]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
tracing, page-allocator: add trace events for anti-fragmentation falling back to...
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
ac924c60 53#include <asm/div64.h>
1da177e4
LT
54#include "internal.h"
55
56/*
13808910 57 * Array of node states.
1da177e4 58 */
13808910
CL
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67 [N_CPU] = { { [0] = 1UL } },
68#endif /* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
6c231b7b 72unsigned long totalram_pages __read_mostly;
cb45b0e9 73unsigned long totalreserve_pages __read_mostly;
22b31eec 74unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 75int percpu_pagelist_fraction;
dcce284a 76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 77
d9c23400
MG
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
d98c7a09 82static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 83
1da177e4
LT
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
1da177e4 94 */
2f1b6248 95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 96#ifdef CONFIG_ZONE_DMA
2f1b6248 97 256,
4b51d669 98#endif
fb0e7942 99#ifdef CONFIG_ZONE_DMA32
2f1b6248 100 256,
fb0e7942 101#endif
e53ef38d 102#ifdef CONFIG_HIGHMEM
2a1e274a 103 32,
e53ef38d 104#endif
2a1e274a 105 32,
2f1b6248 106};
1da177e4
LT
107
108EXPORT_SYMBOL(totalram_pages);
1da177e4 109
15ad7cdc 110static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 111#ifdef CONFIG_ZONE_DMA
2f1b6248 112 "DMA",
4b51d669 113#endif
fb0e7942 114#ifdef CONFIG_ZONE_DMA32
2f1b6248 115 "DMA32",
fb0e7942 116#endif
2f1b6248 117 "Normal",
e53ef38d 118#ifdef CONFIG_HIGHMEM
2a1e274a 119 "HighMem",
e53ef38d 120#endif
2a1e274a 121 "Movable",
2f1b6248
CL
122};
123
1da177e4
LT
124int min_free_kbytes = 1024;
125
86356ab1
YG
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
a3142c8e 128static unsigned long __meminitdata dma_reserve;
1da177e4 129
c713216d
MG
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
183ff22b 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
98011f56
JB
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 155 static unsigned long __initdata required_kernelcore;
484f51f8 156 static unsigned long __initdata required_movablecore;
b69a7288 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
c713216d
MG
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
418508c1
MS
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 166int nr_online_nodes __read_mostly = 1;
418508c1 167EXPORT_SYMBOL(nr_node_ids);
62bc62a8 168EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
169#endif
170
9ef9acb0
MG
171int page_group_by_mobility_disabled __read_mostly;
172
b2a0ac88
MG
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
49255c61
MG
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
b2a0ac88
MG
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181}
182
7f33d49a
RW
183bool oom_killer_disabled __read_mostly;
184
13e7444b 185#ifdef CONFIG_DEBUG_VM
c6a57e19 186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 187{
bdc8cb98
DH
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
c6a57e19 191
bdc8cb98
DH
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
c6a57e19
DH
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
14e07298 205 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 206 return 0;
1da177e4 207 if (zone != page_zone(page))
c6a57e19
DH
208 return 0;
209
210 return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217 if (page_outside_zone_boundaries(zone, page))
1da177e4 218 return 1;
c6a57e19
DH
219 if (!page_is_consistent(zone, page))
220 return 1;
221
1da177e4
LT
222 return 0;
223}
13e7444b
NP
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227 return 0;
228}
229#endif
230
224abf92 231static void bad_page(struct page *page)
1da177e4 232{
d936cf9b
HD
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
1e9e6365
HD
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
1e9e6365 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 258 current->comm, page_to_pfn(page));
1e9e6365 259 printk(KERN_ALERT
3dc14741
HD
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
3dc14741 263
1da177e4 264 dump_stack();
d936cf9b 265out:
8cc3b392
HD
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
9f158333 268 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
269}
270
1da177e4
LT
271/*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
41d78ba5
HD
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
1da177e4 284 */
d98c7a09
HD
285
286static void free_compound_page(struct page *page)
287{
d85f3385 288 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
289}
290
01ad1c08 291void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
292{
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305}
306
8cc3b392 307static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
308{
309 int i;
310 int nr_pages = 1 << order;
8cc3b392 311 int bad = 0;
1da177e4 312
8cc3b392
HD
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
224abf92 315 bad_page(page);
8cc3b392
HD
316 bad++;
317 }
1da177e4 318
6d777953 319 __ClearPageHead(page);
8cc3b392 320
18229df5
AW
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
1da177e4 323
e713a21d 324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 325 bad_page(page);
8cc3b392
HD
326 bad++;
327 }
d85f3385 328 __ClearPageTail(p);
1da177e4 329 }
8cc3b392
HD
330
331 return bad;
1da177e4 332}
1da177e4 333
17cf4406
NP
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336 int i;
337
6626c5d5
AM
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
725d704e 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345}
346
6aa3001b
AM
347static inline void set_page_order(struct page *page, int order)
348{
4c21e2f2 349 set_page_private(page, order);
676165a8 350 __SetPageBuddy(page);
1da177e4
LT
351}
352
353static inline void rmv_page_order(struct page *page)
354{
676165a8 355 __ClearPageBuddy(page);
4c21e2f2 356 set_page_private(page, 0);
1da177e4
LT
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
d6e05edc 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387 return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
13e7444b 393 * (a) the buddy is not in a hole &&
676165a8 394 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
676165a8
NP
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 400 *
676165a8 401 * For recording page's order, we use page_private(page).
1da177e4 402 */
cb2b95e1
AW
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
1da177e4 405{
14e07298 406 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 407 return 0;
13e7444b 408
cb2b95e1
AW
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 413 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 414 return 1;
676165a8 415 }
6aa3001b 416 return 0;
1da177e4
LT
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
676165a8 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 433 * order is recorded in page_private(page) field.
1da177e4
LT
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
48db57f8 443static inline void __free_one_page(struct page *page,
ed0ae21d
MG
444 struct zone *zone, unsigned int order,
445 int migratetype)
1da177e4
LT
446{
447 unsigned long page_idx;
1da177e4 448
224abf92 449 if (unlikely(PageCompound(page)))
8cc3b392
HD
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
1da177e4 452
ed0ae21d
MG
453 VM_BUG_ON(migratetype == -1);
454
1da177e4
LT
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
f2260e6b 457 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 458 VM_BUG_ON(bad_range(zone, page));
1da177e4 459
1da177e4
LT
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
1da177e4
LT
462 struct page *buddy;
463
1da177e4 464 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 465 if (!page_is_buddy(page, buddy, order))
3c82d0ce 466 break;
13e7444b 467
3c82d0ce 468 /* Our buddy is free, merge with it and move up one order. */
1da177e4 469 list_del(&buddy->lru);
b2a0ac88 470 zone->free_area[order].nr_free--;
1da177e4 471 rmv_page_order(buddy);
13e7444b 472 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
b2a0ac88
MG
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
480 zone->free_area[order].nr_free++;
481}
482
092cead6
KM
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
092cead6
KM
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
224abf92 498static inline int free_pages_check(struct page *page)
1da177e4 499{
92be2e33
NP
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
a3af9c38 502 (atomic_read(&page->_count) != 0) |
8cc3b392 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 504 bad_page(page);
79f4b7bf 505 return 1;
8cc3b392 506 }
79f4b7bf
HD
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
1da177e4
LT
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
207f36ee 515 * count is the number of pages to free.
1da177e4
LT
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
48db57f8
NP
523static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
1da177e4 525{
c54ad30c 526 spin_lock(&zone->lock);
e815af95 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 528 zone->pages_scanned = 0;
f2260e6b
MG
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
531 while (count--) {
532 struct page *page;
533
725d704e 534 VM_BUG_ON(list_empty(list));
1da177e4 535 page = list_entry(list->prev, struct page, lru);
48db57f8 536 /* have to delete it as __free_one_page list manipulates */
1da177e4 537 list_del(&page->lru);
ed0ae21d 538 __free_one_page(page, zone, order, page_private(page));
1da177e4 539 }
c54ad30c 540 spin_unlock(&zone->lock);
1da177e4
LT
541}
542
ed0ae21d
MG
543static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
1da177e4 545{
006d22d9 546 spin_lock(&zone->lock);
e815af95 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 548 zone->pages_scanned = 0;
f2260e6b
MG
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 551 __free_one_page(page, zone, order, migratetype);
006d22d9 552 spin_unlock(&zone->lock);
48db57f8
NP
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557 unsigned long flags;
1da177e4 558 int i;
8cc3b392 559 int bad = 0;
451ea25d 560 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 561
b1eeab67
VN
562 kmemcheck_free_shadow(page, order);
563
1da177e4 564 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
565 bad += free_pages_check(page + i);
566 if (bad)
689bcebf
HD
567 return;
568
3ac7fe5a 569 if (!PageHighMem(page)) {
9858db50 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
dafb1367 574 arch_free_page(page, order);
48db57f8 575 kernel_map_pages(page, 1 << order, 0);
dafb1367 576
c54ad30c 577 local_irq_save(flags);
c277331d 578 if (unlikely(wasMlocked))
da456f14 579 free_page_mlock(page);
f8891e5e 580 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
c54ad30c 583 local_irq_restore(flags);
1da177e4
LT
584}
585
a226f6c8
DH
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
af370fb8 589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
590{
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_page(page);
a226f6c8 596 } else {
a226f6c8
DH
597 int loop;
598
545b1ea9 599 prefetchw(page);
a226f6c8
DH
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
545b1ea9
NP
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
a226f6c8
DH
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
7835e98b 609 set_page_refcounted(page);
545b1ea9 610 __free_pages(page, order);
a226f6c8
DH
611 }
612}
613
1da177e4
LT
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
085cc7d5 629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
630 int low, int high, struct free_area *area,
631 int migratetype)
1da177e4
LT
632{
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
725d704e 639 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 640 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
1da177e4
LT
644}
645
1da177e4
LT
646/*
647 * This page is about to be returned from the page allocator
648 */
17cf4406 649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 650{
92be2e33
NP
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
a3af9c38 653 (atomic_read(&page->_count) != 0) |
8cc3b392 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 655 bad_page(page);
689bcebf 656 return 1;
8cc3b392 657 }
689bcebf 658
4c21e2f2 659 set_page_private(page, 0);
7835e98b 660 set_page_refcounted(page);
cc102509
NP
661
662 arch_alloc_page(page, order);
1da177e4 663 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
689bcebf 671 return 0;
1da177e4
LT
672}
673
56fd56b8
MG
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
728ec980
MG
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
680 int migratetype)
681{
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
56fd56b8
MG
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702}
703
704
b2a0ac88
MG
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
714};
715
c361be55
MG
716/*
717 * Move the free pages in a range to the free lists of the requested type.
d9c23400 718 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
719 * boundary. If alignment is required, use move_freepages_block()
720 */
b69a7288
AB
721static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
c361be55
MG
724{
725 struct page *page;
726 unsigned long order;
d100313f 727 int pages_moved = 0;
c361be55
MG
728
729#ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
ac0e5b7a 735 * grouping pages by mobility
c361be55
MG
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740 for (page = start_page; page <= end_page;) {
344c790e
AL
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
c361be55
MG
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
d100313f 759 pages_moved += 1 << order;
c361be55
MG
760 }
761
d100313f 762 return pages_moved;
c361be55
MG
763}
764
b69a7288
AB
765static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
c361be55
MG
767{
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
d9c23400 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 773 start_page = pfn_to_page(start_pfn);
d9c23400
MG
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784}
785
2f66a68f
MG
786static void change_pageblock_range(struct page *pageblock_page,
787 int start_order, int migratetype)
788{
789 int nr_pageblocks = 1 << (start_order - pageblock_order);
790
791 while (nr_pageblocks--) {
792 set_pageblock_migratetype(pageblock_page, migratetype);
793 pageblock_page += pageblock_nr_pages;
794 }
795}
796
b2a0ac88 797/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
798static inline struct page *
799__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
800{
801 struct free_area * area;
802 int current_order;
803 struct page *page;
804 int migratetype, i;
805
806 /* Find the largest possible block of pages in the other list */
807 for (current_order = MAX_ORDER-1; current_order >= order;
808 --current_order) {
809 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
810 migratetype = fallbacks[start_migratetype][i];
811
56fd56b8
MG
812 /* MIGRATE_RESERVE handled later if necessary */
813 if (migratetype == MIGRATE_RESERVE)
814 continue;
e010487d 815
b2a0ac88
MG
816 area = &(zone->free_area[current_order]);
817 if (list_empty(&area->free_list[migratetype]))
818 continue;
819
820 page = list_entry(area->free_list[migratetype].next,
821 struct page, lru);
822 area->nr_free--;
823
824 /*
c361be55 825 * If breaking a large block of pages, move all free
46dafbca
MG
826 * pages to the preferred allocation list. If falling
827 * back for a reclaimable kernel allocation, be more
828 * agressive about taking ownership of free pages
b2a0ac88 829 */
d9c23400 830 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
831 start_migratetype == MIGRATE_RECLAIMABLE ||
832 page_group_by_mobility_disabled) {
46dafbca
MG
833 unsigned long pages;
834 pages = move_freepages_block(zone, page,
835 start_migratetype);
836
837 /* Claim the whole block if over half of it is free */
dd5d241e
MG
838 if (pages >= (1 << (pageblock_order-1)) ||
839 page_group_by_mobility_disabled)
46dafbca
MG
840 set_pageblock_migratetype(page,
841 start_migratetype);
842
b2a0ac88 843 migratetype = start_migratetype;
c361be55 844 }
b2a0ac88
MG
845
846 /* Remove the page from the freelists */
847 list_del(&page->lru);
848 rmv_page_order(page);
b2a0ac88 849
2f66a68f
MG
850 /* Take ownership for orders >= pageblock_order */
851 if (current_order >= pageblock_order)
852 change_pageblock_range(page, current_order,
b2a0ac88
MG
853 start_migratetype);
854
855 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
856
857 trace_mm_page_alloc_extfrag(page, order, current_order,
858 start_migratetype, migratetype);
859
b2a0ac88
MG
860 return page;
861 }
862 }
863
728ec980 864 return NULL;
b2a0ac88
MG
865}
866
56fd56b8 867/*
1da177e4
LT
868 * Do the hard work of removing an element from the buddy allocator.
869 * Call me with the zone->lock already held.
870 */
b2a0ac88
MG
871static struct page *__rmqueue(struct zone *zone, unsigned int order,
872 int migratetype)
1da177e4 873{
1da177e4
LT
874 struct page *page;
875
728ec980 876retry_reserve:
56fd56b8 877 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 878
728ec980 879 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 880 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 881
728ec980
MG
882 /*
883 * Use MIGRATE_RESERVE rather than fail an allocation. goto
884 * is used because __rmqueue_smallest is an inline function
885 * and we want just one call site
886 */
887 if (!page) {
888 migratetype = MIGRATE_RESERVE;
889 goto retry_reserve;
890 }
891 }
892
b2a0ac88 893 return page;
1da177e4
LT
894}
895
896/*
897 * Obtain a specified number of elements from the buddy allocator, all under
898 * a single hold of the lock, for efficiency. Add them to the supplied list.
899 * Returns the number of new pages which were placed at *list.
900 */
901static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 902 unsigned long count, struct list_head *list,
e084b2d9 903 int migratetype, int cold)
1da177e4 904{
1da177e4 905 int i;
1da177e4 906
c54ad30c 907 spin_lock(&zone->lock);
1da177e4 908 for (i = 0; i < count; ++i) {
b2a0ac88 909 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 910 if (unlikely(page == NULL))
1da177e4 911 break;
81eabcbe
MG
912
913 /*
914 * Split buddy pages returned by expand() are received here
915 * in physical page order. The page is added to the callers and
916 * list and the list head then moves forward. From the callers
917 * perspective, the linked list is ordered by page number in
918 * some conditions. This is useful for IO devices that can
919 * merge IO requests if the physical pages are ordered
920 * properly.
921 */
e084b2d9
MG
922 if (likely(cold == 0))
923 list_add(&page->lru, list);
924 else
925 list_add_tail(&page->lru, list);
535131e6 926 set_page_private(page, migratetype);
81eabcbe 927 list = &page->lru;
1da177e4 928 }
f2260e6b 929 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 930 spin_unlock(&zone->lock);
085cc7d5 931 return i;
1da177e4
LT
932}
933
4ae7c039 934#ifdef CONFIG_NUMA
8fce4d8e 935/*
4037d452
CL
936 * Called from the vmstat counter updater to drain pagesets of this
937 * currently executing processor on remote nodes after they have
938 * expired.
939 *
879336c3
CL
940 * Note that this function must be called with the thread pinned to
941 * a single processor.
8fce4d8e 942 */
4037d452 943void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 944{
4ae7c039 945 unsigned long flags;
4037d452 946 int to_drain;
4ae7c039 947
4037d452
CL
948 local_irq_save(flags);
949 if (pcp->count >= pcp->batch)
950 to_drain = pcp->batch;
951 else
952 to_drain = pcp->count;
953 free_pages_bulk(zone, to_drain, &pcp->list, 0);
954 pcp->count -= to_drain;
955 local_irq_restore(flags);
4ae7c039
CL
956}
957#endif
958
9f8f2172
CL
959/*
960 * Drain pages of the indicated processor.
961 *
962 * The processor must either be the current processor and the
963 * thread pinned to the current processor or a processor that
964 * is not online.
965 */
966static void drain_pages(unsigned int cpu)
1da177e4 967{
c54ad30c 968 unsigned long flags;
1da177e4 969 struct zone *zone;
1da177e4 970
ee99c71c 971 for_each_populated_zone(zone) {
1da177e4 972 struct per_cpu_pageset *pset;
3dfa5721 973 struct per_cpu_pages *pcp;
1da177e4 974
e7c8d5c9 975 pset = zone_pcp(zone, cpu);
3dfa5721
CL
976
977 pcp = &pset->pcp;
978 local_irq_save(flags);
979 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
980 pcp->count = 0;
981 local_irq_restore(flags);
1da177e4
LT
982 }
983}
1da177e4 984
9f8f2172
CL
985/*
986 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
987 */
988void drain_local_pages(void *arg)
989{
990 drain_pages(smp_processor_id());
991}
992
993/*
994 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
995 */
996void drain_all_pages(void)
997{
15c8b6c1 998 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
999}
1000
296699de 1001#ifdef CONFIG_HIBERNATION
1da177e4
LT
1002
1003void mark_free_pages(struct zone *zone)
1004{
f623f0db
RW
1005 unsigned long pfn, max_zone_pfn;
1006 unsigned long flags;
b2a0ac88 1007 int order, t;
1da177e4
LT
1008 struct list_head *curr;
1009
1010 if (!zone->spanned_pages)
1011 return;
1012
1013 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1014
1015 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1016 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1017 if (pfn_valid(pfn)) {
1018 struct page *page = pfn_to_page(pfn);
1019
7be98234
RW
1020 if (!swsusp_page_is_forbidden(page))
1021 swsusp_unset_page_free(page);
f623f0db 1022 }
1da177e4 1023
b2a0ac88
MG
1024 for_each_migratetype_order(order, t) {
1025 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1026 unsigned long i;
1da177e4 1027
f623f0db
RW
1028 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1029 for (i = 0; i < (1UL << order); i++)
7be98234 1030 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1031 }
b2a0ac88 1032 }
1da177e4
LT
1033 spin_unlock_irqrestore(&zone->lock, flags);
1034}
e2c55dc8 1035#endif /* CONFIG_PM */
1da177e4 1036
1da177e4
LT
1037/*
1038 * Free a 0-order page
1039 */
920c7a5d 1040static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1041{
1042 struct zone *zone = page_zone(page);
1043 struct per_cpu_pages *pcp;
1044 unsigned long flags;
451ea25d 1045 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1046
b1eeab67
VN
1047 kmemcheck_free_shadow(page, 0);
1048
1da177e4
LT
1049 if (PageAnon(page))
1050 page->mapping = NULL;
224abf92 1051 if (free_pages_check(page))
689bcebf
HD
1052 return;
1053
3ac7fe5a 1054 if (!PageHighMem(page)) {
9858db50 1055 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1056 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1057 }
dafb1367 1058 arch_free_page(page, 0);
689bcebf
HD
1059 kernel_map_pages(page, 1, 0);
1060
3dfa5721 1061 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1062 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1063 local_irq_save(flags);
c277331d 1064 if (unlikely(wasMlocked))
da456f14 1065 free_page_mlock(page);
f8891e5e 1066 __count_vm_event(PGFREE);
da456f14 1067
3dfa5721
CL
1068 if (cold)
1069 list_add_tail(&page->lru, &pcp->list);
1070 else
1071 list_add(&page->lru, &pcp->list);
1da177e4 1072 pcp->count++;
48db57f8
NP
1073 if (pcp->count >= pcp->high) {
1074 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1075 pcp->count -= pcp->batch;
1076 }
1da177e4
LT
1077 local_irq_restore(flags);
1078 put_cpu();
1079}
1080
920c7a5d 1081void free_hot_page(struct page *page)
1da177e4 1082{
4b4f278c 1083 trace_mm_page_free_direct(page, 0);
1da177e4
LT
1084 free_hot_cold_page(page, 0);
1085}
1086
8dfcc9ba
NP
1087/*
1088 * split_page takes a non-compound higher-order page, and splits it into
1089 * n (1<<order) sub-pages: page[0..n]
1090 * Each sub-page must be freed individually.
1091 *
1092 * Note: this is probably too low level an operation for use in drivers.
1093 * Please consult with lkml before using this in your driver.
1094 */
1095void split_page(struct page *page, unsigned int order)
1096{
1097 int i;
1098
725d704e
NP
1099 VM_BUG_ON(PageCompound(page));
1100 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1101
1102#ifdef CONFIG_KMEMCHECK
1103 /*
1104 * Split shadow pages too, because free(page[0]) would
1105 * otherwise free the whole shadow.
1106 */
1107 if (kmemcheck_page_is_tracked(page))
1108 split_page(virt_to_page(page[0].shadow), order);
1109#endif
1110
7835e98b
NP
1111 for (i = 1; i < (1 << order); i++)
1112 set_page_refcounted(page + i);
8dfcc9ba 1113}
8dfcc9ba 1114
1da177e4
LT
1115/*
1116 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1117 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1118 * or two.
1119 */
0a15c3e9
MG
1120static inline
1121struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1122 struct zone *zone, int order, gfp_t gfp_flags,
1123 int migratetype)
1da177e4
LT
1124{
1125 unsigned long flags;
689bcebf 1126 struct page *page;
1da177e4 1127 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1128 int cpu;
1da177e4 1129
689bcebf 1130again:
a74609fa 1131 cpu = get_cpu();
48db57f8 1132 if (likely(order == 0)) {
1da177e4
LT
1133 struct per_cpu_pages *pcp;
1134
3dfa5721 1135 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1136 local_irq_save(flags);
a74609fa 1137 if (!pcp->count) {
941c7105 1138 pcp->count = rmqueue_bulk(zone, 0,
e084b2d9
MG
1139 pcp->batch, &pcp->list,
1140 migratetype, cold);
a74609fa
NP
1141 if (unlikely(!pcp->count))
1142 goto failed;
1da177e4 1143 }
b92a6edd 1144
535131e6 1145 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1146 if (cold) {
1147 list_for_each_entry_reverse(page, &pcp->list, lru)
1148 if (page_private(page) == migratetype)
1149 break;
1150 } else {
1151 list_for_each_entry(page, &pcp->list, lru)
1152 if (page_private(page) == migratetype)
1153 break;
1154 }
535131e6 1155
b92a6edd
MG
1156 /* Allocate more to the pcp list if necessary */
1157 if (unlikely(&page->lru == &pcp->list)) {
6fb332fa
SL
1158 int get_one_page = 0;
1159
535131e6 1160 pcp->count += rmqueue_bulk(zone, 0,
e084b2d9
MG
1161 pcp->batch, &pcp->list,
1162 migratetype, cold);
6fb332fa
SL
1163 list_for_each_entry(page, &pcp->list, lru) {
1164 if (get_pageblock_migratetype(page) !=
1165 MIGRATE_ISOLATE) {
1166 get_one_page = 1;
1167 break;
1168 }
1169 }
1170 if (!get_one_page)
1171 goto failed;
535131e6 1172 }
b92a6edd
MG
1173
1174 list_del(&page->lru);
1175 pcp->count--;
7fb1d9fc 1176 } else {
dab48dab
AM
1177 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1178 /*
1179 * __GFP_NOFAIL is not to be used in new code.
1180 *
1181 * All __GFP_NOFAIL callers should be fixed so that they
1182 * properly detect and handle allocation failures.
1183 *
1184 * We most definitely don't want callers attempting to
4923abf9 1185 * allocate greater than order-1 page units with
dab48dab
AM
1186 * __GFP_NOFAIL.
1187 */
4923abf9 1188 WARN_ON_ONCE(order > 1);
dab48dab 1189 }
1da177e4 1190 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1191 page = __rmqueue(zone, order, migratetype);
f2260e6b 1192 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1193 spin_unlock(&zone->lock);
1194 if (!page)
1195 goto failed;
1da177e4
LT
1196 }
1197
f8891e5e 1198 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1199 zone_statistics(preferred_zone, zone);
a74609fa
NP
1200 local_irq_restore(flags);
1201 put_cpu();
1da177e4 1202
725d704e 1203 VM_BUG_ON(bad_range(zone, page));
17cf4406 1204 if (prep_new_page(page, order, gfp_flags))
a74609fa 1205 goto again;
1da177e4 1206 return page;
a74609fa
NP
1207
1208failed:
1209 local_irq_restore(flags);
1210 put_cpu();
1211 return NULL;
1da177e4
LT
1212}
1213
41858966
MG
1214/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1215#define ALLOC_WMARK_MIN WMARK_MIN
1216#define ALLOC_WMARK_LOW WMARK_LOW
1217#define ALLOC_WMARK_HIGH WMARK_HIGH
1218#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1219
1220/* Mask to get the watermark bits */
1221#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1222
3148890b
NP
1223#define ALLOC_HARDER 0x10 /* try to alloc harder */
1224#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1225#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1226
933e312e
AM
1227#ifdef CONFIG_FAIL_PAGE_ALLOC
1228
1229static struct fail_page_alloc_attr {
1230 struct fault_attr attr;
1231
1232 u32 ignore_gfp_highmem;
1233 u32 ignore_gfp_wait;
54114994 1234 u32 min_order;
933e312e
AM
1235
1236#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1237
1238 struct dentry *ignore_gfp_highmem_file;
1239 struct dentry *ignore_gfp_wait_file;
54114994 1240 struct dentry *min_order_file;
933e312e
AM
1241
1242#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1243
1244} fail_page_alloc = {
1245 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1246 .ignore_gfp_wait = 1,
1247 .ignore_gfp_highmem = 1,
54114994 1248 .min_order = 1,
933e312e
AM
1249};
1250
1251static int __init setup_fail_page_alloc(char *str)
1252{
1253 return setup_fault_attr(&fail_page_alloc.attr, str);
1254}
1255__setup("fail_page_alloc=", setup_fail_page_alloc);
1256
1257static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1258{
54114994
AM
1259 if (order < fail_page_alloc.min_order)
1260 return 0;
933e312e
AM
1261 if (gfp_mask & __GFP_NOFAIL)
1262 return 0;
1263 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1264 return 0;
1265 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1266 return 0;
1267
1268 return should_fail(&fail_page_alloc.attr, 1 << order);
1269}
1270
1271#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1272
1273static int __init fail_page_alloc_debugfs(void)
1274{
1275 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1276 struct dentry *dir;
1277 int err;
1278
1279 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1280 "fail_page_alloc");
1281 if (err)
1282 return err;
1283 dir = fail_page_alloc.attr.dentries.dir;
1284
1285 fail_page_alloc.ignore_gfp_wait_file =
1286 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1287 &fail_page_alloc.ignore_gfp_wait);
1288
1289 fail_page_alloc.ignore_gfp_highmem_file =
1290 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1291 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1292 fail_page_alloc.min_order_file =
1293 debugfs_create_u32("min-order", mode, dir,
1294 &fail_page_alloc.min_order);
933e312e
AM
1295
1296 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1297 !fail_page_alloc.ignore_gfp_highmem_file ||
1298 !fail_page_alloc.min_order_file) {
933e312e
AM
1299 err = -ENOMEM;
1300 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1301 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1302 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1303 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1304 }
1305
1306 return err;
1307}
1308
1309late_initcall(fail_page_alloc_debugfs);
1310
1311#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1312
1313#else /* CONFIG_FAIL_PAGE_ALLOC */
1314
1315static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1316{
1317 return 0;
1318}
1319
1320#endif /* CONFIG_FAIL_PAGE_ALLOC */
1321
1da177e4
LT
1322/*
1323 * Return 1 if free pages are above 'mark'. This takes into account the order
1324 * of the allocation.
1325 */
1326int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1327 int classzone_idx, int alloc_flags)
1da177e4
LT
1328{
1329 /* free_pages my go negative - that's OK */
d23ad423
CL
1330 long min = mark;
1331 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1332 int o;
1333
7fb1d9fc 1334 if (alloc_flags & ALLOC_HIGH)
1da177e4 1335 min -= min / 2;
7fb1d9fc 1336 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1337 min -= min / 4;
1338
1339 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1340 return 0;
1341 for (o = 0; o < order; o++) {
1342 /* At the next order, this order's pages become unavailable */
1343 free_pages -= z->free_area[o].nr_free << o;
1344
1345 /* Require fewer higher order pages to be free */
1346 min >>= 1;
1347
1348 if (free_pages <= min)
1349 return 0;
1350 }
1351 return 1;
1352}
1353
9276b1bc
PJ
1354#ifdef CONFIG_NUMA
1355/*
1356 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1357 * skip over zones that are not allowed by the cpuset, or that have
1358 * been recently (in last second) found to be nearly full. See further
1359 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1360 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1361 *
1362 * If the zonelist cache is present in the passed in zonelist, then
1363 * returns a pointer to the allowed node mask (either the current
37b07e41 1364 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1365 *
1366 * If the zonelist cache is not available for this zonelist, does
1367 * nothing and returns NULL.
1368 *
1369 * If the fullzones BITMAP in the zonelist cache is stale (more than
1370 * a second since last zap'd) then we zap it out (clear its bits.)
1371 *
1372 * We hold off even calling zlc_setup, until after we've checked the
1373 * first zone in the zonelist, on the theory that most allocations will
1374 * be satisfied from that first zone, so best to examine that zone as
1375 * quickly as we can.
1376 */
1377static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1378{
1379 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1380 nodemask_t *allowednodes; /* zonelist_cache approximation */
1381
1382 zlc = zonelist->zlcache_ptr;
1383 if (!zlc)
1384 return NULL;
1385
f05111f5 1386 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1387 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1388 zlc->last_full_zap = jiffies;
1389 }
1390
1391 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1392 &cpuset_current_mems_allowed :
37b07e41 1393 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1394 return allowednodes;
1395}
1396
1397/*
1398 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1399 * if it is worth looking at further for free memory:
1400 * 1) Check that the zone isn't thought to be full (doesn't have its
1401 * bit set in the zonelist_cache fullzones BITMAP).
1402 * 2) Check that the zones node (obtained from the zonelist_cache
1403 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1404 * Return true (non-zero) if zone is worth looking at further, or
1405 * else return false (zero) if it is not.
1406 *
1407 * This check -ignores- the distinction between various watermarks,
1408 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1409 * found to be full for any variation of these watermarks, it will
1410 * be considered full for up to one second by all requests, unless
1411 * we are so low on memory on all allowed nodes that we are forced
1412 * into the second scan of the zonelist.
1413 *
1414 * In the second scan we ignore this zonelist cache and exactly
1415 * apply the watermarks to all zones, even it is slower to do so.
1416 * We are low on memory in the second scan, and should leave no stone
1417 * unturned looking for a free page.
1418 */
dd1a239f 1419static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1420 nodemask_t *allowednodes)
1421{
1422 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1423 int i; /* index of *z in zonelist zones */
1424 int n; /* node that zone *z is on */
1425
1426 zlc = zonelist->zlcache_ptr;
1427 if (!zlc)
1428 return 1;
1429
dd1a239f 1430 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1431 n = zlc->z_to_n[i];
1432
1433 /* This zone is worth trying if it is allowed but not full */
1434 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1435}
1436
1437/*
1438 * Given 'z' scanning a zonelist, set the corresponding bit in
1439 * zlc->fullzones, so that subsequent attempts to allocate a page
1440 * from that zone don't waste time re-examining it.
1441 */
dd1a239f 1442static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1443{
1444 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1445 int i; /* index of *z in zonelist zones */
1446
1447 zlc = zonelist->zlcache_ptr;
1448 if (!zlc)
1449 return;
1450
dd1a239f 1451 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1452
1453 set_bit(i, zlc->fullzones);
1454}
1455
1456#else /* CONFIG_NUMA */
1457
1458static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1459{
1460 return NULL;
1461}
1462
dd1a239f 1463static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1464 nodemask_t *allowednodes)
1465{
1466 return 1;
1467}
1468
dd1a239f 1469static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1470{
1471}
1472#endif /* CONFIG_NUMA */
1473
7fb1d9fc 1474/*
0798e519 1475 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1476 * a page.
1477 */
1478static struct page *
19770b32 1479get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1480 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1481 struct zone *preferred_zone, int migratetype)
753ee728 1482{
dd1a239f 1483 struct zoneref *z;
7fb1d9fc 1484 struct page *page = NULL;
54a6eb5c 1485 int classzone_idx;
5117f45d 1486 struct zone *zone;
9276b1bc
PJ
1487 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1488 int zlc_active = 0; /* set if using zonelist_cache */
1489 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1490
19770b32 1491 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1492zonelist_scan:
7fb1d9fc 1493 /*
9276b1bc 1494 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1495 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1496 */
19770b32
MG
1497 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1498 high_zoneidx, nodemask) {
9276b1bc
PJ
1499 if (NUMA_BUILD && zlc_active &&
1500 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1501 continue;
7fb1d9fc 1502 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1503 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1504 goto try_next_zone;
7fb1d9fc 1505
41858966 1506 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1507 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1508 unsigned long mark;
fa5e084e
MG
1509 int ret;
1510
41858966 1511 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1512 if (zone_watermark_ok(zone, order, mark,
1513 classzone_idx, alloc_flags))
1514 goto try_this_zone;
1515
1516 if (zone_reclaim_mode == 0)
1517 goto this_zone_full;
1518
1519 ret = zone_reclaim(zone, gfp_mask, order);
1520 switch (ret) {
1521 case ZONE_RECLAIM_NOSCAN:
1522 /* did not scan */
1523 goto try_next_zone;
1524 case ZONE_RECLAIM_FULL:
1525 /* scanned but unreclaimable */
1526 goto this_zone_full;
1527 default:
1528 /* did we reclaim enough */
1529 if (!zone_watermark_ok(zone, order, mark,
1530 classzone_idx, alloc_flags))
9276b1bc 1531 goto this_zone_full;
0798e519 1532 }
7fb1d9fc
RS
1533 }
1534
fa5e084e 1535try_this_zone:
3dd28266
MG
1536 page = buffered_rmqueue(preferred_zone, zone, order,
1537 gfp_mask, migratetype);
0798e519 1538 if (page)
7fb1d9fc 1539 break;
9276b1bc
PJ
1540this_zone_full:
1541 if (NUMA_BUILD)
1542 zlc_mark_zone_full(zonelist, z);
1543try_next_zone:
62bc62a8 1544 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1545 /*
1546 * we do zlc_setup after the first zone is tried but only
1547 * if there are multiple nodes make it worthwhile
1548 */
9276b1bc
PJ
1549 allowednodes = zlc_setup(zonelist, alloc_flags);
1550 zlc_active = 1;
1551 did_zlc_setup = 1;
1552 }
54a6eb5c 1553 }
9276b1bc
PJ
1554
1555 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1556 /* Disable zlc cache for second zonelist scan */
1557 zlc_active = 0;
1558 goto zonelist_scan;
1559 }
7fb1d9fc 1560 return page;
753ee728
MH
1561}
1562
11e33f6a
MG
1563static inline int
1564should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1565 unsigned long pages_reclaimed)
1da177e4 1566{
11e33f6a
MG
1567 /* Do not loop if specifically requested */
1568 if (gfp_mask & __GFP_NORETRY)
1569 return 0;
1da177e4 1570
11e33f6a
MG
1571 /*
1572 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1573 * means __GFP_NOFAIL, but that may not be true in other
1574 * implementations.
1575 */
1576 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1577 return 1;
1578
1579 /*
1580 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1581 * specified, then we retry until we no longer reclaim any pages
1582 * (above), or we've reclaimed an order of pages at least as
1583 * large as the allocation's order. In both cases, if the
1584 * allocation still fails, we stop retrying.
1585 */
1586 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1587 return 1;
cf40bd16 1588
11e33f6a
MG
1589 /*
1590 * Don't let big-order allocations loop unless the caller
1591 * explicitly requests that.
1592 */
1593 if (gfp_mask & __GFP_NOFAIL)
1594 return 1;
1da177e4 1595
11e33f6a
MG
1596 return 0;
1597}
933e312e 1598
11e33f6a
MG
1599static inline struct page *
1600__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1601 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1602 nodemask_t *nodemask, struct zone *preferred_zone,
1603 int migratetype)
11e33f6a
MG
1604{
1605 struct page *page;
1606
1607 /* Acquire the OOM killer lock for the zones in zonelist */
1608 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1609 schedule_timeout_uninterruptible(1);
1da177e4
LT
1610 return NULL;
1611 }
6b1de916 1612
11e33f6a
MG
1613 /*
1614 * Go through the zonelist yet one more time, keep very high watermark
1615 * here, this is only to catch a parallel oom killing, we must fail if
1616 * we're still under heavy pressure.
1617 */
1618 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1619 order, zonelist, high_zoneidx,
5117f45d 1620 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1621 preferred_zone, migratetype);
7fb1d9fc 1622 if (page)
11e33f6a
MG
1623 goto out;
1624
1625 /* The OOM killer will not help higher order allocs */
82553a93 1626 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1627 goto out;
1628
1629 /* Exhausted what can be done so it's blamo time */
1630 out_of_memory(zonelist, gfp_mask, order);
1631
1632out:
1633 clear_zonelist_oom(zonelist, gfp_mask);
1634 return page;
1635}
1636
1637/* The really slow allocator path where we enter direct reclaim */
1638static inline struct page *
1639__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1640 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1641 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1642 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1643{
1644 struct page *page = NULL;
1645 struct reclaim_state reclaim_state;
1646 struct task_struct *p = current;
1647
1648 cond_resched();
1649
1650 /* We now go into synchronous reclaim */
1651 cpuset_memory_pressure_bump();
11e33f6a
MG
1652 p->flags |= PF_MEMALLOC;
1653 lockdep_set_current_reclaim_state(gfp_mask);
1654 reclaim_state.reclaimed_slab = 0;
1655 p->reclaim_state = &reclaim_state;
1656
1657 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1658
1659 p->reclaim_state = NULL;
1660 lockdep_clear_current_reclaim_state();
1661 p->flags &= ~PF_MEMALLOC;
1662
1663 cond_resched();
1664
1665 if (order != 0)
1666 drain_all_pages();
1667
1668 if (likely(*did_some_progress))
1669 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1670 zonelist, high_zoneidx,
3dd28266
MG
1671 alloc_flags, preferred_zone,
1672 migratetype);
11e33f6a
MG
1673 return page;
1674}
1675
1da177e4 1676/*
11e33f6a
MG
1677 * This is called in the allocator slow-path if the allocation request is of
1678 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1679 */
11e33f6a
MG
1680static inline struct page *
1681__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1682 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1683 nodemask_t *nodemask, struct zone *preferred_zone,
1684 int migratetype)
11e33f6a
MG
1685{
1686 struct page *page;
1687
1688 do {
1689 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1690 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1691 preferred_zone, migratetype);
11e33f6a
MG
1692
1693 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1694 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1695 } while (!page && (gfp_mask & __GFP_NOFAIL));
1696
1697 return page;
1698}
1699
1700static inline
1701void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1702 enum zone_type high_zoneidx)
1da177e4 1703{
dd1a239f
MG
1704 struct zoneref *z;
1705 struct zone *zone;
1da177e4 1706
11e33f6a
MG
1707 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1708 wakeup_kswapd(zone, order);
1709}
cf40bd16 1710
341ce06f
PZ
1711static inline int
1712gfp_to_alloc_flags(gfp_t gfp_mask)
1713{
1714 struct task_struct *p = current;
1715 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1716 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1717
a56f57ff
MG
1718 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1719 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1720
341ce06f
PZ
1721 /*
1722 * The caller may dip into page reserves a bit more if the caller
1723 * cannot run direct reclaim, or if the caller has realtime scheduling
1724 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1725 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1726 */
a56f57ff 1727 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1728
341ce06f
PZ
1729 if (!wait) {
1730 alloc_flags |= ALLOC_HARDER;
523b9458 1731 /*
341ce06f
PZ
1732 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1733 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1734 */
341ce06f
PZ
1735 alloc_flags &= ~ALLOC_CPUSET;
1736 } else if (unlikely(rt_task(p)))
1737 alloc_flags |= ALLOC_HARDER;
1738
1739 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1740 if (!in_interrupt() &&
1741 ((p->flags & PF_MEMALLOC) ||
1742 unlikely(test_thread_flag(TIF_MEMDIE))))
1743 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1744 }
6b1de916 1745
341ce06f
PZ
1746 return alloc_flags;
1747}
1748
11e33f6a
MG
1749static inline struct page *
1750__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1751 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1752 nodemask_t *nodemask, struct zone *preferred_zone,
1753 int migratetype)
11e33f6a
MG
1754{
1755 const gfp_t wait = gfp_mask & __GFP_WAIT;
1756 struct page *page = NULL;
1757 int alloc_flags;
1758 unsigned long pages_reclaimed = 0;
1759 unsigned long did_some_progress;
1760 struct task_struct *p = current;
1da177e4 1761
72807a74
MG
1762 /*
1763 * In the slowpath, we sanity check order to avoid ever trying to
1764 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1765 * be using allocators in order of preference for an area that is
1766 * too large.
1767 */
1fc28b70
MG
1768 if (order >= MAX_ORDER) {
1769 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1770 return NULL;
1fc28b70 1771 }
1da177e4 1772
952f3b51
CL
1773 /*
1774 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1775 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1776 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1777 * using a larger set of nodes after it has established that the
1778 * allowed per node queues are empty and that nodes are
1779 * over allocated.
1780 */
1781 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1782 goto nopage;
1783
11e33f6a 1784 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1785
b259fbde 1786restart:
9bf2229f 1787 /*
7fb1d9fc
RS
1788 * OK, we're below the kswapd watermark and have kicked background
1789 * reclaim. Now things get more complex, so set up alloc_flags according
1790 * to how we want to proceed.
9bf2229f 1791 */
341ce06f 1792 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1793
341ce06f 1794 /* This is the last chance, in general, before the goto nopage. */
19770b32 1795 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1796 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1797 preferred_zone, migratetype);
7fb1d9fc
RS
1798 if (page)
1799 goto got_pg;
1da177e4 1800
b43a57bb 1801rebalance:
11e33f6a 1802 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1803 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1804 page = __alloc_pages_high_priority(gfp_mask, order,
1805 zonelist, high_zoneidx, nodemask,
1806 preferred_zone, migratetype);
1807 if (page)
1808 goto got_pg;
1da177e4
LT
1809 }
1810
1811 /* Atomic allocations - we can't balance anything */
1812 if (!wait)
1813 goto nopage;
1814
341ce06f
PZ
1815 /* Avoid recursion of direct reclaim */
1816 if (p->flags & PF_MEMALLOC)
1817 goto nopage;
1818
6583bb64
DR
1819 /* Avoid allocations with no watermarks from looping endlessly */
1820 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1821 goto nopage;
1822
11e33f6a
MG
1823 /* Try direct reclaim and then allocating */
1824 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1825 zonelist, high_zoneidx,
1826 nodemask,
5117f45d 1827 alloc_flags, preferred_zone,
3dd28266 1828 migratetype, &did_some_progress);
11e33f6a
MG
1829 if (page)
1830 goto got_pg;
1da177e4 1831
e33c3b5e 1832 /*
11e33f6a
MG
1833 * If we failed to make any progress reclaiming, then we are
1834 * running out of options and have to consider going OOM
e33c3b5e 1835 */
11e33f6a
MG
1836 if (!did_some_progress) {
1837 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1838 if (oom_killer_disabled)
1839 goto nopage;
11e33f6a
MG
1840 page = __alloc_pages_may_oom(gfp_mask, order,
1841 zonelist, high_zoneidx,
3dd28266
MG
1842 nodemask, preferred_zone,
1843 migratetype);
11e33f6a
MG
1844 if (page)
1845 goto got_pg;
1da177e4 1846
11e33f6a 1847 /*
82553a93
DR
1848 * The OOM killer does not trigger for high-order
1849 * ~__GFP_NOFAIL allocations so if no progress is being
1850 * made, there are no other options and retrying is
1851 * unlikely to help.
11e33f6a 1852 */
82553a93
DR
1853 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1854 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1855 goto nopage;
e2c55dc8 1856
ff0ceb9d
DR
1857 goto restart;
1858 }
1da177e4
LT
1859 }
1860
11e33f6a 1861 /* Check if we should retry the allocation */
a41f24ea 1862 pages_reclaimed += did_some_progress;
11e33f6a
MG
1863 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1864 /* Wait for some write requests to complete then retry */
8aa7e847 1865 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1866 goto rebalance;
1867 }
1868
1869nopage:
1870 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1871 printk(KERN_WARNING "%s: page allocation failure."
1872 " order:%d, mode:0x%x\n",
1873 p->comm, order, gfp_mask);
1874 dump_stack();
578c2fd6 1875 show_mem();
1da177e4 1876 }
b1eeab67 1877 return page;
1da177e4 1878got_pg:
b1eeab67
VN
1879 if (kmemcheck_enabled)
1880 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1881 return page;
11e33f6a 1882
1da177e4 1883}
11e33f6a
MG
1884
1885/*
1886 * This is the 'heart' of the zoned buddy allocator.
1887 */
1888struct page *
1889__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1890 struct zonelist *zonelist, nodemask_t *nodemask)
1891{
1892 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1893 struct zone *preferred_zone;
11e33f6a 1894 struct page *page;
3dd28266 1895 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1896
dcce284a
BH
1897 gfp_mask &= gfp_allowed_mask;
1898
11e33f6a
MG
1899 lockdep_trace_alloc(gfp_mask);
1900
1901 might_sleep_if(gfp_mask & __GFP_WAIT);
1902
1903 if (should_fail_alloc_page(gfp_mask, order))
1904 return NULL;
1905
1906 /*
1907 * Check the zones suitable for the gfp_mask contain at least one
1908 * valid zone. It's possible to have an empty zonelist as a result
1909 * of GFP_THISNODE and a memoryless node
1910 */
1911 if (unlikely(!zonelist->_zonerefs->zone))
1912 return NULL;
1913
5117f45d
MG
1914 /* The preferred zone is used for statistics later */
1915 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1916 if (!preferred_zone)
1917 return NULL;
1918
1919 /* First allocation attempt */
11e33f6a 1920 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1921 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1922 preferred_zone, migratetype);
11e33f6a
MG
1923 if (unlikely(!page))
1924 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1925 zonelist, high_zoneidx, nodemask,
3dd28266 1926 preferred_zone, migratetype);
11e33f6a 1927
4b4f278c 1928 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 1929 return page;
1da177e4 1930}
d239171e 1931EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1932
1933/*
1934 * Common helper functions.
1935 */
920c7a5d 1936unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 1937{
945a1113
AM
1938 struct page *page;
1939
1940 /*
1941 * __get_free_pages() returns a 32-bit address, which cannot represent
1942 * a highmem page
1943 */
1944 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1945
1da177e4
LT
1946 page = alloc_pages(gfp_mask, order);
1947 if (!page)
1948 return 0;
1949 return (unsigned long) page_address(page);
1950}
1da177e4
LT
1951EXPORT_SYMBOL(__get_free_pages);
1952
920c7a5d 1953unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 1954{
945a1113 1955 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 1956}
1da177e4
LT
1957EXPORT_SYMBOL(get_zeroed_page);
1958
1959void __pagevec_free(struct pagevec *pvec)
1960{
1961 int i = pagevec_count(pvec);
1962
4b4f278c
MG
1963 while (--i >= 0) {
1964 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 1965 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 1966 }
1da177e4
LT
1967}
1968
920c7a5d 1969void __free_pages(struct page *page, unsigned int order)
1da177e4 1970{
b5810039 1971 if (put_page_testzero(page)) {
4b4f278c 1972 trace_mm_page_free_direct(page, order);
1da177e4
LT
1973 if (order == 0)
1974 free_hot_page(page);
1975 else
1976 __free_pages_ok(page, order);
1977 }
1978}
1979
1980EXPORT_SYMBOL(__free_pages);
1981
920c7a5d 1982void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1983{
1984 if (addr != 0) {
725d704e 1985 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1986 __free_pages(virt_to_page((void *)addr), order);
1987 }
1988}
1989
1990EXPORT_SYMBOL(free_pages);
1991
2be0ffe2
TT
1992/**
1993 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1994 * @size: the number of bytes to allocate
1995 * @gfp_mask: GFP flags for the allocation
1996 *
1997 * This function is similar to alloc_pages(), except that it allocates the
1998 * minimum number of pages to satisfy the request. alloc_pages() can only
1999 * allocate memory in power-of-two pages.
2000 *
2001 * This function is also limited by MAX_ORDER.
2002 *
2003 * Memory allocated by this function must be released by free_pages_exact().
2004 */
2005void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2006{
2007 unsigned int order = get_order(size);
2008 unsigned long addr;
2009
2010 addr = __get_free_pages(gfp_mask, order);
2011 if (addr) {
2012 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2013 unsigned long used = addr + PAGE_ALIGN(size);
2014
5bfd7560 2015 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2016 while (used < alloc_end) {
2017 free_page(used);
2018 used += PAGE_SIZE;
2019 }
2020 }
2021
2022 return (void *)addr;
2023}
2024EXPORT_SYMBOL(alloc_pages_exact);
2025
2026/**
2027 * free_pages_exact - release memory allocated via alloc_pages_exact()
2028 * @virt: the value returned by alloc_pages_exact.
2029 * @size: size of allocation, same value as passed to alloc_pages_exact().
2030 *
2031 * Release the memory allocated by a previous call to alloc_pages_exact.
2032 */
2033void free_pages_exact(void *virt, size_t size)
2034{
2035 unsigned long addr = (unsigned long)virt;
2036 unsigned long end = addr + PAGE_ALIGN(size);
2037
2038 while (addr < end) {
2039 free_page(addr);
2040 addr += PAGE_SIZE;
2041 }
2042}
2043EXPORT_SYMBOL(free_pages_exact);
2044
1da177e4
LT
2045static unsigned int nr_free_zone_pages(int offset)
2046{
dd1a239f 2047 struct zoneref *z;
54a6eb5c
MG
2048 struct zone *zone;
2049
e310fd43 2050 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2051 unsigned int sum = 0;
2052
0e88460d 2053 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2054
54a6eb5c 2055 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2056 unsigned long size = zone->present_pages;
41858966 2057 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2058 if (size > high)
2059 sum += size - high;
1da177e4
LT
2060 }
2061
2062 return sum;
2063}
2064
2065/*
2066 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2067 */
2068unsigned int nr_free_buffer_pages(void)
2069{
af4ca457 2070 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2071}
c2f1a551 2072EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2073
2074/*
2075 * Amount of free RAM allocatable within all zones
2076 */
2077unsigned int nr_free_pagecache_pages(void)
2078{
2a1e274a 2079 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2080}
08e0f6a9
CL
2081
2082static inline void show_node(struct zone *zone)
1da177e4 2083{
08e0f6a9 2084 if (NUMA_BUILD)
25ba77c1 2085 printk("Node %d ", zone_to_nid(zone));
1da177e4 2086}
1da177e4 2087
1da177e4
LT
2088void si_meminfo(struct sysinfo *val)
2089{
2090 val->totalram = totalram_pages;
2091 val->sharedram = 0;
d23ad423 2092 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2093 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2094 val->totalhigh = totalhigh_pages;
2095 val->freehigh = nr_free_highpages();
1da177e4
LT
2096 val->mem_unit = PAGE_SIZE;
2097}
2098
2099EXPORT_SYMBOL(si_meminfo);
2100
2101#ifdef CONFIG_NUMA
2102void si_meminfo_node(struct sysinfo *val, int nid)
2103{
2104 pg_data_t *pgdat = NODE_DATA(nid);
2105
2106 val->totalram = pgdat->node_present_pages;
d23ad423 2107 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2108#ifdef CONFIG_HIGHMEM
1da177e4 2109 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2110 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2111 NR_FREE_PAGES);
98d2b0eb
CL
2112#else
2113 val->totalhigh = 0;
2114 val->freehigh = 0;
2115#endif
1da177e4
LT
2116 val->mem_unit = PAGE_SIZE;
2117}
2118#endif
2119
2120#define K(x) ((x) << (PAGE_SHIFT-10))
2121
2122/*
2123 * Show free area list (used inside shift_scroll-lock stuff)
2124 * We also calculate the percentage fragmentation. We do this by counting the
2125 * memory on each free list with the exception of the first item on the list.
2126 */
2127void show_free_areas(void)
2128{
c7241913 2129 int cpu;
1da177e4
LT
2130 struct zone *zone;
2131
ee99c71c 2132 for_each_populated_zone(zone) {
c7241913
JS
2133 show_node(zone);
2134 printk("%s per-cpu:\n", zone->name);
1da177e4 2135
6b482c67 2136 for_each_online_cpu(cpu) {
1da177e4
LT
2137 struct per_cpu_pageset *pageset;
2138
e7c8d5c9 2139 pageset = zone_pcp(zone, cpu);
1da177e4 2140
3dfa5721
CL
2141 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2142 cpu, pageset->pcp.high,
2143 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2144 }
2145 }
2146
a731286d
KM
2147 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2148 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2149 " unevictable:%lu"
71de1ccb 2150 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
3701b033 2151 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2152 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2153 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2154 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2155 global_page_state(NR_ISOLATED_ANON),
2156 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2157 global_page_state(NR_INACTIVE_FILE),
a731286d 2158 global_page_state(NR_ISOLATED_FILE),
7b854121 2159 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2160 global_page_state(NR_FILE_DIRTY),
ce866b34 2161 global_page_state(NR_WRITEBACK),
fd39fc85 2162 global_page_state(NR_UNSTABLE_NFS),
71de1ccb 2163 nr_blockdev_pages(),
d23ad423 2164 global_page_state(NR_FREE_PAGES),
3701b033
KM
2165 global_page_state(NR_SLAB_RECLAIMABLE),
2166 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2167 global_page_state(NR_FILE_MAPPED),
4b02108a 2168 global_page_state(NR_SHMEM),
a25700a5
AM
2169 global_page_state(NR_PAGETABLE),
2170 global_page_state(NR_BOUNCE));
1da177e4 2171
ee99c71c 2172 for_each_populated_zone(zone) {
1da177e4
LT
2173 int i;
2174
2175 show_node(zone);
2176 printk("%s"
2177 " free:%lukB"
2178 " min:%lukB"
2179 " low:%lukB"
2180 " high:%lukB"
4f98a2fe
RR
2181 " active_anon:%lukB"
2182 " inactive_anon:%lukB"
2183 " active_file:%lukB"
2184 " inactive_file:%lukB"
7b854121 2185 " unevictable:%lukB"
a731286d
KM
2186 " isolated(anon):%lukB"
2187 " isolated(file):%lukB"
1da177e4 2188 " present:%lukB"
4a0aa73f
KM
2189 " mlocked:%lukB"
2190 " dirty:%lukB"
2191 " writeback:%lukB"
2192 " mapped:%lukB"
4b02108a 2193 " shmem:%lukB"
4a0aa73f
KM
2194 " slab_reclaimable:%lukB"
2195 " slab_unreclaimable:%lukB"
c6a7f572 2196 " kernel_stack:%lukB"
4a0aa73f
KM
2197 " pagetables:%lukB"
2198 " unstable:%lukB"
2199 " bounce:%lukB"
2200 " writeback_tmp:%lukB"
1da177e4
LT
2201 " pages_scanned:%lu"
2202 " all_unreclaimable? %s"
2203 "\n",
2204 zone->name,
d23ad423 2205 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2206 K(min_wmark_pages(zone)),
2207 K(low_wmark_pages(zone)),
2208 K(high_wmark_pages(zone)),
4f98a2fe
RR
2209 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2210 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2211 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2212 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2213 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2214 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2215 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2216 K(zone->present_pages),
4a0aa73f
KM
2217 K(zone_page_state(zone, NR_MLOCK)),
2218 K(zone_page_state(zone, NR_FILE_DIRTY)),
2219 K(zone_page_state(zone, NR_WRITEBACK)),
2220 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2221 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2222 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2223 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2224 zone_page_state(zone, NR_KERNEL_STACK) *
2225 THREAD_SIZE / 1024,
4a0aa73f
KM
2226 K(zone_page_state(zone, NR_PAGETABLE)),
2227 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2228 K(zone_page_state(zone, NR_BOUNCE)),
2229 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2230 zone->pages_scanned,
e815af95 2231 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2232 );
2233 printk("lowmem_reserve[]:");
2234 for (i = 0; i < MAX_NR_ZONES; i++)
2235 printk(" %lu", zone->lowmem_reserve[i]);
2236 printk("\n");
2237 }
2238
ee99c71c 2239 for_each_populated_zone(zone) {
8f9de51a 2240 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2241
2242 show_node(zone);
2243 printk("%s: ", zone->name);
1da177e4
LT
2244
2245 spin_lock_irqsave(&zone->lock, flags);
2246 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2247 nr[order] = zone->free_area[order].nr_free;
2248 total += nr[order] << order;
1da177e4
LT
2249 }
2250 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2251 for (order = 0; order < MAX_ORDER; order++)
2252 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2253 printk("= %lukB\n", K(total));
2254 }
2255
e6f3602d
LW
2256 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2257
1da177e4
LT
2258 show_swap_cache_info();
2259}
2260
19770b32
MG
2261static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2262{
2263 zoneref->zone = zone;
2264 zoneref->zone_idx = zone_idx(zone);
2265}
2266
1da177e4
LT
2267/*
2268 * Builds allocation fallback zone lists.
1a93205b
CL
2269 *
2270 * Add all populated zones of a node to the zonelist.
1da177e4 2271 */
f0c0b2b8
KH
2272static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2273 int nr_zones, enum zone_type zone_type)
1da177e4 2274{
1a93205b
CL
2275 struct zone *zone;
2276
98d2b0eb 2277 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2278 zone_type++;
02a68a5e
CL
2279
2280 do {
2f6726e5 2281 zone_type--;
070f8032 2282 zone = pgdat->node_zones + zone_type;
1a93205b 2283 if (populated_zone(zone)) {
dd1a239f
MG
2284 zoneref_set_zone(zone,
2285 &zonelist->_zonerefs[nr_zones++]);
070f8032 2286 check_highest_zone(zone_type);
1da177e4 2287 }
02a68a5e 2288
2f6726e5 2289 } while (zone_type);
070f8032 2290 return nr_zones;
1da177e4
LT
2291}
2292
f0c0b2b8
KH
2293
2294/*
2295 * zonelist_order:
2296 * 0 = automatic detection of better ordering.
2297 * 1 = order by ([node] distance, -zonetype)
2298 * 2 = order by (-zonetype, [node] distance)
2299 *
2300 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2301 * the same zonelist. So only NUMA can configure this param.
2302 */
2303#define ZONELIST_ORDER_DEFAULT 0
2304#define ZONELIST_ORDER_NODE 1
2305#define ZONELIST_ORDER_ZONE 2
2306
2307/* zonelist order in the kernel.
2308 * set_zonelist_order() will set this to NODE or ZONE.
2309 */
2310static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2311static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2312
2313
1da177e4 2314#ifdef CONFIG_NUMA
f0c0b2b8
KH
2315/* The value user specified ....changed by config */
2316static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2317/* string for sysctl */
2318#define NUMA_ZONELIST_ORDER_LEN 16
2319char numa_zonelist_order[16] = "default";
2320
2321/*
2322 * interface for configure zonelist ordering.
2323 * command line option "numa_zonelist_order"
2324 * = "[dD]efault - default, automatic configuration.
2325 * = "[nN]ode - order by node locality, then by zone within node
2326 * = "[zZ]one - order by zone, then by locality within zone
2327 */
2328
2329static int __parse_numa_zonelist_order(char *s)
2330{
2331 if (*s == 'd' || *s == 'D') {
2332 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2333 } else if (*s == 'n' || *s == 'N') {
2334 user_zonelist_order = ZONELIST_ORDER_NODE;
2335 } else if (*s == 'z' || *s == 'Z') {
2336 user_zonelist_order = ZONELIST_ORDER_ZONE;
2337 } else {
2338 printk(KERN_WARNING
2339 "Ignoring invalid numa_zonelist_order value: "
2340 "%s\n", s);
2341 return -EINVAL;
2342 }
2343 return 0;
2344}
2345
2346static __init int setup_numa_zonelist_order(char *s)
2347{
2348 if (s)
2349 return __parse_numa_zonelist_order(s);
2350 return 0;
2351}
2352early_param("numa_zonelist_order", setup_numa_zonelist_order);
2353
2354/*
2355 * sysctl handler for numa_zonelist_order
2356 */
2357int numa_zonelist_order_handler(ctl_table *table, int write,
2358 struct file *file, void __user *buffer, size_t *length,
2359 loff_t *ppos)
2360{
2361 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2362 int ret;
2363
2364 if (write)
2365 strncpy(saved_string, (char*)table->data,
2366 NUMA_ZONELIST_ORDER_LEN);
2367 ret = proc_dostring(table, write, file, buffer, length, ppos);
2368 if (ret)
2369 return ret;
2370 if (write) {
2371 int oldval = user_zonelist_order;
2372 if (__parse_numa_zonelist_order((char*)table->data)) {
2373 /*
2374 * bogus value. restore saved string
2375 */
2376 strncpy((char*)table->data, saved_string,
2377 NUMA_ZONELIST_ORDER_LEN);
2378 user_zonelist_order = oldval;
2379 } else if (oldval != user_zonelist_order)
2380 build_all_zonelists();
2381 }
2382 return 0;
2383}
2384
2385
62bc62a8 2386#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2387static int node_load[MAX_NUMNODES];
2388
1da177e4 2389/**
4dc3b16b 2390 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2391 * @node: node whose fallback list we're appending
2392 * @used_node_mask: nodemask_t of already used nodes
2393 *
2394 * We use a number of factors to determine which is the next node that should
2395 * appear on a given node's fallback list. The node should not have appeared
2396 * already in @node's fallback list, and it should be the next closest node
2397 * according to the distance array (which contains arbitrary distance values
2398 * from each node to each node in the system), and should also prefer nodes
2399 * with no CPUs, since presumably they'll have very little allocation pressure
2400 * on them otherwise.
2401 * It returns -1 if no node is found.
2402 */
f0c0b2b8 2403static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2404{
4cf808eb 2405 int n, val;
1da177e4
LT
2406 int min_val = INT_MAX;
2407 int best_node = -1;
a70f7302 2408 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2409
4cf808eb
LT
2410 /* Use the local node if we haven't already */
2411 if (!node_isset(node, *used_node_mask)) {
2412 node_set(node, *used_node_mask);
2413 return node;
2414 }
1da177e4 2415
37b07e41 2416 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2417
2418 /* Don't want a node to appear more than once */
2419 if (node_isset(n, *used_node_mask))
2420 continue;
2421
1da177e4
LT
2422 /* Use the distance array to find the distance */
2423 val = node_distance(node, n);
2424
4cf808eb
LT
2425 /* Penalize nodes under us ("prefer the next node") */
2426 val += (n < node);
2427
1da177e4 2428 /* Give preference to headless and unused nodes */
a70f7302
RR
2429 tmp = cpumask_of_node(n);
2430 if (!cpumask_empty(tmp))
1da177e4
LT
2431 val += PENALTY_FOR_NODE_WITH_CPUS;
2432
2433 /* Slight preference for less loaded node */
2434 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2435 val += node_load[n];
2436
2437 if (val < min_val) {
2438 min_val = val;
2439 best_node = n;
2440 }
2441 }
2442
2443 if (best_node >= 0)
2444 node_set(best_node, *used_node_mask);
2445
2446 return best_node;
2447}
2448
f0c0b2b8
KH
2449
2450/*
2451 * Build zonelists ordered by node and zones within node.
2452 * This results in maximum locality--normal zone overflows into local
2453 * DMA zone, if any--but risks exhausting DMA zone.
2454 */
2455static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2456{
f0c0b2b8 2457 int j;
1da177e4 2458 struct zonelist *zonelist;
f0c0b2b8 2459
54a6eb5c 2460 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2461 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2462 ;
2463 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2464 MAX_NR_ZONES - 1);
dd1a239f
MG
2465 zonelist->_zonerefs[j].zone = NULL;
2466 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2467}
2468
523b9458
CL
2469/*
2470 * Build gfp_thisnode zonelists
2471 */
2472static void build_thisnode_zonelists(pg_data_t *pgdat)
2473{
523b9458
CL
2474 int j;
2475 struct zonelist *zonelist;
2476
54a6eb5c
MG
2477 zonelist = &pgdat->node_zonelists[1];
2478 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2479 zonelist->_zonerefs[j].zone = NULL;
2480 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2481}
2482
f0c0b2b8
KH
2483/*
2484 * Build zonelists ordered by zone and nodes within zones.
2485 * This results in conserving DMA zone[s] until all Normal memory is
2486 * exhausted, but results in overflowing to remote node while memory
2487 * may still exist in local DMA zone.
2488 */
2489static int node_order[MAX_NUMNODES];
2490
2491static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2492{
f0c0b2b8
KH
2493 int pos, j, node;
2494 int zone_type; /* needs to be signed */
2495 struct zone *z;
2496 struct zonelist *zonelist;
2497
54a6eb5c
MG
2498 zonelist = &pgdat->node_zonelists[0];
2499 pos = 0;
2500 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2501 for (j = 0; j < nr_nodes; j++) {
2502 node = node_order[j];
2503 z = &NODE_DATA(node)->node_zones[zone_type];
2504 if (populated_zone(z)) {
dd1a239f
MG
2505 zoneref_set_zone(z,
2506 &zonelist->_zonerefs[pos++]);
54a6eb5c 2507 check_highest_zone(zone_type);
f0c0b2b8
KH
2508 }
2509 }
f0c0b2b8 2510 }
dd1a239f
MG
2511 zonelist->_zonerefs[pos].zone = NULL;
2512 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2513}
2514
2515static int default_zonelist_order(void)
2516{
2517 int nid, zone_type;
2518 unsigned long low_kmem_size,total_size;
2519 struct zone *z;
2520 int average_size;
2521 /*
2522 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2523 * If they are really small and used heavily, the system can fall
2524 * into OOM very easily.
2525 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2526 */
2527 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2528 low_kmem_size = 0;
2529 total_size = 0;
2530 for_each_online_node(nid) {
2531 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2532 z = &NODE_DATA(nid)->node_zones[zone_type];
2533 if (populated_zone(z)) {
2534 if (zone_type < ZONE_NORMAL)
2535 low_kmem_size += z->present_pages;
2536 total_size += z->present_pages;
2537 }
2538 }
2539 }
2540 if (!low_kmem_size || /* there are no DMA area. */
2541 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2542 return ZONELIST_ORDER_NODE;
2543 /*
2544 * look into each node's config.
2545 * If there is a node whose DMA/DMA32 memory is very big area on
2546 * local memory, NODE_ORDER may be suitable.
2547 */
37b07e41
LS
2548 average_size = total_size /
2549 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2550 for_each_online_node(nid) {
2551 low_kmem_size = 0;
2552 total_size = 0;
2553 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2554 z = &NODE_DATA(nid)->node_zones[zone_type];
2555 if (populated_zone(z)) {
2556 if (zone_type < ZONE_NORMAL)
2557 low_kmem_size += z->present_pages;
2558 total_size += z->present_pages;
2559 }
2560 }
2561 if (low_kmem_size &&
2562 total_size > average_size && /* ignore small node */
2563 low_kmem_size > total_size * 70/100)
2564 return ZONELIST_ORDER_NODE;
2565 }
2566 return ZONELIST_ORDER_ZONE;
2567}
2568
2569static void set_zonelist_order(void)
2570{
2571 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2572 current_zonelist_order = default_zonelist_order();
2573 else
2574 current_zonelist_order = user_zonelist_order;
2575}
2576
2577static void build_zonelists(pg_data_t *pgdat)
2578{
2579 int j, node, load;
2580 enum zone_type i;
1da177e4 2581 nodemask_t used_mask;
f0c0b2b8
KH
2582 int local_node, prev_node;
2583 struct zonelist *zonelist;
2584 int order = current_zonelist_order;
1da177e4
LT
2585
2586 /* initialize zonelists */
523b9458 2587 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2588 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2589 zonelist->_zonerefs[0].zone = NULL;
2590 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2591 }
2592
2593 /* NUMA-aware ordering of nodes */
2594 local_node = pgdat->node_id;
62bc62a8 2595 load = nr_online_nodes;
1da177e4
LT
2596 prev_node = local_node;
2597 nodes_clear(used_mask);
f0c0b2b8 2598
f0c0b2b8
KH
2599 memset(node_order, 0, sizeof(node_order));
2600 j = 0;
2601
1da177e4 2602 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2603 int distance = node_distance(local_node, node);
2604
2605 /*
2606 * If another node is sufficiently far away then it is better
2607 * to reclaim pages in a zone before going off node.
2608 */
2609 if (distance > RECLAIM_DISTANCE)
2610 zone_reclaim_mode = 1;
2611
1da177e4
LT
2612 /*
2613 * We don't want to pressure a particular node.
2614 * So adding penalty to the first node in same
2615 * distance group to make it round-robin.
2616 */
9eeff239 2617 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2618 node_load[node] = load;
2619
1da177e4
LT
2620 prev_node = node;
2621 load--;
f0c0b2b8
KH
2622 if (order == ZONELIST_ORDER_NODE)
2623 build_zonelists_in_node_order(pgdat, node);
2624 else
2625 node_order[j++] = node; /* remember order */
2626 }
1da177e4 2627
f0c0b2b8
KH
2628 if (order == ZONELIST_ORDER_ZONE) {
2629 /* calculate node order -- i.e., DMA last! */
2630 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2631 }
523b9458
CL
2632
2633 build_thisnode_zonelists(pgdat);
1da177e4
LT
2634}
2635
9276b1bc 2636/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2637static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2638{
54a6eb5c
MG
2639 struct zonelist *zonelist;
2640 struct zonelist_cache *zlc;
dd1a239f 2641 struct zoneref *z;
9276b1bc 2642
54a6eb5c
MG
2643 zonelist = &pgdat->node_zonelists[0];
2644 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2645 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2646 for (z = zonelist->_zonerefs; z->zone; z++)
2647 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2648}
2649
f0c0b2b8 2650
1da177e4
LT
2651#else /* CONFIG_NUMA */
2652
f0c0b2b8
KH
2653static void set_zonelist_order(void)
2654{
2655 current_zonelist_order = ZONELIST_ORDER_ZONE;
2656}
2657
2658static void build_zonelists(pg_data_t *pgdat)
1da177e4 2659{
19655d34 2660 int node, local_node;
54a6eb5c
MG
2661 enum zone_type j;
2662 struct zonelist *zonelist;
1da177e4
LT
2663
2664 local_node = pgdat->node_id;
1da177e4 2665
54a6eb5c
MG
2666 zonelist = &pgdat->node_zonelists[0];
2667 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2668
54a6eb5c
MG
2669 /*
2670 * Now we build the zonelist so that it contains the zones
2671 * of all the other nodes.
2672 * We don't want to pressure a particular node, so when
2673 * building the zones for node N, we make sure that the
2674 * zones coming right after the local ones are those from
2675 * node N+1 (modulo N)
2676 */
2677 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2678 if (!node_online(node))
2679 continue;
2680 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2681 MAX_NR_ZONES - 1);
1da177e4 2682 }
54a6eb5c
MG
2683 for (node = 0; node < local_node; node++) {
2684 if (!node_online(node))
2685 continue;
2686 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2687 MAX_NR_ZONES - 1);
2688 }
2689
dd1a239f
MG
2690 zonelist->_zonerefs[j].zone = NULL;
2691 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2692}
2693
9276b1bc 2694/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2695static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2696{
54a6eb5c 2697 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2698}
2699
1da177e4
LT
2700#endif /* CONFIG_NUMA */
2701
9b1a4d38 2702/* return values int ....just for stop_machine() */
f0c0b2b8 2703static int __build_all_zonelists(void *dummy)
1da177e4 2704{
6811378e 2705 int nid;
9276b1bc 2706
7f9cfb31
BL
2707#ifdef CONFIG_NUMA
2708 memset(node_load, 0, sizeof(node_load));
2709#endif
9276b1bc 2710 for_each_online_node(nid) {
7ea1530a
CL
2711 pg_data_t *pgdat = NODE_DATA(nid);
2712
2713 build_zonelists(pgdat);
2714 build_zonelist_cache(pgdat);
9276b1bc 2715 }
6811378e
YG
2716 return 0;
2717}
2718
f0c0b2b8 2719void build_all_zonelists(void)
6811378e 2720{
f0c0b2b8
KH
2721 set_zonelist_order();
2722
6811378e 2723 if (system_state == SYSTEM_BOOTING) {
423b41d7 2724 __build_all_zonelists(NULL);
68ad8df4 2725 mminit_verify_zonelist();
6811378e
YG
2726 cpuset_init_current_mems_allowed();
2727 } else {
183ff22b 2728 /* we have to stop all cpus to guarantee there is no user
6811378e 2729 of zonelist */
9b1a4d38 2730 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2731 /* cpuset refresh routine should be here */
2732 }
bd1e22b8 2733 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2734 /*
2735 * Disable grouping by mobility if the number of pages in the
2736 * system is too low to allow the mechanism to work. It would be
2737 * more accurate, but expensive to check per-zone. This check is
2738 * made on memory-hotadd so a system can start with mobility
2739 * disabled and enable it later
2740 */
d9c23400 2741 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2742 page_group_by_mobility_disabled = 1;
2743 else
2744 page_group_by_mobility_disabled = 0;
2745
2746 printk("Built %i zonelists in %s order, mobility grouping %s. "
2747 "Total pages: %ld\n",
62bc62a8 2748 nr_online_nodes,
f0c0b2b8 2749 zonelist_order_name[current_zonelist_order],
9ef9acb0 2750 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2751 vm_total_pages);
2752#ifdef CONFIG_NUMA
2753 printk("Policy zone: %s\n", zone_names[policy_zone]);
2754#endif
1da177e4
LT
2755}
2756
2757/*
2758 * Helper functions to size the waitqueue hash table.
2759 * Essentially these want to choose hash table sizes sufficiently
2760 * large so that collisions trying to wait on pages are rare.
2761 * But in fact, the number of active page waitqueues on typical
2762 * systems is ridiculously low, less than 200. So this is even
2763 * conservative, even though it seems large.
2764 *
2765 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2766 * waitqueues, i.e. the size of the waitq table given the number of pages.
2767 */
2768#define PAGES_PER_WAITQUEUE 256
2769
cca448fe 2770#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2771static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2772{
2773 unsigned long size = 1;
2774
2775 pages /= PAGES_PER_WAITQUEUE;
2776
2777 while (size < pages)
2778 size <<= 1;
2779
2780 /*
2781 * Once we have dozens or even hundreds of threads sleeping
2782 * on IO we've got bigger problems than wait queue collision.
2783 * Limit the size of the wait table to a reasonable size.
2784 */
2785 size = min(size, 4096UL);
2786
2787 return max(size, 4UL);
2788}
cca448fe
YG
2789#else
2790/*
2791 * A zone's size might be changed by hot-add, so it is not possible to determine
2792 * a suitable size for its wait_table. So we use the maximum size now.
2793 *
2794 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2795 *
2796 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2797 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2798 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2799 *
2800 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2801 * or more by the traditional way. (See above). It equals:
2802 *
2803 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2804 * ia64(16K page size) : = ( 8G + 4M)byte.
2805 * powerpc (64K page size) : = (32G +16M)byte.
2806 */
2807static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2808{
2809 return 4096UL;
2810}
2811#endif
1da177e4
LT
2812
2813/*
2814 * This is an integer logarithm so that shifts can be used later
2815 * to extract the more random high bits from the multiplicative
2816 * hash function before the remainder is taken.
2817 */
2818static inline unsigned long wait_table_bits(unsigned long size)
2819{
2820 return ffz(~size);
2821}
2822
2823#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2824
56fd56b8 2825/*
d9c23400 2826 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2827 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2828 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2829 * higher will lead to a bigger reserve which will get freed as contiguous
2830 * blocks as reclaim kicks in
2831 */
2832static void setup_zone_migrate_reserve(struct zone *zone)
2833{
2834 unsigned long start_pfn, pfn, end_pfn;
2835 struct page *page;
2836 unsigned long reserve, block_migratetype;
2837
2838 /* Get the start pfn, end pfn and the number of blocks to reserve */
2839 start_pfn = zone->zone_start_pfn;
2840 end_pfn = start_pfn + zone->spanned_pages;
41858966 2841 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2842 pageblock_order;
56fd56b8 2843
d9c23400 2844 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2845 if (!pfn_valid(pfn))
2846 continue;
2847 page = pfn_to_page(pfn);
2848
344c790e
AL
2849 /* Watch out for overlapping nodes */
2850 if (page_to_nid(page) != zone_to_nid(zone))
2851 continue;
2852
56fd56b8
MG
2853 /* Blocks with reserved pages will never free, skip them. */
2854 if (PageReserved(page))
2855 continue;
2856
2857 block_migratetype = get_pageblock_migratetype(page);
2858
2859 /* If this block is reserved, account for it */
2860 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2861 reserve--;
2862 continue;
2863 }
2864
2865 /* Suitable for reserving if this block is movable */
2866 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2867 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2868 move_freepages_block(zone, page, MIGRATE_RESERVE);
2869 reserve--;
2870 continue;
2871 }
2872
2873 /*
2874 * If the reserve is met and this is a previous reserved block,
2875 * take it back
2876 */
2877 if (block_migratetype == MIGRATE_RESERVE) {
2878 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2879 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2880 }
2881 }
2882}
ac0e5b7a 2883
1da177e4
LT
2884/*
2885 * Initially all pages are reserved - free ones are freed
2886 * up by free_all_bootmem() once the early boot process is
2887 * done. Non-atomic initialization, single-pass.
2888 */
c09b4240 2889void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2890 unsigned long start_pfn, enum memmap_context context)
1da177e4 2891{
1da177e4 2892 struct page *page;
29751f69
AW
2893 unsigned long end_pfn = start_pfn + size;
2894 unsigned long pfn;
86051ca5 2895 struct zone *z;
1da177e4 2896
22b31eec
HD
2897 if (highest_memmap_pfn < end_pfn - 1)
2898 highest_memmap_pfn = end_pfn - 1;
2899
86051ca5 2900 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2901 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2902 /*
2903 * There can be holes in boot-time mem_map[]s
2904 * handed to this function. They do not
2905 * exist on hotplugged memory.
2906 */
2907 if (context == MEMMAP_EARLY) {
2908 if (!early_pfn_valid(pfn))
2909 continue;
2910 if (!early_pfn_in_nid(pfn, nid))
2911 continue;
2912 }
d41dee36
AW
2913 page = pfn_to_page(pfn);
2914 set_page_links(page, zone, nid, pfn);
708614e6 2915 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2916 init_page_count(page);
1da177e4
LT
2917 reset_page_mapcount(page);
2918 SetPageReserved(page);
b2a0ac88
MG
2919 /*
2920 * Mark the block movable so that blocks are reserved for
2921 * movable at startup. This will force kernel allocations
2922 * to reserve their blocks rather than leaking throughout
2923 * the address space during boot when many long-lived
56fd56b8
MG
2924 * kernel allocations are made. Later some blocks near
2925 * the start are marked MIGRATE_RESERVE by
2926 * setup_zone_migrate_reserve()
86051ca5
KH
2927 *
2928 * bitmap is created for zone's valid pfn range. but memmap
2929 * can be created for invalid pages (for alignment)
2930 * check here not to call set_pageblock_migratetype() against
2931 * pfn out of zone.
b2a0ac88 2932 */
86051ca5
KH
2933 if ((z->zone_start_pfn <= pfn)
2934 && (pfn < z->zone_start_pfn + z->spanned_pages)
2935 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2936 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2937
1da177e4
LT
2938 INIT_LIST_HEAD(&page->lru);
2939#ifdef WANT_PAGE_VIRTUAL
2940 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2941 if (!is_highmem_idx(zone))
3212c6be 2942 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2943#endif
1da177e4
LT
2944 }
2945}
2946
1e548deb 2947static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2948{
b2a0ac88
MG
2949 int order, t;
2950 for_each_migratetype_order(order, t) {
2951 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2952 zone->free_area[order].nr_free = 0;
2953 }
2954}
2955
2956#ifndef __HAVE_ARCH_MEMMAP_INIT
2957#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2958 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2959#endif
2960
1d6f4e60 2961static int zone_batchsize(struct zone *zone)
e7c8d5c9 2962{
3a6be87f 2963#ifdef CONFIG_MMU
e7c8d5c9
CL
2964 int batch;
2965
2966 /*
2967 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2968 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2969 *
2970 * OK, so we don't know how big the cache is. So guess.
2971 */
2972 batch = zone->present_pages / 1024;
ba56e91c
SR
2973 if (batch * PAGE_SIZE > 512 * 1024)
2974 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2975 batch /= 4; /* We effectively *= 4 below */
2976 if (batch < 1)
2977 batch = 1;
2978
2979 /*
0ceaacc9
NP
2980 * Clamp the batch to a 2^n - 1 value. Having a power
2981 * of 2 value was found to be more likely to have
2982 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2983 *
0ceaacc9
NP
2984 * For example if 2 tasks are alternately allocating
2985 * batches of pages, one task can end up with a lot
2986 * of pages of one half of the possible page colors
2987 * and the other with pages of the other colors.
e7c8d5c9 2988 */
9155203a 2989 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2990
e7c8d5c9 2991 return batch;
3a6be87f
DH
2992
2993#else
2994 /* The deferral and batching of frees should be suppressed under NOMMU
2995 * conditions.
2996 *
2997 * The problem is that NOMMU needs to be able to allocate large chunks
2998 * of contiguous memory as there's no hardware page translation to
2999 * assemble apparent contiguous memory from discontiguous pages.
3000 *
3001 * Queueing large contiguous runs of pages for batching, however,
3002 * causes the pages to actually be freed in smaller chunks. As there
3003 * can be a significant delay between the individual batches being
3004 * recycled, this leads to the once large chunks of space being
3005 * fragmented and becoming unavailable for high-order allocations.
3006 */
3007 return 0;
3008#endif
e7c8d5c9
CL
3009}
3010
b69a7288 3011static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3012{
3013 struct per_cpu_pages *pcp;
3014
1c6fe946
MD
3015 memset(p, 0, sizeof(*p));
3016
3dfa5721 3017 pcp = &p->pcp;
2caaad41 3018 pcp->count = 0;
2caaad41
CL
3019 pcp->high = 6 * batch;
3020 pcp->batch = max(1UL, 1 * batch);
3021 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
3022}
3023
8ad4b1fb
RS
3024/*
3025 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3026 * to the value high for the pageset p.
3027 */
3028
3029static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3030 unsigned long high)
3031{
3032 struct per_cpu_pages *pcp;
3033
3dfa5721 3034 pcp = &p->pcp;
8ad4b1fb
RS
3035 pcp->high = high;
3036 pcp->batch = max(1UL, high/4);
3037 if ((high/4) > (PAGE_SHIFT * 8))
3038 pcp->batch = PAGE_SHIFT * 8;
3039}
3040
3041
e7c8d5c9
CL
3042#ifdef CONFIG_NUMA
3043/*
2caaad41
CL
3044 * Boot pageset table. One per cpu which is going to be used for all
3045 * zones and all nodes. The parameters will be set in such a way
3046 * that an item put on a list will immediately be handed over to
3047 * the buddy list. This is safe since pageset manipulation is done
3048 * with interrupts disabled.
3049 *
3050 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
3051 *
3052 * The boot_pagesets must be kept even after bootup is complete for
3053 * unused processors and/or zones. They do play a role for bootstrapping
3054 * hotplugged processors.
3055 *
3056 * zoneinfo_show() and maybe other functions do
3057 * not check if the processor is online before following the pageset pointer.
3058 * Other parts of the kernel may not check if the zone is available.
2caaad41 3059 */
88a2a4ac 3060static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3061
3062/*
3063 * Dynamically allocate memory for the
e7c8d5c9
CL
3064 * per cpu pageset array in struct zone.
3065 */
6292d9aa 3066static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3067{
3068 struct zone *zone, *dzone;
37c0708d
CL
3069 int node = cpu_to_node(cpu);
3070
3071 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3072
ee99c71c 3073 for_each_populated_zone(zone) {
23316bc8 3074 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3075 GFP_KERNEL, node);
23316bc8 3076 if (!zone_pcp(zone, cpu))
e7c8d5c9 3077 goto bad;
e7c8d5c9 3078
23316bc8 3079 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3080
3081 if (percpu_pagelist_fraction)
3082 setup_pagelist_highmark(zone_pcp(zone, cpu),
3083 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3084 }
3085
3086 return 0;
3087bad:
3088 for_each_zone(dzone) {
64191688
AM
3089 if (!populated_zone(dzone))
3090 continue;
e7c8d5c9
CL
3091 if (dzone == zone)
3092 break;
23316bc8 3093 kfree(zone_pcp(dzone, cpu));
364df0eb 3094 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3095 }
3096 return -ENOMEM;
3097}
3098
3099static inline void free_zone_pagesets(int cpu)
3100{
e7c8d5c9
CL
3101 struct zone *zone;
3102
3103 for_each_zone(zone) {
3104 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3105
f3ef9ead
DR
3106 /* Free per_cpu_pageset if it is slab allocated */
3107 if (pset != &boot_pageset[cpu])
3108 kfree(pset);
364df0eb 3109 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3110 }
e7c8d5c9
CL
3111}
3112
9c7b216d 3113static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3114 unsigned long action,
3115 void *hcpu)
3116{
3117 int cpu = (long)hcpu;
3118 int ret = NOTIFY_OK;
3119
3120 switch (action) {
ce421c79 3121 case CPU_UP_PREPARE:
8bb78442 3122 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3123 if (process_zones(cpu))
3124 ret = NOTIFY_BAD;
3125 break;
3126 case CPU_UP_CANCELED:
8bb78442 3127 case CPU_UP_CANCELED_FROZEN:
ce421c79 3128 case CPU_DEAD:
8bb78442 3129 case CPU_DEAD_FROZEN:
ce421c79
AW
3130 free_zone_pagesets(cpu);
3131 break;
3132 default:
3133 break;
e7c8d5c9
CL
3134 }
3135 return ret;
3136}
3137
74b85f37 3138static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3139 { &pageset_cpuup_callback, NULL, 0 };
3140
78d9955b 3141void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3142{
3143 int err;
3144
3145 /* Initialize per_cpu_pageset for cpu 0.
3146 * A cpuup callback will do this for every cpu
3147 * as it comes online
3148 */
3149 err = process_zones(smp_processor_id());
3150 BUG_ON(err);
3151 register_cpu_notifier(&pageset_notifier);
3152}
3153
3154#endif
3155
577a32f6 3156static noinline __init_refok
cca448fe 3157int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3158{
3159 int i;
3160 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3161 size_t alloc_size;
ed8ece2e
DH
3162
3163 /*
3164 * The per-page waitqueue mechanism uses hashed waitqueues
3165 * per zone.
3166 */
02b694de
YG
3167 zone->wait_table_hash_nr_entries =
3168 wait_table_hash_nr_entries(zone_size_pages);
3169 zone->wait_table_bits =
3170 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3171 alloc_size = zone->wait_table_hash_nr_entries
3172 * sizeof(wait_queue_head_t);
3173
cd94b9db 3174 if (!slab_is_available()) {
cca448fe
YG
3175 zone->wait_table = (wait_queue_head_t *)
3176 alloc_bootmem_node(pgdat, alloc_size);
3177 } else {
3178 /*
3179 * This case means that a zone whose size was 0 gets new memory
3180 * via memory hot-add.
3181 * But it may be the case that a new node was hot-added. In
3182 * this case vmalloc() will not be able to use this new node's
3183 * memory - this wait_table must be initialized to use this new
3184 * node itself as well.
3185 * To use this new node's memory, further consideration will be
3186 * necessary.
3187 */
8691f3a7 3188 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3189 }
3190 if (!zone->wait_table)
3191 return -ENOMEM;
ed8ece2e 3192
02b694de 3193 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3194 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3195
3196 return 0;
ed8ece2e
DH
3197}
3198
112067f0
SL
3199static int __zone_pcp_update(void *data)
3200{
3201 struct zone *zone = data;
3202 int cpu;
3203 unsigned long batch = zone_batchsize(zone), flags;
3204
3205 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3206 struct per_cpu_pageset *pset;
3207 struct per_cpu_pages *pcp;
3208
3209 pset = zone_pcp(zone, cpu);
3210 pcp = &pset->pcp;
3211
3212 local_irq_save(flags);
3213 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3214 setup_pageset(pset, batch);
3215 local_irq_restore(flags);
3216 }
3217 return 0;
3218}
3219
3220void zone_pcp_update(struct zone *zone)
3221{
3222 stop_machine(__zone_pcp_update, zone, NULL);
3223}
3224
c09b4240 3225static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3226{
3227 int cpu;
3228 unsigned long batch = zone_batchsize(zone);
3229
3230 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3231#ifdef CONFIG_NUMA
3232 /* Early boot. Slab allocator not functional yet */
23316bc8 3233 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3234 setup_pageset(&boot_pageset[cpu],0);
3235#else
3236 setup_pageset(zone_pcp(zone,cpu), batch);
3237#endif
3238 }
f5335c0f
AB
3239 if (zone->present_pages)
3240 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3241 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3242}
3243
718127cc
YG
3244__meminit int init_currently_empty_zone(struct zone *zone,
3245 unsigned long zone_start_pfn,
a2f3aa02
DH
3246 unsigned long size,
3247 enum memmap_context context)
ed8ece2e
DH
3248{
3249 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3250 int ret;
3251 ret = zone_wait_table_init(zone, size);
3252 if (ret)
3253 return ret;
ed8ece2e
DH
3254 pgdat->nr_zones = zone_idx(zone) + 1;
3255
ed8ece2e
DH
3256 zone->zone_start_pfn = zone_start_pfn;
3257
708614e6
MG
3258 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3259 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3260 pgdat->node_id,
3261 (unsigned long)zone_idx(zone),
3262 zone_start_pfn, (zone_start_pfn + size));
3263
1e548deb 3264 zone_init_free_lists(zone);
718127cc
YG
3265
3266 return 0;
ed8ece2e
DH
3267}
3268
c713216d
MG
3269#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3270/*
3271 * Basic iterator support. Return the first range of PFNs for a node
3272 * Note: nid == MAX_NUMNODES returns first region regardless of node
3273 */
a3142c8e 3274static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3275{
3276 int i;
3277
3278 for (i = 0; i < nr_nodemap_entries; i++)
3279 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3280 return i;
3281
3282 return -1;
3283}
3284
3285/*
3286 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3287 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3288 */
a3142c8e 3289static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3290{
3291 for (index = index + 1; index < nr_nodemap_entries; index++)
3292 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3293 return index;
3294
3295 return -1;
3296}
3297
3298#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3299/*
3300 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3301 * Architectures may implement their own version but if add_active_range()
3302 * was used and there are no special requirements, this is a convenient
3303 * alternative
3304 */
f2dbcfa7 3305int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3306{
3307 int i;
3308
3309 for (i = 0; i < nr_nodemap_entries; i++) {
3310 unsigned long start_pfn = early_node_map[i].start_pfn;
3311 unsigned long end_pfn = early_node_map[i].end_pfn;
3312
3313 if (start_pfn <= pfn && pfn < end_pfn)
3314 return early_node_map[i].nid;
3315 }
cc2559bc
KH
3316 /* This is a memory hole */
3317 return -1;
c713216d
MG
3318}
3319#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3320
f2dbcfa7
KH
3321int __meminit early_pfn_to_nid(unsigned long pfn)
3322{
cc2559bc
KH
3323 int nid;
3324
3325 nid = __early_pfn_to_nid(pfn);
3326 if (nid >= 0)
3327 return nid;
3328 /* just returns 0 */
3329 return 0;
f2dbcfa7
KH
3330}
3331
cc2559bc
KH
3332#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3333bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3334{
3335 int nid;
3336
3337 nid = __early_pfn_to_nid(pfn);
3338 if (nid >= 0 && nid != node)
3339 return false;
3340 return true;
3341}
3342#endif
f2dbcfa7 3343
c713216d
MG
3344/* Basic iterator support to walk early_node_map[] */
3345#define for_each_active_range_index_in_nid(i, nid) \
3346 for (i = first_active_region_index_in_nid(nid); i != -1; \
3347 i = next_active_region_index_in_nid(i, nid))
3348
3349/**
3350 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3351 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3352 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3353 *
3354 * If an architecture guarantees that all ranges registered with
3355 * add_active_ranges() contain no holes and may be freed, this
3356 * this function may be used instead of calling free_bootmem() manually.
3357 */
3358void __init free_bootmem_with_active_regions(int nid,
3359 unsigned long max_low_pfn)
3360{
3361 int i;
3362
3363 for_each_active_range_index_in_nid(i, nid) {
3364 unsigned long size_pages = 0;
3365 unsigned long end_pfn = early_node_map[i].end_pfn;
3366
3367 if (early_node_map[i].start_pfn >= max_low_pfn)
3368 continue;
3369
3370 if (end_pfn > max_low_pfn)
3371 end_pfn = max_low_pfn;
3372
3373 size_pages = end_pfn - early_node_map[i].start_pfn;
3374 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3375 PFN_PHYS(early_node_map[i].start_pfn),
3376 size_pages << PAGE_SHIFT);
3377 }
3378}
3379
b5bc6c0e
YL
3380void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3381{
3382 int i;
d52d53b8 3383 int ret;
b5bc6c0e 3384
d52d53b8
YL
3385 for_each_active_range_index_in_nid(i, nid) {
3386 ret = work_fn(early_node_map[i].start_pfn,
3387 early_node_map[i].end_pfn, data);
3388 if (ret)
3389 break;
3390 }
b5bc6c0e 3391}
c713216d
MG
3392/**
3393 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3394 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3395 *
3396 * If an architecture guarantees that all ranges registered with
3397 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3398 * function may be used instead of calling memory_present() manually.
c713216d
MG
3399 */
3400void __init sparse_memory_present_with_active_regions(int nid)
3401{
3402 int i;
3403
3404 for_each_active_range_index_in_nid(i, nid)
3405 memory_present(early_node_map[i].nid,
3406 early_node_map[i].start_pfn,
3407 early_node_map[i].end_pfn);
3408}
3409
3410/**
3411 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3412 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3413 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3414 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3415 *
3416 * It returns the start and end page frame of a node based on information
3417 * provided by an arch calling add_active_range(). If called for a node
3418 * with no available memory, a warning is printed and the start and end
88ca3b94 3419 * PFNs will be 0.
c713216d 3420 */
a3142c8e 3421void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3422 unsigned long *start_pfn, unsigned long *end_pfn)
3423{
3424 int i;
3425 *start_pfn = -1UL;
3426 *end_pfn = 0;
3427
3428 for_each_active_range_index_in_nid(i, nid) {
3429 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3430 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3431 }
3432
633c0666 3433 if (*start_pfn == -1UL)
c713216d 3434 *start_pfn = 0;
c713216d
MG
3435}
3436
2a1e274a
MG
3437/*
3438 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3439 * assumption is made that zones within a node are ordered in monotonic
3440 * increasing memory addresses so that the "highest" populated zone is used
3441 */
b69a7288 3442static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3443{
3444 int zone_index;
3445 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3446 if (zone_index == ZONE_MOVABLE)
3447 continue;
3448
3449 if (arch_zone_highest_possible_pfn[zone_index] >
3450 arch_zone_lowest_possible_pfn[zone_index])
3451 break;
3452 }
3453
3454 VM_BUG_ON(zone_index == -1);
3455 movable_zone = zone_index;
3456}
3457
3458/*
3459 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3460 * because it is sized independant of architecture. Unlike the other zones,
3461 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3462 * in each node depending on the size of each node and how evenly kernelcore
3463 * is distributed. This helper function adjusts the zone ranges
3464 * provided by the architecture for a given node by using the end of the
3465 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3466 * zones within a node are in order of monotonic increases memory addresses
3467 */
b69a7288 3468static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3469 unsigned long zone_type,
3470 unsigned long node_start_pfn,
3471 unsigned long node_end_pfn,
3472 unsigned long *zone_start_pfn,
3473 unsigned long *zone_end_pfn)
3474{
3475 /* Only adjust if ZONE_MOVABLE is on this node */
3476 if (zone_movable_pfn[nid]) {
3477 /* Size ZONE_MOVABLE */
3478 if (zone_type == ZONE_MOVABLE) {
3479 *zone_start_pfn = zone_movable_pfn[nid];
3480 *zone_end_pfn = min(node_end_pfn,
3481 arch_zone_highest_possible_pfn[movable_zone]);
3482
3483 /* Adjust for ZONE_MOVABLE starting within this range */
3484 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3485 *zone_end_pfn > zone_movable_pfn[nid]) {
3486 *zone_end_pfn = zone_movable_pfn[nid];
3487
3488 /* Check if this whole range is within ZONE_MOVABLE */
3489 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3490 *zone_start_pfn = *zone_end_pfn;
3491 }
3492}
3493
c713216d
MG
3494/*
3495 * Return the number of pages a zone spans in a node, including holes
3496 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3497 */
6ea6e688 3498static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3499 unsigned long zone_type,
3500 unsigned long *ignored)
3501{
3502 unsigned long node_start_pfn, node_end_pfn;
3503 unsigned long zone_start_pfn, zone_end_pfn;
3504
3505 /* Get the start and end of the node and zone */
3506 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3507 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3508 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3509 adjust_zone_range_for_zone_movable(nid, zone_type,
3510 node_start_pfn, node_end_pfn,
3511 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3512
3513 /* Check that this node has pages within the zone's required range */
3514 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3515 return 0;
3516
3517 /* Move the zone boundaries inside the node if necessary */
3518 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3519 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3520
3521 /* Return the spanned pages */
3522 return zone_end_pfn - zone_start_pfn;
3523}
3524
3525/*
3526 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3527 * then all holes in the requested range will be accounted for.
c713216d 3528 */
b69a7288 3529static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3530 unsigned long range_start_pfn,
3531 unsigned long range_end_pfn)
3532{
3533 int i = 0;
3534 unsigned long prev_end_pfn = 0, hole_pages = 0;
3535 unsigned long start_pfn;
3536
3537 /* Find the end_pfn of the first active range of pfns in the node */
3538 i = first_active_region_index_in_nid(nid);
3539 if (i == -1)
3540 return 0;
3541
b5445f95
MG
3542 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3543
9c7cd687
MG
3544 /* Account for ranges before physical memory on this node */
3545 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3546 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3547
3548 /* Find all holes for the zone within the node */
3549 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3550
3551 /* No need to continue if prev_end_pfn is outside the zone */
3552 if (prev_end_pfn >= range_end_pfn)
3553 break;
3554
3555 /* Make sure the end of the zone is not within the hole */
3556 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3557 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3558
3559 /* Update the hole size cound and move on */
3560 if (start_pfn > range_start_pfn) {
3561 BUG_ON(prev_end_pfn > start_pfn);
3562 hole_pages += start_pfn - prev_end_pfn;
3563 }
3564 prev_end_pfn = early_node_map[i].end_pfn;
3565 }
3566
9c7cd687
MG
3567 /* Account for ranges past physical memory on this node */
3568 if (range_end_pfn > prev_end_pfn)
0c6cb974 3569 hole_pages += range_end_pfn -
9c7cd687
MG
3570 max(range_start_pfn, prev_end_pfn);
3571
c713216d
MG
3572 return hole_pages;
3573}
3574
3575/**
3576 * absent_pages_in_range - Return number of page frames in holes within a range
3577 * @start_pfn: The start PFN to start searching for holes
3578 * @end_pfn: The end PFN to stop searching for holes
3579 *
88ca3b94 3580 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3581 */
3582unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3583 unsigned long end_pfn)
3584{
3585 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3586}
3587
3588/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3589static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3590 unsigned long zone_type,
3591 unsigned long *ignored)
3592{
9c7cd687
MG
3593 unsigned long node_start_pfn, node_end_pfn;
3594 unsigned long zone_start_pfn, zone_end_pfn;
3595
3596 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3597 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3598 node_start_pfn);
3599 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3600 node_end_pfn);
3601
2a1e274a
MG
3602 adjust_zone_range_for_zone_movable(nid, zone_type,
3603 node_start_pfn, node_end_pfn,
3604 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3605 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3606}
0e0b864e 3607
c713216d 3608#else
6ea6e688 3609static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3610 unsigned long zone_type,
3611 unsigned long *zones_size)
3612{
3613 return zones_size[zone_type];
3614}
3615
6ea6e688 3616static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3617 unsigned long zone_type,
3618 unsigned long *zholes_size)
3619{
3620 if (!zholes_size)
3621 return 0;
3622
3623 return zholes_size[zone_type];
3624}
0e0b864e 3625
c713216d
MG
3626#endif
3627
a3142c8e 3628static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3629 unsigned long *zones_size, unsigned long *zholes_size)
3630{
3631 unsigned long realtotalpages, totalpages = 0;
3632 enum zone_type i;
3633
3634 for (i = 0; i < MAX_NR_ZONES; i++)
3635 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3636 zones_size);
3637 pgdat->node_spanned_pages = totalpages;
3638
3639 realtotalpages = totalpages;
3640 for (i = 0; i < MAX_NR_ZONES; i++)
3641 realtotalpages -=
3642 zone_absent_pages_in_node(pgdat->node_id, i,
3643 zholes_size);
3644 pgdat->node_present_pages = realtotalpages;
3645 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3646 realtotalpages);
3647}
3648
835c134e
MG
3649#ifndef CONFIG_SPARSEMEM
3650/*
3651 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3652 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3653 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3654 * round what is now in bits to nearest long in bits, then return it in
3655 * bytes.
3656 */
3657static unsigned long __init usemap_size(unsigned long zonesize)
3658{
3659 unsigned long usemapsize;
3660
d9c23400
MG
3661 usemapsize = roundup(zonesize, pageblock_nr_pages);
3662 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3663 usemapsize *= NR_PAGEBLOCK_BITS;
3664 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3665
3666 return usemapsize / 8;
3667}
3668
3669static void __init setup_usemap(struct pglist_data *pgdat,
3670 struct zone *zone, unsigned long zonesize)
3671{
3672 unsigned long usemapsize = usemap_size(zonesize);
3673 zone->pageblock_flags = NULL;
58a01a45 3674 if (usemapsize)
835c134e 3675 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3676}
3677#else
3678static void inline setup_usemap(struct pglist_data *pgdat,
3679 struct zone *zone, unsigned long zonesize) {}
3680#endif /* CONFIG_SPARSEMEM */
3681
d9c23400 3682#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3683
3684/* Return a sensible default order for the pageblock size. */
3685static inline int pageblock_default_order(void)
3686{
3687 if (HPAGE_SHIFT > PAGE_SHIFT)
3688 return HUGETLB_PAGE_ORDER;
3689
3690 return MAX_ORDER-1;
3691}
3692
d9c23400
MG
3693/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3694static inline void __init set_pageblock_order(unsigned int order)
3695{
3696 /* Check that pageblock_nr_pages has not already been setup */
3697 if (pageblock_order)
3698 return;
3699
3700 /*
3701 * Assume the largest contiguous order of interest is a huge page.
3702 * This value may be variable depending on boot parameters on IA64
3703 */
3704 pageblock_order = order;
3705}
3706#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3707
ba72cb8c
MG
3708/*
3709 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3710 * and pageblock_default_order() are unused as pageblock_order is set
3711 * at compile-time. See include/linux/pageblock-flags.h for the values of
3712 * pageblock_order based on the kernel config
3713 */
3714static inline int pageblock_default_order(unsigned int order)
3715{
3716 return MAX_ORDER-1;
3717}
d9c23400
MG
3718#define set_pageblock_order(x) do {} while (0)
3719
3720#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3721
1da177e4
LT
3722/*
3723 * Set up the zone data structures:
3724 * - mark all pages reserved
3725 * - mark all memory queues empty
3726 * - clear the memory bitmaps
3727 */
b5a0e011 3728static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3729 unsigned long *zones_size, unsigned long *zholes_size)
3730{
2f1b6248 3731 enum zone_type j;
ed8ece2e 3732 int nid = pgdat->node_id;
1da177e4 3733 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3734 int ret;
1da177e4 3735
208d54e5 3736 pgdat_resize_init(pgdat);
1da177e4
LT
3737 pgdat->nr_zones = 0;
3738 init_waitqueue_head(&pgdat->kswapd_wait);
3739 pgdat->kswapd_max_order = 0;
52d4b9ac 3740 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3741
3742 for (j = 0; j < MAX_NR_ZONES; j++) {
3743 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3744 unsigned long size, realsize, memmap_pages;
b69408e8 3745 enum lru_list l;
1da177e4 3746
c713216d
MG
3747 size = zone_spanned_pages_in_node(nid, j, zones_size);
3748 realsize = size - zone_absent_pages_in_node(nid, j,
3749 zholes_size);
1da177e4 3750
0e0b864e
MG
3751 /*
3752 * Adjust realsize so that it accounts for how much memory
3753 * is used by this zone for memmap. This affects the watermark
3754 * and per-cpu initialisations
3755 */
f7232154
JW
3756 memmap_pages =
3757 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3758 if (realsize >= memmap_pages) {
3759 realsize -= memmap_pages;
5594c8c8
YL
3760 if (memmap_pages)
3761 printk(KERN_DEBUG
3762 " %s zone: %lu pages used for memmap\n",
3763 zone_names[j], memmap_pages);
0e0b864e
MG
3764 } else
3765 printk(KERN_WARNING
3766 " %s zone: %lu pages exceeds realsize %lu\n",
3767 zone_names[j], memmap_pages, realsize);
3768
6267276f
CL
3769 /* Account for reserved pages */
3770 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3771 realsize -= dma_reserve;
d903ef9f 3772 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3773 zone_names[0], dma_reserve);
0e0b864e
MG
3774 }
3775
98d2b0eb 3776 if (!is_highmem_idx(j))
1da177e4
LT
3777 nr_kernel_pages += realsize;
3778 nr_all_pages += realsize;
3779
3780 zone->spanned_pages = size;
3781 zone->present_pages = realsize;
9614634f 3782#ifdef CONFIG_NUMA
d5f541ed 3783 zone->node = nid;
8417bba4 3784 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3785 / 100;
0ff38490 3786 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3787#endif
1da177e4
LT
3788 zone->name = zone_names[j];
3789 spin_lock_init(&zone->lock);
3790 spin_lock_init(&zone->lru_lock);
bdc8cb98 3791 zone_seqlock_init(zone);
1da177e4 3792 zone->zone_pgdat = pgdat;
1da177e4 3793
3bb1a852 3794 zone->prev_priority = DEF_PRIORITY;
1da177e4 3795
ed8ece2e 3796 zone_pcp_init(zone);
b69408e8
CL
3797 for_each_lru(l) {
3798 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3799 zone->lru[l].nr_saved_scan = 0;
b69408e8 3800 }
6e901571
KM
3801 zone->reclaim_stat.recent_rotated[0] = 0;
3802 zone->reclaim_stat.recent_rotated[1] = 0;
3803 zone->reclaim_stat.recent_scanned[0] = 0;
3804 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3805 zap_zone_vm_stats(zone);
e815af95 3806 zone->flags = 0;
1da177e4
LT
3807 if (!size)
3808 continue;
3809
ba72cb8c 3810 set_pageblock_order(pageblock_default_order());
835c134e 3811 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3812 ret = init_currently_empty_zone(zone, zone_start_pfn,
3813 size, MEMMAP_EARLY);
718127cc 3814 BUG_ON(ret);
76cdd58e 3815 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3816 zone_start_pfn += size;
1da177e4
LT
3817 }
3818}
3819
577a32f6 3820static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3821{
1da177e4
LT
3822 /* Skip empty nodes */
3823 if (!pgdat->node_spanned_pages)
3824 return;
3825
d41dee36 3826#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3827 /* ia64 gets its own node_mem_map, before this, without bootmem */
3828 if (!pgdat->node_mem_map) {
e984bb43 3829 unsigned long size, start, end;
d41dee36
AW
3830 struct page *map;
3831
e984bb43
BP
3832 /*
3833 * The zone's endpoints aren't required to be MAX_ORDER
3834 * aligned but the node_mem_map endpoints must be in order
3835 * for the buddy allocator to function correctly.
3836 */
3837 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3838 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3839 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3840 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3841 map = alloc_remap(pgdat->node_id, size);
3842 if (!map)
3843 map = alloc_bootmem_node(pgdat, size);
e984bb43 3844 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3845 }
12d810c1 3846#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3847 /*
3848 * With no DISCONTIG, the global mem_map is just set as node 0's
3849 */
c713216d 3850 if (pgdat == NODE_DATA(0)) {
1da177e4 3851 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3852#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3853 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3854 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3855#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3856 }
1da177e4 3857#endif
d41dee36 3858#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3859}
3860
9109fb7b
JW
3861void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3862 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3863{
9109fb7b
JW
3864 pg_data_t *pgdat = NODE_DATA(nid);
3865
1da177e4
LT
3866 pgdat->node_id = nid;
3867 pgdat->node_start_pfn = node_start_pfn;
c713216d 3868 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3869
3870 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3871#ifdef CONFIG_FLAT_NODE_MEM_MAP
3872 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3873 nid, (unsigned long)pgdat,
3874 (unsigned long)pgdat->node_mem_map);
3875#endif
1da177e4
LT
3876
3877 free_area_init_core(pgdat, zones_size, zholes_size);
3878}
3879
c713216d 3880#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3881
3882#if MAX_NUMNODES > 1
3883/*
3884 * Figure out the number of possible node ids.
3885 */
3886static void __init setup_nr_node_ids(void)
3887{
3888 unsigned int node;
3889 unsigned int highest = 0;
3890
3891 for_each_node_mask(node, node_possible_map)
3892 highest = node;
3893 nr_node_ids = highest + 1;
3894}
3895#else
3896static inline void setup_nr_node_ids(void)
3897{
3898}
3899#endif
3900
c713216d
MG
3901/**
3902 * add_active_range - Register a range of PFNs backed by physical memory
3903 * @nid: The node ID the range resides on
3904 * @start_pfn: The start PFN of the available physical memory
3905 * @end_pfn: The end PFN of the available physical memory
3906 *
3907 * These ranges are stored in an early_node_map[] and later used by
3908 * free_area_init_nodes() to calculate zone sizes and holes. If the
3909 * range spans a memory hole, it is up to the architecture to ensure
3910 * the memory is not freed by the bootmem allocator. If possible
3911 * the range being registered will be merged with existing ranges.
3912 */
3913void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3914 unsigned long end_pfn)
3915{
3916 int i;
3917
6b74ab97
MG
3918 mminit_dprintk(MMINIT_TRACE, "memory_register",
3919 "Entering add_active_range(%d, %#lx, %#lx) "
3920 "%d entries of %d used\n",
3921 nid, start_pfn, end_pfn,
3922 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3923
2dbb51c4
MG
3924 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3925
c713216d
MG
3926 /* Merge with existing active regions if possible */
3927 for (i = 0; i < nr_nodemap_entries; i++) {
3928 if (early_node_map[i].nid != nid)
3929 continue;
3930
3931 /* Skip if an existing region covers this new one */
3932 if (start_pfn >= early_node_map[i].start_pfn &&
3933 end_pfn <= early_node_map[i].end_pfn)
3934 return;
3935
3936 /* Merge forward if suitable */
3937 if (start_pfn <= early_node_map[i].end_pfn &&
3938 end_pfn > early_node_map[i].end_pfn) {
3939 early_node_map[i].end_pfn = end_pfn;
3940 return;
3941 }
3942
3943 /* Merge backward if suitable */
3944 if (start_pfn < early_node_map[i].end_pfn &&
3945 end_pfn >= early_node_map[i].start_pfn) {
3946 early_node_map[i].start_pfn = start_pfn;
3947 return;
3948 }
3949 }
3950
3951 /* Check that early_node_map is large enough */
3952 if (i >= MAX_ACTIVE_REGIONS) {
3953 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3954 MAX_ACTIVE_REGIONS);
3955 return;
3956 }
3957
3958 early_node_map[i].nid = nid;
3959 early_node_map[i].start_pfn = start_pfn;
3960 early_node_map[i].end_pfn = end_pfn;
3961 nr_nodemap_entries = i + 1;
3962}
3963
3964/**
cc1050ba 3965 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3966 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3967 * @start_pfn: The new PFN of the range
3968 * @end_pfn: The new PFN of the range
c713216d
MG
3969 *
3970 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3971 * The map is kept near the end physical page range that has already been
3972 * registered. This function allows an arch to shrink an existing registered
3973 * range.
c713216d 3974 */
cc1050ba
YL
3975void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3976 unsigned long end_pfn)
c713216d 3977{
cc1a9d86
YL
3978 int i, j;
3979 int removed = 0;
c713216d 3980
cc1050ba
YL
3981 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3982 nid, start_pfn, end_pfn);
3983
c713216d 3984 /* Find the old active region end and shrink */
cc1a9d86 3985 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3986 if (early_node_map[i].start_pfn >= start_pfn &&
3987 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3988 /* clear it */
cc1050ba 3989 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3990 early_node_map[i].end_pfn = 0;
3991 removed = 1;
3992 continue;
3993 }
cc1050ba
YL
3994 if (early_node_map[i].start_pfn < start_pfn &&
3995 early_node_map[i].end_pfn > start_pfn) {
3996 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3997 early_node_map[i].end_pfn = start_pfn;
3998 if (temp_end_pfn > end_pfn)
3999 add_active_range(nid, end_pfn, temp_end_pfn);
4000 continue;
4001 }
4002 if (early_node_map[i].start_pfn >= start_pfn &&
4003 early_node_map[i].end_pfn > end_pfn &&
4004 early_node_map[i].start_pfn < end_pfn) {
4005 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4006 continue;
c713216d 4007 }
cc1a9d86
YL
4008 }
4009
4010 if (!removed)
4011 return;
4012
4013 /* remove the blank ones */
4014 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4015 if (early_node_map[i].nid != nid)
4016 continue;
4017 if (early_node_map[i].end_pfn)
4018 continue;
4019 /* we found it, get rid of it */
4020 for (j = i; j < nr_nodemap_entries - 1; j++)
4021 memcpy(&early_node_map[j], &early_node_map[j+1],
4022 sizeof(early_node_map[j]));
4023 j = nr_nodemap_entries - 1;
4024 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4025 nr_nodemap_entries--;
4026 }
c713216d
MG
4027}
4028
4029/**
4030 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4031 *
c713216d
MG
4032 * During discovery, it may be found that a table like SRAT is invalid
4033 * and an alternative discovery method must be used. This function removes
4034 * all currently registered regions.
4035 */
88ca3b94 4036void __init remove_all_active_ranges(void)
c713216d
MG
4037{
4038 memset(early_node_map, 0, sizeof(early_node_map));
4039 nr_nodemap_entries = 0;
4040}
4041
4042/* Compare two active node_active_regions */
4043static int __init cmp_node_active_region(const void *a, const void *b)
4044{
4045 struct node_active_region *arange = (struct node_active_region *)a;
4046 struct node_active_region *brange = (struct node_active_region *)b;
4047
4048 /* Done this way to avoid overflows */
4049 if (arange->start_pfn > brange->start_pfn)
4050 return 1;
4051 if (arange->start_pfn < brange->start_pfn)
4052 return -1;
4053
4054 return 0;
4055}
4056
4057/* sort the node_map by start_pfn */
4058static void __init sort_node_map(void)
4059{
4060 sort(early_node_map, (size_t)nr_nodemap_entries,
4061 sizeof(struct node_active_region),
4062 cmp_node_active_region, NULL);
4063}
4064
a6af2bc3 4065/* Find the lowest pfn for a node */
b69a7288 4066static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4067{
4068 int i;
a6af2bc3 4069 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4070
c713216d
MG
4071 /* Assuming a sorted map, the first range found has the starting pfn */
4072 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4073 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4074
a6af2bc3
MG
4075 if (min_pfn == ULONG_MAX) {
4076 printk(KERN_WARNING
2bc0d261 4077 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4078 return 0;
4079 }
4080
4081 return min_pfn;
c713216d
MG
4082}
4083
4084/**
4085 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4086 *
4087 * It returns the minimum PFN based on information provided via
88ca3b94 4088 * add_active_range().
c713216d
MG
4089 */
4090unsigned long __init find_min_pfn_with_active_regions(void)
4091{
4092 return find_min_pfn_for_node(MAX_NUMNODES);
4093}
4094
37b07e41
LS
4095/*
4096 * early_calculate_totalpages()
4097 * Sum pages in active regions for movable zone.
4098 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4099 */
484f51f8 4100static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4101{
4102 int i;
4103 unsigned long totalpages = 0;
4104
37b07e41
LS
4105 for (i = 0; i < nr_nodemap_entries; i++) {
4106 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4107 early_node_map[i].start_pfn;
37b07e41
LS
4108 totalpages += pages;
4109 if (pages)
4110 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4111 }
4112 return totalpages;
7e63efef
MG
4113}
4114
2a1e274a
MG
4115/*
4116 * Find the PFN the Movable zone begins in each node. Kernel memory
4117 * is spread evenly between nodes as long as the nodes have enough
4118 * memory. When they don't, some nodes will have more kernelcore than
4119 * others
4120 */
b69a7288 4121static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4122{
4123 int i, nid;
4124 unsigned long usable_startpfn;
4125 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4126 /* save the state before borrow the nodemask */
4127 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4128 unsigned long totalpages = early_calculate_totalpages();
4129 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4130
7e63efef
MG
4131 /*
4132 * If movablecore was specified, calculate what size of
4133 * kernelcore that corresponds so that memory usable for
4134 * any allocation type is evenly spread. If both kernelcore
4135 * and movablecore are specified, then the value of kernelcore
4136 * will be used for required_kernelcore if it's greater than
4137 * what movablecore would have allowed.
4138 */
4139 if (required_movablecore) {
7e63efef
MG
4140 unsigned long corepages;
4141
4142 /*
4143 * Round-up so that ZONE_MOVABLE is at least as large as what
4144 * was requested by the user
4145 */
4146 required_movablecore =
4147 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4148 corepages = totalpages - required_movablecore;
4149
4150 required_kernelcore = max(required_kernelcore, corepages);
4151 }
4152
2a1e274a
MG
4153 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4154 if (!required_kernelcore)
66918dcd 4155 goto out;
2a1e274a
MG
4156
4157 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4158 find_usable_zone_for_movable();
4159 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4160
4161restart:
4162 /* Spread kernelcore memory as evenly as possible throughout nodes */
4163 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4164 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4165 /*
4166 * Recalculate kernelcore_node if the division per node
4167 * now exceeds what is necessary to satisfy the requested
4168 * amount of memory for the kernel
4169 */
4170 if (required_kernelcore < kernelcore_node)
4171 kernelcore_node = required_kernelcore / usable_nodes;
4172
4173 /*
4174 * As the map is walked, we track how much memory is usable
4175 * by the kernel using kernelcore_remaining. When it is
4176 * 0, the rest of the node is usable by ZONE_MOVABLE
4177 */
4178 kernelcore_remaining = kernelcore_node;
4179
4180 /* Go through each range of PFNs within this node */
4181 for_each_active_range_index_in_nid(i, nid) {
4182 unsigned long start_pfn, end_pfn;
4183 unsigned long size_pages;
4184
4185 start_pfn = max(early_node_map[i].start_pfn,
4186 zone_movable_pfn[nid]);
4187 end_pfn = early_node_map[i].end_pfn;
4188 if (start_pfn >= end_pfn)
4189 continue;
4190
4191 /* Account for what is only usable for kernelcore */
4192 if (start_pfn < usable_startpfn) {
4193 unsigned long kernel_pages;
4194 kernel_pages = min(end_pfn, usable_startpfn)
4195 - start_pfn;
4196
4197 kernelcore_remaining -= min(kernel_pages,
4198 kernelcore_remaining);
4199 required_kernelcore -= min(kernel_pages,
4200 required_kernelcore);
4201
4202 /* Continue if range is now fully accounted */
4203 if (end_pfn <= usable_startpfn) {
4204
4205 /*
4206 * Push zone_movable_pfn to the end so
4207 * that if we have to rebalance
4208 * kernelcore across nodes, we will
4209 * not double account here
4210 */
4211 zone_movable_pfn[nid] = end_pfn;
4212 continue;
4213 }
4214 start_pfn = usable_startpfn;
4215 }
4216
4217 /*
4218 * The usable PFN range for ZONE_MOVABLE is from
4219 * start_pfn->end_pfn. Calculate size_pages as the
4220 * number of pages used as kernelcore
4221 */
4222 size_pages = end_pfn - start_pfn;
4223 if (size_pages > kernelcore_remaining)
4224 size_pages = kernelcore_remaining;
4225 zone_movable_pfn[nid] = start_pfn + size_pages;
4226
4227 /*
4228 * Some kernelcore has been met, update counts and
4229 * break if the kernelcore for this node has been
4230 * satisified
4231 */
4232 required_kernelcore -= min(required_kernelcore,
4233 size_pages);
4234 kernelcore_remaining -= size_pages;
4235 if (!kernelcore_remaining)
4236 break;
4237 }
4238 }
4239
4240 /*
4241 * If there is still required_kernelcore, we do another pass with one
4242 * less node in the count. This will push zone_movable_pfn[nid] further
4243 * along on the nodes that still have memory until kernelcore is
4244 * satisified
4245 */
4246 usable_nodes--;
4247 if (usable_nodes && required_kernelcore > usable_nodes)
4248 goto restart;
4249
4250 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4251 for (nid = 0; nid < MAX_NUMNODES; nid++)
4252 zone_movable_pfn[nid] =
4253 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4254
4255out:
4256 /* restore the node_state */
4257 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4258}
4259
37b07e41
LS
4260/* Any regular memory on that node ? */
4261static void check_for_regular_memory(pg_data_t *pgdat)
4262{
4263#ifdef CONFIG_HIGHMEM
4264 enum zone_type zone_type;
4265
4266 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4267 struct zone *zone = &pgdat->node_zones[zone_type];
4268 if (zone->present_pages)
4269 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4270 }
4271#endif
4272}
4273
c713216d
MG
4274/**
4275 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4276 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4277 *
4278 * This will call free_area_init_node() for each active node in the system.
4279 * Using the page ranges provided by add_active_range(), the size of each
4280 * zone in each node and their holes is calculated. If the maximum PFN
4281 * between two adjacent zones match, it is assumed that the zone is empty.
4282 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4283 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4284 * starts where the previous one ended. For example, ZONE_DMA32 starts
4285 * at arch_max_dma_pfn.
4286 */
4287void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4288{
4289 unsigned long nid;
db99100d 4290 int i;
c713216d 4291
a6af2bc3
MG
4292 /* Sort early_node_map as initialisation assumes it is sorted */
4293 sort_node_map();
4294
c713216d
MG
4295 /* Record where the zone boundaries are */
4296 memset(arch_zone_lowest_possible_pfn, 0,
4297 sizeof(arch_zone_lowest_possible_pfn));
4298 memset(arch_zone_highest_possible_pfn, 0,
4299 sizeof(arch_zone_highest_possible_pfn));
4300 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4301 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4302 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4303 if (i == ZONE_MOVABLE)
4304 continue;
c713216d
MG
4305 arch_zone_lowest_possible_pfn[i] =
4306 arch_zone_highest_possible_pfn[i-1];
4307 arch_zone_highest_possible_pfn[i] =
4308 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4309 }
2a1e274a
MG
4310 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4311 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4312
4313 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4314 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4315 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4316
c713216d
MG
4317 /* Print out the zone ranges */
4318 printk("Zone PFN ranges:\n");
2a1e274a
MG
4319 for (i = 0; i < MAX_NR_ZONES; i++) {
4320 if (i == ZONE_MOVABLE)
4321 continue;
5dab8ec1 4322 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4323 zone_names[i],
4324 arch_zone_lowest_possible_pfn[i],
4325 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4326 }
4327
4328 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4329 printk("Movable zone start PFN for each node\n");
4330 for (i = 0; i < MAX_NUMNODES; i++) {
4331 if (zone_movable_pfn[i])
4332 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4333 }
c713216d
MG
4334
4335 /* Print out the early_node_map[] */
4336 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4337 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4338 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4339 early_node_map[i].start_pfn,
4340 early_node_map[i].end_pfn);
4341
4342 /* Initialise every node */
708614e6 4343 mminit_verify_pageflags_layout();
8ef82866 4344 setup_nr_node_ids();
c713216d
MG
4345 for_each_online_node(nid) {
4346 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4347 free_area_init_node(nid, NULL,
c713216d 4348 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4349
4350 /* Any memory on that node */
4351 if (pgdat->node_present_pages)
4352 node_set_state(nid, N_HIGH_MEMORY);
4353 check_for_regular_memory(pgdat);
c713216d
MG
4354 }
4355}
2a1e274a 4356
7e63efef 4357static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4358{
4359 unsigned long long coremem;
4360 if (!p)
4361 return -EINVAL;
4362
4363 coremem = memparse(p, &p);
7e63efef 4364 *core = coremem >> PAGE_SHIFT;
2a1e274a 4365
7e63efef 4366 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4367 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4368
4369 return 0;
4370}
ed7ed365 4371
7e63efef
MG
4372/*
4373 * kernelcore=size sets the amount of memory for use for allocations that
4374 * cannot be reclaimed or migrated.
4375 */
4376static int __init cmdline_parse_kernelcore(char *p)
4377{
4378 return cmdline_parse_core(p, &required_kernelcore);
4379}
4380
4381/*
4382 * movablecore=size sets the amount of memory for use for allocations that
4383 * can be reclaimed or migrated.
4384 */
4385static int __init cmdline_parse_movablecore(char *p)
4386{
4387 return cmdline_parse_core(p, &required_movablecore);
4388}
4389
ed7ed365 4390early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4391early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4392
c713216d
MG
4393#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4394
0e0b864e 4395/**
88ca3b94
RD
4396 * set_dma_reserve - set the specified number of pages reserved in the first zone
4397 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4398 *
4399 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4400 * In the DMA zone, a significant percentage may be consumed by kernel image
4401 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4402 * function may optionally be used to account for unfreeable pages in the
4403 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4404 * smaller per-cpu batchsize.
0e0b864e
MG
4405 */
4406void __init set_dma_reserve(unsigned long new_dma_reserve)
4407{
4408 dma_reserve = new_dma_reserve;
4409}
4410
93b7504e 4411#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4412struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4413EXPORT_SYMBOL(contig_page_data);
93b7504e 4414#endif
1da177e4
LT
4415
4416void __init free_area_init(unsigned long *zones_size)
4417{
9109fb7b 4418 free_area_init_node(0, zones_size,
1da177e4
LT
4419 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4420}
1da177e4 4421
1da177e4
LT
4422static int page_alloc_cpu_notify(struct notifier_block *self,
4423 unsigned long action, void *hcpu)
4424{
4425 int cpu = (unsigned long)hcpu;
1da177e4 4426
8bb78442 4427 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4428 drain_pages(cpu);
4429
4430 /*
4431 * Spill the event counters of the dead processor
4432 * into the current processors event counters.
4433 * This artificially elevates the count of the current
4434 * processor.
4435 */
f8891e5e 4436 vm_events_fold_cpu(cpu);
9f8f2172
CL
4437
4438 /*
4439 * Zero the differential counters of the dead processor
4440 * so that the vm statistics are consistent.
4441 *
4442 * This is only okay since the processor is dead and cannot
4443 * race with what we are doing.
4444 */
2244b95a 4445 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4446 }
4447 return NOTIFY_OK;
4448}
1da177e4
LT
4449
4450void __init page_alloc_init(void)
4451{
4452 hotcpu_notifier(page_alloc_cpu_notify, 0);
4453}
4454
cb45b0e9
HA
4455/*
4456 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4457 * or min_free_kbytes changes.
4458 */
4459static void calculate_totalreserve_pages(void)
4460{
4461 struct pglist_data *pgdat;
4462 unsigned long reserve_pages = 0;
2f6726e5 4463 enum zone_type i, j;
cb45b0e9
HA
4464
4465 for_each_online_pgdat(pgdat) {
4466 for (i = 0; i < MAX_NR_ZONES; i++) {
4467 struct zone *zone = pgdat->node_zones + i;
4468 unsigned long max = 0;
4469
4470 /* Find valid and maximum lowmem_reserve in the zone */
4471 for (j = i; j < MAX_NR_ZONES; j++) {
4472 if (zone->lowmem_reserve[j] > max)
4473 max = zone->lowmem_reserve[j];
4474 }
4475
41858966
MG
4476 /* we treat the high watermark as reserved pages. */
4477 max += high_wmark_pages(zone);
cb45b0e9
HA
4478
4479 if (max > zone->present_pages)
4480 max = zone->present_pages;
4481 reserve_pages += max;
4482 }
4483 }
4484 totalreserve_pages = reserve_pages;
4485}
4486
1da177e4
LT
4487/*
4488 * setup_per_zone_lowmem_reserve - called whenever
4489 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4490 * has a correct pages reserved value, so an adequate number of
4491 * pages are left in the zone after a successful __alloc_pages().
4492 */
4493static void setup_per_zone_lowmem_reserve(void)
4494{
4495 struct pglist_data *pgdat;
2f6726e5 4496 enum zone_type j, idx;
1da177e4 4497
ec936fc5 4498 for_each_online_pgdat(pgdat) {
1da177e4
LT
4499 for (j = 0; j < MAX_NR_ZONES; j++) {
4500 struct zone *zone = pgdat->node_zones + j;
4501 unsigned long present_pages = zone->present_pages;
4502
4503 zone->lowmem_reserve[j] = 0;
4504
2f6726e5
CL
4505 idx = j;
4506 while (idx) {
1da177e4
LT
4507 struct zone *lower_zone;
4508
2f6726e5
CL
4509 idx--;
4510
1da177e4
LT
4511 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4512 sysctl_lowmem_reserve_ratio[idx] = 1;
4513
4514 lower_zone = pgdat->node_zones + idx;
4515 lower_zone->lowmem_reserve[j] = present_pages /
4516 sysctl_lowmem_reserve_ratio[idx];
4517 present_pages += lower_zone->present_pages;
4518 }
4519 }
4520 }
cb45b0e9
HA
4521
4522 /* update totalreserve_pages */
4523 calculate_totalreserve_pages();
1da177e4
LT
4524}
4525
88ca3b94 4526/**
bc75d33f 4527 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4528 * or when memory is hot-{added|removed}
88ca3b94 4529 *
bc75d33f
MK
4530 * Ensures that the watermark[min,low,high] values for each zone are set
4531 * correctly with respect to min_free_kbytes.
1da177e4 4532 */
bc75d33f 4533void setup_per_zone_wmarks(void)
1da177e4
LT
4534{
4535 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4536 unsigned long lowmem_pages = 0;
4537 struct zone *zone;
4538 unsigned long flags;
4539
4540 /* Calculate total number of !ZONE_HIGHMEM pages */
4541 for_each_zone(zone) {
4542 if (!is_highmem(zone))
4543 lowmem_pages += zone->present_pages;
4544 }
4545
4546 for_each_zone(zone) {
ac924c60
AM
4547 u64 tmp;
4548
1125b4e3 4549 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4550 tmp = (u64)pages_min * zone->present_pages;
4551 do_div(tmp, lowmem_pages);
1da177e4
LT
4552 if (is_highmem(zone)) {
4553 /*
669ed175
NP
4554 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4555 * need highmem pages, so cap pages_min to a small
4556 * value here.
4557 *
41858966 4558 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4559 * deltas controls asynch page reclaim, and so should
4560 * not be capped for highmem.
1da177e4
LT
4561 */
4562 int min_pages;
4563
4564 min_pages = zone->present_pages / 1024;
4565 if (min_pages < SWAP_CLUSTER_MAX)
4566 min_pages = SWAP_CLUSTER_MAX;
4567 if (min_pages > 128)
4568 min_pages = 128;
41858966 4569 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4570 } else {
669ed175
NP
4571 /*
4572 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4573 * proportionate to the zone's size.
4574 */
41858966 4575 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4576 }
4577
41858966
MG
4578 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4579 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4580 setup_zone_migrate_reserve(zone);
1125b4e3 4581 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4582 }
cb45b0e9
HA
4583
4584 /* update totalreserve_pages */
4585 calculate_totalreserve_pages();
1da177e4
LT
4586}
4587
55a4462a 4588/*
556adecb
RR
4589 * The inactive anon list should be small enough that the VM never has to
4590 * do too much work, but large enough that each inactive page has a chance
4591 * to be referenced again before it is swapped out.
4592 *
4593 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4594 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4595 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4596 * the anonymous pages are kept on the inactive list.
4597 *
4598 * total target max
4599 * memory ratio inactive anon
4600 * -------------------------------------
4601 * 10MB 1 5MB
4602 * 100MB 1 50MB
4603 * 1GB 3 250MB
4604 * 10GB 10 0.9GB
4605 * 100GB 31 3GB
4606 * 1TB 101 10GB
4607 * 10TB 320 32GB
4608 */
96cb4df5 4609void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4610{
96cb4df5 4611 unsigned int gb, ratio;
556adecb 4612
96cb4df5
MK
4613 /* Zone size in gigabytes */
4614 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4615 if (gb)
556adecb 4616 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4617 else
4618 ratio = 1;
556adecb 4619
96cb4df5
MK
4620 zone->inactive_ratio = ratio;
4621}
556adecb 4622
96cb4df5
MK
4623static void __init setup_per_zone_inactive_ratio(void)
4624{
4625 struct zone *zone;
4626
4627 for_each_zone(zone)
4628 calculate_zone_inactive_ratio(zone);
556adecb
RR
4629}
4630
1da177e4
LT
4631/*
4632 * Initialise min_free_kbytes.
4633 *
4634 * For small machines we want it small (128k min). For large machines
4635 * we want it large (64MB max). But it is not linear, because network
4636 * bandwidth does not increase linearly with machine size. We use
4637 *
4638 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4639 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4640 *
4641 * which yields
4642 *
4643 * 16MB: 512k
4644 * 32MB: 724k
4645 * 64MB: 1024k
4646 * 128MB: 1448k
4647 * 256MB: 2048k
4648 * 512MB: 2896k
4649 * 1024MB: 4096k
4650 * 2048MB: 5792k
4651 * 4096MB: 8192k
4652 * 8192MB: 11584k
4653 * 16384MB: 16384k
4654 */
bc75d33f 4655static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4656{
4657 unsigned long lowmem_kbytes;
4658
4659 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4660
4661 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4662 if (min_free_kbytes < 128)
4663 min_free_kbytes = 128;
4664 if (min_free_kbytes > 65536)
4665 min_free_kbytes = 65536;
bc75d33f 4666 setup_per_zone_wmarks();
1da177e4 4667 setup_per_zone_lowmem_reserve();
556adecb 4668 setup_per_zone_inactive_ratio();
1da177e4
LT
4669 return 0;
4670}
bc75d33f 4671module_init(init_per_zone_wmark_min)
1da177e4
LT
4672
4673/*
4674 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4675 * that we can call two helper functions whenever min_free_kbytes
4676 * changes.
4677 */
4678int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4679 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4680{
4681 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5 4682 if (write)
bc75d33f 4683 setup_per_zone_wmarks();
1da177e4
LT
4684 return 0;
4685}
4686
9614634f
CL
4687#ifdef CONFIG_NUMA
4688int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4689 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4690{
4691 struct zone *zone;
4692 int rc;
4693
4694 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4695 if (rc)
4696 return rc;
4697
4698 for_each_zone(zone)
8417bba4 4699 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4700 sysctl_min_unmapped_ratio) / 100;
4701 return 0;
4702}
0ff38490
CL
4703
4704int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4705 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4706{
4707 struct zone *zone;
4708 int rc;
4709
4710 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4711 if (rc)
4712 return rc;
4713
4714 for_each_zone(zone)
4715 zone->min_slab_pages = (zone->present_pages *
4716 sysctl_min_slab_ratio) / 100;
4717 return 0;
4718}
9614634f
CL
4719#endif
4720
1da177e4
LT
4721/*
4722 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4723 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4724 * whenever sysctl_lowmem_reserve_ratio changes.
4725 *
4726 * The reserve ratio obviously has absolutely no relation with the
41858966 4727 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4728 * if in function of the boot time zone sizes.
4729 */
4730int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4731 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4732{
4733 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4734 setup_per_zone_lowmem_reserve();
4735 return 0;
4736}
4737
8ad4b1fb
RS
4738/*
4739 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4740 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4741 * can have before it gets flushed back to buddy allocator.
4742 */
4743
4744int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4745 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4746{
4747 struct zone *zone;
4748 unsigned int cpu;
4749 int ret;
4750
4751 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4752 if (!write || (ret == -EINVAL))
4753 return ret;
364df0eb 4754 for_each_populated_zone(zone) {
8ad4b1fb
RS
4755 for_each_online_cpu(cpu) {
4756 unsigned long high;
4757 high = zone->present_pages / percpu_pagelist_fraction;
4758 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4759 }
4760 }
4761 return 0;
4762}
4763
f034b5d4 4764int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4765
4766#ifdef CONFIG_NUMA
4767static int __init set_hashdist(char *str)
4768{
4769 if (!str)
4770 return 0;
4771 hashdist = simple_strtoul(str, &str, 0);
4772 return 1;
4773}
4774__setup("hashdist=", set_hashdist);
4775#endif
4776
4777/*
4778 * allocate a large system hash table from bootmem
4779 * - it is assumed that the hash table must contain an exact power-of-2
4780 * quantity of entries
4781 * - limit is the number of hash buckets, not the total allocation size
4782 */
4783void *__init alloc_large_system_hash(const char *tablename,
4784 unsigned long bucketsize,
4785 unsigned long numentries,
4786 int scale,
4787 int flags,
4788 unsigned int *_hash_shift,
4789 unsigned int *_hash_mask,
4790 unsigned long limit)
4791{
4792 unsigned long long max = limit;
4793 unsigned long log2qty, size;
4794 void *table = NULL;
4795
4796 /* allow the kernel cmdline to have a say */
4797 if (!numentries) {
4798 /* round applicable memory size up to nearest megabyte */
04903664 4799 numentries = nr_kernel_pages;
1da177e4
LT
4800 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4801 numentries >>= 20 - PAGE_SHIFT;
4802 numentries <<= 20 - PAGE_SHIFT;
4803
4804 /* limit to 1 bucket per 2^scale bytes of low memory */
4805 if (scale > PAGE_SHIFT)
4806 numentries >>= (scale - PAGE_SHIFT);
4807 else
4808 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4809
4810 /* Make sure we've got at least a 0-order allocation.. */
4811 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4812 numentries = PAGE_SIZE / bucketsize;
1da177e4 4813 }
6e692ed3 4814 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4815
4816 /* limit allocation size to 1/16 total memory by default */
4817 if (max == 0) {
4818 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4819 do_div(max, bucketsize);
4820 }
4821
4822 if (numentries > max)
4823 numentries = max;
4824
f0d1b0b3 4825 log2qty = ilog2(numentries);
1da177e4
LT
4826
4827 do {
4828 size = bucketsize << log2qty;
4829 if (flags & HASH_EARLY)
74768ed8 4830 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4831 else if (hashdist)
4832 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4833 else {
1037b83b
ED
4834 /*
4835 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4836 * some pages at the end of hash table which
4837 * alloc_pages_exact() automatically does
1037b83b 4838 */
264ef8a9 4839 if (get_order(size) < MAX_ORDER) {
a1dd268c 4840 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4841 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4842 }
1da177e4
LT
4843 }
4844 } while (!table && size > PAGE_SIZE && --log2qty);
4845
4846 if (!table)
4847 panic("Failed to allocate %s hash table\n", tablename);
4848
b49ad484 4849 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4850 tablename,
4851 (1U << log2qty),
f0d1b0b3 4852 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4853 size);
4854
4855 if (_hash_shift)
4856 *_hash_shift = log2qty;
4857 if (_hash_mask)
4858 *_hash_mask = (1 << log2qty) - 1;
4859
4860 return table;
4861}
a117e66e 4862
835c134e
MG
4863/* Return a pointer to the bitmap storing bits affecting a block of pages */
4864static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4865 unsigned long pfn)
4866{
4867#ifdef CONFIG_SPARSEMEM
4868 return __pfn_to_section(pfn)->pageblock_flags;
4869#else
4870 return zone->pageblock_flags;
4871#endif /* CONFIG_SPARSEMEM */
4872}
4873
4874static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4875{
4876#ifdef CONFIG_SPARSEMEM
4877 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4878 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4879#else
4880 pfn = pfn - zone->zone_start_pfn;
d9c23400 4881 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4882#endif /* CONFIG_SPARSEMEM */
4883}
4884
4885/**
d9c23400 4886 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4887 * @page: The page within the block of interest
4888 * @start_bitidx: The first bit of interest to retrieve
4889 * @end_bitidx: The last bit of interest
4890 * returns pageblock_bits flags
4891 */
4892unsigned long get_pageblock_flags_group(struct page *page,
4893 int start_bitidx, int end_bitidx)
4894{
4895 struct zone *zone;
4896 unsigned long *bitmap;
4897 unsigned long pfn, bitidx;
4898 unsigned long flags = 0;
4899 unsigned long value = 1;
4900
4901 zone = page_zone(page);
4902 pfn = page_to_pfn(page);
4903 bitmap = get_pageblock_bitmap(zone, pfn);
4904 bitidx = pfn_to_bitidx(zone, pfn);
4905
4906 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4907 if (test_bit(bitidx + start_bitidx, bitmap))
4908 flags |= value;
6220ec78 4909
835c134e
MG
4910 return flags;
4911}
4912
4913/**
d9c23400 4914 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4915 * @page: The page within the block of interest
4916 * @start_bitidx: The first bit of interest
4917 * @end_bitidx: The last bit of interest
4918 * @flags: The flags to set
4919 */
4920void set_pageblock_flags_group(struct page *page, unsigned long flags,
4921 int start_bitidx, int end_bitidx)
4922{
4923 struct zone *zone;
4924 unsigned long *bitmap;
4925 unsigned long pfn, bitidx;
4926 unsigned long value = 1;
4927
4928 zone = page_zone(page);
4929 pfn = page_to_pfn(page);
4930 bitmap = get_pageblock_bitmap(zone, pfn);
4931 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4932 VM_BUG_ON(pfn < zone->zone_start_pfn);
4933 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4934
4935 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4936 if (flags & value)
4937 __set_bit(bitidx + start_bitidx, bitmap);
4938 else
4939 __clear_bit(bitidx + start_bitidx, bitmap);
4940}
a5d76b54
KH
4941
4942/*
4943 * This is designed as sub function...plz see page_isolation.c also.
4944 * set/clear page block's type to be ISOLATE.
4945 * page allocater never alloc memory from ISOLATE block.
4946 */
4947
4948int set_migratetype_isolate(struct page *page)
4949{
4950 struct zone *zone;
4951 unsigned long flags;
4952 int ret = -EBUSY;
8e7e40d9 4953 int zone_idx;
a5d76b54
KH
4954
4955 zone = page_zone(page);
8e7e40d9 4956 zone_idx = zone_idx(zone);
a5d76b54
KH
4957 spin_lock_irqsave(&zone->lock, flags);
4958 /*
4959 * In future, more migrate types will be able to be isolation target.
4960 */
8e7e40d9
SL
4961 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4962 zone_idx != ZONE_MOVABLE)
a5d76b54
KH
4963 goto out;
4964 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4965 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4966 ret = 0;
4967out:
4968 spin_unlock_irqrestore(&zone->lock, flags);
4969 if (!ret)
9f8f2172 4970 drain_all_pages();
a5d76b54
KH
4971 return ret;
4972}
4973
4974void unset_migratetype_isolate(struct page *page)
4975{
4976 struct zone *zone;
4977 unsigned long flags;
4978 zone = page_zone(page);
4979 spin_lock_irqsave(&zone->lock, flags);
4980 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4981 goto out;
4982 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4983 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4984out:
4985 spin_unlock_irqrestore(&zone->lock, flags);
4986}
0c0e6195
KH
4987
4988#ifdef CONFIG_MEMORY_HOTREMOVE
4989/*
4990 * All pages in the range must be isolated before calling this.
4991 */
4992void
4993__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4994{
4995 struct page *page;
4996 struct zone *zone;
4997 int order, i;
4998 unsigned long pfn;
4999 unsigned long flags;
5000 /* find the first valid pfn */
5001 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5002 if (pfn_valid(pfn))
5003 break;
5004 if (pfn == end_pfn)
5005 return;
5006 zone = page_zone(pfn_to_page(pfn));
5007 spin_lock_irqsave(&zone->lock, flags);
5008 pfn = start_pfn;
5009 while (pfn < end_pfn) {
5010 if (!pfn_valid(pfn)) {
5011 pfn++;
5012 continue;
5013 }
5014 page = pfn_to_page(pfn);
5015 BUG_ON(page_count(page));
5016 BUG_ON(!PageBuddy(page));
5017 order = page_order(page);
5018#ifdef CONFIG_DEBUG_VM
5019 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5020 pfn, 1 << order, end_pfn);
5021#endif
5022 list_del(&page->lru);
5023 rmv_page_order(page);
5024 zone->free_area[order].nr_free--;
5025 __mod_zone_page_state(zone, NR_FREE_PAGES,
5026 - (1UL << order));
5027 for (i = 0; i < (1 << order); i++)
5028 SetPageReserved((page+i));
5029 pfn += (1 << order);
5030 }
5031 spin_unlock_irqrestore(&zone->lock, flags);
5032}
5033#endif