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3098 }
3099#endif
3dafccf2 3100 objp += obj_offset(cachep);
4f104934 3101 if (cachep->ctor && cachep->flags & SLAB_POISON)
4ba9b9d0 3102 cachep->ctor(cachep, objp);
a44b56d3
KH
3103#if ARCH_SLAB_MINALIGN
3104 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3105 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp, ARCH_SLAB_MINALIGN);
3107 }
3108#endif
1da177e4
LT
3109 return objp;
3110}
3111#else
3112#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113#endif
3114
8a8b6502
AM
3115#ifdef CONFIG_FAILSLAB
3116
3117static struct failslab_attr {
3118
3119 struct fault_attr attr;
3120
3121 u32 ignore_gfp_wait;
3122#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3123 struct dentry *ignore_gfp_wait_file;
3124#endif
3125
3126} failslab = {
3127 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3128 .ignore_gfp_wait = 1,
8a8b6502
AM
3129};
3130
3131static int __init setup_failslab(char *str)
3132{
3133 return setup_fault_attr(&failslab.attr, str);
3134}
3135__setup("failslab=", setup_failslab);
3136
3137static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3138{
3139 if (cachep == &cache_cache)
3140 return 0;
3141 if (flags & __GFP_NOFAIL)
3142 return 0;
3143 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3144 return 0;
3145
3146 return should_fail(&failslab.attr, obj_size(cachep));
3147}
3148
3149#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3150
3151static int __init failslab_debugfs(void)
3152{
3153 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3154 struct dentry *dir;
3155 int err;
3156
824ebef1 3157 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3158 if (err)
3159 return err;
3160 dir = failslab.attr.dentries.dir;
3161
3162 failslab.ignore_gfp_wait_file =
3163 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3164 &failslab.ignore_gfp_wait);
3165
3166 if (!failslab.ignore_gfp_wait_file) {
3167 err = -ENOMEM;
3168 debugfs_remove(failslab.ignore_gfp_wait_file);
3169 cleanup_fault_attr_dentries(&failslab.attr);
3170 }
3171
3172 return err;
3173}
3174
3175late_initcall(failslab_debugfs);
3176
3177#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3178
3179#else /* CONFIG_FAILSLAB */
3180
3181static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3182{
3183 return 0;
3184}
3185
3186#endif /* CONFIG_FAILSLAB */
3187
343e0d7a 3188static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3189{
b28a02de 3190 void *objp;
1da177e4
LT
3191 struct array_cache *ac;
3192
5c382300 3193 check_irq_off();
8a8b6502 3194
9a2dba4b 3195 ac = cpu_cache_get(cachep);
1da177e4
LT
3196 if (likely(ac->avail)) {
3197 STATS_INC_ALLOCHIT(cachep);
3198 ac->touched = 1;
e498be7d 3199 objp = ac->entry[--ac->avail];
1da177e4
LT
3200 } else {
3201 STATS_INC_ALLOCMISS(cachep);
3202 objp = cache_alloc_refill(cachep, flags);
3203 }
5c382300
AK
3204 return objp;
3205}
3206
e498be7d 3207#ifdef CONFIG_NUMA
c61afb18 3208/*
b2455396 3209 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3210 *
3211 * If we are in_interrupt, then process context, including cpusets and
3212 * mempolicy, may not apply and should not be used for allocation policy.
3213 */
3214static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3215{
3216 int nid_alloc, nid_here;
3217
765c4507 3218 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3219 return NULL;
3220 nid_alloc = nid_here = numa_node_id();
3221 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222 nid_alloc = cpuset_mem_spread_node();
3223 else if (current->mempolicy)
3224 nid_alloc = slab_node(current->mempolicy);
3225 if (nid_alloc != nid_here)
8b98c169 3226 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3227 return NULL;
3228}
3229
765c4507
CL
3230/*
3231 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3232 * certain node and fall back is permitted. First we scan all the
3233 * available nodelists for available objects. If that fails then we
3234 * perform an allocation without specifying a node. This allows the page
3235 * allocator to do its reclaim / fallback magic. We then insert the
3236 * slab into the proper nodelist and then allocate from it.
765c4507 3237 */
8c8cc2c1 3238static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3239{
8c8cc2c1
PE
3240 struct zonelist *zonelist;
3241 gfp_t local_flags;
765c4507
CL
3242 struct zone **z;
3243 void *obj = NULL;
3c517a61 3244 int nid;
8c8cc2c1
PE
3245
3246 if (flags & __GFP_THISNODE)
3247 return NULL;
3248
3249 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3250 ->node_zonelists[gfp_zone(flags)];
6cb06229 3251 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3252
3c517a61
CL
3253retry:
3254 /*
3255 * Look through allowed nodes for objects available
3256 * from existing per node queues.
3257 */
aedb0eb1 3258 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3259 nid = zone_to_nid(*z);
aedb0eb1 3260
02a0e53d 3261 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3262 cache->nodelists[nid] &&
3263 cache->nodelists[nid]->free_objects)
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
3266 }
3267
cfce6604 3268 if (!obj) {
3c517a61
CL
3269 /*
3270 * This allocation will be performed within the constraints
3271 * of the current cpuset / memory policy requirements.
3272 * We may trigger various forms of reclaim on the allowed
3273 * set and go into memory reserves if necessary.
3274 */
dd47ea75
CL
3275 if (local_flags & __GFP_WAIT)
3276 local_irq_enable();
3277 kmem_flagcheck(cache, flags);
3c517a61 3278 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3279 if (local_flags & __GFP_WAIT)
3280 local_irq_disable();
3c517a61
CL
3281 if (obj) {
3282 /*
3283 * Insert into the appropriate per node queues
3284 */
3285 nid = page_to_nid(virt_to_page(obj));
3286 if (cache_grow(cache, flags, nid, obj)) {
3287 obj = ____cache_alloc_node(cache,
3288 flags | GFP_THISNODE, nid);
3289 if (!obj)
3290 /*
3291 * Another processor may allocate the
3292 * objects in the slab since we are
3293 * not holding any locks.
3294 */
3295 goto retry;
3296 } else {
b6a60451 3297 /* cache_grow already freed obj */
3c517a61
CL
3298 obj = NULL;
3299 }
3300 }
aedb0eb1 3301 }
765c4507
CL
3302 return obj;
3303}
3304
e498be7d
CL
3305/*
3306 * A interface to enable slab creation on nodeid
1da177e4 3307 */
8b98c169 3308static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3309 int nodeid)
e498be7d
CL
3310{
3311 struct list_head *entry;
b28a02de
PE
3312 struct slab *slabp;
3313 struct kmem_list3 *l3;
3314 void *obj;
b28a02de
PE
3315 int x;
3316
3317 l3 = cachep->nodelists[nodeid];
3318 BUG_ON(!l3);
3319
a737b3e2 3320retry:
ca3b9b91 3321 check_irq_off();
b28a02de
PE
3322 spin_lock(&l3->list_lock);
3323 entry = l3->slabs_partial.next;
3324 if (entry == &l3->slabs_partial) {
3325 l3->free_touched = 1;
3326 entry = l3->slabs_free.next;
3327 if (entry == &l3->slabs_free)
3328 goto must_grow;
3329 }
3330
3331 slabp = list_entry(entry, struct slab, list);
3332 check_spinlock_acquired_node(cachep, nodeid);
3333 check_slabp(cachep, slabp);
3334
3335 STATS_INC_NODEALLOCS(cachep);
3336 STATS_INC_ACTIVE(cachep);
3337 STATS_SET_HIGH(cachep);
3338
3339 BUG_ON(slabp->inuse == cachep->num);
3340
78d382d7 3341 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3342 check_slabp(cachep, slabp);
3343 l3->free_objects--;
3344 /* move slabp to correct slabp list: */
3345 list_del(&slabp->list);
3346
a737b3e2 3347 if (slabp->free == BUFCTL_END)
b28a02de 3348 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3349 else
b28a02de 3350 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3351
b28a02de
PE
3352 spin_unlock(&l3->list_lock);
3353 goto done;
e498be7d 3354
a737b3e2 3355must_grow:
b28a02de 3356 spin_unlock(&l3->list_lock);
3c517a61 3357 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3358 if (x)
3359 goto retry;
1da177e4 3360
8c8cc2c1 3361 return fallback_alloc(cachep, flags);
e498be7d 3362
a737b3e2 3363done:
b28a02de 3364 return obj;
e498be7d 3365}
8c8cc2c1
PE
3366
3367/**
3368 * kmem_cache_alloc_node - Allocate an object on the specified node
3369 * @cachep: The cache to allocate from.
3370 * @flags: See kmalloc().
3371 * @nodeid: node number of the target node.
3372 * @caller: return address of caller, used for debug information
3373 *
3374 * Identical to kmem_cache_alloc but it will allocate memory on the given
3375 * node, which can improve the performance for cpu bound structures.
3376 *
3377 * Fallback to other node is possible if __GFP_THISNODE is not set.
3378 */
3379static __always_inline void *
3380__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3381 void *caller)
3382{
3383 unsigned long save_flags;
3384 void *ptr;
3385
824ebef1
AM
3386 if (should_failslab(cachep, flags))
3387 return NULL;
3388
8c8cc2c1
PE
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391
3392 if (unlikely(nodeid == -1))
3393 nodeid = numa_node_id();
3394
3395 if (unlikely(!cachep->nodelists[nodeid])) {
3396 /* Node not bootstrapped yet */
3397 ptr = fallback_alloc(cachep, flags);
3398 goto out;
3399 }
3400
3401 if (nodeid == numa_node_id()) {
3402 /*
3403 * Use the locally cached objects if possible.
3404 * However ____cache_alloc does not allow fallback
3405 * to other nodes. It may fail while we still have
3406 * objects on other nodes available.
3407 */
3408 ptr = ____cache_alloc(cachep, flags);
3409 if (ptr)
3410 goto out;
3411 }
3412 /* ___cache_alloc_node can fall back to other nodes */
3413 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3414 out:
3415 local_irq_restore(save_flags);
3416 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3417
d07dbea4
CL
3418 if (unlikely((flags & __GFP_ZERO) && ptr))
3419 memset(ptr, 0, obj_size(cachep));
3420
8c8cc2c1
PE
3421 return ptr;
3422}
3423
3424static __always_inline void *
3425__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3426{
3427 void *objp;
3428
3429 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3430 objp = alternate_node_alloc(cache, flags);
3431 if (objp)
3432 goto out;
3433 }
3434 objp = ____cache_alloc(cache, flags);
3435
3436 /*
3437 * We may just have run out of memory on the local node.
3438 * ____cache_alloc_node() knows how to locate memory on other nodes
3439 */
3440 if (!objp)
3441 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3442
3443 out:
3444 return objp;
3445}
3446#else
3447
3448static __always_inline void *
3449__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3450{
3451 return ____cache_alloc(cachep, flags);
3452}
3453
3454#endif /* CONFIG_NUMA */
3455
3456static __always_inline void *
3457__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3458{
3459 unsigned long save_flags;
3460 void *objp;
3461
824ebef1
AM
3462 if (should_failslab(cachep, flags))
3463 return NULL;
3464
8c8cc2c1
PE
3465 cache_alloc_debugcheck_before(cachep, flags);
3466 local_irq_save(save_flags);
3467 objp = __do_cache_alloc(cachep, flags);
3468 local_irq_restore(save_flags);
3469 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3470 prefetchw(objp);
3471
d07dbea4
CL
3472 if (unlikely((flags & __GFP_ZERO) && objp))
3473 memset(objp, 0, obj_size(cachep));
3474
8c8cc2c1
PE
3475 return objp;
3476}
e498be7d
CL
3477
3478/*
3479 * Caller needs to acquire correct kmem_list's list_lock
3480 */
343e0d7a 3481static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3482 int node)
1da177e4
LT
3483{
3484 int i;
e498be7d 3485 struct kmem_list3 *l3;
1da177e4
LT
3486
3487 for (i = 0; i < nr_objects; i++) {
3488 void *objp = objpp[i];
3489 struct slab *slabp;
1da177e4 3490
6ed5eb22 3491 slabp = virt_to_slab(objp);
ff69416e 3492 l3 = cachep->nodelists[node];
1da177e4 3493 list_del(&slabp->list);
ff69416e 3494 check_spinlock_acquired_node(cachep, node);
1da177e4 3495 check_slabp(cachep, slabp);
78d382d7 3496 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3497 STATS_DEC_ACTIVE(cachep);
e498be7d 3498 l3->free_objects++;
1da177e4
LT
3499 check_slabp(cachep, slabp);
3500
3501 /* fixup slab chains */
3502 if (slabp->inuse == 0) {
e498be7d
CL
3503 if (l3->free_objects > l3->free_limit) {
3504 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3505 /* No need to drop any previously held
3506 * lock here, even if we have a off-slab slab
3507 * descriptor it is guaranteed to come from
3508 * a different cache, refer to comments before
3509 * alloc_slabmgmt.
3510 */
1da177e4
LT
3511 slab_destroy(cachep, slabp);
3512 } else {
e498be7d 3513 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3514 }
3515 } else {
3516 /* Unconditionally move a slab to the end of the
3517 * partial list on free - maximum time for the
3518 * other objects to be freed, too.
3519 */
e498be7d 3520 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3521 }
3522 }
3523}
3524
343e0d7a 3525static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3526{
3527 int batchcount;
e498be7d 3528 struct kmem_list3 *l3;
ff69416e 3529 int node = numa_node_id();
1da177e4
LT
3530
3531 batchcount = ac->batchcount;
3532#if DEBUG
3533 BUG_ON(!batchcount || batchcount > ac->avail);
3534#endif
3535 check_irq_off();
ff69416e 3536 l3 = cachep->nodelists[node];
873623df 3537 spin_lock(&l3->list_lock);
e498be7d
CL
3538 if (l3->shared) {
3539 struct array_cache *shared_array = l3->shared;
b28a02de 3540 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3541 if (max) {
3542 if (batchcount > max)
3543 batchcount = max;
e498be7d 3544 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3545 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3546 shared_array->avail += batchcount;
3547 goto free_done;
3548 }
3549 }
3550
ff69416e 3551 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3552free_done:
1da177e4
LT
3553#if STATS
3554 {
3555 int i = 0;
3556 struct list_head *p;
3557
e498be7d
CL
3558 p = l3->slabs_free.next;
3559 while (p != &(l3->slabs_free)) {
1da177e4
LT
3560 struct slab *slabp;
3561
3562 slabp = list_entry(p, struct slab, list);
3563 BUG_ON(slabp->inuse);
3564
3565 i++;
3566 p = p->next;
3567 }
3568 STATS_SET_FREEABLE(cachep, i);
3569 }
3570#endif
e498be7d 3571 spin_unlock(&l3->list_lock);
1da177e4 3572 ac->avail -= batchcount;
a737b3e2 3573 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3574}
3575
3576/*
a737b3e2
AM
3577 * Release an obj back to its cache. If the obj has a constructed state, it must
3578 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3579 */
873623df 3580static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3581{
9a2dba4b 3582 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3583
3584 check_irq_off();
3585 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3586
1807a1aa
SS
3587 /*
3588 * Skip calling cache_free_alien() when the platform is not numa.
3589 * This will avoid cache misses that happen while accessing slabp (which
3590 * is per page memory reference) to get nodeid. Instead use a global
3591 * variable to skip the call, which is mostly likely to be present in
3592 * the cache.
3593 */
3594 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3595 return;
3596
1da177e4
LT
3597 if (likely(ac->avail < ac->limit)) {
3598 STATS_INC_FREEHIT(cachep);
e498be7d 3599 ac->entry[ac->avail++] = objp;
1da177e4
LT
3600 return;
3601 } else {
3602 STATS_INC_FREEMISS(cachep);
3603 cache_flusharray(cachep, ac);
e498be7d 3604 ac->entry[ac->avail++] = objp;
1da177e4
LT
3605 }
3606}
3607
3608/**
3609 * kmem_cache_alloc - Allocate an object
3610 * @cachep: The cache to allocate from.
3611 * @flags: See kmalloc().
3612 *
3613 * Allocate an object from this cache. The flags are only relevant
3614 * if the cache has no available objects.
3615 */
343e0d7a 3616void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3617{
7fd6b141 3618 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3619}
3620EXPORT_SYMBOL(kmem_cache_alloc);
3621
3622/**
3623 * kmem_ptr_validate - check if an untrusted pointer might
3624 * be a slab entry.
3625 * @cachep: the cache we're checking against
3626 * @ptr: pointer to validate
3627 *
3628 * This verifies that the untrusted pointer looks sane:
3629 * it is _not_ a guarantee that the pointer is actually
3630 * part of the slab cache in question, but it at least
3631 * validates that the pointer can be dereferenced and
3632 * looks half-way sane.
3633 *
3634 * Currently only used for dentry validation.
3635 */
b7f869a2 3636int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3637{
b28a02de 3638 unsigned long addr = (unsigned long)ptr;
1da177e4 3639 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3640 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3641 unsigned long size = cachep->buffer_size;
1da177e4
LT
3642 struct page *page;
3643
3644 if (unlikely(addr < min_addr))
3645 goto out;
3646 if (unlikely(addr > (unsigned long)high_memory - size))
3647 goto out;
3648 if (unlikely(addr & align_mask))
3649 goto out;
3650 if (unlikely(!kern_addr_valid(addr)))
3651 goto out;
3652 if (unlikely(!kern_addr_valid(addr + size - 1)))
3653 goto out;
3654 page = virt_to_page(ptr);
3655 if (unlikely(!PageSlab(page)))
3656 goto out;
065d41cb 3657 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3658 goto out;
3659 return 1;
a737b3e2 3660out:
1da177e4
LT
3661 return 0;
3662}
3663
3664#ifdef CONFIG_NUMA
8b98c169
CH
3665void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3666{
3667 return __cache_alloc_node(cachep, flags, nodeid,
3668 __builtin_return_address(0));
3669}
1da177e4
LT
3670EXPORT_SYMBOL(kmem_cache_alloc_node);
3671
8b98c169
CH
3672static __always_inline void *
3673__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3674{
343e0d7a 3675 struct kmem_cache *cachep;
97e2bde4
MS
3676
3677 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3678 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3679 return cachep;
97e2bde4
MS
3680 return kmem_cache_alloc_node(cachep, flags, node);
3681}
8b98c169
CH
3682
3683#ifdef CONFIG_DEBUG_SLAB
3684void *__kmalloc_node(size_t size, gfp_t flags, int node)
3685{
3686 return __do_kmalloc_node(size, flags, node,
3687 __builtin_return_address(0));
3688}
dbe5e69d 3689EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3690
3691void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3692 int node, void *caller)
3693{
3694 return __do_kmalloc_node(size, flags, node, caller);
3695}
3696EXPORT_SYMBOL(__kmalloc_node_track_caller);
3697#else
3698void *__kmalloc_node(size_t size, gfp_t flags, int node)
3699{
3700 return __do_kmalloc_node(size, flags, node, NULL);
3701}
3702EXPORT_SYMBOL(__kmalloc_node);
3703#endif /* CONFIG_DEBUG_SLAB */
3704#endif /* CONFIG_NUMA */
1da177e4
LT
3705
3706/**
800590f5 3707 * __do_kmalloc - allocate memory
1da177e4 3708 * @size: how many bytes of memory are required.
800590f5 3709 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3710 * @caller: function caller for debug tracking of the caller
1da177e4 3711 */
7fd6b141
PE
3712static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3713 void *caller)
1da177e4 3714{
343e0d7a 3715 struct kmem_cache *cachep;
1da177e4 3716
97e2bde4
MS
3717 /* If you want to save a few bytes .text space: replace
3718 * __ with kmem_.
3719 * Then kmalloc uses the uninlined functions instead of the inline
3720 * functions.
3721 */
3722 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3723 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3724 return cachep;
7fd6b141
PE
3725 return __cache_alloc(cachep, flags, caller);
3726}
3727
7fd6b141 3728
1d2c8eea 3729#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3730void *__kmalloc(size_t size, gfp_t flags)
3731{
871751e2 3732 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3733}
3734EXPORT_SYMBOL(__kmalloc);
3735
7fd6b141
PE
3736void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3737{
3738 return __do_kmalloc(size, flags, caller);
3739}
3740EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3741
3742#else
3743void *__kmalloc(size_t size, gfp_t flags)
3744{
3745 return __do_kmalloc(size, flags, NULL);
3746}
3747EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3748#endif
3749
1da177e4
LT
3750/**
3751 * kmem_cache_free - Deallocate an object
3752 * @cachep: The cache the allocation was from.
3753 * @objp: The previously allocated object.
3754 *
3755 * Free an object which was previously allocated from this
3756 * cache.
3757 */
343e0d7a 3758void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3759{
3760 unsigned long flags;
3761
ddc2e812
PE
3762 BUG_ON(virt_to_cache(objp) != cachep);
3763
1da177e4 3764 local_irq_save(flags);
898552c9 3765 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3766 __cache_free(cachep, objp);
1da177e4
LT
3767 local_irq_restore(flags);
3768}
3769EXPORT_SYMBOL(kmem_cache_free);
3770
1da177e4
LT
3771/**
3772 * kfree - free previously allocated memory
3773 * @objp: pointer returned by kmalloc.
3774 *
80e93eff
PE
3775 * If @objp is NULL, no operation is performed.
3776 *
1da177e4
LT
3777 * Don't free memory not originally allocated by kmalloc()
3778 * or you will run into trouble.
3779 */
3780void kfree(const void *objp)
3781{
343e0d7a 3782 struct kmem_cache *c;
1da177e4
LT
3783 unsigned long flags;
3784
6cb8f913 3785 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3786 return;
3787 local_irq_save(flags);
3788 kfree_debugcheck(objp);
6ed5eb22 3789 c = virt_to_cache(objp);
f9b8404c 3790 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3791 __cache_free(c, (void *)objp);
1da177e4
LT
3792 local_irq_restore(flags);
3793}
3794EXPORT_SYMBOL(kfree);
3795
343e0d7a 3796unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3797{
3dafccf2 3798 return obj_size(cachep);
1da177e4
LT
3799}
3800EXPORT_SYMBOL(kmem_cache_size);
3801
343e0d7a 3802const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3803{
3804 return cachep->name;
3805}
3806EXPORT_SYMBOL_GPL(kmem_cache_name);
3807
e498be7d 3808/*
183ff22b 3809 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3810 */
343e0d7a 3811static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3812{
3813 int node;
3814 struct kmem_list3 *l3;
cafeb02e 3815 struct array_cache *new_shared;
3395ee05 3816 struct array_cache **new_alien = NULL;
e498be7d 3817
04231b30 3818 for_each_node_state(node, N_NORMAL_MEMORY) {
cafeb02e 3819
3395ee05
PM
3820 if (use_alien_caches) {
3821 new_alien = alloc_alien_cache(node, cachep->limit);
3822 if (!new_alien)
3823 goto fail;
3824 }
cafeb02e 3825
63109846
ED
3826 new_shared = NULL;
3827 if (cachep->shared) {
3828 new_shared = alloc_arraycache(node,
0718dc2a 3829 cachep->shared*cachep->batchcount,
a737b3e2 3830 0xbaadf00d);
63109846
ED
3831 if (!new_shared) {
3832 free_alien_cache(new_alien);
3833 goto fail;
3834 }
0718dc2a 3835 }
cafeb02e 3836
a737b3e2
AM
3837 l3 = cachep->nodelists[node];
3838 if (l3) {
cafeb02e
CL
3839 struct array_cache *shared = l3->shared;
3840
e498be7d
CL
3841 spin_lock_irq(&l3->list_lock);
3842
cafeb02e 3843 if (shared)
0718dc2a
CL
3844 free_block(cachep, shared->entry,
3845 shared->avail, node);
e498be7d 3846
cafeb02e
CL
3847 l3->shared = new_shared;
3848 if (!l3->alien) {
e498be7d
CL
3849 l3->alien = new_alien;
3850 new_alien = NULL;
3851 }
b28a02de 3852 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3853 cachep->batchcount + cachep->num;
e498be7d 3854 spin_unlock_irq(&l3->list_lock);
cafeb02e 3855 kfree(shared);
e498be7d
CL
3856 free_alien_cache(new_alien);
3857 continue;
3858 }
a737b3e2 3859 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3860 if (!l3) {
3861 free_alien_cache(new_alien);
3862 kfree(new_shared);
e498be7d 3863 goto fail;
0718dc2a 3864 }
e498be7d
CL
3865
3866 kmem_list3_init(l3);
3867 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3868 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3869 l3->shared = new_shared;
e498be7d 3870 l3->alien = new_alien;
b28a02de 3871 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3872 cachep->batchcount + cachep->num;
e498be7d
CL
3873 cachep->nodelists[node] = l3;
3874 }
cafeb02e 3875 return 0;
0718dc2a 3876
a737b3e2 3877fail:
0718dc2a
CL
3878 if (!cachep->next.next) {
3879 /* Cache is not active yet. Roll back what we did */
3880 node--;
3881 while (node >= 0) {
3882 if (cachep->nodelists[node]) {
3883 l3 = cachep->nodelists[node];
3884
3885 kfree(l3->shared);
3886 free_alien_cache(l3->alien);
3887 kfree(l3);
3888 cachep->nodelists[node] = NULL;
3889 }
3890 node--;
3891 }
3892 }
cafeb02e 3893 return -ENOMEM;
e498be7d
CL
3894}
3895
1da177e4 3896struct ccupdate_struct {
343e0d7a 3897 struct kmem_cache *cachep;
1da177e4
LT
3898 struct array_cache *new[NR_CPUS];
3899};
3900
3901static void do_ccupdate_local(void *info)
3902{
a737b3e2 3903 struct ccupdate_struct *new = info;
1da177e4
LT
3904 struct array_cache *old;
3905
3906 check_irq_off();
9a2dba4b 3907 old = cpu_cache_get(new->cachep);
e498be7d 3908
1da177e4
LT
3909 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3910 new->new[smp_processor_id()] = old;
3911}
3912
b5d8ca7c 3913/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3914static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3915 int batchcount, int shared)
1da177e4 3916{
d2e7b7d0 3917 struct ccupdate_struct *new;
2ed3a4ef 3918 int i;
1da177e4 3919
d2e7b7d0
SS
3920 new = kzalloc(sizeof(*new), GFP_KERNEL);
3921 if (!new)
3922 return -ENOMEM;
3923
e498be7d 3924 for_each_online_cpu(i) {
d2e7b7d0 3925 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3926 batchcount);
d2e7b7d0 3927 if (!new->new[i]) {
b28a02de 3928 for (i--; i >= 0; i--)
d2e7b7d0
SS
3929 kfree(new->new[i]);
3930 kfree(new);
e498be7d 3931 return -ENOMEM;
1da177e4
LT
3932 }
3933 }
d2e7b7d0 3934 new->cachep = cachep;
1da177e4 3935
d2e7b7d0 3936 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3937
1da177e4 3938 check_irq_on();
1da177e4
LT
3939 cachep->batchcount = batchcount;
3940 cachep->limit = limit;
e498be7d 3941 cachep->shared = shared;
1da177e4 3942
e498be7d 3943 for_each_online_cpu(i) {
d2e7b7d0 3944 struct array_cache *ccold = new->new[i];
1da177e4
LT
3945 if (!ccold)
3946 continue;
e498be7d 3947 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3948 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3949 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3950 kfree(ccold);
3951 }
d2e7b7d0 3952 kfree(new);
2ed3a4ef 3953 return alloc_kmemlist(cachep);
1da177e4
LT
3954}
3955
b5d8ca7c 3956/* Called with cache_chain_mutex held always */
2ed3a4ef 3957static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3958{
3959 int err;
3960 int limit, shared;
3961
a737b3e2
AM
3962 /*
3963 * The head array serves three purposes:
1da177e4
LT
3964 * - create a LIFO ordering, i.e. return objects that are cache-warm
3965 * - reduce the number of spinlock operations.
a737b3e2 3966 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3967 * bufctl chains: array operations are cheaper.
3968 * The numbers are guessed, we should auto-tune as described by
3969 * Bonwick.
3970 */
3dafccf2 3971 if (cachep->buffer_size > 131072)
1da177e4 3972 limit = 1;
3dafccf2 3973 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3974 limit = 8;
3dafccf2 3975 else if (cachep->buffer_size > 1024)
1da177e4 3976 limit = 24;
3dafccf2 3977 else if (cachep->buffer_size > 256)
1da177e4
LT
3978 limit = 54;
3979 else
3980 limit = 120;
3981
a737b3e2
AM
3982 /*
3983 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3984 * allocation behaviour: Most allocs on one cpu, most free operations
3985 * on another cpu. For these cases, an efficient object passing between
3986 * cpus is necessary. This is provided by a shared array. The array
3987 * replaces Bonwick's magazine layer.
3988 * On uniprocessor, it's functionally equivalent (but less efficient)
3989 * to a larger limit. Thus disabled by default.
3990 */
3991 shared = 0;
364fbb29 3992 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3993 shared = 8;
1da177e4
LT
3994
3995#if DEBUG
a737b3e2
AM
3996 /*
3997 * With debugging enabled, large batchcount lead to excessively long
3998 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3999 */
4000 if (limit > 32)
4001 limit = 32;
4002#endif
b28a02de 4003 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4004 if (err)
4005 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4006 cachep->name, -err);
2ed3a4ef 4007 return err;
1da177e4
LT
4008}
4009
1b55253a
CL
4010/*
4011 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4012 * necessary. Note that the l3 listlock also protects the array_cache
4013 * if drain_array() is used on the shared array.
1b55253a
CL
4014 */
4015void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4016 struct array_cache *ac, int force, int node)
1da177e4
LT
4017{
4018 int tofree;
4019
1b55253a
CL
4020 if (!ac || !ac->avail)
4021 return;
1da177e4
LT
4022 if (ac->touched && !force) {
4023 ac->touched = 0;
b18e7e65 4024 } else {
1b55253a 4025 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4026 if (ac->avail) {
4027 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4028 if (tofree > ac->avail)
4029 tofree = (ac->avail + 1) / 2;
4030 free_block(cachep, ac->entry, tofree, node);
4031 ac->avail -= tofree;
4032 memmove(ac->entry, &(ac->entry[tofree]),
4033 sizeof(void *) * ac->avail);
4034 }
1b55253a 4035 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4036 }
4037}
4038
4039/**
4040 * cache_reap - Reclaim memory from caches.
05fb6bf0 4041 * @w: work descriptor
1da177e4
LT
4042 *
4043 * Called from workqueue/eventd every few seconds.
4044 * Purpose:
4045 * - clear the per-cpu caches for this CPU.
4046 * - return freeable pages to the main free memory pool.
4047 *
a737b3e2
AM
4048 * If we cannot acquire the cache chain mutex then just give up - we'll try
4049 * again on the next iteration.
1da177e4 4050 */
7c5cae36 4051static void cache_reap(struct work_struct *w)
1da177e4 4052{
7a7c381d 4053 struct kmem_cache *searchp;
e498be7d 4054 struct kmem_list3 *l3;
aab2207c 4055 int node = numa_node_id();
7c5cae36
CL
4056 struct delayed_work *work =
4057 container_of(w, struct delayed_work, work);
1da177e4 4058
7c5cae36 4059 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4060 /* Give up. Setup the next iteration. */
7c5cae36 4061 goto out;
1da177e4 4062
7a7c381d 4063 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4064 check_irq_on();
4065
35386e3b
CL
4066 /*
4067 * We only take the l3 lock if absolutely necessary and we
4068 * have established with reasonable certainty that
4069 * we can do some work if the lock was obtained.
4070 */
aab2207c 4071 l3 = searchp->nodelists[node];
35386e3b 4072
8fce4d8e 4073 reap_alien(searchp, l3);
1da177e4 4074
aab2207c 4075 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4076
35386e3b
CL
4077 /*
4078 * These are racy checks but it does not matter
4079 * if we skip one check or scan twice.
4080 */
e498be7d 4081 if (time_after(l3->next_reap, jiffies))
35386e3b 4082 goto next;
1da177e4 4083
e498be7d 4084 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4085
aab2207c 4086 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4087
ed11d9eb 4088 if (l3->free_touched)
e498be7d 4089 l3->free_touched = 0;
ed11d9eb
CL
4090 else {
4091 int freed;
1da177e4 4092
ed11d9eb
CL
4093 freed = drain_freelist(searchp, l3, (l3->free_limit +
4094 5 * searchp->num - 1) / (5 * searchp->num));
4095 STATS_ADD_REAPED(searchp, freed);
4096 }
35386e3b 4097next:
1da177e4
LT
4098 cond_resched();
4099 }
4100 check_irq_on();
fc0abb14 4101 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4102 next_reap_node();
7c5cae36 4103out:
a737b3e2 4104 /* Set up the next iteration */
7c5cae36 4105 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4106}
4107
4108#ifdef CONFIG_PROC_FS
4109
85289f98 4110static void print_slabinfo_header(struct seq_file *m)
1da177e4 4111{
85289f98
PE
4112 /*
4113 * Output format version, so at least we can change it
4114 * without _too_ many complaints.
4115 */
1da177e4 4116#if STATS
85289f98 4117 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4118#else
85289f98 4119 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4120#endif
85289f98
PE
4121 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4122 "<objperslab> <pagesperslab>");
4123 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4124 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4125#if STATS
85289f98 4126 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4127 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4128 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4129#endif
85289f98
PE
4130 seq_putc(m, '\n');
4131}
4132
4133static void *s_start(struct seq_file *m, loff_t *pos)
4134{
4135 loff_t n = *pos;
85289f98 4136
fc0abb14 4137 mutex_lock(&cache_chain_mutex);
85289f98
PE
4138 if (!n)
4139 print_slabinfo_header(m);
b92151ba
PE
4140
4141 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4142}
4143
4144static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4145{
b92151ba 4146 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4147}
4148
4149static void s_stop(struct seq_file *m, void *p)
4150{
fc0abb14 4151 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4152}
4153
4154static int s_show(struct seq_file *m, void *p)
4155{
b92151ba 4156 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4157 struct slab *slabp;
4158 unsigned long active_objs;
4159 unsigned long num_objs;
4160 unsigned long active_slabs = 0;
4161 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4162 const char *name;
1da177e4 4163 char *error = NULL;
e498be7d
CL
4164 int node;
4165 struct kmem_list3 *l3;
1da177e4 4166
1da177e4
LT
4167 active_objs = 0;
4168 num_slabs = 0;
e498be7d
CL
4169 for_each_online_node(node) {
4170 l3 = cachep->nodelists[node];
4171 if (!l3)
4172 continue;
4173
ca3b9b91
RT
4174 check_irq_on();
4175 spin_lock_irq(&l3->list_lock);
e498be7d 4176
7a7c381d 4177 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4178 if (slabp->inuse != cachep->num && !error)
4179 error = "slabs_full accounting error";
4180 active_objs += cachep->num;
4181 active_slabs++;
4182 }
7a7c381d 4183 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4184 if (slabp->inuse == cachep->num && !error)
4185 error = "slabs_partial inuse accounting error";
4186 if (!slabp->inuse && !error)
4187 error = "slabs_partial/inuse accounting error";
4188 active_objs += slabp->inuse;
4189 active_slabs++;
4190 }
7a7c381d 4191 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4192 if (slabp->inuse && !error)
4193 error = "slabs_free/inuse accounting error";
4194 num_slabs++;
4195 }
4196 free_objects += l3->free_objects;
4484ebf1
RT
4197 if (l3->shared)
4198 shared_avail += l3->shared->avail;
e498be7d 4199
ca3b9b91 4200 spin_unlock_irq(&l3->list_lock);
1da177e4 4201 }
b28a02de
PE
4202 num_slabs += active_slabs;
4203 num_objs = num_slabs * cachep->num;
e498be7d 4204 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4205 error = "free_objects accounting error";
4206
b28a02de 4207 name = cachep->name;
1da177e4
LT
4208 if (error)
4209 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4210
4211 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4212 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4213 cachep->num, (1 << cachep->gfporder));
1da177e4 4214 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4215 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4216 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4217 active_slabs, num_slabs, shared_avail);
1da177e4 4218#if STATS
b28a02de 4219 { /* list3 stats */
1da177e4
LT
4220 unsigned long high = cachep->high_mark;
4221 unsigned long allocs = cachep->num_allocations;
4222 unsigned long grown = cachep->grown;
4223 unsigned long reaped = cachep->reaped;
4224 unsigned long errors = cachep->errors;
4225 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4226 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4227 unsigned long node_frees = cachep->node_frees;
fb7faf33 4228 unsigned long overflows = cachep->node_overflow;
1da177e4 4229
e498be7d 4230 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4231 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4232 reaped, errors, max_freeable, node_allocs,
fb7faf33 4233 node_frees, overflows);
1da177e4
LT
4234 }
4235 /* cpu stats */
4236 {
4237 unsigned long allochit = atomic_read(&cachep->allochit);
4238 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4239 unsigned long freehit = atomic_read(&cachep->freehit);
4240 unsigned long freemiss = atomic_read(&cachep->freemiss);
4241
4242 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4243 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4244 }
4245#endif
4246 seq_putc(m, '\n');
1da177e4
LT
4247 return 0;
4248}
4249
4250/*
4251 * slabinfo_op - iterator that generates /proc/slabinfo
4252 *
4253 * Output layout:
4254 * cache-name
4255 * num-active-objs
4256 * total-objs
4257 * object size
4258 * num-active-slabs
4259 * total-slabs
4260 * num-pages-per-slab
4261 * + further values on SMP and with statistics enabled
4262 */
4263
15ad7cdc 4264const struct seq_operations slabinfo_op = {
b28a02de
PE
4265 .start = s_start,
4266 .next = s_next,
4267 .stop = s_stop,
4268 .show = s_show,
1da177e4
LT
4269};
4270
4271#define MAX_SLABINFO_WRITE 128
4272/**
4273 * slabinfo_write - Tuning for the slab allocator
4274 * @file: unused
4275 * @buffer: user buffer
4276 * @count: data length
4277 * @ppos: unused
4278 */
b28a02de
PE
4279ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4280 size_t count, loff_t *ppos)
1da177e4 4281{
b28a02de 4282 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4283 int limit, batchcount, shared, res;
7a7c381d 4284 struct kmem_cache *cachep;
b28a02de 4285
1da177e4
LT
4286 if (count > MAX_SLABINFO_WRITE)
4287 return -EINVAL;
4288 if (copy_from_user(&kbuf, buffer, count))
4289 return -EFAULT;
b28a02de 4290 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4291
4292 tmp = strchr(kbuf, ' ');
4293 if (!tmp)
4294 return -EINVAL;
4295 *tmp = '\0';
4296 tmp++;
4297 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4298 return -EINVAL;
4299
4300 /* Find the cache in the chain of caches. */
fc0abb14 4301 mutex_lock(&cache_chain_mutex);
1da177e4 4302 res = -EINVAL;
7a7c381d 4303 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4304 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4305 if (limit < 1 || batchcount < 1 ||
4306 batchcount > limit || shared < 0) {
e498be7d 4307 res = 0;
1da177e4 4308 } else {
e498be7d 4309 res = do_tune_cpucache(cachep, limit,
b28a02de 4310 batchcount, shared);
1da177e4
LT
4311 }
4312 break;
4313 }
4314 }
fc0abb14 4315 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4316 if (res >= 0)
4317 res = count;
4318 return res;
4319}
871751e2
AV
4320
4321#ifdef CONFIG_DEBUG_SLAB_LEAK
4322
4323static void *leaks_start(struct seq_file *m, loff_t *pos)
4324{
871751e2 4325 mutex_lock(&cache_chain_mutex);
b92151ba 4326 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4327}
4328
4329static inline int add_caller(unsigned long *n, unsigned long v)
4330{
4331 unsigned long *p;
4332 int l;
4333 if (!v)
4334 return 1;
4335 l = n[1];
4336 p = n + 2;
4337 while (l) {
4338 int i = l/2;
4339 unsigned long *q = p + 2 * i;
4340 if (*q == v) {
4341 q[1]++;
4342 return 1;
4343 }
4344 if (*q > v) {
4345 l = i;
4346 } else {
4347 p = q + 2;
4348 l -= i + 1;
4349 }
4350 }
4351 if (++n[1] == n[0])
4352 return 0;
4353 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4354 p[0] = v;
4355 p[1] = 1;
4356 return 1;
4357}
4358
4359static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4360{
4361 void *p;
4362 int i;
4363 if (n[0] == n[1])
4364 return;
4365 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4366 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4367 continue;
4368 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4369 return;
4370 }
4371}
4372
4373static void show_symbol(struct seq_file *m, unsigned long address)
4374{
4375#ifdef CONFIG_KALLSYMS
871751e2 4376 unsigned long offset, size;
9281acea 4377 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4378
a5c43dae 4379 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4380 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4381 if (modname[0])
871751e2
AV
4382 seq_printf(m, " [%s]", modname);
4383 return;
4384 }
4385#endif
4386 seq_printf(m, "%p", (void *)address);
4387}
4388
4389static int leaks_show(struct seq_file *m, void *p)
4390{
b92151ba 4391 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4392 struct slab *slabp;
4393 struct kmem_list3 *l3;
4394 const char *name;
4395 unsigned long *n = m->private;
4396 int node;
4397 int i;
4398
4399 if (!(cachep->flags & SLAB_STORE_USER))
4400 return 0;
4401 if (!(cachep->flags & SLAB_RED_ZONE))
4402 return 0;
4403
4404 /* OK, we can do it */
4405
4406 n[1] = 0;
4407
4408 for_each_online_node(node) {
4409 l3 = cachep->nodelists[node];
4410 if (!l3)
4411 continue;
4412
4413 check_irq_on();
4414 spin_lock_irq(&l3->list_lock);
4415
7a7c381d 4416 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4417 handle_slab(n, cachep, slabp);
7a7c381d 4418 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4419 handle_slab(n, cachep, slabp);
871751e2
AV
4420 spin_unlock_irq(&l3->list_lock);
4421 }
4422 name = cachep->name;
4423 if (n[0] == n[1]) {
4424 /* Increase the buffer size */
4425 mutex_unlock(&cache_chain_mutex);
4426 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4427 if (!m->private) {
4428 /* Too bad, we are really out */
4429 m->private = n;
4430 mutex_lock(&cache_chain_mutex);
4431 return -ENOMEM;
4432 }
4433 *(unsigned long *)m->private = n[0] * 2;
4434 kfree(n);
4435 mutex_lock(&cache_chain_mutex);
4436 /* Now make sure this entry will be retried */
4437 m->count = m->size;
4438 return 0;
4439 }
4440 for (i = 0; i < n[1]; i++) {
4441 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4442 show_symbol(m, n[2*i+2]);
4443 seq_putc(m, '\n');
4444 }
d2e7b7d0 4445
871751e2
AV
4446 return 0;
4447}
4448
15ad7cdc 4449const struct seq_operations slabstats_op = {
871751e2
AV
4450 .start = leaks_start,
4451 .next = s_next,
4452 .stop = s_stop,
4453 .show = leaks_show,
4454};
4455#endif
1da177e4
LT
4456#endif
4457
00e145b6
MS
4458/**
4459 * ksize - get the actual amount of memory allocated for a given object
4460 * @objp: Pointer to the object
4461 *
4462 * kmalloc may internally round up allocations and return more memory
4463 * than requested. ksize() can be used to determine the actual amount of
4464 * memory allocated. The caller may use this additional memory, even though
4465 * a smaller amount of memory was initially specified with the kmalloc call.
4466 * The caller must guarantee that objp points to a valid object previously
4467 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4468 * must not be freed during the duration of the call.
4469 */
fd76bab2 4470size_t ksize(const void *objp)
1da177e4 4471{
ef8b4520
CL
4472 BUG_ON(!objp);
4473 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4474 return 0;
1da177e4 4475
6ed5eb22 4476 return obj_size(virt_to_cache(objp));
1da177e4 4477}