]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
vmscan: move isolate_lru_page() to vmscan.c
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503
CL
23#include <linux/pagevec.h>
24#include <linux/rmap.h>
25#include <linux/topology.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
04e62a29 28#include <linux/writeback.h>
742755a1
CL
29#include <linux/mempolicy.h>
30#include <linux/vmalloc.h>
86c3a764 31#include <linux/security.h>
8a9f3ccd 32#include <linux/memcontrol.h>
4f5ca265 33#include <linux/syscalls.h>
b20a3503
CL
34
35#include "internal.h"
36
b20a3503
CL
37#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38
b20a3503 39/*
742755a1
CL
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
b20a3503
CL
42 */
43int migrate_prep(void)
44{
b20a3503
CL
45 /*
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
50 */
51 lru_add_drain_all();
52
53 return 0;
54}
55
56static inline void move_to_lru(struct page *page)
57{
b20a3503
CL
58 if (PageActive(page)) {
59 /*
60 * lru_cache_add_active checks that
61 * the PG_active bit is off.
62 */
63 ClearPageActive(page);
64 lru_cache_add_active(page);
65 } else {
66 lru_cache_add(page);
67 }
68 put_page(page);
69}
70
71/*
72 * Add isolated pages on the list back to the LRU.
73 *
74 * returns the number of pages put back.
75 */
76int putback_lru_pages(struct list_head *l)
77{
78 struct page *page;
79 struct page *page2;
80 int count = 0;
81
82 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 83 list_del(&page->lru);
b20a3503
CL
84 move_to_lru(page);
85 count++;
86 }
87 return count;
88}
89
0697212a
CL
90/*
91 * Restore a potential migration pte to a working pte entry
92 */
04e62a29 93static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
94 struct page *old, struct page *new)
95{
96 struct mm_struct *mm = vma->vm_mm;
97 swp_entry_t entry;
98 pgd_t *pgd;
99 pud_t *pud;
100 pmd_t *pmd;
101 pte_t *ptep, pte;
102 spinlock_t *ptl;
04e62a29
CL
103 unsigned long addr = page_address_in_vma(new, vma);
104
105 if (addr == -EFAULT)
106 return;
0697212a
CL
107
108 pgd = pgd_offset(mm, addr);
109 if (!pgd_present(*pgd))
110 return;
111
112 pud = pud_offset(pgd, addr);
113 if (!pud_present(*pud))
114 return;
115
116 pmd = pmd_offset(pud, addr);
117 if (!pmd_present(*pmd))
118 return;
119
120 ptep = pte_offset_map(pmd, addr);
121
122 if (!is_swap_pte(*ptep)) {
123 pte_unmap(ptep);
124 return;
125 }
126
127 ptl = pte_lockptr(mm, pmd);
128 spin_lock(ptl);
129 pte = *ptep;
130 if (!is_swap_pte(pte))
131 goto out;
132
133 entry = pte_to_swp_entry(pte);
134
135 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
136 goto out;
137
98837c7f
HD
138 /*
139 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
140 * Failure is not an option here: we're now expected to remove every
141 * migration pte, and will cause crashes otherwise. Normally this
142 * is not an issue: mem_cgroup_prepare_migration bumped up the old
143 * page_cgroup count for safety, that's now attached to the new page,
144 * so this charge should just be another incrementation of the count,
145 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
146 * there's been a force_empty, those reference counts may no longer
147 * be reliable, and this charge can actually fail: oh well, we don't
148 * make the situation any worse by proceeding as if it had succeeded.
149 */
150 mem_cgroup_charge(new, mm, GFP_ATOMIC);
151
0697212a
CL
152 get_page(new);
153 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
154 if (is_write_migration_entry(entry))
155 pte = pte_mkwrite(pte);
97ee0524 156 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 157 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
158
159 if (PageAnon(new))
160 page_add_anon_rmap(new, vma, addr);
161 else
162 page_add_file_rmap(new);
163
164 /* No need to invalidate - it was non-present before */
165 update_mmu_cache(vma, addr, pte);
04e62a29 166
0697212a
CL
167out:
168 pte_unmap_unlock(ptep, ptl);
169}
170
171/*
04e62a29
CL
172 * Note that remove_file_migration_ptes will only work on regular mappings,
173 * Nonlinear mappings do not use migration entries.
174 */
175static void remove_file_migration_ptes(struct page *old, struct page *new)
176{
177 struct vm_area_struct *vma;
178 struct address_space *mapping = page_mapping(new);
179 struct prio_tree_iter iter;
180 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
181
182 if (!mapping)
183 return;
184
185 spin_lock(&mapping->i_mmap_lock);
186
187 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
188 remove_migration_pte(vma, old, new);
189
190 spin_unlock(&mapping->i_mmap_lock);
191}
192
193/*
0697212a
CL
194 * Must hold mmap_sem lock on at least one of the vmas containing
195 * the page so that the anon_vma cannot vanish.
196 */
04e62a29 197static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
198{
199 struct anon_vma *anon_vma;
200 struct vm_area_struct *vma;
201 unsigned long mapping;
202
203 mapping = (unsigned long)new->mapping;
204
205 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
206 return;
207
208 /*
209 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
210 */
211 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
212 spin_lock(&anon_vma->lock);
213
214 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 215 remove_migration_pte(vma, old, new);
0697212a
CL
216
217 spin_unlock(&anon_vma->lock);
218}
219
04e62a29
CL
220/*
221 * Get rid of all migration entries and replace them by
222 * references to the indicated page.
223 */
224static void remove_migration_ptes(struct page *old, struct page *new)
225{
226 if (PageAnon(new))
227 remove_anon_migration_ptes(old, new);
228 else
229 remove_file_migration_ptes(old, new);
230}
231
0697212a
CL
232/*
233 * Something used the pte of a page under migration. We need to
234 * get to the page and wait until migration is finished.
235 * When we return from this function the fault will be retried.
236 *
237 * This function is called from do_swap_page().
238 */
239void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
240 unsigned long address)
241{
242 pte_t *ptep, pte;
243 spinlock_t *ptl;
244 swp_entry_t entry;
245 struct page *page;
246
247 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
248 pte = *ptep;
249 if (!is_swap_pte(pte))
250 goto out;
251
252 entry = pte_to_swp_entry(pte);
253 if (!is_migration_entry(entry))
254 goto out;
255
256 page = migration_entry_to_page(entry);
257
e286781d
NP
258 /*
259 * Once radix-tree replacement of page migration started, page_count
260 * *must* be zero. And, we don't want to call wait_on_page_locked()
261 * against a page without get_page().
262 * So, we use get_page_unless_zero(), here. Even failed, page fault
263 * will occur again.
264 */
265 if (!get_page_unless_zero(page))
266 goto out;
0697212a
CL
267 pte_unmap_unlock(ptep, ptl);
268 wait_on_page_locked(page);
269 put_page(page);
270 return;
271out:
272 pte_unmap_unlock(ptep, ptl);
273}
274
b20a3503 275/*
c3fcf8a5 276 * Replace the page in the mapping.
5b5c7120
CL
277 *
278 * The number of remaining references must be:
279 * 1 for anonymous pages without a mapping
280 * 2 for pages with a mapping
281 * 3 for pages with a mapping and PagePrivate set.
b20a3503 282 */
2d1db3b1
CL
283static int migrate_page_move_mapping(struct address_space *mapping,
284 struct page *newpage, struct page *page)
b20a3503 285{
e286781d 286 int expected_count;
7cf9c2c7 287 void **pslot;
b20a3503 288
6c5240ae 289 if (!mapping) {
0e8c7d0f 290 /* Anonymous page without mapping */
6c5240ae
CL
291 if (page_count(page) != 1)
292 return -EAGAIN;
293 return 0;
294 }
295
19fd6231 296 spin_lock_irq(&mapping->tree_lock);
b20a3503 297
7cf9c2c7
NP
298 pslot = radix_tree_lookup_slot(&mapping->page_tree,
299 page_index(page));
b20a3503 300
e286781d
NP
301 expected_count = 2 + !!PagePrivate(page);
302 if (page_count(page) != expected_count ||
7cf9c2c7 303 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 304 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 305 return -EAGAIN;
b20a3503
CL
306 }
307
e286781d 308 if (!page_freeze_refs(page, expected_count)) {
19fd6231 309 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
310 return -EAGAIN;
311 }
312
b20a3503
CL
313 /*
314 * Now we know that no one else is looking at the page.
b20a3503 315 */
7cf9c2c7 316 get_page(newpage); /* add cache reference */
6c5240ae 317#ifdef CONFIG_SWAP
b20a3503
CL
318 if (PageSwapCache(page)) {
319 SetPageSwapCache(newpage);
320 set_page_private(newpage, page_private(page));
321 }
6c5240ae 322#endif
b20a3503 323
7cf9c2c7
NP
324 radix_tree_replace_slot(pslot, newpage);
325
e286781d 326 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
327 /*
328 * Drop cache reference from old page.
329 * We know this isn't the last reference.
330 */
b20a3503 331 __put_page(page);
7cf9c2c7 332
0e8c7d0f
CL
333 /*
334 * If moved to a different zone then also account
335 * the page for that zone. Other VM counters will be
336 * taken care of when we establish references to the
337 * new page and drop references to the old page.
338 *
339 * Note that anonymous pages are accounted for
340 * via NR_FILE_PAGES and NR_ANON_PAGES if they
341 * are mapped to swap space.
342 */
343 __dec_zone_page_state(page, NR_FILE_PAGES);
344 __inc_zone_page_state(newpage, NR_FILE_PAGES);
345
19fd6231
NP
346 spin_unlock_irq(&mapping->tree_lock);
347 if (!PageSwapCache(newpage))
69029cd5 348 mem_cgroup_uncharge_cache_page(page);
b20a3503
CL
349
350 return 0;
351}
b20a3503
CL
352
353/*
354 * Copy the page to its new location
355 */
e7340f73 356static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
357{
358 copy_highpage(newpage, page);
359
360 if (PageError(page))
361 SetPageError(newpage);
362 if (PageReferenced(page))
363 SetPageReferenced(newpage);
364 if (PageUptodate(page))
365 SetPageUptodate(newpage);
366 if (PageActive(page))
367 SetPageActive(newpage);
368 if (PageChecked(page))
369 SetPageChecked(newpage);
370 if (PageMappedToDisk(page))
371 SetPageMappedToDisk(newpage);
372
373 if (PageDirty(page)) {
374 clear_page_dirty_for_io(page);
3a902c5f
NP
375 /*
376 * Want to mark the page and the radix tree as dirty, and
377 * redo the accounting that clear_page_dirty_for_io undid,
378 * but we can't use set_page_dirty because that function
379 * is actually a signal that all of the page has become dirty.
380 * Wheras only part of our page may be dirty.
381 */
382 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
383 }
384
6c5240ae 385#ifdef CONFIG_SWAP
b20a3503 386 ClearPageSwapCache(page);
6c5240ae 387#endif
b20a3503
CL
388 ClearPageActive(page);
389 ClearPagePrivate(page);
390 set_page_private(page, 0);
391 page->mapping = NULL;
392
393 /*
394 * If any waiters have accumulated on the new page then
395 * wake them up.
396 */
397 if (PageWriteback(newpage))
398 end_page_writeback(newpage);
399}
b20a3503 400
1d8b85cc
CL
401/************************************************************
402 * Migration functions
403 ***********************************************************/
404
405/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
406int fail_migrate_page(struct address_space *mapping,
407 struct page *newpage, struct page *page)
1d8b85cc
CL
408{
409 return -EIO;
410}
411EXPORT_SYMBOL(fail_migrate_page);
412
b20a3503
CL
413/*
414 * Common logic to directly migrate a single page suitable for
415 * pages that do not use PagePrivate.
416 *
417 * Pages are locked upon entry and exit.
418 */
2d1db3b1
CL
419int migrate_page(struct address_space *mapping,
420 struct page *newpage, struct page *page)
b20a3503
CL
421{
422 int rc;
423
424 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
425
2d1db3b1 426 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
427
428 if (rc)
429 return rc;
430
431 migrate_page_copy(newpage, page);
b20a3503
CL
432 return 0;
433}
434EXPORT_SYMBOL(migrate_page);
435
9361401e 436#ifdef CONFIG_BLOCK
1d8b85cc
CL
437/*
438 * Migration function for pages with buffers. This function can only be used
439 * if the underlying filesystem guarantees that no other references to "page"
440 * exist.
441 */
2d1db3b1
CL
442int buffer_migrate_page(struct address_space *mapping,
443 struct page *newpage, struct page *page)
1d8b85cc 444{
1d8b85cc
CL
445 struct buffer_head *bh, *head;
446 int rc;
447
1d8b85cc 448 if (!page_has_buffers(page))
2d1db3b1 449 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
450
451 head = page_buffers(page);
452
2d1db3b1 453 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
454
455 if (rc)
456 return rc;
457
458 bh = head;
459 do {
460 get_bh(bh);
461 lock_buffer(bh);
462 bh = bh->b_this_page;
463
464 } while (bh != head);
465
466 ClearPagePrivate(page);
467 set_page_private(newpage, page_private(page));
468 set_page_private(page, 0);
469 put_page(page);
470 get_page(newpage);
471
472 bh = head;
473 do {
474 set_bh_page(bh, newpage, bh_offset(bh));
475 bh = bh->b_this_page;
476
477 } while (bh != head);
478
479 SetPagePrivate(newpage);
480
481 migrate_page_copy(newpage, page);
482
483 bh = head;
484 do {
485 unlock_buffer(bh);
486 put_bh(bh);
487 bh = bh->b_this_page;
488
489 } while (bh != head);
490
491 return 0;
492}
493EXPORT_SYMBOL(buffer_migrate_page);
9361401e 494#endif
1d8b85cc 495
04e62a29
CL
496/*
497 * Writeback a page to clean the dirty state
498 */
499static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 500{
04e62a29
CL
501 struct writeback_control wbc = {
502 .sync_mode = WB_SYNC_NONE,
503 .nr_to_write = 1,
504 .range_start = 0,
505 .range_end = LLONG_MAX,
506 .nonblocking = 1,
507 .for_reclaim = 1
508 };
509 int rc;
510
511 if (!mapping->a_ops->writepage)
512 /* No write method for the address space */
513 return -EINVAL;
514
515 if (!clear_page_dirty_for_io(page))
516 /* Someone else already triggered a write */
517 return -EAGAIN;
518
8351a6e4 519 /*
04e62a29
CL
520 * A dirty page may imply that the underlying filesystem has
521 * the page on some queue. So the page must be clean for
522 * migration. Writeout may mean we loose the lock and the
523 * page state is no longer what we checked for earlier.
524 * At this point we know that the migration attempt cannot
525 * be successful.
8351a6e4 526 */
04e62a29 527 remove_migration_ptes(page, page);
8351a6e4 528
04e62a29
CL
529 rc = mapping->a_ops->writepage(page, &wbc);
530 if (rc < 0)
531 /* I/O Error writing */
532 return -EIO;
8351a6e4 533
04e62a29
CL
534 if (rc != AOP_WRITEPAGE_ACTIVATE)
535 /* unlocked. Relock */
536 lock_page(page);
537
538 return -EAGAIN;
539}
540
541/*
542 * Default handling if a filesystem does not provide a migration function.
543 */
544static int fallback_migrate_page(struct address_space *mapping,
545 struct page *newpage, struct page *page)
546{
547 if (PageDirty(page))
548 return writeout(mapping, page);
8351a6e4
CL
549
550 /*
551 * Buffers may be managed in a filesystem specific way.
552 * We must have no buffers or drop them.
553 */
b398f6bf 554 if (PagePrivate(page) &&
8351a6e4
CL
555 !try_to_release_page(page, GFP_KERNEL))
556 return -EAGAIN;
557
558 return migrate_page(mapping, newpage, page);
559}
560
e24f0b8f
CL
561/*
562 * Move a page to a newly allocated page
563 * The page is locked and all ptes have been successfully removed.
564 *
565 * The new page will have replaced the old page if this function
566 * is successful.
567 */
568static int move_to_new_page(struct page *newpage, struct page *page)
569{
570 struct address_space *mapping;
571 int rc;
572
573 /*
574 * Block others from accessing the page when we get around to
575 * establishing additional references. We are the only one
576 * holding a reference to the new page at this point.
577 */
529ae9aa 578 if (!trylock_page(newpage))
e24f0b8f
CL
579 BUG();
580
581 /* Prepare mapping for the new page.*/
582 newpage->index = page->index;
583 newpage->mapping = page->mapping;
584
585 mapping = page_mapping(page);
586 if (!mapping)
587 rc = migrate_page(mapping, newpage, page);
588 else if (mapping->a_ops->migratepage)
589 /*
590 * Most pages have a mapping and most filesystems
591 * should provide a migration function. Anonymous
592 * pages are part of swap space which also has its
593 * own migration function. This is the most common
594 * path for page migration.
595 */
596 rc = mapping->a_ops->migratepage(mapping,
597 newpage, page);
598 else
599 rc = fallback_migrate_page(mapping, newpage, page);
600
ae41be37 601 if (!rc) {
e24f0b8f 602 remove_migration_ptes(page, newpage);
ae41be37 603 } else
e24f0b8f
CL
604 newpage->mapping = NULL;
605
606 unlock_page(newpage);
607
608 return rc;
609}
610
611/*
612 * Obtain the lock on page, remove all ptes and migrate the page
613 * to the newly allocated page in newpage.
614 */
95a402c3
CL
615static int unmap_and_move(new_page_t get_new_page, unsigned long private,
616 struct page *page, int force)
e24f0b8f
CL
617{
618 int rc = 0;
742755a1
CL
619 int *result = NULL;
620 struct page *newpage = get_new_page(page, private, &result);
989f89c5 621 int rcu_locked = 0;
ae41be37 622 int charge = 0;
95a402c3
CL
623
624 if (!newpage)
625 return -ENOMEM;
e24f0b8f
CL
626
627 if (page_count(page) == 1)
628 /* page was freed from under us. So we are done. */
95a402c3 629 goto move_newpage;
e24f0b8f 630
e8589cc1
KH
631 charge = mem_cgroup_prepare_migration(page, newpage);
632 if (charge == -ENOMEM) {
633 rc = -ENOMEM;
634 goto move_newpage;
635 }
636 /* prepare cgroup just returns 0 or -ENOMEM */
637 BUG_ON(charge);
638
e24f0b8f 639 rc = -EAGAIN;
529ae9aa 640 if (!trylock_page(page)) {
e24f0b8f 641 if (!force)
95a402c3 642 goto move_newpage;
e24f0b8f
CL
643 lock_page(page);
644 }
645
646 if (PageWriteback(page)) {
647 if (!force)
648 goto unlock;
649 wait_on_page_writeback(page);
650 }
e24f0b8f 651 /*
dc386d4d
KH
652 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
653 * we cannot notice that anon_vma is freed while we migrates a page.
654 * This rcu_read_lock() delays freeing anon_vma pointer until the end
655 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
656 * File Caches may use write_page() or lock_page() in migration, then,
657 * just care Anon page here.
dc386d4d 658 */
989f89c5
KH
659 if (PageAnon(page)) {
660 rcu_read_lock();
661 rcu_locked = 1;
662 }
62e1c553 663
dc386d4d 664 /*
62e1c553
SL
665 * Corner case handling:
666 * 1. When a new swap-cache page is read into, it is added to the LRU
667 * and treated as swapcache but it has no rmap yet.
668 * Calling try_to_unmap() against a page->mapping==NULL page will
669 * trigger a BUG. So handle it here.
670 * 2. An orphaned page (see truncate_complete_page) might have
671 * fs-private metadata. The page can be picked up due to memory
672 * offlining. Everywhere else except page reclaim, the page is
673 * invisible to the vm, so the page can not be migrated. So try to
674 * free the metadata, so the page can be freed.
e24f0b8f 675 */
62e1c553
SL
676 if (!page->mapping) {
677 if (!PageAnon(page) && PagePrivate(page)) {
678 /*
679 * Go direct to try_to_free_buffers() here because
680 * a) that's what try_to_release_page() would do anyway
681 * b) we may be under rcu_read_lock() here, so we can't
682 * use GFP_KERNEL which is what try_to_release_page()
683 * needs to be effective.
684 */
685 try_to_free_buffers(page);
686 }
dc386d4d 687 goto rcu_unlock;
62e1c553
SL
688 }
689
dc386d4d 690 /* Establish migration ptes or remove ptes */
e6a1530d 691 try_to_unmap(page, 1);
dc386d4d 692
e6a1530d
CL
693 if (!page_mapped(page))
694 rc = move_to_new_page(newpage, page);
e24f0b8f 695
e8589cc1 696 if (rc)
e24f0b8f 697 remove_migration_ptes(page, page);
dc386d4d 698rcu_unlock:
989f89c5
KH
699 if (rcu_locked)
700 rcu_read_unlock();
e6a1530d 701
e24f0b8f 702unlock:
dc386d4d 703
e24f0b8f 704 unlock_page(page);
95a402c3 705
e24f0b8f 706 if (rc != -EAGAIN) {
aaa994b3
CL
707 /*
708 * A page that has been migrated has all references
709 * removed and will be freed. A page that has not been
710 * migrated will have kepts its references and be
711 * restored.
712 */
713 list_del(&page->lru);
714 move_to_lru(page);
e24f0b8f 715 }
95a402c3
CL
716
717move_newpage:
e8589cc1
KH
718 if (!charge)
719 mem_cgroup_end_migration(newpage);
95a402c3
CL
720 /*
721 * Move the new page to the LRU. If migration was not successful
722 * then this will free the page.
723 */
724 move_to_lru(newpage);
742755a1
CL
725 if (result) {
726 if (rc)
727 *result = rc;
728 else
729 *result = page_to_nid(newpage);
730 }
e24f0b8f
CL
731 return rc;
732}
733
b20a3503
CL
734/*
735 * migrate_pages
736 *
95a402c3
CL
737 * The function takes one list of pages to migrate and a function
738 * that determines from the page to be migrated and the private data
739 * the target of the move and allocates the page.
b20a3503
CL
740 *
741 * The function returns after 10 attempts or if no pages
742 * are movable anymore because to has become empty
aaa994b3 743 * or no retryable pages exist anymore. All pages will be
e9534b3f 744 * returned to the LRU or freed.
b20a3503 745 *
95a402c3 746 * Return: Number of pages not migrated or error code.
b20a3503 747 */
95a402c3
CL
748int migrate_pages(struct list_head *from,
749 new_page_t get_new_page, unsigned long private)
b20a3503 750{
e24f0b8f 751 int retry = 1;
b20a3503
CL
752 int nr_failed = 0;
753 int pass = 0;
754 struct page *page;
755 struct page *page2;
756 int swapwrite = current->flags & PF_SWAPWRITE;
757 int rc;
758
759 if (!swapwrite)
760 current->flags |= PF_SWAPWRITE;
761
e24f0b8f
CL
762 for(pass = 0; pass < 10 && retry; pass++) {
763 retry = 0;
b20a3503 764
e24f0b8f 765 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 766 cond_resched();
2d1db3b1 767
95a402c3
CL
768 rc = unmap_and_move(get_new_page, private,
769 page, pass > 2);
2d1db3b1 770
e24f0b8f 771 switch(rc) {
95a402c3
CL
772 case -ENOMEM:
773 goto out;
e24f0b8f 774 case -EAGAIN:
2d1db3b1 775 retry++;
e24f0b8f
CL
776 break;
777 case 0:
e24f0b8f
CL
778 break;
779 default:
2d1db3b1 780 /* Permanent failure */
2d1db3b1 781 nr_failed++;
e24f0b8f 782 break;
2d1db3b1 783 }
b20a3503
CL
784 }
785 }
95a402c3
CL
786 rc = 0;
787out:
b20a3503
CL
788 if (!swapwrite)
789 current->flags &= ~PF_SWAPWRITE;
790
aaa994b3 791 putback_lru_pages(from);
b20a3503 792
95a402c3
CL
793 if (rc)
794 return rc;
b20a3503 795
95a402c3 796 return nr_failed + retry;
b20a3503 797}
95a402c3 798
742755a1
CL
799#ifdef CONFIG_NUMA
800/*
801 * Move a list of individual pages
802 */
803struct page_to_node {
804 unsigned long addr;
805 struct page *page;
806 int node;
807 int status;
808};
809
810static struct page *new_page_node(struct page *p, unsigned long private,
811 int **result)
812{
813 struct page_to_node *pm = (struct page_to_node *)private;
814
815 while (pm->node != MAX_NUMNODES && pm->page != p)
816 pm++;
817
818 if (pm->node == MAX_NUMNODES)
819 return NULL;
820
821 *result = &pm->status;
822
769848c0
MG
823 return alloc_pages_node(pm->node,
824 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
825}
826
827/*
828 * Move a set of pages as indicated in the pm array. The addr
829 * field must be set to the virtual address of the page to be moved
830 * and the node number must contain a valid target node.
831 */
832static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
833 int migrate_all)
834{
835 int err;
836 struct page_to_node *pp;
837 LIST_HEAD(pagelist);
838
839 down_read(&mm->mmap_sem);
840
841 /*
842 * Build a list of pages to migrate
843 */
844 migrate_prep();
845 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
846 struct vm_area_struct *vma;
847 struct page *page;
848
849 /*
850 * A valid page pointer that will not match any of the
851 * pages that will be moved.
852 */
853 pp->page = ZERO_PAGE(0);
854
855 err = -EFAULT;
856 vma = find_vma(mm, pp->addr);
0dc952dc 857 if (!vma || !vma_migratable(vma))
742755a1
CL
858 goto set_status;
859
860 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
861
862 err = PTR_ERR(page);
863 if (IS_ERR(page))
864 goto set_status;
865
742755a1
CL
866 err = -ENOENT;
867 if (!page)
868 goto set_status;
869
870 if (PageReserved(page)) /* Check for zero page */
871 goto put_and_set;
872
873 pp->page = page;
874 err = page_to_nid(page);
875
876 if (err == pp->node)
877 /*
878 * Node already in the right place
879 */
880 goto put_and_set;
881
882 err = -EACCES;
883 if (page_mapcount(page) > 1 &&
884 !migrate_all)
885 goto put_and_set;
886
62695a84
NP
887 err = isolate_lru_page(page);
888 if (!err)
889 list_add_tail(&page->lru, &pagelist);
742755a1
CL
890put_and_set:
891 /*
892 * Either remove the duplicate refcount from
893 * isolate_lru_page() or drop the page ref if it was
894 * not isolated.
895 */
896 put_page(page);
897set_status:
898 pp->status = err;
899 }
900
901 if (!list_empty(&pagelist))
902 err = migrate_pages(&pagelist, new_page_node,
903 (unsigned long)pm);
904 else
905 err = -ENOENT;
906
907 up_read(&mm->mmap_sem);
908 return err;
909}
910
911/*
912 * Determine the nodes of a list of pages. The addr in the pm array
913 * must have been set to the virtual address of which we want to determine
914 * the node number.
915 */
916static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
917{
918 down_read(&mm->mmap_sem);
919
920 for ( ; pm->node != MAX_NUMNODES; pm++) {
921 struct vm_area_struct *vma;
922 struct page *page;
923 int err;
924
925 err = -EFAULT;
926 vma = find_vma(mm, pm->addr);
927 if (!vma)
928 goto set_status;
929
930 page = follow_page(vma, pm->addr, 0);
89f5b7da
LT
931
932 err = PTR_ERR(page);
933 if (IS_ERR(page))
934 goto set_status;
935
742755a1
CL
936 err = -ENOENT;
937 /* Use PageReserved to check for zero page */
938 if (!page || PageReserved(page))
939 goto set_status;
940
941 err = page_to_nid(page);
942set_status:
943 pm->status = err;
944 }
945
946 up_read(&mm->mmap_sem);
947 return 0;
948}
949
950/*
951 * Move a list of pages in the address space of the currently executing
952 * process.
953 */
954asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
955 const void __user * __user *pages,
956 const int __user *nodes,
957 int __user *status, int flags)
958{
959 int err = 0;
960 int i;
961 struct task_struct *task;
962 nodemask_t task_nodes;
963 struct mm_struct *mm;
964 struct page_to_node *pm = NULL;
965
966 /* Check flags */
967 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
968 return -EINVAL;
969
970 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
971 return -EPERM;
972
973 /* Find the mm_struct */
974 read_lock(&tasklist_lock);
228ebcbe 975 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
976 if (!task) {
977 read_unlock(&tasklist_lock);
978 return -ESRCH;
979 }
980 mm = get_task_mm(task);
981 read_unlock(&tasklist_lock);
982
983 if (!mm)
984 return -EINVAL;
985
986 /*
987 * Check if this process has the right to modify the specified
988 * process. The right exists if the process has administrative
989 * capabilities, superuser privileges or the same
990 * userid as the target process.
991 */
992 if ((current->euid != task->suid) && (current->euid != task->uid) &&
993 (current->uid != task->suid) && (current->uid != task->uid) &&
994 !capable(CAP_SYS_NICE)) {
995 err = -EPERM;
996 goto out2;
997 }
998
86c3a764
DQ
999 err = security_task_movememory(task);
1000 if (err)
1001 goto out2;
1002
1003
742755a1
CL
1004 task_nodes = cpuset_mems_allowed(task);
1005
1006 /* Limit nr_pages so that the multiplication may not overflow */
1007 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1008 err = -E2BIG;
1009 goto out2;
1010 }
1011
1012 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1013 if (!pm) {
1014 err = -ENOMEM;
1015 goto out2;
1016 }
1017
1018 /*
1019 * Get parameters from user space and initialize the pm
1020 * array. Return various errors if the user did something wrong.
1021 */
1022 for (i = 0; i < nr_pages; i++) {
9d966d49 1023 const void __user *p;
742755a1
CL
1024
1025 err = -EFAULT;
1026 if (get_user(p, pages + i))
1027 goto out;
1028
1029 pm[i].addr = (unsigned long)p;
1030 if (nodes) {
1031 int node;
1032
1033 if (get_user(node, nodes + i))
1034 goto out;
1035
1036 err = -ENODEV;
56bbd65d 1037 if (!node_state(node, N_HIGH_MEMORY))
742755a1
CL
1038 goto out;
1039
1040 err = -EACCES;
1041 if (!node_isset(node, task_nodes))
1042 goto out;
1043
1044 pm[i].node = node;
8ce08464
SR
1045 } else
1046 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
742755a1
CL
1047 }
1048 /* End marker */
1049 pm[nr_pages].node = MAX_NUMNODES;
1050
1051 if (nodes)
1052 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1053 else
1054 err = do_pages_stat(mm, pm);
1055
1056 if (err >= 0)
1057 /* Return status information */
1058 for (i = 0; i < nr_pages; i++)
1059 if (put_user(pm[i].status, status + i))
1060 err = -EFAULT;
1061
1062out:
1063 vfree(pm);
1064out2:
1065 mmput(mm);
1066 return err;
1067}
742755a1 1068
7b2259b3
CL
1069/*
1070 * Call migration functions in the vma_ops that may prepare
1071 * memory in a vm for migration. migration functions may perform
1072 * the migration for vmas that do not have an underlying page struct.
1073 */
1074int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1075 const nodemask_t *from, unsigned long flags)
1076{
1077 struct vm_area_struct *vma;
1078 int err = 0;
1079
1080 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1081 if (vma->vm_ops && vma->vm_ops->migrate) {
1082 err = vma->vm_ops->migrate(vma, to, from, flags);
1083 if (err)
1084 break;
1085 }
1086 }
1087 return err;
1088}
83d1674a 1089#endif