]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
mm: use roundown_pow_of_two() in zone_batchsize()
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
ac924c60 51#include <asm/div64.h>
1da177e4
LT
52#include "internal.h"
53
54/*
13808910 55 * Array of node states.
1da177e4 56 */
13808910
CL
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65 [N_CPU] = { { [0] = 1UL } },
66#endif /* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
6c231b7b 70unsigned long totalram_pages __read_mostly;
cb45b0e9 71unsigned long totalreserve_pages __read_mostly;
22b31eec 72unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 73int percpu_pagelist_fraction;
1da177e4 74
d9c23400
MG
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
d98c7a09 79static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 80
1da177e4
LT
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
1da177e4 91 */
2f1b6248 92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 93#ifdef CONFIG_ZONE_DMA
2f1b6248 94 256,
4b51d669 95#endif
fb0e7942 96#ifdef CONFIG_ZONE_DMA32
2f1b6248 97 256,
fb0e7942 98#endif
e53ef38d 99#ifdef CONFIG_HIGHMEM
2a1e274a 100 32,
e53ef38d 101#endif
2a1e274a 102 32,
2f1b6248 103};
1da177e4
LT
104
105EXPORT_SYMBOL(totalram_pages);
1da177e4 106
15ad7cdc 107static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 108#ifdef CONFIG_ZONE_DMA
2f1b6248 109 "DMA",
4b51d669 110#endif
fb0e7942 111#ifdef CONFIG_ZONE_DMA32
2f1b6248 112 "DMA32",
fb0e7942 113#endif
2f1b6248 114 "Normal",
e53ef38d 115#ifdef CONFIG_HIGHMEM
2a1e274a 116 "HighMem",
e53ef38d 117#endif
2a1e274a 118 "Movable",
2f1b6248
CL
119};
120
1da177e4
LT
121int min_free_kbytes = 1024;
122
86356ab1
YG
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
a3142c8e 125static unsigned long __meminitdata dma_reserve;
1da177e4 126
c713216d
MG
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
183ff22b 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
98011f56
JB
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
b69a7288 156 static unsigned long __initdata required_kernelcore;
484f51f8 157 static unsigned long __initdata required_movablecore;
b69a7288 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
c713216d
MG
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
418508c1
MS
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
9ef9acb0
MG
170int page_group_by_mobility_disabled __read_mostly;
171
b2a0ac88
MG
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176}
177
13e7444b 178#ifdef CONFIG_DEBUG_VM
c6a57e19 179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 180{
bdc8cb98
DH
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
c6a57e19 184
bdc8cb98
DH
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
c6a57e19
DH
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
14e07298 198 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 199 return 0;
1da177e4 200 if (zone != page_zone(page))
c6a57e19
DH
201 return 0;
202
203 return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210 if (page_outside_zone_boundaries(zone, page))
1da177e4 211 return 1;
c6a57e19
DH
212 if (!page_is_consistent(zone, page))
213 return 1;
214
1da177e4
LT
215 return 0;
216}
13e7444b
NP
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220 return 0;
221}
222#endif
223
224abf92 224static void bad_page(struct page *page)
1da177e4 225{
d936cf9b
HD
226 static unsigned long resume;
227 static unsigned long nr_shown;
228 static unsigned long nr_unshown;
229
230 /*
231 * Allow a burst of 60 reports, then keep quiet for that minute;
232 * or allow a steady drip of one report per second.
233 */
234 if (nr_shown == 60) {
235 if (time_before(jiffies, resume)) {
236 nr_unshown++;
237 goto out;
238 }
239 if (nr_unshown) {
1e9e6365
HD
240 printk(KERN_ALERT
241 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
242 nr_unshown);
243 nr_unshown = 0;
244 }
245 nr_shown = 0;
246 }
247 if (nr_shown++ == 0)
248 resume = jiffies + 60 * HZ;
249
1e9e6365 250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 251 current->comm, page_to_pfn(page));
1e9e6365 252 printk(KERN_ALERT
3dc14741
HD
253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 page, (void *)page->flags, page_count(page),
255 page_mapcount(page), page->mapping, page->index);
3dc14741 256
1da177e4 257 dump_stack();
d936cf9b 258out:
8cc3b392
HD
259 /* Leave bad fields for debug, except PageBuddy could make trouble */
260 __ClearPageBuddy(page);
9f158333 261 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
262}
263
1da177e4
LT
264/*
265 * Higher-order pages are called "compound pages". They are structured thusly:
266 *
267 * The first PAGE_SIZE page is called the "head page".
268 *
269 * The remaining PAGE_SIZE pages are called "tail pages".
270 *
271 * All pages have PG_compound set. All pages have their ->private pointing at
272 * the head page (even the head page has this).
273 *
41d78ba5
HD
274 * The first tail page's ->lru.next holds the address of the compound page's
275 * put_page() function. Its ->lru.prev holds the order of allocation.
276 * This usage means that zero-order pages may not be compound.
1da177e4 277 */
d98c7a09
HD
278
279static void free_compound_page(struct page *page)
280{
d85f3385 281 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
282}
283
01ad1c08 284void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
285{
286 int i;
287 int nr_pages = 1 << order;
288
289 set_compound_page_dtor(page, free_compound_page);
290 set_compound_order(page, order);
291 __SetPageHead(page);
292 for (i = 1; i < nr_pages; i++) {
293 struct page *p = page + i;
294
295 __SetPageTail(p);
296 p->first_page = page;
297 }
298}
299
300#ifdef CONFIG_HUGETLBFS
301void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
302{
303 int i;
304 int nr_pages = 1 << order;
6babc32c 305 struct page *p = page + 1;
1da177e4 306
33f2ef89 307 set_compound_page_dtor(page, free_compound_page);
d85f3385 308 set_compound_order(page, order);
6d777953 309 __SetPageHead(page);
18229df5 310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 311 __SetPageTail(p);
d85f3385 312 p->first_page = page;
1da177e4
LT
313 }
314}
18229df5 315#endif
1da177e4 316
8cc3b392 317static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
318{
319 int i;
320 int nr_pages = 1 << order;
8cc3b392 321 int bad = 0;
1da177e4 322
8cc3b392
HD
323 if (unlikely(compound_order(page) != order) ||
324 unlikely(!PageHead(page))) {
224abf92 325 bad_page(page);
8cc3b392
HD
326 bad++;
327 }
1da177e4 328
6d777953 329 __ClearPageHead(page);
8cc3b392 330
18229df5
AW
331 for (i = 1; i < nr_pages; i++) {
332 struct page *p = page + i;
1da177e4 333
e713a21d 334 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 335 bad_page(page);
8cc3b392
HD
336 bad++;
337 }
d85f3385 338 __ClearPageTail(p);
1da177e4 339 }
8cc3b392
HD
340
341 return bad;
1da177e4 342}
1da177e4 343
17cf4406
NP
344static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
345{
346 int i;
347
6626c5d5
AM
348 /*
349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 * and __GFP_HIGHMEM from hard or soft interrupt context.
351 */
725d704e 352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
353 for (i = 0; i < (1 << order); i++)
354 clear_highpage(page + i);
355}
356
6aa3001b
AM
357static inline void set_page_order(struct page *page, int order)
358{
4c21e2f2 359 set_page_private(page, order);
676165a8 360 __SetPageBuddy(page);
1da177e4
LT
361}
362
363static inline void rmv_page_order(struct page *page)
364{
676165a8 365 __ClearPageBuddy(page);
4c21e2f2 366 set_page_private(page, 0);
1da177e4
LT
367}
368
369/*
370 * Locate the struct page for both the matching buddy in our
371 * pair (buddy1) and the combined O(n+1) page they form (page).
372 *
373 * 1) Any buddy B1 will have an order O twin B2 which satisfies
374 * the following equation:
375 * B2 = B1 ^ (1 << O)
376 * For example, if the starting buddy (buddy2) is #8 its order
377 * 1 buddy is #10:
378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
379 *
380 * 2) Any buddy B will have an order O+1 parent P which
381 * satisfies the following equation:
382 * P = B & ~(1 << O)
383 *
d6e05edc 384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
385 */
386static inline struct page *
387__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
388{
389 unsigned long buddy_idx = page_idx ^ (1 << order);
390
391 return page + (buddy_idx - page_idx);
392}
393
394static inline unsigned long
395__find_combined_index(unsigned long page_idx, unsigned int order)
396{
397 return (page_idx & ~(1 << order));
398}
399
400/*
401 * This function checks whether a page is free && is the buddy
402 * we can do coalesce a page and its buddy if
13e7444b 403 * (a) the buddy is not in a hole &&
676165a8 404 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
405 * (c) a page and its buddy have the same order &&
406 * (d) a page and its buddy are in the same zone.
676165a8
NP
407 *
408 * For recording whether a page is in the buddy system, we use PG_buddy.
409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 410 *
676165a8 411 * For recording page's order, we use page_private(page).
1da177e4 412 */
cb2b95e1
AW
413static inline int page_is_buddy(struct page *page, struct page *buddy,
414 int order)
1da177e4 415{
14e07298 416 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 417 return 0;
13e7444b 418
cb2b95e1
AW
419 if (page_zone_id(page) != page_zone_id(buddy))
420 return 0;
421
422 if (PageBuddy(buddy) && page_order(buddy) == order) {
423 BUG_ON(page_count(buddy) != 0);
6aa3001b 424 return 1;
676165a8 425 }
6aa3001b 426 return 0;
1da177e4
LT
427}
428
429/*
430 * Freeing function for a buddy system allocator.
431 *
432 * The concept of a buddy system is to maintain direct-mapped table
433 * (containing bit values) for memory blocks of various "orders".
434 * The bottom level table contains the map for the smallest allocatable
435 * units of memory (here, pages), and each level above it describes
436 * pairs of units from the levels below, hence, "buddies".
437 * At a high level, all that happens here is marking the table entry
438 * at the bottom level available, and propagating the changes upward
439 * as necessary, plus some accounting needed to play nicely with other
440 * parts of the VM system.
441 * At each level, we keep a list of pages, which are heads of continuous
676165a8 442 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 443 * order is recorded in page_private(page) field.
1da177e4
LT
444 * So when we are allocating or freeing one, we can derive the state of the
445 * other. That is, if we allocate a small block, and both were
446 * free, the remainder of the region must be split into blocks.
447 * If a block is freed, and its buddy is also free, then this
448 * triggers coalescing into a block of larger size.
449 *
450 * -- wli
451 */
452
48db57f8 453static inline void __free_one_page(struct page *page,
1da177e4
LT
454 struct zone *zone, unsigned int order)
455{
456 unsigned long page_idx;
457 int order_size = 1 << order;
b2a0ac88 458 int migratetype = get_pageblock_migratetype(page);
1da177e4 459
224abf92 460 if (unlikely(PageCompound(page)))
8cc3b392
HD
461 if (unlikely(destroy_compound_page(page, order)))
462 return;
1da177e4
LT
463
464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
465
725d704e
NP
466 VM_BUG_ON(page_idx & (order_size - 1));
467 VM_BUG_ON(bad_range(zone, page));
1da177e4 468
d23ad423 469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
470 while (order < MAX_ORDER-1) {
471 unsigned long combined_idx;
1da177e4
LT
472 struct page *buddy;
473
1da177e4 474 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 475 if (!page_is_buddy(page, buddy, order))
3c82d0ce 476 break;
13e7444b 477
3c82d0ce 478 /* Our buddy is free, merge with it and move up one order. */
1da177e4 479 list_del(&buddy->lru);
b2a0ac88 480 zone->free_area[order].nr_free--;
1da177e4 481 rmv_page_order(buddy);
13e7444b 482 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
483 page = page + (combined_idx - page_idx);
484 page_idx = combined_idx;
485 order++;
486 }
487 set_page_order(page, order);
b2a0ac88
MG
488 list_add(&page->lru,
489 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
490 zone->free_area[order].nr_free++;
491}
492
224abf92 493static inline int free_pages_check(struct page *page)
1da177e4 494{
985737cf 495 free_page_mlock(page);
92be2e33
NP
496 if (unlikely(page_mapcount(page) |
497 (page->mapping != NULL) |
498 (page_count(page) != 0) |
8cc3b392 499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 500 bad_page(page);
79f4b7bf 501 return 1;
8cc3b392 502 }
79f4b7bf
HD
503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 return 0;
1da177e4
LT
506}
507
508/*
509 * Frees a list of pages.
510 * Assumes all pages on list are in same zone, and of same order.
207f36ee 511 * count is the number of pages to free.
1da177e4
LT
512 *
513 * If the zone was previously in an "all pages pinned" state then look to
514 * see if this freeing clears that state.
515 *
516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
517 * pinned" detection logic.
518 */
48db57f8
NP
519static void free_pages_bulk(struct zone *zone, int count,
520 struct list_head *list, int order)
1da177e4 521{
c54ad30c 522 spin_lock(&zone->lock);
e815af95 523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 524 zone->pages_scanned = 0;
48db57f8
NP
525 while (count--) {
526 struct page *page;
527
725d704e 528 VM_BUG_ON(list_empty(list));
1da177e4 529 page = list_entry(list->prev, struct page, lru);
48db57f8 530 /* have to delete it as __free_one_page list manipulates */
1da177e4 531 list_del(&page->lru);
48db57f8 532 __free_one_page(page, zone, order);
1da177e4 533 }
c54ad30c 534 spin_unlock(&zone->lock);
1da177e4
LT
535}
536
48db57f8 537static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 538{
006d22d9 539 spin_lock(&zone->lock);
e815af95 540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 541 zone->pages_scanned = 0;
0798e519 542 __free_one_page(page, zone, order);
006d22d9 543 spin_unlock(&zone->lock);
48db57f8
NP
544}
545
546static void __free_pages_ok(struct page *page, unsigned int order)
547{
548 unsigned long flags;
1da177e4 549 int i;
8cc3b392 550 int bad = 0;
1da177e4 551
1da177e4 552 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
553 bad += free_pages_check(page + i);
554 if (bad)
689bcebf
HD
555 return;
556
3ac7fe5a 557 if (!PageHighMem(page)) {
9858db50 558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
559 debug_check_no_obj_freed(page_address(page),
560 PAGE_SIZE << order);
561 }
dafb1367 562 arch_free_page(page, order);
48db57f8 563 kernel_map_pages(page, 1 << order, 0);
dafb1367 564
c54ad30c 565 local_irq_save(flags);
f8891e5e 566 __count_vm_events(PGFREE, 1 << order);
48db57f8 567 free_one_page(page_zone(page), page, order);
c54ad30c 568 local_irq_restore(flags);
1da177e4
LT
569}
570
a226f6c8
DH
571/*
572 * permit the bootmem allocator to evade page validation on high-order frees
573 */
af370fb8 574void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
575{
576 if (order == 0) {
577 __ClearPageReserved(page);
578 set_page_count(page, 0);
7835e98b 579 set_page_refcounted(page);
545b1ea9 580 __free_page(page);
a226f6c8 581 } else {
a226f6c8
DH
582 int loop;
583
545b1ea9 584 prefetchw(page);
a226f6c8
DH
585 for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 struct page *p = &page[loop];
587
545b1ea9
NP
588 if (loop + 1 < BITS_PER_LONG)
589 prefetchw(p + 1);
a226f6c8
DH
590 __ClearPageReserved(p);
591 set_page_count(p, 0);
592 }
593
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_pages(page, order);
a226f6c8
DH
596 }
597}
598
1da177e4
LT
599
600/*
601 * The order of subdivision here is critical for the IO subsystem.
602 * Please do not alter this order without good reasons and regression
603 * testing. Specifically, as large blocks of memory are subdivided,
604 * the order in which smaller blocks are delivered depends on the order
605 * they're subdivided in this function. This is the primary factor
606 * influencing the order in which pages are delivered to the IO
607 * subsystem according to empirical testing, and this is also justified
608 * by considering the behavior of a buddy system containing a single
609 * large block of memory acted on by a series of small allocations.
610 * This behavior is a critical factor in sglist merging's success.
611 *
612 * -- wli
613 */
085cc7d5 614static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
615 int low, int high, struct free_area *area,
616 int migratetype)
1da177e4
LT
617{
618 unsigned long size = 1 << high;
619
620 while (high > low) {
621 area--;
622 high--;
623 size >>= 1;
725d704e 624 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 625 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
626 area->nr_free++;
627 set_page_order(&page[size], high);
628 }
1da177e4
LT
629}
630
1da177e4
LT
631/*
632 * This page is about to be returned from the page allocator
633 */
17cf4406 634static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 635{
92be2e33
NP
636 if (unlikely(page_mapcount(page) |
637 (page->mapping != NULL) |
638 (page_count(page) != 0) |
8cc3b392 639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 640 bad_page(page);
689bcebf 641 return 1;
8cc3b392 642 }
689bcebf 643
4c21e2f2 644 set_page_private(page, 0);
7835e98b 645 set_page_refcounted(page);
cc102509
NP
646
647 arch_alloc_page(page, order);
1da177e4 648 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
649
650 if (gfp_flags & __GFP_ZERO)
651 prep_zero_page(page, order, gfp_flags);
652
653 if (order && (gfp_flags & __GFP_COMP))
654 prep_compound_page(page, order);
655
689bcebf 656 return 0;
1da177e4
LT
657}
658
56fd56b8
MG
659/*
660 * Go through the free lists for the given migratetype and remove
661 * the smallest available page from the freelists
662 */
663static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 int migratetype)
665{
666 unsigned int current_order;
667 struct free_area * area;
668 struct page *page;
669
670 /* Find a page of the appropriate size in the preferred list */
671 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 area = &(zone->free_area[current_order]);
673 if (list_empty(&area->free_list[migratetype]))
674 continue;
675
676 page = list_entry(area->free_list[migratetype].next,
677 struct page, lru);
678 list_del(&page->lru);
679 rmv_page_order(page);
680 area->nr_free--;
681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 expand(zone, page, order, current_order, area, migratetype);
683 return page;
684 }
685
686 return NULL;
687}
688
689
b2a0ac88
MG
690/*
691 * This array describes the order lists are fallen back to when
692 * the free lists for the desirable migrate type are depleted
693 */
694static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
699};
700
c361be55
MG
701/*
702 * Move the free pages in a range to the free lists of the requested type.
d9c23400 703 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
704 * boundary. If alignment is required, use move_freepages_block()
705 */
b69a7288
AB
706static int move_freepages(struct zone *zone,
707 struct page *start_page, struct page *end_page,
708 int migratetype)
c361be55
MG
709{
710 struct page *page;
711 unsigned long order;
d100313f 712 int pages_moved = 0;
c361be55
MG
713
714#ifndef CONFIG_HOLES_IN_ZONE
715 /*
716 * page_zone is not safe to call in this context when
717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 * anyway as we check zone boundaries in move_freepages_block().
719 * Remove at a later date when no bug reports exist related to
ac0e5b7a 720 * grouping pages by mobility
c361be55
MG
721 */
722 BUG_ON(page_zone(start_page) != page_zone(end_page));
723#endif
724
725 for (page = start_page; page <= end_page;) {
344c790e
AL
726 /* Make sure we are not inadvertently changing nodes */
727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728
c361be55
MG
729 if (!pfn_valid_within(page_to_pfn(page))) {
730 page++;
731 continue;
732 }
733
734 if (!PageBuddy(page)) {
735 page++;
736 continue;
737 }
738
739 order = page_order(page);
740 list_del(&page->lru);
741 list_add(&page->lru,
742 &zone->free_area[order].free_list[migratetype]);
743 page += 1 << order;
d100313f 744 pages_moved += 1 << order;
c361be55
MG
745 }
746
d100313f 747 return pages_moved;
c361be55
MG
748}
749
b69a7288
AB
750static int move_freepages_block(struct zone *zone, struct page *page,
751 int migratetype)
c361be55
MG
752{
753 unsigned long start_pfn, end_pfn;
754 struct page *start_page, *end_page;
755
756 start_pfn = page_to_pfn(page);
d9c23400 757 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 758 start_page = pfn_to_page(start_pfn);
d9c23400
MG
759 end_page = start_page + pageblock_nr_pages - 1;
760 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
761
762 /* Do not cross zone boundaries */
763 if (start_pfn < zone->zone_start_pfn)
764 start_page = page;
765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 return 0;
767
768 return move_freepages(zone, start_page, end_page, migratetype);
769}
770
b2a0ac88
MG
771/* Remove an element from the buddy allocator from the fallback list */
772static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 int start_migratetype)
774{
775 struct free_area * area;
776 int current_order;
777 struct page *page;
778 int migratetype, i;
779
780 /* Find the largest possible block of pages in the other list */
781 for (current_order = MAX_ORDER-1; current_order >= order;
782 --current_order) {
783 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 migratetype = fallbacks[start_migratetype][i];
785
56fd56b8
MG
786 /* MIGRATE_RESERVE handled later if necessary */
787 if (migratetype == MIGRATE_RESERVE)
788 continue;
e010487d 789
b2a0ac88
MG
790 area = &(zone->free_area[current_order]);
791 if (list_empty(&area->free_list[migratetype]))
792 continue;
793
794 page = list_entry(area->free_list[migratetype].next,
795 struct page, lru);
796 area->nr_free--;
797
798 /*
c361be55 799 * If breaking a large block of pages, move all free
46dafbca
MG
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
b2a0ac88 803 */
d9c23400 804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
809
810 /* Claim the whole block if over half of it is free */
d9c23400 811 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
812 set_pageblock_migratetype(page,
813 start_migratetype);
814
b2a0ac88 815 migratetype = start_migratetype;
c361be55 816 }
b2a0ac88
MG
817
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
823
d9c23400 824 if (current_order == pageblock_order)
b2a0ac88
MG
825 set_pageblock_migratetype(page,
826 start_migratetype);
827
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
830 }
831 }
832
56fd56b8
MG
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
835}
836
56fd56b8 837/*
1da177e4
LT
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
840 */
b2a0ac88
MG
841static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
1da177e4 843{
1da177e4
LT
844 struct page *page;
845
56fd56b8 846 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 847
56fd56b8
MG
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
850
851 return page;
1da177e4
LT
852}
853
854/*
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
858 */
859static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
860 unsigned long count, struct list_head *list,
861 int migratetype)
1da177e4 862{
1da177e4 863 int i;
1da177e4 864
c54ad30c 865 spin_lock(&zone->lock);
1da177e4 866 for (i = 0; i < count; ++i) {
b2a0ac88 867 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 868 if (unlikely(page == NULL))
1da177e4 869 break;
81eabcbe
MG
870
871 /*
872 * Split buddy pages returned by expand() are received here
873 * in physical page order. The page is added to the callers and
874 * list and the list head then moves forward. From the callers
875 * perspective, the linked list is ordered by page number in
876 * some conditions. This is useful for IO devices that can
877 * merge IO requests if the physical pages are ordered
878 * properly.
879 */
535131e6
MG
880 list_add(&page->lru, list);
881 set_page_private(page, migratetype);
81eabcbe 882 list = &page->lru;
1da177e4 883 }
c54ad30c 884 spin_unlock(&zone->lock);
085cc7d5 885 return i;
1da177e4
LT
886}
887
4ae7c039 888#ifdef CONFIG_NUMA
8fce4d8e 889/*
4037d452
CL
890 * Called from the vmstat counter updater to drain pagesets of this
891 * currently executing processor on remote nodes after they have
892 * expired.
893 *
879336c3
CL
894 * Note that this function must be called with the thread pinned to
895 * a single processor.
8fce4d8e 896 */
4037d452 897void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 898{
4ae7c039 899 unsigned long flags;
4037d452 900 int to_drain;
4ae7c039 901
4037d452
CL
902 local_irq_save(flags);
903 if (pcp->count >= pcp->batch)
904 to_drain = pcp->batch;
905 else
906 to_drain = pcp->count;
907 free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 pcp->count -= to_drain;
909 local_irq_restore(flags);
4ae7c039
CL
910}
911#endif
912
9f8f2172
CL
913/*
914 * Drain pages of the indicated processor.
915 *
916 * The processor must either be the current processor and the
917 * thread pinned to the current processor or a processor that
918 * is not online.
919 */
920static void drain_pages(unsigned int cpu)
1da177e4 921{
c54ad30c 922 unsigned long flags;
1da177e4 923 struct zone *zone;
1da177e4 924
ee99c71c 925 for_each_populated_zone(zone) {
1da177e4 926 struct per_cpu_pageset *pset;
3dfa5721 927 struct per_cpu_pages *pcp;
1da177e4 928
e7c8d5c9 929 pset = zone_pcp(zone, cpu);
3dfa5721
CL
930
931 pcp = &pset->pcp;
932 local_irq_save(flags);
933 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
934 pcp->count = 0;
935 local_irq_restore(flags);
1da177e4
LT
936 }
937}
1da177e4 938
9f8f2172
CL
939/*
940 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
941 */
942void drain_local_pages(void *arg)
943{
944 drain_pages(smp_processor_id());
945}
946
947/*
948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
949 */
950void drain_all_pages(void)
951{
15c8b6c1 952 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
953}
954
296699de 955#ifdef CONFIG_HIBERNATION
1da177e4
LT
956
957void mark_free_pages(struct zone *zone)
958{
f623f0db
RW
959 unsigned long pfn, max_zone_pfn;
960 unsigned long flags;
b2a0ac88 961 int order, t;
1da177e4
LT
962 struct list_head *curr;
963
964 if (!zone->spanned_pages)
965 return;
966
967 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
968
969 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
970 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
971 if (pfn_valid(pfn)) {
972 struct page *page = pfn_to_page(pfn);
973
7be98234
RW
974 if (!swsusp_page_is_forbidden(page))
975 swsusp_unset_page_free(page);
f623f0db 976 }
1da177e4 977
b2a0ac88
MG
978 for_each_migratetype_order(order, t) {
979 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 980 unsigned long i;
1da177e4 981
f623f0db
RW
982 pfn = page_to_pfn(list_entry(curr, struct page, lru));
983 for (i = 0; i < (1UL << order); i++)
7be98234 984 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 985 }
b2a0ac88 986 }
1da177e4
LT
987 spin_unlock_irqrestore(&zone->lock, flags);
988}
e2c55dc8 989#endif /* CONFIG_PM */
1da177e4 990
1da177e4
LT
991/*
992 * Free a 0-order page
993 */
920c7a5d 994static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
995{
996 struct zone *zone = page_zone(page);
997 struct per_cpu_pages *pcp;
998 unsigned long flags;
999
1da177e4
LT
1000 if (PageAnon(page))
1001 page->mapping = NULL;
224abf92 1002 if (free_pages_check(page))
689bcebf
HD
1003 return;
1004
3ac7fe5a 1005 if (!PageHighMem(page)) {
9858db50 1006 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1007 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1008 }
dafb1367 1009 arch_free_page(page, 0);
689bcebf
HD
1010 kernel_map_pages(page, 1, 0);
1011
3dfa5721 1012 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1013 local_irq_save(flags);
f8891e5e 1014 __count_vm_event(PGFREE);
3dfa5721
CL
1015 if (cold)
1016 list_add_tail(&page->lru, &pcp->list);
1017 else
1018 list_add(&page->lru, &pcp->list);
535131e6 1019 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1020 pcp->count++;
48db57f8
NP
1021 if (pcp->count >= pcp->high) {
1022 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1023 pcp->count -= pcp->batch;
1024 }
1da177e4
LT
1025 local_irq_restore(flags);
1026 put_cpu();
1027}
1028
920c7a5d 1029void free_hot_page(struct page *page)
1da177e4
LT
1030{
1031 free_hot_cold_page(page, 0);
1032}
1033
920c7a5d 1034void free_cold_page(struct page *page)
1da177e4
LT
1035{
1036 free_hot_cold_page(page, 1);
1037}
1038
8dfcc9ba
NP
1039/*
1040 * split_page takes a non-compound higher-order page, and splits it into
1041 * n (1<<order) sub-pages: page[0..n]
1042 * Each sub-page must be freed individually.
1043 *
1044 * Note: this is probably too low level an operation for use in drivers.
1045 * Please consult with lkml before using this in your driver.
1046 */
1047void split_page(struct page *page, unsigned int order)
1048{
1049 int i;
1050
725d704e
NP
1051 VM_BUG_ON(PageCompound(page));
1052 VM_BUG_ON(!page_count(page));
7835e98b
NP
1053 for (i = 1; i < (1 << order); i++)
1054 set_page_refcounted(page + i);
8dfcc9ba 1055}
8dfcc9ba 1056
1da177e4
LT
1057/*
1058 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1059 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1060 * or two.
1061 */
18ea7e71 1062static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1063 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1064{
1065 unsigned long flags;
689bcebf 1066 struct page *page;
1da177e4 1067 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1068 int cpu;
64c5e135 1069 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1070
689bcebf 1071again:
a74609fa 1072 cpu = get_cpu();
48db57f8 1073 if (likely(order == 0)) {
1da177e4
LT
1074 struct per_cpu_pages *pcp;
1075
3dfa5721 1076 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1077 local_irq_save(flags);
a74609fa 1078 if (!pcp->count) {
941c7105 1079 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1080 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1081 if (unlikely(!pcp->count))
1082 goto failed;
1da177e4 1083 }
b92a6edd 1084
535131e6 1085 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1086 if (cold) {
1087 list_for_each_entry_reverse(page, &pcp->list, lru)
1088 if (page_private(page) == migratetype)
1089 break;
1090 } else {
1091 list_for_each_entry(page, &pcp->list, lru)
1092 if (page_private(page) == migratetype)
1093 break;
1094 }
535131e6 1095
b92a6edd
MG
1096 /* Allocate more to the pcp list if necessary */
1097 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1098 pcp->count += rmqueue_bulk(zone, 0,
1099 pcp->batch, &pcp->list, migratetype);
1100 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1101 }
b92a6edd
MG
1102
1103 list_del(&page->lru);
1104 pcp->count--;
7fb1d9fc 1105 } else {
1da177e4 1106 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1107 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1108 spin_unlock(&zone->lock);
1109 if (!page)
1110 goto failed;
1da177e4
LT
1111 }
1112
f8891e5e 1113 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1114 zone_statistics(preferred_zone, zone);
a74609fa
NP
1115 local_irq_restore(flags);
1116 put_cpu();
1da177e4 1117
725d704e 1118 VM_BUG_ON(bad_range(zone, page));
17cf4406 1119 if (prep_new_page(page, order, gfp_flags))
a74609fa 1120 goto again;
1da177e4 1121 return page;
a74609fa
NP
1122
1123failed:
1124 local_irq_restore(flags);
1125 put_cpu();
1126 return NULL;
1da177e4
LT
1127}
1128
7fb1d9fc 1129#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1130#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1131#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1132#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1133#define ALLOC_HARDER 0x10 /* try to alloc harder */
1134#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1135#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1136
933e312e
AM
1137#ifdef CONFIG_FAIL_PAGE_ALLOC
1138
1139static struct fail_page_alloc_attr {
1140 struct fault_attr attr;
1141
1142 u32 ignore_gfp_highmem;
1143 u32 ignore_gfp_wait;
54114994 1144 u32 min_order;
933e312e
AM
1145
1146#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1147
1148 struct dentry *ignore_gfp_highmem_file;
1149 struct dentry *ignore_gfp_wait_file;
54114994 1150 struct dentry *min_order_file;
933e312e
AM
1151
1152#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1153
1154} fail_page_alloc = {
1155 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1156 .ignore_gfp_wait = 1,
1157 .ignore_gfp_highmem = 1,
54114994 1158 .min_order = 1,
933e312e
AM
1159};
1160
1161static int __init setup_fail_page_alloc(char *str)
1162{
1163 return setup_fault_attr(&fail_page_alloc.attr, str);
1164}
1165__setup("fail_page_alloc=", setup_fail_page_alloc);
1166
1167static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1168{
54114994
AM
1169 if (order < fail_page_alloc.min_order)
1170 return 0;
933e312e
AM
1171 if (gfp_mask & __GFP_NOFAIL)
1172 return 0;
1173 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1174 return 0;
1175 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1176 return 0;
1177
1178 return should_fail(&fail_page_alloc.attr, 1 << order);
1179}
1180
1181#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1182
1183static int __init fail_page_alloc_debugfs(void)
1184{
1185 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1186 struct dentry *dir;
1187 int err;
1188
1189 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1190 "fail_page_alloc");
1191 if (err)
1192 return err;
1193 dir = fail_page_alloc.attr.dentries.dir;
1194
1195 fail_page_alloc.ignore_gfp_wait_file =
1196 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1197 &fail_page_alloc.ignore_gfp_wait);
1198
1199 fail_page_alloc.ignore_gfp_highmem_file =
1200 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1201 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1202 fail_page_alloc.min_order_file =
1203 debugfs_create_u32("min-order", mode, dir,
1204 &fail_page_alloc.min_order);
933e312e
AM
1205
1206 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1207 !fail_page_alloc.ignore_gfp_highmem_file ||
1208 !fail_page_alloc.min_order_file) {
933e312e
AM
1209 err = -ENOMEM;
1210 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1211 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1212 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1213 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1214 }
1215
1216 return err;
1217}
1218
1219late_initcall(fail_page_alloc_debugfs);
1220
1221#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1222
1223#else /* CONFIG_FAIL_PAGE_ALLOC */
1224
1225static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1226{
1227 return 0;
1228}
1229
1230#endif /* CONFIG_FAIL_PAGE_ALLOC */
1231
1da177e4
LT
1232/*
1233 * Return 1 if free pages are above 'mark'. This takes into account the order
1234 * of the allocation.
1235 */
1236int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1237 int classzone_idx, int alloc_flags)
1da177e4
LT
1238{
1239 /* free_pages my go negative - that's OK */
d23ad423
CL
1240 long min = mark;
1241 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1242 int o;
1243
7fb1d9fc 1244 if (alloc_flags & ALLOC_HIGH)
1da177e4 1245 min -= min / 2;
7fb1d9fc 1246 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1247 min -= min / 4;
1248
1249 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1250 return 0;
1251 for (o = 0; o < order; o++) {
1252 /* At the next order, this order's pages become unavailable */
1253 free_pages -= z->free_area[o].nr_free << o;
1254
1255 /* Require fewer higher order pages to be free */
1256 min >>= 1;
1257
1258 if (free_pages <= min)
1259 return 0;
1260 }
1261 return 1;
1262}
1263
9276b1bc
PJ
1264#ifdef CONFIG_NUMA
1265/*
1266 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1267 * skip over zones that are not allowed by the cpuset, or that have
1268 * been recently (in last second) found to be nearly full. See further
1269 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1270 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1271 *
1272 * If the zonelist cache is present in the passed in zonelist, then
1273 * returns a pointer to the allowed node mask (either the current
37b07e41 1274 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1275 *
1276 * If the zonelist cache is not available for this zonelist, does
1277 * nothing and returns NULL.
1278 *
1279 * If the fullzones BITMAP in the zonelist cache is stale (more than
1280 * a second since last zap'd) then we zap it out (clear its bits.)
1281 *
1282 * We hold off even calling zlc_setup, until after we've checked the
1283 * first zone in the zonelist, on the theory that most allocations will
1284 * be satisfied from that first zone, so best to examine that zone as
1285 * quickly as we can.
1286 */
1287static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1288{
1289 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1290 nodemask_t *allowednodes; /* zonelist_cache approximation */
1291
1292 zlc = zonelist->zlcache_ptr;
1293 if (!zlc)
1294 return NULL;
1295
f05111f5 1296 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1297 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1298 zlc->last_full_zap = jiffies;
1299 }
1300
1301 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1302 &cpuset_current_mems_allowed :
37b07e41 1303 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1304 return allowednodes;
1305}
1306
1307/*
1308 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1309 * if it is worth looking at further for free memory:
1310 * 1) Check that the zone isn't thought to be full (doesn't have its
1311 * bit set in the zonelist_cache fullzones BITMAP).
1312 * 2) Check that the zones node (obtained from the zonelist_cache
1313 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1314 * Return true (non-zero) if zone is worth looking at further, or
1315 * else return false (zero) if it is not.
1316 *
1317 * This check -ignores- the distinction between various watermarks,
1318 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1319 * found to be full for any variation of these watermarks, it will
1320 * be considered full for up to one second by all requests, unless
1321 * we are so low on memory on all allowed nodes that we are forced
1322 * into the second scan of the zonelist.
1323 *
1324 * In the second scan we ignore this zonelist cache and exactly
1325 * apply the watermarks to all zones, even it is slower to do so.
1326 * We are low on memory in the second scan, and should leave no stone
1327 * unturned looking for a free page.
1328 */
dd1a239f 1329static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1330 nodemask_t *allowednodes)
1331{
1332 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1333 int i; /* index of *z in zonelist zones */
1334 int n; /* node that zone *z is on */
1335
1336 zlc = zonelist->zlcache_ptr;
1337 if (!zlc)
1338 return 1;
1339
dd1a239f 1340 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1341 n = zlc->z_to_n[i];
1342
1343 /* This zone is worth trying if it is allowed but not full */
1344 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345}
1346
1347/*
1348 * Given 'z' scanning a zonelist, set the corresponding bit in
1349 * zlc->fullzones, so that subsequent attempts to allocate a page
1350 * from that zone don't waste time re-examining it.
1351 */
dd1a239f 1352static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1353{
1354 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1355 int i; /* index of *z in zonelist zones */
1356
1357 zlc = zonelist->zlcache_ptr;
1358 if (!zlc)
1359 return;
1360
dd1a239f 1361 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1362
1363 set_bit(i, zlc->fullzones);
1364}
1365
1366#else /* CONFIG_NUMA */
1367
1368static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1369{
1370 return NULL;
1371}
1372
dd1a239f 1373static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1374 nodemask_t *allowednodes)
1375{
1376 return 1;
1377}
1378
dd1a239f 1379static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1380{
1381}
1382#endif /* CONFIG_NUMA */
1383
7fb1d9fc 1384/*
0798e519 1385 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1386 * a page.
1387 */
1388static struct page *
19770b32 1389get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
54a6eb5c 1390 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1391{
dd1a239f 1392 struct zoneref *z;
7fb1d9fc 1393 struct page *page = NULL;
54a6eb5c 1394 int classzone_idx;
18ea7e71 1395 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1396 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1397 int zlc_active = 0; /* set if using zonelist_cache */
1398 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1399
19770b32
MG
1400 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1401 &preferred_zone);
7eb54824
AW
1402 if (!preferred_zone)
1403 return NULL;
1404
19770b32 1405 classzone_idx = zone_idx(preferred_zone);
7fb1d9fc 1406
9276b1bc 1407zonelist_scan:
7fb1d9fc 1408 /*
9276b1bc 1409 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1410 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411 */
19770b32
MG
1412 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1413 high_zoneidx, nodemask) {
9276b1bc
PJ
1414 if (NUMA_BUILD && zlc_active &&
1415 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1416 continue;
7fb1d9fc 1417 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1418 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1419 goto try_next_zone;
7fb1d9fc
RS
1420
1421 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1422 unsigned long mark;
1423 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1424 mark = zone->pages_min;
3148890b 1425 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1426 mark = zone->pages_low;
3148890b 1427 else
1192d526 1428 mark = zone->pages_high;
0798e519
PJ
1429 if (!zone_watermark_ok(zone, order, mark,
1430 classzone_idx, alloc_flags)) {
9eeff239 1431 if (!zone_reclaim_mode ||
1192d526 1432 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1433 goto this_zone_full;
0798e519 1434 }
7fb1d9fc
RS
1435 }
1436
18ea7e71 1437 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1438 if (page)
7fb1d9fc 1439 break;
9276b1bc
PJ
1440this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1449 }
54a6eb5c 1450 }
9276b1bc
PJ
1451
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1456 }
7fb1d9fc 1457 return page;
753ee728
MH
1458}
1459
1da177e4
LT
1460/*
1461 * This is the 'heart' of the zoned buddy allocator.
1462 */
e4048e5d 1463struct page *
19770b32
MG
1464__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1465 struct zonelist *zonelist, nodemask_t *nodemask)
1da177e4 1466{
260b2367 1467 const gfp_t wait = gfp_mask & __GFP_WAIT;
54a6eb5c 1468 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
dd1a239f
MG
1469 struct zoneref *z;
1470 struct zone *zone;
1da177e4
LT
1471 struct page *page;
1472 struct reclaim_state reclaim_state;
1473 struct task_struct *p = current;
1da177e4 1474 int do_retry;
7fb1d9fc 1475 int alloc_flags;
a41f24ea
NA
1476 unsigned long did_some_progress;
1477 unsigned long pages_reclaimed = 0;
1da177e4 1478
cf40bd16
NP
1479 lockdep_trace_alloc(gfp_mask);
1480
1da177e4
LT
1481 might_sleep_if(wait);
1482
933e312e
AM
1483 if (should_fail_alloc_page(gfp_mask, order))
1484 return NULL;
1485
6b1de916 1486restart:
dd1a239f 1487 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1da177e4 1488
dd1a239f 1489 if (unlikely(!z->zone)) {
523b9458
CL
1490 /*
1491 * Happens if we have an empty zonelist as a result of
1492 * GFP_THISNODE being used on a memoryless node
1493 */
1da177e4
LT
1494 return NULL;
1495 }
6b1de916 1496
19770b32 1497 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
54a6eb5c 1498 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1499 if (page)
1500 goto got_pg;
1da177e4 1501
952f3b51
CL
1502 /*
1503 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1504 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1505 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1506 * using a larger set of nodes after it has established that the
1507 * allowed per node queues are empty and that nodes are
1508 * over allocated.
1509 */
1510 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1511 goto nopage;
1512
dd1a239f
MG
1513 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1514 wakeup_kswapd(zone, order);
1da177e4 1515
9bf2229f 1516 /*
7fb1d9fc
RS
1517 * OK, we're below the kswapd watermark and have kicked background
1518 * reclaim. Now things get more complex, so set up alloc_flags according
1519 * to how we want to proceed.
1520 *
1521 * The caller may dip into page reserves a bit more if the caller
1522 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1523 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1524 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1525 */
3148890b 1526 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1527 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1528 alloc_flags |= ALLOC_HARDER;
1529 if (gfp_mask & __GFP_HIGH)
1530 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1531 if (wait)
1532 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1533
1534 /*
1535 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1536 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1537 *
1538 * This is the last chance, in general, before the goto nopage.
1539 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1540 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1541 */
19770b32 1542 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
54a6eb5c 1543 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1544 if (page)
1545 goto got_pg;
1da177e4
LT
1546
1547 /* This allocation should allow future memory freeing. */
b84a35be 1548
b43a57bb 1549rebalance:
b84a35be
NP
1550 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1551 && !in_interrupt()) {
1552 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1553nofail_alloc:
b84a35be 1554 /* go through the zonelist yet again, ignoring mins */
19770b32 1555 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1556 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1557 if (page)
1558 goto got_pg;
885036d3 1559 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1560 congestion_wait(WRITE, HZ/50);
885036d3
KK
1561 goto nofail_alloc;
1562 }
1da177e4
LT
1563 }
1564 goto nopage;
1565 }
1566
1567 /* Atomic allocations - we can't balance anything */
1568 if (!wait)
1569 goto nopage;
1570
1da177e4
LT
1571 cond_resched();
1572
1573 /* We now go into synchronous reclaim */
3e0d98b9 1574 cpuset_memory_pressure_bump();
e33c3b5e
DR
1575 /*
1576 * The task's cpuset might have expanded its set of allowable nodes
1577 */
1578 cpuset_update_task_memory_state();
1da177e4 1579 p->flags |= PF_MEMALLOC;
cf40bd16
NP
1580
1581 lockdep_set_current_reclaim_state(gfp_mask);
1da177e4
LT
1582 reclaim_state.reclaimed_slab = 0;
1583 p->reclaim_state = &reclaim_state;
1584
327c0e96
KH
1585 did_some_progress = try_to_free_pages(zonelist, order,
1586 gfp_mask, nodemask);
1da177e4
LT
1587
1588 p->reclaim_state = NULL;
cf40bd16 1589 lockdep_clear_current_reclaim_state();
1da177e4
LT
1590 p->flags &= ~PF_MEMALLOC;
1591
1592 cond_resched();
1593
e2c55dc8 1594 if (order != 0)
9f8f2172 1595 drain_all_pages();
e2c55dc8 1596
1da177e4 1597 if (likely(did_some_progress)) {
19770b32 1598 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1599 zonelist, high_zoneidx, alloc_flags);
7fb1d9fc
RS
1600 if (page)
1601 goto got_pg;
1da177e4 1602 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
dd1a239f 1603 if (!try_set_zone_oom(zonelist, gfp_mask)) {
ff0ceb9d
DR
1604 schedule_timeout_uninterruptible(1);
1605 goto restart;
1606 }
1607
1da177e4
LT
1608 /*
1609 * Go through the zonelist yet one more time, keep
1610 * very high watermark here, this is only to catch
1611 * a parallel oom killing, we must fail if we're still
1612 * under heavy pressure.
1613 */
19770b32
MG
1614 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1615 order, zonelist, high_zoneidx,
1616 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
ff0ceb9d 1617 if (page) {
dd1a239f 1618 clear_zonelist_oom(zonelist, gfp_mask);
7fb1d9fc 1619 goto got_pg;
ff0ceb9d 1620 }
1da177e4 1621
a8bbf72a 1622 /* The OOM killer will not help higher order allocs so fail */
ff0ceb9d 1623 if (order > PAGE_ALLOC_COSTLY_ORDER) {
dd1a239f 1624 clear_zonelist_oom(zonelist, gfp_mask);
a8bbf72a 1625 goto nopage;
ff0ceb9d 1626 }
a8bbf72a 1627
9b0f8b04 1628 out_of_memory(zonelist, gfp_mask, order);
dd1a239f 1629 clear_zonelist_oom(zonelist, gfp_mask);
1da177e4
LT
1630 goto restart;
1631 }
1632
1633 /*
1634 * Don't let big-order allocations loop unless the caller explicitly
1635 * requests that. Wait for some write requests to complete then retry.
1636 *
a41f24ea
NA
1637 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1638 * means __GFP_NOFAIL, but that may not be true in other
ab857d09 1639 * implementations.
a41f24ea
NA
1640 *
1641 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1642 * specified, then we retry until we no longer reclaim any pages
1643 * (above), or we've reclaimed an order of pages at least as
1644 * large as the allocation's order. In both cases, if the
1645 * allocation still fails, we stop retrying.
1da177e4 1646 */
a41f24ea 1647 pages_reclaimed += did_some_progress;
1da177e4
LT
1648 do_retry = 0;
1649 if (!(gfp_mask & __GFP_NORETRY)) {
a41f24ea 1650 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1da177e4 1651 do_retry = 1;
a41f24ea
NA
1652 } else {
1653 if (gfp_mask & __GFP_REPEAT &&
1654 pages_reclaimed < (1 << order))
1655 do_retry = 1;
1656 }
1da177e4
LT
1657 if (gfp_mask & __GFP_NOFAIL)
1658 do_retry = 1;
1659 }
1660 if (do_retry) {
3fcfab16 1661 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1662 goto rebalance;
1663 }
1664
1665nopage:
1666 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1667 printk(KERN_WARNING "%s: page allocation failure."
1668 " order:%d, mode:0x%x\n",
1669 p->comm, order, gfp_mask);
1670 dump_stack();
578c2fd6 1671 show_mem();
1da177e4 1672 }
1da177e4 1673got_pg:
1da177e4
LT
1674 return page;
1675}
e4048e5d 1676EXPORT_SYMBOL(__alloc_pages_internal);
1da177e4
LT
1677
1678/*
1679 * Common helper functions.
1680 */
920c7a5d 1681unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1682{
1683 struct page * page;
1684 page = alloc_pages(gfp_mask, order);
1685 if (!page)
1686 return 0;
1687 return (unsigned long) page_address(page);
1688}
1689
1690EXPORT_SYMBOL(__get_free_pages);
1691
920c7a5d 1692unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1693{
1694 struct page * page;
1695
1696 /*
1697 * get_zeroed_page() returns a 32-bit address, which cannot represent
1698 * a highmem page
1699 */
725d704e 1700 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1701
1702 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1703 if (page)
1704 return (unsigned long) page_address(page);
1705 return 0;
1706}
1707
1708EXPORT_SYMBOL(get_zeroed_page);
1709
1710void __pagevec_free(struct pagevec *pvec)
1711{
1712 int i = pagevec_count(pvec);
1713
1714 while (--i >= 0)
1715 free_hot_cold_page(pvec->pages[i], pvec->cold);
1716}
1717
920c7a5d 1718void __free_pages(struct page *page, unsigned int order)
1da177e4 1719{
b5810039 1720 if (put_page_testzero(page)) {
1da177e4
LT
1721 if (order == 0)
1722 free_hot_page(page);
1723 else
1724 __free_pages_ok(page, order);
1725 }
1726}
1727
1728EXPORT_SYMBOL(__free_pages);
1729
920c7a5d 1730void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1731{
1732 if (addr != 0) {
725d704e 1733 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1734 __free_pages(virt_to_page((void *)addr), order);
1735 }
1736}
1737
1738EXPORT_SYMBOL(free_pages);
1739
2be0ffe2
TT
1740/**
1741 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1742 * @size: the number of bytes to allocate
1743 * @gfp_mask: GFP flags for the allocation
1744 *
1745 * This function is similar to alloc_pages(), except that it allocates the
1746 * minimum number of pages to satisfy the request. alloc_pages() can only
1747 * allocate memory in power-of-two pages.
1748 *
1749 * This function is also limited by MAX_ORDER.
1750 *
1751 * Memory allocated by this function must be released by free_pages_exact().
1752 */
1753void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1754{
1755 unsigned int order = get_order(size);
1756 unsigned long addr;
1757
1758 addr = __get_free_pages(gfp_mask, order);
1759 if (addr) {
1760 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1761 unsigned long used = addr + PAGE_ALIGN(size);
1762
1763 split_page(virt_to_page(addr), order);
1764 while (used < alloc_end) {
1765 free_page(used);
1766 used += PAGE_SIZE;
1767 }
1768 }
1769
1770 return (void *)addr;
1771}
1772EXPORT_SYMBOL(alloc_pages_exact);
1773
1774/**
1775 * free_pages_exact - release memory allocated via alloc_pages_exact()
1776 * @virt: the value returned by alloc_pages_exact.
1777 * @size: size of allocation, same value as passed to alloc_pages_exact().
1778 *
1779 * Release the memory allocated by a previous call to alloc_pages_exact.
1780 */
1781void free_pages_exact(void *virt, size_t size)
1782{
1783 unsigned long addr = (unsigned long)virt;
1784 unsigned long end = addr + PAGE_ALIGN(size);
1785
1786 while (addr < end) {
1787 free_page(addr);
1788 addr += PAGE_SIZE;
1789 }
1790}
1791EXPORT_SYMBOL(free_pages_exact);
1792
1da177e4
LT
1793static unsigned int nr_free_zone_pages(int offset)
1794{
dd1a239f 1795 struct zoneref *z;
54a6eb5c
MG
1796 struct zone *zone;
1797
e310fd43 1798 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1799 unsigned int sum = 0;
1800
0e88460d 1801 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1802
54a6eb5c 1803 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1804 unsigned long size = zone->present_pages;
1805 unsigned long high = zone->pages_high;
1806 if (size > high)
1807 sum += size - high;
1da177e4
LT
1808 }
1809
1810 return sum;
1811}
1812
1813/*
1814 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1815 */
1816unsigned int nr_free_buffer_pages(void)
1817{
af4ca457 1818 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1819}
c2f1a551 1820EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1821
1822/*
1823 * Amount of free RAM allocatable within all zones
1824 */
1825unsigned int nr_free_pagecache_pages(void)
1826{
2a1e274a 1827 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1828}
08e0f6a9
CL
1829
1830static inline void show_node(struct zone *zone)
1da177e4 1831{
08e0f6a9 1832 if (NUMA_BUILD)
25ba77c1 1833 printk("Node %d ", zone_to_nid(zone));
1da177e4 1834}
1da177e4 1835
1da177e4
LT
1836void si_meminfo(struct sysinfo *val)
1837{
1838 val->totalram = totalram_pages;
1839 val->sharedram = 0;
d23ad423 1840 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1841 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1842 val->totalhigh = totalhigh_pages;
1843 val->freehigh = nr_free_highpages();
1da177e4
LT
1844 val->mem_unit = PAGE_SIZE;
1845}
1846
1847EXPORT_SYMBOL(si_meminfo);
1848
1849#ifdef CONFIG_NUMA
1850void si_meminfo_node(struct sysinfo *val, int nid)
1851{
1852 pg_data_t *pgdat = NODE_DATA(nid);
1853
1854 val->totalram = pgdat->node_present_pages;
d23ad423 1855 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1856#ifdef CONFIG_HIGHMEM
1da177e4 1857 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1858 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1859 NR_FREE_PAGES);
98d2b0eb
CL
1860#else
1861 val->totalhigh = 0;
1862 val->freehigh = 0;
1863#endif
1da177e4
LT
1864 val->mem_unit = PAGE_SIZE;
1865}
1866#endif
1867
1868#define K(x) ((x) << (PAGE_SHIFT-10))
1869
1870/*
1871 * Show free area list (used inside shift_scroll-lock stuff)
1872 * We also calculate the percentage fragmentation. We do this by counting the
1873 * memory on each free list with the exception of the first item on the list.
1874 */
1875void show_free_areas(void)
1876{
c7241913 1877 int cpu;
1da177e4
LT
1878 struct zone *zone;
1879
ee99c71c 1880 for_each_populated_zone(zone) {
c7241913
JS
1881 show_node(zone);
1882 printk("%s per-cpu:\n", zone->name);
1da177e4 1883
6b482c67 1884 for_each_online_cpu(cpu) {
1da177e4
LT
1885 struct per_cpu_pageset *pageset;
1886
e7c8d5c9 1887 pageset = zone_pcp(zone, cpu);
1da177e4 1888
3dfa5721
CL
1889 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1890 cpu, pageset->pcp.high,
1891 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1892 }
1893 }
1894
7b854121
LS
1895 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1896 " inactive_file:%lu"
1897//TODO: check/adjust line lengths
1898#ifdef CONFIG_UNEVICTABLE_LRU
1899 " unevictable:%lu"
1900#endif
1901 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1902 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
1903 global_page_state(NR_ACTIVE_ANON),
1904 global_page_state(NR_ACTIVE_FILE),
1905 global_page_state(NR_INACTIVE_ANON),
1906 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
1907#ifdef CONFIG_UNEVICTABLE_LRU
1908 global_page_state(NR_UNEVICTABLE),
1909#endif
b1e7a8fd 1910 global_page_state(NR_FILE_DIRTY),
ce866b34 1911 global_page_state(NR_WRITEBACK),
fd39fc85 1912 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1913 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1914 global_page_state(NR_SLAB_RECLAIMABLE) +
1915 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1916 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1917 global_page_state(NR_PAGETABLE),
1918 global_page_state(NR_BOUNCE));
1da177e4 1919
ee99c71c 1920 for_each_populated_zone(zone) {
1da177e4
LT
1921 int i;
1922
1923 show_node(zone);
1924 printk("%s"
1925 " free:%lukB"
1926 " min:%lukB"
1927 " low:%lukB"
1928 " high:%lukB"
4f98a2fe
RR
1929 " active_anon:%lukB"
1930 " inactive_anon:%lukB"
1931 " active_file:%lukB"
1932 " inactive_file:%lukB"
7b854121
LS
1933#ifdef CONFIG_UNEVICTABLE_LRU
1934 " unevictable:%lukB"
1935#endif
1da177e4
LT
1936 " present:%lukB"
1937 " pages_scanned:%lu"
1938 " all_unreclaimable? %s"
1939 "\n",
1940 zone->name,
d23ad423 1941 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1942 K(zone->pages_min),
1943 K(zone->pages_low),
1944 K(zone->pages_high),
4f98a2fe
RR
1945 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1946 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1947 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1948 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
1949#ifdef CONFIG_UNEVICTABLE_LRU
1950 K(zone_page_state(zone, NR_UNEVICTABLE)),
1951#endif
1da177e4
LT
1952 K(zone->present_pages),
1953 zone->pages_scanned,
e815af95 1954 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
1955 );
1956 printk("lowmem_reserve[]:");
1957 for (i = 0; i < MAX_NR_ZONES; i++)
1958 printk(" %lu", zone->lowmem_reserve[i]);
1959 printk("\n");
1960 }
1961
ee99c71c 1962 for_each_populated_zone(zone) {
8f9de51a 1963 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1964
1965 show_node(zone);
1966 printk("%s: ", zone->name);
1da177e4
LT
1967
1968 spin_lock_irqsave(&zone->lock, flags);
1969 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1970 nr[order] = zone->free_area[order].nr_free;
1971 total += nr[order] << order;
1da177e4
LT
1972 }
1973 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1974 for (order = 0; order < MAX_ORDER; order++)
1975 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1976 printk("= %lukB\n", K(total));
1977 }
1978
e6f3602d
LW
1979 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1980
1da177e4
LT
1981 show_swap_cache_info();
1982}
1983
19770b32
MG
1984static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1985{
1986 zoneref->zone = zone;
1987 zoneref->zone_idx = zone_idx(zone);
1988}
1989
1da177e4
LT
1990/*
1991 * Builds allocation fallback zone lists.
1a93205b
CL
1992 *
1993 * Add all populated zones of a node to the zonelist.
1da177e4 1994 */
f0c0b2b8
KH
1995static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1996 int nr_zones, enum zone_type zone_type)
1da177e4 1997{
1a93205b
CL
1998 struct zone *zone;
1999
98d2b0eb 2000 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2001 zone_type++;
02a68a5e
CL
2002
2003 do {
2f6726e5 2004 zone_type--;
070f8032 2005 zone = pgdat->node_zones + zone_type;
1a93205b 2006 if (populated_zone(zone)) {
dd1a239f
MG
2007 zoneref_set_zone(zone,
2008 &zonelist->_zonerefs[nr_zones++]);
070f8032 2009 check_highest_zone(zone_type);
1da177e4 2010 }
02a68a5e 2011
2f6726e5 2012 } while (zone_type);
070f8032 2013 return nr_zones;
1da177e4
LT
2014}
2015
f0c0b2b8
KH
2016
2017/*
2018 * zonelist_order:
2019 * 0 = automatic detection of better ordering.
2020 * 1 = order by ([node] distance, -zonetype)
2021 * 2 = order by (-zonetype, [node] distance)
2022 *
2023 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2024 * the same zonelist. So only NUMA can configure this param.
2025 */
2026#define ZONELIST_ORDER_DEFAULT 0
2027#define ZONELIST_ORDER_NODE 1
2028#define ZONELIST_ORDER_ZONE 2
2029
2030/* zonelist order in the kernel.
2031 * set_zonelist_order() will set this to NODE or ZONE.
2032 */
2033static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2034static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2035
2036
1da177e4 2037#ifdef CONFIG_NUMA
f0c0b2b8
KH
2038/* The value user specified ....changed by config */
2039static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2040/* string for sysctl */
2041#define NUMA_ZONELIST_ORDER_LEN 16
2042char numa_zonelist_order[16] = "default";
2043
2044/*
2045 * interface for configure zonelist ordering.
2046 * command line option "numa_zonelist_order"
2047 * = "[dD]efault - default, automatic configuration.
2048 * = "[nN]ode - order by node locality, then by zone within node
2049 * = "[zZ]one - order by zone, then by locality within zone
2050 */
2051
2052static int __parse_numa_zonelist_order(char *s)
2053{
2054 if (*s == 'd' || *s == 'D') {
2055 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2056 } else if (*s == 'n' || *s == 'N') {
2057 user_zonelist_order = ZONELIST_ORDER_NODE;
2058 } else if (*s == 'z' || *s == 'Z') {
2059 user_zonelist_order = ZONELIST_ORDER_ZONE;
2060 } else {
2061 printk(KERN_WARNING
2062 "Ignoring invalid numa_zonelist_order value: "
2063 "%s\n", s);
2064 return -EINVAL;
2065 }
2066 return 0;
2067}
2068
2069static __init int setup_numa_zonelist_order(char *s)
2070{
2071 if (s)
2072 return __parse_numa_zonelist_order(s);
2073 return 0;
2074}
2075early_param("numa_zonelist_order", setup_numa_zonelist_order);
2076
2077/*
2078 * sysctl handler for numa_zonelist_order
2079 */
2080int numa_zonelist_order_handler(ctl_table *table, int write,
2081 struct file *file, void __user *buffer, size_t *length,
2082 loff_t *ppos)
2083{
2084 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2085 int ret;
2086
2087 if (write)
2088 strncpy(saved_string, (char*)table->data,
2089 NUMA_ZONELIST_ORDER_LEN);
2090 ret = proc_dostring(table, write, file, buffer, length, ppos);
2091 if (ret)
2092 return ret;
2093 if (write) {
2094 int oldval = user_zonelist_order;
2095 if (__parse_numa_zonelist_order((char*)table->data)) {
2096 /*
2097 * bogus value. restore saved string
2098 */
2099 strncpy((char*)table->data, saved_string,
2100 NUMA_ZONELIST_ORDER_LEN);
2101 user_zonelist_order = oldval;
2102 } else if (oldval != user_zonelist_order)
2103 build_all_zonelists();
2104 }
2105 return 0;
2106}
2107
2108
1da177e4 2109#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2110static int node_load[MAX_NUMNODES];
2111
1da177e4 2112/**
4dc3b16b 2113 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2114 * @node: node whose fallback list we're appending
2115 * @used_node_mask: nodemask_t of already used nodes
2116 *
2117 * We use a number of factors to determine which is the next node that should
2118 * appear on a given node's fallback list. The node should not have appeared
2119 * already in @node's fallback list, and it should be the next closest node
2120 * according to the distance array (which contains arbitrary distance values
2121 * from each node to each node in the system), and should also prefer nodes
2122 * with no CPUs, since presumably they'll have very little allocation pressure
2123 * on them otherwise.
2124 * It returns -1 if no node is found.
2125 */
f0c0b2b8 2126static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2127{
4cf808eb 2128 int n, val;
1da177e4
LT
2129 int min_val = INT_MAX;
2130 int best_node = -1;
a70f7302 2131 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2132
4cf808eb
LT
2133 /* Use the local node if we haven't already */
2134 if (!node_isset(node, *used_node_mask)) {
2135 node_set(node, *used_node_mask);
2136 return node;
2137 }
1da177e4 2138
37b07e41 2139 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2140
2141 /* Don't want a node to appear more than once */
2142 if (node_isset(n, *used_node_mask))
2143 continue;
2144
1da177e4
LT
2145 /* Use the distance array to find the distance */
2146 val = node_distance(node, n);
2147
4cf808eb
LT
2148 /* Penalize nodes under us ("prefer the next node") */
2149 val += (n < node);
2150
1da177e4 2151 /* Give preference to headless and unused nodes */
a70f7302
RR
2152 tmp = cpumask_of_node(n);
2153 if (!cpumask_empty(tmp))
1da177e4
LT
2154 val += PENALTY_FOR_NODE_WITH_CPUS;
2155
2156 /* Slight preference for less loaded node */
2157 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2158 val += node_load[n];
2159
2160 if (val < min_val) {
2161 min_val = val;
2162 best_node = n;
2163 }
2164 }
2165
2166 if (best_node >= 0)
2167 node_set(best_node, *used_node_mask);
2168
2169 return best_node;
2170}
2171
f0c0b2b8
KH
2172
2173/*
2174 * Build zonelists ordered by node and zones within node.
2175 * This results in maximum locality--normal zone overflows into local
2176 * DMA zone, if any--but risks exhausting DMA zone.
2177 */
2178static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2179{
f0c0b2b8 2180 int j;
1da177e4 2181 struct zonelist *zonelist;
f0c0b2b8 2182
54a6eb5c 2183 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2184 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2185 ;
2186 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2187 MAX_NR_ZONES - 1);
dd1a239f
MG
2188 zonelist->_zonerefs[j].zone = NULL;
2189 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2190}
2191
523b9458
CL
2192/*
2193 * Build gfp_thisnode zonelists
2194 */
2195static void build_thisnode_zonelists(pg_data_t *pgdat)
2196{
523b9458
CL
2197 int j;
2198 struct zonelist *zonelist;
2199
54a6eb5c
MG
2200 zonelist = &pgdat->node_zonelists[1];
2201 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2202 zonelist->_zonerefs[j].zone = NULL;
2203 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2204}
2205
f0c0b2b8
KH
2206/*
2207 * Build zonelists ordered by zone and nodes within zones.
2208 * This results in conserving DMA zone[s] until all Normal memory is
2209 * exhausted, but results in overflowing to remote node while memory
2210 * may still exist in local DMA zone.
2211 */
2212static int node_order[MAX_NUMNODES];
2213
2214static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2215{
f0c0b2b8
KH
2216 int pos, j, node;
2217 int zone_type; /* needs to be signed */
2218 struct zone *z;
2219 struct zonelist *zonelist;
2220
54a6eb5c
MG
2221 zonelist = &pgdat->node_zonelists[0];
2222 pos = 0;
2223 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2224 for (j = 0; j < nr_nodes; j++) {
2225 node = node_order[j];
2226 z = &NODE_DATA(node)->node_zones[zone_type];
2227 if (populated_zone(z)) {
dd1a239f
MG
2228 zoneref_set_zone(z,
2229 &zonelist->_zonerefs[pos++]);
54a6eb5c 2230 check_highest_zone(zone_type);
f0c0b2b8
KH
2231 }
2232 }
f0c0b2b8 2233 }
dd1a239f
MG
2234 zonelist->_zonerefs[pos].zone = NULL;
2235 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2236}
2237
2238static int default_zonelist_order(void)
2239{
2240 int nid, zone_type;
2241 unsigned long low_kmem_size,total_size;
2242 struct zone *z;
2243 int average_size;
2244 /*
2245 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2246 * If they are really small and used heavily, the system can fall
2247 * into OOM very easily.
2248 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2249 */
2250 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2251 low_kmem_size = 0;
2252 total_size = 0;
2253 for_each_online_node(nid) {
2254 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2255 z = &NODE_DATA(nid)->node_zones[zone_type];
2256 if (populated_zone(z)) {
2257 if (zone_type < ZONE_NORMAL)
2258 low_kmem_size += z->present_pages;
2259 total_size += z->present_pages;
2260 }
2261 }
2262 }
2263 if (!low_kmem_size || /* there are no DMA area. */
2264 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2265 return ZONELIST_ORDER_NODE;
2266 /*
2267 * look into each node's config.
2268 * If there is a node whose DMA/DMA32 memory is very big area on
2269 * local memory, NODE_ORDER may be suitable.
2270 */
37b07e41
LS
2271 average_size = total_size /
2272 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2273 for_each_online_node(nid) {
2274 low_kmem_size = 0;
2275 total_size = 0;
2276 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2277 z = &NODE_DATA(nid)->node_zones[zone_type];
2278 if (populated_zone(z)) {
2279 if (zone_type < ZONE_NORMAL)
2280 low_kmem_size += z->present_pages;
2281 total_size += z->present_pages;
2282 }
2283 }
2284 if (low_kmem_size &&
2285 total_size > average_size && /* ignore small node */
2286 low_kmem_size > total_size * 70/100)
2287 return ZONELIST_ORDER_NODE;
2288 }
2289 return ZONELIST_ORDER_ZONE;
2290}
2291
2292static void set_zonelist_order(void)
2293{
2294 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2295 current_zonelist_order = default_zonelist_order();
2296 else
2297 current_zonelist_order = user_zonelist_order;
2298}
2299
2300static void build_zonelists(pg_data_t *pgdat)
2301{
2302 int j, node, load;
2303 enum zone_type i;
1da177e4 2304 nodemask_t used_mask;
f0c0b2b8
KH
2305 int local_node, prev_node;
2306 struct zonelist *zonelist;
2307 int order = current_zonelist_order;
1da177e4
LT
2308
2309 /* initialize zonelists */
523b9458 2310 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2311 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2312 zonelist->_zonerefs[0].zone = NULL;
2313 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2314 }
2315
2316 /* NUMA-aware ordering of nodes */
2317 local_node = pgdat->node_id;
2318 load = num_online_nodes();
2319 prev_node = local_node;
2320 nodes_clear(used_mask);
f0c0b2b8
KH
2321
2322 memset(node_load, 0, sizeof(node_load));
2323 memset(node_order, 0, sizeof(node_order));
2324 j = 0;
2325
1da177e4 2326 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2327 int distance = node_distance(local_node, node);
2328
2329 /*
2330 * If another node is sufficiently far away then it is better
2331 * to reclaim pages in a zone before going off node.
2332 */
2333 if (distance > RECLAIM_DISTANCE)
2334 zone_reclaim_mode = 1;
2335
1da177e4
LT
2336 /*
2337 * We don't want to pressure a particular node.
2338 * So adding penalty to the first node in same
2339 * distance group to make it round-robin.
2340 */
9eeff239 2341 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2342 node_load[node] = load;
2343
1da177e4
LT
2344 prev_node = node;
2345 load--;
f0c0b2b8
KH
2346 if (order == ZONELIST_ORDER_NODE)
2347 build_zonelists_in_node_order(pgdat, node);
2348 else
2349 node_order[j++] = node; /* remember order */
2350 }
1da177e4 2351
f0c0b2b8
KH
2352 if (order == ZONELIST_ORDER_ZONE) {
2353 /* calculate node order -- i.e., DMA last! */
2354 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2355 }
523b9458
CL
2356
2357 build_thisnode_zonelists(pgdat);
1da177e4
LT
2358}
2359
9276b1bc 2360/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2361static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2362{
54a6eb5c
MG
2363 struct zonelist *zonelist;
2364 struct zonelist_cache *zlc;
dd1a239f 2365 struct zoneref *z;
9276b1bc 2366
54a6eb5c
MG
2367 zonelist = &pgdat->node_zonelists[0];
2368 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2369 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2370 for (z = zonelist->_zonerefs; z->zone; z++)
2371 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2372}
2373
f0c0b2b8 2374
1da177e4
LT
2375#else /* CONFIG_NUMA */
2376
f0c0b2b8
KH
2377static void set_zonelist_order(void)
2378{
2379 current_zonelist_order = ZONELIST_ORDER_ZONE;
2380}
2381
2382static void build_zonelists(pg_data_t *pgdat)
1da177e4 2383{
19655d34 2384 int node, local_node;
54a6eb5c
MG
2385 enum zone_type j;
2386 struct zonelist *zonelist;
1da177e4
LT
2387
2388 local_node = pgdat->node_id;
1da177e4 2389
54a6eb5c
MG
2390 zonelist = &pgdat->node_zonelists[0];
2391 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2392
54a6eb5c
MG
2393 /*
2394 * Now we build the zonelist so that it contains the zones
2395 * of all the other nodes.
2396 * We don't want to pressure a particular node, so when
2397 * building the zones for node N, we make sure that the
2398 * zones coming right after the local ones are those from
2399 * node N+1 (modulo N)
2400 */
2401 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2402 if (!node_online(node))
2403 continue;
2404 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2405 MAX_NR_ZONES - 1);
1da177e4 2406 }
54a6eb5c
MG
2407 for (node = 0; node < local_node; node++) {
2408 if (!node_online(node))
2409 continue;
2410 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2411 MAX_NR_ZONES - 1);
2412 }
2413
dd1a239f
MG
2414 zonelist->_zonerefs[j].zone = NULL;
2415 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2416}
2417
9276b1bc 2418/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2419static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2420{
54a6eb5c 2421 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2422}
2423
1da177e4
LT
2424#endif /* CONFIG_NUMA */
2425
9b1a4d38 2426/* return values int ....just for stop_machine() */
f0c0b2b8 2427static int __build_all_zonelists(void *dummy)
1da177e4 2428{
6811378e 2429 int nid;
9276b1bc
PJ
2430
2431 for_each_online_node(nid) {
7ea1530a
CL
2432 pg_data_t *pgdat = NODE_DATA(nid);
2433
2434 build_zonelists(pgdat);
2435 build_zonelist_cache(pgdat);
9276b1bc 2436 }
6811378e
YG
2437 return 0;
2438}
2439
f0c0b2b8 2440void build_all_zonelists(void)
6811378e 2441{
f0c0b2b8
KH
2442 set_zonelist_order();
2443
6811378e 2444 if (system_state == SYSTEM_BOOTING) {
423b41d7 2445 __build_all_zonelists(NULL);
68ad8df4 2446 mminit_verify_zonelist();
6811378e
YG
2447 cpuset_init_current_mems_allowed();
2448 } else {
183ff22b 2449 /* we have to stop all cpus to guarantee there is no user
6811378e 2450 of zonelist */
9b1a4d38 2451 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2452 /* cpuset refresh routine should be here */
2453 }
bd1e22b8 2454 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2455 /*
2456 * Disable grouping by mobility if the number of pages in the
2457 * system is too low to allow the mechanism to work. It would be
2458 * more accurate, but expensive to check per-zone. This check is
2459 * made on memory-hotadd so a system can start with mobility
2460 * disabled and enable it later
2461 */
d9c23400 2462 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2463 page_group_by_mobility_disabled = 1;
2464 else
2465 page_group_by_mobility_disabled = 0;
2466
2467 printk("Built %i zonelists in %s order, mobility grouping %s. "
2468 "Total pages: %ld\n",
f0c0b2b8
KH
2469 num_online_nodes(),
2470 zonelist_order_name[current_zonelist_order],
9ef9acb0 2471 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2472 vm_total_pages);
2473#ifdef CONFIG_NUMA
2474 printk("Policy zone: %s\n", zone_names[policy_zone]);
2475#endif
1da177e4
LT
2476}
2477
2478/*
2479 * Helper functions to size the waitqueue hash table.
2480 * Essentially these want to choose hash table sizes sufficiently
2481 * large so that collisions trying to wait on pages are rare.
2482 * But in fact, the number of active page waitqueues on typical
2483 * systems is ridiculously low, less than 200. So this is even
2484 * conservative, even though it seems large.
2485 *
2486 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2487 * waitqueues, i.e. the size of the waitq table given the number of pages.
2488 */
2489#define PAGES_PER_WAITQUEUE 256
2490
cca448fe 2491#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2492static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2493{
2494 unsigned long size = 1;
2495
2496 pages /= PAGES_PER_WAITQUEUE;
2497
2498 while (size < pages)
2499 size <<= 1;
2500
2501 /*
2502 * Once we have dozens or even hundreds of threads sleeping
2503 * on IO we've got bigger problems than wait queue collision.
2504 * Limit the size of the wait table to a reasonable size.
2505 */
2506 size = min(size, 4096UL);
2507
2508 return max(size, 4UL);
2509}
cca448fe
YG
2510#else
2511/*
2512 * A zone's size might be changed by hot-add, so it is not possible to determine
2513 * a suitable size for its wait_table. So we use the maximum size now.
2514 *
2515 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2516 *
2517 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2518 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2519 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2520 *
2521 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2522 * or more by the traditional way. (See above). It equals:
2523 *
2524 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2525 * ia64(16K page size) : = ( 8G + 4M)byte.
2526 * powerpc (64K page size) : = (32G +16M)byte.
2527 */
2528static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2529{
2530 return 4096UL;
2531}
2532#endif
1da177e4
LT
2533
2534/*
2535 * This is an integer logarithm so that shifts can be used later
2536 * to extract the more random high bits from the multiplicative
2537 * hash function before the remainder is taken.
2538 */
2539static inline unsigned long wait_table_bits(unsigned long size)
2540{
2541 return ffz(~size);
2542}
2543
2544#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2545
56fd56b8 2546/*
d9c23400 2547 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2548 * of blocks reserved is based on zone->pages_min. The memory within the
2549 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2550 * higher will lead to a bigger reserve which will get freed as contiguous
2551 * blocks as reclaim kicks in
2552 */
2553static void setup_zone_migrate_reserve(struct zone *zone)
2554{
2555 unsigned long start_pfn, pfn, end_pfn;
2556 struct page *page;
2557 unsigned long reserve, block_migratetype;
2558
2559 /* Get the start pfn, end pfn and the number of blocks to reserve */
2560 start_pfn = zone->zone_start_pfn;
2561 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2562 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2563 pageblock_order;
56fd56b8 2564
d9c23400 2565 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2566 if (!pfn_valid(pfn))
2567 continue;
2568 page = pfn_to_page(pfn);
2569
344c790e
AL
2570 /* Watch out for overlapping nodes */
2571 if (page_to_nid(page) != zone_to_nid(zone))
2572 continue;
2573
56fd56b8
MG
2574 /* Blocks with reserved pages will never free, skip them. */
2575 if (PageReserved(page))
2576 continue;
2577
2578 block_migratetype = get_pageblock_migratetype(page);
2579
2580 /* If this block is reserved, account for it */
2581 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2582 reserve--;
2583 continue;
2584 }
2585
2586 /* Suitable for reserving if this block is movable */
2587 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2588 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2589 move_freepages_block(zone, page, MIGRATE_RESERVE);
2590 reserve--;
2591 continue;
2592 }
2593
2594 /*
2595 * If the reserve is met and this is a previous reserved block,
2596 * take it back
2597 */
2598 if (block_migratetype == MIGRATE_RESERVE) {
2599 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2600 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2601 }
2602 }
2603}
ac0e5b7a 2604
1da177e4
LT
2605/*
2606 * Initially all pages are reserved - free ones are freed
2607 * up by free_all_bootmem() once the early boot process is
2608 * done. Non-atomic initialization, single-pass.
2609 */
c09b4240 2610void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2611 unsigned long start_pfn, enum memmap_context context)
1da177e4 2612{
1da177e4 2613 struct page *page;
29751f69
AW
2614 unsigned long end_pfn = start_pfn + size;
2615 unsigned long pfn;
86051ca5 2616 struct zone *z;
1da177e4 2617
22b31eec
HD
2618 if (highest_memmap_pfn < end_pfn - 1)
2619 highest_memmap_pfn = end_pfn - 1;
2620
86051ca5 2621 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2622 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2623 /*
2624 * There can be holes in boot-time mem_map[]s
2625 * handed to this function. They do not
2626 * exist on hotplugged memory.
2627 */
2628 if (context == MEMMAP_EARLY) {
2629 if (!early_pfn_valid(pfn))
2630 continue;
2631 if (!early_pfn_in_nid(pfn, nid))
2632 continue;
2633 }
d41dee36
AW
2634 page = pfn_to_page(pfn);
2635 set_page_links(page, zone, nid, pfn);
708614e6 2636 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2637 init_page_count(page);
1da177e4
LT
2638 reset_page_mapcount(page);
2639 SetPageReserved(page);
b2a0ac88
MG
2640 /*
2641 * Mark the block movable so that blocks are reserved for
2642 * movable at startup. This will force kernel allocations
2643 * to reserve their blocks rather than leaking throughout
2644 * the address space during boot when many long-lived
56fd56b8
MG
2645 * kernel allocations are made. Later some blocks near
2646 * the start are marked MIGRATE_RESERVE by
2647 * setup_zone_migrate_reserve()
86051ca5
KH
2648 *
2649 * bitmap is created for zone's valid pfn range. but memmap
2650 * can be created for invalid pages (for alignment)
2651 * check here not to call set_pageblock_migratetype() against
2652 * pfn out of zone.
b2a0ac88 2653 */
86051ca5
KH
2654 if ((z->zone_start_pfn <= pfn)
2655 && (pfn < z->zone_start_pfn + z->spanned_pages)
2656 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2657 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2658
1da177e4
LT
2659 INIT_LIST_HEAD(&page->lru);
2660#ifdef WANT_PAGE_VIRTUAL
2661 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2662 if (!is_highmem_idx(zone))
3212c6be 2663 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2664#endif
1da177e4
LT
2665 }
2666}
2667
1e548deb 2668static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2669{
b2a0ac88
MG
2670 int order, t;
2671 for_each_migratetype_order(order, t) {
2672 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2673 zone->free_area[order].nr_free = 0;
2674 }
2675}
2676
2677#ifndef __HAVE_ARCH_MEMMAP_INIT
2678#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2679 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2680#endif
2681
1d6f4e60 2682static int zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2683{
2684 int batch;
2685
2686 /*
2687 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2688 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2689 *
2690 * OK, so we don't know how big the cache is. So guess.
2691 */
2692 batch = zone->present_pages / 1024;
ba56e91c
SR
2693 if (batch * PAGE_SIZE > 512 * 1024)
2694 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2695 batch /= 4; /* We effectively *= 4 below */
2696 if (batch < 1)
2697 batch = 1;
2698
2699 /*
0ceaacc9
NP
2700 * Clamp the batch to a 2^n - 1 value. Having a power
2701 * of 2 value was found to be more likely to have
2702 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2703 *
0ceaacc9
NP
2704 * For example if 2 tasks are alternately allocating
2705 * batches of pages, one task can end up with a lot
2706 * of pages of one half of the possible page colors
2707 * and the other with pages of the other colors.
e7c8d5c9 2708 */
9155203a 2709 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2710
e7c8d5c9
CL
2711 return batch;
2712}
2713
b69a7288 2714static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2715{
2716 struct per_cpu_pages *pcp;
2717
1c6fe946
MD
2718 memset(p, 0, sizeof(*p));
2719
3dfa5721 2720 pcp = &p->pcp;
2caaad41 2721 pcp->count = 0;
2caaad41
CL
2722 pcp->high = 6 * batch;
2723 pcp->batch = max(1UL, 1 * batch);
2724 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2725}
2726
8ad4b1fb
RS
2727/*
2728 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2729 * to the value high for the pageset p.
2730 */
2731
2732static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2733 unsigned long high)
2734{
2735 struct per_cpu_pages *pcp;
2736
3dfa5721 2737 pcp = &p->pcp;
8ad4b1fb
RS
2738 pcp->high = high;
2739 pcp->batch = max(1UL, high/4);
2740 if ((high/4) > (PAGE_SHIFT * 8))
2741 pcp->batch = PAGE_SHIFT * 8;
2742}
2743
2744
e7c8d5c9
CL
2745#ifdef CONFIG_NUMA
2746/*
2caaad41
CL
2747 * Boot pageset table. One per cpu which is going to be used for all
2748 * zones and all nodes. The parameters will be set in such a way
2749 * that an item put on a list will immediately be handed over to
2750 * the buddy list. This is safe since pageset manipulation is done
2751 * with interrupts disabled.
2752 *
2753 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2754 *
2755 * The boot_pagesets must be kept even after bootup is complete for
2756 * unused processors and/or zones. They do play a role for bootstrapping
2757 * hotplugged processors.
2758 *
2759 * zoneinfo_show() and maybe other functions do
2760 * not check if the processor is online before following the pageset pointer.
2761 * Other parts of the kernel may not check if the zone is available.
2caaad41 2762 */
88a2a4ac 2763static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2764
2765/*
2766 * Dynamically allocate memory for the
e7c8d5c9
CL
2767 * per cpu pageset array in struct zone.
2768 */
6292d9aa 2769static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2770{
2771 struct zone *zone, *dzone;
37c0708d
CL
2772 int node = cpu_to_node(cpu);
2773
2774 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2775
ee99c71c 2776 for_each_populated_zone(zone) {
23316bc8 2777 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2778 GFP_KERNEL, node);
23316bc8 2779 if (!zone_pcp(zone, cpu))
e7c8d5c9 2780 goto bad;
e7c8d5c9 2781
23316bc8 2782 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2783
2784 if (percpu_pagelist_fraction)
2785 setup_pagelist_highmark(zone_pcp(zone, cpu),
2786 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2787 }
2788
2789 return 0;
2790bad:
2791 for_each_zone(dzone) {
64191688
AM
2792 if (!populated_zone(dzone))
2793 continue;
e7c8d5c9
CL
2794 if (dzone == zone)
2795 break;
23316bc8
NP
2796 kfree(zone_pcp(dzone, cpu));
2797 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2798 }
2799 return -ENOMEM;
2800}
2801
2802static inline void free_zone_pagesets(int cpu)
2803{
e7c8d5c9
CL
2804 struct zone *zone;
2805
2806 for_each_zone(zone) {
2807 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2808
f3ef9ead
DR
2809 /* Free per_cpu_pageset if it is slab allocated */
2810 if (pset != &boot_pageset[cpu])
2811 kfree(pset);
e7c8d5c9 2812 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2813 }
e7c8d5c9
CL
2814}
2815
9c7b216d 2816static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2817 unsigned long action,
2818 void *hcpu)
2819{
2820 int cpu = (long)hcpu;
2821 int ret = NOTIFY_OK;
2822
2823 switch (action) {
ce421c79 2824 case CPU_UP_PREPARE:
8bb78442 2825 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2826 if (process_zones(cpu))
2827 ret = NOTIFY_BAD;
2828 break;
2829 case CPU_UP_CANCELED:
8bb78442 2830 case CPU_UP_CANCELED_FROZEN:
ce421c79 2831 case CPU_DEAD:
8bb78442 2832 case CPU_DEAD_FROZEN:
ce421c79
AW
2833 free_zone_pagesets(cpu);
2834 break;
2835 default:
2836 break;
e7c8d5c9
CL
2837 }
2838 return ret;
2839}
2840
74b85f37 2841static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2842 { &pageset_cpuup_callback, NULL, 0 };
2843
78d9955b 2844void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2845{
2846 int err;
2847
2848 /* Initialize per_cpu_pageset for cpu 0.
2849 * A cpuup callback will do this for every cpu
2850 * as it comes online
2851 */
2852 err = process_zones(smp_processor_id());
2853 BUG_ON(err);
2854 register_cpu_notifier(&pageset_notifier);
2855}
2856
2857#endif
2858
577a32f6 2859static noinline __init_refok
cca448fe 2860int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2861{
2862 int i;
2863 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2864 size_t alloc_size;
ed8ece2e
DH
2865
2866 /*
2867 * The per-page waitqueue mechanism uses hashed waitqueues
2868 * per zone.
2869 */
02b694de
YG
2870 zone->wait_table_hash_nr_entries =
2871 wait_table_hash_nr_entries(zone_size_pages);
2872 zone->wait_table_bits =
2873 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2874 alloc_size = zone->wait_table_hash_nr_entries
2875 * sizeof(wait_queue_head_t);
2876
cd94b9db 2877 if (!slab_is_available()) {
cca448fe
YG
2878 zone->wait_table = (wait_queue_head_t *)
2879 alloc_bootmem_node(pgdat, alloc_size);
2880 } else {
2881 /*
2882 * This case means that a zone whose size was 0 gets new memory
2883 * via memory hot-add.
2884 * But it may be the case that a new node was hot-added. In
2885 * this case vmalloc() will not be able to use this new node's
2886 * memory - this wait_table must be initialized to use this new
2887 * node itself as well.
2888 * To use this new node's memory, further consideration will be
2889 * necessary.
2890 */
8691f3a7 2891 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2892 }
2893 if (!zone->wait_table)
2894 return -ENOMEM;
ed8ece2e 2895
02b694de 2896 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2897 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2898
2899 return 0;
ed8ece2e
DH
2900}
2901
c09b4240 2902static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2903{
2904 int cpu;
2905 unsigned long batch = zone_batchsize(zone);
2906
2907 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2908#ifdef CONFIG_NUMA
2909 /* Early boot. Slab allocator not functional yet */
23316bc8 2910 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2911 setup_pageset(&boot_pageset[cpu],0);
2912#else
2913 setup_pageset(zone_pcp(zone,cpu), batch);
2914#endif
2915 }
f5335c0f
AB
2916 if (zone->present_pages)
2917 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2918 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2919}
2920
718127cc
YG
2921__meminit int init_currently_empty_zone(struct zone *zone,
2922 unsigned long zone_start_pfn,
a2f3aa02
DH
2923 unsigned long size,
2924 enum memmap_context context)
ed8ece2e
DH
2925{
2926 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2927 int ret;
2928 ret = zone_wait_table_init(zone, size);
2929 if (ret)
2930 return ret;
ed8ece2e
DH
2931 pgdat->nr_zones = zone_idx(zone) + 1;
2932
ed8ece2e
DH
2933 zone->zone_start_pfn = zone_start_pfn;
2934
708614e6
MG
2935 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2936 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2937 pgdat->node_id,
2938 (unsigned long)zone_idx(zone),
2939 zone_start_pfn, (zone_start_pfn + size));
2940
1e548deb 2941 zone_init_free_lists(zone);
718127cc
YG
2942
2943 return 0;
ed8ece2e
DH
2944}
2945
c713216d
MG
2946#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2947/*
2948 * Basic iterator support. Return the first range of PFNs for a node
2949 * Note: nid == MAX_NUMNODES returns first region regardless of node
2950 */
a3142c8e 2951static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2952{
2953 int i;
2954
2955 for (i = 0; i < nr_nodemap_entries; i++)
2956 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2957 return i;
2958
2959 return -1;
2960}
2961
2962/*
2963 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 2964 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 2965 */
a3142c8e 2966static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2967{
2968 for (index = index + 1; index < nr_nodemap_entries; index++)
2969 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2970 return index;
2971
2972 return -1;
2973}
2974
2975#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2976/*
2977 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2978 * Architectures may implement their own version but if add_active_range()
2979 * was used and there are no special requirements, this is a convenient
2980 * alternative
2981 */
f2dbcfa7 2982int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2983{
2984 int i;
2985
2986 for (i = 0; i < nr_nodemap_entries; i++) {
2987 unsigned long start_pfn = early_node_map[i].start_pfn;
2988 unsigned long end_pfn = early_node_map[i].end_pfn;
2989
2990 if (start_pfn <= pfn && pfn < end_pfn)
2991 return early_node_map[i].nid;
2992 }
cc2559bc
KH
2993 /* This is a memory hole */
2994 return -1;
c713216d
MG
2995}
2996#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2997
f2dbcfa7
KH
2998int __meminit early_pfn_to_nid(unsigned long pfn)
2999{
cc2559bc
KH
3000 int nid;
3001
3002 nid = __early_pfn_to_nid(pfn);
3003 if (nid >= 0)
3004 return nid;
3005 /* just returns 0 */
3006 return 0;
f2dbcfa7
KH
3007}
3008
cc2559bc
KH
3009#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3010bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3011{
3012 int nid;
3013
3014 nid = __early_pfn_to_nid(pfn);
3015 if (nid >= 0 && nid != node)
3016 return false;
3017 return true;
3018}
3019#endif
f2dbcfa7 3020
c713216d
MG
3021/* Basic iterator support to walk early_node_map[] */
3022#define for_each_active_range_index_in_nid(i, nid) \
3023 for (i = first_active_region_index_in_nid(nid); i != -1; \
3024 i = next_active_region_index_in_nid(i, nid))
3025
3026/**
3027 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3028 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3029 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3030 *
3031 * If an architecture guarantees that all ranges registered with
3032 * add_active_ranges() contain no holes and may be freed, this
3033 * this function may be used instead of calling free_bootmem() manually.
3034 */
3035void __init free_bootmem_with_active_regions(int nid,
3036 unsigned long max_low_pfn)
3037{
3038 int i;
3039
3040 for_each_active_range_index_in_nid(i, nid) {
3041 unsigned long size_pages = 0;
3042 unsigned long end_pfn = early_node_map[i].end_pfn;
3043
3044 if (early_node_map[i].start_pfn >= max_low_pfn)
3045 continue;
3046
3047 if (end_pfn > max_low_pfn)
3048 end_pfn = max_low_pfn;
3049
3050 size_pages = end_pfn - early_node_map[i].start_pfn;
3051 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3052 PFN_PHYS(early_node_map[i].start_pfn),
3053 size_pages << PAGE_SHIFT);
3054 }
3055}
3056
b5bc6c0e
YL
3057void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3058{
3059 int i;
d52d53b8 3060 int ret;
b5bc6c0e 3061
d52d53b8
YL
3062 for_each_active_range_index_in_nid(i, nid) {
3063 ret = work_fn(early_node_map[i].start_pfn,
3064 early_node_map[i].end_pfn, data);
3065 if (ret)
3066 break;
3067 }
b5bc6c0e 3068}
c713216d
MG
3069/**
3070 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3071 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3072 *
3073 * If an architecture guarantees that all ranges registered with
3074 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3075 * function may be used instead of calling memory_present() manually.
c713216d
MG
3076 */
3077void __init sparse_memory_present_with_active_regions(int nid)
3078{
3079 int i;
3080
3081 for_each_active_range_index_in_nid(i, nid)
3082 memory_present(early_node_map[i].nid,
3083 early_node_map[i].start_pfn,
3084 early_node_map[i].end_pfn);
3085}
3086
fb01439c
MG
3087/**
3088 * push_node_boundaries - Push node boundaries to at least the requested boundary
3089 * @nid: The nid of the node to push the boundary for
3090 * @start_pfn: The start pfn of the node
3091 * @end_pfn: The end pfn of the node
3092 *
3093 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3094 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3095 * be hotplugged even though no physical memory exists. This function allows
3096 * an arch to push out the node boundaries so mem_map is allocated that can
3097 * be used later.
3098 */
3099#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3100void __init push_node_boundaries(unsigned int nid,
3101 unsigned long start_pfn, unsigned long end_pfn)
3102{
6b74ab97
MG
3103 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3104 "Entering push_node_boundaries(%u, %lu, %lu)\n",
fb01439c
MG
3105 nid, start_pfn, end_pfn);
3106
3107 /* Initialise the boundary for this node if necessary */
3108 if (node_boundary_end_pfn[nid] == 0)
3109 node_boundary_start_pfn[nid] = -1UL;
3110
3111 /* Update the boundaries */
3112 if (node_boundary_start_pfn[nid] > start_pfn)
3113 node_boundary_start_pfn[nid] = start_pfn;
3114 if (node_boundary_end_pfn[nid] < end_pfn)
3115 node_boundary_end_pfn[nid] = end_pfn;
3116}
3117
3118/* If necessary, push the node boundary out for reserve hotadd */
98011f56 3119static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3120 unsigned long *start_pfn, unsigned long *end_pfn)
3121{
6b74ab97
MG
3122 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3123 "Entering account_node_boundary(%u, %lu, %lu)\n",
fb01439c
MG
3124 nid, *start_pfn, *end_pfn);
3125
3126 /* Return if boundary information has not been provided */
3127 if (node_boundary_end_pfn[nid] == 0)
3128 return;
3129
3130 /* Check the boundaries and update if necessary */
3131 if (node_boundary_start_pfn[nid] < *start_pfn)
3132 *start_pfn = node_boundary_start_pfn[nid];
3133 if (node_boundary_end_pfn[nid] > *end_pfn)
3134 *end_pfn = node_boundary_end_pfn[nid];
3135}
3136#else
3137void __init push_node_boundaries(unsigned int nid,
3138 unsigned long start_pfn, unsigned long end_pfn) {}
3139
98011f56 3140static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3141 unsigned long *start_pfn, unsigned long *end_pfn) {}
3142#endif
3143
3144
c713216d
MG
3145/**
3146 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3147 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3148 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3149 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3150 *
3151 * It returns the start and end page frame of a node based on information
3152 * provided by an arch calling add_active_range(). If called for a node
3153 * with no available memory, a warning is printed and the start and end
88ca3b94 3154 * PFNs will be 0.
c713216d 3155 */
a3142c8e 3156void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3157 unsigned long *start_pfn, unsigned long *end_pfn)
3158{
3159 int i;
3160 *start_pfn = -1UL;
3161 *end_pfn = 0;
3162
3163 for_each_active_range_index_in_nid(i, nid) {
3164 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3165 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3166 }
3167
633c0666 3168 if (*start_pfn == -1UL)
c713216d 3169 *start_pfn = 0;
fb01439c
MG
3170
3171 /* Push the node boundaries out if requested */
3172 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3173}
3174
2a1e274a
MG
3175/*
3176 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3177 * assumption is made that zones within a node are ordered in monotonic
3178 * increasing memory addresses so that the "highest" populated zone is used
3179 */
b69a7288 3180static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3181{
3182 int zone_index;
3183 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3184 if (zone_index == ZONE_MOVABLE)
3185 continue;
3186
3187 if (arch_zone_highest_possible_pfn[zone_index] >
3188 arch_zone_lowest_possible_pfn[zone_index])
3189 break;
3190 }
3191
3192 VM_BUG_ON(zone_index == -1);
3193 movable_zone = zone_index;
3194}
3195
3196/*
3197 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3198 * because it is sized independant of architecture. Unlike the other zones,
3199 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3200 * in each node depending on the size of each node and how evenly kernelcore
3201 * is distributed. This helper function adjusts the zone ranges
3202 * provided by the architecture for a given node by using the end of the
3203 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3204 * zones within a node are in order of monotonic increases memory addresses
3205 */
b69a7288 3206static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3207 unsigned long zone_type,
3208 unsigned long node_start_pfn,
3209 unsigned long node_end_pfn,
3210 unsigned long *zone_start_pfn,
3211 unsigned long *zone_end_pfn)
3212{
3213 /* Only adjust if ZONE_MOVABLE is on this node */
3214 if (zone_movable_pfn[nid]) {
3215 /* Size ZONE_MOVABLE */
3216 if (zone_type == ZONE_MOVABLE) {
3217 *zone_start_pfn = zone_movable_pfn[nid];
3218 *zone_end_pfn = min(node_end_pfn,
3219 arch_zone_highest_possible_pfn[movable_zone]);
3220
3221 /* Adjust for ZONE_MOVABLE starting within this range */
3222 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3223 *zone_end_pfn > zone_movable_pfn[nid]) {
3224 *zone_end_pfn = zone_movable_pfn[nid];
3225
3226 /* Check if this whole range is within ZONE_MOVABLE */
3227 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3228 *zone_start_pfn = *zone_end_pfn;
3229 }
3230}
3231
c713216d
MG
3232/*
3233 * Return the number of pages a zone spans in a node, including holes
3234 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3235 */
6ea6e688 3236static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3237 unsigned long zone_type,
3238 unsigned long *ignored)
3239{
3240 unsigned long node_start_pfn, node_end_pfn;
3241 unsigned long zone_start_pfn, zone_end_pfn;
3242
3243 /* Get the start and end of the node and zone */
3244 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3245 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3246 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3247 adjust_zone_range_for_zone_movable(nid, zone_type,
3248 node_start_pfn, node_end_pfn,
3249 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3250
3251 /* Check that this node has pages within the zone's required range */
3252 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3253 return 0;
3254
3255 /* Move the zone boundaries inside the node if necessary */
3256 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3257 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3258
3259 /* Return the spanned pages */
3260 return zone_end_pfn - zone_start_pfn;
3261}
3262
3263/*
3264 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3265 * then all holes in the requested range will be accounted for.
c713216d 3266 */
b69a7288 3267static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3268 unsigned long range_start_pfn,
3269 unsigned long range_end_pfn)
3270{
3271 int i = 0;
3272 unsigned long prev_end_pfn = 0, hole_pages = 0;
3273 unsigned long start_pfn;
3274
3275 /* Find the end_pfn of the first active range of pfns in the node */
3276 i = first_active_region_index_in_nid(nid);
3277 if (i == -1)
3278 return 0;
3279
b5445f95
MG
3280 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3281
9c7cd687
MG
3282 /* Account for ranges before physical memory on this node */
3283 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3284 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3285
3286 /* Find all holes for the zone within the node */
3287 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3288
3289 /* No need to continue if prev_end_pfn is outside the zone */
3290 if (prev_end_pfn >= range_end_pfn)
3291 break;
3292
3293 /* Make sure the end of the zone is not within the hole */
3294 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3295 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3296
3297 /* Update the hole size cound and move on */
3298 if (start_pfn > range_start_pfn) {
3299 BUG_ON(prev_end_pfn > start_pfn);
3300 hole_pages += start_pfn - prev_end_pfn;
3301 }
3302 prev_end_pfn = early_node_map[i].end_pfn;
3303 }
3304
9c7cd687
MG
3305 /* Account for ranges past physical memory on this node */
3306 if (range_end_pfn > prev_end_pfn)
0c6cb974 3307 hole_pages += range_end_pfn -
9c7cd687
MG
3308 max(range_start_pfn, prev_end_pfn);
3309
c713216d
MG
3310 return hole_pages;
3311}
3312
3313/**
3314 * absent_pages_in_range - Return number of page frames in holes within a range
3315 * @start_pfn: The start PFN to start searching for holes
3316 * @end_pfn: The end PFN to stop searching for holes
3317 *
88ca3b94 3318 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3319 */
3320unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3321 unsigned long end_pfn)
3322{
3323 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3324}
3325
3326/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3327static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3328 unsigned long zone_type,
3329 unsigned long *ignored)
3330{
9c7cd687
MG
3331 unsigned long node_start_pfn, node_end_pfn;
3332 unsigned long zone_start_pfn, zone_end_pfn;
3333
3334 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3335 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3336 node_start_pfn);
3337 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3338 node_end_pfn);
3339
2a1e274a
MG
3340 adjust_zone_range_for_zone_movable(nid, zone_type,
3341 node_start_pfn, node_end_pfn,
3342 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3343 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3344}
0e0b864e 3345
c713216d 3346#else
6ea6e688 3347static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3348 unsigned long zone_type,
3349 unsigned long *zones_size)
3350{
3351 return zones_size[zone_type];
3352}
3353
6ea6e688 3354static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3355 unsigned long zone_type,
3356 unsigned long *zholes_size)
3357{
3358 if (!zholes_size)
3359 return 0;
3360
3361 return zholes_size[zone_type];
3362}
0e0b864e 3363
c713216d
MG
3364#endif
3365
a3142c8e 3366static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3367 unsigned long *zones_size, unsigned long *zholes_size)
3368{
3369 unsigned long realtotalpages, totalpages = 0;
3370 enum zone_type i;
3371
3372 for (i = 0; i < MAX_NR_ZONES; i++)
3373 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3374 zones_size);
3375 pgdat->node_spanned_pages = totalpages;
3376
3377 realtotalpages = totalpages;
3378 for (i = 0; i < MAX_NR_ZONES; i++)
3379 realtotalpages -=
3380 zone_absent_pages_in_node(pgdat->node_id, i,
3381 zholes_size);
3382 pgdat->node_present_pages = realtotalpages;
3383 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3384 realtotalpages);
3385}
3386
835c134e
MG
3387#ifndef CONFIG_SPARSEMEM
3388/*
3389 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3390 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3391 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3392 * round what is now in bits to nearest long in bits, then return it in
3393 * bytes.
3394 */
3395static unsigned long __init usemap_size(unsigned long zonesize)
3396{
3397 unsigned long usemapsize;
3398
d9c23400
MG
3399 usemapsize = roundup(zonesize, pageblock_nr_pages);
3400 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3401 usemapsize *= NR_PAGEBLOCK_BITS;
3402 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3403
3404 return usemapsize / 8;
3405}
3406
3407static void __init setup_usemap(struct pglist_data *pgdat,
3408 struct zone *zone, unsigned long zonesize)
3409{
3410 unsigned long usemapsize = usemap_size(zonesize);
3411 zone->pageblock_flags = NULL;
58a01a45 3412 if (usemapsize)
835c134e 3413 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3414}
3415#else
3416static void inline setup_usemap(struct pglist_data *pgdat,
3417 struct zone *zone, unsigned long zonesize) {}
3418#endif /* CONFIG_SPARSEMEM */
3419
d9c23400 3420#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3421
3422/* Return a sensible default order for the pageblock size. */
3423static inline int pageblock_default_order(void)
3424{
3425 if (HPAGE_SHIFT > PAGE_SHIFT)
3426 return HUGETLB_PAGE_ORDER;
3427
3428 return MAX_ORDER-1;
3429}
3430
d9c23400
MG
3431/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3432static inline void __init set_pageblock_order(unsigned int order)
3433{
3434 /* Check that pageblock_nr_pages has not already been setup */
3435 if (pageblock_order)
3436 return;
3437
3438 /*
3439 * Assume the largest contiguous order of interest is a huge page.
3440 * This value may be variable depending on boot parameters on IA64
3441 */
3442 pageblock_order = order;
3443}
3444#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3445
ba72cb8c
MG
3446/*
3447 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3448 * and pageblock_default_order() are unused as pageblock_order is set
3449 * at compile-time. See include/linux/pageblock-flags.h for the values of
3450 * pageblock_order based on the kernel config
3451 */
3452static inline int pageblock_default_order(unsigned int order)
3453{
3454 return MAX_ORDER-1;
3455}
d9c23400
MG
3456#define set_pageblock_order(x) do {} while (0)
3457
3458#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3459
1da177e4
LT
3460/*
3461 * Set up the zone data structures:
3462 * - mark all pages reserved
3463 * - mark all memory queues empty
3464 * - clear the memory bitmaps
3465 */
b5a0e011 3466static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3467 unsigned long *zones_size, unsigned long *zholes_size)
3468{
2f1b6248 3469 enum zone_type j;
ed8ece2e 3470 int nid = pgdat->node_id;
1da177e4 3471 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3472 int ret;
1da177e4 3473
208d54e5 3474 pgdat_resize_init(pgdat);
1da177e4
LT
3475 pgdat->nr_zones = 0;
3476 init_waitqueue_head(&pgdat->kswapd_wait);
3477 pgdat->kswapd_max_order = 0;
52d4b9ac 3478 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3479
3480 for (j = 0; j < MAX_NR_ZONES; j++) {
3481 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3482 unsigned long size, realsize, memmap_pages;
b69408e8 3483 enum lru_list l;
1da177e4 3484
c713216d
MG
3485 size = zone_spanned_pages_in_node(nid, j, zones_size);
3486 realsize = size - zone_absent_pages_in_node(nid, j,
3487 zholes_size);
1da177e4 3488
0e0b864e
MG
3489 /*
3490 * Adjust realsize so that it accounts for how much memory
3491 * is used by this zone for memmap. This affects the watermark
3492 * and per-cpu initialisations
3493 */
f7232154
JW
3494 memmap_pages =
3495 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3496 if (realsize >= memmap_pages) {
3497 realsize -= memmap_pages;
5594c8c8
YL
3498 if (memmap_pages)
3499 printk(KERN_DEBUG
3500 " %s zone: %lu pages used for memmap\n",
3501 zone_names[j], memmap_pages);
0e0b864e
MG
3502 } else
3503 printk(KERN_WARNING
3504 " %s zone: %lu pages exceeds realsize %lu\n",
3505 zone_names[j], memmap_pages, realsize);
3506
6267276f
CL
3507 /* Account for reserved pages */
3508 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3509 realsize -= dma_reserve;
d903ef9f 3510 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3511 zone_names[0], dma_reserve);
0e0b864e
MG
3512 }
3513
98d2b0eb 3514 if (!is_highmem_idx(j))
1da177e4
LT
3515 nr_kernel_pages += realsize;
3516 nr_all_pages += realsize;
3517
3518 zone->spanned_pages = size;
3519 zone->present_pages = realsize;
9614634f 3520#ifdef CONFIG_NUMA
d5f541ed 3521 zone->node = nid;
8417bba4 3522 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3523 / 100;
0ff38490 3524 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3525#endif
1da177e4
LT
3526 zone->name = zone_names[j];
3527 spin_lock_init(&zone->lock);
3528 spin_lock_init(&zone->lru_lock);
bdc8cb98 3529 zone_seqlock_init(zone);
1da177e4 3530 zone->zone_pgdat = pgdat;
1da177e4 3531
3bb1a852 3532 zone->prev_priority = DEF_PRIORITY;
1da177e4 3533
ed8ece2e 3534 zone_pcp_init(zone);
b69408e8
CL
3535 for_each_lru(l) {
3536 INIT_LIST_HEAD(&zone->lru[l].list);
3537 zone->lru[l].nr_scan = 0;
3538 }
6e901571
KM
3539 zone->reclaim_stat.recent_rotated[0] = 0;
3540 zone->reclaim_stat.recent_rotated[1] = 0;
3541 zone->reclaim_stat.recent_scanned[0] = 0;
3542 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3543 zap_zone_vm_stats(zone);
e815af95 3544 zone->flags = 0;
1da177e4
LT
3545 if (!size)
3546 continue;
3547
ba72cb8c 3548 set_pageblock_order(pageblock_default_order());
835c134e 3549 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3550 ret = init_currently_empty_zone(zone, zone_start_pfn,
3551 size, MEMMAP_EARLY);
718127cc 3552 BUG_ON(ret);
76cdd58e 3553 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3554 zone_start_pfn += size;
1da177e4
LT
3555 }
3556}
3557
577a32f6 3558static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3559{
1da177e4
LT
3560 /* Skip empty nodes */
3561 if (!pgdat->node_spanned_pages)
3562 return;
3563
d41dee36 3564#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3565 /* ia64 gets its own node_mem_map, before this, without bootmem */
3566 if (!pgdat->node_mem_map) {
e984bb43 3567 unsigned long size, start, end;
d41dee36
AW
3568 struct page *map;
3569
e984bb43
BP
3570 /*
3571 * The zone's endpoints aren't required to be MAX_ORDER
3572 * aligned but the node_mem_map endpoints must be in order
3573 * for the buddy allocator to function correctly.
3574 */
3575 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3576 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3577 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3578 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3579 map = alloc_remap(pgdat->node_id, size);
3580 if (!map)
3581 map = alloc_bootmem_node(pgdat, size);
e984bb43 3582 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3583 }
12d810c1 3584#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3585 /*
3586 * With no DISCONTIG, the global mem_map is just set as node 0's
3587 */
c713216d 3588 if (pgdat == NODE_DATA(0)) {
1da177e4 3589 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3590#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3591 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3592 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3593#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3594 }
1da177e4 3595#endif
d41dee36 3596#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3597}
3598
9109fb7b
JW
3599void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3600 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3601{
9109fb7b
JW
3602 pg_data_t *pgdat = NODE_DATA(nid);
3603
1da177e4
LT
3604 pgdat->node_id = nid;
3605 pgdat->node_start_pfn = node_start_pfn;
c713216d 3606 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3607
3608 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3609#ifdef CONFIG_FLAT_NODE_MEM_MAP
3610 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3611 nid, (unsigned long)pgdat,
3612 (unsigned long)pgdat->node_mem_map);
3613#endif
1da177e4
LT
3614
3615 free_area_init_core(pgdat, zones_size, zholes_size);
3616}
3617
c713216d 3618#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3619
3620#if MAX_NUMNODES > 1
3621/*
3622 * Figure out the number of possible node ids.
3623 */
3624static void __init setup_nr_node_ids(void)
3625{
3626 unsigned int node;
3627 unsigned int highest = 0;
3628
3629 for_each_node_mask(node, node_possible_map)
3630 highest = node;
3631 nr_node_ids = highest + 1;
3632}
3633#else
3634static inline void setup_nr_node_ids(void)
3635{
3636}
3637#endif
3638
c713216d
MG
3639/**
3640 * add_active_range - Register a range of PFNs backed by physical memory
3641 * @nid: The node ID the range resides on
3642 * @start_pfn: The start PFN of the available physical memory
3643 * @end_pfn: The end PFN of the available physical memory
3644 *
3645 * These ranges are stored in an early_node_map[] and later used by
3646 * free_area_init_nodes() to calculate zone sizes and holes. If the
3647 * range spans a memory hole, it is up to the architecture to ensure
3648 * the memory is not freed by the bootmem allocator. If possible
3649 * the range being registered will be merged with existing ranges.
3650 */
3651void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3652 unsigned long end_pfn)
3653{
3654 int i;
3655
6b74ab97
MG
3656 mminit_dprintk(MMINIT_TRACE, "memory_register",
3657 "Entering add_active_range(%d, %#lx, %#lx) "
3658 "%d entries of %d used\n",
3659 nid, start_pfn, end_pfn,
3660 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3661
2dbb51c4
MG
3662 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3663
c713216d
MG
3664 /* Merge with existing active regions if possible */
3665 for (i = 0; i < nr_nodemap_entries; i++) {
3666 if (early_node_map[i].nid != nid)
3667 continue;
3668
3669 /* Skip if an existing region covers this new one */
3670 if (start_pfn >= early_node_map[i].start_pfn &&
3671 end_pfn <= early_node_map[i].end_pfn)
3672 return;
3673
3674 /* Merge forward if suitable */
3675 if (start_pfn <= early_node_map[i].end_pfn &&
3676 end_pfn > early_node_map[i].end_pfn) {
3677 early_node_map[i].end_pfn = end_pfn;
3678 return;
3679 }
3680
3681 /* Merge backward if suitable */
3682 if (start_pfn < early_node_map[i].end_pfn &&
3683 end_pfn >= early_node_map[i].start_pfn) {
3684 early_node_map[i].start_pfn = start_pfn;
3685 return;
3686 }
3687 }
3688
3689 /* Check that early_node_map is large enough */
3690 if (i >= MAX_ACTIVE_REGIONS) {
3691 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3692 MAX_ACTIVE_REGIONS);
3693 return;
3694 }
3695
3696 early_node_map[i].nid = nid;
3697 early_node_map[i].start_pfn = start_pfn;
3698 early_node_map[i].end_pfn = end_pfn;
3699 nr_nodemap_entries = i + 1;
3700}
3701
3702/**
cc1050ba 3703 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3704 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3705 * @start_pfn: The new PFN of the range
3706 * @end_pfn: The new PFN of the range
c713216d
MG
3707 *
3708 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3709 * The map is kept near the end physical page range that has already been
3710 * registered. This function allows an arch to shrink an existing registered
3711 * range.
c713216d 3712 */
cc1050ba
YL
3713void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3714 unsigned long end_pfn)
c713216d 3715{
cc1a9d86
YL
3716 int i, j;
3717 int removed = 0;
c713216d 3718
cc1050ba
YL
3719 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3720 nid, start_pfn, end_pfn);
3721
c713216d 3722 /* Find the old active region end and shrink */
cc1a9d86 3723 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3724 if (early_node_map[i].start_pfn >= start_pfn &&
3725 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3726 /* clear it */
cc1050ba 3727 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3728 early_node_map[i].end_pfn = 0;
3729 removed = 1;
3730 continue;
3731 }
cc1050ba
YL
3732 if (early_node_map[i].start_pfn < start_pfn &&
3733 early_node_map[i].end_pfn > start_pfn) {
3734 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3735 early_node_map[i].end_pfn = start_pfn;
3736 if (temp_end_pfn > end_pfn)
3737 add_active_range(nid, end_pfn, temp_end_pfn);
3738 continue;
3739 }
3740 if (early_node_map[i].start_pfn >= start_pfn &&
3741 early_node_map[i].end_pfn > end_pfn &&
3742 early_node_map[i].start_pfn < end_pfn) {
3743 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3744 continue;
c713216d 3745 }
cc1a9d86
YL
3746 }
3747
3748 if (!removed)
3749 return;
3750
3751 /* remove the blank ones */
3752 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3753 if (early_node_map[i].nid != nid)
3754 continue;
3755 if (early_node_map[i].end_pfn)
3756 continue;
3757 /* we found it, get rid of it */
3758 for (j = i; j < nr_nodemap_entries - 1; j++)
3759 memcpy(&early_node_map[j], &early_node_map[j+1],
3760 sizeof(early_node_map[j]));
3761 j = nr_nodemap_entries - 1;
3762 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3763 nr_nodemap_entries--;
3764 }
c713216d
MG
3765}
3766
3767/**
3768 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3769 *
c713216d
MG
3770 * During discovery, it may be found that a table like SRAT is invalid
3771 * and an alternative discovery method must be used. This function removes
3772 * all currently registered regions.
3773 */
88ca3b94 3774void __init remove_all_active_ranges(void)
c713216d
MG
3775{
3776 memset(early_node_map, 0, sizeof(early_node_map));
3777 nr_nodemap_entries = 0;
fb01439c
MG
3778#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3779 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3780 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3781#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3782}
3783
3784/* Compare two active node_active_regions */
3785static int __init cmp_node_active_region(const void *a, const void *b)
3786{
3787 struct node_active_region *arange = (struct node_active_region *)a;
3788 struct node_active_region *brange = (struct node_active_region *)b;
3789
3790 /* Done this way to avoid overflows */
3791 if (arange->start_pfn > brange->start_pfn)
3792 return 1;
3793 if (arange->start_pfn < brange->start_pfn)
3794 return -1;
3795
3796 return 0;
3797}
3798
3799/* sort the node_map by start_pfn */
3800static void __init sort_node_map(void)
3801{
3802 sort(early_node_map, (size_t)nr_nodemap_entries,
3803 sizeof(struct node_active_region),
3804 cmp_node_active_region, NULL);
3805}
3806
a6af2bc3 3807/* Find the lowest pfn for a node */
b69a7288 3808static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3809{
3810 int i;
a6af2bc3 3811 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3812
c713216d
MG
3813 /* Assuming a sorted map, the first range found has the starting pfn */
3814 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3815 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3816
a6af2bc3
MG
3817 if (min_pfn == ULONG_MAX) {
3818 printk(KERN_WARNING
2bc0d261 3819 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3820 return 0;
3821 }
3822
3823 return min_pfn;
c713216d
MG
3824}
3825
3826/**
3827 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3828 *
3829 * It returns the minimum PFN based on information provided via
88ca3b94 3830 * add_active_range().
c713216d
MG
3831 */
3832unsigned long __init find_min_pfn_with_active_regions(void)
3833{
3834 return find_min_pfn_for_node(MAX_NUMNODES);
3835}
3836
37b07e41
LS
3837/*
3838 * early_calculate_totalpages()
3839 * Sum pages in active regions for movable zone.
3840 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3841 */
484f51f8 3842static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3843{
3844 int i;
3845 unsigned long totalpages = 0;
3846
37b07e41
LS
3847 for (i = 0; i < nr_nodemap_entries; i++) {
3848 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3849 early_node_map[i].start_pfn;
37b07e41
LS
3850 totalpages += pages;
3851 if (pages)
3852 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3853 }
3854 return totalpages;
7e63efef
MG
3855}
3856
2a1e274a
MG
3857/*
3858 * Find the PFN the Movable zone begins in each node. Kernel memory
3859 * is spread evenly between nodes as long as the nodes have enough
3860 * memory. When they don't, some nodes will have more kernelcore than
3861 * others
3862 */
b69a7288 3863static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3864{
3865 int i, nid;
3866 unsigned long usable_startpfn;
3867 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3868 unsigned long totalpages = early_calculate_totalpages();
3869 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3870
7e63efef
MG
3871 /*
3872 * If movablecore was specified, calculate what size of
3873 * kernelcore that corresponds so that memory usable for
3874 * any allocation type is evenly spread. If both kernelcore
3875 * and movablecore are specified, then the value of kernelcore
3876 * will be used for required_kernelcore if it's greater than
3877 * what movablecore would have allowed.
3878 */
3879 if (required_movablecore) {
7e63efef
MG
3880 unsigned long corepages;
3881
3882 /*
3883 * Round-up so that ZONE_MOVABLE is at least as large as what
3884 * was requested by the user
3885 */
3886 required_movablecore =
3887 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3888 corepages = totalpages - required_movablecore;
3889
3890 required_kernelcore = max(required_kernelcore, corepages);
3891 }
3892
2a1e274a
MG
3893 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3894 if (!required_kernelcore)
3895 return;
3896
3897 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3898 find_usable_zone_for_movable();
3899 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3900
3901restart:
3902 /* Spread kernelcore memory as evenly as possible throughout nodes */
3903 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3904 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3905 /*
3906 * Recalculate kernelcore_node if the division per node
3907 * now exceeds what is necessary to satisfy the requested
3908 * amount of memory for the kernel
3909 */
3910 if (required_kernelcore < kernelcore_node)
3911 kernelcore_node = required_kernelcore / usable_nodes;
3912
3913 /*
3914 * As the map is walked, we track how much memory is usable
3915 * by the kernel using kernelcore_remaining. When it is
3916 * 0, the rest of the node is usable by ZONE_MOVABLE
3917 */
3918 kernelcore_remaining = kernelcore_node;
3919
3920 /* Go through each range of PFNs within this node */
3921 for_each_active_range_index_in_nid(i, nid) {
3922 unsigned long start_pfn, end_pfn;
3923 unsigned long size_pages;
3924
3925 start_pfn = max(early_node_map[i].start_pfn,
3926 zone_movable_pfn[nid]);
3927 end_pfn = early_node_map[i].end_pfn;
3928 if (start_pfn >= end_pfn)
3929 continue;
3930
3931 /* Account for what is only usable for kernelcore */
3932 if (start_pfn < usable_startpfn) {
3933 unsigned long kernel_pages;
3934 kernel_pages = min(end_pfn, usable_startpfn)
3935 - start_pfn;
3936
3937 kernelcore_remaining -= min(kernel_pages,
3938 kernelcore_remaining);
3939 required_kernelcore -= min(kernel_pages,
3940 required_kernelcore);
3941
3942 /* Continue if range is now fully accounted */
3943 if (end_pfn <= usable_startpfn) {
3944
3945 /*
3946 * Push zone_movable_pfn to the end so
3947 * that if we have to rebalance
3948 * kernelcore across nodes, we will
3949 * not double account here
3950 */
3951 zone_movable_pfn[nid] = end_pfn;
3952 continue;
3953 }
3954 start_pfn = usable_startpfn;
3955 }
3956
3957 /*
3958 * The usable PFN range for ZONE_MOVABLE is from
3959 * start_pfn->end_pfn. Calculate size_pages as the
3960 * number of pages used as kernelcore
3961 */
3962 size_pages = end_pfn - start_pfn;
3963 if (size_pages > kernelcore_remaining)
3964 size_pages = kernelcore_remaining;
3965 zone_movable_pfn[nid] = start_pfn + size_pages;
3966
3967 /*
3968 * Some kernelcore has been met, update counts and
3969 * break if the kernelcore for this node has been
3970 * satisified
3971 */
3972 required_kernelcore -= min(required_kernelcore,
3973 size_pages);
3974 kernelcore_remaining -= size_pages;
3975 if (!kernelcore_remaining)
3976 break;
3977 }
3978 }
3979
3980 /*
3981 * If there is still required_kernelcore, we do another pass with one
3982 * less node in the count. This will push zone_movable_pfn[nid] further
3983 * along on the nodes that still have memory until kernelcore is
3984 * satisified
3985 */
3986 usable_nodes--;
3987 if (usable_nodes && required_kernelcore > usable_nodes)
3988 goto restart;
3989
3990 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3991 for (nid = 0; nid < MAX_NUMNODES; nid++)
3992 zone_movable_pfn[nid] =
3993 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3994}
3995
37b07e41
LS
3996/* Any regular memory on that node ? */
3997static void check_for_regular_memory(pg_data_t *pgdat)
3998{
3999#ifdef CONFIG_HIGHMEM
4000 enum zone_type zone_type;
4001
4002 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4003 struct zone *zone = &pgdat->node_zones[zone_type];
4004 if (zone->present_pages)
4005 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4006 }
4007#endif
4008}
4009
c713216d
MG
4010/**
4011 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4012 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4013 *
4014 * This will call free_area_init_node() for each active node in the system.
4015 * Using the page ranges provided by add_active_range(), the size of each
4016 * zone in each node and their holes is calculated. If the maximum PFN
4017 * between two adjacent zones match, it is assumed that the zone is empty.
4018 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4019 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4020 * starts where the previous one ended. For example, ZONE_DMA32 starts
4021 * at arch_max_dma_pfn.
4022 */
4023void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4024{
4025 unsigned long nid;
db99100d 4026 int i;
c713216d 4027
a6af2bc3
MG
4028 /* Sort early_node_map as initialisation assumes it is sorted */
4029 sort_node_map();
4030
c713216d
MG
4031 /* Record where the zone boundaries are */
4032 memset(arch_zone_lowest_possible_pfn, 0,
4033 sizeof(arch_zone_lowest_possible_pfn));
4034 memset(arch_zone_highest_possible_pfn, 0,
4035 sizeof(arch_zone_highest_possible_pfn));
4036 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4037 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4038 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4039 if (i == ZONE_MOVABLE)
4040 continue;
c713216d
MG
4041 arch_zone_lowest_possible_pfn[i] =
4042 arch_zone_highest_possible_pfn[i-1];
4043 arch_zone_highest_possible_pfn[i] =
4044 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4045 }
2a1e274a
MG
4046 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4047 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4048
4049 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4050 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4051 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4052
c713216d
MG
4053 /* Print out the zone ranges */
4054 printk("Zone PFN ranges:\n");
2a1e274a
MG
4055 for (i = 0; i < MAX_NR_ZONES; i++) {
4056 if (i == ZONE_MOVABLE)
4057 continue;
5dab8ec1 4058 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4059 zone_names[i],
4060 arch_zone_lowest_possible_pfn[i],
4061 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4062 }
4063
4064 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4065 printk("Movable zone start PFN for each node\n");
4066 for (i = 0; i < MAX_NUMNODES; i++) {
4067 if (zone_movable_pfn[i])
4068 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4069 }
c713216d
MG
4070
4071 /* Print out the early_node_map[] */
4072 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4073 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4074 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4075 early_node_map[i].start_pfn,
4076 early_node_map[i].end_pfn);
4077
4078 /* Initialise every node */
708614e6 4079 mminit_verify_pageflags_layout();
8ef82866 4080 setup_nr_node_ids();
c713216d
MG
4081 for_each_online_node(nid) {
4082 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4083 free_area_init_node(nid, NULL,
c713216d 4084 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4085
4086 /* Any memory on that node */
4087 if (pgdat->node_present_pages)
4088 node_set_state(nid, N_HIGH_MEMORY);
4089 check_for_regular_memory(pgdat);
c713216d
MG
4090 }
4091}
2a1e274a 4092
7e63efef 4093static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4094{
4095 unsigned long long coremem;
4096 if (!p)
4097 return -EINVAL;
4098
4099 coremem = memparse(p, &p);
7e63efef 4100 *core = coremem >> PAGE_SHIFT;
2a1e274a 4101
7e63efef 4102 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4103 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4104
4105 return 0;
4106}
ed7ed365 4107
7e63efef
MG
4108/*
4109 * kernelcore=size sets the amount of memory for use for allocations that
4110 * cannot be reclaimed or migrated.
4111 */
4112static int __init cmdline_parse_kernelcore(char *p)
4113{
4114 return cmdline_parse_core(p, &required_kernelcore);
4115}
4116
4117/*
4118 * movablecore=size sets the amount of memory for use for allocations that
4119 * can be reclaimed or migrated.
4120 */
4121static int __init cmdline_parse_movablecore(char *p)
4122{
4123 return cmdline_parse_core(p, &required_movablecore);
4124}
4125
ed7ed365 4126early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4127early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4128
c713216d
MG
4129#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4130
0e0b864e 4131/**
88ca3b94
RD
4132 * set_dma_reserve - set the specified number of pages reserved in the first zone
4133 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4134 *
4135 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4136 * In the DMA zone, a significant percentage may be consumed by kernel image
4137 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4138 * function may optionally be used to account for unfreeable pages in the
4139 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4140 * smaller per-cpu batchsize.
0e0b864e
MG
4141 */
4142void __init set_dma_reserve(unsigned long new_dma_reserve)
4143{
4144 dma_reserve = new_dma_reserve;
4145}
4146
93b7504e 4147#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4148struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4149EXPORT_SYMBOL(contig_page_data);
93b7504e 4150#endif
1da177e4
LT
4151
4152void __init free_area_init(unsigned long *zones_size)
4153{
9109fb7b 4154 free_area_init_node(0, zones_size,
1da177e4
LT
4155 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4156}
1da177e4 4157
1da177e4
LT
4158static int page_alloc_cpu_notify(struct notifier_block *self,
4159 unsigned long action, void *hcpu)
4160{
4161 int cpu = (unsigned long)hcpu;
1da177e4 4162
8bb78442 4163 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4164 drain_pages(cpu);
4165
4166 /*
4167 * Spill the event counters of the dead processor
4168 * into the current processors event counters.
4169 * This artificially elevates the count of the current
4170 * processor.
4171 */
f8891e5e 4172 vm_events_fold_cpu(cpu);
9f8f2172
CL
4173
4174 /*
4175 * Zero the differential counters of the dead processor
4176 * so that the vm statistics are consistent.
4177 *
4178 * This is only okay since the processor is dead and cannot
4179 * race with what we are doing.
4180 */
2244b95a 4181 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4182 }
4183 return NOTIFY_OK;
4184}
1da177e4
LT
4185
4186void __init page_alloc_init(void)
4187{
4188 hotcpu_notifier(page_alloc_cpu_notify, 0);
4189}
4190
cb45b0e9
HA
4191/*
4192 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4193 * or min_free_kbytes changes.
4194 */
4195static void calculate_totalreserve_pages(void)
4196{
4197 struct pglist_data *pgdat;
4198 unsigned long reserve_pages = 0;
2f6726e5 4199 enum zone_type i, j;
cb45b0e9
HA
4200
4201 for_each_online_pgdat(pgdat) {
4202 for (i = 0; i < MAX_NR_ZONES; i++) {
4203 struct zone *zone = pgdat->node_zones + i;
4204 unsigned long max = 0;
4205
4206 /* Find valid and maximum lowmem_reserve in the zone */
4207 for (j = i; j < MAX_NR_ZONES; j++) {
4208 if (zone->lowmem_reserve[j] > max)
4209 max = zone->lowmem_reserve[j];
4210 }
4211
4212 /* we treat pages_high as reserved pages. */
4213 max += zone->pages_high;
4214
4215 if (max > zone->present_pages)
4216 max = zone->present_pages;
4217 reserve_pages += max;
4218 }
4219 }
4220 totalreserve_pages = reserve_pages;
4221}
4222
1da177e4
LT
4223/*
4224 * setup_per_zone_lowmem_reserve - called whenever
4225 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4226 * has a correct pages reserved value, so an adequate number of
4227 * pages are left in the zone after a successful __alloc_pages().
4228 */
4229static void setup_per_zone_lowmem_reserve(void)
4230{
4231 struct pglist_data *pgdat;
2f6726e5 4232 enum zone_type j, idx;
1da177e4 4233
ec936fc5 4234 for_each_online_pgdat(pgdat) {
1da177e4
LT
4235 for (j = 0; j < MAX_NR_ZONES; j++) {
4236 struct zone *zone = pgdat->node_zones + j;
4237 unsigned long present_pages = zone->present_pages;
4238
4239 zone->lowmem_reserve[j] = 0;
4240
2f6726e5
CL
4241 idx = j;
4242 while (idx) {
1da177e4
LT
4243 struct zone *lower_zone;
4244
2f6726e5
CL
4245 idx--;
4246
1da177e4
LT
4247 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4248 sysctl_lowmem_reserve_ratio[idx] = 1;
4249
4250 lower_zone = pgdat->node_zones + idx;
4251 lower_zone->lowmem_reserve[j] = present_pages /
4252 sysctl_lowmem_reserve_ratio[idx];
4253 present_pages += lower_zone->present_pages;
4254 }
4255 }
4256 }
cb45b0e9
HA
4257
4258 /* update totalreserve_pages */
4259 calculate_totalreserve_pages();
1da177e4
LT
4260}
4261
88ca3b94
RD
4262/**
4263 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4264 *
4265 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4266 * with respect to min_free_kbytes.
1da177e4 4267 */
3947be19 4268void setup_per_zone_pages_min(void)
1da177e4
LT
4269{
4270 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4271 unsigned long lowmem_pages = 0;
4272 struct zone *zone;
4273 unsigned long flags;
4274
4275 /* Calculate total number of !ZONE_HIGHMEM pages */
4276 for_each_zone(zone) {
4277 if (!is_highmem(zone))
4278 lowmem_pages += zone->present_pages;
4279 }
4280
4281 for_each_zone(zone) {
ac924c60
AM
4282 u64 tmp;
4283
1125b4e3 4284 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4285 tmp = (u64)pages_min * zone->present_pages;
4286 do_div(tmp, lowmem_pages);
1da177e4
LT
4287 if (is_highmem(zone)) {
4288 /*
669ed175
NP
4289 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4290 * need highmem pages, so cap pages_min to a small
4291 * value here.
4292 *
4293 * The (pages_high-pages_low) and (pages_low-pages_min)
4294 * deltas controls asynch page reclaim, and so should
4295 * not be capped for highmem.
1da177e4
LT
4296 */
4297 int min_pages;
4298
4299 min_pages = zone->present_pages / 1024;
4300 if (min_pages < SWAP_CLUSTER_MAX)
4301 min_pages = SWAP_CLUSTER_MAX;
4302 if (min_pages > 128)
4303 min_pages = 128;
4304 zone->pages_min = min_pages;
4305 } else {
669ed175
NP
4306 /*
4307 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4308 * proportionate to the zone's size.
4309 */
669ed175 4310 zone->pages_min = tmp;
1da177e4
LT
4311 }
4312
ac924c60
AM
4313 zone->pages_low = zone->pages_min + (tmp >> 2);
4314 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4315 setup_zone_migrate_reserve(zone);
1125b4e3 4316 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4317 }
cb45b0e9
HA
4318
4319 /* update totalreserve_pages */
4320 calculate_totalreserve_pages();
1da177e4
LT
4321}
4322
556adecb
RR
4323/**
4324 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4325 *
4326 * The inactive anon list should be small enough that the VM never has to
4327 * do too much work, but large enough that each inactive page has a chance
4328 * to be referenced again before it is swapped out.
4329 *
4330 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4331 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4332 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4333 * the anonymous pages are kept on the inactive list.
4334 *
4335 * total target max
4336 * memory ratio inactive anon
4337 * -------------------------------------
4338 * 10MB 1 5MB
4339 * 100MB 1 50MB
4340 * 1GB 3 250MB
4341 * 10GB 10 0.9GB
4342 * 100GB 31 3GB
4343 * 1TB 101 10GB
4344 * 10TB 320 32GB
4345 */
efab8186 4346static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4347{
4348 struct zone *zone;
4349
4350 for_each_zone(zone) {
4351 unsigned int gb, ratio;
4352
4353 /* Zone size in gigabytes */
4354 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4355 ratio = int_sqrt(10 * gb);
4356 if (!ratio)
4357 ratio = 1;
4358
4359 zone->inactive_ratio = ratio;
4360 }
4361}
4362
1da177e4
LT
4363/*
4364 * Initialise min_free_kbytes.
4365 *
4366 * For small machines we want it small (128k min). For large machines
4367 * we want it large (64MB max). But it is not linear, because network
4368 * bandwidth does not increase linearly with machine size. We use
4369 *
4370 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4371 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4372 *
4373 * which yields
4374 *
4375 * 16MB: 512k
4376 * 32MB: 724k
4377 * 64MB: 1024k
4378 * 128MB: 1448k
4379 * 256MB: 2048k
4380 * 512MB: 2896k
4381 * 1024MB: 4096k
4382 * 2048MB: 5792k
4383 * 4096MB: 8192k
4384 * 8192MB: 11584k
4385 * 16384MB: 16384k
4386 */
4387static int __init init_per_zone_pages_min(void)
4388{
4389 unsigned long lowmem_kbytes;
4390
4391 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4392
4393 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4394 if (min_free_kbytes < 128)
4395 min_free_kbytes = 128;
4396 if (min_free_kbytes > 65536)
4397 min_free_kbytes = 65536;
4398 setup_per_zone_pages_min();
4399 setup_per_zone_lowmem_reserve();
556adecb 4400 setup_per_zone_inactive_ratio();
1da177e4
LT
4401 return 0;
4402}
4403module_init(init_per_zone_pages_min)
4404
4405/*
4406 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4407 * that we can call two helper functions whenever min_free_kbytes
4408 * changes.
4409 */
4410int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4411 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4412{
4413 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4414 if (write)
4415 setup_per_zone_pages_min();
1da177e4
LT
4416 return 0;
4417}
4418
9614634f
CL
4419#ifdef CONFIG_NUMA
4420int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4421 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4422{
4423 struct zone *zone;
4424 int rc;
4425
4426 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4427 if (rc)
4428 return rc;
4429
4430 for_each_zone(zone)
8417bba4 4431 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4432 sysctl_min_unmapped_ratio) / 100;
4433 return 0;
4434}
0ff38490
CL
4435
4436int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4437 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4438{
4439 struct zone *zone;
4440 int rc;
4441
4442 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4443 if (rc)
4444 return rc;
4445
4446 for_each_zone(zone)
4447 zone->min_slab_pages = (zone->present_pages *
4448 sysctl_min_slab_ratio) / 100;
4449 return 0;
4450}
9614634f
CL
4451#endif
4452
1da177e4
LT
4453/*
4454 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4455 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4456 * whenever sysctl_lowmem_reserve_ratio changes.
4457 *
4458 * The reserve ratio obviously has absolutely no relation with the
4459 * pages_min watermarks. The lowmem reserve ratio can only make sense
4460 * if in function of the boot time zone sizes.
4461 */
4462int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4463 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4464{
4465 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4466 setup_per_zone_lowmem_reserve();
4467 return 0;
4468}
4469
8ad4b1fb
RS
4470/*
4471 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4472 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4473 * can have before it gets flushed back to buddy allocator.
4474 */
4475
4476int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4477 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4478{
4479 struct zone *zone;
4480 unsigned int cpu;
4481 int ret;
4482
4483 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4484 if (!write || (ret == -EINVAL))
4485 return ret;
4486 for_each_zone(zone) {
4487 for_each_online_cpu(cpu) {
4488 unsigned long high;
4489 high = zone->present_pages / percpu_pagelist_fraction;
4490 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4491 }
4492 }
4493 return 0;
4494}
4495
f034b5d4 4496int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4497
4498#ifdef CONFIG_NUMA
4499static int __init set_hashdist(char *str)
4500{
4501 if (!str)
4502 return 0;
4503 hashdist = simple_strtoul(str, &str, 0);
4504 return 1;
4505}
4506__setup("hashdist=", set_hashdist);
4507#endif
4508
4509/*
4510 * allocate a large system hash table from bootmem
4511 * - it is assumed that the hash table must contain an exact power-of-2
4512 * quantity of entries
4513 * - limit is the number of hash buckets, not the total allocation size
4514 */
4515void *__init alloc_large_system_hash(const char *tablename,
4516 unsigned long bucketsize,
4517 unsigned long numentries,
4518 int scale,
4519 int flags,
4520 unsigned int *_hash_shift,
4521 unsigned int *_hash_mask,
4522 unsigned long limit)
4523{
4524 unsigned long long max = limit;
4525 unsigned long log2qty, size;
4526 void *table = NULL;
4527
4528 /* allow the kernel cmdline to have a say */
4529 if (!numentries) {
4530 /* round applicable memory size up to nearest megabyte */
04903664 4531 numentries = nr_kernel_pages;
1da177e4
LT
4532 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4533 numentries >>= 20 - PAGE_SHIFT;
4534 numentries <<= 20 - PAGE_SHIFT;
4535
4536 /* limit to 1 bucket per 2^scale bytes of low memory */
4537 if (scale > PAGE_SHIFT)
4538 numentries >>= (scale - PAGE_SHIFT);
4539 else
4540 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4541
4542 /* Make sure we've got at least a 0-order allocation.. */
4543 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4544 numentries = PAGE_SIZE / bucketsize;
1da177e4 4545 }
6e692ed3 4546 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4547
4548 /* limit allocation size to 1/16 total memory by default */
4549 if (max == 0) {
4550 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4551 do_div(max, bucketsize);
4552 }
4553
4554 if (numentries > max)
4555 numentries = max;
4556
f0d1b0b3 4557 log2qty = ilog2(numentries);
1da177e4
LT
4558
4559 do {
4560 size = bucketsize << log2qty;
4561 if (flags & HASH_EARLY)
74768ed8 4562 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4563 else if (hashdist)
4564 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4565 else {
2309f9e6 4566 unsigned long order = get_order(size);
1da177e4 4567 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4568 /*
4569 * If bucketsize is not a power-of-two, we may free
4570 * some pages at the end of hash table.
4571 */
4572 if (table) {
4573 unsigned long alloc_end = (unsigned long)table +
4574 (PAGE_SIZE << order);
4575 unsigned long used = (unsigned long)table +
4576 PAGE_ALIGN(size);
4577 split_page(virt_to_page(table), order);
4578 while (used < alloc_end) {
4579 free_page(used);
4580 used += PAGE_SIZE;
4581 }
4582 }
1da177e4
LT
4583 }
4584 } while (!table && size > PAGE_SIZE && --log2qty);
4585
4586 if (!table)
4587 panic("Failed to allocate %s hash table\n", tablename);
4588
b49ad484 4589 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4590 tablename,
4591 (1U << log2qty),
f0d1b0b3 4592 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4593 size);
4594
4595 if (_hash_shift)
4596 *_hash_shift = log2qty;
4597 if (_hash_mask)
4598 *_hash_mask = (1 << log2qty) - 1;
4599
4600 return table;
4601}
a117e66e 4602
835c134e
MG
4603/* Return a pointer to the bitmap storing bits affecting a block of pages */
4604static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4605 unsigned long pfn)
4606{
4607#ifdef CONFIG_SPARSEMEM
4608 return __pfn_to_section(pfn)->pageblock_flags;
4609#else
4610 return zone->pageblock_flags;
4611#endif /* CONFIG_SPARSEMEM */
4612}
4613
4614static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4615{
4616#ifdef CONFIG_SPARSEMEM
4617 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4618 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4619#else
4620 pfn = pfn - zone->zone_start_pfn;
d9c23400 4621 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4622#endif /* CONFIG_SPARSEMEM */
4623}
4624
4625/**
d9c23400 4626 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4627 * @page: The page within the block of interest
4628 * @start_bitidx: The first bit of interest to retrieve
4629 * @end_bitidx: The last bit of interest
4630 * returns pageblock_bits flags
4631 */
4632unsigned long get_pageblock_flags_group(struct page *page,
4633 int start_bitidx, int end_bitidx)
4634{
4635 struct zone *zone;
4636 unsigned long *bitmap;
4637 unsigned long pfn, bitidx;
4638 unsigned long flags = 0;
4639 unsigned long value = 1;
4640
4641 zone = page_zone(page);
4642 pfn = page_to_pfn(page);
4643 bitmap = get_pageblock_bitmap(zone, pfn);
4644 bitidx = pfn_to_bitidx(zone, pfn);
4645
4646 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4647 if (test_bit(bitidx + start_bitidx, bitmap))
4648 flags |= value;
6220ec78 4649
835c134e
MG
4650 return flags;
4651}
4652
4653/**
d9c23400 4654 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4655 * @page: The page within the block of interest
4656 * @start_bitidx: The first bit of interest
4657 * @end_bitidx: The last bit of interest
4658 * @flags: The flags to set
4659 */
4660void set_pageblock_flags_group(struct page *page, unsigned long flags,
4661 int start_bitidx, int end_bitidx)
4662{
4663 struct zone *zone;
4664 unsigned long *bitmap;
4665 unsigned long pfn, bitidx;
4666 unsigned long value = 1;
4667
4668 zone = page_zone(page);
4669 pfn = page_to_pfn(page);
4670 bitmap = get_pageblock_bitmap(zone, pfn);
4671 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4672 VM_BUG_ON(pfn < zone->zone_start_pfn);
4673 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4674
4675 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4676 if (flags & value)
4677 __set_bit(bitidx + start_bitidx, bitmap);
4678 else
4679 __clear_bit(bitidx + start_bitidx, bitmap);
4680}
a5d76b54
KH
4681
4682/*
4683 * This is designed as sub function...plz see page_isolation.c also.
4684 * set/clear page block's type to be ISOLATE.
4685 * page allocater never alloc memory from ISOLATE block.
4686 */
4687
4688int set_migratetype_isolate(struct page *page)
4689{
4690 struct zone *zone;
4691 unsigned long flags;
4692 int ret = -EBUSY;
4693
4694 zone = page_zone(page);
4695 spin_lock_irqsave(&zone->lock, flags);
4696 /*
4697 * In future, more migrate types will be able to be isolation target.
4698 */
4699 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4700 goto out;
4701 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4702 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4703 ret = 0;
4704out:
4705 spin_unlock_irqrestore(&zone->lock, flags);
4706 if (!ret)
9f8f2172 4707 drain_all_pages();
a5d76b54
KH
4708 return ret;
4709}
4710
4711void unset_migratetype_isolate(struct page *page)
4712{
4713 struct zone *zone;
4714 unsigned long flags;
4715 zone = page_zone(page);
4716 spin_lock_irqsave(&zone->lock, flags);
4717 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4718 goto out;
4719 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4720 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4721out:
4722 spin_unlock_irqrestore(&zone->lock, flags);
4723}
0c0e6195
KH
4724
4725#ifdef CONFIG_MEMORY_HOTREMOVE
4726/*
4727 * All pages in the range must be isolated before calling this.
4728 */
4729void
4730__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4731{
4732 struct page *page;
4733 struct zone *zone;
4734 int order, i;
4735 unsigned long pfn;
4736 unsigned long flags;
4737 /* find the first valid pfn */
4738 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4739 if (pfn_valid(pfn))
4740 break;
4741 if (pfn == end_pfn)
4742 return;
4743 zone = page_zone(pfn_to_page(pfn));
4744 spin_lock_irqsave(&zone->lock, flags);
4745 pfn = start_pfn;
4746 while (pfn < end_pfn) {
4747 if (!pfn_valid(pfn)) {
4748 pfn++;
4749 continue;
4750 }
4751 page = pfn_to_page(pfn);
4752 BUG_ON(page_count(page));
4753 BUG_ON(!PageBuddy(page));
4754 order = page_order(page);
4755#ifdef CONFIG_DEBUG_VM
4756 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4757 pfn, 1 << order, end_pfn);
4758#endif
4759 list_del(&page->lru);
4760 rmv_page_order(page);
4761 zone->free_area[order].nr_free--;
4762 __mod_zone_page_state(zone, NR_FREE_PAGES,
4763 - (1UL << order));
4764 for (i = 0; i < (1 << order); i++)
4765 SetPageReserved((page+i));
4766 pfn += (1 << order);
4767 }
4768 spin_unlock_irqrestore(&zone->lock, flags);
4769}
4770#endif