]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
oom-kill: show virtual size and rss information of the killed process
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
0d3d062a 51#include <trace/events/kmem.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
ac924c60 54#include <asm/div64.h>
1da177e4
LT
55#include "internal.h"
56
57/*
13808910 58 * Array of node states.
1da177e4 59 */
13808910
CL
60nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63#ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65#ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67#endif
68 [N_CPU] = { { [0] = 1UL } },
69#endif /* NUMA */
70};
71EXPORT_SYMBOL(node_states);
72
6c231b7b 73unsigned long totalram_pages __read_mostly;
cb45b0e9 74unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 75int percpu_pagelist_fraction;
dcce284a 76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 77
d9c23400
MG
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
d98c7a09 82static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 83
1da177e4
LT
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
1da177e4 94 */
2f1b6248 95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 96#ifdef CONFIG_ZONE_DMA
2f1b6248 97 256,
4b51d669 98#endif
fb0e7942 99#ifdef CONFIG_ZONE_DMA32
2f1b6248 100 256,
fb0e7942 101#endif
e53ef38d 102#ifdef CONFIG_HIGHMEM
2a1e274a 103 32,
e53ef38d 104#endif
2a1e274a 105 32,
2f1b6248 106};
1da177e4
LT
107
108EXPORT_SYMBOL(totalram_pages);
1da177e4 109
15ad7cdc 110static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 111#ifdef CONFIG_ZONE_DMA
2f1b6248 112 "DMA",
4b51d669 113#endif
fb0e7942 114#ifdef CONFIG_ZONE_DMA32
2f1b6248 115 "DMA32",
fb0e7942 116#endif
2f1b6248 117 "Normal",
e53ef38d 118#ifdef CONFIG_HIGHMEM
2a1e274a 119 "HighMem",
e53ef38d 120#endif
2a1e274a 121 "Movable",
2f1b6248
CL
122};
123
1da177e4
LT
124int min_free_kbytes = 1024;
125
2c85f51d
JB
126static unsigned long __meminitdata nr_kernel_pages;
127static unsigned long __meminitdata nr_all_pages;
a3142c8e 128static unsigned long __meminitdata dma_reserve;
1da177e4 129
c713216d
MG
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
183ff22b 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
98011f56
JB
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 155 static unsigned long __initdata required_kernelcore;
484f51f8 156 static unsigned long __initdata required_movablecore;
b69a7288 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
c713216d
MG
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
418508c1
MS
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 166int nr_online_nodes __read_mostly = 1;
418508c1 167EXPORT_SYMBOL(nr_node_ids);
62bc62a8 168EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
169#endif
170
9ef9acb0
MG
171int page_group_by_mobility_disabled __read_mostly;
172
b2a0ac88
MG
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
49255c61
MG
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
b2a0ac88
MG
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181}
182
7f33d49a
RW
183bool oom_killer_disabled __read_mostly;
184
13e7444b 185#ifdef CONFIG_DEBUG_VM
c6a57e19 186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 187{
bdc8cb98
DH
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
c6a57e19 191
bdc8cb98
DH
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
c6a57e19
DH
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
14e07298 205 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 206 return 0;
1da177e4 207 if (zone != page_zone(page))
c6a57e19
DH
208 return 0;
209
210 return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217 if (page_outside_zone_boundaries(zone, page))
1da177e4 218 return 1;
c6a57e19
DH
219 if (!page_is_consistent(zone, page))
220 return 1;
221
1da177e4
LT
222 return 0;
223}
13e7444b
NP
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227 return 0;
228}
229#endif
230
224abf92 231static void bad_page(struct page *page)
1da177e4 232{
d936cf9b
HD
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
2a7684a2
WF
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page)) {
239 __ClearPageBuddy(page);
240 return;
241 }
242
d936cf9b
HD
243 /*
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
246 */
247 if (nr_shown == 60) {
248 if (time_before(jiffies, resume)) {
249 nr_unshown++;
250 goto out;
251 }
252 if (nr_unshown) {
1e9e6365
HD
253 printk(KERN_ALERT
254 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
255 nr_unshown);
256 nr_unshown = 0;
257 }
258 nr_shown = 0;
259 }
260 if (nr_shown++ == 0)
261 resume = jiffies + 60 * HZ;
262
1e9e6365 263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 264 current->comm, page_to_pfn(page));
1e9e6365 265 printk(KERN_ALERT
3dc14741
HD
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page, (void *)page->flags, page_count(page),
268 page_mapcount(page), page->mapping, page->index);
3dc14741 269
1da177e4 270 dump_stack();
d936cf9b 271out:
8cc3b392
HD
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page);
9f158333 274 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
275}
276
1da177e4
LT
277/*
278 * Higher-order pages are called "compound pages". They are structured thusly:
279 *
280 * The first PAGE_SIZE page is called the "head page".
281 *
282 * The remaining PAGE_SIZE pages are called "tail pages".
283 *
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
286 *
41d78ba5
HD
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
1da177e4 290 */
d98c7a09
HD
291
292static void free_compound_page(struct page *page)
293{
d85f3385 294 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
295}
296
01ad1c08 297void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
298{
299 int i;
300 int nr_pages = 1 << order;
301
302 set_compound_page_dtor(page, free_compound_page);
303 set_compound_order(page, order);
304 __SetPageHead(page);
305 for (i = 1; i < nr_pages; i++) {
306 struct page *p = page + i;
307
308 __SetPageTail(p);
309 p->first_page = page;
310 }
311}
312
8cc3b392 313static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
314{
315 int i;
316 int nr_pages = 1 << order;
8cc3b392 317 int bad = 0;
1da177e4 318
8cc3b392
HD
319 if (unlikely(compound_order(page) != order) ||
320 unlikely(!PageHead(page))) {
224abf92 321 bad_page(page);
8cc3b392
HD
322 bad++;
323 }
1da177e4 324
6d777953 325 __ClearPageHead(page);
8cc3b392 326
18229df5
AW
327 for (i = 1; i < nr_pages; i++) {
328 struct page *p = page + i;
1da177e4 329
e713a21d 330 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 331 bad_page(page);
8cc3b392
HD
332 bad++;
333 }
d85f3385 334 __ClearPageTail(p);
1da177e4 335 }
8cc3b392
HD
336
337 return bad;
1da177e4 338}
1da177e4 339
17cf4406
NP
340static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
341{
342 int i;
343
6626c5d5
AM
344 /*
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
347 */
725d704e 348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
349 for (i = 0; i < (1 << order); i++)
350 clear_highpage(page + i);
351}
352
6aa3001b
AM
353static inline void set_page_order(struct page *page, int order)
354{
4c21e2f2 355 set_page_private(page, order);
676165a8 356 __SetPageBuddy(page);
1da177e4
LT
357}
358
359static inline void rmv_page_order(struct page *page)
360{
676165a8 361 __ClearPageBuddy(page);
4c21e2f2 362 set_page_private(page, 0);
1da177e4
LT
363}
364
365/*
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
368 *
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
371 * B2 = B1 ^ (1 << O)
372 * For example, if the starting buddy (buddy2) is #8 its order
373 * 1 buddy is #10:
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
375 *
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
378 * P = B & ~(1 << O)
379 *
d6e05edc 380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
381 */
382static inline struct page *
383__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
384{
385 unsigned long buddy_idx = page_idx ^ (1 << order);
386
387 return page + (buddy_idx - page_idx);
388}
389
390static inline unsigned long
391__find_combined_index(unsigned long page_idx, unsigned int order)
392{
393 return (page_idx & ~(1 << order));
394}
395
396/*
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
13e7444b 399 * (a) the buddy is not in a hole &&
676165a8 400 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
676165a8
NP
403 *
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 406 *
676165a8 407 * For recording page's order, we use page_private(page).
1da177e4 408 */
cb2b95e1
AW
409static inline int page_is_buddy(struct page *page, struct page *buddy,
410 int order)
1da177e4 411{
14e07298 412 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 413 return 0;
13e7444b 414
cb2b95e1
AW
415 if (page_zone_id(page) != page_zone_id(buddy))
416 return 0;
417
418 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 419 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 420 return 1;
676165a8 421 }
6aa3001b 422 return 0;
1da177e4
LT
423}
424
425/*
426 * Freeing function for a buddy system allocator.
427 *
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
676165a8 438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 439 * order is recorded in page_private(page) field.
1da177e4
LT
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
445 *
446 * -- wli
447 */
448
48db57f8 449static inline void __free_one_page(struct page *page,
ed0ae21d
MG
450 struct zone *zone, unsigned int order,
451 int migratetype)
1da177e4
LT
452{
453 unsigned long page_idx;
1da177e4 454
224abf92 455 if (unlikely(PageCompound(page)))
8cc3b392
HD
456 if (unlikely(destroy_compound_page(page, order)))
457 return;
1da177e4 458
ed0ae21d
MG
459 VM_BUG_ON(migratetype == -1);
460
1da177e4
LT
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
462
f2260e6b 463 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 464 VM_BUG_ON(bad_range(zone, page));
1da177e4 465
1da177e4
LT
466 while (order < MAX_ORDER-1) {
467 unsigned long combined_idx;
1da177e4
LT
468 struct page *buddy;
469
1da177e4 470 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 471 if (!page_is_buddy(page, buddy, order))
3c82d0ce 472 break;
13e7444b 473
3c82d0ce 474 /* Our buddy is free, merge with it and move up one order. */
1da177e4 475 list_del(&buddy->lru);
b2a0ac88 476 zone->free_area[order].nr_free--;
1da177e4 477 rmv_page_order(buddy);
13e7444b 478 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
479 page = page + (combined_idx - page_idx);
480 page_idx = combined_idx;
481 order++;
482 }
483 set_page_order(page, order);
b2a0ac88
MG
484 list_add(&page->lru,
485 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
486 zone->free_area[order].nr_free++;
487}
488
092cead6
KM
489/*
490 * free_page_mlock() -- clean up attempts to free and mlocked() page.
491 * Page should not be on lru, so no need to fix that up.
492 * free_pages_check() will verify...
493 */
494static inline void free_page_mlock(struct page *page)
495{
092cead6
KM
496 __dec_zone_page_state(page, NR_MLOCK);
497 __count_vm_event(UNEVICTABLE_MLOCKFREED);
498}
092cead6 499
224abf92 500static inline int free_pages_check(struct page *page)
1da177e4 501{
92be2e33
NP
502 if (unlikely(page_mapcount(page) |
503 (page->mapping != NULL) |
a3af9c38 504 (atomic_read(&page->_count) != 0) |
8cc3b392 505 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 506 bad_page(page);
79f4b7bf 507 return 1;
8cc3b392 508 }
79f4b7bf
HD
509 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
510 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
511 return 0;
1da177e4
LT
512}
513
514/*
5f8dcc21 515 * Frees a number of pages from the PCP lists
1da177e4 516 * Assumes all pages on list are in same zone, and of same order.
207f36ee 517 * count is the number of pages to free.
1da177e4
LT
518 *
519 * If the zone was previously in an "all pages pinned" state then look to
520 * see if this freeing clears that state.
521 *
522 * And clear the zone's pages_scanned counter, to hold off the "all pages are
523 * pinned" detection logic.
524 */
5f8dcc21
MG
525static void free_pcppages_bulk(struct zone *zone, int count,
526 struct per_cpu_pages *pcp)
1da177e4 527{
5f8dcc21 528 int migratetype = 0;
a6f9edd6 529 int batch_free = 0;
5f8dcc21 530
c54ad30c 531 spin_lock(&zone->lock);
e815af95 532 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 533 zone->pages_scanned = 0;
f2260e6b 534
5f8dcc21 535 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 536 while (count) {
48db57f8 537 struct page *page;
5f8dcc21
MG
538 struct list_head *list;
539
540 /*
a6f9edd6
MG
541 * Remove pages from lists in a round-robin fashion. A
542 * batch_free count is maintained that is incremented when an
543 * empty list is encountered. This is so more pages are freed
544 * off fuller lists instead of spinning excessively around empty
545 * lists
5f8dcc21
MG
546 */
547 do {
a6f9edd6 548 batch_free++;
5f8dcc21
MG
549 if (++migratetype == MIGRATE_PCPTYPES)
550 migratetype = 0;
551 list = &pcp->lists[migratetype];
552 } while (list_empty(list));
48db57f8 553
a6f9edd6
MG
554 do {
555 page = list_entry(list->prev, struct page, lru);
556 /* must delete as __free_one_page list manipulates */
557 list_del(&page->lru);
558 __free_one_page(page, zone, 0, migratetype);
559 trace_mm_page_pcpu_drain(page, 0, migratetype);
560 } while (--count && --batch_free && !list_empty(list));
1da177e4 561 }
c54ad30c 562 spin_unlock(&zone->lock);
1da177e4
LT
563}
564
ed0ae21d
MG
565static void free_one_page(struct zone *zone, struct page *page, int order,
566 int migratetype)
1da177e4 567{
006d22d9 568 spin_lock(&zone->lock);
e815af95 569 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 570 zone->pages_scanned = 0;
f2260e6b
MG
571
572 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 573 __free_one_page(page, zone, order, migratetype);
006d22d9 574 spin_unlock(&zone->lock);
48db57f8
NP
575}
576
577static void __free_pages_ok(struct page *page, unsigned int order)
578{
579 unsigned long flags;
1da177e4 580 int i;
8cc3b392 581 int bad = 0;
451ea25d 582 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 583
b1eeab67
VN
584 kmemcheck_free_shadow(page, order);
585
1da177e4 586 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
587 bad += free_pages_check(page + i);
588 if (bad)
689bcebf
HD
589 return;
590
3ac7fe5a 591 if (!PageHighMem(page)) {
9858db50 592 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
593 debug_check_no_obj_freed(page_address(page),
594 PAGE_SIZE << order);
595 }
dafb1367 596 arch_free_page(page, order);
48db57f8 597 kernel_map_pages(page, 1 << order, 0);
dafb1367 598
c54ad30c 599 local_irq_save(flags);
c277331d 600 if (unlikely(wasMlocked))
da456f14 601 free_page_mlock(page);
f8891e5e 602 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
603 free_one_page(page_zone(page), page, order,
604 get_pageblock_migratetype(page));
c54ad30c 605 local_irq_restore(flags);
1da177e4
LT
606}
607
a226f6c8
DH
608/*
609 * permit the bootmem allocator to evade page validation on high-order frees
610 */
af370fb8 611void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
612{
613 if (order == 0) {
614 __ClearPageReserved(page);
615 set_page_count(page, 0);
7835e98b 616 set_page_refcounted(page);
545b1ea9 617 __free_page(page);
a226f6c8 618 } else {
a226f6c8
DH
619 int loop;
620
545b1ea9 621 prefetchw(page);
a226f6c8
DH
622 for (loop = 0; loop < BITS_PER_LONG; loop++) {
623 struct page *p = &page[loop];
624
545b1ea9
NP
625 if (loop + 1 < BITS_PER_LONG)
626 prefetchw(p + 1);
a226f6c8
DH
627 __ClearPageReserved(p);
628 set_page_count(p, 0);
629 }
630
7835e98b 631 set_page_refcounted(page);
545b1ea9 632 __free_pages(page, order);
a226f6c8
DH
633 }
634}
635
1da177e4
LT
636
637/*
638 * The order of subdivision here is critical for the IO subsystem.
639 * Please do not alter this order without good reasons and regression
640 * testing. Specifically, as large blocks of memory are subdivided,
641 * the order in which smaller blocks are delivered depends on the order
642 * they're subdivided in this function. This is the primary factor
643 * influencing the order in which pages are delivered to the IO
644 * subsystem according to empirical testing, and this is also justified
645 * by considering the behavior of a buddy system containing a single
646 * large block of memory acted on by a series of small allocations.
647 * This behavior is a critical factor in sglist merging's success.
648 *
649 * -- wli
650 */
085cc7d5 651static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
652 int low, int high, struct free_area *area,
653 int migratetype)
1da177e4
LT
654{
655 unsigned long size = 1 << high;
656
657 while (high > low) {
658 area--;
659 high--;
660 size >>= 1;
725d704e 661 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 662 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
663 area->nr_free++;
664 set_page_order(&page[size], high);
665 }
1da177e4
LT
666}
667
1da177e4
LT
668/*
669 * This page is about to be returned from the page allocator
670 */
2a7684a2 671static inline int check_new_page(struct page *page)
1da177e4 672{
92be2e33
NP
673 if (unlikely(page_mapcount(page) |
674 (page->mapping != NULL) |
a3af9c38 675 (atomic_read(&page->_count) != 0) |
8cc3b392 676 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 677 bad_page(page);
689bcebf 678 return 1;
8cc3b392 679 }
2a7684a2
WF
680 return 0;
681}
682
683static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
684{
685 int i;
686
687 for (i = 0; i < (1 << order); i++) {
688 struct page *p = page + i;
689 if (unlikely(check_new_page(p)))
690 return 1;
691 }
689bcebf 692
4c21e2f2 693 set_page_private(page, 0);
7835e98b 694 set_page_refcounted(page);
cc102509
NP
695
696 arch_alloc_page(page, order);
1da177e4 697 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
698
699 if (gfp_flags & __GFP_ZERO)
700 prep_zero_page(page, order, gfp_flags);
701
702 if (order && (gfp_flags & __GFP_COMP))
703 prep_compound_page(page, order);
704
689bcebf 705 return 0;
1da177e4
LT
706}
707
56fd56b8
MG
708/*
709 * Go through the free lists for the given migratetype and remove
710 * the smallest available page from the freelists
711 */
728ec980
MG
712static inline
713struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
714 int migratetype)
715{
716 unsigned int current_order;
717 struct free_area * area;
718 struct page *page;
719
720 /* Find a page of the appropriate size in the preferred list */
721 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
722 area = &(zone->free_area[current_order]);
723 if (list_empty(&area->free_list[migratetype]))
724 continue;
725
726 page = list_entry(area->free_list[migratetype].next,
727 struct page, lru);
728 list_del(&page->lru);
729 rmv_page_order(page);
730 area->nr_free--;
56fd56b8
MG
731 expand(zone, page, order, current_order, area, migratetype);
732 return page;
733 }
734
735 return NULL;
736}
737
738
b2a0ac88
MG
739/*
740 * This array describes the order lists are fallen back to when
741 * the free lists for the desirable migrate type are depleted
742 */
743static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
744 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
745 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
746 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
747 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
748};
749
c361be55
MG
750/*
751 * Move the free pages in a range to the free lists of the requested type.
d9c23400 752 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
753 * boundary. If alignment is required, use move_freepages_block()
754 */
b69a7288
AB
755static int move_freepages(struct zone *zone,
756 struct page *start_page, struct page *end_page,
757 int migratetype)
c361be55
MG
758{
759 struct page *page;
760 unsigned long order;
d100313f 761 int pages_moved = 0;
c361be55
MG
762
763#ifndef CONFIG_HOLES_IN_ZONE
764 /*
765 * page_zone is not safe to call in this context when
766 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
767 * anyway as we check zone boundaries in move_freepages_block().
768 * Remove at a later date when no bug reports exist related to
ac0e5b7a 769 * grouping pages by mobility
c361be55
MG
770 */
771 BUG_ON(page_zone(start_page) != page_zone(end_page));
772#endif
773
774 for (page = start_page; page <= end_page;) {
344c790e
AL
775 /* Make sure we are not inadvertently changing nodes */
776 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
777
c361be55
MG
778 if (!pfn_valid_within(page_to_pfn(page))) {
779 page++;
780 continue;
781 }
782
783 if (!PageBuddy(page)) {
784 page++;
785 continue;
786 }
787
788 order = page_order(page);
789 list_del(&page->lru);
790 list_add(&page->lru,
791 &zone->free_area[order].free_list[migratetype]);
792 page += 1 << order;
d100313f 793 pages_moved += 1 << order;
c361be55
MG
794 }
795
d100313f 796 return pages_moved;
c361be55
MG
797}
798
b69a7288
AB
799static int move_freepages_block(struct zone *zone, struct page *page,
800 int migratetype)
c361be55
MG
801{
802 unsigned long start_pfn, end_pfn;
803 struct page *start_page, *end_page;
804
805 start_pfn = page_to_pfn(page);
d9c23400 806 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 807 start_page = pfn_to_page(start_pfn);
d9c23400
MG
808 end_page = start_page + pageblock_nr_pages - 1;
809 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
810
811 /* Do not cross zone boundaries */
812 if (start_pfn < zone->zone_start_pfn)
813 start_page = page;
814 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
815 return 0;
816
817 return move_freepages(zone, start_page, end_page, migratetype);
818}
819
2f66a68f
MG
820static void change_pageblock_range(struct page *pageblock_page,
821 int start_order, int migratetype)
822{
823 int nr_pageblocks = 1 << (start_order - pageblock_order);
824
825 while (nr_pageblocks--) {
826 set_pageblock_migratetype(pageblock_page, migratetype);
827 pageblock_page += pageblock_nr_pages;
828 }
829}
830
b2a0ac88 831/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
832static inline struct page *
833__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
834{
835 struct free_area * area;
836 int current_order;
837 struct page *page;
838 int migratetype, i;
839
840 /* Find the largest possible block of pages in the other list */
841 for (current_order = MAX_ORDER-1; current_order >= order;
842 --current_order) {
843 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
844 migratetype = fallbacks[start_migratetype][i];
845
56fd56b8
MG
846 /* MIGRATE_RESERVE handled later if necessary */
847 if (migratetype == MIGRATE_RESERVE)
848 continue;
e010487d 849
b2a0ac88
MG
850 area = &(zone->free_area[current_order]);
851 if (list_empty(&area->free_list[migratetype]))
852 continue;
853
854 page = list_entry(area->free_list[migratetype].next,
855 struct page, lru);
856 area->nr_free--;
857
858 /*
c361be55 859 * If breaking a large block of pages, move all free
46dafbca
MG
860 * pages to the preferred allocation list. If falling
861 * back for a reclaimable kernel allocation, be more
862 * agressive about taking ownership of free pages
b2a0ac88 863 */
d9c23400 864 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
865 start_migratetype == MIGRATE_RECLAIMABLE ||
866 page_group_by_mobility_disabled) {
46dafbca
MG
867 unsigned long pages;
868 pages = move_freepages_block(zone, page,
869 start_migratetype);
870
871 /* Claim the whole block if over half of it is free */
dd5d241e
MG
872 if (pages >= (1 << (pageblock_order-1)) ||
873 page_group_by_mobility_disabled)
46dafbca
MG
874 set_pageblock_migratetype(page,
875 start_migratetype);
876
b2a0ac88 877 migratetype = start_migratetype;
c361be55 878 }
b2a0ac88
MG
879
880 /* Remove the page from the freelists */
881 list_del(&page->lru);
882 rmv_page_order(page);
b2a0ac88 883
2f66a68f
MG
884 /* Take ownership for orders >= pageblock_order */
885 if (current_order >= pageblock_order)
886 change_pageblock_range(page, current_order,
b2a0ac88
MG
887 start_migratetype);
888
889 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
890
891 trace_mm_page_alloc_extfrag(page, order, current_order,
892 start_migratetype, migratetype);
893
b2a0ac88
MG
894 return page;
895 }
896 }
897
728ec980 898 return NULL;
b2a0ac88
MG
899}
900
56fd56b8 901/*
1da177e4
LT
902 * Do the hard work of removing an element from the buddy allocator.
903 * Call me with the zone->lock already held.
904 */
b2a0ac88
MG
905static struct page *__rmqueue(struct zone *zone, unsigned int order,
906 int migratetype)
1da177e4 907{
1da177e4
LT
908 struct page *page;
909
728ec980 910retry_reserve:
56fd56b8 911 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 912
728ec980 913 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 914 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 915
728ec980
MG
916 /*
917 * Use MIGRATE_RESERVE rather than fail an allocation. goto
918 * is used because __rmqueue_smallest is an inline function
919 * and we want just one call site
920 */
921 if (!page) {
922 migratetype = MIGRATE_RESERVE;
923 goto retry_reserve;
924 }
925 }
926
0d3d062a 927 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 928 return page;
1da177e4
LT
929}
930
931/*
932 * Obtain a specified number of elements from the buddy allocator, all under
933 * a single hold of the lock, for efficiency. Add them to the supplied list.
934 * Returns the number of new pages which were placed at *list.
935 */
936static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 937 unsigned long count, struct list_head *list,
e084b2d9 938 int migratetype, int cold)
1da177e4 939{
1da177e4 940 int i;
1da177e4 941
c54ad30c 942 spin_lock(&zone->lock);
1da177e4 943 for (i = 0; i < count; ++i) {
b2a0ac88 944 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 945 if (unlikely(page == NULL))
1da177e4 946 break;
81eabcbe
MG
947
948 /*
949 * Split buddy pages returned by expand() are received here
950 * in physical page order. The page is added to the callers and
951 * list and the list head then moves forward. From the callers
952 * perspective, the linked list is ordered by page number in
953 * some conditions. This is useful for IO devices that can
954 * merge IO requests if the physical pages are ordered
955 * properly.
956 */
e084b2d9
MG
957 if (likely(cold == 0))
958 list_add(&page->lru, list);
959 else
960 list_add_tail(&page->lru, list);
535131e6 961 set_page_private(page, migratetype);
81eabcbe 962 list = &page->lru;
1da177e4 963 }
f2260e6b 964 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 965 spin_unlock(&zone->lock);
085cc7d5 966 return i;
1da177e4
LT
967}
968
4ae7c039 969#ifdef CONFIG_NUMA
8fce4d8e 970/*
4037d452
CL
971 * Called from the vmstat counter updater to drain pagesets of this
972 * currently executing processor on remote nodes after they have
973 * expired.
974 *
879336c3
CL
975 * Note that this function must be called with the thread pinned to
976 * a single processor.
8fce4d8e 977 */
4037d452 978void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 979{
4ae7c039 980 unsigned long flags;
4037d452 981 int to_drain;
4ae7c039 982
4037d452
CL
983 local_irq_save(flags);
984 if (pcp->count >= pcp->batch)
985 to_drain = pcp->batch;
986 else
987 to_drain = pcp->count;
5f8dcc21 988 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
989 pcp->count -= to_drain;
990 local_irq_restore(flags);
4ae7c039
CL
991}
992#endif
993
9f8f2172
CL
994/*
995 * Drain pages of the indicated processor.
996 *
997 * The processor must either be the current processor and the
998 * thread pinned to the current processor or a processor that
999 * is not online.
1000 */
1001static void drain_pages(unsigned int cpu)
1da177e4 1002{
c54ad30c 1003 unsigned long flags;
1da177e4 1004 struct zone *zone;
1da177e4 1005
ee99c71c 1006 for_each_populated_zone(zone) {
1da177e4 1007 struct per_cpu_pageset *pset;
3dfa5721 1008 struct per_cpu_pages *pcp;
1da177e4 1009
e7c8d5c9 1010 pset = zone_pcp(zone, cpu);
3dfa5721
CL
1011
1012 pcp = &pset->pcp;
1013 local_irq_save(flags);
5f8dcc21 1014 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1015 pcp->count = 0;
1016 local_irq_restore(flags);
1da177e4
LT
1017 }
1018}
1da177e4 1019
9f8f2172
CL
1020/*
1021 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1022 */
1023void drain_local_pages(void *arg)
1024{
1025 drain_pages(smp_processor_id());
1026}
1027
1028/*
1029 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1030 */
1031void drain_all_pages(void)
1032{
15c8b6c1 1033 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1034}
1035
296699de 1036#ifdef CONFIG_HIBERNATION
1da177e4
LT
1037
1038void mark_free_pages(struct zone *zone)
1039{
f623f0db
RW
1040 unsigned long pfn, max_zone_pfn;
1041 unsigned long flags;
b2a0ac88 1042 int order, t;
1da177e4
LT
1043 struct list_head *curr;
1044
1045 if (!zone->spanned_pages)
1046 return;
1047
1048 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1049
1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 if (pfn_valid(pfn)) {
1053 struct page *page = pfn_to_page(pfn);
1054
7be98234
RW
1055 if (!swsusp_page_is_forbidden(page))
1056 swsusp_unset_page_free(page);
f623f0db 1057 }
1da177e4 1058
b2a0ac88
MG
1059 for_each_migratetype_order(order, t) {
1060 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1061 unsigned long i;
1da177e4 1062
f623f0db
RW
1063 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1064 for (i = 0; i < (1UL << order); i++)
7be98234 1065 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1066 }
b2a0ac88 1067 }
1da177e4
LT
1068 spin_unlock_irqrestore(&zone->lock, flags);
1069}
e2c55dc8 1070#endif /* CONFIG_PM */
1da177e4 1071
1da177e4
LT
1072/*
1073 * Free a 0-order page
1074 */
920c7a5d 1075static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1076{
1077 struct zone *zone = page_zone(page);
1078 struct per_cpu_pages *pcp;
1079 unsigned long flags;
5f8dcc21 1080 int migratetype;
451ea25d 1081 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1082
b1eeab67
VN
1083 kmemcheck_free_shadow(page, 0);
1084
1da177e4
LT
1085 if (PageAnon(page))
1086 page->mapping = NULL;
224abf92 1087 if (free_pages_check(page))
689bcebf
HD
1088 return;
1089
3ac7fe5a 1090 if (!PageHighMem(page)) {
9858db50 1091 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1092 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1093 }
dafb1367 1094 arch_free_page(page, 0);
689bcebf
HD
1095 kernel_map_pages(page, 1, 0);
1096
3dfa5721 1097 pcp = &zone_pcp(zone, get_cpu())->pcp;
5f8dcc21
MG
1098 migratetype = get_pageblock_migratetype(page);
1099 set_page_private(page, migratetype);
1da177e4 1100 local_irq_save(flags);
c277331d 1101 if (unlikely(wasMlocked))
da456f14 1102 free_page_mlock(page);
f8891e5e 1103 __count_vm_event(PGFREE);
da456f14 1104
5f8dcc21
MG
1105 /*
1106 * We only track unmovable, reclaimable and movable on pcp lists.
1107 * Free ISOLATE pages back to the allocator because they are being
1108 * offlined but treat RESERVE as movable pages so we can get those
1109 * areas back if necessary. Otherwise, we may have to free
1110 * excessively into the page allocator
1111 */
1112 if (migratetype >= MIGRATE_PCPTYPES) {
1113 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1114 free_one_page(zone, page, 0, migratetype);
1115 goto out;
1116 }
1117 migratetype = MIGRATE_MOVABLE;
1118 }
1119
3dfa5721 1120 if (cold)
5f8dcc21 1121 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1122 else
5f8dcc21 1123 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1124 pcp->count++;
48db57f8 1125 if (pcp->count >= pcp->high) {
5f8dcc21 1126 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1127 pcp->count -= pcp->batch;
1128 }
5f8dcc21
MG
1129
1130out:
1da177e4
LT
1131 local_irq_restore(flags);
1132 put_cpu();
1133}
1134
920c7a5d 1135void free_hot_page(struct page *page)
1da177e4 1136{
4b4f278c 1137 trace_mm_page_free_direct(page, 0);
1da177e4
LT
1138 free_hot_cold_page(page, 0);
1139}
1140
8dfcc9ba
NP
1141/*
1142 * split_page takes a non-compound higher-order page, and splits it into
1143 * n (1<<order) sub-pages: page[0..n]
1144 * Each sub-page must be freed individually.
1145 *
1146 * Note: this is probably too low level an operation for use in drivers.
1147 * Please consult with lkml before using this in your driver.
1148 */
1149void split_page(struct page *page, unsigned int order)
1150{
1151 int i;
1152
725d704e
NP
1153 VM_BUG_ON(PageCompound(page));
1154 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1155
1156#ifdef CONFIG_KMEMCHECK
1157 /*
1158 * Split shadow pages too, because free(page[0]) would
1159 * otherwise free the whole shadow.
1160 */
1161 if (kmemcheck_page_is_tracked(page))
1162 split_page(virt_to_page(page[0].shadow), order);
1163#endif
1164
7835e98b
NP
1165 for (i = 1; i < (1 << order); i++)
1166 set_page_refcounted(page + i);
8dfcc9ba 1167}
8dfcc9ba 1168
1da177e4
LT
1169/*
1170 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1171 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1172 * or two.
1173 */
0a15c3e9
MG
1174static inline
1175struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1176 struct zone *zone, int order, gfp_t gfp_flags,
1177 int migratetype)
1da177e4
LT
1178{
1179 unsigned long flags;
689bcebf 1180 struct page *page;
1da177e4 1181 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1182 int cpu;
1da177e4 1183
689bcebf 1184again:
a74609fa 1185 cpu = get_cpu();
48db57f8 1186 if (likely(order == 0)) {
1da177e4 1187 struct per_cpu_pages *pcp;
5f8dcc21 1188 struct list_head *list;
1da177e4 1189
3dfa5721 1190 pcp = &zone_pcp(zone, cpu)->pcp;
5f8dcc21 1191 list = &pcp->lists[migratetype];
1da177e4 1192 local_irq_save(flags);
5f8dcc21 1193 if (list_empty(list)) {
535131e6 1194 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1195 pcp->batch, list,
e084b2d9 1196 migratetype, cold);
5f8dcc21 1197 if (unlikely(list_empty(list)))
6fb332fa 1198 goto failed;
535131e6 1199 }
b92a6edd 1200
5f8dcc21
MG
1201 if (cold)
1202 page = list_entry(list->prev, struct page, lru);
1203 else
1204 page = list_entry(list->next, struct page, lru);
1205
b92a6edd
MG
1206 list_del(&page->lru);
1207 pcp->count--;
7fb1d9fc 1208 } else {
dab48dab
AM
1209 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1210 /*
1211 * __GFP_NOFAIL is not to be used in new code.
1212 *
1213 * All __GFP_NOFAIL callers should be fixed so that they
1214 * properly detect and handle allocation failures.
1215 *
1216 * We most definitely don't want callers attempting to
4923abf9 1217 * allocate greater than order-1 page units with
dab48dab
AM
1218 * __GFP_NOFAIL.
1219 */
4923abf9 1220 WARN_ON_ONCE(order > 1);
dab48dab 1221 }
1da177e4 1222 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1223 page = __rmqueue(zone, order, migratetype);
f2260e6b 1224 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1225 spin_unlock(&zone->lock);
1226 if (!page)
1227 goto failed;
1da177e4
LT
1228 }
1229
f8891e5e 1230 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1231 zone_statistics(preferred_zone, zone);
a74609fa
NP
1232 local_irq_restore(flags);
1233 put_cpu();
1da177e4 1234
725d704e 1235 VM_BUG_ON(bad_range(zone, page));
17cf4406 1236 if (prep_new_page(page, order, gfp_flags))
a74609fa 1237 goto again;
1da177e4 1238 return page;
a74609fa
NP
1239
1240failed:
1241 local_irq_restore(flags);
1242 put_cpu();
1243 return NULL;
1da177e4
LT
1244}
1245
41858966
MG
1246/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1247#define ALLOC_WMARK_MIN WMARK_MIN
1248#define ALLOC_WMARK_LOW WMARK_LOW
1249#define ALLOC_WMARK_HIGH WMARK_HIGH
1250#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1251
1252/* Mask to get the watermark bits */
1253#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1254
3148890b
NP
1255#define ALLOC_HARDER 0x10 /* try to alloc harder */
1256#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1257#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1258
933e312e
AM
1259#ifdef CONFIG_FAIL_PAGE_ALLOC
1260
1261static struct fail_page_alloc_attr {
1262 struct fault_attr attr;
1263
1264 u32 ignore_gfp_highmem;
1265 u32 ignore_gfp_wait;
54114994 1266 u32 min_order;
933e312e
AM
1267
1268#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1269
1270 struct dentry *ignore_gfp_highmem_file;
1271 struct dentry *ignore_gfp_wait_file;
54114994 1272 struct dentry *min_order_file;
933e312e
AM
1273
1274#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1275
1276} fail_page_alloc = {
1277 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1278 .ignore_gfp_wait = 1,
1279 .ignore_gfp_highmem = 1,
54114994 1280 .min_order = 1,
933e312e
AM
1281};
1282
1283static int __init setup_fail_page_alloc(char *str)
1284{
1285 return setup_fault_attr(&fail_page_alloc.attr, str);
1286}
1287__setup("fail_page_alloc=", setup_fail_page_alloc);
1288
1289static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1290{
54114994
AM
1291 if (order < fail_page_alloc.min_order)
1292 return 0;
933e312e
AM
1293 if (gfp_mask & __GFP_NOFAIL)
1294 return 0;
1295 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1296 return 0;
1297 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1298 return 0;
1299
1300 return should_fail(&fail_page_alloc.attr, 1 << order);
1301}
1302
1303#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1304
1305static int __init fail_page_alloc_debugfs(void)
1306{
1307 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1308 struct dentry *dir;
1309 int err;
1310
1311 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1312 "fail_page_alloc");
1313 if (err)
1314 return err;
1315 dir = fail_page_alloc.attr.dentries.dir;
1316
1317 fail_page_alloc.ignore_gfp_wait_file =
1318 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1319 &fail_page_alloc.ignore_gfp_wait);
1320
1321 fail_page_alloc.ignore_gfp_highmem_file =
1322 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1323 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1324 fail_page_alloc.min_order_file =
1325 debugfs_create_u32("min-order", mode, dir,
1326 &fail_page_alloc.min_order);
933e312e
AM
1327
1328 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1329 !fail_page_alloc.ignore_gfp_highmem_file ||
1330 !fail_page_alloc.min_order_file) {
933e312e
AM
1331 err = -ENOMEM;
1332 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1333 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1334 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1335 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1336 }
1337
1338 return err;
1339}
1340
1341late_initcall(fail_page_alloc_debugfs);
1342
1343#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1344
1345#else /* CONFIG_FAIL_PAGE_ALLOC */
1346
1347static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1348{
1349 return 0;
1350}
1351
1352#endif /* CONFIG_FAIL_PAGE_ALLOC */
1353
1da177e4
LT
1354/*
1355 * Return 1 if free pages are above 'mark'. This takes into account the order
1356 * of the allocation.
1357 */
1358int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1359 int classzone_idx, int alloc_flags)
1da177e4
LT
1360{
1361 /* free_pages my go negative - that's OK */
d23ad423
CL
1362 long min = mark;
1363 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1364 int o;
1365
7fb1d9fc 1366 if (alloc_flags & ALLOC_HIGH)
1da177e4 1367 min -= min / 2;
7fb1d9fc 1368 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1369 min -= min / 4;
1370
1371 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1372 return 0;
1373 for (o = 0; o < order; o++) {
1374 /* At the next order, this order's pages become unavailable */
1375 free_pages -= z->free_area[o].nr_free << o;
1376
1377 /* Require fewer higher order pages to be free */
1378 min >>= 1;
1379
1380 if (free_pages <= min)
1381 return 0;
1382 }
1383 return 1;
1384}
1385
9276b1bc
PJ
1386#ifdef CONFIG_NUMA
1387/*
1388 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1389 * skip over zones that are not allowed by the cpuset, or that have
1390 * been recently (in last second) found to be nearly full. See further
1391 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1392 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1393 *
1394 * If the zonelist cache is present in the passed in zonelist, then
1395 * returns a pointer to the allowed node mask (either the current
37b07e41 1396 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1397 *
1398 * If the zonelist cache is not available for this zonelist, does
1399 * nothing and returns NULL.
1400 *
1401 * If the fullzones BITMAP in the zonelist cache is stale (more than
1402 * a second since last zap'd) then we zap it out (clear its bits.)
1403 *
1404 * We hold off even calling zlc_setup, until after we've checked the
1405 * first zone in the zonelist, on the theory that most allocations will
1406 * be satisfied from that first zone, so best to examine that zone as
1407 * quickly as we can.
1408 */
1409static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1410{
1411 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1412 nodemask_t *allowednodes; /* zonelist_cache approximation */
1413
1414 zlc = zonelist->zlcache_ptr;
1415 if (!zlc)
1416 return NULL;
1417
f05111f5 1418 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1419 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1420 zlc->last_full_zap = jiffies;
1421 }
1422
1423 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1424 &cpuset_current_mems_allowed :
37b07e41 1425 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1426 return allowednodes;
1427}
1428
1429/*
1430 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1431 * if it is worth looking at further for free memory:
1432 * 1) Check that the zone isn't thought to be full (doesn't have its
1433 * bit set in the zonelist_cache fullzones BITMAP).
1434 * 2) Check that the zones node (obtained from the zonelist_cache
1435 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1436 * Return true (non-zero) if zone is worth looking at further, or
1437 * else return false (zero) if it is not.
1438 *
1439 * This check -ignores- the distinction between various watermarks,
1440 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1441 * found to be full for any variation of these watermarks, it will
1442 * be considered full for up to one second by all requests, unless
1443 * we are so low on memory on all allowed nodes that we are forced
1444 * into the second scan of the zonelist.
1445 *
1446 * In the second scan we ignore this zonelist cache and exactly
1447 * apply the watermarks to all zones, even it is slower to do so.
1448 * We are low on memory in the second scan, and should leave no stone
1449 * unturned looking for a free page.
1450 */
dd1a239f 1451static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1452 nodemask_t *allowednodes)
1453{
1454 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1455 int i; /* index of *z in zonelist zones */
1456 int n; /* node that zone *z is on */
1457
1458 zlc = zonelist->zlcache_ptr;
1459 if (!zlc)
1460 return 1;
1461
dd1a239f 1462 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1463 n = zlc->z_to_n[i];
1464
1465 /* This zone is worth trying if it is allowed but not full */
1466 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1467}
1468
1469/*
1470 * Given 'z' scanning a zonelist, set the corresponding bit in
1471 * zlc->fullzones, so that subsequent attempts to allocate a page
1472 * from that zone don't waste time re-examining it.
1473 */
dd1a239f 1474static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1475{
1476 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1477 int i; /* index of *z in zonelist zones */
1478
1479 zlc = zonelist->zlcache_ptr;
1480 if (!zlc)
1481 return;
1482
dd1a239f 1483 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1484
1485 set_bit(i, zlc->fullzones);
1486}
1487
1488#else /* CONFIG_NUMA */
1489
1490static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1491{
1492 return NULL;
1493}
1494
dd1a239f 1495static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1496 nodemask_t *allowednodes)
1497{
1498 return 1;
1499}
1500
dd1a239f 1501static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1502{
1503}
1504#endif /* CONFIG_NUMA */
1505
7fb1d9fc 1506/*
0798e519 1507 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1508 * a page.
1509 */
1510static struct page *
19770b32 1511get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1512 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1513 struct zone *preferred_zone, int migratetype)
753ee728 1514{
dd1a239f 1515 struct zoneref *z;
7fb1d9fc 1516 struct page *page = NULL;
54a6eb5c 1517 int classzone_idx;
5117f45d 1518 struct zone *zone;
9276b1bc
PJ
1519 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1520 int zlc_active = 0; /* set if using zonelist_cache */
1521 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1522
19770b32 1523 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1524zonelist_scan:
7fb1d9fc 1525 /*
9276b1bc 1526 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1527 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1528 */
19770b32
MG
1529 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1530 high_zoneidx, nodemask) {
9276b1bc
PJ
1531 if (NUMA_BUILD && zlc_active &&
1532 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1533 continue;
7fb1d9fc 1534 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1535 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1536 goto try_next_zone;
7fb1d9fc 1537
41858966 1538 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1539 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1540 unsigned long mark;
fa5e084e
MG
1541 int ret;
1542
41858966 1543 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1544 if (zone_watermark_ok(zone, order, mark,
1545 classzone_idx, alloc_flags))
1546 goto try_this_zone;
1547
1548 if (zone_reclaim_mode == 0)
1549 goto this_zone_full;
1550
1551 ret = zone_reclaim(zone, gfp_mask, order);
1552 switch (ret) {
1553 case ZONE_RECLAIM_NOSCAN:
1554 /* did not scan */
1555 goto try_next_zone;
1556 case ZONE_RECLAIM_FULL:
1557 /* scanned but unreclaimable */
1558 goto this_zone_full;
1559 default:
1560 /* did we reclaim enough */
1561 if (!zone_watermark_ok(zone, order, mark,
1562 classzone_idx, alloc_flags))
9276b1bc 1563 goto this_zone_full;
0798e519 1564 }
7fb1d9fc
RS
1565 }
1566
fa5e084e 1567try_this_zone:
3dd28266
MG
1568 page = buffered_rmqueue(preferred_zone, zone, order,
1569 gfp_mask, migratetype);
0798e519 1570 if (page)
7fb1d9fc 1571 break;
9276b1bc
PJ
1572this_zone_full:
1573 if (NUMA_BUILD)
1574 zlc_mark_zone_full(zonelist, z);
1575try_next_zone:
62bc62a8 1576 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1577 /*
1578 * we do zlc_setup after the first zone is tried but only
1579 * if there are multiple nodes make it worthwhile
1580 */
9276b1bc
PJ
1581 allowednodes = zlc_setup(zonelist, alloc_flags);
1582 zlc_active = 1;
1583 did_zlc_setup = 1;
1584 }
54a6eb5c 1585 }
9276b1bc
PJ
1586
1587 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1588 /* Disable zlc cache for second zonelist scan */
1589 zlc_active = 0;
1590 goto zonelist_scan;
1591 }
7fb1d9fc 1592 return page;
753ee728
MH
1593}
1594
11e33f6a
MG
1595static inline int
1596should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1597 unsigned long pages_reclaimed)
1da177e4 1598{
11e33f6a
MG
1599 /* Do not loop if specifically requested */
1600 if (gfp_mask & __GFP_NORETRY)
1601 return 0;
1da177e4 1602
11e33f6a
MG
1603 /*
1604 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1605 * means __GFP_NOFAIL, but that may not be true in other
1606 * implementations.
1607 */
1608 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1609 return 1;
1610
1611 /*
1612 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1613 * specified, then we retry until we no longer reclaim any pages
1614 * (above), or we've reclaimed an order of pages at least as
1615 * large as the allocation's order. In both cases, if the
1616 * allocation still fails, we stop retrying.
1617 */
1618 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1619 return 1;
cf40bd16 1620
11e33f6a
MG
1621 /*
1622 * Don't let big-order allocations loop unless the caller
1623 * explicitly requests that.
1624 */
1625 if (gfp_mask & __GFP_NOFAIL)
1626 return 1;
1da177e4 1627
11e33f6a
MG
1628 return 0;
1629}
933e312e 1630
11e33f6a
MG
1631static inline struct page *
1632__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1633 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1634 nodemask_t *nodemask, struct zone *preferred_zone,
1635 int migratetype)
11e33f6a
MG
1636{
1637 struct page *page;
1638
1639 /* Acquire the OOM killer lock for the zones in zonelist */
1640 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1641 schedule_timeout_uninterruptible(1);
1da177e4
LT
1642 return NULL;
1643 }
6b1de916 1644
11e33f6a
MG
1645 /*
1646 * Go through the zonelist yet one more time, keep very high watermark
1647 * here, this is only to catch a parallel oom killing, we must fail if
1648 * we're still under heavy pressure.
1649 */
1650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1651 order, zonelist, high_zoneidx,
5117f45d 1652 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1653 preferred_zone, migratetype);
7fb1d9fc 1654 if (page)
11e33f6a
MG
1655 goto out;
1656
1657 /* The OOM killer will not help higher order allocs */
82553a93 1658 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1659 goto out;
1660
1661 /* Exhausted what can be done so it's blamo time */
1662 out_of_memory(zonelist, gfp_mask, order);
1663
1664out:
1665 clear_zonelist_oom(zonelist, gfp_mask);
1666 return page;
1667}
1668
1669/* The really slow allocator path where we enter direct reclaim */
1670static inline struct page *
1671__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1672 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1673 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1674 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1675{
1676 struct page *page = NULL;
1677 struct reclaim_state reclaim_state;
1678 struct task_struct *p = current;
1679
1680 cond_resched();
1681
1682 /* We now go into synchronous reclaim */
1683 cpuset_memory_pressure_bump();
11e33f6a
MG
1684 p->flags |= PF_MEMALLOC;
1685 lockdep_set_current_reclaim_state(gfp_mask);
1686 reclaim_state.reclaimed_slab = 0;
1687 p->reclaim_state = &reclaim_state;
1688
1689 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1690
1691 p->reclaim_state = NULL;
1692 lockdep_clear_current_reclaim_state();
1693 p->flags &= ~PF_MEMALLOC;
1694
1695 cond_resched();
1696
1697 if (order != 0)
1698 drain_all_pages();
1699
1700 if (likely(*did_some_progress))
1701 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1702 zonelist, high_zoneidx,
3dd28266
MG
1703 alloc_flags, preferred_zone,
1704 migratetype);
11e33f6a
MG
1705 return page;
1706}
1707
1da177e4 1708/*
11e33f6a
MG
1709 * This is called in the allocator slow-path if the allocation request is of
1710 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1711 */
11e33f6a
MG
1712static inline struct page *
1713__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1714 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1715 nodemask_t *nodemask, struct zone *preferred_zone,
1716 int migratetype)
11e33f6a
MG
1717{
1718 struct page *page;
1719
1720 do {
1721 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1722 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1723 preferred_zone, migratetype);
11e33f6a
MG
1724
1725 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1726 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1727 } while (!page && (gfp_mask & __GFP_NOFAIL));
1728
1729 return page;
1730}
1731
1732static inline
1733void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1734 enum zone_type high_zoneidx)
1da177e4 1735{
dd1a239f
MG
1736 struct zoneref *z;
1737 struct zone *zone;
1da177e4 1738
11e33f6a
MG
1739 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1740 wakeup_kswapd(zone, order);
1741}
cf40bd16 1742
341ce06f
PZ
1743static inline int
1744gfp_to_alloc_flags(gfp_t gfp_mask)
1745{
1746 struct task_struct *p = current;
1747 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1748 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1749
a56f57ff
MG
1750 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1751 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1752
341ce06f
PZ
1753 /*
1754 * The caller may dip into page reserves a bit more if the caller
1755 * cannot run direct reclaim, or if the caller has realtime scheduling
1756 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1757 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1758 */
a56f57ff 1759 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1760
341ce06f
PZ
1761 if (!wait) {
1762 alloc_flags |= ALLOC_HARDER;
523b9458 1763 /*
341ce06f
PZ
1764 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1765 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1766 */
341ce06f 1767 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1768 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1769 alloc_flags |= ALLOC_HARDER;
1770
1771 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1772 if (!in_interrupt() &&
1773 ((p->flags & PF_MEMALLOC) ||
1774 unlikely(test_thread_flag(TIF_MEMDIE))))
1775 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1776 }
6b1de916 1777
341ce06f
PZ
1778 return alloc_flags;
1779}
1780
11e33f6a
MG
1781static inline struct page *
1782__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1783 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1784 nodemask_t *nodemask, struct zone *preferred_zone,
1785 int migratetype)
11e33f6a
MG
1786{
1787 const gfp_t wait = gfp_mask & __GFP_WAIT;
1788 struct page *page = NULL;
1789 int alloc_flags;
1790 unsigned long pages_reclaimed = 0;
1791 unsigned long did_some_progress;
1792 struct task_struct *p = current;
1da177e4 1793
72807a74
MG
1794 /*
1795 * In the slowpath, we sanity check order to avoid ever trying to
1796 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1797 * be using allocators in order of preference for an area that is
1798 * too large.
1799 */
1fc28b70
MG
1800 if (order >= MAX_ORDER) {
1801 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1802 return NULL;
1fc28b70 1803 }
1da177e4 1804
952f3b51
CL
1805 /*
1806 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1807 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1808 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1809 * using a larger set of nodes after it has established that the
1810 * allowed per node queues are empty and that nodes are
1811 * over allocated.
1812 */
1813 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1814 goto nopage;
1815
cc4a6851 1816restart:
11e33f6a 1817 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1818
9bf2229f 1819 /*
7fb1d9fc
RS
1820 * OK, we're below the kswapd watermark and have kicked background
1821 * reclaim. Now things get more complex, so set up alloc_flags according
1822 * to how we want to proceed.
9bf2229f 1823 */
341ce06f 1824 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1825
341ce06f 1826 /* This is the last chance, in general, before the goto nopage. */
19770b32 1827 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1828 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1829 preferred_zone, migratetype);
7fb1d9fc
RS
1830 if (page)
1831 goto got_pg;
1da177e4 1832
b43a57bb 1833rebalance:
11e33f6a 1834 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1835 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1836 page = __alloc_pages_high_priority(gfp_mask, order,
1837 zonelist, high_zoneidx, nodemask,
1838 preferred_zone, migratetype);
1839 if (page)
1840 goto got_pg;
1da177e4
LT
1841 }
1842
1843 /* Atomic allocations - we can't balance anything */
1844 if (!wait)
1845 goto nopage;
1846
341ce06f
PZ
1847 /* Avoid recursion of direct reclaim */
1848 if (p->flags & PF_MEMALLOC)
1849 goto nopage;
1850
6583bb64
DR
1851 /* Avoid allocations with no watermarks from looping endlessly */
1852 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1853 goto nopage;
1854
11e33f6a
MG
1855 /* Try direct reclaim and then allocating */
1856 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1857 zonelist, high_zoneidx,
1858 nodemask,
5117f45d 1859 alloc_flags, preferred_zone,
3dd28266 1860 migratetype, &did_some_progress);
11e33f6a
MG
1861 if (page)
1862 goto got_pg;
1da177e4 1863
e33c3b5e 1864 /*
11e33f6a
MG
1865 * If we failed to make any progress reclaiming, then we are
1866 * running out of options and have to consider going OOM
e33c3b5e 1867 */
11e33f6a
MG
1868 if (!did_some_progress) {
1869 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1870 if (oom_killer_disabled)
1871 goto nopage;
11e33f6a
MG
1872 page = __alloc_pages_may_oom(gfp_mask, order,
1873 zonelist, high_zoneidx,
3dd28266
MG
1874 nodemask, preferred_zone,
1875 migratetype);
11e33f6a
MG
1876 if (page)
1877 goto got_pg;
1da177e4 1878
11e33f6a 1879 /*
82553a93
DR
1880 * The OOM killer does not trigger for high-order
1881 * ~__GFP_NOFAIL allocations so if no progress is being
1882 * made, there are no other options and retrying is
1883 * unlikely to help.
11e33f6a 1884 */
82553a93
DR
1885 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1886 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1887 goto nopage;
e2c55dc8 1888
ff0ceb9d
DR
1889 goto restart;
1890 }
1da177e4
LT
1891 }
1892
11e33f6a 1893 /* Check if we should retry the allocation */
a41f24ea 1894 pages_reclaimed += did_some_progress;
11e33f6a
MG
1895 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1896 /* Wait for some write requests to complete then retry */
8aa7e847 1897 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1898 goto rebalance;
1899 }
1900
1901nopage:
1902 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1903 printk(KERN_WARNING "%s: page allocation failure."
1904 " order:%d, mode:0x%x\n",
1905 p->comm, order, gfp_mask);
1906 dump_stack();
578c2fd6 1907 show_mem();
1da177e4 1908 }
b1eeab67 1909 return page;
1da177e4 1910got_pg:
b1eeab67
VN
1911 if (kmemcheck_enabled)
1912 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1913 return page;
11e33f6a 1914
1da177e4 1915}
11e33f6a
MG
1916
1917/*
1918 * This is the 'heart' of the zoned buddy allocator.
1919 */
1920struct page *
1921__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1922 struct zonelist *zonelist, nodemask_t *nodemask)
1923{
1924 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1925 struct zone *preferred_zone;
11e33f6a 1926 struct page *page;
3dd28266 1927 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1928
dcce284a
BH
1929 gfp_mask &= gfp_allowed_mask;
1930
11e33f6a
MG
1931 lockdep_trace_alloc(gfp_mask);
1932
1933 might_sleep_if(gfp_mask & __GFP_WAIT);
1934
1935 if (should_fail_alloc_page(gfp_mask, order))
1936 return NULL;
1937
1938 /*
1939 * Check the zones suitable for the gfp_mask contain at least one
1940 * valid zone. It's possible to have an empty zonelist as a result
1941 * of GFP_THISNODE and a memoryless node
1942 */
1943 if (unlikely(!zonelist->_zonerefs->zone))
1944 return NULL;
1945
5117f45d
MG
1946 /* The preferred zone is used for statistics later */
1947 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1948 if (!preferred_zone)
1949 return NULL;
1950
1951 /* First allocation attempt */
11e33f6a 1952 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1953 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1954 preferred_zone, migratetype);
11e33f6a
MG
1955 if (unlikely(!page))
1956 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1957 zonelist, high_zoneidx, nodemask,
3dd28266 1958 preferred_zone, migratetype);
11e33f6a 1959
4b4f278c 1960 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 1961 return page;
1da177e4 1962}
d239171e 1963EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1964
1965/*
1966 * Common helper functions.
1967 */
920c7a5d 1968unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 1969{
945a1113
AM
1970 struct page *page;
1971
1972 /*
1973 * __get_free_pages() returns a 32-bit address, which cannot represent
1974 * a highmem page
1975 */
1976 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1977
1da177e4
LT
1978 page = alloc_pages(gfp_mask, order);
1979 if (!page)
1980 return 0;
1981 return (unsigned long) page_address(page);
1982}
1da177e4
LT
1983EXPORT_SYMBOL(__get_free_pages);
1984
920c7a5d 1985unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 1986{
945a1113 1987 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 1988}
1da177e4
LT
1989EXPORT_SYMBOL(get_zeroed_page);
1990
1991void __pagevec_free(struct pagevec *pvec)
1992{
1993 int i = pagevec_count(pvec);
1994
4b4f278c
MG
1995 while (--i >= 0) {
1996 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 1997 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 1998 }
1da177e4
LT
1999}
2000
920c7a5d 2001void __free_pages(struct page *page, unsigned int order)
1da177e4 2002{
b5810039 2003 if (put_page_testzero(page)) {
4b4f278c 2004 trace_mm_page_free_direct(page, order);
1da177e4
LT
2005 if (order == 0)
2006 free_hot_page(page);
2007 else
2008 __free_pages_ok(page, order);
2009 }
2010}
2011
2012EXPORT_SYMBOL(__free_pages);
2013
920c7a5d 2014void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2015{
2016 if (addr != 0) {
725d704e 2017 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2018 __free_pages(virt_to_page((void *)addr), order);
2019 }
2020}
2021
2022EXPORT_SYMBOL(free_pages);
2023
2be0ffe2
TT
2024/**
2025 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2026 * @size: the number of bytes to allocate
2027 * @gfp_mask: GFP flags for the allocation
2028 *
2029 * This function is similar to alloc_pages(), except that it allocates the
2030 * minimum number of pages to satisfy the request. alloc_pages() can only
2031 * allocate memory in power-of-two pages.
2032 *
2033 * This function is also limited by MAX_ORDER.
2034 *
2035 * Memory allocated by this function must be released by free_pages_exact().
2036 */
2037void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2038{
2039 unsigned int order = get_order(size);
2040 unsigned long addr;
2041
2042 addr = __get_free_pages(gfp_mask, order);
2043 if (addr) {
2044 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2045 unsigned long used = addr + PAGE_ALIGN(size);
2046
5bfd7560 2047 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2048 while (used < alloc_end) {
2049 free_page(used);
2050 used += PAGE_SIZE;
2051 }
2052 }
2053
2054 return (void *)addr;
2055}
2056EXPORT_SYMBOL(alloc_pages_exact);
2057
2058/**
2059 * free_pages_exact - release memory allocated via alloc_pages_exact()
2060 * @virt: the value returned by alloc_pages_exact.
2061 * @size: size of allocation, same value as passed to alloc_pages_exact().
2062 *
2063 * Release the memory allocated by a previous call to alloc_pages_exact.
2064 */
2065void free_pages_exact(void *virt, size_t size)
2066{
2067 unsigned long addr = (unsigned long)virt;
2068 unsigned long end = addr + PAGE_ALIGN(size);
2069
2070 while (addr < end) {
2071 free_page(addr);
2072 addr += PAGE_SIZE;
2073 }
2074}
2075EXPORT_SYMBOL(free_pages_exact);
2076
1da177e4
LT
2077static unsigned int nr_free_zone_pages(int offset)
2078{
dd1a239f 2079 struct zoneref *z;
54a6eb5c
MG
2080 struct zone *zone;
2081
e310fd43 2082 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2083 unsigned int sum = 0;
2084
0e88460d 2085 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2086
54a6eb5c 2087 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2088 unsigned long size = zone->present_pages;
41858966 2089 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2090 if (size > high)
2091 sum += size - high;
1da177e4
LT
2092 }
2093
2094 return sum;
2095}
2096
2097/*
2098 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2099 */
2100unsigned int nr_free_buffer_pages(void)
2101{
af4ca457 2102 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2103}
c2f1a551 2104EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2105
2106/*
2107 * Amount of free RAM allocatable within all zones
2108 */
2109unsigned int nr_free_pagecache_pages(void)
2110{
2a1e274a 2111 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2112}
08e0f6a9
CL
2113
2114static inline void show_node(struct zone *zone)
1da177e4 2115{
08e0f6a9 2116 if (NUMA_BUILD)
25ba77c1 2117 printk("Node %d ", zone_to_nid(zone));
1da177e4 2118}
1da177e4 2119
1da177e4
LT
2120void si_meminfo(struct sysinfo *val)
2121{
2122 val->totalram = totalram_pages;
2123 val->sharedram = 0;
d23ad423 2124 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2125 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2126 val->totalhigh = totalhigh_pages;
2127 val->freehigh = nr_free_highpages();
1da177e4
LT
2128 val->mem_unit = PAGE_SIZE;
2129}
2130
2131EXPORT_SYMBOL(si_meminfo);
2132
2133#ifdef CONFIG_NUMA
2134void si_meminfo_node(struct sysinfo *val, int nid)
2135{
2136 pg_data_t *pgdat = NODE_DATA(nid);
2137
2138 val->totalram = pgdat->node_present_pages;
d23ad423 2139 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2140#ifdef CONFIG_HIGHMEM
1da177e4 2141 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2142 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2143 NR_FREE_PAGES);
98d2b0eb
CL
2144#else
2145 val->totalhigh = 0;
2146 val->freehigh = 0;
2147#endif
1da177e4
LT
2148 val->mem_unit = PAGE_SIZE;
2149}
2150#endif
2151
2152#define K(x) ((x) << (PAGE_SHIFT-10))
2153
2154/*
2155 * Show free area list (used inside shift_scroll-lock stuff)
2156 * We also calculate the percentage fragmentation. We do this by counting the
2157 * memory on each free list with the exception of the first item on the list.
2158 */
2159void show_free_areas(void)
2160{
c7241913 2161 int cpu;
1da177e4
LT
2162 struct zone *zone;
2163
ee99c71c 2164 for_each_populated_zone(zone) {
c7241913
JS
2165 show_node(zone);
2166 printk("%s per-cpu:\n", zone->name);
1da177e4 2167
6b482c67 2168 for_each_online_cpu(cpu) {
1da177e4
LT
2169 struct per_cpu_pageset *pageset;
2170
e7c8d5c9 2171 pageset = zone_pcp(zone, cpu);
1da177e4 2172
3dfa5721
CL
2173 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2174 cpu, pageset->pcp.high,
2175 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2176 }
2177 }
2178
a731286d
KM
2179 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2180 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2181 " unevictable:%lu"
b76146ed 2182 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2183 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2184 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2185 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2186 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2187 global_page_state(NR_ISOLATED_ANON),
2188 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2189 global_page_state(NR_INACTIVE_FILE),
a731286d 2190 global_page_state(NR_ISOLATED_FILE),
7b854121 2191 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2192 global_page_state(NR_FILE_DIRTY),
ce866b34 2193 global_page_state(NR_WRITEBACK),
fd39fc85 2194 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2195 global_page_state(NR_FREE_PAGES),
3701b033
KM
2196 global_page_state(NR_SLAB_RECLAIMABLE),
2197 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2198 global_page_state(NR_FILE_MAPPED),
4b02108a 2199 global_page_state(NR_SHMEM),
a25700a5
AM
2200 global_page_state(NR_PAGETABLE),
2201 global_page_state(NR_BOUNCE));
1da177e4 2202
ee99c71c 2203 for_each_populated_zone(zone) {
1da177e4
LT
2204 int i;
2205
2206 show_node(zone);
2207 printk("%s"
2208 " free:%lukB"
2209 " min:%lukB"
2210 " low:%lukB"
2211 " high:%lukB"
4f98a2fe
RR
2212 " active_anon:%lukB"
2213 " inactive_anon:%lukB"
2214 " active_file:%lukB"
2215 " inactive_file:%lukB"
7b854121 2216 " unevictable:%lukB"
a731286d
KM
2217 " isolated(anon):%lukB"
2218 " isolated(file):%lukB"
1da177e4 2219 " present:%lukB"
4a0aa73f
KM
2220 " mlocked:%lukB"
2221 " dirty:%lukB"
2222 " writeback:%lukB"
2223 " mapped:%lukB"
4b02108a 2224 " shmem:%lukB"
4a0aa73f
KM
2225 " slab_reclaimable:%lukB"
2226 " slab_unreclaimable:%lukB"
c6a7f572 2227 " kernel_stack:%lukB"
4a0aa73f
KM
2228 " pagetables:%lukB"
2229 " unstable:%lukB"
2230 " bounce:%lukB"
2231 " writeback_tmp:%lukB"
1da177e4
LT
2232 " pages_scanned:%lu"
2233 " all_unreclaimable? %s"
2234 "\n",
2235 zone->name,
d23ad423 2236 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2237 K(min_wmark_pages(zone)),
2238 K(low_wmark_pages(zone)),
2239 K(high_wmark_pages(zone)),
4f98a2fe
RR
2240 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2241 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2242 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2243 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2244 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2245 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2246 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2247 K(zone->present_pages),
4a0aa73f
KM
2248 K(zone_page_state(zone, NR_MLOCK)),
2249 K(zone_page_state(zone, NR_FILE_DIRTY)),
2250 K(zone_page_state(zone, NR_WRITEBACK)),
2251 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2252 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2253 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2254 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2255 zone_page_state(zone, NR_KERNEL_STACK) *
2256 THREAD_SIZE / 1024,
4a0aa73f
KM
2257 K(zone_page_state(zone, NR_PAGETABLE)),
2258 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2259 K(zone_page_state(zone, NR_BOUNCE)),
2260 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2261 zone->pages_scanned,
e815af95 2262 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2263 );
2264 printk("lowmem_reserve[]:");
2265 for (i = 0; i < MAX_NR_ZONES; i++)
2266 printk(" %lu", zone->lowmem_reserve[i]);
2267 printk("\n");
2268 }
2269
ee99c71c 2270 for_each_populated_zone(zone) {
8f9de51a 2271 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2272
2273 show_node(zone);
2274 printk("%s: ", zone->name);
1da177e4
LT
2275
2276 spin_lock_irqsave(&zone->lock, flags);
2277 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2278 nr[order] = zone->free_area[order].nr_free;
2279 total += nr[order] << order;
1da177e4
LT
2280 }
2281 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2282 for (order = 0; order < MAX_ORDER; order++)
2283 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2284 printk("= %lukB\n", K(total));
2285 }
2286
e6f3602d
LW
2287 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2288
1da177e4
LT
2289 show_swap_cache_info();
2290}
2291
19770b32
MG
2292static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2293{
2294 zoneref->zone = zone;
2295 zoneref->zone_idx = zone_idx(zone);
2296}
2297
1da177e4
LT
2298/*
2299 * Builds allocation fallback zone lists.
1a93205b
CL
2300 *
2301 * Add all populated zones of a node to the zonelist.
1da177e4 2302 */
f0c0b2b8
KH
2303static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2304 int nr_zones, enum zone_type zone_type)
1da177e4 2305{
1a93205b
CL
2306 struct zone *zone;
2307
98d2b0eb 2308 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2309 zone_type++;
02a68a5e
CL
2310
2311 do {
2f6726e5 2312 zone_type--;
070f8032 2313 zone = pgdat->node_zones + zone_type;
1a93205b 2314 if (populated_zone(zone)) {
dd1a239f
MG
2315 zoneref_set_zone(zone,
2316 &zonelist->_zonerefs[nr_zones++]);
070f8032 2317 check_highest_zone(zone_type);
1da177e4 2318 }
02a68a5e 2319
2f6726e5 2320 } while (zone_type);
070f8032 2321 return nr_zones;
1da177e4
LT
2322}
2323
f0c0b2b8
KH
2324
2325/*
2326 * zonelist_order:
2327 * 0 = automatic detection of better ordering.
2328 * 1 = order by ([node] distance, -zonetype)
2329 * 2 = order by (-zonetype, [node] distance)
2330 *
2331 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2332 * the same zonelist. So only NUMA can configure this param.
2333 */
2334#define ZONELIST_ORDER_DEFAULT 0
2335#define ZONELIST_ORDER_NODE 1
2336#define ZONELIST_ORDER_ZONE 2
2337
2338/* zonelist order in the kernel.
2339 * set_zonelist_order() will set this to NODE or ZONE.
2340 */
2341static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2342static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2343
2344
1da177e4 2345#ifdef CONFIG_NUMA
f0c0b2b8
KH
2346/* The value user specified ....changed by config */
2347static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2348/* string for sysctl */
2349#define NUMA_ZONELIST_ORDER_LEN 16
2350char numa_zonelist_order[16] = "default";
2351
2352/*
2353 * interface for configure zonelist ordering.
2354 * command line option "numa_zonelist_order"
2355 * = "[dD]efault - default, automatic configuration.
2356 * = "[nN]ode - order by node locality, then by zone within node
2357 * = "[zZ]one - order by zone, then by locality within zone
2358 */
2359
2360static int __parse_numa_zonelist_order(char *s)
2361{
2362 if (*s == 'd' || *s == 'D') {
2363 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2364 } else if (*s == 'n' || *s == 'N') {
2365 user_zonelist_order = ZONELIST_ORDER_NODE;
2366 } else if (*s == 'z' || *s == 'Z') {
2367 user_zonelist_order = ZONELIST_ORDER_ZONE;
2368 } else {
2369 printk(KERN_WARNING
2370 "Ignoring invalid numa_zonelist_order value: "
2371 "%s\n", s);
2372 return -EINVAL;
2373 }
2374 return 0;
2375}
2376
2377static __init int setup_numa_zonelist_order(char *s)
2378{
2379 if (s)
2380 return __parse_numa_zonelist_order(s);
2381 return 0;
2382}
2383early_param("numa_zonelist_order", setup_numa_zonelist_order);
2384
2385/*
2386 * sysctl handler for numa_zonelist_order
2387 */
2388int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2389 void __user *buffer, size_t *length,
f0c0b2b8
KH
2390 loff_t *ppos)
2391{
2392 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2393 int ret;
2394
2395 if (write)
2396 strncpy(saved_string, (char*)table->data,
2397 NUMA_ZONELIST_ORDER_LEN);
8d65af78 2398 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
2399 if (ret)
2400 return ret;
2401 if (write) {
2402 int oldval = user_zonelist_order;
2403 if (__parse_numa_zonelist_order((char*)table->data)) {
2404 /*
2405 * bogus value. restore saved string
2406 */
2407 strncpy((char*)table->data, saved_string,
2408 NUMA_ZONELIST_ORDER_LEN);
2409 user_zonelist_order = oldval;
2410 } else if (oldval != user_zonelist_order)
2411 build_all_zonelists();
2412 }
2413 return 0;
2414}
2415
2416
62bc62a8 2417#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2418static int node_load[MAX_NUMNODES];
2419
1da177e4 2420/**
4dc3b16b 2421 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2422 * @node: node whose fallback list we're appending
2423 * @used_node_mask: nodemask_t of already used nodes
2424 *
2425 * We use a number of factors to determine which is the next node that should
2426 * appear on a given node's fallback list. The node should not have appeared
2427 * already in @node's fallback list, and it should be the next closest node
2428 * according to the distance array (which contains arbitrary distance values
2429 * from each node to each node in the system), and should also prefer nodes
2430 * with no CPUs, since presumably they'll have very little allocation pressure
2431 * on them otherwise.
2432 * It returns -1 if no node is found.
2433 */
f0c0b2b8 2434static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2435{
4cf808eb 2436 int n, val;
1da177e4
LT
2437 int min_val = INT_MAX;
2438 int best_node = -1;
a70f7302 2439 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2440
4cf808eb
LT
2441 /* Use the local node if we haven't already */
2442 if (!node_isset(node, *used_node_mask)) {
2443 node_set(node, *used_node_mask);
2444 return node;
2445 }
1da177e4 2446
37b07e41 2447 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2448
2449 /* Don't want a node to appear more than once */
2450 if (node_isset(n, *used_node_mask))
2451 continue;
2452
1da177e4
LT
2453 /* Use the distance array to find the distance */
2454 val = node_distance(node, n);
2455
4cf808eb
LT
2456 /* Penalize nodes under us ("prefer the next node") */
2457 val += (n < node);
2458
1da177e4 2459 /* Give preference to headless and unused nodes */
a70f7302
RR
2460 tmp = cpumask_of_node(n);
2461 if (!cpumask_empty(tmp))
1da177e4
LT
2462 val += PENALTY_FOR_NODE_WITH_CPUS;
2463
2464 /* Slight preference for less loaded node */
2465 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2466 val += node_load[n];
2467
2468 if (val < min_val) {
2469 min_val = val;
2470 best_node = n;
2471 }
2472 }
2473
2474 if (best_node >= 0)
2475 node_set(best_node, *used_node_mask);
2476
2477 return best_node;
2478}
2479
f0c0b2b8
KH
2480
2481/*
2482 * Build zonelists ordered by node and zones within node.
2483 * This results in maximum locality--normal zone overflows into local
2484 * DMA zone, if any--but risks exhausting DMA zone.
2485 */
2486static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2487{
f0c0b2b8 2488 int j;
1da177e4 2489 struct zonelist *zonelist;
f0c0b2b8 2490
54a6eb5c 2491 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2492 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2493 ;
2494 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2495 MAX_NR_ZONES - 1);
dd1a239f
MG
2496 zonelist->_zonerefs[j].zone = NULL;
2497 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2498}
2499
523b9458
CL
2500/*
2501 * Build gfp_thisnode zonelists
2502 */
2503static void build_thisnode_zonelists(pg_data_t *pgdat)
2504{
523b9458
CL
2505 int j;
2506 struct zonelist *zonelist;
2507
54a6eb5c
MG
2508 zonelist = &pgdat->node_zonelists[1];
2509 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2510 zonelist->_zonerefs[j].zone = NULL;
2511 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2512}
2513
f0c0b2b8
KH
2514/*
2515 * Build zonelists ordered by zone and nodes within zones.
2516 * This results in conserving DMA zone[s] until all Normal memory is
2517 * exhausted, but results in overflowing to remote node while memory
2518 * may still exist in local DMA zone.
2519 */
2520static int node_order[MAX_NUMNODES];
2521
2522static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2523{
f0c0b2b8
KH
2524 int pos, j, node;
2525 int zone_type; /* needs to be signed */
2526 struct zone *z;
2527 struct zonelist *zonelist;
2528
54a6eb5c
MG
2529 zonelist = &pgdat->node_zonelists[0];
2530 pos = 0;
2531 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2532 for (j = 0; j < nr_nodes; j++) {
2533 node = node_order[j];
2534 z = &NODE_DATA(node)->node_zones[zone_type];
2535 if (populated_zone(z)) {
dd1a239f
MG
2536 zoneref_set_zone(z,
2537 &zonelist->_zonerefs[pos++]);
54a6eb5c 2538 check_highest_zone(zone_type);
f0c0b2b8
KH
2539 }
2540 }
f0c0b2b8 2541 }
dd1a239f
MG
2542 zonelist->_zonerefs[pos].zone = NULL;
2543 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2544}
2545
2546static int default_zonelist_order(void)
2547{
2548 int nid, zone_type;
2549 unsigned long low_kmem_size,total_size;
2550 struct zone *z;
2551 int average_size;
2552 /*
2553 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2554 * If they are really small and used heavily, the system can fall
2555 * into OOM very easily.
2556 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2557 */
2558 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2559 low_kmem_size = 0;
2560 total_size = 0;
2561 for_each_online_node(nid) {
2562 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2563 z = &NODE_DATA(nid)->node_zones[zone_type];
2564 if (populated_zone(z)) {
2565 if (zone_type < ZONE_NORMAL)
2566 low_kmem_size += z->present_pages;
2567 total_size += z->present_pages;
2568 }
2569 }
2570 }
2571 if (!low_kmem_size || /* there are no DMA area. */
2572 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2573 return ZONELIST_ORDER_NODE;
2574 /*
2575 * look into each node's config.
2576 * If there is a node whose DMA/DMA32 memory is very big area on
2577 * local memory, NODE_ORDER may be suitable.
2578 */
37b07e41
LS
2579 average_size = total_size /
2580 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2581 for_each_online_node(nid) {
2582 low_kmem_size = 0;
2583 total_size = 0;
2584 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2585 z = &NODE_DATA(nid)->node_zones[zone_type];
2586 if (populated_zone(z)) {
2587 if (zone_type < ZONE_NORMAL)
2588 low_kmem_size += z->present_pages;
2589 total_size += z->present_pages;
2590 }
2591 }
2592 if (low_kmem_size &&
2593 total_size > average_size && /* ignore small node */
2594 low_kmem_size > total_size * 70/100)
2595 return ZONELIST_ORDER_NODE;
2596 }
2597 return ZONELIST_ORDER_ZONE;
2598}
2599
2600static void set_zonelist_order(void)
2601{
2602 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2603 current_zonelist_order = default_zonelist_order();
2604 else
2605 current_zonelist_order = user_zonelist_order;
2606}
2607
2608static void build_zonelists(pg_data_t *pgdat)
2609{
2610 int j, node, load;
2611 enum zone_type i;
1da177e4 2612 nodemask_t used_mask;
f0c0b2b8
KH
2613 int local_node, prev_node;
2614 struct zonelist *zonelist;
2615 int order = current_zonelist_order;
1da177e4
LT
2616
2617 /* initialize zonelists */
523b9458 2618 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2619 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2620 zonelist->_zonerefs[0].zone = NULL;
2621 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2622 }
2623
2624 /* NUMA-aware ordering of nodes */
2625 local_node = pgdat->node_id;
62bc62a8 2626 load = nr_online_nodes;
1da177e4
LT
2627 prev_node = local_node;
2628 nodes_clear(used_mask);
f0c0b2b8 2629
f0c0b2b8
KH
2630 memset(node_order, 0, sizeof(node_order));
2631 j = 0;
2632
1da177e4 2633 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2634 int distance = node_distance(local_node, node);
2635
2636 /*
2637 * If another node is sufficiently far away then it is better
2638 * to reclaim pages in a zone before going off node.
2639 */
2640 if (distance > RECLAIM_DISTANCE)
2641 zone_reclaim_mode = 1;
2642
1da177e4
LT
2643 /*
2644 * We don't want to pressure a particular node.
2645 * So adding penalty to the first node in same
2646 * distance group to make it round-robin.
2647 */
9eeff239 2648 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2649 node_load[node] = load;
2650
1da177e4
LT
2651 prev_node = node;
2652 load--;
f0c0b2b8
KH
2653 if (order == ZONELIST_ORDER_NODE)
2654 build_zonelists_in_node_order(pgdat, node);
2655 else
2656 node_order[j++] = node; /* remember order */
2657 }
1da177e4 2658
f0c0b2b8
KH
2659 if (order == ZONELIST_ORDER_ZONE) {
2660 /* calculate node order -- i.e., DMA last! */
2661 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2662 }
523b9458
CL
2663
2664 build_thisnode_zonelists(pgdat);
1da177e4
LT
2665}
2666
9276b1bc 2667/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2668static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2669{
54a6eb5c
MG
2670 struct zonelist *zonelist;
2671 struct zonelist_cache *zlc;
dd1a239f 2672 struct zoneref *z;
9276b1bc 2673
54a6eb5c
MG
2674 zonelist = &pgdat->node_zonelists[0];
2675 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2676 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2677 for (z = zonelist->_zonerefs; z->zone; z++)
2678 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2679}
2680
f0c0b2b8 2681
1da177e4
LT
2682#else /* CONFIG_NUMA */
2683
f0c0b2b8
KH
2684static void set_zonelist_order(void)
2685{
2686 current_zonelist_order = ZONELIST_ORDER_ZONE;
2687}
2688
2689static void build_zonelists(pg_data_t *pgdat)
1da177e4 2690{
19655d34 2691 int node, local_node;
54a6eb5c
MG
2692 enum zone_type j;
2693 struct zonelist *zonelist;
1da177e4
LT
2694
2695 local_node = pgdat->node_id;
1da177e4 2696
54a6eb5c
MG
2697 zonelist = &pgdat->node_zonelists[0];
2698 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2699
54a6eb5c
MG
2700 /*
2701 * Now we build the zonelist so that it contains the zones
2702 * of all the other nodes.
2703 * We don't want to pressure a particular node, so when
2704 * building the zones for node N, we make sure that the
2705 * zones coming right after the local ones are those from
2706 * node N+1 (modulo N)
2707 */
2708 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2709 if (!node_online(node))
2710 continue;
2711 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2712 MAX_NR_ZONES - 1);
1da177e4 2713 }
54a6eb5c
MG
2714 for (node = 0; node < local_node; node++) {
2715 if (!node_online(node))
2716 continue;
2717 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2718 MAX_NR_ZONES - 1);
2719 }
2720
dd1a239f
MG
2721 zonelist->_zonerefs[j].zone = NULL;
2722 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2723}
2724
9276b1bc 2725/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2726static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2727{
54a6eb5c 2728 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2729}
2730
1da177e4
LT
2731#endif /* CONFIG_NUMA */
2732
9b1a4d38 2733/* return values int ....just for stop_machine() */
f0c0b2b8 2734static int __build_all_zonelists(void *dummy)
1da177e4 2735{
6811378e 2736 int nid;
9276b1bc 2737
7f9cfb31
BL
2738#ifdef CONFIG_NUMA
2739 memset(node_load, 0, sizeof(node_load));
2740#endif
9276b1bc 2741 for_each_online_node(nid) {
7ea1530a
CL
2742 pg_data_t *pgdat = NODE_DATA(nid);
2743
2744 build_zonelists(pgdat);
2745 build_zonelist_cache(pgdat);
9276b1bc 2746 }
6811378e
YG
2747 return 0;
2748}
2749
f0c0b2b8 2750void build_all_zonelists(void)
6811378e 2751{
f0c0b2b8
KH
2752 set_zonelist_order();
2753
6811378e 2754 if (system_state == SYSTEM_BOOTING) {
423b41d7 2755 __build_all_zonelists(NULL);
68ad8df4 2756 mminit_verify_zonelist();
6811378e
YG
2757 cpuset_init_current_mems_allowed();
2758 } else {
183ff22b 2759 /* we have to stop all cpus to guarantee there is no user
6811378e 2760 of zonelist */
9b1a4d38 2761 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2762 /* cpuset refresh routine should be here */
2763 }
bd1e22b8 2764 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2765 /*
2766 * Disable grouping by mobility if the number of pages in the
2767 * system is too low to allow the mechanism to work. It would be
2768 * more accurate, but expensive to check per-zone. This check is
2769 * made on memory-hotadd so a system can start with mobility
2770 * disabled and enable it later
2771 */
d9c23400 2772 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2773 page_group_by_mobility_disabled = 1;
2774 else
2775 page_group_by_mobility_disabled = 0;
2776
2777 printk("Built %i zonelists in %s order, mobility grouping %s. "
2778 "Total pages: %ld\n",
62bc62a8 2779 nr_online_nodes,
f0c0b2b8 2780 zonelist_order_name[current_zonelist_order],
9ef9acb0 2781 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2782 vm_total_pages);
2783#ifdef CONFIG_NUMA
2784 printk("Policy zone: %s\n", zone_names[policy_zone]);
2785#endif
1da177e4
LT
2786}
2787
2788/*
2789 * Helper functions to size the waitqueue hash table.
2790 * Essentially these want to choose hash table sizes sufficiently
2791 * large so that collisions trying to wait on pages are rare.
2792 * But in fact, the number of active page waitqueues on typical
2793 * systems is ridiculously low, less than 200. So this is even
2794 * conservative, even though it seems large.
2795 *
2796 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2797 * waitqueues, i.e. the size of the waitq table given the number of pages.
2798 */
2799#define PAGES_PER_WAITQUEUE 256
2800
cca448fe 2801#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2802static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2803{
2804 unsigned long size = 1;
2805
2806 pages /= PAGES_PER_WAITQUEUE;
2807
2808 while (size < pages)
2809 size <<= 1;
2810
2811 /*
2812 * Once we have dozens or even hundreds of threads sleeping
2813 * on IO we've got bigger problems than wait queue collision.
2814 * Limit the size of the wait table to a reasonable size.
2815 */
2816 size = min(size, 4096UL);
2817
2818 return max(size, 4UL);
2819}
cca448fe
YG
2820#else
2821/*
2822 * A zone's size might be changed by hot-add, so it is not possible to determine
2823 * a suitable size for its wait_table. So we use the maximum size now.
2824 *
2825 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2826 *
2827 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2828 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2829 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2830 *
2831 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2832 * or more by the traditional way. (See above). It equals:
2833 *
2834 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2835 * ia64(16K page size) : = ( 8G + 4M)byte.
2836 * powerpc (64K page size) : = (32G +16M)byte.
2837 */
2838static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2839{
2840 return 4096UL;
2841}
2842#endif
1da177e4
LT
2843
2844/*
2845 * This is an integer logarithm so that shifts can be used later
2846 * to extract the more random high bits from the multiplicative
2847 * hash function before the remainder is taken.
2848 */
2849static inline unsigned long wait_table_bits(unsigned long size)
2850{
2851 return ffz(~size);
2852}
2853
2854#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2855
56fd56b8 2856/*
d9c23400 2857 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2858 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2859 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2860 * higher will lead to a bigger reserve which will get freed as contiguous
2861 * blocks as reclaim kicks in
2862 */
2863static void setup_zone_migrate_reserve(struct zone *zone)
2864{
2865 unsigned long start_pfn, pfn, end_pfn;
2866 struct page *page;
78986a67
MG
2867 unsigned long block_migratetype;
2868 int reserve;
56fd56b8
MG
2869
2870 /* Get the start pfn, end pfn and the number of blocks to reserve */
2871 start_pfn = zone->zone_start_pfn;
2872 end_pfn = start_pfn + zone->spanned_pages;
41858966 2873 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2874 pageblock_order;
56fd56b8 2875
78986a67
MG
2876 /*
2877 * Reserve blocks are generally in place to help high-order atomic
2878 * allocations that are short-lived. A min_free_kbytes value that
2879 * would result in more than 2 reserve blocks for atomic allocations
2880 * is assumed to be in place to help anti-fragmentation for the
2881 * future allocation of hugepages at runtime.
2882 */
2883 reserve = min(2, reserve);
2884
d9c23400 2885 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2886 if (!pfn_valid(pfn))
2887 continue;
2888 page = pfn_to_page(pfn);
2889
344c790e
AL
2890 /* Watch out for overlapping nodes */
2891 if (page_to_nid(page) != zone_to_nid(zone))
2892 continue;
2893
56fd56b8
MG
2894 /* Blocks with reserved pages will never free, skip them. */
2895 if (PageReserved(page))
2896 continue;
2897
2898 block_migratetype = get_pageblock_migratetype(page);
2899
2900 /* If this block is reserved, account for it */
2901 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2902 reserve--;
2903 continue;
2904 }
2905
2906 /* Suitable for reserving if this block is movable */
2907 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2908 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2909 move_freepages_block(zone, page, MIGRATE_RESERVE);
2910 reserve--;
2911 continue;
2912 }
2913
2914 /*
2915 * If the reserve is met and this is a previous reserved block,
2916 * take it back
2917 */
2918 if (block_migratetype == MIGRATE_RESERVE) {
2919 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2920 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2921 }
2922 }
2923}
ac0e5b7a 2924
1da177e4
LT
2925/*
2926 * Initially all pages are reserved - free ones are freed
2927 * up by free_all_bootmem() once the early boot process is
2928 * done. Non-atomic initialization, single-pass.
2929 */
c09b4240 2930void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2931 unsigned long start_pfn, enum memmap_context context)
1da177e4 2932{
1da177e4 2933 struct page *page;
29751f69
AW
2934 unsigned long end_pfn = start_pfn + size;
2935 unsigned long pfn;
86051ca5 2936 struct zone *z;
1da177e4 2937
22b31eec
HD
2938 if (highest_memmap_pfn < end_pfn - 1)
2939 highest_memmap_pfn = end_pfn - 1;
2940
86051ca5 2941 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2942 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2943 /*
2944 * There can be holes in boot-time mem_map[]s
2945 * handed to this function. They do not
2946 * exist on hotplugged memory.
2947 */
2948 if (context == MEMMAP_EARLY) {
2949 if (!early_pfn_valid(pfn))
2950 continue;
2951 if (!early_pfn_in_nid(pfn, nid))
2952 continue;
2953 }
d41dee36
AW
2954 page = pfn_to_page(pfn);
2955 set_page_links(page, zone, nid, pfn);
708614e6 2956 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2957 init_page_count(page);
1da177e4
LT
2958 reset_page_mapcount(page);
2959 SetPageReserved(page);
b2a0ac88
MG
2960 /*
2961 * Mark the block movable so that blocks are reserved for
2962 * movable at startup. This will force kernel allocations
2963 * to reserve their blocks rather than leaking throughout
2964 * the address space during boot when many long-lived
56fd56b8
MG
2965 * kernel allocations are made. Later some blocks near
2966 * the start are marked MIGRATE_RESERVE by
2967 * setup_zone_migrate_reserve()
86051ca5
KH
2968 *
2969 * bitmap is created for zone's valid pfn range. but memmap
2970 * can be created for invalid pages (for alignment)
2971 * check here not to call set_pageblock_migratetype() against
2972 * pfn out of zone.
b2a0ac88 2973 */
86051ca5
KH
2974 if ((z->zone_start_pfn <= pfn)
2975 && (pfn < z->zone_start_pfn + z->spanned_pages)
2976 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2977 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2978
1da177e4
LT
2979 INIT_LIST_HEAD(&page->lru);
2980#ifdef WANT_PAGE_VIRTUAL
2981 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2982 if (!is_highmem_idx(zone))
3212c6be 2983 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2984#endif
1da177e4
LT
2985 }
2986}
2987
1e548deb 2988static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2989{
b2a0ac88
MG
2990 int order, t;
2991 for_each_migratetype_order(order, t) {
2992 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2993 zone->free_area[order].nr_free = 0;
2994 }
2995}
2996
2997#ifndef __HAVE_ARCH_MEMMAP_INIT
2998#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2999 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3000#endif
3001
1d6f4e60 3002static int zone_batchsize(struct zone *zone)
e7c8d5c9 3003{
3a6be87f 3004#ifdef CONFIG_MMU
e7c8d5c9
CL
3005 int batch;
3006
3007 /*
3008 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3009 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3010 *
3011 * OK, so we don't know how big the cache is. So guess.
3012 */
3013 batch = zone->present_pages / 1024;
ba56e91c
SR
3014 if (batch * PAGE_SIZE > 512 * 1024)
3015 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3016 batch /= 4; /* We effectively *= 4 below */
3017 if (batch < 1)
3018 batch = 1;
3019
3020 /*
0ceaacc9
NP
3021 * Clamp the batch to a 2^n - 1 value. Having a power
3022 * of 2 value was found to be more likely to have
3023 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3024 *
0ceaacc9
NP
3025 * For example if 2 tasks are alternately allocating
3026 * batches of pages, one task can end up with a lot
3027 * of pages of one half of the possible page colors
3028 * and the other with pages of the other colors.
e7c8d5c9 3029 */
9155203a 3030 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3031
e7c8d5c9 3032 return batch;
3a6be87f
DH
3033
3034#else
3035 /* The deferral and batching of frees should be suppressed under NOMMU
3036 * conditions.
3037 *
3038 * The problem is that NOMMU needs to be able to allocate large chunks
3039 * of contiguous memory as there's no hardware page translation to
3040 * assemble apparent contiguous memory from discontiguous pages.
3041 *
3042 * Queueing large contiguous runs of pages for batching, however,
3043 * causes the pages to actually be freed in smaller chunks. As there
3044 * can be a significant delay between the individual batches being
3045 * recycled, this leads to the once large chunks of space being
3046 * fragmented and becoming unavailable for high-order allocations.
3047 */
3048 return 0;
3049#endif
e7c8d5c9
CL
3050}
3051
b69a7288 3052static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3053{
3054 struct per_cpu_pages *pcp;
5f8dcc21 3055 int migratetype;
2caaad41 3056
1c6fe946
MD
3057 memset(p, 0, sizeof(*p));
3058
3dfa5721 3059 pcp = &p->pcp;
2caaad41 3060 pcp->count = 0;
2caaad41
CL
3061 pcp->high = 6 * batch;
3062 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3063 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3064 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3065}
3066
8ad4b1fb
RS
3067/*
3068 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3069 * to the value high for the pageset p.
3070 */
3071
3072static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3073 unsigned long high)
3074{
3075 struct per_cpu_pages *pcp;
3076
3dfa5721 3077 pcp = &p->pcp;
8ad4b1fb
RS
3078 pcp->high = high;
3079 pcp->batch = max(1UL, high/4);
3080 if ((high/4) > (PAGE_SHIFT * 8))
3081 pcp->batch = PAGE_SHIFT * 8;
3082}
3083
3084
e7c8d5c9
CL
3085#ifdef CONFIG_NUMA
3086/*
2caaad41
CL
3087 * Boot pageset table. One per cpu which is going to be used for all
3088 * zones and all nodes. The parameters will be set in such a way
3089 * that an item put on a list will immediately be handed over to
3090 * the buddy list. This is safe since pageset manipulation is done
3091 * with interrupts disabled.
3092 *
3093 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
3094 *
3095 * The boot_pagesets must be kept even after bootup is complete for
3096 * unused processors and/or zones. They do play a role for bootstrapping
3097 * hotplugged processors.
3098 *
3099 * zoneinfo_show() and maybe other functions do
3100 * not check if the processor is online before following the pageset pointer.
3101 * Other parts of the kernel may not check if the zone is available.
2caaad41 3102 */
88a2a4ac 3103static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3104
3105/*
3106 * Dynamically allocate memory for the
e7c8d5c9
CL
3107 * per cpu pageset array in struct zone.
3108 */
6292d9aa 3109static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3110{
3111 struct zone *zone, *dzone;
37c0708d
CL
3112 int node = cpu_to_node(cpu);
3113
3114 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3115
ee99c71c 3116 for_each_populated_zone(zone) {
23316bc8 3117 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3118 GFP_KERNEL, node);
23316bc8 3119 if (!zone_pcp(zone, cpu))
e7c8d5c9 3120 goto bad;
e7c8d5c9 3121
23316bc8 3122 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3123
3124 if (percpu_pagelist_fraction)
3125 setup_pagelist_highmark(zone_pcp(zone, cpu),
3126 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3127 }
3128
3129 return 0;
3130bad:
3131 for_each_zone(dzone) {
64191688
AM
3132 if (!populated_zone(dzone))
3133 continue;
e7c8d5c9
CL
3134 if (dzone == zone)
3135 break;
23316bc8 3136 kfree(zone_pcp(dzone, cpu));
364df0eb 3137 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3138 }
3139 return -ENOMEM;
3140}
3141
3142static inline void free_zone_pagesets(int cpu)
3143{
e7c8d5c9
CL
3144 struct zone *zone;
3145
3146 for_each_zone(zone) {
3147 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3148
f3ef9ead
DR
3149 /* Free per_cpu_pageset if it is slab allocated */
3150 if (pset != &boot_pageset[cpu])
3151 kfree(pset);
364df0eb 3152 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3153 }
e7c8d5c9
CL
3154}
3155
9c7b216d 3156static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3157 unsigned long action,
3158 void *hcpu)
3159{
3160 int cpu = (long)hcpu;
3161 int ret = NOTIFY_OK;
3162
3163 switch (action) {
ce421c79 3164 case CPU_UP_PREPARE:
8bb78442 3165 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3166 if (process_zones(cpu))
3167 ret = NOTIFY_BAD;
3168 break;
3169 case CPU_UP_CANCELED:
8bb78442 3170 case CPU_UP_CANCELED_FROZEN:
ce421c79 3171 case CPU_DEAD:
8bb78442 3172 case CPU_DEAD_FROZEN:
ce421c79
AW
3173 free_zone_pagesets(cpu);
3174 break;
3175 default:
3176 break;
e7c8d5c9
CL
3177 }
3178 return ret;
3179}
3180
74b85f37 3181static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3182 { &pageset_cpuup_callback, NULL, 0 };
3183
78d9955b 3184void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3185{
3186 int err;
3187
3188 /* Initialize per_cpu_pageset for cpu 0.
3189 * A cpuup callback will do this for every cpu
3190 * as it comes online
3191 */
3192 err = process_zones(smp_processor_id());
3193 BUG_ON(err);
3194 register_cpu_notifier(&pageset_notifier);
3195}
3196
3197#endif
3198
577a32f6 3199static noinline __init_refok
cca448fe 3200int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3201{
3202 int i;
3203 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3204 size_t alloc_size;
ed8ece2e
DH
3205
3206 /*
3207 * The per-page waitqueue mechanism uses hashed waitqueues
3208 * per zone.
3209 */
02b694de
YG
3210 zone->wait_table_hash_nr_entries =
3211 wait_table_hash_nr_entries(zone_size_pages);
3212 zone->wait_table_bits =
3213 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3214 alloc_size = zone->wait_table_hash_nr_entries
3215 * sizeof(wait_queue_head_t);
3216
cd94b9db 3217 if (!slab_is_available()) {
cca448fe
YG
3218 zone->wait_table = (wait_queue_head_t *)
3219 alloc_bootmem_node(pgdat, alloc_size);
3220 } else {
3221 /*
3222 * This case means that a zone whose size was 0 gets new memory
3223 * via memory hot-add.
3224 * But it may be the case that a new node was hot-added. In
3225 * this case vmalloc() will not be able to use this new node's
3226 * memory - this wait_table must be initialized to use this new
3227 * node itself as well.
3228 * To use this new node's memory, further consideration will be
3229 * necessary.
3230 */
8691f3a7 3231 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3232 }
3233 if (!zone->wait_table)
3234 return -ENOMEM;
ed8ece2e 3235
02b694de 3236 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3237 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3238
3239 return 0;
ed8ece2e
DH
3240}
3241
112067f0
SL
3242static int __zone_pcp_update(void *data)
3243{
3244 struct zone *zone = data;
3245 int cpu;
3246 unsigned long batch = zone_batchsize(zone), flags;
3247
3248 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3249 struct per_cpu_pageset *pset;
3250 struct per_cpu_pages *pcp;
3251
3252 pset = zone_pcp(zone, cpu);
3253 pcp = &pset->pcp;
3254
3255 local_irq_save(flags);
5f8dcc21 3256 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3257 setup_pageset(pset, batch);
3258 local_irq_restore(flags);
3259 }
3260 return 0;
3261}
3262
3263void zone_pcp_update(struct zone *zone)
3264{
3265 stop_machine(__zone_pcp_update, zone, NULL);
3266}
3267
c09b4240 3268static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3269{
3270 int cpu;
3271 unsigned long batch = zone_batchsize(zone);
3272
3273 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3274#ifdef CONFIG_NUMA
3275 /* Early boot. Slab allocator not functional yet */
23316bc8 3276 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3277 setup_pageset(&boot_pageset[cpu],0);
3278#else
3279 setup_pageset(zone_pcp(zone,cpu), batch);
3280#endif
3281 }
f5335c0f
AB
3282 if (zone->present_pages)
3283 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3284 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3285}
3286
718127cc
YG
3287__meminit int init_currently_empty_zone(struct zone *zone,
3288 unsigned long zone_start_pfn,
a2f3aa02
DH
3289 unsigned long size,
3290 enum memmap_context context)
ed8ece2e
DH
3291{
3292 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3293 int ret;
3294 ret = zone_wait_table_init(zone, size);
3295 if (ret)
3296 return ret;
ed8ece2e
DH
3297 pgdat->nr_zones = zone_idx(zone) + 1;
3298
ed8ece2e
DH
3299 zone->zone_start_pfn = zone_start_pfn;
3300
708614e6
MG
3301 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3302 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3303 pgdat->node_id,
3304 (unsigned long)zone_idx(zone),
3305 zone_start_pfn, (zone_start_pfn + size));
3306
1e548deb 3307 zone_init_free_lists(zone);
718127cc
YG
3308
3309 return 0;
ed8ece2e
DH
3310}
3311
c713216d
MG
3312#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3313/*
3314 * Basic iterator support. Return the first range of PFNs for a node
3315 * Note: nid == MAX_NUMNODES returns first region regardless of node
3316 */
a3142c8e 3317static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3318{
3319 int i;
3320
3321 for (i = 0; i < nr_nodemap_entries; i++)
3322 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3323 return i;
3324
3325 return -1;
3326}
3327
3328/*
3329 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3330 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3331 */
a3142c8e 3332static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3333{
3334 for (index = index + 1; index < nr_nodemap_entries; index++)
3335 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3336 return index;
3337
3338 return -1;
3339}
3340
3341#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3342/*
3343 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3344 * Architectures may implement their own version but if add_active_range()
3345 * was used and there are no special requirements, this is a convenient
3346 * alternative
3347 */
f2dbcfa7 3348int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3349{
3350 int i;
3351
3352 for (i = 0; i < nr_nodemap_entries; i++) {
3353 unsigned long start_pfn = early_node_map[i].start_pfn;
3354 unsigned long end_pfn = early_node_map[i].end_pfn;
3355
3356 if (start_pfn <= pfn && pfn < end_pfn)
3357 return early_node_map[i].nid;
3358 }
cc2559bc
KH
3359 /* This is a memory hole */
3360 return -1;
c713216d
MG
3361}
3362#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3363
f2dbcfa7
KH
3364int __meminit early_pfn_to_nid(unsigned long pfn)
3365{
cc2559bc
KH
3366 int nid;
3367
3368 nid = __early_pfn_to_nid(pfn);
3369 if (nid >= 0)
3370 return nid;
3371 /* just returns 0 */
3372 return 0;
f2dbcfa7
KH
3373}
3374
cc2559bc
KH
3375#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3376bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3377{
3378 int nid;
3379
3380 nid = __early_pfn_to_nid(pfn);
3381 if (nid >= 0 && nid != node)
3382 return false;
3383 return true;
3384}
3385#endif
f2dbcfa7 3386
c713216d
MG
3387/* Basic iterator support to walk early_node_map[] */
3388#define for_each_active_range_index_in_nid(i, nid) \
3389 for (i = first_active_region_index_in_nid(nid); i != -1; \
3390 i = next_active_region_index_in_nid(i, nid))
3391
3392/**
3393 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3394 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3395 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3396 *
3397 * If an architecture guarantees that all ranges registered with
3398 * add_active_ranges() contain no holes and may be freed, this
3399 * this function may be used instead of calling free_bootmem() manually.
3400 */
3401void __init free_bootmem_with_active_regions(int nid,
3402 unsigned long max_low_pfn)
3403{
3404 int i;
3405
3406 for_each_active_range_index_in_nid(i, nid) {
3407 unsigned long size_pages = 0;
3408 unsigned long end_pfn = early_node_map[i].end_pfn;
3409
3410 if (early_node_map[i].start_pfn >= max_low_pfn)
3411 continue;
3412
3413 if (end_pfn > max_low_pfn)
3414 end_pfn = max_low_pfn;
3415
3416 size_pages = end_pfn - early_node_map[i].start_pfn;
3417 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3418 PFN_PHYS(early_node_map[i].start_pfn),
3419 size_pages << PAGE_SHIFT);
3420 }
3421}
3422
b5bc6c0e
YL
3423void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3424{
3425 int i;
d52d53b8 3426 int ret;
b5bc6c0e 3427
d52d53b8
YL
3428 for_each_active_range_index_in_nid(i, nid) {
3429 ret = work_fn(early_node_map[i].start_pfn,
3430 early_node_map[i].end_pfn, data);
3431 if (ret)
3432 break;
3433 }
b5bc6c0e 3434}
c713216d
MG
3435/**
3436 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3437 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3438 *
3439 * If an architecture guarantees that all ranges registered with
3440 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3441 * function may be used instead of calling memory_present() manually.
c713216d
MG
3442 */
3443void __init sparse_memory_present_with_active_regions(int nid)
3444{
3445 int i;
3446
3447 for_each_active_range_index_in_nid(i, nid)
3448 memory_present(early_node_map[i].nid,
3449 early_node_map[i].start_pfn,
3450 early_node_map[i].end_pfn);
3451}
3452
3453/**
3454 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3455 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3456 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3457 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3458 *
3459 * It returns the start and end page frame of a node based on information
3460 * provided by an arch calling add_active_range(). If called for a node
3461 * with no available memory, a warning is printed and the start and end
88ca3b94 3462 * PFNs will be 0.
c713216d 3463 */
a3142c8e 3464void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3465 unsigned long *start_pfn, unsigned long *end_pfn)
3466{
3467 int i;
3468 *start_pfn = -1UL;
3469 *end_pfn = 0;
3470
3471 for_each_active_range_index_in_nid(i, nid) {
3472 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3473 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3474 }
3475
633c0666 3476 if (*start_pfn == -1UL)
c713216d 3477 *start_pfn = 0;
c713216d
MG
3478}
3479
2a1e274a
MG
3480/*
3481 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3482 * assumption is made that zones within a node are ordered in monotonic
3483 * increasing memory addresses so that the "highest" populated zone is used
3484 */
b69a7288 3485static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3486{
3487 int zone_index;
3488 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3489 if (zone_index == ZONE_MOVABLE)
3490 continue;
3491
3492 if (arch_zone_highest_possible_pfn[zone_index] >
3493 arch_zone_lowest_possible_pfn[zone_index])
3494 break;
3495 }
3496
3497 VM_BUG_ON(zone_index == -1);
3498 movable_zone = zone_index;
3499}
3500
3501/*
3502 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3503 * because it is sized independant of architecture. Unlike the other zones,
3504 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3505 * in each node depending on the size of each node and how evenly kernelcore
3506 * is distributed. This helper function adjusts the zone ranges
3507 * provided by the architecture for a given node by using the end of the
3508 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3509 * zones within a node are in order of monotonic increases memory addresses
3510 */
b69a7288 3511static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3512 unsigned long zone_type,
3513 unsigned long node_start_pfn,
3514 unsigned long node_end_pfn,
3515 unsigned long *zone_start_pfn,
3516 unsigned long *zone_end_pfn)
3517{
3518 /* Only adjust if ZONE_MOVABLE is on this node */
3519 if (zone_movable_pfn[nid]) {
3520 /* Size ZONE_MOVABLE */
3521 if (zone_type == ZONE_MOVABLE) {
3522 *zone_start_pfn = zone_movable_pfn[nid];
3523 *zone_end_pfn = min(node_end_pfn,
3524 arch_zone_highest_possible_pfn[movable_zone]);
3525
3526 /* Adjust for ZONE_MOVABLE starting within this range */
3527 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3528 *zone_end_pfn > zone_movable_pfn[nid]) {
3529 *zone_end_pfn = zone_movable_pfn[nid];
3530
3531 /* Check if this whole range is within ZONE_MOVABLE */
3532 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3533 *zone_start_pfn = *zone_end_pfn;
3534 }
3535}
3536
c713216d
MG
3537/*
3538 * Return the number of pages a zone spans in a node, including holes
3539 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3540 */
6ea6e688 3541static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3542 unsigned long zone_type,
3543 unsigned long *ignored)
3544{
3545 unsigned long node_start_pfn, node_end_pfn;
3546 unsigned long zone_start_pfn, zone_end_pfn;
3547
3548 /* Get the start and end of the node and zone */
3549 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3550 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3551 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3552 adjust_zone_range_for_zone_movable(nid, zone_type,
3553 node_start_pfn, node_end_pfn,
3554 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3555
3556 /* Check that this node has pages within the zone's required range */
3557 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3558 return 0;
3559
3560 /* Move the zone boundaries inside the node if necessary */
3561 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3562 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3563
3564 /* Return the spanned pages */
3565 return zone_end_pfn - zone_start_pfn;
3566}
3567
3568/*
3569 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3570 * then all holes in the requested range will be accounted for.
c713216d 3571 */
b69a7288 3572static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3573 unsigned long range_start_pfn,
3574 unsigned long range_end_pfn)
3575{
3576 int i = 0;
3577 unsigned long prev_end_pfn = 0, hole_pages = 0;
3578 unsigned long start_pfn;
3579
3580 /* Find the end_pfn of the first active range of pfns in the node */
3581 i = first_active_region_index_in_nid(nid);
3582 if (i == -1)
3583 return 0;
3584
b5445f95
MG
3585 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3586
9c7cd687
MG
3587 /* Account for ranges before physical memory on this node */
3588 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3589 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3590
3591 /* Find all holes for the zone within the node */
3592 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3593
3594 /* No need to continue if prev_end_pfn is outside the zone */
3595 if (prev_end_pfn >= range_end_pfn)
3596 break;
3597
3598 /* Make sure the end of the zone is not within the hole */
3599 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3600 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3601
3602 /* Update the hole size cound and move on */
3603 if (start_pfn > range_start_pfn) {
3604 BUG_ON(prev_end_pfn > start_pfn);
3605 hole_pages += start_pfn - prev_end_pfn;
3606 }
3607 prev_end_pfn = early_node_map[i].end_pfn;
3608 }
3609
9c7cd687
MG
3610 /* Account for ranges past physical memory on this node */
3611 if (range_end_pfn > prev_end_pfn)
0c6cb974 3612 hole_pages += range_end_pfn -
9c7cd687
MG
3613 max(range_start_pfn, prev_end_pfn);
3614
c713216d
MG
3615 return hole_pages;
3616}
3617
3618/**
3619 * absent_pages_in_range - Return number of page frames in holes within a range
3620 * @start_pfn: The start PFN to start searching for holes
3621 * @end_pfn: The end PFN to stop searching for holes
3622 *
88ca3b94 3623 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3624 */
3625unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3626 unsigned long end_pfn)
3627{
3628 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3629}
3630
3631/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3632static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3633 unsigned long zone_type,
3634 unsigned long *ignored)
3635{
9c7cd687
MG
3636 unsigned long node_start_pfn, node_end_pfn;
3637 unsigned long zone_start_pfn, zone_end_pfn;
3638
3639 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3640 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3641 node_start_pfn);
3642 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3643 node_end_pfn);
3644
2a1e274a
MG
3645 adjust_zone_range_for_zone_movable(nid, zone_type,
3646 node_start_pfn, node_end_pfn,
3647 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3648 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3649}
0e0b864e 3650
c713216d 3651#else
6ea6e688 3652static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3653 unsigned long zone_type,
3654 unsigned long *zones_size)
3655{
3656 return zones_size[zone_type];
3657}
3658
6ea6e688 3659static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3660 unsigned long zone_type,
3661 unsigned long *zholes_size)
3662{
3663 if (!zholes_size)
3664 return 0;
3665
3666 return zholes_size[zone_type];
3667}
0e0b864e 3668
c713216d
MG
3669#endif
3670
a3142c8e 3671static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3672 unsigned long *zones_size, unsigned long *zholes_size)
3673{
3674 unsigned long realtotalpages, totalpages = 0;
3675 enum zone_type i;
3676
3677 for (i = 0; i < MAX_NR_ZONES; i++)
3678 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3679 zones_size);
3680 pgdat->node_spanned_pages = totalpages;
3681
3682 realtotalpages = totalpages;
3683 for (i = 0; i < MAX_NR_ZONES; i++)
3684 realtotalpages -=
3685 zone_absent_pages_in_node(pgdat->node_id, i,
3686 zholes_size);
3687 pgdat->node_present_pages = realtotalpages;
3688 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3689 realtotalpages);
3690}
3691
835c134e
MG
3692#ifndef CONFIG_SPARSEMEM
3693/*
3694 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3695 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3696 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3697 * round what is now in bits to nearest long in bits, then return it in
3698 * bytes.
3699 */
3700static unsigned long __init usemap_size(unsigned long zonesize)
3701{
3702 unsigned long usemapsize;
3703
d9c23400
MG
3704 usemapsize = roundup(zonesize, pageblock_nr_pages);
3705 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3706 usemapsize *= NR_PAGEBLOCK_BITS;
3707 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3708
3709 return usemapsize / 8;
3710}
3711
3712static void __init setup_usemap(struct pglist_data *pgdat,
3713 struct zone *zone, unsigned long zonesize)
3714{
3715 unsigned long usemapsize = usemap_size(zonesize);
3716 zone->pageblock_flags = NULL;
58a01a45 3717 if (usemapsize)
835c134e 3718 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3719}
3720#else
3721static void inline setup_usemap(struct pglist_data *pgdat,
3722 struct zone *zone, unsigned long zonesize) {}
3723#endif /* CONFIG_SPARSEMEM */
3724
d9c23400 3725#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3726
3727/* Return a sensible default order for the pageblock size. */
3728static inline int pageblock_default_order(void)
3729{
3730 if (HPAGE_SHIFT > PAGE_SHIFT)
3731 return HUGETLB_PAGE_ORDER;
3732
3733 return MAX_ORDER-1;
3734}
3735
d9c23400
MG
3736/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3737static inline void __init set_pageblock_order(unsigned int order)
3738{
3739 /* Check that pageblock_nr_pages has not already been setup */
3740 if (pageblock_order)
3741 return;
3742
3743 /*
3744 * Assume the largest contiguous order of interest is a huge page.
3745 * This value may be variable depending on boot parameters on IA64
3746 */
3747 pageblock_order = order;
3748}
3749#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3750
ba72cb8c
MG
3751/*
3752 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3753 * and pageblock_default_order() are unused as pageblock_order is set
3754 * at compile-time. See include/linux/pageblock-flags.h for the values of
3755 * pageblock_order based on the kernel config
3756 */
3757static inline int pageblock_default_order(unsigned int order)
3758{
3759 return MAX_ORDER-1;
3760}
d9c23400
MG
3761#define set_pageblock_order(x) do {} while (0)
3762
3763#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3764
1da177e4
LT
3765/*
3766 * Set up the zone data structures:
3767 * - mark all pages reserved
3768 * - mark all memory queues empty
3769 * - clear the memory bitmaps
3770 */
b5a0e011 3771static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3772 unsigned long *zones_size, unsigned long *zholes_size)
3773{
2f1b6248 3774 enum zone_type j;
ed8ece2e 3775 int nid = pgdat->node_id;
1da177e4 3776 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3777 int ret;
1da177e4 3778
208d54e5 3779 pgdat_resize_init(pgdat);
1da177e4
LT
3780 pgdat->nr_zones = 0;
3781 init_waitqueue_head(&pgdat->kswapd_wait);
3782 pgdat->kswapd_max_order = 0;
52d4b9ac 3783 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3784
3785 for (j = 0; j < MAX_NR_ZONES; j++) {
3786 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3787 unsigned long size, realsize, memmap_pages;
b69408e8 3788 enum lru_list l;
1da177e4 3789
c713216d
MG
3790 size = zone_spanned_pages_in_node(nid, j, zones_size);
3791 realsize = size - zone_absent_pages_in_node(nid, j,
3792 zholes_size);
1da177e4 3793
0e0b864e
MG
3794 /*
3795 * Adjust realsize so that it accounts for how much memory
3796 * is used by this zone for memmap. This affects the watermark
3797 * and per-cpu initialisations
3798 */
f7232154
JW
3799 memmap_pages =
3800 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3801 if (realsize >= memmap_pages) {
3802 realsize -= memmap_pages;
5594c8c8
YL
3803 if (memmap_pages)
3804 printk(KERN_DEBUG
3805 " %s zone: %lu pages used for memmap\n",
3806 zone_names[j], memmap_pages);
0e0b864e
MG
3807 } else
3808 printk(KERN_WARNING
3809 " %s zone: %lu pages exceeds realsize %lu\n",
3810 zone_names[j], memmap_pages, realsize);
3811
6267276f
CL
3812 /* Account for reserved pages */
3813 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3814 realsize -= dma_reserve;
d903ef9f 3815 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3816 zone_names[0], dma_reserve);
0e0b864e
MG
3817 }
3818
98d2b0eb 3819 if (!is_highmem_idx(j))
1da177e4
LT
3820 nr_kernel_pages += realsize;
3821 nr_all_pages += realsize;
3822
3823 zone->spanned_pages = size;
3824 zone->present_pages = realsize;
9614634f 3825#ifdef CONFIG_NUMA
d5f541ed 3826 zone->node = nid;
8417bba4 3827 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3828 / 100;
0ff38490 3829 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3830#endif
1da177e4
LT
3831 zone->name = zone_names[j];
3832 spin_lock_init(&zone->lock);
3833 spin_lock_init(&zone->lru_lock);
bdc8cb98 3834 zone_seqlock_init(zone);
1da177e4 3835 zone->zone_pgdat = pgdat;
1da177e4 3836
3bb1a852 3837 zone->prev_priority = DEF_PRIORITY;
1da177e4 3838
ed8ece2e 3839 zone_pcp_init(zone);
b69408e8
CL
3840 for_each_lru(l) {
3841 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 3842 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 3843 }
6e901571
KM
3844 zone->reclaim_stat.recent_rotated[0] = 0;
3845 zone->reclaim_stat.recent_rotated[1] = 0;
3846 zone->reclaim_stat.recent_scanned[0] = 0;
3847 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3848 zap_zone_vm_stats(zone);
e815af95 3849 zone->flags = 0;
1da177e4
LT
3850 if (!size)
3851 continue;
3852
ba72cb8c 3853 set_pageblock_order(pageblock_default_order());
835c134e 3854 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3855 ret = init_currently_empty_zone(zone, zone_start_pfn,
3856 size, MEMMAP_EARLY);
718127cc 3857 BUG_ON(ret);
76cdd58e 3858 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3859 zone_start_pfn += size;
1da177e4
LT
3860 }
3861}
3862
577a32f6 3863static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3864{
1da177e4
LT
3865 /* Skip empty nodes */
3866 if (!pgdat->node_spanned_pages)
3867 return;
3868
d41dee36 3869#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3870 /* ia64 gets its own node_mem_map, before this, without bootmem */
3871 if (!pgdat->node_mem_map) {
e984bb43 3872 unsigned long size, start, end;
d41dee36
AW
3873 struct page *map;
3874
e984bb43
BP
3875 /*
3876 * The zone's endpoints aren't required to be MAX_ORDER
3877 * aligned but the node_mem_map endpoints must be in order
3878 * for the buddy allocator to function correctly.
3879 */
3880 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3881 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3882 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3883 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3884 map = alloc_remap(pgdat->node_id, size);
3885 if (!map)
3886 map = alloc_bootmem_node(pgdat, size);
e984bb43 3887 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3888 }
12d810c1 3889#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3890 /*
3891 * With no DISCONTIG, the global mem_map is just set as node 0's
3892 */
c713216d 3893 if (pgdat == NODE_DATA(0)) {
1da177e4 3894 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3895#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3896 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3897 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3898#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3899 }
1da177e4 3900#endif
d41dee36 3901#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3902}
3903
9109fb7b
JW
3904void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3905 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3906{
9109fb7b
JW
3907 pg_data_t *pgdat = NODE_DATA(nid);
3908
1da177e4
LT
3909 pgdat->node_id = nid;
3910 pgdat->node_start_pfn = node_start_pfn;
c713216d 3911 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3912
3913 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3914#ifdef CONFIG_FLAT_NODE_MEM_MAP
3915 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3916 nid, (unsigned long)pgdat,
3917 (unsigned long)pgdat->node_mem_map);
3918#endif
1da177e4
LT
3919
3920 free_area_init_core(pgdat, zones_size, zholes_size);
3921}
3922
c713216d 3923#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3924
3925#if MAX_NUMNODES > 1
3926/*
3927 * Figure out the number of possible node ids.
3928 */
3929static void __init setup_nr_node_ids(void)
3930{
3931 unsigned int node;
3932 unsigned int highest = 0;
3933
3934 for_each_node_mask(node, node_possible_map)
3935 highest = node;
3936 nr_node_ids = highest + 1;
3937}
3938#else
3939static inline void setup_nr_node_ids(void)
3940{
3941}
3942#endif
3943
c713216d
MG
3944/**
3945 * add_active_range - Register a range of PFNs backed by physical memory
3946 * @nid: The node ID the range resides on
3947 * @start_pfn: The start PFN of the available physical memory
3948 * @end_pfn: The end PFN of the available physical memory
3949 *
3950 * These ranges are stored in an early_node_map[] and later used by
3951 * free_area_init_nodes() to calculate zone sizes and holes. If the
3952 * range spans a memory hole, it is up to the architecture to ensure
3953 * the memory is not freed by the bootmem allocator. If possible
3954 * the range being registered will be merged with existing ranges.
3955 */
3956void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3957 unsigned long end_pfn)
3958{
3959 int i;
3960
6b74ab97
MG
3961 mminit_dprintk(MMINIT_TRACE, "memory_register",
3962 "Entering add_active_range(%d, %#lx, %#lx) "
3963 "%d entries of %d used\n",
3964 nid, start_pfn, end_pfn,
3965 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3966
2dbb51c4
MG
3967 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3968
c713216d
MG
3969 /* Merge with existing active regions if possible */
3970 for (i = 0; i < nr_nodemap_entries; i++) {
3971 if (early_node_map[i].nid != nid)
3972 continue;
3973
3974 /* Skip if an existing region covers this new one */
3975 if (start_pfn >= early_node_map[i].start_pfn &&
3976 end_pfn <= early_node_map[i].end_pfn)
3977 return;
3978
3979 /* Merge forward if suitable */
3980 if (start_pfn <= early_node_map[i].end_pfn &&
3981 end_pfn > early_node_map[i].end_pfn) {
3982 early_node_map[i].end_pfn = end_pfn;
3983 return;
3984 }
3985
3986 /* Merge backward if suitable */
3987 if (start_pfn < early_node_map[i].end_pfn &&
3988 end_pfn >= early_node_map[i].start_pfn) {
3989 early_node_map[i].start_pfn = start_pfn;
3990 return;
3991 }
3992 }
3993
3994 /* Check that early_node_map is large enough */
3995 if (i >= MAX_ACTIVE_REGIONS) {
3996 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3997 MAX_ACTIVE_REGIONS);
3998 return;
3999 }
4000
4001 early_node_map[i].nid = nid;
4002 early_node_map[i].start_pfn = start_pfn;
4003 early_node_map[i].end_pfn = end_pfn;
4004 nr_nodemap_entries = i + 1;
4005}
4006
4007/**
cc1050ba 4008 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4009 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4010 * @start_pfn: The new PFN of the range
4011 * @end_pfn: The new PFN of the range
c713216d
MG
4012 *
4013 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4014 * The map is kept near the end physical page range that has already been
4015 * registered. This function allows an arch to shrink an existing registered
4016 * range.
c713216d 4017 */
cc1050ba
YL
4018void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4019 unsigned long end_pfn)
c713216d 4020{
cc1a9d86
YL
4021 int i, j;
4022 int removed = 0;
c713216d 4023
cc1050ba
YL
4024 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4025 nid, start_pfn, end_pfn);
4026
c713216d 4027 /* Find the old active region end and shrink */
cc1a9d86 4028 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4029 if (early_node_map[i].start_pfn >= start_pfn &&
4030 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4031 /* clear it */
cc1050ba 4032 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4033 early_node_map[i].end_pfn = 0;
4034 removed = 1;
4035 continue;
4036 }
cc1050ba
YL
4037 if (early_node_map[i].start_pfn < start_pfn &&
4038 early_node_map[i].end_pfn > start_pfn) {
4039 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4040 early_node_map[i].end_pfn = start_pfn;
4041 if (temp_end_pfn > end_pfn)
4042 add_active_range(nid, end_pfn, temp_end_pfn);
4043 continue;
4044 }
4045 if (early_node_map[i].start_pfn >= start_pfn &&
4046 early_node_map[i].end_pfn > end_pfn &&
4047 early_node_map[i].start_pfn < end_pfn) {
4048 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4049 continue;
c713216d 4050 }
cc1a9d86
YL
4051 }
4052
4053 if (!removed)
4054 return;
4055
4056 /* remove the blank ones */
4057 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4058 if (early_node_map[i].nid != nid)
4059 continue;
4060 if (early_node_map[i].end_pfn)
4061 continue;
4062 /* we found it, get rid of it */
4063 for (j = i; j < nr_nodemap_entries - 1; j++)
4064 memcpy(&early_node_map[j], &early_node_map[j+1],
4065 sizeof(early_node_map[j]));
4066 j = nr_nodemap_entries - 1;
4067 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4068 nr_nodemap_entries--;
4069 }
c713216d
MG
4070}
4071
4072/**
4073 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4074 *
c713216d
MG
4075 * During discovery, it may be found that a table like SRAT is invalid
4076 * and an alternative discovery method must be used. This function removes
4077 * all currently registered regions.
4078 */
88ca3b94 4079void __init remove_all_active_ranges(void)
c713216d
MG
4080{
4081 memset(early_node_map, 0, sizeof(early_node_map));
4082 nr_nodemap_entries = 0;
4083}
4084
4085/* Compare two active node_active_regions */
4086static int __init cmp_node_active_region(const void *a, const void *b)
4087{
4088 struct node_active_region *arange = (struct node_active_region *)a;
4089 struct node_active_region *brange = (struct node_active_region *)b;
4090
4091 /* Done this way to avoid overflows */
4092 if (arange->start_pfn > brange->start_pfn)
4093 return 1;
4094 if (arange->start_pfn < brange->start_pfn)
4095 return -1;
4096
4097 return 0;
4098}
4099
4100/* sort the node_map by start_pfn */
4101static void __init sort_node_map(void)
4102{
4103 sort(early_node_map, (size_t)nr_nodemap_entries,
4104 sizeof(struct node_active_region),
4105 cmp_node_active_region, NULL);
4106}
4107
a6af2bc3 4108/* Find the lowest pfn for a node */
b69a7288 4109static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4110{
4111 int i;
a6af2bc3 4112 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4113
c713216d
MG
4114 /* Assuming a sorted map, the first range found has the starting pfn */
4115 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4116 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4117
a6af2bc3
MG
4118 if (min_pfn == ULONG_MAX) {
4119 printk(KERN_WARNING
2bc0d261 4120 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4121 return 0;
4122 }
4123
4124 return min_pfn;
c713216d
MG
4125}
4126
4127/**
4128 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4129 *
4130 * It returns the minimum PFN based on information provided via
88ca3b94 4131 * add_active_range().
c713216d
MG
4132 */
4133unsigned long __init find_min_pfn_with_active_regions(void)
4134{
4135 return find_min_pfn_for_node(MAX_NUMNODES);
4136}
4137
37b07e41
LS
4138/*
4139 * early_calculate_totalpages()
4140 * Sum pages in active regions for movable zone.
4141 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4142 */
484f51f8 4143static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4144{
4145 int i;
4146 unsigned long totalpages = 0;
4147
37b07e41
LS
4148 for (i = 0; i < nr_nodemap_entries; i++) {
4149 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4150 early_node_map[i].start_pfn;
37b07e41
LS
4151 totalpages += pages;
4152 if (pages)
4153 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4154 }
4155 return totalpages;
7e63efef
MG
4156}
4157
2a1e274a
MG
4158/*
4159 * Find the PFN the Movable zone begins in each node. Kernel memory
4160 * is spread evenly between nodes as long as the nodes have enough
4161 * memory. When they don't, some nodes will have more kernelcore than
4162 * others
4163 */
b69a7288 4164static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4165{
4166 int i, nid;
4167 unsigned long usable_startpfn;
4168 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4169 /* save the state before borrow the nodemask */
4170 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4171 unsigned long totalpages = early_calculate_totalpages();
4172 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4173
7e63efef
MG
4174 /*
4175 * If movablecore was specified, calculate what size of
4176 * kernelcore that corresponds so that memory usable for
4177 * any allocation type is evenly spread. If both kernelcore
4178 * and movablecore are specified, then the value of kernelcore
4179 * will be used for required_kernelcore if it's greater than
4180 * what movablecore would have allowed.
4181 */
4182 if (required_movablecore) {
7e63efef
MG
4183 unsigned long corepages;
4184
4185 /*
4186 * Round-up so that ZONE_MOVABLE is at least as large as what
4187 * was requested by the user
4188 */
4189 required_movablecore =
4190 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4191 corepages = totalpages - required_movablecore;
4192
4193 required_kernelcore = max(required_kernelcore, corepages);
4194 }
4195
2a1e274a
MG
4196 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4197 if (!required_kernelcore)
66918dcd 4198 goto out;
2a1e274a
MG
4199
4200 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4201 find_usable_zone_for_movable();
4202 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4203
4204restart:
4205 /* Spread kernelcore memory as evenly as possible throughout nodes */
4206 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4207 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4208 /*
4209 * Recalculate kernelcore_node if the division per node
4210 * now exceeds what is necessary to satisfy the requested
4211 * amount of memory for the kernel
4212 */
4213 if (required_kernelcore < kernelcore_node)
4214 kernelcore_node = required_kernelcore / usable_nodes;
4215
4216 /*
4217 * As the map is walked, we track how much memory is usable
4218 * by the kernel using kernelcore_remaining. When it is
4219 * 0, the rest of the node is usable by ZONE_MOVABLE
4220 */
4221 kernelcore_remaining = kernelcore_node;
4222
4223 /* Go through each range of PFNs within this node */
4224 for_each_active_range_index_in_nid(i, nid) {
4225 unsigned long start_pfn, end_pfn;
4226 unsigned long size_pages;
4227
4228 start_pfn = max(early_node_map[i].start_pfn,
4229 zone_movable_pfn[nid]);
4230 end_pfn = early_node_map[i].end_pfn;
4231 if (start_pfn >= end_pfn)
4232 continue;
4233
4234 /* Account for what is only usable for kernelcore */
4235 if (start_pfn < usable_startpfn) {
4236 unsigned long kernel_pages;
4237 kernel_pages = min(end_pfn, usable_startpfn)
4238 - start_pfn;
4239
4240 kernelcore_remaining -= min(kernel_pages,
4241 kernelcore_remaining);
4242 required_kernelcore -= min(kernel_pages,
4243 required_kernelcore);
4244
4245 /* Continue if range is now fully accounted */
4246 if (end_pfn <= usable_startpfn) {
4247
4248 /*
4249 * Push zone_movable_pfn to the end so
4250 * that if we have to rebalance
4251 * kernelcore across nodes, we will
4252 * not double account here
4253 */
4254 zone_movable_pfn[nid] = end_pfn;
4255 continue;
4256 }
4257 start_pfn = usable_startpfn;
4258 }
4259
4260 /*
4261 * The usable PFN range for ZONE_MOVABLE is from
4262 * start_pfn->end_pfn. Calculate size_pages as the
4263 * number of pages used as kernelcore
4264 */
4265 size_pages = end_pfn - start_pfn;
4266 if (size_pages > kernelcore_remaining)
4267 size_pages = kernelcore_remaining;
4268 zone_movable_pfn[nid] = start_pfn + size_pages;
4269
4270 /*
4271 * Some kernelcore has been met, update counts and
4272 * break if the kernelcore for this node has been
4273 * satisified
4274 */
4275 required_kernelcore -= min(required_kernelcore,
4276 size_pages);
4277 kernelcore_remaining -= size_pages;
4278 if (!kernelcore_remaining)
4279 break;
4280 }
4281 }
4282
4283 /*
4284 * If there is still required_kernelcore, we do another pass with one
4285 * less node in the count. This will push zone_movable_pfn[nid] further
4286 * along on the nodes that still have memory until kernelcore is
4287 * satisified
4288 */
4289 usable_nodes--;
4290 if (usable_nodes && required_kernelcore > usable_nodes)
4291 goto restart;
4292
4293 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4294 for (nid = 0; nid < MAX_NUMNODES; nid++)
4295 zone_movable_pfn[nid] =
4296 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4297
4298out:
4299 /* restore the node_state */
4300 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4301}
4302
37b07e41
LS
4303/* Any regular memory on that node ? */
4304static void check_for_regular_memory(pg_data_t *pgdat)
4305{
4306#ifdef CONFIG_HIGHMEM
4307 enum zone_type zone_type;
4308
4309 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4310 struct zone *zone = &pgdat->node_zones[zone_type];
4311 if (zone->present_pages)
4312 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4313 }
4314#endif
4315}
4316
c713216d
MG
4317/**
4318 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4319 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4320 *
4321 * This will call free_area_init_node() for each active node in the system.
4322 * Using the page ranges provided by add_active_range(), the size of each
4323 * zone in each node and their holes is calculated. If the maximum PFN
4324 * between two adjacent zones match, it is assumed that the zone is empty.
4325 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4326 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4327 * starts where the previous one ended. For example, ZONE_DMA32 starts
4328 * at arch_max_dma_pfn.
4329 */
4330void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4331{
4332 unsigned long nid;
db99100d 4333 int i;
c713216d 4334
a6af2bc3
MG
4335 /* Sort early_node_map as initialisation assumes it is sorted */
4336 sort_node_map();
4337
c713216d
MG
4338 /* Record where the zone boundaries are */
4339 memset(arch_zone_lowest_possible_pfn, 0,
4340 sizeof(arch_zone_lowest_possible_pfn));
4341 memset(arch_zone_highest_possible_pfn, 0,
4342 sizeof(arch_zone_highest_possible_pfn));
4343 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4344 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4345 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4346 if (i == ZONE_MOVABLE)
4347 continue;
c713216d
MG
4348 arch_zone_lowest_possible_pfn[i] =
4349 arch_zone_highest_possible_pfn[i-1];
4350 arch_zone_highest_possible_pfn[i] =
4351 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4352 }
2a1e274a
MG
4353 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4354 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4355
4356 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4357 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4358 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4359
c713216d
MG
4360 /* Print out the zone ranges */
4361 printk("Zone PFN ranges:\n");
2a1e274a
MG
4362 for (i = 0; i < MAX_NR_ZONES; i++) {
4363 if (i == ZONE_MOVABLE)
4364 continue;
5dab8ec1 4365 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4366 zone_names[i],
4367 arch_zone_lowest_possible_pfn[i],
4368 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4369 }
4370
4371 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4372 printk("Movable zone start PFN for each node\n");
4373 for (i = 0; i < MAX_NUMNODES; i++) {
4374 if (zone_movable_pfn[i])
4375 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4376 }
c713216d
MG
4377
4378 /* Print out the early_node_map[] */
4379 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4380 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4381 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4382 early_node_map[i].start_pfn,
4383 early_node_map[i].end_pfn);
4384
4385 /* Initialise every node */
708614e6 4386 mminit_verify_pageflags_layout();
8ef82866 4387 setup_nr_node_ids();
c713216d
MG
4388 for_each_online_node(nid) {
4389 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4390 free_area_init_node(nid, NULL,
c713216d 4391 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4392
4393 /* Any memory on that node */
4394 if (pgdat->node_present_pages)
4395 node_set_state(nid, N_HIGH_MEMORY);
4396 check_for_regular_memory(pgdat);
c713216d
MG
4397 }
4398}
2a1e274a 4399
7e63efef 4400static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4401{
4402 unsigned long long coremem;
4403 if (!p)
4404 return -EINVAL;
4405
4406 coremem = memparse(p, &p);
7e63efef 4407 *core = coremem >> PAGE_SHIFT;
2a1e274a 4408
7e63efef 4409 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4410 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4411
4412 return 0;
4413}
ed7ed365 4414
7e63efef
MG
4415/*
4416 * kernelcore=size sets the amount of memory for use for allocations that
4417 * cannot be reclaimed or migrated.
4418 */
4419static int __init cmdline_parse_kernelcore(char *p)
4420{
4421 return cmdline_parse_core(p, &required_kernelcore);
4422}
4423
4424/*
4425 * movablecore=size sets the amount of memory for use for allocations that
4426 * can be reclaimed or migrated.
4427 */
4428static int __init cmdline_parse_movablecore(char *p)
4429{
4430 return cmdline_parse_core(p, &required_movablecore);
4431}
4432
ed7ed365 4433early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4434early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4435
c713216d
MG
4436#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4437
0e0b864e 4438/**
88ca3b94
RD
4439 * set_dma_reserve - set the specified number of pages reserved in the first zone
4440 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4441 *
4442 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4443 * In the DMA zone, a significant percentage may be consumed by kernel image
4444 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4445 * function may optionally be used to account for unfreeable pages in the
4446 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4447 * smaller per-cpu batchsize.
0e0b864e
MG
4448 */
4449void __init set_dma_reserve(unsigned long new_dma_reserve)
4450{
4451 dma_reserve = new_dma_reserve;
4452}
4453
93b7504e 4454#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4455struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4456EXPORT_SYMBOL(contig_page_data);
93b7504e 4457#endif
1da177e4
LT
4458
4459void __init free_area_init(unsigned long *zones_size)
4460{
9109fb7b 4461 free_area_init_node(0, zones_size,
1da177e4
LT
4462 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4463}
1da177e4 4464
1da177e4
LT
4465static int page_alloc_cpu_notify(struct notifier_block *self,
4466 unsigned long action, void *hcpu)
4467{
4468 int cpu = (unsigned long)hcpu;
1da177e4 4469
8bb78442 4470 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4471 drain_pages(cpu);
4472
4473 /*
4474 * Spill the event counters of the dead processor
4475 * into the current processors event counters.
4476 * This artificially elevates the count of the current
4477 * processor.
4478 */
f8891e5e 4479 vm_events_fold_cpu(cpu);
9f8f2172
CL
4480
4481 /*
4482 * Zero the differential counters of the dead processor
4483 * so that the vm statistics are consistent.
4484 *
4485 * This is only okay since the processor is dead and cannot
4486 * race with what we are doing.
4487 */
2244b95a 4488 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4489 }
4490 return NOTIFY_OK;
4491}
1da177e4
LT
4492
4493void __init page_alloc_init(void)
4494{
4495 hotcpu_notifier(page_alloc_cpu_notify, 0);
4496}
4497
cb45b0e9
HA
4498/*
4499 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4500 * or min_free_kbytes changes.
4501 */
4502static void calculate_totalreserve_pages(void)
4503{
4504 struct pglist_data *pgdat;
4505 unsigned long reserve_pages = 0;
2f6726e5 4506 enum zone_type i, j;
cb45b0e9
HA
4507
4508 for_each_online_pgdat(pgdat) {
4509 for (i = 0; i < MAX_NR_ZONES; i++) {
4510 struct zone *zone = pgdat->node_zones + i;
4511 unsigned long max = 0;
4512
4513 /* Find valid and maximum lowmem_reserve in the zone */
4514 for (j = i; j < MAX_NR_ZONES; j++) {
4515 if (zone->lowmem_reserve[j] > max)
4516 max = zone->lowmem_reserve[j];
4517 }
4518
41858966
MG
4519 /* we treat the high watermark as reserved pages. */
4520 max += high_wmark_pages(zone);
cb45b0e9
HA
4521
4522 if (max > zone->present_pages)
4523 max = zone->present_pages;
4524 reserve_pages += max;
4525 }
4526 }
4527 totalreserve_pages = reserve_pages;
4528}
4529
1da177e4
LT
4530/*
4531 * setup_per_zone_lowmem_reserve - called whenever
4532 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4533 * has a correct pages reserved value, so an adequate number of
4534 * pages are left in the zone after a successful __alloc_pages().
4535 */
4536static void setup_per_zone_lowmem_reserve(void)
4537{
4538 struct pglist_data *pgdat;
2f6726e5 4539 enum zone_type j, idx;
1da177e4 4540
ec936fc5 4541 for_each_online_pgdat(pgdat) {
1da177e4
LT
4542 for (j = 0; j < MAX_NR_ZONES; j++) {
4543 struct zone *zone = pgdat->node_zones + j;
4544 unsigned long present_pages = zone->present_pages;
4545
4546 zone->lowmem_reserve[j] = 0;
4547
2f6726e5
CL
4548 idx = j;
4549 while (idx) {
1da177e4
LT
4550 struct zone *lower_zone;
4551
2f6726e5
CL
4552 idx--;
4553
1da177e4
LT
4554 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4555 sysctl_lowmem_reserve_ratio[idx] = 1;
4556
4557 lower_zone = pgdat->node_zones + idx;
4558 lower_zone->lowmem_reserve[j] = present_pages /
4559 sysctl_lowmem_reserve_ratio[idx];
4560 present_pages += lower_zone->present_pages;
4561 }
4562 }
4563 }
cb45b0e9
HA
4564
4565 /* update totalreserve_pages */
4566 calculate_totalreserve_pages();
1da177e4
LT
4567}
4568
88ca3b94 4569/**
bc75d33f 4570 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4571 * or when memory is hot-{added|removed}
88ca3b94 4572 *
bc75d33f
MK
4573 * Ensures that the watermark[min,low,high] values for each zone are set
4574 * correctly with respect to min_free_kbytes.
1da177e4 4575 */
bc75d33f 4576void setup_per_zone_wmarks(void)
1da177e4
LT
4577{
4578 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4579 unsigned long lowmem_pages = 0;
4580 struct zone *zone;
4581 unsigned long flags;
4582
4583 /* Calculate total number of !ZONE_HIGHMEM pages */
4584 for_each_zone(zone) {
4585 if (!is_highmem(zone))
4586 lowmem_pages += zone->present_pages;
4587 }
4588
4589 for_each_zone(zone) {
ac924c60
AM
4590 u64 tmp;
4591
1125b4e3 4592 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4593 tmp = (u64)pages_min * zone->present_pages;
4594 do_div(tmp, lowmem_pages);
1da177e4
LT
4595 if (is_highmem(zone)) {
4596 /*
669ed175
NP
4597 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4598 * need highmem pages, so cap pages_min to a small
4599 * value here.
4600 *
41858966 4601 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4602 * deltas controls asynch page reclaim, and so should
4603 * not be capped for highmem.
1da177e4
LT
4604 */
4605 int min_pages;
4606
4607 min_pages = zone->present_pages / 1024;
4608 if (min_pages < SWAP_CLUSTER_MAX)
4609 min_pages = SWAP_CLUSTER_MAX;
4610 if (min_pages > 128)
4611 min_pages = 128;
41858966 4612 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4613 } else {
669ed175
NP
4614 /*
4615 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4616 * proportionate to the zone's size.
4617 */
41858966 4618 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4619 }
4620
41858966
MG
4621 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4622 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4623 setup_zone_migrate_reserve(zone);
1125b4e3 4624 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4625 }
cb45b0e9
HA
4626
4627 /* update totalreserve_pages */
4628 calculate_totalreserve_pages();
1da177e4
LT
4629}
4630
55a4462a 4631/*
556adecb
RR
4632 * The inactive anon list should be small enough that the VM never has to
4633 * do too much work, but large enough that each inactive page has a chance
4634 * to be referenced again before it is swapped out.
4635 *
4636 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4637 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4638 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4639 * the anonymous pages are kept on the inactive list.
4640 *
4641 * total target max
4642 * memory ratio inactive anon
4643 * -------------------------------------
4644 * 10MB 1 5MB
4645 * 100MB 1 50MB
4646 * 1GB 3 250MB
4647 * 10GB 10 0.9GB
4648 * 100GB 31 3GB
4649 * 1TB 101 10GB
4650 * 10TB 320 32GB
4651 */
96cb4df5 4652void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4653{
96cb4df5 4654 unsigned int gb, ratio;
556adecb 4655
96cb4df5
MK
4656 /* Zone size in gigabytes */
4657 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4658 if (gb)
556adecb 4659 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4660 else
4661 ratio = 1;
556adecb 4662
96cb4df5
MK
4663 zone->inactive_ratio = ratio;
4664}
556adecb 4665
96cb4df5
MK
4666static void __init setup_per_zone_inactive_ratio(void)
4667{
4668 struct zone *zone;
4669
4670 for_each_zone(zone)
4671 calculate_zone_inactive_ratio(zone);
556adecb
RR
4672}
4673
1da177e4
LT
4674/*
4675 * Initialise min_free_kbytes.
4676 *
4677 * For small machines we want it small (128k min). For large machines
4678 * we want it large (64MB max). But it is not linear, because network
4679 * bandwidth does not increase linearly with machine size. We use
4680 *
4681 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4682 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4683 *
4684 * which yields
4685 *
4686 * 16MB: 512k
4687 * 32MB: 724k
4688 * 64MB: 1024k
4689 * 128MB: 1448k
4690 * 256MB: 2048k
4691 * 512MB: 2896k
4692 * 1024MB: 4096k
4693 * 2048MB: 5792k
4694 * 4096MB: 8192k
4695 * 8192MB: 11584k
4696 * 16384MB: 16384k
4697 */
bc75d33f 4698static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4699{
4700 unsigned long lowmem_kbytes;
4701
4702 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4703
4704 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4705 if (min_free_kbytes < 128)
4706 min_free_kbytes = 128;
4707 if (min_free_kbytes > 65536)
4708 min_free_kbytes = 65536;
bc75d33f 4709 setup_per_zone_wmarks();
1da177e4 4710 setup_per_zone_lowmem_reserve();
556adecb 4711 setup_per_zone_inactive_ratio();
1da177e4
LT
4712 return 0;
4713}
bc75d33f 4714module_init(init_per_zone_wmark_min)
1da177e4
LT
4715
4716/*
4717 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4718 * that we can call two helper functions whenever min_free_kbytes
4719 * changes.
4720 */
4721int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4722 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4723{
8d65af78 4724 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4725 if (write)
bc75d33f 4726 setup_per_zone_wmarks();
1da177e4
LT
4727 return 0;
4728}
4729
9614634f
CL
4730#ifdef CONFIG_NUMA
4731int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4732 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4733{
4734 struct zone *zone;
4735 int rc;
4736
8d65af78 4737 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4738 if (rc)
4739 return rc;
4740
4741 for_each_zone(zone)
8417bba4 4742 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4743 sysctl_min_unmapped_ratio) / 100;
4744 return 0;
4745}
0ff38490
CL
4746
4747int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4748 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4749{
4750 struct zone *zone;
4751 int rc;
4752
8d65af78 4753 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4754 if (rc)
4755 return rc;
4756
4757 for_each_zone(zone)
4758 zone->min_slab_pages = (zone->present_pages *
4759 sysctl_min_slab_ratio) / 100;
4760 return 0;
4761}
9614634f
CL
4762#endif
4763
1da177e4
LT
4764/*
4765 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4766 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4767 * whenever sysctl_lowmem_reserve_ratio changes.
4768 *
4769 * The reserve ratio obviously has absolutely no relation with the
41858966 4770 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4771 * if in function of the boot time zone sizes.
4772 */
4773int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4774 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4775{
8d65af78 4776 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4777 setup_per_zone_lowmem_reserve();
4778 return 0;
4779}
4780
8ad4b1fb
RS
4781/*
4782 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4783 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4784 * can have before it gets flushed back to buddy allocator.
4785 */
4786
4787int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4788 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4789{
4790 struct zone *zone;
4791 unsigned int cpu;
4792 int ret;
4793
8d65af78 4794 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
4795 if (!write || (ret == -EINVAL))
4796 return ret;
364df0eb 4797 for_each_populated_zone(zone) {
8ad4b1fb
RS
4798 for_each_online_cpu(cpu) {
4799 unsigned long high;
4800 high = zone->present_pages / percpu_pagelist_fraction;
4801 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4802 }
4803 }
4804 return 0;
4805}
4806
f034b5d4 4807int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4808
4809#ifdef CONFIG_NUMA
4810static int __init set_hashdist(char *str)
4811{
4812 if (!str)
4813 return 0;
4814 hashdist = simple_strtoul(str, &str, 0);
4815 return 1;
4816}
4817__setup("hashdist=", set_hashdist);
4818#endif
4819
4820/*
4821 * allocate a large system hash table from bootmem
4822 * - it is assumed that the hash table must contain an exact power-of-2
4823 * quantity of entries
4824 * - limit is the number of hash buckets, not the total allocation size
4825 */
4826void *__init alloc_large_system_hash(const char *tablename,
4827 unsigned long bucketsize,
4828 unsigned long numentries,
4829 int scale,
4830 int flags,
4831 unsigned int *_hash_shift,
4832 unsigned int *_hash_mask,
4833 unsigned long limit)
4834{
4835 unsigned long long max = limit;
4836 unsigned long log2qty, size;
4837 void *table = NULL;
4838
4839 /* allow the kernel cmdline to have a say */
4840 if (!numentries) {
4841 /* round applicable memory size up to nearest megabyte */
04903664 4842 numentries = nr_kernel_pages;
1da177e4
LT
4843 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4844 numentries >>= 20 - PAGE_SHIFT;
4845 numentries <<= 20 - PAGE_SHIFT;
4846
4847 /* limit to 1 bucket per 2^scale bytes of low memory */
4848 if (scale > PAGE_SHIFT)
4849 numentries >>= (scale - PAGE_SHIFT);
4850 else
4851 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4852
4853 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
4854 if (unlikely(flags & HASH_SMALL)) {
4855 /* Makes no sense without HASH_EARLY */
4856 WARN_ON(!(flags & HASH_EARLY));
4857 if (!(numentries >> *_hash_shift)) {
4858 numentries = 1UL << *_hash_shift;
4859 BUG_ON(!numentries);
4860 }
4861 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 4862 numentries = PAGE_SIZE / bucketsize;
1da177e4 4863 }
6e692ed3 4864 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4865
4866 /* limit allocation size to 1/16 total memory by default */
4867 if (max == 0) {
4868 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4869 do_div(max, bucketsize);
4870 }
4871
4872 if (numentries > max)
4873 numentries = max;
4874
f0d1b0b3 4875 log2qty = ilog2(numentries);
1da177e4
LT
4876
4877 do {
4878 size = bucketsize << log2qty;
4879 if (flags & HASH_EARLY)
74768ed8 4880 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4881 else if (hashdist)
4882 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4883 else {
1037b83b
ED
4884 /*
4885 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4886 * some pages at the end of hash table which
4887 * alloc_pages_exact() automatically does
1037b83b 4888 */
264ef8a9 4889 if (get_order(size) < MAX_ORDER) {
a1dd268c 4890 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4891 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4892 }
1da177e4
LT
4893 }
4894 } while (!table && size > PAGE_SIZE && --log2qty);
4895
4896 if (!table)
4897 panic("Failed to allocate %s hash table\n", tablename);
4898
b49ad484 4899 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4900 tablename,
4901 (1U << log2qty),
f0d1b0b3 4902 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4903 size);
4904
4905 if (_hash_shift)
4906 *_hash_shift = log2qty;
4907 if (_hash_mask)
4908 *_hash_mask = (1 << log2qty) - 1;
4909
4910 return table;
4911}
a117e66e 4912
835c134e
MG
4913/* Return a pointer to the bitmap storing bits affecting a block of pages */
4914static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4915 unsigned long pfn)
4916{
4917#ifdef CONFIG_SPARSEMEM
4918 return __pfn_to_section(pfn)->pageblock_flags;
4919#else
4920 return zone->pageblock_flags;
4921#endif /* CONFIG_SPARSEMEM */
4922}
4923
4924static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4925{
4926#ifdef CONFIG_SPARSEMEM
4927 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4928 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4929#else
4930 pfn = pfn - zone->zone_start_pfn;
d9c23400 4931 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4932#endif /* CONFIG_SPARSEMEM */
4933}
4934
4935/**
d9c23400 4936 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4937 * @page: The page within the block of interest
4938 * @start_bitidx: The first bit of interest to retrieve
4939 * @end_bitidx: The last bit of interest
4940 * returns pageblock_bits flags
4941 */
4942unsigned long get_pageblock_flags_group(struct page *page,
4943 int start_bitidx, int end_bitidx)
4944{
4945 struct zone *zone;
4946 unsigned long *bitmap;
4947 unsigned long pfn, bitidx;
4948 unsigned long flags = 0;
4949 unsigned long value = 1;
4950
4951 zone = page_zone(page);
4952 pfn = page_to_pfn(page);
4953 bitmap = get_pageblock_bitmap(zone, pfn);
4954 bitidx = pfn_to_bitidx(zone, pfn);
4955
4956 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4957 if (test_bit(bitidx + start_bitidx, bitmap))
4958 flags |= value;
6220ec78 4959
835c134e
MG
4960 return flags;
4961}
4962
4963/**
d9c23400 4964 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4965 * @page: The page within the block of interest
4966 * @start_bitidx: The first bit of interest
4967 * @end_bitidx: The last bit of interest
4968 * @flags: The flags to set
4969 */
4970void set_pageblock_flags_group(struct page *page, unsigned long flags,
4971 int start_bitidx, int end_bitidx)
4972{
4973 struct zone *zone;
4974 unsigned long *bitmap;
4975 unsigned long pfn, bitidx;
4976 unsigned long value = 1;
4977
4978 zone = page_zone(page);
4979 pfn = page_to_pfn(page);
4980 bitmap = get_pageblock_bitmap(zone, pfn);
4981 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4982 VM_BUG_ON(pfn < zone->zone_start_pfn);
4983 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4984
4985 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4986 if (flags & value)
4987 __set_bit(bitidx + start_bitidx, bitmap);
4988 else
4989 __clear_bit(bitidx + start_bitidx, bitmap);
4990}
a5d76b54
KH
4991
4992/*
4993 * This is designed as sub function...plz see page_isolation.c also.
4994 * set/clear page block's type to be ISOLATE.
4995 * page allocater never alloc memory from ISOLATE block.
4996 */
4997
4998int set_migratetype_isolate(struct page *page)
4999{
5000 struct zone *zone;
5001 unsigned long flags;
5002 int ret = -EBUSY;
8e7e40d9 5003 int zone_idx;
a5d76b54
KH
5004
5005 zone = page_zone(page);
8e7e40d9 5006 zone_idx = zone_idx(zone);
a5d76b54
KH
5007 spin_lock_irqsave(&zone->lock, flags);
5008 /*
5009 * In future, more migrate types will be able to be isolation target.
5010 */
8e7e40d9
SL
5011 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5012 zone_idx != ZONE_MOVABLE)
a5d76b54
KH
5013 goto out;
5014 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5015 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5016 ret = 0;
5017out:
5018 spin_unlock_irqrestore(&zone->lock, flags);
5019 if (!ret)
9f8f2172 5020 drain_all_pages();
a5d76b54
KH
5021 return ret;
5022}
5023
5024void unset_migratetype_isolate(struct page *page)
5025{
5026 struct zone *zone;
5027 unsigned long flags;
5028 zone = page_zone(page);
5029 spin_lock_irqsave(&zone->lock, flags);
5030 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5031 goto out;
5032 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5033 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5034out:
5035 spin_unlock_irqrestore(&zone->lock, flags);
5036}
0c0e6195
KH
5037
5038#ifdef CONFIG_MEMORY_HOTREMOVE
5039/*
5040 * All pages in the range must be isolated before calling this.
5041 */
5042void
5043__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5044{
5045 struct page *page;
5046 struct zone *zone;
5047 int order, i;
5048 unsigned long pfn;
5049 unsigned long flags;
5050 /* find the first valid pfn */
5051 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5052 if (pfn_valid(pfn))
5053 break;
5054 if (pfn == end_pfn)
5055 return;
5056 zone = page_zone(pfn_to_page(pfn));
5057 spin_lock_irqsave(&zone->lock, flags);
5058 pfn = start_pfn;
5059 while (pfn < end_pfn) {
5060 if (!pfn_valid(pfn)) {
5061 pfn++;
5062 continue;
5063 }
5064 page = pfn_to_page(pfn);
5065 BUG_ON(page_count(page));
5066 BUG_ON(!PageBuddy(page));
5067 order = page_order(page);
5068#ifdef CONFIG_DEBUG_VM
5069 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5070 pfn, 1 << order, end_pfn);
5071#endif
5072 list_del(&page->lru);
5073 rmv_page_order(page);
5074 zone->free_area[order].nr_free--;
5075 __mod_zone_page_state(zone, NR_FREE_PAGES,
5076 - (1UL << order));
5077 for (i = 0; i < (1 << order); i++)
5078 SetPageReserved((page+i));
5079 pfn += (1 << order);
5080 }
5081 spin_unlock_irqrestore(&zone->lock, flags);
5082}
5083#endif