]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: optimize RT affinity
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
6b2d7700
SV
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
29f59db3 206 unsigned long shares;
6b2d7700 207
ae8393e5 208 struct rcu_head rcu;
29f59db3
SV
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
9b5b7751
SV
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 218
ec2c507f
SV
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
a1835615
SV
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
6b2d7700
SV
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
29f59db3 235/* Default task group.
3a252015 236 * Every task in system belong to this group at bootup.
29f59db3 237 */
4cf86d77 238struct task_group init_task_group = {
3a252015
IM
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
9b5b7751 242
24e377a8 243#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 245#else
93f992cc 246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
247#endif
248
6b2d7700
SV
249#define MIN_GROUP_SHARES 2
250
93f992cc 251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
252
253/* return group to which a task belongs */
4cf86d77 254static inline struct task_group *task_group(struct task_struct *p)
29f59db3 255{
4cf86d77 256 struct task_group *tg;
9b5b7751 257
24e377a8
SV
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
68318b8e
SV
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
24e377a8 263#else
41a2d6cf 264 tg = &init_task_group;
24e377a8 265#endif
9b5b7751 266 return tg;
29f59db3
SV
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 271{
ce96b5ac
DA
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
274}
275
ec2c507f
SV
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
a1835615
SV
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
29f59db3
SV
296#else
297
ce96b5ac 298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
a1835615
SV
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
29f59db3
SV
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
6aa645ea
IM
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
6aa645ea 311 u64 exec_clock;
e9acbff6 312 u64 min_vruntime;
6aa645ea
IM
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
ddc97297
PZ
321
322 unsigned long nr_spread_over;
323
62160e3f 324#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
41a2d6cf
IM
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
41a2d6cf
IM
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
337#endif
338};
1da177e4 339
6aa645ea
IM
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 345 unsigned long rt_nr_running;
73fe6aae 346 unsigned long rt_nr_migratory;
764a9d6f
SR
347 /* highest queued rt task prio */
348 int highest_prio;
6aa645ea
IM
349};
350
1da177e4
LT
351/*
352 * This is the main, per-CPU runqueue data structure.
353 *
354 * Locking rule: those places that want to lock multiple runqueues
355 * (such as the load balancing or the thread migration code), lock
356 * acquire operations must be ordered by ascending &runqueue.
357 */
70b97a7f 358struct rq {
d8016491
IM
359 /* runqueue lock: */
360 spinlock_t lock;
1da177e4
LT
361
362 /*
363 * nr_running and cpu_load should be in the same cacheline because
364 * remote CPUs use both these fields when doing load calculation.
365 */
366 unsigned long nr_running;
6aa645ea
IM
367 #define CPU_LOAD_IDX_MAX 5
368 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 369 unsigned char idle_at_tick;
46cb4b7c
SS
370#ifdef CONFIG_NO_HZ
371 unsigned char in_nohz_recently;
372#endif
d8016491
IM
373 /* capture load from *all* tasks on this cpu: */
374 struct load_weight load;
6aa645ea
IM
375 unsigned long nr_load_updates;
376 u64 nr_switches;
377
378 struct cfs_rq cfs;
379#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
380 /* list of leaf cfs_rq on this cpu: */
381 struct list_head leaf_cfs_rq_list;
1da177e4 382#endif
41a2d6cf 383 struct rt_rq rt;
1da177e4
LT
384
385 /*
386 * This is part of a global counter where only the total sum
387 * over all CPUs matters. A task can increase this counter on
388 * one CPU and if it got migrated afterwards it may decrease
389 * it on another CPU. Always updated under the runqueue lock:
390 */
391 unsigned long nr_uninterruptible;
392
36c8b586 393 struct task_struct *curr, *idle;
c9819f45 394 unsigned long next_balance;
1da177e4 395 struct mm_struct *prev_mm;
6aa645ea 396
6aa645ea
IM
397 u64 clock, prev_clock_raw;
398 s64 clock_max_delta;
399
400 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
401 u64 idle_clock;
402 unsigned int clock_deep_idle_events;
529c7726 403 u64 tick_timestamp;
6aa645ea 404
1da177e4
LT
405 atomic_t nr_iowait;
406
407#ifdef CONFIG_SMP
408 struct sched_domain *sd;
409
410 /* For active balancing */
411 int active_balance;
412 int push_cpu;
d8016491
IM
413 /* cpu of this runqueue: */
414 int cpu;
1da177e4 415
36c8b586 416 struct task_struct *migration_thread;
1da177e4
LT
417 struct list_head migration_queue;
418#endif
419
420#ifdef CONFIG_SCHEDSTATS
421 /* latency stats */
422 struct sched_info rq_sched_info;
423
424 /* sys_sched_yield() stats */
480b9434
KC
425 unsigned int yld_exp_empty;
426 unsigned int yld_act_empty;
427 unsigned int yld_both_empty;
428 unsigned int yld_count;
1da177e4
LT
429
430 /* schedule() stats */
480b9434
KC
431 unsigned int sched_switch;
432 unsigned int sched_count;
433 unsigned int sched_goidle;
1da177e4
LT
434
435 /* try_to_wake_up() stats */
480b9434
KC
436 unsigned int ttwu_count;
437 unsigned int ttwu_local;
b8efb561
IM
438
439 /* BKL stats */
480b9434 440 unsigned int bkl_count;
1da177e4 441#endif
fcb99371 442 struct lock_class_key rq_lock_key;
1da177e4
LT
443};
444
f34e3b61 445static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 446
dd41f596
IM
447static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
448{
449 rq->curr->sched_class->check_preempt_curr(rq, p);
450}
451
0a2966b4
CL
452static inline int cpu_of(struct rq *rq)
453{
454#ifdef CONFIG_SMP
455 return rq->cpu;
456#else
457 return 0;
458#endif
459}
460
20d315d4 461/*
b04a0f4c
IM
462 * Update the per-runqueue clock, as finegrained as the platform can give
463 * us, but without assuming monotonicity, etc.:
20d315d4 464 */
b04a0f4c 465static void __update_rq_clock(struct rq *rq)
20d315d4
IM
466{
467 u64 prev_raw = rq->prev_clock_raw;
468 u64 now = sched_clock();
469 s64 delta = now - prev_raw;
470 u64 clock = rq->clock;
471
b04a0f4c
IM
472#ifdef CONFIG_SCHED_DEBUG
473 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
474#endif
20d315d4
IM
475 /*
476 * Protect against sched_clock() occasionally going backwards:
477 */
478 if (unlikely(delta < 0)) {
479 clock++;
480 rq->clock_warps++;
481 } else {
482 /*
483 * Catch too large forward jumps too:
484 */
529c7726
IM
485 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
486 if (clock < rq->tick_timestamp + TICK_NSEC)
487 clock = rq->tick_timestamp + TICK_NSEC;
488 else
489 clock++;
20d315d4
IM
490 rq->clock_overflows++;
491 } else {
492 if (unlikely(delta > rq->clock_max_delta))
493 rq->clock_max_delta = delta;
494 clock += delta;
495 }
496 }
497
498 rq->prev_clock_raw = now;
499 rq->clock = clock;
b04a0f4c 500}
20d315d4 501
b04a0f4c
IM
502static void update_rq_clock(struct rq *rq)
503{
504 if (likely(smp_processor_id() == cpu_of(rq)))
505 __update_rq_clock(rq);
20d315d4
IM
506}
507
674311d5
NP
508/*
509 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 510 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
511 *
512 * The domain tree of any CPU may only be accessed from within
513 * preempt-disabled sections.
514 */
48f24c4d
IM
515#define for_each_domain(cpu, __sd) \
516 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
517
518#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
519#define this_rq() (&__get_cpu_var(runqueues))
520#define task_rq(p) cpu_rq(task_cpu(p))
521#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
522
bf5c91ba
IM
523/*
524 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
525 */
526#ifdef CONFIG_SCHED_DEBUG
527# define const_debug __read_mostly
528#else
529# define const_debug static const
530#endif
531
532/*
533 * Debugging: various feature bits
534 */
535enum {
bbdba7c0 536 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
537 SCHED_FEAT_WAKEUP_PREEMPT = 2,
538 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
539 SCHED_FEAT_TREE_AVG = 8,
540 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
541};
542
543const_debug unsigned int sysctl_sched_features =
8401f775 544 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 545 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
546 SCHED_FEAT_START_DEBIT * 1 |
547 SCHED_FEAT_TREE_AVG * 0 |
9612633a 548 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
549
550#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
551
b82d9fdd
PZ
552/*
553 * Number of tasks to iterate in a single balance run.
554 * Limited because this is done with IRQs disabled.
555 */
556const_debug unsigned int sysctl_sched_nr_migrate = 32;
557
e436d800
IM
558/*
559 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
560 * clock constructed from sched_clock():
561 */
562unsigned long long cpu_clock(int cpu)
563{
e436d800
IM
564 unsigned long long now;
565 unsigned long flags;
b04a0f4c 566 struct rq *rq;
e436d800 567
2cd4d0ea 568 local_irq_save(flags);
b04a0f4c 569 rq = cpu_rq(cpu);
8ced5f69
IM
570 /*
571 * Only call sched_clock() if the scheduler has already been
572 * initialized (some code might call cpu_clock() very early):
573 */
574 if (rq->idle)
575 update_rq_clock(rq);
b04a0f4c 576 now = rq->clock;
2cd4d0ea 577 local_irq_restore(flags);
e436d800
IM
578
579 return now;
580}
a58f6f25 581EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 582
1da177e4 583#ifndef prepare_arch_switch
4866cde0
NP
584# define prepare_arch_switch(next) do { } while (0)
585#endif
586#ifndef finish_arch_switch
587# define finish_arch_switch(prev) do { } while (0)
588#endif
589
051a1d1a
DA
590static inline int task_current(struct rq *rq, struct task_struct *p)
591{
592 return rq->curr == p;
593}
594
4866cde0 595#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 596static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 597{
051a1d1a 598 return task_current(rq, p);
4866cde0
NP
599}
600
70b97a7f 601static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
602{
603}
604
70b97a7f 605static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 606{
da04c035
IM
607#ifdef CONFIG_DEBUG_SPINLOCK
608 /* this is a valid case when another task releases the spinlock */
609 rq->lock.owner = current;
610#endif
8a25d5de
IM
611 /*
612 * If we are tracking spinlock dependencies then we have to
613 * fix up the runqueue lock - which gets 'carried over' from
614 * prev into current:
615 */
616 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
617
4866cde0
NP
618 spin_unlock_irq(&rq->lock);
619}
620
621#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 622static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
623{
624#ifdef CONFIG_SMP
625 return p->oncpu;
626#else
051a1d1a 627 return task_current(rq, p);
4866cde0
NP
628#endif
629}
630
70b97a7f 631static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
632{
633#ifdef CONFIG_SMP
634 /*
635 * We can optimise this out completely for !SMP, because the
636 * SMP rebalancing from interrupt is the only thing that cares
637 * here.
638 */
639 next->oncpu = 1;
640#endif
641#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
642 spin_unlock_irq(&rq->lock);
643#else
644 spin_unlock(&rq->lock);
645#endif
646}
647
70b97a7f 648static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
649{
650#ifdef CONFIG_SMP
651 /*
652 * After ->oncpu is cleared, the task can be moved to a different CPU.
653 * We must ensure this doesn't happen until the switch is completely
654 * finished.
655 */
656 smp_wmb();
657 prev->oncpu = 0;
658#endif
659#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
660 local_irq_enable();
1da177e4 661#endif
4866cde0
NP
662}
663#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 664
b29739f9
IM
665/*
666 * __task_rq_lock - lock the runqueue a given task resides on.
667 * Must be called interrupts disabled.
668 */
70b97a7f 669static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
670 __acquires(rq->lock)
671{
3a5c359a
AK
672 for (;;) {
673 struct rq *rq = task_rq(p);
674 spin_lock(&rq->lock);
675 if (likely(rq == task_rq(p)))
676 return rq;
b29739f9 677 spin_unlock(&rq->lock);
b29739f9 678 }
b29739f9
IM
679}
680
1da177e4
LT
681/*
682 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 683 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
684 * explicitly disabling preemption.
685 */
70b97a7f 686static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
687 __acquires(rq->lock)
688{
70b97a7f 689 struct rq *rq;
1da177e4 690
3a5c359a
AK
691 for (;;) {
692 local_irq_save(*flags);
693 rq = task_rq(p);
694 spin_lock(&rq->lock);
695 if (likely(rq == task_rq(p)))
696 return rq;
1da177e4 697 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 698 }
1da177e4
LT
699}
700
a9957449 701static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
702 __releases(rq->lock)
703{
704 spin_unlock(&rq->lock);
705}
706
70b97a7f 707static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
708 __releases(rq->lock)
709{
710 spin_unlock_irqrestore(&rq->lock, *flags);
711}
712
1da177e4 713/*
cc2a73b5 714 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 715 */
a9957449 716static struct rq *this_rq_lock(void)
1da177e4
LT
717 __acquires(rq->lock)
718{
70b97a7f 719 struct rq *rq;
1da177e4
LT
720
721 local_irq_disable();
722 rq = this_rq();
723 spin_lock(&rq->lock);
724
725 return rq;
726}
727
1b9f19c2 728/*
2aa44d05 729 * We are going deep-idle (irqs are disabled):
1b9f19c2 730 */
2aa44d05 731void sched_clock_idle_sleep_event(void)
1b9f19c2 732{
2aa44d05
IM
733 struct rq *rq = cpu_rq(smp_processor_id());
734
735 spin_lock(&rq->lock);
736 __update_rq_clock(rq);
737 spin_unlock(&rq->lock);
738 rq->clock_deep_idle_events++;
739}
740EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
741
742/*
743 * We just idled delta nanoseconds (called with irqs disabled):
744 */
745void sched_clock_idle_wakeup_event(u64 delta_ns)
746{
747 struct rq *rq = cpu_rq(smp_processor_id());
748 u64 now = sched_clock();
1b9f19c2 749
2bacec8c 750 touch_softlockup_watchdog();
2aa44d05
IM
751 rq->idle_clock += delta_ns;
752 /*
753 * Override the previous timestamp and ignore all
754 * sched_clock() deltas that occured while we idled,
755 * and use the PM-provided delta_ns to advance the
756 * rq clock:
757 */
758 spin_lock(&rq->lock);
759 rq->prev_clock_raw = now;
760 rq->clock += delta_ns;
761 spin_unlock(&rq->lock);
1b9f19c2 762}
2aa44d05 763EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 764
c24d20db
IM
765/*
766 * resched_task - mark a task 'to be rescheduled now'.
767 *
768 * On UP this means the setting of the need_resched flag, on SMP it
769 * might also involve a cross-CPU call to trigger the scheduler on
770 * the target CPU.
771 */
772#ifdef CONFIG_SMP
773
774#ifndef tsk_is_polling
775#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
776#endif
777
778static void resched_task(struct task_struct *p)
779{
780 int cpu;
781
782 assert_spin_locked(&task_rq(p)->lock);
783
784 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
785 return;
786
787 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
788
789 cpu = task_cpu(p);
790 if (cpu == smp_processor_id())
791 return;
792
793 /* NEED_RESCHED must be visible before we test polling */
794 smp_mb();
795 if (!tsk_is_polling(p))
796 smp_send_reschedule(cpu);
797}
798
799static void resched_cpu(int cpu)
800{
801 struct rq *rq = cpu_rq(cpu);
802 unsigned long flags;
803
804 if (!spin_trylock_irqsave(&rq->lock, flags))
805 return;
806 resched_task(cpu_curr(cpu));
807 spin_unlock_irqrestore(&rq->lock, flags);
808}
809#else
810static inline void resched_task(struct task_struct *p)
811{
812 assert_spin_locked(&task_rq(p)->lock);
813 set_tsk_need_resched(p);
814}
815#endif
816
45bf76df
IM
817#if BITS_PER_LONG == 32
818# define WMULT_CONST (~0UL)
819#else
820# define WMULT_CONST (1UL << 32)
821#endif
822
823#define WMULT_SHIFT 32
824
194081eb
IM
825/*
826 * Shift right and round:
827 */
cf2ab469 828#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 829
cb1c4fc9 830static unsigned long
45bf76df
IM
831calc_delta_mine(unsigned long delta_exec, unsigned long weight,
832 struct load_weight *lw)
833{
834 u64 tmp;
835
836 if (unlikely(!lw->inv_weight))
194081eb 837 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
838
839 tmp = (u64)delta_exec * weight;
840 /*
841 * Check whether we'd overflow the 64-bit multiplication:
842 */
194081eb 843 if (unlikely(tmp > WMULT_CONST))
cf2ab469 844 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
845 WMULT_SHIFT/2);
846 else
cf2ab469 847 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 848
ecf691da 849 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
850}
851
852static inline unsigned long
853calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
854{
855 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
856}
857
1091985b 858static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
859{
860 lw->weight += inc;
45bf76df
IM
861}
862
1091985b 863static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
864{
865 lw->weight -= dec;
45bf76df
IM
866}
867
2dd73a4f
PW
868/*
869 * To aid in avoiding the subversion of "niceness" due to uneven distribution
870 * of tasks with abnormal "nice" values across CPUs the contribution that
871 * each task makes to its run queue's load is weighted according to its
41a2d6cf 872 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
873 * scaled version of the new time slice allocation that they receive on time
874 * slice expiry etc.
875 */
876
dd41f596
IM
877#define WEIGHT_IDLEPRIO 2
878#define WMULT_IDLEPRIO (1 << 31)
879
880/*
881 * Nice levels are multiplicative, with a gentle 10% change for every
882 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
883 * nice 1, it will get ~10% less CPU time than another CPU-bound task
884 * that remained on nice 0.
885 *
886 * The "10% effect" is relative and cumulative: from _any_ nice level,
887 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
888 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
889 * If a task goes up by ~10% and another task goes down by ~10% then
890 * the relative distance between them is ~25%.)
dd41f596
IM
891 */
892static const int prio_to_weight[40] = {
254753dc
IM
893 /* -20 */ 88761, 71755, 56483, 46273, 36291,
894 /* -15 */ 29154, 23254, 18705, 14949, 11916,
895 /* -10 */ 9548, 7620, 6100, 4904, 3906,
896 /* -5 */ 3121, 2501, 1991, 1586, 1277,
897 /* 0 */ 1024, 820, 655, 526, 423,
898 /* 5 */ 335, 272, 215, 172, 137,
899 /* 10 */ 110, 87, 70, 56, 45,
900 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
901};
902
5714d2de
IM
903/*
904 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
905 *
906 * In cases where the weight does not change often, we can use the
907 * precalculated inverse to speed up arithmetics by turning divisions
908 * into multiplications:
909 */
dd41f596 910static const u32 prio_to_wmult[40] = {
254753dc
IM
911 /* -20 */ 48388, 59856, 76040, 92818, 118348,
912 /* -15 */ 147320, 184698, 229616, 287308, 360437,
913 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
914 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
915 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
916 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
917 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
918 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 919};
2dd73a4f 920
dd41f596
IM
921static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
922
923/*
924 * runqueue iterator, to support SMP load-balancing between different
925 * scheduling classes, without having to expose their internal data
926 * structures to the load-balancing proper:
927 */
928struct rq_iterator {
929 void *arg;
930 struct task_struct *(*start)(void *);
931 struct task_struct *(*next)(void *);
932};
933
e1d1484f
PW
934#ifdef CONFIG_SMP
935static unsigned long
936balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
937 unsigned long max_load_move, struct sched_domain *sd,
938 enum cpu_idle_type idle, int *all_pinned,
939 int *this_best_prio, struct rq_iterator *iterator);
940
941static int
942iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
943 struct sched_domain *sd, enum cpu_idle_type idle,
944 struct rq_iterator *iterator);
e1d1484f 945#endif
dd41f596 946
d842de87
SV
947#ifdef CONFIG_CGROUP_CPUACCT
948static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
949#else
950static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
951#endif
952
58e2d4ca
SV
953static inline void inc_cpu_load(struct rq *rq, unsigned long load)
954{
955 update_load_add(&rq->load, load);
956}
957
958static inline void dec_cpu_load(struct rq *rq, unsigned long load)
959{
960 update_load_sub(&rq->load, load);
961}
962
e7693a36
GH
963#ifdef CONFIG_SMP
964static unsigned long source_load(int cpu, int type);
965static unsigned long target_load(int cpu, int type);
966static unsigned long cpu_avg_load_per_task(int cpu);
967static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
968#endif /* CONFIG_SMP */
969
dd41f596 970#include "sched_stats.h"
dd41f596 971#include "sched_idletask.c"
5522d5d5
IM
972#include "sched_fair.c"
973#include "sched_rt.c"
dd41f596
IM
974#ifdef CONFIG_SCHED_DEBUG
975# include "sched_debug.c"
976#endif
977
978#define sched_class_highest (&rt_sched_class)
979
e5fa2237 980static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
981{
982 rq->nr_running++;
9c217245
IM
983}
984
db53181e 985static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
986{
987 rq->nr_running--;
9c217245
IM
988}
989
45bf76df
IM
990static void set_load_weight(struct task_struct *p)
991{
992 if (task_has_rt_policy(p)) {
dd41f596
IM
993 p->se.load.weight = prio_to_weight[0] * 2;
994 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
995 return;
996 }
45bf76df 997
dd41f596
IM
998 /*
999 * SCHED_IDLE tasks get minimal weight:
1000 */
1001 if (p->policy == SCHED_IDLE) {
1002 p->se.load.weight = WEIGHT_IDLEPRIO;
1003 p->se.load.inv_weight = WMULT_IDLEPRIO;
1004 return;
1005 }
71f8bd46 1006
dd41f596
IM
1007 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1008 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1009}
1010
8159f87e 1011static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1012{
dd41f596 1013 sched_info_queued(p);
fd390f6a 1014 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1015 p->se.on_rq = 1;
71f8bd46
IM
1016}
1017
69be72c1 1018static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1019{
f02231e5 1020 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1021 p->se.on_rq = 0;
71f8bd46
IM
1022}
1023
14531189 1024/*
dd41f596 1025 * __normal_prio - return the priority that is based on the static prio
14531189 1026 */
14531189
IM
1027static inline int __normal_prio(struct task_struct *p)
1028{
dd41f596 1029 return p->static_prio;
14531189
IM
1030}
1031
b29739f9
IM
1032/*
1033 * Calculate the expected normal priority: i.e. priority
1034 * without taking RT-inheritance into account. Might be
1035 * boosted by interactivity modifiers. Changes upon fork,
1036 * setprio syscalls, and whenever the interactivity
1037 * estimator recalculates.
1038 */
36c8b586 1039static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1040{
1041 int prio;
1042
e05606d3 1043 if (task_has_rt_policy(p))
b29739f9
IM
1044 prio = MAX_RT_PRIO-1 - p->rt_priority;
1045 else
1046 prio = __normal_prio(p);
1047 return prio;
1048}
1049
1050/*
1051 * Calculate the current priority, i.e. the priority
1052 * taken into account by the scheduler. This value might
1053 * be boosted by RT tasks, or might be boosted by
1054 * interactivity modifiers. Will be RT if the task got
1055 * RT-boosted. If not then it returns p->normal_prio.
1056 */
36c8b586 1057static int effective_prio(struct task_struct *p)
b29739f9
IM
1058{
1059 p->normal_prio = normal_prio(p);
1060 /*
1061 * If we are RT tasks or we were boosted to RT priority,
1062 * keep the priority unchanged. Otherwise, update priority
1063 * to the normal priority:
1064 */
1065 if (!rt_prio(p->prio))
1066 return p->normal_prio;
1067 return p->prio;
1068}
1069
1da177e4 1070/*
dd41f596 1071 * activate_task - move a task to the runqueue.
1da177e4 1072 */
dd41f596 1073static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1074{
dd41f596
IM
1075 if (p->state == TASK_UNINTERRUPTIBLE)
1076 rq->nr_uninterruptible--;
1da177e4 1077
8159f87e 1078 enqueue_task(rq, p, wakeup);
e5fa2237 1079 inc_nr_running(p, rq);
1da177e4
LT
1080}
1081
1da177e4
LT
1082/*
1083 * deactivate_task - remove a task from the runqueue.
1084 */
2e1cb74a 1085static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1086{
dd41f596
IM
1087 if (p->state == TASK_UNINTERRUPTIBLE)
1088 rq->nr_uninterruptible++;
1089
69be72c1 1090 dequeue_task(rq, p, sleep);
db53181e 1091 dec_nr_running(p, rq);
1da177e4
LT
1092}
1093
1da177e4
LT
1094/**
1095 * task_curr - is this task currently executing on a CPU?
1096 * @p: the task in question.
1097 */
36c8b586 1098inline int task_curr(const struct task_struct *p)
1da177e4
LT
1099{
1100 return cpu_curr(task_cpu(p)) == p;
1101}
1102
2dd73a4f
PW
1103/* Used instead of source_load when we know the type == 0 */
1104unsigned long weighted_cpuload(const int cpu)
1105{
495eca49 1106 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1107}
1108
1109static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1110{
ce96b5ac 1111 set_task_cfs_rq(p, cpu);
dd41f596 1112#ifdef CONFIG_SMP
ce96b5ac
DA
1113 /*
1114 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1115 * successfuly executed on another CPU. We must ensure that updates of
1116 * per-task data have been completed by this moment.
1117 */
1118 smp_wmb();
dd41f596 1119 task_thread_info(p)->cpu = cpu;
dd41f596 1120#endif
2dd73a4f
PW
1121}
1122
1da177e4 1123#ifdef CONFIG_SMP
c65cc870 1124
cc367732
IM
1125/*
1126 * Is this task likely cache-hot:
1127 */
e7693a36 1128static int
cc367732
IM
1129task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1130{
1131 s64 delta;
1132
1133 if (p->sched_class != &fair_sched_class)
1134 return 0;
1135
6bc1665b
IM
1136 if (sysctl_sched_migration_cost == -1)
1137 return 1;
1138 if (sysctl_sched_migration_cost == 0)
1139 return 0;
1140
cc367732
IM
1141 delta = now - p->se.exec_start;
1142
1143 return delta < (s64)sysctl_sched_migration_cost;
1144}
1145
1146
dd41f596 1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1148{
dd41f596
IM
1149 int old_cpu = task_cpu(p);
1150 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1151 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1152 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1153 u64 clock_offset;
dd41f596
IM
1154
1155 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1156
1157#ifdef CONFIG_SCHEDSTATS
1158 if (p->se.wait_start)
1159 p->se.wait_start -= clock_offset;
dd41f596
IM
1160 if (p->se.sleep_start)
1161 p->se.sleep_start -= clock_offset;
1162 if (p->se.block_start)
1163 p->se.block_start -= clock_offset;
cc367732
IM
1164 if (old_cpu != new_cpu) {
1165 schedstat_inc(p, se.nr_migrations);
1166 if (task_hot(p, old_rq->clock, NULL))
1167 schedstat_inc(p, se.nr_forced2_migrations);
1168 }
6cfb0d5d 1169#endif
2830cf8c
SV
1170 p->se.vruntime -= old_cfsrq->min_vruntime -
1171 new_cfsrq->min_vruntime;
dd41f596
IM
1172
1173 __set_task_cpu(p, new_cpu);
c65cc870
IM
1174}
1175
70b97a7f 1176struct migration_req {
1da177e4 1177 struct list_head list;
1da177e4 1178
36c8b586 1179 struct task_struct *task;
1da177e4
LT
1180 int dest_cpu;
1181
1da177e4 1182 struct completion done;
70b97a7f 1183};
1da177e4
LT
1184
1185/*
1186 * The task's runqueue lock must be held.
1187 * Returns true if you have to wait for migration thread.
1188 */
36c8b586 1189static int
70b97a7f 1190migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1191{
70b97a7f 1192 struct rq *rq = task_rq(p);
1da177e4
LT
1193
1194 /*
1195 * If the task is not on a runqueue (and not running), then
1196 * it is sufficient to simply update the task's cpu field.
1197 */
dd41f596 1198 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1199 set_task_cpu(p, dest_cpu);
1200 return 0;
1201 }
1202
1203 init_completion(&req->done);
1da177e4
LT
1204 req->task = p;
1205 req->dest_cpu = dest_cpu;
1206 list_add(&req->list, &rq->migration_queue);
48f24c4d 1207
1da177e4
LT
1208 return 1;
1209}
1210
1211/*
1212 * wait_task_inactive - wait for a thread to unschedule.
1213 *
1214 * The caller must ensure that the task *will* unschedule sometime soon,
1215 * else this function might spin for a *long* time. This function can't
1216 * be called with interrupts off, or it may introduce deadlock with
1217 * smp_call_function() if an IPI is sent by the same process we are
1218 * waiting to become inactive.
1219 */
36c8b586 1220void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1221{
1222 unsigned long flags;
dd41f596 1223 int running, on_rq;
70b97a7f 1224 struct rq *rq;
1da177e4 1225
3a5c359a
AK
1226 for (;;) {
1227 /*
1228 * We do the initial early heuristics without holding
1229 * any task-queue locks at all. We'll only try to get
1230 * the runqueue lock when things look like they will
1231 * work out!
1232 */
1233 rq = task_rq(p);
fa490cfd 1234
3a5c359a
AK
1235 /*
1236 * If the task is actively running on another CPU
1237 * still, just relax and busy-wait without holding
1238 * any locks.
1239 *
1240 * NOTE! Since we don't hold any locks, it's not
1241 * even sure that "rq" stays as the right runqueue!
1242 * But we don't care, since "task_running()" will
1243 * return false if the runqueue has changed and p
1244 * is actually now running somewhere else!
1245 */
1246 while (task_running(rq, p))
1247 cpu_relax();
fa490cfd 1248
3a5c359a
AK
1249 /*
1250 * Ok, time to look more closely! We need the rq
1251 * lock now, to be *sure*. If we're wrong, we'll
1252 * just go back and repeat.
1253 */
1254 rq = task_rq_lock(p, &flags);
1255 running = task_running(rq, p);
1256 on_rq = p->se.on_rq;
1257 task_rq_unlock(rq, &flags);
fa490cfd 1258
3a5c359a
AK
1259 /*
1260 * Was it really running after all now that we
1261 * checked with the proper locks actually held?
1262 *
1263 * Oops. Go back and try again..
1264 */
1265 if (unlikely(running)) {
1266 cpu_relax();
1267 continue;
1268 }
fa490cfd 1269
3a5c359a
AK
1270 /*
1271 * It's not enough that it's not actively running,
1272 * it must be off the runqueue _entirely_, and not
1273 * preempted!
1274 *
1275 * So if it wa still runnable (but just not actively
1276 * running right now), it's preempted, and we should
1277 * yield - it could be a while.
1278 */
1279 if (unlikely(on_rq)) {
1280 schedule_timeout_uninterruptible(1);
1281 continue;
1282 }
fa490cfd 1283
3a5c359a
AK
1284 /*
1285 * Ahh, all good. It wasn't running, and it wasn't
1286 * runnable, which means that it will never become
1287 * running in the future either. We're all done!
1288 */
1289 break;
1290 }
1da177e4
LT
1291}
1292
1293/***
1294 * kick_process - kick a running thread to enter/exit the kernel
1295 * @p: the to-be-kicked thread
1296 *
1297 * Cause a process which is running on another CPU to enter
1298 * kernel-mode, without any delay. (to get signals handled.)
1299 *
1300 * NOTE: this function doesnt have to take the runqueue lock,
1301 * because all it wants to ensure is that the remote task enters
1302 * the kernel. If the IPI races and the task has been migrated
1303 * to another CPU then no harm is done and the purpose has been
1304 * achieved as well.
1305 */
36c8b586 1306void kick_process(struct task_struct *p)
1da177e4
LT
1307{
1308 int cpu;
1309
1310 preempt_disable();
1311 cpu = task_cpu(p);
1312 if ((cpu != smp_processor_id()) && task_curr(p))
1313 smp_send_reschedule(cpu);
1314 preempt_enable();
1315}
1316
1317/*
2dd73a4f
PW
1318 * Return a low guess at the load of a migration-source cpu weighted
1319 * according to the scheduling class and "nice" value.
1da177e4
LT
1320 *
1321 * We want to under-estimate the load of migration sources, to
1322 * balance conservatively.
1323 */
a9957449 1324static unsigned long source_load(int cpu, int type)
1da177e4 1325{
70b97a7f 1326 struct rq *rq = cpu_rq(cpu);
dd41f596 1327 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1328
3b0bd9bc 1329 if (type == 0)
dd41f596 1330 return total;
b910472d 1331
dd41f596 1332 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1333}
1334
1335/*
2dd73a4f
PW
1336 * Return a high guess at the load of a migration-target cpu weighted
1337 * according to the scheduling class and "nice" value.
1da177e4 1338 */
a9957449 1339static unsigned long target_load(int cpu, int type)
1da177e4 1340{
70b97a7f 1341 struct rq *rq = cpu_rq(cpu);
dd41f596 1342 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1343
7897986b 1344 if (type == 0)
dd41f596 1345 return total;
3b0bd9bc 1346
dd41f596 1347 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1348}
1349
1350/*
1351 * Return the average load per task on the cpu's run queue
1352 */
e7693a36 1353static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1354{
70b97a7f 1355 struct rq *rq = cpu_rq(cpu);
dd41f596 1356 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1357 unsigned long n = rq->nr_running;
1358
dd41f596 1359 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1360}
1361
147cbb4b
NP
1362/*
1363 * find_idlest_group finds and returns the least busy CPU group within the
1364 * domain.
1365 */
1366static struct sched_group *
1367find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1368{
1369 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1370 unsigned long min_load = ULONG_MAX, this_load = 0;
1371 int load_idx = sd->forkexec_idx;
1372 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1373
1374 do {
1375 unsigned long load, avg_load;
1376 int local_group;
1377 int i;
1378
da5a5522
BD
1379 /* Skip over this group if it has no CPUs allowed */
1380 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1381 continue;
da5a5522 1382
147cbb4b 1383 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1384
1385 /* Tally up the load of all CPUs in the group */
1386 avg_load = 0;
1387
1388 for_each_cpu_mask(i, group->cpumask) {
1389 /* Bias balancing toward cpus of our domain */
1390 if (local_group)
1391 load = source_load(i, load_idx);
1392 else
1393 load = target_load(i, load_idx);
1394
1395 avg_load += load;
1396 }
1397
1398 /* Adjust by relative CPU power of the group */
5517d86b
ED
1399 avg_load = sg_div_cpu_power(group,
1400 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1401
1402 if (local_group) {
1403 this_load = avg_load;
1404 this = group;
1405 } else if (avg_load < min_load) {
1406 min_load = avg_load;
1407 idlest = group;
1408 }
3a5c359a 1409 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1410
1411 if (!idlest || 100*this_load < imbalance*min_load)
1412 return NULL;
1413 return idlest;
1414}
1415
1416/*
0feaece9 1417 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1418 */
95cdf3b7
IM
1419static int
1420find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1421{
da5a5522 1422 cpumask_t tmp;
147cbb4b
NP
1423 unsigned long load, min_load = ULONG_MAX;
1424 int idlest = -1;
1425 int i;
1426
da5a5522
BD
1427 /* Traverse only the allowed CPUs */
1428 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1429
1430 for_each_cpu_mask(i, tmp) {
2dd73a4f 1431 load = weighted_cpuload(i);
147cbb4b
NP
1432
1433 if (load < min_load || (load == min_load && i == this_cpu)) {
1434 min_load = load;
1435 idlest = i;
1436 }
1437 }
1438
1439 return idlest;
1440}
1441
476d139c
NP
1442/*
1443 * sched_balance_self: balance the current task (running on cpu) in domains
1444 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1445 * SD_BALANCE_EXEC.
1446 *
1447 * Balance, ie. select the least loaded group.
1448 *
1449 * Returns the target CPU number, or the same CPU if no balancing is needed.
1450 *
1451 * preempt must be disabled.
1452 */
1453static int sched_balance_self(int cpu, int flag)
1454{
1455 struct task_struct *t = current;
1456 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1457
c96d145e 1458 for_each_domain(cpu, tmp) {
9761eea8
IM
1459 /*
1460 * If power savings logic is enabled for a domain, stop there.
1461 */
5c45bf27
SS
1462 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1463 break;
476d139c
NP
1464 if (tmp->flags & flag)
1465 sd = tmp;
c96d145e 1466 }
476d139c
NP
1467
1468 while (sd) {
1469 cpumask_t span;
1470 struct sched_group *group;
1a848870
SS
1471 int new_cpu, weight;
1472
1473 if (!(sd->flags & flag)) {
1474 sd = sd->child;
1475 continue;
1476 }
476d139c
NP
1477
1478 span = sd->span;
1479 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1480 if (!group) {
1481 sd = sd->child;
1482 continue;
1483 }
476d139c 1484
da5a5522 1485 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1486 if (new_cpu == -1 || new_cpu == cpu) {
1487 /* Now try balancing at a lower domain level of cpu */
1488 sd = sd->child;
1489 continue;
1490 }
476d139c 1491
1a848870 1492 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1493 cpu = new_cpu;
476d139c
NP
1494 sd = NULL;
1495 weight = cpus_weight(span);
1496 for_each_domain(cpu, tmp) {
1497 if (weight <= cpus_weight(tmp->span))
1498 break;
1499 if (tmp->flags & flag)
1500 sd = tmp;
1501 }
1502 /* while loop will break here if sd == NULL */
1503 }
1504
1505 return cpu;
1506}
1507
1508#endif /* CONFIG_SMP */
1da177e4 1509
1da177e4
LT
1510/***
1511 * try_to_wake_up - wake up a thread
1512 * @p: the to-be-woken-up thread
1513 * @state: the mask of task states that can be woken
1514 * @sync: do a synchronous wakeup?
1515 *
1516 * Put it on the run-queue if it's not already there. The "current"
1517 * thread is always on the run-queue (except when the actual
1518 * re-schedule is in progress), and as such you're allowed to do
1519 * the simpler "current->state = TASK_RUNNING" to mark yourself
1520 * runnable without the overhead of this.
1521 *
1522 * returns failure only if the task is already active.
1523 */
36c8b586 1524static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1525{
cc367732 1526 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1527 unsigned long flags;
1528 long old_state;
70b97a7f 1529 struct rq *rq;
1da177e4 1530#ifdef CONFIG_SMP
1da177e4
LT
1531 int new_cpu;
1532#endif
1533
1534 rq = task_rq_lock(p, &flags);
1535 old_state = p->state;
1536 if (!(old_state & state))
1537 goto out;
1538
dd41f596 1539 if (p->se.on_rq)
1da177e4
LT
1540 goto out_running;
1541
1542 cpu = task_cpu(p);
cc367732 1543 orig_cpu = cpu;
1da177e4
LT
1544 this_cpu = smp_processor_id();
1545
1546#ifdef CONFIG_SMP
1547 if (unlikely(task_running(rq, p)))
1548 goto out_activate;
1549
e7693a36 1550 new_cpu = p->sched_class->select_task_rq(p, sync);
1da177e4
LT
1551 if (new_cpu != cpu) {
1552 set_task_cpu(p, new_cpu);
1553 task_rq_unlock(rq, &flags);
1554 /* might preempt at this point */
1555 rq = task_rq_lock(p, &flags);
1556 old_state = p->state;
1557 if (!(old_state & state))
1558 goto out;
dd41f596 1559 if (p->se.on_rq)
1da177e4
LT
1560 goto out_running;
1561
1562 this_cpu = smp_processor_id();
1563 cpu = task_cpu(p);
1564 }
1565
e7693a36
GH
1566#ifdef CONFIG_SCHEDSTATS
1567 schedstat_inc(rq, ttwu_count);
1568 if (cpu == this_cpu)
1569 schedstat_inc(rq, ttwu_local);
1570 else {
1571 struct sched_domain *sd;
1572 for_each_domain(this_cpu, sd) {
1573 if (cpu_isset(cpu, sd->span)) {
1574 schedstat_inc(sd, ttwu_wake_remote);
1575 break;
1576 }
1577 }
1578 }
1579
1580#endif
1581
1582
1da177e4
LT
1583out_activate:
1584#endif /* CONFIG_SMP */
cc367732
IM
1585 schedstat_inc(p, se.nr_wakeups);
1586 if (sync)
1587 schedstat_inc(p, se.nr_wakeups_sync);
1588 if (orig_cpu != cpu)
1589 schedstat_inc(p, se.nr_wakeups_migrate);
1590 if (cpu == this_cpu)
1591 schedstat_inc(p, se.nr_wakeups_local);
1592 else
1593 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1594 update_rq_clock(rq);
dd41f596 1595 activate_task(rq, p, 1);
9c63d9c0 1596 check_preempt_curr(rq, p);
1da177e4
LT
1597 success = 1;
1598
1599out_running:
1600 p->state = TASK_RUNNING;
4642dafd 1601 wakeup_balance_rt(rq, p);
1da177e4
LT
1602out:
1603 task_rq_unlock(rq, &flags);
1604
1605 return success;
1606}
1607
36c8b586 1608int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1609{
1610 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1611 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1612}
1da177e4
LT
1613EXPORT_SYMBOL(wake_up_process);
1614
36c8b586 1615int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1616{
1617 return try_to_wake_up(p, state, 0);
1618}
1619
1da177e4
LT
1620/*
1621 * Perform scheduler related setup for a newly forked process p.
1622 * p is forked by current.
dd41f596
IM
1623 *
1624 * __sched_fork() is basic setup used by init_idle() too:
1625 */
1626static void __sched_fork(struct task_struct *p)
1627{
dd41f596
IM
1628 p->se.exec_start = 0;
1629 p->se.sum_exec_runtime = 0;
f6cf891c 1630 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1631
1632#ifdef CONFIG_SCHEDSTATS
1633 p->se.wait_start = 0;
dd41f596
IM
1634 p->se.sum_sleep_runtime = 0;
1635 p->se.sleep_start = 0;
dd41f596
IM
1636 p->se.block_start = 0;
1637 p->se.sleep_max = 0;
1638 p->se.block_max = 0;
1639 p->se.exec_max = 0;
eba1ed4b 1640 p->se.slice_max = 0;
dd41f596 1641 p->se.wait_max = 0;
6cfb0d5d 1642#endif
476d139c 1643
dd41f596
IM
1644 INIT_LIST_HEAD(&p->run_list);
1645 p->se.on_rq = 0;
476d139c 1646
e107be36
AK
1647#ifdef CONFIG_PREEMPT_NOTIFIERS
1648 INIT_HLIST_HEAD(&p->preempt_notifiers);
1649#endif
1650
1da177e4
LT
1651 /*
1652 * We mark the process as running here, but have not actually
1653 * inserted it onto the runqueue yet. This guarantees that
1654 * nobody will actually run it, and a signal or other external
1655 * event cannot wake it up and insert it on the runqueue either.
1656 */
1657 p->state = TASK_RUNNING;
dd41f596
IM
1658}
1659
1660/*
1661 * fork()/clone()-time setup:
1662 */
1663void sched_fork(struct task_struct *p, int clone_flags)
1664{
1665 int cpu = get_cpu();
1666
1667 __sched_fork(p);
1668
1669#ifdef CONFIG_SMP
1670 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1671#endif
02e4bac2 1672 set_task_cpu(p, cpu);
b29739f9
IM
1673
1674 /*
1675 * Make sure we do not leak PI boosting priority to the child:
1676 */
1677 p->prio = current->normal_prio;
2ddbf952
HS
1678 if (!rt_prio(p->prio))
1679 p->sched_class = &fair_sched_class;
b29739f9 1680
52f17b6c 1681#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1682 if (likely(sched_info_on()))
52f17b6c 1683 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1684#endif
d6077cb8 1685#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1686 p->oncpu = 0;
1687#endif
1da177e4 1688#ifdef CONFIG_PREEMPT
4866cde0 1689 /* Want to start with kernel preemption disabled. */
a1261f54 1690 task_thread_info(p)->preempt_count = 1;
1da177e4 1691#endif
476d139c 1692 put_cpu();
1da177e4
LT
1693}
1694
1695/*
1696 * wake_up_new_task - wake up a newly created task for the first time.
1697 *
1698 * This function will do some initial scheduler statistics housekeeping
1699 * that must be done for every newly created context, then puts the task
1700 * on the runqueue and wakes it.
1701 */
36c8b586 1702void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1703{
1704 unsigned long flags;
dd41f596 1705 struct rq *rq;
1da177e4
LT
1706
1707 rq = task_rq_lock(p, &flags);
147cbb4b 1708 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1709 update_rq_clock(rq);
1da177e4
LT
1710
1711 p->prio = effective_prio(p);
1712
b9dca1e0 1713 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1714 activate_task(rq, p, 0);
1da177e4 1715 } else {
1da177e4 1716 /*
dd41f596
IM
1717 * Let the scheduling class do new task startup
1718 * management (if any):
1da177e4 1719 */
ee0827d8 1720 p->sched_class->task_new(rq, p);
e5fa2237 1721 inc_nr_running(p, rq);
1da177e4 1722 }
dd41f596
IM
1723 check_preempt_curr(rq, p);
1724 task_rq_unlock(rq, &flags);
1da177e4
LT
1725}
1726
e107be36
AK
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728
1729/**
421cee29
RD
1730 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1731 * @notifier: notifier struct to register
e107be36
AK
1732 */
1733void preempt_notifier_register(struct preempt_notifier *notifier)
1734{
1735 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1736}
1737EXPORT_SYMBOL_GPL(preempt_notifier_register);
1738
1739/**
1740 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1741 * @notifier: notifier struct to unregister
e107be36
AK
1742 *
1743 * This is safe to call from within a preemption notifier.
1744 */
1745void preempt_notifier_unregister(struct preempt_notifier *notifier)
1746{
1747 hlist_del(&notifier->link);
1748}
1749EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1750
1751static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1752{
1753 struct preempt_notifier *notifier;
1754 struct hlist_node *node;
1755
1756 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758}
1759
1760static void
1761fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1763{
1764 struct preempt_notifier *notifier;
1765 struct hlist_node *node;
1766
1767 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1768 notifier->ops->sched_out(notifier, next);
1769}
1770
1771#else
1772
1773static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1774{
1775}
1776
1777static void
1778fire_sched_out_preempt_notifiers(struct task_struct *curr,
1779 struct task_struct *next)
1780{
1781}
1782
1783#endif
1784
4866cde0
NP
1785/**
1786 * prepare_task_switch - prepare to switch tasks
1787 * @rq: the runqueue preparing to switch
421cee29 1788 * @prev: the current task that is being switched out
4866cde0
NP
1789 * @next: the task we are going to switch to.
1790 *
1791 * This is called with the rq lock held and interrupts off. It must
1792 * be paired with a subsequent finish_task_switch after the context
1793 * switch.
1794 *
1795 * prepare_task_switch sets up locking and calls architecture specific
1796 * hooks.
1797 */
e107be36
AK
1798static inline void
1799prepare_task_switch(struct rq *rq, struct task_struct *prev,
1800 struct task_struct *next)
4866cde0 1801{
e107be36 1802 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1803 prepare_lock_switch(rq, next);
1804 prepare_arch_switch(next);
1805}
1806
1da177e4
LT
1807/**
1808 * finish_task_switch - clean up after a task-switch
344babaa 1809 * @rq: runqueue associated with task-switch
1da177e4
LT
1810 * @prev: the thread we just switched away from.
1811 *
4866cde0
NP
1812 * finish_task_switch must be called after the context switch, paired
1813 * with a prepare_task_switch call before the context switch.
1814 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1815 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1816 *
1817 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1818 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1819 * with the lock held can cause deadlocks; see schedule() for
1820 * details.)
1821 */
a9957449 1822static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1823 __releases(rq->lock)
1824{
1da177e4 1825 struct mm_struct *mm = rq->prev_mm;
55a101f8 1826 long prev_state;
1da177e4
LT
1827
1828 rq->prev_mm = NULL;
1829
1830 /*
1831 * A task struct has one reference for the use as "current".
c394cc9f 1832 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1833 * schedule one last time. The schedule call will never return, and
1834 * the scheduled task must drop that reference.
c394cc9f 1835 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1836 * still held, otherwise prev could be scheduled on another cpu, die
1837 * there before we look at prev->state, and then the reference would
1838 * be dropped twice.
1839 * Manfred Spraul <manfred@colorfullife.com>
1840 */
55a101f8 1841 prev_state = prev->state;
4866cde0
NP
1842 finish_arch_switch(prev);
1843 finish_lock_switch(rq, prev);
e8fa1362
SR
1844 schedule_tail_balance_rt(rq);
1845
e107be36 1846 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1847 if (mm)
1848 mmdrop(mm);
c394cc9f 1849 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1850 /*
1851 * Remove function-return probe instances associated with this
1852 * task and put them back on the free list.
9761eea8 1853 */
c6fd91f0 1854 kprobe_flush_task(prev);
1da177e4 1855 put_task_struct(prev);
c6fd91f0 1856 }
1da177e4
LT
1857}
1858
1859/**
1860 * schedule_tail - first thing a freshly forked thread must call.
1861 * @prev: the thread we just switched away from.
1862 */
36c8b586 1863asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1864 __releases(rq->lock)
1865{
70b97a7f
IM
1866 struct rq *rq = this_rq();
1867
4866cde0
NP
1868 finish_task_switch(rq, prev);
1869#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1870 /* In this case, finish_task_switch does not reenable preemption */
1871 preempt_enable();
1872#endif
1da177e4 1873 if (current->set_child_tid)
b488893a 1874 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1875}
1876
1877/*
1878 * context_switch - switch to the new MM and the new
1879 * thread's register state.
1880 */
dd41f596 1881static inline void
70b97a7f 1882context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1883 struct task_struct *next)
1da177e4 1884{
dd41f596 1885 struct mm_struct *mm, *oldmm;
1da177e4 1886
e107be36 1887 prepare_task_switch(rq, prev, next);
dd41f596
IM
1888 mm = next->mm;
1889 oldmm = prev->active_mm;
9226d125
ZA
1890 /*
1891 * For paravirt, this is coupled with an exit in switch_to to
1892 * combine the page table reload and the switch backend into
1893 * one hypercall.
1894 */
1895 arch_enter_lazy_cpu_mode();
1896
dd41f596 1897 if (unlikely(!mm)) {
1da177e4
LT
1898 next->active_mm = oldmm;
1899 atomic_inc(&oldmm->mm_count);
1900 enter_lazy_tlb(oldmm, next);
1901 } else
1902 switch_mm(oldmm, mm, next);
1903
dd41f596 1904 if (unlikely(!prev->mm)) {
1da177e4 1905 prev->active_mm = NULL;
1da177e4
LT
1906 rq->prev_mm = oldmm;
1907 }
3a5f5e48
IM
1908 /*
1909 * Since the runqueue lock will be released by the next
1910 * task (which is an invalid locking op but in the case
1911 * of the scheduler it's an obvious special-case), so we
1912 * do an early lockdep release here:
1913 */
1914#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1915 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1916#endif
1da177e4
LT
1917
1918 /* Here we just switch the register state and the stack. */
1919 switch_to(prev, next, prev);
1920
dd41f596
IM
1921 barrier();
1922 /*
1923 * this_rq must be evaluated again because prev may have moved
1924 * CPUs since it called schedule(), thus the 'rq' on its stack
1925 * frame will be invalid.
1926 */
1927 finish_task_switch(this_rq(), prev);
1da177e4
LT
1928}
1929
1930/*
1931 * nr_running, nr_uninterruptible and nr_context_switches:
1932 *
1933 * externally visible scheduler statistics: current number of runnable
1934 * threads, current number of uninterruptible-sleeping threads, total
1935 * number of context switches performed since bootup.
1936 */
1937unsigned long nr_running(void)
1938{
1939 unsigned long i, sum = 0;
1940
1941 for_each_online_cpu(i)
1942 sum += cpu_rq(i)->nr_running;
1943
1944 return sum;
1945}
1946
1947unsigned long nr_uninterruptible(void)
1948{
1949 unsigned long i, sum = 0;
1950
0a945022 1951 for_each_possible_cpu(i)
1da177e4
LT
1952 sum += cpu_rq(i)->nr_uninterruptible;
1953
1954 /*
1955 * Since we read the counters lockless, it might be slightly
1956 * inaccurate. Do not allow it to go below zero though:
1957 */
1958 if (unlikely((long)sum < 0))
1959 sum = 0;
1960
1961 return sum;
1962}
1963
1964unsigned long long nr_context_switches(void)
1965{
cc94abfc
SR
1966 int i;
1967 unsigned long long sum = 0;
1da177e4 1968
0a945022 1969 for_each_possible_cpu(i)
1da177e4
LT
1970 sum += cpu_rq(i)->nr_switches;
1971
1972 return sum;
1973}
1974
1975unsigned long nr_iowait(void)
1976{
1977 unsigned long i, sum = 0;
1978
0a945022 1979 for_each_possible_cpu(i)
1da177e4
LT
1980 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1981
1982 return sum;
1983}
1984
db1b1fef
JS
1985unsigned long nr_active(void)
1986{
1987 unsigned long i, running = 0, uninterruptible = 0;
1988
1989 for_each_online_cpu(i) {
1990 running += cpu_rq(i)->nr_running;
1991 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1992 }
1993
1994 if (unlikely((long)uninterruptible < 0))
1995 uninterruptible = 0;
1996
1997 return running + uninterruptible;
1998}
1999
48f24c4d 2000/*
dd41f596
IM
2001 * Update rq->cpu_load[] statistics. This function is usually called every
2002 * scheduler tick (TICK_NSEC).
48f24c4d 2003 */
dd41f596 2004static void update_cpu_load(struct rq *this_rq)
48f24c4d 2005{
495eca49 2006 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2007 int i, scale;
2008
2009 this_rq->nr_load_updates++;
dd41f596
IM
2010
2011 /* Update our load: */
2012 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2013 unsigned long old_load, new_load;
2014
2015 /* scale is effectively 1 << i now, and >> i divides by scale */
2016
2017 old_load = this_rq->cpu_load[i];
2018 new_load = this_load;
a25707f3
IM
2019 /*
2020 * Round up the averaging division if load is increasing. This
2021 * prevents us from getting stuck on 9 if the load is 10, for
2022 * example.
2023 */
2024 if (new_load > old_load)
2025 new_load += scale-1;
dd41f596
IM
2026 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2027 }
48f24c4d
IM
2028}
2029
dd41f596
IM
2030#ifdef CONFIG_SMP
2031
1da177e4
LT
2032/*
2033 * double_rq_lock - safely lock two runqueues
2034 *
2035 * Note this does not disable interrupts like task_rq_lock,
2036 * you need to do so manually before calling.
2037 */
70b97a7f 2038static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2039 __acquires(rq1->lock)
2040 __acquires(rq2->lock)
2041{
054b9108 2042 BUG_ON(!irqs_disabled());
1da177e4
LT
2043 if (rq1 == rq2) {
2044 spin_lock(&rq1->lock);
2045 __acquire(rq2->lock); /* Fake it out ;) */
2046 } else {
c96d145e 2047 if (rq1 < rq2) {
1da177e4
LT
2048 spin_lock(&rq1->lock);
2049 spin_lock(&rq2->lock);
2050 } else {
2051 spin_lock(&rq2->lock);
2052 spin_lock(&rq1->lock);
2053 }
2054 }
6e82a3be
IM
2055 update_rq_clock(rq1);
2056 update_rq_clock(rq2);
1da177e4
LT
2057}
2058
2059/*
2060 * double_rq_unlock - safely unlock two runqueues
2061 *
2062 * Note this does not restore interrupts like task_rq_unlock,
2063 * you need to do so manually after calling.
2064 */
70b97a7f 2065static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2066 __releases(rq1->lock)
2067 __releases(rq2->lock)
2068{
2069 spin_unlock(&rq1->lock);
2070 if (rq1 != rq2)
2071 spin_unlock(&rq2->lock);
2072 else
2073 __release(rq2->lock);
2074}
2075
2076/*
2077 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2078 */
e8fa1362 2079static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2080 __releases(this_rq->lock)
2081 __acquires(busiest->lock)
2082 __acquires(this_rq->lock)
2083{
e8fa1362
SR
2084 int ret = 0;
2085
054b9108
KK
2086 if (unlikely(!irqs_disabled())) {
2087 /* printk() doesn't work good under rq->lock */
2088 spin_unlock(&this_rq->lock);
2089 BUG_ON(1);
2090 }
1da177e4 2091 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2092 if (busiest < this_rq) {
1da177e4
LT
2093 spin_unlock(&this_rq->lock);
2094 spin_lock(&busiest->lock);
2095 spin_lock(&this_rq->lock);
e8fa1362 2096 ret = 1;
1da177e4
LT
2097 } else
2098 spin_lock(&busiest->lock);
2099 }
e8fa1362 2100 return ret;
1da177e4
LT
2101}
2102
1da177e4
LT
2103/*
2104 * If dest_cpu is allowed for this process, migrate the task to it.
2105 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2107 * the cpu_allowed mask is restored.
2108 */
36c8b586 2109static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2110{
70b97a7f 2111 struct migration_req req;
1da177e4 2112 unsigned long flags;
70b97a7f 2113 struct rq *rq;
1da177e4
LT
2114
2115 rq = task_rq_lock(p, &flags);
2116 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2117 || unlikely(cpu_is_offline(dest_cpu)))
2118 goto out;
2119
2120 /* force the process onto the specified CPU */
2121 if (migrate_task(p, dest_cpu, &req)) {
2122 /* Need to wait for migration thread (might exit: take ref). */
2123 struct task_struct *mt = rq->migration_thread;
36c8b586 2124
1da177e4
LT
2125 get_task_struct(mt);
2126 task_rq_unlock(rq, &flags);
2127 wake_up_process(mt);
2128 put_task_struct(mt);
2129 wait_for_completion(&req.done);
36c8b586 2130
1da177e4
LT
2131 return;
2132 }
2133out:
2134 task_rq_unlock(rq, &flags);
2135}
2136
2137/*
476d139c
NP
2138 * sched_exec - execve() is a valuable balancing opportunity, because at
2139 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2140 */
2141void sched_exec(void)
2142{
1da177e4 2143 int new_cpu, this_cpu = get_cpu();
476d139c 2144 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2145 put_cpu();
476d139c
NP
2146 if (new_cpu != this_cpu)
2147 sched_migrate_task(current, new_cpu);
1da177e4
LT
2148}
2149
2150/*
2151 * pull_task - move a task from a remote runqueue to the local runqueue.
2152 * Both runqueues must be locked.
2153 */
dd41f596
IM
2154static void pull_task(struct rq *src_rq, struct task_struct *p,
2155 struct rq *this_rq, int this_cpu)
1da177e4 2156{
2e1cb74a 2157 deactivate_task(src_rq, p, 0);
1da177e4 2158 set_task_cpu(p, this_cpu);
dd41f596 2159 activate_task(this_rq, p, 0);
1da177e4
LT
2160 /*
2161 * Note that idle threads have a prio of MAX_PRIO, for this test
2162 * to be always true for them.
2163 */
dd41f596 2164 check_preempt_curr(this_rq, p);
1da177e4
LT
2165}
2166
2167/*
2168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2169 */
858119e1 2170static
70b97a7f 2171int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2172 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2173 int *all_pinned)
1da177e4
LT
2174{
2175 /*
2176 * We do not migrate tasks that are:
2177 * 1) running (obviously), or
2178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2179 * 3) are cache-hot on their current CPU.
2180 */
cc367732
IM
2181 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2182 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2183 return 0;
cc367732 2184 }
81026794
NP
2185 *all_pinned = 0;
2186
cc367732
IM
2187 if (task_running(rq, p)) {
2188 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2189 return 0;
cc367732 2190 }
1da177e4 2191
da84d961
IM
2192 /*
2193 * Aggressive migration if:
2194 * 1) task is cache cold, or
2195 * 2) too many balance attempts have failed.
2196 */
2197
6bc1665b
IM
2198 if (!task_hot(p, rq->clock, sd) ||
2199 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2200#ifdef CONFIG_SCHEDSTATS
cc367732 2201 if (task_hot(p, rq->clock, sd)) {
da84d961 2202 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2203 schedstat_inc(p, se.nr_forced_migrations);
2204 }
da84d961
IM
2205#endif
2206 return 1;
2207 }
2208
cc367732
IM
2209 if (task_hot(p, rq->clock, sd)) {
2210 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2211 return 0;
cc367732 2212 }
1da177e4
LT
2213 return 1;
2214}
2215
e1d1484f
PW
2216static unsigned long
2217balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2218 unsigned long max_load_move, struct sched_domain *sd,
2219 enum cpu_idle_type idle, int *all_pinned,
2220 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2221{
b82d9fdd 2222 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2223 struct task_struct *p;
2224 long rem_load_move = max_load_move;
1da177e4 2225
e1d1484f 2226 if (max_load_move == 0)
1da177e4
LT
2227 goto out;
2228
81026794
NP
2229 pinned = 1;
2230
1da177e4 2231 /*
dd41f596 2232 * Start the load-balancing iterator:
1da177e4 2233 */
dd41f596
IM
2234 p = iterator->start(iterator->arg);
2235next:
b82d9fdd 2236 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2237 goto out;
50ddd969 2238 /*
b82d9fdd 2239 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2240 * skip a task if it will be the highest priority task (i.e. smallest
2241 * prio value) on its new queue regardless of its load weight
2242 */
dd41f596
IM
2243 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2244 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2245 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2246 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2247 p = iterator->next(iterator->arg);
2248 goto next;
1da177e4
LT
2249 }
2250
dd41f596 2251 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2252 pulled++;
dd41f596 2253 rem_load_move -= p->se.load.weight;
1da177e4 2254
2dd73a4f 2255 /*
b82d9fdd 2256 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2257 */
e1d1484f 2258 if (rem_load_move > 0) {
a4ac01c3
PW
2259 if (p->prio < *this_best_prio)
2260 *this_best_prio = p->prio;
dd41f596
IM
2261 p = iterator->next(iterator->arg);
2262 goto next;
1da177e4
LT
2263 }
2264out:
2265 /*
e1d1484f 2266 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2267 * so we can safely collect pull_task() stats here rather than
2268 * inside pull_task().
2269 */
2270 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2271
2272 if (all_pinned)
2273 *all_pinned = pinned;
e1d1484f
PW
2274
2275 return max_load_move - rem_load_move;
1da177e4
LT
2276}
2277
dd41f596 2278/*
43010659
PW
2279 * move_tasks tries to move up to max_load_move weighted load from busiest to
2280 * this_rq, as part of a balancing operation within domain "sd".
2281 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2282 *
2283 * Called with both runqueues locked.
2284 */
2285static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2286 unsigned long max_load_move,
dd41f596
IM
2287 struct sched_domain *sd, enum cpu_idle_type idle,
2288 int *all_pinned)
2289{
5522d5d5 2290 const struct sched_class *class = sched_class_highest;
43010659 2291 unsigned long total_load_moved = 0;
a4ac01c3 2292 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2293
2294 do {
43010659
PW
2295 total_load_moved +=
2296 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2297 max_load_move - total_load_moved,
a4ac01c3 2298 sd, idle, all_pinned, &this_best_prio);
dd41f596 2299 class = class->next;
43010659 2300 } while (class && max_load_move > total_load_moved);
dd41f596 2301
43010659
PW
2302 return total_load_moved > 0;
2303}
2304
e1d1484f
PW
2305static int
2306iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2307 struct sched_domain *sd, enum cpu_idle_type idle,
2308 struct rq_iterator *iterator)
2309{
2310 struct task_struct *p = iterator->start(iterator->arg);
2311 int pinned = 0;
2312
2313 while (p) {
2314 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2315 pull_task(busiest, p, this_rq, this_cpu);
2316 /*
2317 * Right now, this is only the second place pull_task()
2318 * is called, so we can safely collect pull_task()
2319 * stats here rather than inside pull_task().
2320 */
2321 schedstat_inc(sd, lb_gained[idle]);
2322
2323 return 1;
2324 }
2325 p = iterator->next(iterator->arg);
2326 }
2327
2328 return 0;
2329}
2330
43010659
PW
2331/*
2332 * move_one_task tries to move exactly one task from busiest to this_rq, as
2333 * part of active balancing operations within "domain".
2334 * Returns 1 if successful and 0 otherwise.
2335 *
2336 * Called with both runqueues locked.
2337 */
2338static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2339 struct sched_domain *sd, enum cpu_idle_type idle)
2340{
5522d5d5 2341 const struct sched_class *class;
43010659
PW
2342
2343 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2344 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2345 return 1;
2346
2347 return 0;
dd41f596
IM
2348}
2349
1da177e4
LT
2350/*
2351 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2352 * domain. It calculates and returns the amount of weighted load which
2353 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2354 */
2355static struct sched_group *
2356find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2357 unsigned long *imbalance, enum cpu_idle_type idle,
2358 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2359{
2360 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2361 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2362 unsigned long max_pull;
2dd73a4f
PW
2363 unsigned long busiest_load_per_task, busiest_nr_running;
2364 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2365 int load_idx, group_imb = 0;
5c45bf27
SS
2366#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2367 int power_savings_balance = 1;
2368 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2369 unsigned long min_nr_running = ULONG_MAX;
2370 struct sched_group *group_min = NULL, *group_leader = NULL;
2371#endif
1da177e4
LT
2372
2373 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2374 busiest_load_per_task = busiest_nr_running = 0;
2375 this_load_per_task = this_nr_running = 0;
d15bcfdb 2376 if (idle == CPU_NOT_IDLE)
7897986b 2377 load_idx = sd->busy_idx;
d15bcfdb 2378 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2379 load_idx = sd->newidle_idx;
2380 else
2381 load_idx = sd->idle_idx;
1da177e4
LT
2382
2383 do {
908a7c1b 2384 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2385 int local_group;
2386 int i;
908a7c1b 2387 int __group_imb = 0;
783609c6 2388 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2389 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2390
2391 local_group = cpu_isset(this_cpu, group->cpumask);
2392
783609c6
SS
2393 if (local_group)
2394 balance_cpu = first_cpu(group->cpumask);
2395
1da177e4 2396 /* Tally up the load of all CPUs in the group */
2dd73a4f 2397 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2398 max_cpu_load = 0;
2399 min_cpu_load = ~0UL;
1da177e4
LT
2400
2401 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2402 struct rq *rq;
2403
2404 if (!cpu_isset(i, *cpus))
2405 continue;
2406
2407 rq = cpu_rq(i);
2dd73a4f 2408
9439aab8 2409 if (*sd_idle && rq->nr_running)
5969fe06
NP
2410 *sd_idle = 0;
2411
1da177e4 2412 /* Bias balancing toward cpus of our domain */
783609c6
SS
2413 if (local_group) {
2414 if (idle_cpu(i) && !first_idle_cpu) {
2415 first_idle_cpu = 1;
2416 balance_cpu = i;
2417 }
2418
a2000572 2419 load = target_load(i, load_idx);
908a7c1b 2420 } else {
a2000572 2421 load = source_load(i, load_idx);
908a7c1b
KC
2422 if (load > max_cpu_load)
2423 max_cpu_load = load;
2424 if (min_cpu_load > load)
2425 min_cpu_load = load;
2426 }
1da177e4
LT
2427
2428 avg_load += load;
2dd73a4f 2429 sum_nr_running += rq->nr_running;
dd41f596 2430 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2431 }
2432
783609c6
SS
2433 /*
2434 * First idle cpu or the first cpu(busiest) in this sched group
2435 * is eligible for doing load balancing at this and above
9439aab8
SS
2436 * domains. In the newly idle case, we will allow all the cpu's
2437 * to do the newly idle load balance.
783609c6 2438 */
9439aab8
SS
2439 if (idle != CPU_NEWLY_IDLE && local_group &&
2440 balance_cpu != this_cpu && balance) {
783609c6
SS
2441 *balance = 0;
2442 goto ret;
2443 }
2444
1da177e4 2445 total_load += avg_load;
5517d86b 2446 total_pwr += group->__cpu_power;
1da177e4
LT
2447
2448 /* Adjust by relative CPU power of the group */
5517d86b
ED
2449 avg_load = sg_div_cpu_power(group,
2450 avg_load * SCHED_LOAD_SCALE);
1da177e4 2451
908a7c1b
KC
2452 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2453 __group_imb = 1;
2454
5517d86b 2455 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2456
1da177e4
LT
2457 if (local_group) {
2458 this_load = avg_load;
2459 this = group;
2dd73a4f
PW
2460 this_nr_running = sum_nr_running;
2461 this_load_per_task = sum_weighted_load;
2462 } else if (avg_load > max_load &&
908a7c1b 2463 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2464 max_load = avg_load;
2465 busiest = group;
2dd73a4f
PW
2466 busiest_nr_running = sum_nr_running;
2467 busiest_load_per_task = sum_weighted_load;
908a7c1b 2468 group_imb = __group_imb;
1da177e4 2469 }
5c45bf27
SS
2470
2471#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2472 /*
2473 * Busy processors will not participate in power savings
2474 * balance.
2475 */
dd41f596
IM
2476 if (idle == CPU_NOT_IDLE ||
2477 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2478 goto group_next;
5c45bf27
SS
2479
2480 /*
2481 * If the local group is idle or completely loaded
2482 * no need to do power savings balance at this domain
2483 */
2484 if (local_group && (this_nr_running >= group_capacity ||
2485 !this_nr_running))
2486 power_savings_balance = 0;
2487
dd41f596 2488 /*
5c45bf27
SS
2489 * If a group is already running at full capacity or idle,
2490 * don't include that group in power savings calculations
dd41f596
IM
2491 */
2492 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2493 || !sum_nr_running)
dd41f596 2494 goto group_next;
5c45bf27 2495
dd41f596 2496 /*
5c45bf27 2497 * Calculate the group which has the least non-idle load.
dd41f596
IM
2498 * This is the group from where we need to pick up the load
2499 * for saving power
2500 */
2501 if ((sum_nr_running < min_nr_running) ||
2502 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2503 first_cpu(group->cpumask) <
2504 first_cpu(group_min->cpumask))) {
dd41f596
IM
2505 group_min = group;
2506 min_nr_running = sum_nr_running;
5c45bf27
SS
2507 min_load_per_task = sum_weighted_load /
2508 sum_nr_running;
dd41f596 2509 }
5c45bf27 2510
dd41f596 2511 /*
5c45bf27 2512 * Calculate the group which is almost near its
dd41f596
IM
2513 * capacity but still has some space to pick up some load
2514 * from other group and save more power
2515 */
2516 if (sum_nr_running <= group_capacity - 1) {
2517 if (sum_nr_running > leader_nr_running ||
2518 (sum_nr_running == leader_nr_running &&
2519 first_cpu(group->cpumask) >
2520 first_cpu(group_leader->cpumask))) {
2521 group_leader = group;
2522 leader_nr_running = sum_nr_running;
2523 }
48f24c4d 2524 }
5c45bf27
SS
2525group_next:
2526#endif
1da177e4
LT
2527 group = group->next;
2528 } while (group != sd->groups);
2529
2dd73a4f 2530 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2531 goto out_balanced;
2532
2533 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2534
2535 if (this_load >= avg_load ||
2536 100*max_load <= sd->imbalance_pct*this_load)
2537 goto out_balanced;
2538
2dd73a4f 2539 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2540 if (group_imb)
2541 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2542
1da177e4
LT
2543 /*
2544 * We're trying to get all the cpus to the average_load, so we don't
2545 * want to push ourselves above the average load, nor do we wish to
2546 * reduce the max loaded cpu below the average load, as either of these
2547 * actions would just result in more rebalancing later, and ping-pong
2548 * tasks around. Thus we look for the minimum possible imbalance.
2549 * Negative imbalances (*we* are more loaded than anyone else) will
2550 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2551 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2552 * appear as very large values with unsigned longs.
2553 */
2dd73a4f
PW
2554 if (max_load <= busiest_load_per_task)
2555 goto out_balanced;
2556
2557 /*
2558 * In the presence of smp nice balancing, certain scenarios can have
2559 * max load less than avg load(as we skip the groups at or below
2560 * its cpu_power, while calculating max_load..)
2561 */
2562 if (max_load < avg_load) {
2563 *imbalance = 0;
2564 goto small_imbalance;
2565 }
0c117f1b
SS
2566
2567 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2568 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2569
1da177e4 2570 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2571 *imbalance = min(max_pull * busiest->__cpu_power,
2572 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2573 / SCHED_LOAD_SCALE;
2574
2dd73a4f
PW
2575 /*
2576 * if *imbalance is less than the average load per runnable task
2577 * there is no gaurantee that any tasks will be moved so we'll have
2578 * a think about bumping its value to force at least one task to be
2579 * moved
2580 */
7fd0d2dd 2581 if (*imbalance < busiest_load_per_task) {
48f24c4d 2582 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2583 unsigned int imbn;
2584
2585small_imbalance:
2586 pwr_move = pwr_now = 0;
2587 imbn = 2;
2588 if (this_nr_running) {
2589 this_load_per_task /= this_nr_running;
2590 if (busiest_load_per_task > this_load_per_task)
2591 imbn = 1;
2592 } else
2593 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2594
dd41f596
IM
2595 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2596 busiest_load_per_task * imbn) {
2dd73a4f 2597 *imbalance = busiest_load_per_task;
1da177e4
LT
2598 return busiest;
2599 }
2600
2601 /*
2602 * OK, we don't have enough imbalance to justify moving tasks,
2603 * however we may be able to increase total CPU power used by
2604 * moving them.
2605 */
2606
5517d86b
ED
2607 pwr_now += busiest->__cpu_power *
2608 min(busiest_load_per_task, max_load);
2609 pwr_now += this->__cpu_power *
2610 min(this_load_per_task, this_load);
1da177e4
LT
2611 pwr_now /= SCHED_LOAD_SCALE;
2612
2613 /* Amount of load we'd subtract */
5517d86b
ED
2614 tmp = sg_div_cpu_power(busiest,
2615 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2616 if (max_load > tmp)
5517d86b 2617 pwr_move += busiest->__cpu_power *
2dd73a4f 2618 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2619
2620 /* Amount of load we'd add */
5517d86b 2621 if (max_load * busiest->__cpu_power <
33859f7f 2622 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2623 tmp = sg_div_cpu_power(this,
2624 max_load * busiest->__cpu_power);
1da177e4 2625 else
5517d86b
ED
2626 tmp = sg_div_cpu_power(this,
2627 busiest_load_per_task * SCHED_LOAD_SCALE);
2628 pwr_move += this->__cpu_power *
2629 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2630 pwr_move /= SCHED_LOAD_SCALE;
2631
2632 /* Move if we gain throughput */
7fd0d2dd
SS
2633 if (pwr_move > pwr_now)
2634 *imbalance = busiest_load_per_task;
1da177e4
LT
2635 }
2636
1da177e4
LT
2637 return busiest;
2638
2639out_balanced:
5c45bf27 2640#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2641 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2642 goto ret;
1da177e4 2643
5c45bf27
SS
2644 if (this == group_leader && group_leader != group_min) {
2645 *imbalance = min_load_per_task;
2646 return group_min;
2647 }
5c45bf27 2648#endif
783609c6 2649ret:
1da177e4
LT
2650 *imbalance = 0;
2651 return NULL;
2652}
2653
2654/*
2655 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2656 */
70b97a7f 2657static struct rq *
d15bcfdb 2658find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2659 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2660{
70b97a7f 2661 struct rq *busiest = NULL, *rq;
2dd73a4f 2662 unsigned long max_load = 0;
1da177e4
LT
2663 int i;
2664
2665 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2666 unsigned long wl;
0a2966b4
CL
2667
2668 if (!cpu_isset(i, *cpus))
2669 continue;
2670
48f24c4d 2671 rq = cpu_rq(i);
dd41f596 2672 wl = weighted_cpuload(i);
2dd73a4f 2673
dd41f596 2674 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2675 continue;
1da177e4 2676
dd41f596
IM
2677 if (wl > max_load) {
2678 max_load = wl;
48f24c4d 2679 busiest = rq;
1da177e4
LT
2680 }
2681 }
2682
2683 return busiest;
2684}
2685
77391d71
NP
2686/*
2687 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2688 * so long as it is large enough.
2689 */
2690#define MAX_PINNED_INTERVAL 512
2691
1da177e4
LT
2692/*
2693 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2694 * tasks if there is an imbalance.
1da177e4 2695 */
70b97a7f 2696static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2697 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2698 int *balance)
1da177e4 2699{
43010659 2700 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2701 struct sched_group *group;
1da177e4 2702 unsigned long imbalance;
70b97a7f 2703 struct rq *busiest;
0a2966b4 2704 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2705 unsigned long flags;
5969fe06 2706
89c4710e
SS
2707 /*
2708 * When power savings policy is enabled for the parent domain, idle
2709 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2710 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2711 * portraying it as CPU_NOT_IDLE.
89c4710e 2712 */
d15bcfdb 2713 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2714 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2715 sd_idle = 1;
1da177e4 2716
2d72376b 2717 schedstat_inc(sd, lb_count[idle]);
1da177e4 2718
0a2966b4
CL
2719redo:
2720 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2721 &cpus, balance);
2722
06066714 2723 if (*balance == 0)
783609c6 2724 goto out_balanced;
783609c6 2725
1da177e4
LT
2726 if (!group) {
2727 schedstat_inc(sd, lb_nobusyg[idle]);
2728 goto out_balanced;
2729 }
2730
0a2966b4 2731 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2732 if (!busiest) {
2733 schedstat_inc(sd, lb_nobusyq[idle]);
2734 goto out_balanced;
2735 }
2736
db935dbd 2737 BUG_ON(busiest == this_rq);
1da177e4
LT
2738
2739 schedstat_add(sd, lb_imbalance[idle], imbalance);
2740
43010659 2741 ld_moved = 0;
1da177e4
LT
2742 if (busiest->nr_running > 1) {
2743 /*
2744 * Attempt to move tasks. If find_busiest_group has found
2745 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2746 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2747 * correctly treated as an imbalance.
2748 */
fe2eea3f 2749 local_irq_save(flags);
e17224bf 2750 double_rq_lock(this_rq, busiest);
43010659 2751 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2752 imbalance, sd, idle, &all_pinned);
e17224bf 2753 double_rq_unlock(this_rq, busiest);
fe2eea3f 2754 local_irq_restore(flags);
81026794 2755
46cb4b7c
SS
2756 /*
2757 * some other cpu did the load balance for us.
2758 */
43010659 2759 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2760 resched_cpu(this_cpu);
2761
81026794 2762 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2763 if (unlikely(all_pinned)) {
2764 cpu_clear(cpu_of(busiest), cpus);
2765 if (!cpus_empty(cpus))
2766 goto redo;
81026794 2767 goto out_balanced;
0a2966b4 2768 }
1da177e4 2769 }
81026794 2770
43010659 2771 if (!ld_moved) {
1da177e4
LT
2772 schedstat_inc(sd, lb_failed[idle]);
2773 sd->nr_balance_failed++;
2774
2775 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2776
fe2eea3f 2777 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2778
2779 /* don't kick the migration_thread, if the curr
2780 * task on busiest cpu can't be moved to this_cpu
2781 */
2782 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2783 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2784 all_pinned = 1;
2785 goto out_one_pinned;
2786 }
2787
1da177e4
LT
2788 if (!busiest->active_balance) {
2789 busiest->active_balance = 1;
2790 busiest->push_cpu = this_cpu;
81026794 2791 active_balance = 1;
1da177e4 2792 }
fe2eea3f 2793 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2794 if (active_balance)
1da177e4
LT
2795 wake_up_process(busiest->migration_thread);
2796
2797 /*
2798 * We've kicked active balancing, reset the failure
2799 * counter.
2800 */
39507451 2801 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2802 }
81026794 2803 } else
1da177e4
LT
2804 sd->nr_balance_failed = 0;
2805
81026794 2806 if (likely(!active_balance)) {
1da177e4
LT
2807 /* We were unbalanced, so reset the balancing interval */
2808 sd->balance_interval = sd->min_interval;
81026794
NP
2809 } else {
2810 /*
2811 * If we've begun active balancing, start to back off. This
2812 * case may not be covered by the all_pinned logic if there
2813 * is only 1 task on the busy runqueue (because we don't call
2814 * move_tasks).
2815 */
2816 if (sd->balance_interval < sd->max_interval)
2817 sd->balance_interval *= 2;
1da177e4
LT
2818 }
2819
43010659 2820 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2821 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2822 return -1;
43010659 2823 return ld_moved;
1da177e4
LT
2824
2825out_balanced:
1da177e4
LT
2826 schedstat_inc(sd, lb_balanced[idle]);
2827
16cfb1c0 2828 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2829
2830out_one_pinned:
1da177e4 2831 /* tune up the balancing interval */
77391d71
NP
2832 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2833 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2834 sd->balance_interval *= 2;
2835
48f24c4d 2836 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2837 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2838 return -1;
1da177e4
LT
2839 return 0;
2840}
2841
2842/*
2843 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2844 * tasks if there is an imbalance.
2845 *
d15bcfdb 2846 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2847 * this_rq is locked.
2848 */
48f24c4d 2849static int
70b97a7f 2850load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2851{
2852 struct sched_group *group;
70b97a7f 2853 struct rq *busiest = NULL;
1da177e4 2854 unsigned long imbalance;
43010659 2855 int ld_moved = 0;
5969fe06 2856 int sd_idle = 0;
969bb4e4 2857 int all_pinned = 0;
0a2966b4 2858 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2859
89c4710e
SS
2860 /*
2861 * When power savings policy is enabled for the parent domain, idle
2862 * sibling can pick up load irrespective of busy siblings. In this case,
2863 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2864 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2865 */
2866 if (sd->flags & SD_SHARE_CPUPOWER &&
2867 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2868 sd_idle = 1;
1da177e4 2869
2d72376b 2870 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2871redo:
d15bcfdb 2872 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2873 &sd_idle, &cpus, NULL);
1da177e4 2874 if (!group) {
d15bcfdb 2875 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2876 goto out_balanced;
1da177e4
LT
2877 }
2878
d15bcfdb 2879 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2880 &cpus);
db935dbd 2881 if (!busiest) {
d15bcfdb 2882 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2883 goto out_balanced;
1da177e4
LT
2884 }
2885
db935dbd
NP
2886 BUG_ON(busiest == this_rq);
2887
d15bcfdb 2888 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2889
43010659 2890 ld_moved = 0;
d6d5cfaf
NP
2891 if (busiest->nr_running > 1) {
2892 /* Attempt to move tasks */
2893 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2894 /* this_rq->clock is already updated */
2895 update_rq_clock(busiest);
43010659 2896 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2897 imbalance, sd, CPU_NEWLY_IDLE,
2898 &all_pinned);
d6d5cfaf 2899 spin_unlock(&busiest->lock);
0a2966b4 2900
969bb4e4 2901 if (unlikely(all_pinned)) {
0a2966b4
CL
2902 cpu_clear(cpu_of(busiest), cpus);
2903 if (!cpus_empty(cpus))
2904 goto redo;
2905 }
d6d5cfaf
NP
2906 }
2907
43010659 2908 if (!ld_moved) {
d15bcfdb 2909 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2910 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2911 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2912 return -1;
2913 } else
16cfb1c0 2914 sd->nr_balance_failed = 0;
1da177e4 2915
43010659 2916 return ld_moved;
16cfb1c0
NP
2917
2918out_balanced:
d15bcfdb 2919 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2920 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2921 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2922 return -1;
16cfb1c0 2923 sd->nr_balance_failed = 0;
48f24c4d 2924
16cfb1c0 2925 return 0;
1da177e4
LT
2926}
2927
2928/*
2929 * idle_balance is called by schedule() if this_cpu is about to become
2930 * idle. Attempts to pull tasks from other CPUs.
2931 */
70b97a7f 2932static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2933{
2934 struct sched_domain *sd;
dd41f596
IM
2935 int pulled_task = -1;
2936 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2937
2938 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2939 unsigned long interval;
2940
2941 if (!(sd->flags & SD_LOAD_BALANCE))
2942 continue;
2943
2944 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2945 /* If we've pulled tasks over stop searching: */
1bd77f2d 2946 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2947 this_rq, sd);
2948
2949 interval = msecs_to_jiffies(sd->balance_interval);
2950 if (time_after(next_balance, sd->last_balance + interval))
2951 next_balance = sd->last_balance + interval;
2952 if (pulled_task)
2953 break;
1da177e4 2954 }
dd41f596 2955 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2956 /*
2957 * We are going idle. next_balance may be set based on
2958 * a busy processor. So reset next_balance.
2959 */
2960 this_rq->next_balance = next_balance;
dd41f596 2961 }
1da177e4
LT
2962}
2963
2964/*
2965 * active_load_balance is run by migration threads. It pushes running tasks
2966 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2967 * running on each physical CPU where possible, and avoids physical /
2968 * logical imbalances.
2969 *
2970 * Called with busiest_rq locked.
2971 */
70b97a7f 2972static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2973{
39507451 2974 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2975 struct sched_domain *sd;
2976 struct rq *target_rq;
39507451 2977
48f24c4d 2978 /* Is there any task to move? */
39507451 2979 if (busiest_rq->nr_running <= 1)
39507451
NP
2980 return;
2981
2982 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2983
2984 /*
39507451 2985 * This condition is "impossible", if it occurs
41a2d6cf 2986 * we need to fix it. Originally reported by
39507451 2987 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2988 */
39507451 2989 BUG_ON(busiest_rq == target_rq);
1da177e4 2990
39507451
NP
2991 /* move a task from busiest_rq to target_rq */
2992 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2993 update_rq_clock(busiest_rq);
2994 update_rq_clock(target_rq);
39507451
NP
2995
2996 /* Search for an sd spanning us and the target CPU. */
c96d145e 2997 for_each_domain(target_cpu, sd) {
39507451 2998 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2999 cpu_isset(busiest_cpu, sd->span))
39507451 3000 break;
c96d145e 3001 }
39507451 3002
48f24c4d 3003 if (likely(sd)) {
2d72376b 3004 schedstat_inc(sd, alb_count);
39507451 3005
43010659
PW
3006 if (move_one_task(target_rq, target_cpu, busiest_rq,
3007 sd, CPU_IDLE))
48f24c4d
IM
3008 schedstat_inc(sd, alb_pushed);
3009 else
3010 schedstat_inc(sd, alb_failed);
3011 }
39507451 3012 spin_unlock(&target_rq->lock);
1da177e4
LT
3013}
3014
46cb4b7c
SS
3015#ifdef CONFIG_NO_HZ
3016static struct {
3017 atomic_t load_balancer;
41a2d6cf 3018 cpumask_t cpu_mask;
46cb4b7c
SS
3019} nohz ____cacheline_aligned = {
3020 .load_balancer = ATOMIC_INIT(-1),
3021 .cpu_mask = CPU_MASK_NONE,
3022};
3023
7835b98b 3024/*
46cb4b7c
SS
3025 * This routine will try to nominate the ilb (idle load balancing)
3026 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3027 * load balancing on behalf of all those cpus. If all the cpus in the system
3028 * go into this tickless mode, then there will be no ilb owner (as there is
3029 * no need for one) and all the cpus will sleep till the next wakeup event
3030 * arrives...
3031 *
3032 * For the ilb owner, tick is not stopped. And this tick will be used
3033 * for idle load balancing. ilb owner will still be part of
3034 * nohz.cpu_mask..
7835b98b 3035 *
46cb4b7c
SS
3036 * While stopping the tick, this cpu will become the ilb owner if there
3037 * is no other owner. And will be the owner till that cpu becomes busy
3038 * or if all cpus in the system stop their ticks at which point
3039 * there is no need for ilb owner.
3040 *
3041 * When the ilb owner becomes busy, it nominates another owner, during the
3042 * next busy scheduler_tick()
3043 */
3044int select_nohz_load_balancer(int stop_tick)
3045{
3046 int cpu = smp_processor_id();
3047
3048 if (stop_tick) {
3049 cpu_set(cpu, nohz.cpu_mask);
3050 cpu_rq(cpu)->in_nohz_recently = 1;
3051
3052 /*
3053 * If we are going offline and still the leader, give up!
3054 */
3055 if (cpu_is_offline(cpu) &&
3056 atomic_read(&nohz.load_balancer) == cpu) {
3057 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3058 BUG();
3059 return 0;
3060 }
3061
3062 /* time for ilb owner also to sleep */
3063 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3064 if (atomic_read(&nohz.load_balancer) == cpu)
3065 atomic_set(&nohz.load_balancer, -1);
3066 return 0;
3067 }
3068
3069 if (atomic_read(&nohz.load_balancer) == -1) {
3070 /* make me the ilb owner */
3071 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3072 return 1;
3073 } else if (atomic_read(&nohz.load_balancer) == cpu)
3074 return 1;
3075 } else {
3076 if (!cpu_isset(cpu, nohz.cpu_mask))
3077 return 0;
3078
3079 cpu_clear(cpu, nohz.cpu_mask);
3080
3081 if (atomic_read(&nohz.load_balancer) == cpu)
3082 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3083 BUG();
3084 }
3085 return 0;
3086}
3087#endif
3088
3089static DEFINE_SPINLOCK(balancing);
3090
3091/*
7835b98b
CL
3092 * It checks each scheduling domain to see if it is due to be balanced,
3093 * and initiates a balancing operation if so.
3094 *
3095 * Balancing parameters are set up in arch_init_sched_domains.
3096 */
a9957449 3097static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3098{
46cb4b7c
SS
3099 int balance = 1;
3100 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3101 unsigned long interval;
3102 struct sched_domain *sd;
46cb4b7c 3103 /* Earliest time when we have to do rebalance again */
c9819f45 3104 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3105 int update_next_balance = 0;
1da177e4 3106
46cb4b7c 3107 for_each_domain(cpu, sd) {
1da177e4
LT
3108 if (!(sd->flags & SD_LOAD_BALANCE))
3109 continue;
3110
3111 interval = sd->balance_interval;
d15bcfdb 3112 if (idle != CPU_IDLE)
1da177e4
LT
3113 interval *= sd->busy_factor;
3114
3115 /* scale ms to jiffies */
3116 interval = msecs_to_jiffies(interval);
3117 if (unlikely(!interval))
3118 interval = 1;
dd41f596
IM
3119 if (interval > HZ*NR_CPUS/10)
3120 interval = HZ*NR_CPUS/10;
3121
1da177e4 3122
08c183f3
CL
3123 if (sd->flags & SD_SERIALIZE) {
3124 if (!spin_trylock(&balancing))
3125 goto out;
3126 }
3127
c9819f45 3128 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3129 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3130 /*
3131 * We've pulled tasks over so either we're no
5969fe06
NP
3132 * longer idle, or one of our SMT siblings is
3133 * not idle.
3134 */
d15bcfdb 3135 idle = CPU_NOT_IDLE;
1da177e4 3136 }
1bd77f2d 3137 sd->last_balance = jiffies;
1da177e4 3138 }
08c183f3
CL
3139 if (sd->flags & SD_SERIALIZE)
3140 spin_unlock(&balancing);
3141out:
f549da84 3142 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3143 next_balance = sd->last_balance + interval;
f549da84
SS
3144 update_next_balance = 1;
3145 }
783609c6
SS
3146
3147 /*
3148 * Stop the load balance at this level. There is another
3149 * CPU in our sched group which is doing load balancing more
3150 * actively.
3151 */
3152 if (!balance)
3153 break;
1da177e4 3154 }
f549da84
SS
3155
3156 /*
3157 * next_balance will be updated only when there is a need.
3158 * When the cpu is attached to null domain for ex, it will not be
3159 * updated.
3160 */
3161 if (likely(update_next_balance))
3162 rq->next_balance = next_balance;
46cb4b7c
SS
3163}
3164
3165/*
3166 * run_rebalance_domains is triggered when needed from the scheduler tick.
3167 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3168 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3169 */
3170static void run_rebalance_domains(struct softirq_action *h)
3171{
dd41f596
IM
3172 int this_cpu = smp_processor_id();
3173 struct rq *this_rq = cpu_rq(this_cpu);
3174 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3175 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3176
dd41f596 3177 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3178
3179#ifdef CONFIG_NO_HZ
3180 /*
3181 * If this cpu is the owner for idle load balancing, then do the
3182 * balancing on behalf of the other idle cpus whose ticks are
3183 * stopped.
3184 */
dd41f596
IM
3185 if (this_rq->idle_at_tick &&
3186 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3187 cpumask_t cpus = nohz.cpu_mask;
3188 struct rq *rq;
3189 int balance_cpu;
3190
dd41f596 3191 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3192 for_each_cpu_mask(balance_cpu, cpus) {
3193 /*
3194 * If this cpu gets work to do, stop the load balancing
3195 * work being done for other cpus. Next load
3196 * balancing owner will pick it up.
3197 */
3198 if (need_resched())
3199 break;
3200
de0cf899 3201 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3202
3203 rq = cpu_rq(balance_cpu);
dd41f596
IM
3204 if (time_after(this_rq->next_balance, rq->next_balance))
3205 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3206 }
3207 }
3208#endif
3209}
3210
3211/*
3212 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3213 *
3214 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3215 * idle load balancing owner or decide to stop the periodic load balancing,
3216 * if the whole system is idle.
3217 */
dd41f596 3218static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3219{
46cb4b7c
SS
3220#ifdef CONFIG_NO_HZ
3221 /*
3222 * If we were in the nohz mode recently and busy at the current
3223 * scheduler tick, then check if we need to nominate new idle
3224 * load balancer.
3225 */
3226 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3227 rq->in_nohz_recently = 0;
3228
3229 if (atomic_read(&nohz.load_balancer) == cpu) {
3230 cpu_clear(cpu, nohz.cpu_mask);
3231 atomic_set(&nohz.load_balancer, -1);
3232 }
3233
3234 if (atomic_read(&nohz.load_balancer) == -1) {
3235 /*
3236 * simple selection for now: Nominate the
3237 * first cpu in the nohz list to be the next
3238 * ilb owner.
3239 *
3240 * TBD: Traverse the sched domains and nominate
3241 * the nearest cpu in the nohz.cpu_mask.
3242 */
3243 int ilb = first_cpu(nohz.cpu_mask);
3244
3245 if (ilb != NR_CPUS)
3246 resched_cpu(ilb);
3247 }
3248 }
3249
3250 /*
3251 * If this cpu is idle and doing idle load balancing for all the
3252 * cpus with ticks stopped, is it time for that to stop?
3253 */
3254 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3255 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3256 resched_cpu(cpu);
3257 return;
3258 }
3259
3260 /*
3261 * If this cpu is idle and the idle load balancing is done by
3262 * someone else, then no need raise the SCHED_SOFTIRQ
3263 */
3264 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3265 cpu_isset(cpu, nohz.cpu_mask))
3266 return;
3267#endif
3268 if (time_after_eq(jiffies, rq->next_balance))
3269 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3270}
dd41f596
IM
3271
3272#else /* CONFIG_SMP */
3273
1da177e4
LT
3274/*
3275 * on UP we do not need to balance between CPUs:
3276 */
70b97a7f 3277static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3278{
3279}
dd41f596 3280
1da177e4
LT
3281#endif
3282
1da177e4
LT
3283DEFINE_PER_CPU(struct kernel_stat, kstat);
3284
3285EXPORT_PER_CPU_SYMBOL(kstat);
3286
3287/*
41b86e9c
IM
3288 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3289 * that have not yet been banked in case the task is currently running.
1da177e4 3290 */
41b86e9c 3291unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3292{
1da177e4 3293 unsigned long flags;
41b86e9c
IM
3294 u64 ns, delta_exec;
3295 struct rq *rq;
48f24c4d 3296
41b86e9c
IM
3297 rq = task_rq_lock(p, &flags);
3298 ns = p->se.sum_exec_runtime;
051a1d1a 3299 if (task_current(rq, p)) {
a8e504d2
IM
3300 update_rq_clock(rq);
3301 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3302 if ((s64)delta_exec > 0)
3303 ns += delta_exec;
3304 }
3305 task_rq_unlock(rq, &flags);
48f24c4d 3306
1da177e4
LT
3307 return ns;
3308}
3309
1da177e4
LT
3310/*
3311 * Account user cpu time to a process.
3312 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3313 * @cputime: the cpu time spent in user space since the last update
3314 */
3315void account_user_time(struct task_struct *p, cputime_t cputime)
3316{
3317 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3318 cputime64_t tmp;
3319
3320 p->utime = cputime_add(p->utime, cputime);
3321
3322 /* Add user time to cpustat. */
3323 tmp = cputime_to_cputime64(cputime);
3324 if (TASK_NICE(p) > 0)
3325 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3326 else
3327 cpustat->user = cputime64_add(cpustat->user, tmp);
3328}
3329
94886b84
LV
3330/*
3331 * Account guest cpu time to a process.
3332 * @p: the process that the cpu time gets accounted to
3333 * @cputime: the cpu time spent in virtual machine since the last update
3334 */
f7402e03 3335static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3336{
3337 cputime64_t tmp;
3338 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3339
3340 tmp = cputime_to_cputime64(cputime);
3341
3342 p->utime = cputime_add(p->utime, cputime);
3343 p->gtime = cputime_add(p->gtime, cputime);
3344
3345 cpustat->user = cputime64_add(cpustat->user, tmp);
3346 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3347}
3348
c66f08be
MN
3349/*
3350 * Account scaled user cpu time to a process.
3351 * @p: the process that the cpu time gets accounted to
3352 * @cputime: the cpu time spent in user space since the last update
3353 */
3354void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3355{
3356 p->utimescaled = cputime_add(p->utimescaled, cputime);
3357}
3358
1da177e4
LT
3359/*
3360 * Account system cpu time to a process.
3361 * @p: the process that the cpu time gets accounted to
3362 * @hardirq_offset: the offset to subtract from hardirq_count()
3363 * @cputime: the cpu time spent in kernel space since the last update
3364 */
3365void account_system_time(struct task_struct *p, int hardirq_offset,
3366 cputime_t cputime)
3367{
3368 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3369 struct rq *rq = this_rq();
1da177e4
LT
3370 cputime64_t tmp;
3371
9778385d
CB
3372 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3373 return account_guest_time(p, cputime);
94886b84 3374
1da177e4
LT
3375 p->stime = cputime_add(p->stime, cputime);
3376
3377 /* Add system time to cpustat. */
3378 tmp = cputime_to_cputime64(cputime);
3379 if (hardirq_count() - hardirq_offset)
3380 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3381 else if (softirq_count())
3382 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3383 else if (p != rq->idle)
1da177e4 3384 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3385 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3386 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3387 else
3388 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3389 /* Account for system time used */
3390 acct_update_integrals(p);
1da177e4
LT
3391}
3392
c66f08be
MN
3393/*
3394 * Account scaled system cpu time to a process.
3395 * @p: the process that the cpu time gets accounted to
3396 * @hardirq_offset: the offset to subtract from hardirq_count()
3397 * @cputime: the cpu time spent in kernel space since the last update
3398 */
3399void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3400{
3401 p->stimescaled = cputime_add(p->stimescaled, cputime);
3402}
3403
1da177e4
LT
3404/*
3405 * Account for involuntary wait time.
3406 * @p: the process from which the cpu time has been stolen
3407 * @steal: the cpu time spent in involuntary wait
3408 */
3409void account_steal_time(struct task_struct *p, cputime_t steal)
3410{
3411 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3412 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3413 struct rq *rq = this_rq();
1da177e4
LT
3414
3415 if (p == rq->idle) {
3416 p->stime = cputime_add(p->stime, steal);
3417 if (atomic_read(&rq->nr_iowait) > 0)
3418 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3419 else
3420 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3421 } else
1da177e4
LT
3422 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3423}
3424
7835b98b
CL
3425/*
3426 * This function gets called by the timer code, with HZ frequency.
3427 * We call it with interrupts disabled.
3428 *
3429 * It also gets called by the fork code, when changing the parent's
3430 * timeslices.
3431 */
3432void scheduler_tick(void)
3433{
7835b98b
CL
3434 int cpu = smp_processor_id();
3435 struct rq *rq = cpu_rq(cpu);
dd41f596 3436 struct task_struct *curr = rq->curr;
529c7726 3437 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3438
3439 spin_lock(&rq->lock);
546fe3c9 3440 __update_rq_clock(rq);
529c7726
IM
3441 /*
3442 * Let rq->clock advance by at least TICK_NSEC:
3443 */
3444 if (unlikely(rq->clock < next_tick))
3445 rq->clock = next_tick;
3446 rq->tick_timestamp = rq->clock;
f1a438d8 3447 update_cpu_load(rq);
dd41f596
IM
3448 if (curr != rq->idle) /* FIXME: needed? */
3449 curr->sched_class->task_tick(rq, curr);
dd41f596 3450 spin_unlock(&rq->lock);
7835b98b 3451
e418e1c2 3452#ifdef CONFIG_SMP
dd41f596
IM
3453 rq->idle_at_tick = idle_cpu(cpu);
3454 trigger_load_balance(rq, cpu);
e418e1c2 3455#endif
1da177e4
LT
3456}
3457
1da177e4
LT
3458#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3459
3460void fastcall add_preempt_count(int val)
3461{
3462 /*
3463 * Underflow?
3464 */
9a11b49a
IM
3465 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3466 return;
1da177e4
LT
3467 preempt_count() += val;
3468 /*
3469 * Spinlock count overflowing soon?
3470 */
33859f7f
MOS
3471 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3472 PREEMPT_MASK - 10);
1da177e4
LT
3473}
3474EXPORT_SYMBOL(add_preempt_count);
3475
3476void fastcall sub_preempt_count(int val)
3477{
3478 /*
3479 * Underflow?
3480 */
9a11b49a
IM
3481 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3482 return;
1da177e4
LT
3483 /*
3484 * Is the spinlock portion underflowing?
3485 */
9a11b49a
IM
3486 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3487 !(preempt_count() & PREEMPT_MASK)))
3488 return;
3489
1da177e4
LT
3490 preempt_count() -= val;
3491}
3492EXPORT_SYMBOL(sub_preempt_count);
3493
3494#endif
3495
3496/*
dd41f596 3497 * Print scheduling while atomic bug:
1da177e4 3498 */
dd41f596 3499static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3500{
838225b4
SS
3501 struct pt_regs *regs = get_irq_regs();
3502
3503 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3504 prev->comm, prev->pid, preempt_count());
3505
dd41f596
IM
3506 debug_show_held_locks(prev);
3507 if (irqs_disabled())
3508 print_irqtrace_events(prev);
838225b4
SS
3509
3510 if (regs)
3511 show_regs(regs);
3512 else
3513 dump_stack();
dd41f596 3514}
1da177e4 3515
dd41f596
IM
3516/*
3517 * Various schedule()-time debugging checks and statistics:
3518 */
3519static inline void schedule_debug(struct task_struct *prev)
3520{
1da177e4 3521 /*
41a2d6cf 3522 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3523 * schedule() atomically, we ignore that path for now.
3524 * Otherwise, whine if we are scheduling when we should not be.
3525 */
dd41f596
IM
3526 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3527 __schedule_bug(prev);
3528
1da177e4
LT
3529 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3530
2d72376b 3531 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3532#ifdef CONFIG_SCHEDSTATS
3533 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3534 schedstat_inc(this_rq(), bkl_count);
3535 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3536 }
3537#endif
dd41f596
IM
3538}
3539
3540/*
3541 * Pick up the highest-prio task:
3542 */
3543static inline struct task_struct *
ff95f3df 3544pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3545{
5522d5d5 3546 const struct sched_class *class;
dd41f596 3547 struct task_struct *p;
1da177e4
LT
3548
3549 /*
dd41f596
IM
3550 * Optimization: we know that if all tasks are in
3551 * the fair class we can call that function directly:
1da177e4 3552 */
dd41f596 3553 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3554 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3555 if (likely(p))
3556 return p;
1da177e4
LT
3557 }
3558
dd41f596
IM
3559 class = sched_class_highest;
3560 for ( ; ; ) {
fb8d4724 3561 p = class->pick_next_task(rq);
dd41f596
IM
3562 if (p)
3563 return p;
3564 /*
3565 * Will never be NULL as the idle class always
3566 * returns a non-NULL p:
3567 */
3568 class = class->next;
3569 }
3570}
1da177e4 3571
dd41f596
IM
3572/*
3573 * schedule() is the main scheduler function.
3574 */
3575asmlinkage void __sched schedule(void)
3576{
3577 struct task_struct *prev, *next;
3578 long *switch_count;
3579 struct rq *rq;
dd41f596
IM
3580 int cpu;
3581
3582need_resched:
3583 preempt_disable();
3584 cpu = smp_processor_id();
3585 rq = cpu_rq(cpu);
3586 rcu_qsctr_inc(cpu);
3587 prev = rq->curr;
3588 switch_count = &prev->nivcsw;
3589
3590 release_kernel_lock(prev);
3591need_resched_nonpreemptible:
3592
3593 schedule_debug(prev);
1da177e4 3594
1e819950
IM
3595 /*
3596 * Do the rq-clock update outside the rq lock:
3597 */
3598 local_irq_disable();
c1b3da3e 3599 __update_rq_clock(rq);
1e819950
IM
3600 spin_lock(&rq->lock);
3601 clear_tsk_need_resched(prev);
1da177e4 3602
1da177e4 3603 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3604 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3605 unlikely(signal_pending(prev)))) {
1da177e4 3606 prev->state = TASK_RUNNING;
dd41f596 3607 } else {
2e1cb74a 3608 deactivate_task(rq, prev, 1);
1da177e4 3609 }
dd41f596 3610 switch_count = &prev->nvcsw;
1da177e4
LT
3611 }
3612
f65eda4f
SR
3613 schedule_balance_rt(rq, prev);
3614
dd41f596 3615 if (unlikely(!rq->nr_running))
1da177e4 3616 idle_balance(cpu, rq);
1da177e4 3617
31ee529c 3618 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3619 next = pick_next_task(rq, prev);
1da177e4
LT
3620
3621 sched_info_switch(prev, next);
dd41f596 3622
1da177e4 3623 if (likely(prev != next)) {
1da177e4
LT
3624 rq->nr_switches++;
3625 rq->curr = next;
3626 ++*switch_count;
3627
dd41f596 3628 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3629 } else
3630 spin_unlock_irq(&rq->lock);
3631
dd41f596
IM
3632 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3633 cpu = smp_processor_id();
3634 rq = cpu_rq(cpu);
1da177e4 3635 goto need_resched_nonpreemptible;
dd41f596 3636 }
1da177e4
LT
3637 preempt_enable_no_resched();
3638 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3639 goto need_resched;
3640}
1da177e4
LT
3641EXPORT_SYMBOL(schedule);
3642
3643#ifdef CONFIG_PREEMPT
3644/*
2ed6e34f 3645 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3646 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3647 * occur there and call schedule directly.
3648 */
3649asmlinkage void __sched preempt_schedule(void)
3650{
3651 struct thread_info *ti = current_thread_info();
3652#ifdef CONFIG_PREEMPT_BKL
3653 struct task_struct *task = current;
3654 int saved_lock_depth;
3655#endif
3656 /*
3657 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3658 * we do not want to preempt the current task. Just return..
1da177e4 3659 */
beed33a8 3660 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3661 return;
3662
3a5c359a
AK
3663 do {
3664 add_preempt_count(PREEMPT_ACTIVE);
3665
3666 /*
3667 * We keep the big kernel semaphore locked, but we
3668 * clear ->lock_depth so that schedule() doesnt
3669 * auto-release the semaphore:
3670 */
1da177e4 3671#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3672 saved_lock_depth = task->lock_depth;
3673 task->lock_depth = -1;
1da177e4 3674#endif
3a5c359a 3675 schedule();
1da177e4 3676#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3677 task->lock_depth = saved_lock_depth;
1da177e4 3678#endif
3a5c359a 3679 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3680
3a5c359a
AK
3681 /*
3682 * Check again in case we missed a preemption opportunity
3683 * between schedule and now.
3684 */
3685 barrier();
3686 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3687}
1da177e4
LT
3688EXPORT_SYMBOL(preempt_schedule);
3689
3690/*
2ed6e34f 3691 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3692 * off of irq context.
3693 * Note, that this is called and return with irqs disabled. This will
3694 * protect us against recursive calling from irq.
3695 */
3696asmlinkage void __sched preempt_schedule_irq(void)
3697{
3698 struct thread_info *ti = current_thread_info();
3699#ifdef CONFIG_PREEMPT_BKL
3700 struct task_struct *task = current;
3701 int saved_lock_depth;
3702#endif
2ed6e34f 3703 /* Catch callers which need to be fixed */
1da177e4
LT
3704 BUG_ON(ti->preempt_count || !irqs_disabled());
3705
3a5c359a
AK
3706 do {
3707 add_preempt_count(PREEMPT_ACTIVE);
3708
3709 /*
3710 * We keep the big kernel semaphore locked, but we
3711 * clear ->lock_depth so that schedule() doesnt
3712 * auto-release the semaphore:
3713 */
1da177e4 3714#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3715 saved_lock_depth = task->lock_depth;
3716 task->lock_depth = -1;
1da177e4 3717#endif
3a5c359a
AK
3718 local_irq_enable();
3719 schedule();
3720 local_irq_disable();
1da177e4 3721#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3722 task->lock_depth = saved_lock_depth;
1da177e4 3723#endif
3a5c359a 3724 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3725
3a5c359a
AK
3726 /*
3727 * Check again in case we missed a preemption opportunity
3728 * between schedule and now.
3729 */
3730 barrier();
3731 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3732}
3733
3734#endif /* CONFIG_PREEMPT */
3735
95cdf3b7
IM
3736int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3737 void *key)
1da177e4 3738{
48f24c4d 3739 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3740}
1da177e4
LT
3741EXPORT_SYMBOL(default_wake_function);
3742
3743/*
41a2d6cf
IM
3744 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3745 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3746 * number) then we wake all the non-exclusive tasks and one exclusive task.
3747 *
3748 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3749 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3750 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3751 */
3752static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3753 int nr_exclusive, int sync, void *key)
3754{
2e45874c 3755 wait_queue_t *curr, *next;
1da177e4 3756
2e45874c 3757 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3758 unsigned flags = curr->flags;
3759
1da177e4 3760 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3761 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3762 break;
3763 }
3764}
3765
3766/**
3767 * __wake_up - wake up threads blocked on a waitqueue.
3768 * @q: the waitqueue
3769 * @mode: which threads
3770 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3771 * @key: is directly passed to the wakeup function
1da177e4
LT
3772 */
3773void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3774 int nr_exclusive, void *key)
1da177e4
LT
3775{
3776 unsigned long flags;
3777
3778 spin_lock_irqsave(&q->lock, flags);
3779 __wake_up_common(q, mode, nr_exclusive, 0, key);
3780 spin_unlock_irqrestore(&q->lock, flags);
3781}
1da177e4
LT
3782EXPORT_SYMBOL(__wake_up);
3783
3784/*
3785 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3786 */
3787void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3788{
3789 __wake_up_common(q, mode, 1, 0, NULL);
3790}
3791
3792/**
67be2dd1 3793 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3794 * @q: the waitqueue
3795 * @mode: which threads
3796 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3797 *
3798 * The sync wakeup differs that the waker knows that it will schedule
3799 * away soon, so while the target thread will be woken up, it will not
3800 * be migrated to another CPU - ie. the two threads are 'synchronized'
3801 * with each other. This can prevent needless bouncing between CPUs.
3802 *
3803 * On UP it can prevent extra preemption.
3804 */
95cdf3b7
IM
3805void fastcall
3806__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3807{
3808 unsigned long flags;
3809 int sync = 1;
3810
3811 if (unlikely(!q))
3812 return;
3813
3814 if (unlikely(!nr_exclusive))
3815 sync = 0;
3816
3817 spin_lock_irqsave(&q->lock, flags);
3818 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3819 spin_unlock_irqrestore(&q->lock, flags);
3820}
3821EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3822
b15136e9 3823void complete(struct completion *x)
1da177e4
LT
3824{
3825 unsigned long flags;
3826
3827 spin_lock_irqsave(&x->wait.lock, flags);
3828 x->done++;
3829 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3830 1, 0, NULL);
3831 spin_unlock_irqrestore(&x->wait.lock, flags);
3832}
3833EXPORT_SYMBOL(complete);
3834
b15136e9 3835void complete_all(struct completion *x)
1da177e4
LT
3836{
3837 unsigned long flags;
3838
3839 spin_lock_irqsave(&x->wait.lock, flags);
3840 x->done += UINT_MAX/2;
3841 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3842 0, 0, NULL);
3843 spin_unlock_irqrestore(&x->wait.lock, flags);
3844}
3845EXPORT_SYMBOL(complete_all);
3846
8cbbe86d
AK
3847static inline long __sched
3848do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3849{
1da177e4
LT
3850 if (!x->done) {
3851 DECLARE_WAITQUEUE(wait, current);
3852
3853 wait.flags |= WQ_FLAG_EXCLUSIVE;
3854 __add_wait_queue_tail(&x->wait, &wait);
3855 do {
8cbbe86d
AK
3856 if (state == TASK_INTERRUPTIBLE &&
3857 signal_pending(current)) {
3858 __remove_wait_queue(&x->wait, &wait);
3859 return -ERESTARTSYS;
3860 }
3861 __set_current_state(state);
1da177e4
LT
3862 spin_unlock_irq(&x->wait.lock);
3863 timeout = schedule_timeout(timeout);
3864 spin_lock_irq(&x->wait.lock);
3865 if (!timeout) {
3866 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3867 return timeout;
1da177e4
LT
3868 }
3869 } while (!x->done);
3870 __remove_wait_queue(&x->wait, &wait);
3871 }
3872 x->done--;
1da177e4
LT
3873 return timeout;
3874}
1da177e4 3875
8cbbe86d
AK
3876static long __sched
3877wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3878{
1da177e4
LT
3879 might_sleep();
3880
3881 spin_lock_irq(&x->wait.lock);
8cbbe86d 3882 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3883 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3884 return timeout;
3885}
1da177e4 3886
b15136e9 3887void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3888{
3889 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3890}
8cbbe86d 3891EXPORT_SYMBOL(wait_for_completion);
1da177e4 3892
b15136e9 3893unsigned long __sched
8cbbe86d 3894wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3895{
8cbbe86d 3896 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3897}
8cbbe86d 3898EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3899
8cbbe86d 3900int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3901{
51e97990
AK
3902 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3903 if (t == -ERESTARTSYS)
3904 return t;
3905 return 0;
0fec171c 3906}
8cbbe86d 3907EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3908
b15136e9 3909unsigned long __sched
8cbbe86d
AK
3910wait_for_completion_interruptible_timeout(struct completion *x,
3911 unsigned long timeout)
0fec171c 3912{
8cbbe86d 3913 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3914}
8cbbe86d 3915EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3916
8cbbe86d
AK
3917static long __sched
3918sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3919{
0fec171c
IM
3920 unsigned long flags;
3921 wait_queue_t wait;
3922
3923 init_waitqueue_entry(&wait, current);
1da177e4 3924
8cbbe86d 3925 __set_current_state(state);
1da177e4 3926
8cbbe86d
AK
3927 spin_lock_irqsave(&q->lock, flags);
3928 __add_wait_queue(q, &wait);
3929 spin_unlock(&q->lock);
3930 timeout = schedule_timeout(timeout);
3931 spin_lock_irq(&q->lock);
3932 __remove_wait_queue(q, &wait);
3933 spin_unlock_irqrestore(&q->lock, flags);
3934
3935 return timeout;
3936}
3937
3938void __sched interruptible_sleep_on(wait_queue_head_t *q)
3939{
3940 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3941}
1da177e4
LT
3942EXPORT_SYMBOL(interruptible_sleep_on);
3943
0fec171c 3944long __sched
95cdf3b7 3945interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3946{
8cbbe86d 3947 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3948}
1da177e4
LT
3949EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3950
0fec171c 3951void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3952{
8cbbe86d 3953 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3954}
1da177e4
LT
3955EXPORT_SYMBOL(sleep_on);
3956
0fec171c 3957long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3958{
8cbbe86d 3959 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3960}
1da177e4
LT
3961EXPORT_SYMBOL(sleep_on_timeout);
3962
b29739f9
IM
3963#ifdef CONFIG_RT_MUTEXES
3964
3965/*
3966 * rt_mutex_setprio - set the current priority of a task
3967 * @p: task
3968 * @prio: prio value (kernel-internal form)
3969 *
3970 * This function changes the 'effective' priority of a task. It does
3971 * not touch ->normal_prio like __setscheduler().
3972 *
3973 * Used by the rt_mutex code to implement priority inheritance logic.
3974 */
36c8b586 3975void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3976{
3977 unsigned long flags;
83b699ed 3978 int oldprio, on_rq, running;
70b97a7f 3979 struct rq *rq;
b29739f9
IM
3980
3981 BUG_ON(prio < 0 || prio > MAX_PRIO);
3982
3983 rq = task_rq_lock(p, &flags);
a8e504d2 3984 update_rq_clock(rq);
b29739f9 3985
d5f9f942 3986 oldprio = p->prio;
dd41f596 3987 on_rq = p->se.on_rq;
051a1d1a 3988 running = task_current(rq, p);
83b699ed 3989 if (on_rq) {
69be72c1 3990 dequeue_task(rq, p, 0);
83b699ed
SV
3991 if (running)
3992 p->sched_class->put_prev_task(rq, p);
3993 }
dd41f596
IM
3994
3995 if (rt_prio(prio))
3996 p->sched_class = &rt_sched_class;
3997 else
3998 p->sched_class = &fair_sched_class;
3999
b29739f9
IM
4000 p->prio = prio;
4001
dd41f596 4002 if (on_rq) {
83b699ed
SV
4003 if (running)
4004 p->sched_class->set_curr_task(rq);
8159f87e 4005 enqueue_task(rq, p, 0);
b29739f9
IM
4006 /*
4007 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4008 * our priority decreased, or if we are not currently running on
4009 * this runqueue and our priority is higher than the current's
b29739f9 4010 */
83b699ed 4011 if (running) {
d5f9f942
AM
4012 if (p->prio > oldprio)
4013 resched_task(rq->curr);
dd41f596
IM
4014 } else {
4015 check_preempt_curr(rq, p);
4016 }
b29739f9
IM
4017 }
4018 task_rq_unlock(rq, &flags);
4019}
4020
4021#endif
4022
36c8b586 4023void set_user_nice(struct task_struct *p, long nice)
1da177e4 4024{
dd41f596 4025 int old_prio, delta, on_rq;
1da177e4 4026 unsigned long flags;
70b97a7f 4027 struct rq *rq;
1da177e4
LT
4028
4029 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4030 return;
4031 /*
4032 * We have to be careful, if called from sys_setpriority(),
4033 * the task might be in the middle of scheduling on another CPU.
4034 */
4035 rq = task_rq_lock(p, &flags);
a8e504d2 4036 update_rq_clock(rq);
1da177e4
LT
4037 /*
4038 * The RT priorities are set via sched_setscheduler(), but we still
4039 * allow the 'normal' nice value to be set - but as expected
4040 * it wont have any effect on scheduling until the task is
dd41f596 4041 * SCHED_FIFO/SCHED_RR:
1da177e4 4042 */
e05606d3 4043 if (task_has_rt_policy(p)) {
1da177e4
LT
4044 p->static_prio = NICE_TO_PRIO(nice);
4045 goto out_unlock;
4046 }
dd41f596 4047 on_rq = p->se.on_rq;
58e2d4ca 4048 if (on_rq)
69be72c1 4049 dequeue_task(rq, p, 0);
1da177e4 4050
1da177e4 4051 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4052 set_load_weight(p);
b29739f9
IM
4053 old_prio = p->prio;
4054 p->prio = effective_prio(p);
4055 delta = p->prio - old_prio;
1da177e4 4056
dd41f596 4057 if (on_rq) {
8159f87e 4058 enqueue_task(rq, p, 0);
1da177e4 4059 /*
d5f9f942
AM
4060 * If the task increased its priority or is running and
4061 * lowered its priority, then reschedule its CPU:
1da177e4 4062 */
d5f9f942 4063 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4064 resched_task(rq->curr);
4065 }
4066out_unlock:
4067 task_rq_unlock(rq, &flags);
4068}
1da177e4
LT
4069EXPORT_SYMBOL(set_user_nice);
4070
e43379f1
MM
4071/*
4072 * can_nice - check if a task can reduce its nice value
4073 * @p: task
4074 * @nice: nice value
4075 */
36c8b586 4076int can_nice(const struct task_struct *p, const int nice)
e43379f1 4077{
024f4747
MM
4078 /* convert nice value [19,-20] to rlimit style value [1,40] */
4079 int nice_rlim = 20 - nice;
48f24c4d 4080
e43379f1
MM
4081 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4082 capable(CAP_SYS_NICE));
4083}
4084
1da177e4
LT
4085#ifdef __ARCH_WANT_SYS_NICE
4086
4087/*
4088 * sys_nice - change the priority of the current process.
4089 * @increment: priority increment
4090 *
4091 * sys_setpriority is a more generic, but much slower function that
4092 * does similar things.
4093 */
4094asmlinkage long sys_nice(int increment)
4095{
48f24c4d 4096 long nice, retval;
1da177e4
LT
4097
4098 /*
4099 * Setpriority might change our priority at the same moment.
4100 * We don't have to worry. Conceptually one call occurs first
4101 * and we have a single winner.
4102 */
e43379f1
MM
4103 if (increment < -40)
4104 increment = -40;
1da177e4
LT
4105 if (increment > 40)
4106 increment = 40;
4107
4108 nice = PRIO_TO_NICE(current->static_prio) + increment;
4109 if (nice < -20)
4110 nice = -20;
4111 if (nice > 19)
4112 nice = 19;
4113
e43379f1
MM
4114 if (increment < 0 && !can_nice(current, nice))
4115 return -EPERM;
4116
1da177e4
LT
4117 retval = security_task_setnice(current, nice);
4118 if (retval)
4119 return retval;
4120
4121 set_user_nice(current, nice);
4122 return 0;
4123}
4124
4125#endif
4126
4127/**
4128 * task_prio - return the priority value of a given task.
4129 * @p: the task in question.
4130 *
4131 * This is the priority value as seen by users in /proc.
4132 * RT tasks are offset by -200. Normal tasks are centered
4133 * around 0, value goes from -16 to +15.
4134 */
36c8b586 4135int task_prio(const struct task_struct *p)
1da177e4
LT
4136{
4137 return p->prio - MAX_RT_PRIO;
4138}
4139
4140/**
4141 * task_nice - return the nice value of a given task.
4142 * @p: the task in question.
4143 */
36c8b586 4144int task_nice(const struct task_struct *p)
1da177e4
LT
4145{
4146 return TASK_NICE(p);
4147}
1da177e4 4148EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4149
4150/**
4151 * idle_cpu - is a given cpu idle currently?
4152 * @cpu: the processor in question.
4153 */
4154int idle_cpu(int cpu)
4155{
4156 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4157}
4158
1da177e4
LT
4159/**
4160 * idle_task - return the idle task for a given cpu.
4161 * @cpu: the processor in question.
4162 */
36c8b586 4163struct task_struct *idle_task(int cpu)
1da177e4
LT
4164{
4165 return cpu_rq(cpu)->idle;
4166}
4167
4168/**
4169 * find_process_by_pid - find a process with a matching PID value.
4170 * @pid: the pid in question.
4171 */
a9957449 4172static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4173{
228ebcbe 4174 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4175}
4176
4177/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4178static void
4179__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4180{
dd41f596 4181 BUG_ON(p->se.on_rq);
48f24c4d 4182
1da177e4 4183 p->policy = policy;
dd41f596
IM
4184 switch (p->policy) {
4185 case SCHED_NORMAL:
4186 case SCHED_BATCH:
4187 case SCHED_IDLE:
4188 p->sched_class = &fair_sched_class;
4189 break;
4190 case SCHED_FIFO:
4191 case SCHED_RR:
4192 p->sched_class = &rt_sched_class;
4193 break;
4194 }
4195
1da177e4 4196 p->rt_priority = prio;
b29739f9
IM
4197 p->normal_prio = normal_prio(p);
4198 /* we are holding p->pi_lock already */
4199 p->prio = rt_mutex_getprio(p);
2dd73a4f 4200 set_load_weight(p);
1da177e4
LT
4201}
4202
4203/**
72fd4a35 4204 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4205 * @p: the task in question.
4206 * @policy: new policy.
4207 * @param: structure containing the new RT priority.
5fe1d75f 4208 *
72fd4a35 4209 * NOTE that the task may be already dead.
1da177e4 4210 */
95cdf3b7
IM
4211int sched_setscheduler(struct task_struct *p, int policy,
4212 struct sched_param *param)
1da177e4 4213{
83b699ed 4214 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4215 unsigned long flags;
70b97a7f 4216 struct rq *rq;
1da177e4 4217
66e5393a
SR
4218 /* may grab non-irq protected spin_locks */
4219 BUG_ON(in_interrupt());
1da177e4
LT
4220recheck:
4221 /* double check policy once rq lock held */
4222 if (policy < 0)
4223 policy = oldpolicy = p->policy;
4224 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4225 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4226 policy != SCHED_IDLE)
b0a9499c 4227 return -EINVAL;
1da177e4
LT
4228 /*
4229 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4230 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4231 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4232 */
4233 if (param->sched_priority < 0 ||
95cdf3b7 4234 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4235 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4236 return -EINVAL;
e05606d3 4237 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4238 return -EINVAL;
4239
37e4ab3f
OC
4240 /*
4241 * Allow unprivileged RT tasks to decrease priority:
4242 */
4243 if (!capable(CAP_SYS_NICE)) {
e05606d3 4244 if (rt_policy(policy)) {
8dc3e909 4245 unsigned long rlim_rtprio;
8dc3e909
ON
4246
4247 if (!lock_task_sighand(p, &flags))
4248 return -ESRCH;
4249 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4250 unlock_task_sighand(p, &flags);
4251
4252 /* can't set/change the rt policy */
4253 if (policy != p->policy && !rlim_rtprio)
4254 return -EPERM;
4255
4256 /* can't increase priority */
4257 if (param->sched_priority > p->rt_priority &&
4258 param->sched_priority > rlim_rtprio)
4259 return -EPERM;
4260 }
dd41f596
IM
4261 /*
4262 * Like positive nice levels, dont allow tasks to
4263 * move out of SCHED_IDLE either:
4264 */
4265 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4266 return -EPERM;
5fe1d75f 4267
37e4ab3f
OC
4268 /* can't change other user's priorities */
4269 if ((current->euid != p->euid) &&
4270 (current->euid != p->uid))
4271 return -EPERM;
4272 }
1da177e4
LT
4273
4274 retval = security_task_setscheduler(p, policy, param);
4275 if (retval)
4276 return retval;
b29739f9
IM
4277 /*
4278 * make sure no PI-waiters arrive (or leave) while we are
4279 * changing the priority of the task:
4280 */
4281 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4282 /*
4283 * To be able to change p->policy safely, the apropriate
4284 * runqueue lock must be held.
4285 */
b29739f9 4286 rq = __task_rq_lock(p);
1da177e4
LT
4287 /* recheck policy now with rq lock held */
4288 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4289 policy = oldpolicy = -1;
b29739f9
IM
4290 __task_rq_unlock(rq);
4291 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4292 goto recheck;
4293 }
2daa3577 4294 update_rq_clock(rq);
dd41f596 4295 on_rq = p->se.on_rq;
051a1d1a 4296 running = task_current(rq, p);
83b699ed 4297 if (on_rq) {
2e1cb74a 4298 deactivate_task(rq, p, 0);
83b699ed
SV
4299 if (running)
4300 p->sched_class->put_prev_task(rq, p);
4301 }
f6b53205 4302
1da177e4 4303 oldprio = p->prio;
dd41f596 4304 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4305
dd41f596 4306 if (on_rq) {
83b699ed
SV
4307 if (running)
4308 p->sched_class->set_curr_task(rq);
dd41f596 4309 activate_task(rq, p, 0);
1da177e4
LT
4310 /*
4311 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4312 * our priority decreased, or if we are not currently running on
4313 * this runqueue and our priority is higher than the current's
1da177e4 4314 */
83b699ed 4315 if (running) {
d5f9f942
AM
4316 if (p->prio > oldprio)
4317 resched_task(rq->curr);
dd41f596
IM
4318 } else {
4319 check_preempt_curr(rq, p);
4320 }
1da177e4 4321 }
b29739f9
IM
4322 __task_rq_unlock(rq);
4323 spin_unlock_irqrestore(&p->pi_lock, flags);
4324
95e02ca9
TG
4325 rt_mutex_adjust_pi(p);
4326
1da177e4
LT
4327 return 0;
4328}
4329EXPORT_SYMBOL_GPL(sched_setscheduler);
4330
95cdf3b7
IM
4331static int
4332do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4333{
1da177e4
LT
4334 struct sched_param lparam;
4335 struct task_struct *p;
36c8b586 4336 int retval;
1da177e4
LT
4337
4338 if (!param || pid < 0)
4339 return -EINVAL;
4340 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4341 return -EFAULT;
5fe1d75f
ON
4342
4343 rcu_read_lock();
4344 retval = -ESRCH;
1da177e4 4345 p = find_process_by_pid(pid);
5fe1d75f
ON
4346 if (p != NULL)
4347 retval = sched_setscheduler(p, policy, &lparam);
4348 rcu_read_unlock();
36c8b586 4349
1da177e4
LT
4350 return retval;
4351}
4352
4353/**
4354 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4355 * @pid: the pid in question.
4356 * @policy: new policy.
4357 * @param: structure containing the new RT priority.
4358 */
41a2d6cf
IM
4359asmlinkage long
4360sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4361{
c21761f1
JB
4362 /* negative values for policy are not valid */
4363 if (policy < 0)
4364 return -EINVAL;
4365
1da177e4
LT
4366 return do_sched_setscheduler(pid, policy, param);
4367}
4368
4369/**
4370 * sys_sched_setparam - set/change the RT priority of a thread
4371 * @pid: the pid in question.
4372 * @param: structure containing the new RT priority.
4373 */
4374asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4375{
4376 return do_sched_setscheduler(pid, -1, param);
4377}
4378
4379/**
4380 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4381 * @pid: the pid in question.
4382 */
4383asmlinkage long sys_sched_getscheduler(pid_t pid)
4384{
36c8b586 4385 struct task_struct *p;
3a5c359a 4386 int retval;
1da177e4
LT
4387
4388 if (pid < 0)
3a5c359a 4389 return -EINVAL;
1da177e4
LT
4390
4391 retval = -ESRCH;
4392 read_lock(&tasklist_lock);
4393 p = find_process_by_pid(pid);
4394 if (p) {
4395 retval = security_task_getscheduler(p);
4396 if (!retval)
4397 retval = p->policy;
4398 }
4399 read_unlock(&tasklist_lock);
1da177e4
LT
4400 return retval;
4401}
4402
4403/**
4404 * sys_sched_getscheduler - get the RT priority of a thread
4405 * @pid: the pid in question.
4406 * @param: structure containing the RT priority.
4407 */
4408asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4409{
4410 struct sched_param lp;
36c8b586 4411 struct task_struct *p;
3a5c359a 4412 int retval;
1da177e4
LT
4413
4414 if (!param || pid < 0)
3a5c359a 4415 return -EINVAL;
1da177e4
LT
4416
4417 read_lock(&tasklist_lock);
4418 p = find_process_by_pid(pid);
4419 retval = -ESRCH;
4420 if (!p)
4421 goto out_unlock;
4422
4423 retval = security_task_getscheduler(p);
4424 if (retval)
4425 goto out_unlock;
4426
4427 lp.sched_priority = p->rt_priority;
4428 read_unlock(&tasklist_lock);
4429
4430 /*
4431 * This one might sleep, we cannot do it with a spinlock held ...
4432 */
4433 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4434
1da177e4
LT
4435 return retval;
4436
4437out_unlock:
4438 read_unlock(&tasklist_lock);
4439 return retval;
4440}
4441
4442long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4443{
1da177e4 4444 cpumask_t cpus_allowed;
36c8b586
IM
4445 struct task_struct *p;
4446 int retval;
1da177e4 4447
95402b38 4448 get_online_cpus();
1da177e4
LT
4449 read_lock(&tasklist_lock);
4450
4451 p = find_process_by_pid(pid);
4452 if (!p) {
4453 read_unlock(&tasklist_lock);
95402b38 4454 put_online_cpus();
1da177e4
LT
4455 return -ESRCH;
4456 }
4457
4458 /*
4459 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4460 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4461 * usage count and then drop tasklist_lock.
4462 */
4463 get_task_struct(p);
4464 read_unlock(&tasklist_lock);
4465
4466 retval = -EPERM;
4467 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4468 !capable(CAP_SYS_NICE))
4469 goto out_unlock;
4470
e7834f8f
DQ
4471 retval = security_task_setscheduler(p, 0, NULL);
4472 if (retval)
4473 goto out_unlock;
4474
1da177e4
LT
4475 cpus_allowed = cpuset_cpus_allowed(p);
4476 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4477 again:
1da177e4
LT
4478 retval = set_cpus_allowed(p, new_mask);
4479
8707d8b8
PM
4480 if (!retval) {
4481 cpus_allowed = cpuset_cpus_allowed(p);
4482 if (!cpus_subset(new_mask, cpus_allowed)) {
4483 /*
4484 * We must have raced with a concurrent cpuset
4485 * update. Just reset the cpus_allowed to the
4486 * cpuset's cpus_allowed
4487 */
4488 new_mask = cpus_allowed;
4489 goto again;
4490 }
4491 }
1da177e4
LT
4492out_unlock:
4493 put_task_struct(p);
95402b38 4494 put_online_cpus();
1da177e4
LT
4495 return retval;
4496}
4497
4498static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4499 cpumask_t *new_mask)
4500{
4501 if (len < sizeof(cpumask_t)) {
4502 memset(new_mask, 0, sizeof(cpumask_t));
4503 } else if (len > sizeof(cpumask_t)) {
4504 len = sizeof(cpumask_t);
4505 }
4506 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4507}
4508
4509/**
4510 * sys_sched_setaffinity - set the cpu affinity of a process
4511 * @pid: pid of the process
4512 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4513 * @user_mask_ptr: user-space pointer to the new cpu mask
4514 */
4515asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4516 unsigned long __user *user_mask_ptr)
4517{
4518 cpumask_t new_mask;
4519 int retval;
4520
4521 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4522 if (retval)
4523 return retval;
4524
4525 return sched_setaffinity(pid, new_mask);
4526}
4527
4528/*
4529 * Represents all cpu's present in the system
4530 * In systems capable of hotplug, this map could dynamically grow
4531 * as new cpu's are detected in the system via any platform specific
4532 * method, such as ACPI for e.g.
4533 */
4534
4cef0c61 4535cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4536EXPORT_SYMBOL(cpu_present_map);
4537
4538#ifndef CONFIG_SMP
4cef0c61 4539cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4540EXPORT_SYMBOL(cpu_online_map);
4541
4cef0c61 4542cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4543EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4544#endif
4545
4546long sched_getaffinity(pid_t pid, cpumask_t *mask)
4547{
36c8b586 4548 struct task_struct *p;
1da177e4 4549 int retval;
1da177e4 4550
95402b38 4551 get_online_cpus();
1da177e4
LT
4552 read_lock(&tasklist_lock);
4553
4554 retval = -ESRCH;
4555 p = find_process_by_pid(pid);
4556 if (!p)
4557 goto out_unlock;
4558
e7834f8f
DQ
4559 retval = security_task_getscheduler(p);
4560 if (retval)
4561 goto out_unlock;
4562
2f7016d9 4563 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4564
4565out_unlock:
4566 read_unlock(&tasklist_lock);
95402b38 4567 put_online_cpus();
1da177e4 4568
9531b62f 4569 return retval;
1da177e4
LT
4570}
4571
4572/**
4573 * sys_sched_getaffinity - get the cpu affinity of a process
4574 * @pid: pid of the process
4575 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4576 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4577 */
4578asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4579 unsigned long __user *user_mask_ptr)
4580{
4581 int ret;
4582 cpumask_t mask;
4583
4584 if (len < sizeof(cpumask_t))
4585 return -EINVAL;
4586
4587 ret = sched_getaffinity(pid, &mask);
4588 if (ret < 0)
4589 return ret;
4590
4591 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4592 return -EFAULT;
4593
4594 return sizeof(cpumask_t);
4595}
4596
4597/**
4598 * sys_sched_yield - yield the current processor to other threads.
4599 *
dd41f596
IM
4600 * This function yields the current CPU to other tasks. If there are no
4601 * other threads running on this CPU then this function will return.
1da177e4
LT
4602 */
4603asmlinkage long sys_sched_yield(void)
4604{
70b97a7f 4605 struct rq *rq = this_rq_lock();
1da177e4 4606
2d72376b 4607 schedstat_inc(rq, yld_count);
4530d7ab 4608 current->sched_class->yield_task(rq);
1da177e4
LT
4609
4610 /*
4611 * Since we are going to call schedule() anyway, there's
4612 * no need to preempt or enable interrupts:
4613 */
4614 __release(rq->lock);
8a25d5de 4615 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4616 _raw_spin_unlock(&rq->lock);
4617 preempt_enable_no_resched();
4618
4619 schedule();
4620
4621 return 0;
4622}
4623
e7b38404 4624static void __cond_resched(void)
1da177e4 4625{
8e0a43d8
IM
4626#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4627 __might_sleep(__FILE__, __LINE__);
4628#endif
5bbcfd90
IM
4629 /*
4630 * The BKS might be reacquired before we have dropped
4631 * PREEMPT_ACTIVE, which could trigger a second
4632 * cond_resched() call.
4633 */
1da177e4
LT
4634 do {
4635 add_preempt_count(PREEMPT_ACTIVE);
4636 schedule();
4637 sub_preempt_count(PREEMPT_ACTIVE);
4638 } while (need_resched());
4639}
4640
4641int __sched cond_resched(void)
4642{
9414232f
IM
4643 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4644 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4645 __cond_resched();
4646 return 1;
4647 }
4648 return 0;
4649}
1da177e4
LT
4650EXPORT_SYMBOL(cond_resched);
4651
4652/*
4653 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4654 * call schedule, and on return reacquire the lock.
4655 *
41a2d6cf 4656 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4657 * operations here to prevent schedule() from being called twice (once via
4658 * spin_unlock(), once by hand).
4659 */
95cdf3b7 4660int cond_resched_lock(spinlock_t *lock)
1da177e4 4661{
6df3cecb
JK
4662 int ret = 0;
4663
1da177e4
LT
4664 if (need_lockbreak(lock)) {
4665 spin_unlock(lock);
4666 cpu_relax();
6df3cecb 4667 ret = 1;
1da177e4
LT
4668 spin_lock(lock);
4669 }
9414232f 4670 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4671 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4672 _raw_spin_unlock(lock);
4673 preempt_enable_no_resched();
4674 __cond_resched();
6df3cecb 4675 ret = 1;
1da177e4 4676 spin_lock(lock);
1da177e4 4677 }
6df3cecb 4678 return ret;
1da177e4 4679}
1da177e4
LT
4680EXPORT_SYMBOL(cond_resched_lock);
4681
4682int __sched cond_resched_softirq(void)
4683{
4684 BUG_ON(!in_softirq());
4685
9414232f 4686 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4687 local_bh_enable();
1da177e4
LT
4688 __cond_resched();
4689 local_bh_disable();
4690 return 1;
4691 }
4692 return 0;
4693}
1da177e4
LT
4694EXPORT_SYMBOL(cond_resched_softirq);
4695
1da177e4
LT
4696/**
4697 * yield - yield the current processor to other threads.
4698 *
72fd4a35 4699 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4700 * thread runnable and calls sys_sched_yield().
4701 */
4702void __sched yield(void)
4703{
4704 set_current_state(TASK_RUNNING);
4705 sys_sched_yield();
4706}
1da177e4
LT
4707EXPORT_SYMBOL(yield);
4708
4709/*
41a2d6cf 4710 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4711 * that process accounting knows that this is a task in IO wait state.
4712 *
4713 * But don't do that if it is a deliberate, throttling IO wait (this task
4714 * has set its backing_dev_info: the queue against which it should throttle)
4715 */
4716void __sched io_schedule(void)
4717{
70b97a7f 4718 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4719
0ff92245 4720 delayacct_blkio_start();
1da177e4
LT
4721 atomic_inc(&rq->nr_iowait);
4722 schedule();
4723 atomic_dec(&rq->nr_iowait);
0ff92245 4724 delayacct_blkio_end();
1da177e4 4725}
1da177e4
LT
4726EXPORT_SYMBOL(io_schedule);
4727
4728long __sched io_schedule_timeout(long timeout)
4729{
70b97a7f 4730 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4731 long ret;
4732
0ff92245 4733 delayacct_blkio_start();
1da177e4
LT
4734 atomic_inc(&rq->nr_iowait);
4735 ret = schedule_timeout(timeout);
4736 atomic_dec(&rq->nr_iowait);
0ff92245 4737 delayacct_blkio_end();
1da177e4
LT
4738 return ret;
4739}
4740
4741/**
4742 * sys_sched_get_priority_max - return maximum RT priority.
4743 * @policy: scheduling class.
4744 *
4745 * this syscall returns the maximum rt_priority that can be used
4746 * by a given scheduling class.
4747 */
4748asmlinkage long sys_sched_get_priority_max(int policy)
4749{
4750 int ret = -EINVAL;
4751
4752 switch (policy) {
4753 case SCHED_FIFO:
4754 case SCHED_RR:
4755 ret = MAX_USER_RT_PRIO-1;
4756 break;
4757 case SCHED_NORMAL:
b0a9499c 4758 case SCHED_BATCH:
dd41f596 4759 case SCHED_IDLE:
1da177e4
LT
4760 ret = 0;
4761 break;
4762 }
4763 return ret;
4764}
4765
4766/**
4767 * sys_sched_get_priority_min - return minimum RT priority.
4768 * @policy: scheduling class.
4769 *
4770 * this syscall returns the minimum rt_priority that can be used
4771 * by a given scheduling class.
4772 */
4773asmlinkage long sys_sched_get_priority_min(int policy)
4774{
4775 int ret = -EINVAL;
4776
4777 switch (policy) {
4778 case SCHED_FIFO:
4779 case SCHED_RR:
4780 ret = 1;
4781 break;
4782 case SCHED_NORMAL:
b0a9499c 4783 case SCHED_BATCH:
dd41f596 4784 case SCHED_IDLE:
1da177e4
LT
4785 ret = 0;
4786 }
4787 return ret;
4788}
4789
4790/**
4791 * sys_sched_rr_get_interval - return the default timeslice of a process.
4792 * @pid: pid of the process.
4793 * @interval: userspace pointer to the timeslice value.
4794 *
4795 * this syscall writes the default timeslice value of a given process
4796 * into the user-space timespec buffer. A value of '0' means infinity.
4797 */
4798asmlinkage
4799long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4800{
36c8b586 4801 struct task_struct *p;
a4ec24b4 4802 unsigned int time_slice;
3a5c359a 4803 int retval;
1da177e4 4804 struct timespec t;
1da177e4
LT
4805
4806 if (pid < 0)
3a5c359a 4807 return -EINVAL;
1da177e4
LT
4808
4809 retval = -ESRCH;
4810 read_lock(&tasklist_lock);
4811 p = find_process_by_pid(pid);
4812 if (!p)
4813 goto out_unlock;
4814
4815 retval = security_task_getscheduler(p);
4816 if (retval)
4817 goto out_unlock;
4818
77034937
IM
4819 /*
4820 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4821 * tasks that are on an otherwise idle runqueue:
4822 */
4823 time_slice = 0;
4824 if (p->policy == SCHED_RR) {
a4ec24b4 4825 time_slice = DEF_TIMESLICE;
77034937 4826 } else {
a4ec24b4
DA
4827 struct sched_entity *se = &p->se;
4828 unsigned long flags;
4829 struct rq *rq;
4830
4831 rq = task_rq_lock(p, &flags);
77034937
IM
4832 if (rq->cfs.load.weight)
4833 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4834 task_rq_unlock(rq, &flags);
4835 }
1da177e4 4836 read_unlock(&tasklist_lock);
a4ec24b4 4837 jiffies_to_timespec(time_slice, &t);
1da177e4 4838 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4839 return retval;
3a5c359a 4840
1da177e4
LT
4841out_unlock:
4842 read_unlock(&tasklist_lock);
4843 return retval;
4844}
4845
2ed6e34f 4846static const char stat_nam[] = "RSDTtZX";
36c8b586 4847
82a1fcb9 4848void sched_show_task(struct task_struct *p)
1da177e4 4849{
1da177e4 4850 unsigned long free = 0;
36c8b586 4851 unsigned state;
1da177e4 4852
1da177e4 4853 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4854 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4855 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4856#if BITS_PER_LONG == 32
1da177e4 4857 if (state == TASK_RUNNING)
cc4ea795 4858 printk(KERN_CONT " running ");
1da177e4 4859 else
cc4ea795 4860 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4861#else
4862 if (state == TASK_RUNNING)
cc4ea795 4863 printk(KERN_CONT " running task ");
1da177e4 4864 else
cc4ea795 4865 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4866#endif
4867#ifdef CONFIG_DEBUG_STACK_USAGE
4868 {
10ebffde 4869 unsigned long *n = end_of_stack(p);
1da177e4
LT
4870 while (!*n)
4871 n++;
10ebffde 4872 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4873 }
4874#endif
ba25f9dc 4875 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4876 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4877
4878 if (state != TASK_RUNNING)
4879 show_stack(p, NULL);
4880}
4881
e59e2ae2 4882void show_state_filter(unsigned long state_filter)
1da177e4 4883{
36c8b586 4884 struct task_struct *g, *p;
1da177e4 4885
4bd77321
IM
4886#if BITS_PER_LONG == 32
4887 printk(KERN_INFO
4888 " task PC stack pid father\n");
1da177e4 4889#else
4bd77321
IM
4890 printk(KERN_INFO
4891 " task PC stack pid father\n");
1da177e4
LT
4892#endif
4893 read_lock(&tasklist_lock);
4894 do_each_thread(g, p) {
4895 /*
4896 * reset the NMI-timeout, listing all files on a slow
4897 * console might take alot of time:
4898 */
4899 touch_nmi_watchdog();
39bc89fd 4900 if (!state_filter || (p->state & state_filter))
82a1fcb9 4901 sched_show_task(p);
1da177e4
LT
4902 } while_each_thread(g, p);
4903
04c9167f
JF
4904 touch_all_softlockup_watchdogs();
4905
dd41f596
IM
4906#ifdef CONFIG_SCHED_DEBUG
4907 sysrq_sched_debug_show();
4908#endif
1da177e4 4909 read_unlock(&tasklist_lock);
e59e2ae2
IM
4910 /*
4911 * Only show locks if all tasks are dumped:
4912 */
4913 if (state_filter == -1)
4914 debug_show_all_locks();
1da177e4
LT
4915}
4916
1df21055
IM
4917void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4918{
dd41f596 4919 idle->sched_class = &idle_sched_class;
1df21055
IM
4920}
4921
f340c0d1
IM
4922/**
4923 * init_idle - set up an idle thread for a given CPU
4924 * @idle: task in question
4925 * @cpu: cpu the idle task belongs to
4926 *
4927 * NOTE: this function does not set the idle thread's NEED_RESCHED
4928 * flag, to make booting more robust.
4929 */
5c1e1767 4930void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4931{
70b97a7f 4932 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4933 unsigned long flags;
4934
dd41f596
IM
4935 __sched_fork(idle);
4936 idle->se.exec_start = sched_clock();
4937
b29739f9 4938 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4939 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4940 __set_task_cpu(idle, cpu);
1da177e4
LT
4941
4942 spin_lock_irqsave(&rq->lock, flags);
4943 rq->curr = rq->idle = idle;
4866cde0
NP
4944#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4945 idle->oncpu = 1;
4946#endif
1da177e4
LT
4947 spin_unlock_irqrestore(&rq->lock, flags);
4948
4949 /* Set the preempt count _outside_ the spinlocks! */
4950#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4951 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4952#else
a1261f54 4953 task_thread_info(idle)->preempt_count = 0;
1da177e4 4954#endif
dd41f596
IM
4955 /*
4956 * The idle tasks have their own, simple scheduling class:
4957 */
4958 idle->sched_class = &idle_sched_class;
1da177e4
LT
4959}
4960
4961/*
4962 * In a system that switches off the HZ timer nohz_cpu_mask
4963 * indicates which cpus entered this state. This is used
4964 * in the rcu update to wait only for active cpus. For system
4965 * which do not switch off the HZ timer nohz_cpu_mask should
4966 * always be CPU_MASK_NONE.
4967 */
4968cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4969
19978ca6
IM
4970/*
4971 * Increase the granularity value when there are more CPUs,
4972 * because with more CPUs the 'effective latency' as visible
4973 * to users decreases. But the relationship is not linear,
4974 * so pick a second-best guess by going with the log2 of the
4975 * number of CPUs.
4976 *
4977 * This idea comes from the SD scheduler of Con Kolivas:
4978 */
4979static inline void sched_init_granularity(void)
4980{
4981 unsigned int factor = 1 + ilog2(num_online_cpus());
4982 const unsigned long limit = 200000000;
4983
4984 sysctl_sched_min_granularity *= factor;
4985 if (sysctl_sched_min_granularity > limit)
4986 sysctl_sched_min_granularity = limit;
4987
4988 sysctl_sched_latency *= factor;
4989 if (sysctl_sched_latency > limit)
4990 sysctl_sched_latency = limit;
4991
4992 sysctl_sched_wakeup_granularity *= factor;
4993 sysctl_sched_batch_wakeup_granularity *= factor;
4994}
4995
1da177e4
LT
4996#ifdef CONFIG_SMP
4997/*
4998 * This is how migration works:
4999 *
70b97a7f 5000 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5001 * runqueue and wake up that CPU's migration thread.
5002 * 2) we down() the locked semaphore => thread blocks.
5003 * 3) migration thread wakes up (implicitly it forces the migrated
5004 * thread off the CPU)
5005 * 4) it gets the migration request and checks whether the migrated
5006 * task is still in the wrong runqueue.
5007 * 5) if it's in the wrong runqueue then the migration thread removes
5008 * it and puts it into the right queue.
5009 * 6) migration thread up()s the semaphore.
5010 * 7) we wake up and the migration is done.
5011 */
5012
5013/*
5014 * Change a given task's CPU affinity. Migrate the thread to a
5015 * proper CPU and schedule it away if the CPU it's executing on
5016 * is removed from the allowed bitmask.
5017 *
5018 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5019 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5020 * call is not atomic; no spinlocks may be held.
5021 */
36c8b586 5022int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5023{
70b97a7f 5024 struct migration_req req;
1da177e4 5025 unsigned long flags;
70b97a7f 5026 struct rq *rq;
48f24c4d 5027 int ret = 0;
1da177e4
LT
5028
5029 rq = task_rq_lock(p, &flags);
5030 if (!cpus_intersects(new_mask, cpu_online_map)) {
5031 ret = -EINVAL;
5032 goto out;
5033 }
5034
73fe6aae
GH
5035 if (p->sched_class->set_cpus_allowed)
5036 p->sched_class->set_cpus_allowed(p, &new_mask);
5037 else {
5038 p->cpus_allowed = new_mask;
5039 p->nr_cpus_allowed = cpus_weight(new_mask);
5040 }
5041
1da177e4
LT
5042 /* Can the task run on the task's current CPU? If so, we're done */
5043 if (cpu_isset(task_cpu(p), new_mask))
5044 goto out;
5045
5046 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5047 /* Need help from migration thread: drop lock and wait. */
5048 task_rq_unlock(rq, &flags);
5049 wake_up_process(rq->migration_thread);
5050 wait_for_completion(&req.done);
5051 tlb_migrate_finish(p->mm);
5052 return 0;
5053 }
5054out:
5055 task_rq_unlock(rq, &flags);
48f24c4d 5056
1da177e4
LT
5057 return ret;
5058}
1da177e4
LT
5059EXPORT_SYMBOL_GPL(set_cpus_allowed);
5060
5061/*
41a2d6cf 5062 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5063 * this because either it can't run here any more (set_cpus_allowed()
5064 * away from this CPU, or CPU going down), or because we're
5065 * attempting to rebalance this task on exec (sched_exec).
5066 *
5067 * So we race with normal scheduler movements, but that's OK, as long
5068 * as the task is no longer on this CPU.
efc30814
KK
5069 *
5070 * Returns non-zero if task was successfully migrated.
1da177e4 5071 */
efc30814 5072static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5073{
70b97a7f 5074 struct rq *rq_dest, *rq_src;
dd41f596 5075 int ret = 0, on_rq;
1da177e4
LT
5076
5077 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5078 return ret;
1da177e4
LT
5079
5080 rq_src = cpu_rq(src_cpu);
5081 rq_dest = cpu_rq(dest_cpu);
5082
5083 double_rq_lock(rq_src, rq_dest);
5084 /* Already moved. */
5085 if (task_cpu(p) != src_cpu)
5086 goto out;
5087 /* Affinity changed (again). */
5088 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5089 goto out;
5090
dd41f596 5091 on_rq = p->se.on_rq;
6e82a3be 5092 if (on_rq)
2e1cb74a 5093 deactivate_task(rq_src, p, 0);
6e82a3be 5094
1da177e4 5095 set_task_cpu(p, dest_cpu);
dd41f596
IM
5096 if (on_rq) {
5097 activate_task(rq_dest, p, 0);
5098 check_preempt_curr(rq_dest, p);
1da177e4 5099 }
efc30814 5100 ret = 1;
1da177e4
LT
5101out:
5102 double_rq_unlock(rq_src, rq_dest);
efc30814 5103 return ret;
1da177e4
LT
5104}
5105
5106/*
5107 * migration_thread - this is a highprio system thread that performs
5108 * thread migration by bumping thread off CPU then 'pushing' onto
5109 * another runqueue.
5110 */
95cdf3b7 5111static int migration_thread(void *data)
1da177e4 5112{
1da177e4 5113 int cpu = (long)data;
70b97a7f 5114 struct rq *rq;
1da177e4
LT
5115
5116 rq = cpu_rq(cpu);
5117 BUG_ON(rq->migration_thread != current);
5118
5119 set_current_state(TASK_INTERRUPTIBLE);
5120 while (!kthread_should_stop()) {
70b97a7f 5121 struct migration_req *req;
1da177e4 5122 struct list_head *head;
1da177e4 5123
1da177e4
LT
5124 spin_lock_irq(&rq->lock);
5125
5126 if (cpu_is_offline(cpu)) {
5127 spin_unlock_irq(&rq->lock);
5128 goto wait_to_die;
5129 }
5130
5131 if (rq->active_balance) {
5132 active_load_balance(rq, cpu);
5133 rq->active_balance = 0;
5134 }
5135
5136 head = &rq->migration_queue;
5137
5138 if (list_empty(head)) {
5139 spin_unlock_irq(&rq->lock);
5140 schedule();
5141 set_current_state(TASK_INTERRUPTIBLE);
5142 continue;
5143 }
70b97a7f 5144 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5145 list_del_init(head->next);
5146
674311d5
NP
5147 spin_unlock(&rq->lock);
5148 __migrate_task(req->task, cpu, req->dest_cpu);
5149 local_irq_enable();
1da177e4
LT
5150
5151 complete(&req->done);
5152 }
5153 __set_current_state(TASK_RUNNING);
5154 return 0;
5155
5156wait_to_die:
5157 /* Wait for kthread_stop */
5158 set_current_state(TASK_INTERRUPTIBLE);
5159 while (!kthread_should_stop()) {
5160 schedule();
5161 set_current_state(TASK_INTERRUPTIBLE);
5162 }
5163 __set_current_state(TASK_RUNNING);
5164 return 0;
5165}
5166
5167#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5168
5169static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5170{
5171 int ret;
5172
5173 local_irq_disable();
5174 ret = __migrate_task(p, src_cpu, dest_cpu);
5175 local_irq_enable();
5176 return ret;
5177}
5178
054b9108 5179/*
3a4fa0a2 5180 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5181 * NOTE: interrupts should be disabled by the caller
5182 */
48f24c4d 5183static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5184{
efc30814 5185 unsigned long flags;
1da177e4 5186 cpumask_t mask;
70b97a7f
IM
5187 struct rq *rq;
5188 int dest_cpu;
1da177e4 5189
3a5c359a
AK
5190 do {
5191 /* On same node? */
5192 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5193 cpus_and(mask, mask, p->cpus_allowed);
5194 dest_cpu = any_online_cpu(mask);
5195
5196 /* On any allowed CPU? */
5197 if (dest_cpu == NR_CPUS)
5198 dest_cpu = any_online_cpu(p->cpus_allowed);
5199
5200 /* No more Mr. Nice Guy. */
5201 if (dest_cpu == NR_CPUS) {
470fd646
CW
5202 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5203 /*
5204 * Try to stay on the same cpuset, where the
5205 * current cpuset may be a subset of all cpus.
5206 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5207 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5208 * called within calls to cpuset_lock/cpuset_unlock.
5209 */
3a5c359a 5210 rq = task_rq_lock(p, &flags);
470fd646 5211 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5212 dest_cpu = any_online_cpu(p->cpus_allowed);
5213 task_rq_unlock(rq, &flags);
1da177e4 5214
3a5c359a
AK
5215 /*
5216 * Don't tell them about moving exiting tasks or
5217 * kernel threads (both mm NULL), since they never
5218 * leave kernel.
5219 */
41a2d6cf 5220 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5221 printk(KERN_INFO "process %d (%s) no "
5222 "longer affine to cpu%d\n",
41a2d6cf
IM
5223 task_pid_nr(p), p->comm, dead_cpu);
5224 }
3a5c359a 5225 }
f7b4cddc 5226 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5227}
5228
5229/*
5230 * While a dead CPU has no uninterruptible tasks queued at this point,
5231 * it might still have a nonzero ->nr_uninterruptible counter, because
5232 * for performance reasons the counter is not stricly tracking tasks to
5233 * their home CPUs. So we just add the counter to another CPU's counter,
5234 * to keep the global sum constant after CPU-down:
5235 */
70b97a7f 5236static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5237{
70b97a7f 5238 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5239 unsigned long flags;
5240
5241 local_irq_save(flags);
5242 double_rq_lock(rq_src, rq_dest);
5243 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5244 rq_src->nr_uninterruptible = 0;
5245 double_rq_unlock(rq_src, rq_dest);
5246 local_irq_restore(flags);
5247}
5248
5249/* Run through task list and migrate tasks from the dead cpu. */
5250static void migrate_live_tasks(int src_cpu)
5251{
48f24c4d 5252 struct task_struct *p, *t;
1da177e4 5253
f7b4cddc 5254 read_lock(&tasklist_lock);
1da177e4 5255
48f24c4d
IM
5256 do_each_thread(t, p) {
5257 if (p == current)
1da177e4
LT
5258 continue;
5259
48f24c4d
IM
5260 if (task_cpu(p) == src_cpu)
5261 move_task_off_dead_cpu(src_cpu, p);
5262 } while_each_thread(t, p);
1da177e4 5263
f7b4cddc 5264 read_unlock(&tasklist_lock);
1da177e4
LT
5265}
5266
dd41f596
IM
5267/*
5268 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5269 * It does so by boosting its priority to highest possible.
5270 * Used by CPU offline code.
1da177e4
LT
5271 */
5272void sched_idle_next(void)
5273{
48f24c4d 5274 int this_cpu = smp_processor_id();
70b97a7f 5275 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5276 struct task_struct *p = rq->idle;
5277 unsigned long flags;
5278
5279 /* cpu has to be offline */
48f24c4d 5280 BUG_ON(cpu_online(this_cpu));
1da177e4 5281
48f24c4d
IM
5282 /*
5283 * Strictly not necessary since rest of the CPUs are stopped by now
5284 * and interrupts disabled on the current cpu.
1da177e4
LT
5285 */
5286 spin_lock_irqsave(&rq->lock, flags);
5287
dd41f596 5288 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5289
94bc9a7b
DA
5290 update_rq_clock(rq);
5291 activate_task(rq, p, 0);
1da177e4
LT
5292
5293 spin_unlock_irqrestore(&rq->lock, flags);
5294}
5295
48f24c4d
IM
5296/*
5297 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5298 * offline.
5299 */
5300void idle_task_exit(void)
5301{
5302 struct mm_struct *mm = current->active_mm;
5303
5304 BUG_ON(cpu_online(smp_processor_id()));
5305
5306 if (mm != &init_mm)
5307 switch_mm(mm, &init_mm, current);
5308 mmdrop(mm);
5309}
5310
054b9108 5311/* called under rq->lock with disabled interrupts */
36c8b586 5312static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5313{
70b97a7f 5314 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5315
5316 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5317 BUG_ON(!p->exit_state);
1da177e4
LT
5318
5319 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5320 BUG_ON(p->state == TASK_DEAD);
1da177e4 5321
48f24c4d 5322 get_task_struct(p);
1da177e4
LT
5323
5324 /*
5325 * Drop lock around migration; if someone else moves it,
41a2d6cf 5326 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5327 * fine.
5328 */
f7b4cddc 5329 spin_unlock_irq(&rq->lock);
48f24c4d 5330 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5331 spin_lock_irq(&rq->lock);
1da177e4 5332
48f24c4d 5333 put_task_struct(p);
1da177e4
LT
5334}
5335
5336/* release_task() removes task from tasklist, so we won't find dead tasks. */
5337static void migrate_dead_tasks(unsigned int dead_cpu)
5338{
70b97a7f 5339 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5340 struct task_struct *next;
48f24c4d 5341
dd41f596
IM
5342 for ( ; ; ) {
5343 if (!rq->nr_running)
5344 break;
a8e504d2 5345 update_rq_clock(rq);
ff95f3df 5346 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5347 if (!next)
5348 break;
5349 migrate_dead(dead_cpu, next);
e692ab53 5350
1da177e4
LT
5351 }
5352}
5353#endif /* CONFIG_HOTPLUG_CPU */
5354
e692ab53
NP
5355#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5356
5357static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5358 {
5359 .procname = "sched_domain",
c57baf1e 5360 .mode = 0555,
e0361851 5361 },
38605cae 5362 {0, },
e692ab53
NP
5363};
5364
5365static struct ctl_table sd_ctl_root[] = {
e0361851 5366 {
c57baf1e 5367 .ctl_name = CTL_KERN,
e0361851 5368 .procname = "kernel",
c57baf1e 5369 .mode = 0555,
e0361851
AD
5370 .child = sd_ctl_dir,
5371 },
38605cae 5372 {0, },
e692ab53
NP
5373};
5374
5375static struct ctl_table *sd_alloc_ctl_entry(int n)
5376{
5377 struct ctl_table *entry =
5cf9f062 5378 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5379
e692ab53
NP
5380 return entry;
5381}
5382
6382bc90
MM
5383static void sd_free_ctl_entry(struct ctl_table **tablep)
5384{
cd790076 5385 struct ctl_table *entry;
6382bc90 5386
cd790076
MM
5387 /*
5388 * In the intermediate directories, both the child directory and
5389 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5390 * will always be set. In the lowest directory the names are
cd790076
MM
5391 * static strings and all have proc handlers.
5392 */
5393 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5394 if (entry->child)
5395 sd_free_ctl_entry(&entry->child);
cd790076
MM
5396 if (entry->proc_handler == NULL)
5397 kfree(entry->procname);
5398 }
6382bc90
MM
5399
5400 kfree(*tablep);
5401 *tablep = NULL;
5402}
5403
e692ab53 5404static void
e0361851 5405set_table_entry(struct ctl_table *entry,
e692ab53
NP
5406 const char *procname, void *data, int maxlen,
5407 mode_t mode, proc_handler *proc_handler)
5408{
e692ab53
NP
5409 entry->procname = procname;
5410 entry->data = data;
5411 entry->maxlen = maxlen;
5412 entry->mode = mode;
5413 entry->proc_handler = proc_handler;
5414}
5415
5416static struct ctl_table *
5417sd_alloc_ctl_domain_table(struct sched_domain *sd)
5418{
ace8b3d6 5419 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5420
ad1cdc1d
MM
5421 if (table == NULL)
5422 return NULL;
5423
e0361851 5424 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5425 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5426 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5427 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5428 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5429 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5430 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5431 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5432 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5433 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5434 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5435 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5436 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5437 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5438 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5439 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5440 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5441 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5442 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5443 &sd->cache_nice_tries,
5444 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5445 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5446 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5447 /* &table[11] is terminator */
e692ab53
NP
5448
5449 return table;
5450}
5451
9a4e7159 5452static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5453{
5454 struct ctl_table *entry, *table;
5455 struct sched_domain *sd;
5456 int domain_num = 0, i;
5457 char buf[32];
5458
5459 for_each_domain(cpu, sd)
5460 domain_num++;
5461 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5462 if (table == NULL)
5463 return NULL;
e692ab53
NP
5464
5465 i = 0;
5466 for_each_domain(cpu, sd) {
5467 snprintf(buf, 32, "domain%d", i);
e692ab53 5468 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5469 entry->mode = 0555;
e692ab53
NP
5470 entry->child = sd_alloc_ctl_domain_table(sd);
5471 entry++;
5472 i++;
5473 }
5474 return table;
5475}
5476
5477static struct ctl_table_header *sd_sysctl_header;
6382bc90 5478static void register_sched_domain_sysctl(void)
e692ab53
NP
5479{
5480 int i, cpu_num = num_online_cpus();
5481 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5482 char buf[32];
5483
7378547f
MM
5484 WARN_ON(sd_ctl_dir[0].child);
5485 sd_ctl_dir[0].child = entry;
5486
ad1cdc1d
MM
5487 if (entry == NULL)
5488 return;
5489
97b6ea7b 5490 for_each_online_cpu(i) {
e692ab53 5491 snprintf(buf, 32, "cpu%d", i);
e692ab53 5492 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5493 entry->mode = 0555;
e692ab53 5494 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5495 entry++;
e692ab53 5496 }
7378547f
MM
5497
5498 WARN_ON(sd_sysctl_header);
e692ab53
NP
5499 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5500}
6382bc90 5501
7378547f 5502/* may be called multiple times per register */
6382bc90
MM
5503static void unregister_sched_domain_sysctl(void)
5504{
7378547f
MM
5505 if (sd_sysctl_header)
5506 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5507 sd_sysctl_header = NULL;
7378547f
MM
5508 if (sd_ctl_dir[0].child)
5509 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5510}
e692ab53 5511#else
6382bc90
MM
5512static void register_sched_domain_sysctl(void)
5513{
5514}
5515static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5516{
5517}
5518#endif
5519
1da177e4
LT
5520/*
5521 * migration_call - callback that gets triggered when a CPU is added.
5522 * Here we can start up the necessary migration thread for the new CPU.
5523 */
48f24c4d
IM
5524static int __cpuinit
5525migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5526{
1da177e4 5527 struct task_struct *p;
48f24c4d 5528 int cpu = (long)hcpu;
1da177e4 5529 unsigned long flags;
70b97a7f 5530 struct rq *rq;
1da177e4
LT
5531
5532 switch (action) {
5be9361c 5533
1da177e4 5534 case CPU_UP_PREPARE:
8bb78442 5535 case CPU_UP_PREPARE_FROZEN:
dd41f596 5536 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5537 if (IS_ERR(p))
5538 return NOTIFY_BAD;
1da177e4
LT
5539 kthread_bind(p, cpu);
5540 /* Must be high prio: stop_machine expects to yield to it. */
5541 rq = task_rq_lock(p, &flags);
dd41f596 5542 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5543 task_rq_unlock(rq, &flags);
5544 cpu_rq(cpu)->migration_thread = p;
5545 break;
48f24c4d 5546
1da177e4 5547 case CPU_ONLINE:
8bb78442 5548 case CPU_ONLINE_FROZEN:
3a4fa0a2 5549 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5550 wake_up_process(cpu_rq(cpu)->migration_thread);
5551 break;
48f24c4d 5552
1da177e4
LT
5553#ifdef CONFIG_HOTPLUG_CPU
5554 case CPU_UP_CANCELED:
8bb78442 5555 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5556 if (!cpu_rq(cpu)->migration_thread)
5557 break;
41a2d6cf 5558 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5559 kthread_bind(cpu_rq(cpu)->migration_thread,
5560 any_online_cpu(cpu_online_map));
1da177e4
LT
5561 kthread_stop(cpu_rq(cpu)->migration_thread);
5562 cpu_rq(cpu)->migration_thread = NULL;
5563 break;
48f24c4d 5564
1da177e4 5565 case CPU_DEAD:
8bb78442 5566 case CPU_DEAD_FROZEN:
470fd646 5567 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5568 migrate_live_tasks(cpu);
5569 rq = cpu_rq(cpu);
5570 kthread_stop(rq->migration_thread);
5571 rq->migration_thread = NULL;
5572 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5573 spin_lock_irq(&rq->lock);
a8e504d2 5574 update_rq_clock(rq);
2e1cb74a 5575 deactivate_task(rq, rq->idle, 0);
1da177e4 5576 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5577 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5578 rq->idle->sched_class = &idle_sched_class;
1da177e4 5579 migrate_dead_tasks(cpu);
d2da272a 5580 spin_unlock_irq(&rq->lock);
470fd646 5581 cpuset_unlock();
1da177e4
LT
5582 migrate_nr_uninterruptible(rq);
5583 BUG_ON(rq->nr_running != 0);
5584
41a2d6cf
IM
5585 /*
5586 * No need to migrate the tasks: it was best-effort if
5587 * they didn't take sched_hotcpu_mutex. Just wake up
5588 * the requestors.
5589 */
1da177e4
LT
5590 spin_lock_irq(&rq->lock);
5591 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5592 struct migration_req *req;
5593
1da177e4 5594 req = list_entry(rq->migration_queue.next,
70b97a7f 5595 struct migration_req, list);
1da177e4
LT
5596 list_del_init(&req->list);
5597 complete(&req->done);
5598 }
5599 spin_unlock_irq(&rq->lock);
5600 break;
5601#endif
5602 }
5603 return NOTIFY_OK;
5604}
5605
5606/* Register at highest priority so that task migration (migrate_all_tasks)
5607 * happens before everything else.
5608 */
26c2143b 5609static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5610 .notifier_call = migration_call,
5611 .priority = 10
5612};
5613
e6fe6649 5614void __init migration_init(void)
1da177e4
LT
5615{
5616 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5617 int err;
48f24c4d
IM
5618
5619 /* Start one for the boot CPU: */
07dccf33
AM
5620 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5621 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5622 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5623 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5624}
5625#endif
5626
5627#ifdef CONFIG_SMP
476f3534
CL
5628
5629/* Number of possible processor ids */
5630int nr_cpu_ids __read_mostly = NR_CPUS;
5631EXPORT_SYMBOL(nr_cpu_ids);
5632
3e9830dc 5633#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5634
5635static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5636{
4dcf6aff
IM
5637 struct sched_group *group = sd->groups;
5638 cpumask_t groupmask;
5639 char str[NR_CPUS];
1da177e4 5640
4dcf6aff
IM
5641 cpumask_scnprintf(str, NR_CPUS, sd->span);
5642 cpus_clear(groupmask);
5643
5644 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5645
5646 if (!(sd->flags & SD_LOAD_BALANCE)) {
5647 printk("does not load-balance\n");
5648 if (sd->parent)
5649 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5650 " has parent");
5651 return -1;
41c7ce9a
NP
5652 }
5653
4dcf6aff
IM
5654 printk(KERN_CONT "span %s\n", str);
5655
5656 if (!cpu_isset(cpu, sd->span)) {
5657 printk(KERN_ERR "ERROR: domain->span does not contain "
5658 "CPU%d\n", cpu);
5659 }
5660 if (!cpu_isset(cpu, group->cpumask)) {
5661 printk(KERN_ERR "ERROR: domain->groups does not contain"
5662 " CPU%d\n", cpu);
5663 }
1da177e4 5664
4dcf6aff 5665 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5666 do {
4dcf6aff
IM
5667 if (!group) {
5668 printk("\n");
5669 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5670 break;
5671 }
5672
4dcf6aff
IM
5673 if (!group->__cpu_power) {
5674 printk(KERN_CONT "\n");
5675 printk(KERN_ERR "ERROR: domain->cpu_power not "
5676 "set\n");
5677 break;
5678 }
1da177e4 5679
4dcf6aff
IM
5680 if (!cpus_weight(group->cpumask)) {
5681 printk(KERN_CONT "\n");
5682 printk(KERN_ERR "ERROR: empty group\n");
5683 break;
5684 }
1da177e4 5685
4dcf6aff
IM
5686 if (cpus_intersects(groupmask, group->cpumask)) {
5687 printk(KERN_CONT "\n");
5688 printk(KERN_ERR "ERROR: repeated CPUs\n");
5689 break;
5690 }
1da177e4 5691
4dcf6aff 5692 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5693
4dcf6aff
IM
5694 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5695 printk(KERN_CONT " %s", str);
1da177e4 5696
4dcf6aff
IM
5697 group = group->next;
5698 } while (group != sd->groups);
5699 printk(KERN_CONT "\n");
1da177e4 5700
4dcf6aff
IM
5701 if (!cpus_equal(sd->span, groupmask))
5702 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5703
4dcf6aff
IM
5704 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5705 printk(KERN_ERR "ERROR: parent span is not a superset "
5706 "of domain->span\n");
5707 return 0;
5708}
1da177e4 5709
4dcf6aff
IM
5710static void sched_domain_debug(struct sched_domain *sd, int cpu)
5711{
5712 int level = 0;
1da177e4 5713
4dcf6aff
IM
5714 if (!sd) {
5715 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5716 return;
5717 }
1da177e4 5718
4dcf6aff
IM
5719 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5720
5721 for (;;) {
5722 if (sched_domain_debug_one(sd, cpu, level))
5723 break;
1da177e4
LT
5724 level++;
5725 sd = sd->parent;
33859f7f 5726 if (!sd)
4dcf6aff
IM
5727 break;
5728 }
1da177e4
LT
5729}
5730#else
48f24c4d 5731# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5732#endif
5733
1a20ff27 5734static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5735{
5736 if (cpus_weight(sd->span) == 1)
5737 return 1;
5738
5739 /* Following flags need at least 2 groups */
5740 if (sd->flags & (SD_LOAD_BALANCE |
5741 SD_BALANCE_NEWIDLE |
5742 SD_BALANCE_FORK |
89c4710e
SS
5743 SD_BALANCE_EXEC |
5744 SD_SHARE_CPUPOWER |
5745 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5746 if (sd->groups != sd->groups->next)
5747 return 0;
5748 }
5749
5750 /* Following flags don't use groups */
5751 if (sd->flags & (SD_WAKE_IDLE |
5752 SD_WAKE_AFFINE |
5753 SD_WAKE_BALANCE))
5754 return 0;
5755
5756 return 1;
5757}
5758
48f24c4d
IM
5759static int
5760sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5761{
5762 unsigned long cflags = sd->flags, pflags = parent->flags;
5763
5764 if (sd_degenerate(parent))
5765 return 1;
5766
5767 if (!cpus_equal(sd->span, parent->span))
5768 return 0;
5769
5770 /* Does parent contain flags not in child? */
5771 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5772 if (cflags & SD_WAKE_AFFINE)
5773 pflags &= ~SD_WAKE_BALANCE;
5774 /* Flags needing groups don't count if only 1 group in parent */
5775 if (parent->groups == parent->groups->next) {
5776 pflags &= ~(SD_LOAD_BALANCE |
5777 SD_BALANCE_NEWIDLE |
5778 SD_BALANCE_FORK |
89c4710e
SS
5779 SD_BALANCE_EXEC |
5780 SD_SHARE_CPUPOWER |
5781 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5782 }
5783 if (~cflags & pflags)
5784 return 0;
5785
5786 return 1;
5787}
5788
1da177e4
LT
5789/*
5790 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5791 * hold the hotplug lock.
5792 */
9c1cfda2 5793static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5794{
70b97a7f 5795 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5796 struct sched_domain *tmp;
5797
5798 /* Remove the sched domains which do not contribute to scheduling. */
5799 for (tmp = sd; tmp; tmp = tmp->parent) {
5800 struct sched_domain *parent = tmp->parent;
5801 if (!parent)
5802 break;
1a848870 5803 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5804 tmp->parent = parent->parent;
1a848870
SS
5805 if (parent->parent)
5806 parent->parent->child = tmp;
5807 }
245af2c7
SS
5808 }
5809
1a848870 5810 if (sd && sd_degenerate(sd)) {
245af2c7 5811 sd = sd->parent;
1a848870
SS
5812 if (sd)
5813 sd->child = NULL;
5814 }
1da177e4
LT
5815
5816 sched_domain_debug(sd, cpu);
5817
674311d5 5818 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5819}
5820
5821/* cpus with isolated domains */
67af63a6 5822static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5823
5824/* Setup the mask of cpus configured for isolated domains */
5825static int __init isolated_cpu_setup(char *str)
5826{
5827 int ints[NR_CPUS], i;
5828
5829 str = get_options(str, ARRAY_SIZE(ints), ints);
5830 cpus_clear(cpu_isolated_map);
5831 for (i = 1; i <= ints[0]; i++)
5832 if (ints[i] < NR_CPUS)
5833 cpu_set(ints[i], cpu_isolated_map);
5834 return 1;
5835}
5836
8927f494 5837__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5838
5839/*
6711cab4
SS
5840 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5841 * to a function which identifies what group(along with sched group) a CPU
5842 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5843 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5844 *
5845 * init_sched_build_groups will build a circular linked list of the groups
5846 * covered by the given span, and will set each group's ->cpumask correctly,
5847 * and ->cpu_power to 0.
5848 */
a616058b 5849static void
6711cab4
SS
5850init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5851 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5852 struct sched_group **sg))
1da177e4
LT
5853{
5854 struct sched_group *first = NULL, *last = NULL;
5855 cpumask_t covered = CPU_MASK_NONE;
5856 int i;
5857
5858 for_each_cpu_mask(i, span) {
6711cab4
SS
5859 struct sched_group *sg;
5860 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5861 int j;
5862
5863 if (cpu_isset(i, covered))
5864 continue;
5865
5866 sg->cpumask = CPU_MASK_NONE;
5517d86b 5867 sg->__cpu_power = 0;
1da177e4
LT
5868
5869 for_each_cpu_mask(j, span) {
6711cab4 5870 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5871 continue;
5872
5873 cpu_set(j, covered);
5874 cpu_set(j, sg->cpumask);
5875 }
5876 if (!first)
5877 first = sg;
5878 if (last)
5879 last->next = sg;
5880 last = sg;
5881 }
5882 last->next = first;
5883}
5884
9c1cfda2 5885#define SD_NODES_PER_DOMAIN 16
1da177e4 5886
9c1cfda2 5887#ifdef CONFIG_NUMA
198e2f18 5888
9c1cfda2
JH
5889/**
5890 * find_next_best_node - find the next node to include in a sched_domain
5891 * @node: node whose sched_domain we're building
5892 * @used_nodes: nodes already in the sched_domain
5893 *
41a2d6cf 5894 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5895 * finds the closest node not already in the @used_nodes map.
5896 *
5897 * Should use nodemask_t.
5898 */
5899static int find_next_best_node(int node, unsigned long *used_nodes)
5900{
5901 int i, n, val, min_val, best_node = 0;
5902
5903 min_val = INT_MAX;
5904
5905 for (i = 0; i < MAX_NUMNODES; i++) {
5906 /* Start at @node */
5907 n = (node + i) % MAX_NUMNODES;
5908
5909 if (!nr_cpus_node(n))
5910 continue;
5911
5912 /* Skip already used nodes */
5913 if (test_bit(n, used_nodes))
5914 continue;
5915
5916 /* Simple min distance search */
5917 val = node_distance(node, n);
5918
5919 if (val < min_val) {
5920 min_val = val;
5921 best_node = n;
5922 }
5923 }
5924
5925 set_bit(best_node, used_nodes);
5926 return best_node;
5927}
5928
5929/**
5930 * sched_domain_node_span - get a cpumask for a node's sched_domain
5931 * @node: node whose cpumask we're constructing
5932 * @size: number of nodes to include in this span
5933 *
41a2d6cf 5934 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5935 * should be one that prevents unnecessary balancing, but also spreads tasks
5936 * out optimally.
5937 */
5938static cpumask_t sched_domain_node_span(int node)
5939{
9c1cfda2 5940 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5941 cpumask_t span, nodemask;
5942 int i;
9c1cfda2
JH
5943
5944 cpus_clear(span);
5945 bitmap_zero(used_nodes, MAX_NUMNODES);
5946
5947 nodemask = node_to_cpumask(node);
5948 cpus_or(span, span, nodemask);
5949 set_bit(node, used_nodes);
5950
5951 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5952 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5953
9c1cfda2
JH
5954 nodemask = node_to_cpumask(next_node);
5955 cpus_or(span, span, nodemask);
5956 }
5957
5958 return span;
5959}
5960#endif
5961
5c45bf27 5962int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5963
9c1cfda2 5964/*
48f24c4d 5965 * SMT sched-domains:
9c1cfda2 5966 */
1da177e4
LT
5967#ifdef CONFIG_SCHED_SMT
5968static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5969static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5970
41a2d6cf
IM
5971static int
5972cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 5973{
6711cab4
SS
5974 if (sg)
5975 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5976 return cpu;
5977}
5978#endif
5979
48f24c4d
IM
5980/*
5981 * multi-core sched-domains:
5982 */
1e9f28fa
SS
5983#ifdef CONFIG_SCHED_MC
5984static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5985static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5986#endif
5987
5988#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
5989static int
5990cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 5991{
6711cab4 5992 int group;
d5a7430d 5993 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 5994 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5995 group = first_cpu(mask);
5996 if (sg)
5997 *sg = &per_cpu(sched_group_core, group);
5998 return group;
1e9f28fa
SS
5999}
6000#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6001static int
6002cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6003{
6711cab4
SS
6004 if (sg)
6005 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6006 return cpu;
6007}
6008#endif
6009
1da177e4 6010static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6011static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6012
41a2d6cf
IM
6013static int
6014cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6015{
6711cab4 6016 int group;
48f24c4d 6017#ifdef CONFIG_SCHED_MC
1e9f28fa 6018 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6019 cpus_and(mask, mask, *cpu_map);
6711cab4 6020 group = first_cpu(mask);
1e9f28fa 6021#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6022 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6023 cpus_and(mask, mask, *cpu_map);
6711cab4 6024 group = first_cpu(mask);
1da177e4 6025#else
6711cab4 6026 group = cpu;
1da177e4 6027#endif
6711cab4
SS
6028 if (sg)
6029 *sg = &per_cpu(sched_group_phys, group);
6030 return group;
1da177e4
LT
6031}
6032
6033#ifdef CONFIG_NUMA
1da177e4 6034/*
9c1cfda2
JH
6035 * The init_sched_build_groups can't handle what we want to do with node
6036 * groups, so roll our own. Now each node has its own list of groups which
6037 * gets dynamically allocated.
1da177e4 6038 */
9c1cfda2 6039static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6040static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6041
9c1cfda2 6042static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6043static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6044
6711cab4
SS
6045static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6046 struct sched_group **sg)
9c1cfda2 6047{
6711cab4
SS
6048 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6049 int group;
6050
6051 cpus_and(nodemask, nodemask, *cpu_map);
6052 group = first_cpu(nodemask);
6053
6054 if (sg)
6055 *sg = &per_cpu(sched_group_allnodes, group);
6056 return group;
1da177e4 6057}
6711cab4 6058
08069033
SS
6059static void init_numa_sched_groups_power(struct sched_group *group_head)
6060{
6061 struct sched_group *sg = group_head;
6062 int j;
6063
6064 if (!sg)
6065 return;
3a5c359a
AK
6066 do {
6067 for_each_cpu_mask(j, sg->cpumask) {
6068 struct sched_domain *sd;
08069033 6069
3a5c359a
AK
6070 sd = &per_cpu(phys_domains, j);
6071 if (j != first_cpu(sd->groups->cpumask)) {
6072 /*
6073 * Only add "power" once for each
6074 * physical package.
6075 */
6076 continue;
6077 }
08069033 6078
3a5c359a
AK
6079 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6080 }
6081 sg = sg->next;
6082 } while (sg != group_head);
08069033 6083}
1da177e4
LT
6084#endif
6085
a616058b 6086#ifdef CONFIG_NUMA
51888ca2
SV
6087/* Free memory allocated for various sched_group structures */
6088static void free_sched_groups(const cpumask_t *cpu_map)
6089{
a616058b 6090 int cpu, i;
51888ca2
SV
6091
6092 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6093 struct sched_group **sched_group_nodes
6094 = sched_group_nodes_bycpu[cpu];
6095
51888ca2
SV
6096 if (!sched_group_nodes)
6097 continue;
6098
6099 for (i = 0; i < MAX_NUMNODES; i++) {
6100 cpumask_t nodemask = node_to_cpumask(i);
6101 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6102
6103 cpus_and(nodemask, nodemask, *cpu_map);
6104 if (cpus_empty(nodemask))
6105 continue;
6106
6107 if (sg == NULL)
6108 continue;
6109 sg = sg->next;
6110next_sg:
6111 oldsg = sg;
6112 sg = sg->next;
6113 kfree(oldsg);
6114 if (oldsg != sched_group_nodes[i])
6115 goto next_sg;
6116 }
6117 kfree(sched_group_nodes);
6118 sched_group_nodes_bycpu[cpu] = NULL;
6119 }
51888ca2 6120}
a616058b
SS
6121#else
6122static void free_sched_groups(const cpumask_t *cpu_map)
6123{
6124}
6125#endif
51888ca2 6126
89c4710e
SS
6127/*
6128 * Initialize sched groups cpu_power.
6129 *
6130 * cpu_power indicates the capacity of sched group, which is used while
6131 * distributing the load between different sched groups in a sched domain.
6132 * Typically cpu_power for all the groups in a sched domain will be same unless
6133 * there are asymmetries in the topology. If there are asymmetries, group
6134 * having more cpu_power will pickup more load compared to the group having
6135 * less cpu_power.
6136 *
6137 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6138 * the maximum number of tasks a group can handle in the presence of other idle
6139 * or lightly loaded groups in the same sched domain.
6140 */
6141static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6142{
6143 struct sched_domain *child;
6144 struct sched_group *group;
6145
6146 WARN_ON(!sd || !sd->groups);
6147
6148 if (cpu != first_cpu(sd->groups->cpumask))
6149 return;
6150
6151 child = sd->child;
6152
5517d86b
ED
6153 sd->groups->__cpu_power = 0;
6154
89c4710e
SS
6155 /*
6156 * For perf policy, if the groups in child domain share resources
6157 * (for example cores sharing some portions of the cache hierarchy
6158 * or SMT), then set this domain groups cpu_power such that each group
6159 * can handle only one task, when there are other idle groups in the
6160 * same sched domain.
6161 */
6162 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6163 (child->flags &
6164 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6165 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6166 return;
6167 }
6168
89c4710e
SS
6169 /*
6170 * add cpu_power of each child group to this groups cpu_power
6171 */
6172 group = child->groups;
6173 do {
5517d86b 6174 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6175 group = group->next;
6176 } while (group != child->groups);
6177}
6178
1da177e4 6179/*
1a20ff27
DG
6180 * Build sched domains for a given set of cpus and attach the sched domains
6181 * to the individual cpus
1da177e4 6182 */
51888ca2 6183static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6184{
6185 int i;
d1b55138
JH
6186#ifdef CONFIG_NUMA
6187 struct sched_group **sched_group_nodes = NULL;
6711cab4 6188 int sd_allnodes = 0;
d1b55138
JH
6189
6190 /*
6191 * Allocate the per-node list of sched groups
6192 */
5cf9f062 6193 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6194 GFP_KERNEL);
d1b55138
JH
6195 if (!sched_group_nodes) {
6196 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6197 return -ENOMEM;
d1b55138
JH
6198 }
6199 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6200#endif
1da177e4
LT
6201
6202 /*
1a20ff27 6203 * Set up domains for cpus specified by the cpu_map.
1da177e4 6204 */
1a20ff27 6205 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6206 struct sched_domain *sd = NULL, *p;
6207 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6208
1a20ff27 6209 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6210
6211#ifdef CONFIG_NUMA
dd41f596
IM
6212 if (cpus_weight(*cpu_map) >
6213 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6214 sd = &per_cpu(allnodes_domains, i);
6215 *sd = SD_ALLNODES_INIT;
6216 sd->span = *cpu_map;
6711cab4 6217 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6218 p = sd;
6711cab4 6219 sd_allnodes = 1;
9c1cfda2
JH
6220 } else
6221 p = NULL;
6222
1da177e4 6223 sd = &per_cpu(node_domains, i);
1da177e4 6224 *sd = SD_NODE_INIT;
9c1cfda2
JH
6225 sd->span = sched_domain_node_span(cpu_to_node(i));
6226 sd->parent = p;
1a848870
SS
6227 if (p)
6228 p->child = sd;
9c1cfda2 6229 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6230#endif
6231
6232 p = sd;
6233 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6234 *sd = SD_CPU_INIT;
6235 sd->span = nodemask;
6236 sd->parent = p;
1a848870
SS
6237 if (p)
6238 p->child = sd;
6711cab4 6239 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6240
1e9f28fa
SS
6241#ifdef CONFIG_SCHED_MC
6242 p = sd;
6243 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6244 *sd = SD_MC_INIT;
6245 sd->span = cpu_coregroup_map(i);
6246 cpus_and(sd->span, sd->span, *cpu_map);
6247 sd->parent = p;
1a848870 6248 p->child = sd;
6711cab4 6249 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6250#endif
6251
1da177e4
LT
6252#ifdef CONFIG_SCHED_SMT
6253 p = sd;
6254 sd = &per_cpu(cpu_domains, i);
1da177e4 6255 *sd = SD_SIBLING_INIT;
d5a7430d 6256 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6257 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6258 sd->parent = p;
1a848870 6259 p->child = sd;
6711cab4 6260 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6261#endif
6262 }
6263
6264#ifdef CONFIG_SCHED_SMT
6265 /* Set up CPU (sibling) groups */
9c1cfda2 6266 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6267 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6268 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6269 if (i != first_cpu(this_sibling_map))
6270 continue;
6271
dd41f596
IM
6272 init_sched_build_groups(this_sibling_map, cpu_map,
6273 &cpu_to_cpu_group);
1da177e4
LT
6274 }
6275#endif
6276
1e9f28fa
SS
6277#ifdef CONFIG_SCHED_MC
6278 /* Set up multi-core groups */
6279 for_each_cpu_mask(i, *cpu_map) {
6280 cpumask_t this_core_map = cpu_coregroup_map(i);
6281 cpus_and(this_core_map, this_core_map, *cpu_map);
6282 if (i != first_cpu(this_core_map))
6283 continue;
dd41f596
IM
6284 init_sched_build_groups(this_core_map, cpu_map,
6285 &cpu_to_core_group);
1e9f28fa
SS
6286 }
6287#endif
6288
1da177e4
LT
6289 /* Set up physical groups */
6290 for (i = 0; i < MAX_NUMNODES; i++) {
6291 cpumask_t nodemask = node_to_cpumask(i);
6292
1a20ff27 6293 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6294 if (cpus_empty(nodemask))
6295 continue;
6296
6711cab4 6297 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6298 }
6299
6300#ifdef CONFIG_NUMA
6301 /* Set up node groups */
6711cab4 6302 if (sd_allnodes)
dd41f596
IM
6303 init_sched_build_groups(*cpu_map, cpu_map,
6304 &cpu_to_allnodes_group);
9c1cfda2
JH
6305
6306 for (i = 0; i < MAX_NUMNODES; i++) {
6307 /* Set up node groups */
6308 struct sched_group *sg, *prev;
6309 cpumask_t nodemask = node_to_cpumask(i);
6310 cpumask_t domainspan;
6311 cpumask_t covered = CPU_MASK_NONE;
6312 int j;
6313
6314 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6315 if (cpus_empty(nodemask)) {
6316 sched_group_nodes[i] = NULL;
9c1cfda2 6317 continue;
d1b55138 6318 }
9c1cfda2
JH
6319
6320 domainspan = sched_domain_node_span(i);
6321 cpus_and(domainspan, domainspan, *cpu_map);
6322
15f0b676 6323 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6324 if (!sg) {
6325 printk(KERN_WARNING "Can not alloc domain group for "
6326 "node %d\n", i);
6327 goto error;
6328 }
9c1cfda2
JH
6329 sched_group_nodes[i] = sg;
6330 for_each_cpu_mask(j, nodemask) {
6331 struct sched_domain *sd;
9761eea8 6332
9c1cfda2
JH
6333 sd = &per_cpu(node_domains, j);
6334 sd->groups = sg;
9c1cfda2 6335 }
5517d86b 6336 sg->__cpu_power = 0;
9c1cfda2 6337 sg->cpumask = nodemask;
51888ca2 6338 sg->next = sg;
9c1cfda2
JH
6339 cpus_or(covered, covered, nodemask);
6340 prev = sg;
6341
6342 for (j = 0; j < MAX_NUMNODES; j++) {
6343 cpumask_t tmp, notcovered;
6344 int n = (i + j) % MAX_NUMNODES;
6345
6346 cpus_complement(notcovered, covered);
6347 cpus_and(tmp, notcovered, *cpu_map);
6348 cpus_and(tmp, tmp, domainspan);
6349 if (cpus_empty(tmp))
6350 break;
6351
6352 nodemask = node_to_cpumask(n);
6353 cpus_and(tmp, tmp, nodemask);
6354 if (cpus_empty(tmp))
6355 continue;
6356
15f0b676
SV
6357 sg = kmalloc_node(sizeof(struct sched_group),
6358 GFP_KERNEL, i);
9c1cfda2
JH
6359 if (!sg) {
6360 printk(KERN_WARNING
6361 "Can not alloc domain group for node %d\n", j);
51888ca2 6362 goto error;
9c1cfda2 6363 }
5517d86b 6364 sg->__cpu_power = 0;
9c1cfda2 6365 sg->cpumask = tmp;
51888ca2 6366 sg->next = prev->next;
9c1cfda2
JH
6367 cpus_or(covered, covered, tmp);
6368 prev->next = sg;
6369 prev = sg;
6370 }
9c1cfda2 6371 }
1da177e4
LT
6372#endif
6373
6374 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6375#ifdef CONFIG_SCHED_SMT
1a20ff27 6376 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6377 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6378
89c4710e 6379 init_sched_groups_power(i, sd);
5c45bf27 6380 }
1da177e4 6381#endif
1e9f28fa 6382#ifdef CONFIG_SCHED_MC
5c45bf27 6383 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6384 struct sched_domain *sd = &per_cpu(core_domains, i);
6385
89c4710e 6386 init_sched_groups_power(i, sd);
5c45bf27
SS
6387 }
6388#endif
1e9f28fa 6389
5c45bf27 6390 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6391 struct sched_domain *sd = &per_cpu(phys_domains, i);
6392
89c4710e 6393 init_sched_groups_power(i, sd);
1da177e4
LT
6394 }
6395
9c1cfda2 6396#ifdef CONFIG_NUMA
08069033
SS
6397 for (i = 0; i < MAX_NUMNODES; i++)
6398 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6399
6711cab4
SS
6400 if (sd_allnodes) {
6401 struct sched_group *sg;
f712c0c7 6402
6711cab4 6403 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6404 init_numa_sched_groups_power(sg);
6405 }
9c1cfda2
JH
6406#endif
6407
1da177e4 6408 /* Attach the domains */
1a20ff27 6409 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6410 struct sched_domain *sd;
6411#ifdef CONFIG_SCHED_SMT
6412 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6413#elif defined(CONFIG_SCHED_MC)
6414 sd = &per_cpu(core_domains, i);
1da177e4
LT
6415#else
6416 sd = &per_cpu(phys_domains, i);
6417#endif
6418 cpu_attach_domain(sd, i);
6419 }
51888ca2
SV
6420
6421 return 0;
6422
a616058b 6423#ifdef CONFIG_NUMA
51888ca2
SV
6424error:
6425 free_sched_groups(cpu_map);
6426 return -ENOMEM;
a616058b 6427#endif
1da177e4 6428}
029190c5
PJ
6429
6430static cpumask_t *doms_cur; /* current sched domains */
6431static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6432
6433/*
6434 * Special case: If a kmalloc of a doms_cur partition (array of
6435 * cpumask_t) fails, then fallback to a single sched domain,
6436 * as determined by the single cpumask_t fallback_doms.
6437 */
6438static cpumask_t fallback_doms;
6439
1a20ff27 6440/*
41a2d6cf 6441 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6442 * For now this just excludes isolated cpus, but could be used to
6443 * exclude other special cases in the future.
1a20ff27 6444 */
51888ca2 6445static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6446{
7378547f
MM
6447 int err;
6448
029190c5
PJ
6449 ndoms_cur = 1;
6450 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6451 if (!doms_cur)
6452 doms_cur = &fallback_doms;
6453 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6454 err = build_sched_domains(doms_cur);
6382bc90 6455 register_sched_domain_sysctl();
7378547f
MM
6456
6457 return err;
1a20ff27
DG
6458}
6459
6460static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6461{
51888ca2 6462 free_sched_groups(cpu_map);
9c1cfda2 6463}
1da177e4 6464
1a20ff27
DG
6465/*
6466 * Detach sched domains from a group of cpus specified in cpu_map
6467 * These cpus will now be attached to the NULL domain
6468 */
858119e1 6469static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6470{
6471 int i;
6472
6382bc90
MM
6473 unregister_sched_domain_sysctl();
6474
1a20ff27
DG
6475 for_each_cpu_mask(i, *cpu_map)
6476 cpu_attach_domain(NULL, i);
6477 synchronize_sched();
6478 arch_destroy_sched_domains(cpu_map);
6479}
6480
029190c5
PJ
6481/*
6482 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6483 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6484 * doms_new[] to the current sched domain partitioning, doms_cur[].
6485 * It destroys each deleted domain and builds each new domain.
6486 *
6487 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6488 * The masks don't intersect (don't overlap.) We should setup one
6489 * sched domain for each mask. CPUs not in any of the cpumasks will
6490 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6491 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6492 * it as it is.
6493 *
41a2d6cf
IM
6494 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6495 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6496 * failed the kmalloc call, then it can pass in doms_new == NULL,
6497 * and partition_sched_domains() will fallback to the single partition
6498 * 'fallback_doms'.
6499 *
6500 * Call with hotplug lock held
6501 */
6502void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6503{
6504 int i, j;
6505
a1835615
SV
6506 lock_doms_cur();
6507
7378547f
MM
6508 /* always unregister in case we don't destroy any domains */
6509 unregister_sched_domain_sysctl();
6510
029190c5
PJ
6511 if (doms_new == NULL) {
6512 ndoms_new = 1;
6513 doms_new = &fallback_doms;
6514 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6515 }
6516
6517 /* Destroy deleted domains */
6518 for (i = 0; i < ndoms_cur; i++) {
6519 for (j = 0; j < ndoms_new; j++) {
6520 if (cpus_equal(doms_cur[i], doms_new[j]))
6521 goto match1;
6522 }
6523 /* no match - a current sched domain not in new doms_new[] */
6524 detach_destroy_domains(doms_cur + i);
6525match1:
6526 ;
6527 }
6528
6529 /* Build new domains */
6530 for (i = 0; i < ndoms_new; i++) {
6531 for (j = 0; j < ndoms_cur; j++) {
6532 if (cpus_equal(doms_new[i], doms_cur[j]))
6533 goto match2;
6534 }
6535 /* no match - add a new doms_new */
6536 build_sched_domains(doms_new + i);
6537match2:
6538 ;
6539 }
6540
6541 /* Remember the new sched domains */
6542 if (doms_cur != &fallback_doms)
6543 kfree(doms_cur);
6544 doms_cur = doms_new;
6545 ndoms_cur = ndoms_new;
7378547f
MM
6546
6547 register_sched_domain_sysctl();
a1835615
SV
6548
6549 unlock_doms_cur();
029190c5
PJ
6550}
6551
5c45bf27 6552#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6553static int arch_reinit_sched_domains(void)
5c45bf27
SS
6554{
6555 int err;
6556
95402b38 6557 get_online_cpus();
5c45bf27
SS
6558 detach_destroy_domains(&cpu_online_map);
6559 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6560 put_online_cpus();
5c45bf27
SS
6561
6562 return err;
6563}
6564
6565static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6566{
6567 int ret;
6568
6569 if (buf[0] != '0' && buf[0] != '1')
6570 return -EINVAL;
6571
6572 if (smt)
6573 sched_smt_power_savings = (buf[0] == '1');
6574 else
6575 sched_mc_power_savings = (buf[0] == '1');
6576
6577 ret = arch_reinit_sched_domains();
6578
6579 return ret ? ret : count;
6580}
6581
5c45bf27
SS
6582#ifdef CONFIG_SCHED_MC
6583static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6584{
6585 return sprintf(page, "%u\n", sched_mc_power_savings);
6586}
48f24c4d
IM
6587static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6588 const char *buf, size_t count)
5c45bf27
SS
6589{
6590 return sched_power_savings_store(buf, count, 0);
6591}
6707de00
AB
6592static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6593 sched_mc_power_savings_store);
5c45bf27
SS
6594#endif
6595
6596#ifdef CONFIG_SCHED_SMT
6597static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6598{
6599 return sprintf(page, "%u\n", sched_smt_power_savings);
6600}
48f24c4d
IM
6601static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6602 const char *buf, size_t count)
5c45bf27
SS
6603{
6604 return sched_power_savings_store(buf, count, 1);
6605}
6707de00
AB
6606static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6607 sched_smt_power_savings_store);
6608#endif
6609
6610int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6611{
6612 int err = 0;
6613
6614#ifdef CONFIG_SCHED_SMT
6615 if (smt_capable())
6616 err = sysfs_create_file(&cls->kset.kobj,
6617 &attr_sched_smt_power_savings.attr);
6618#endif
6619#ifdef CONFIG_SCHED_MC
6620 if (!err && mc_capable())
6621 err = sysfs_create_file(&cls->kset.kobj,
6622 &attr_sched_mc_power_savings.attr);
6623#endif
6624 return err;
6625}
5c45bf27
SS
6626#endif
6627
1da177e4 6628/*
41a2d6cf 6629 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6630 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6631 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6632 * which will prevent rebalancing while the sched domains are recalculated.
6633 */
6634static int update_sched_domains(struct notifier_block *nfb,
6635 unsigned long action, void *hcpu)
6636{
1da177e4
LT
6637 switch (action) {
6638 case CPU_UP_PREPARE:
8bb78442 6639 case CPU_UP_PREPARE_FROZEN:
1da177e4 6640 case CPU_DOWN_PREPARE:
8bb78442 6641 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6642 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6643 return NOTIFY_OK;
6644
6645 case CPU_UP_CANCELED:
8bb78442 6646 case CPU_UP_CANCELED_FROZEN:
1da177e4 6647 case CPU_DOWN_FAILED:
8bb78442 6648 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6649 case CPU_ONLINE:
8bb78442 6650 case CPU_ONLINE_FROZEN:
1da177e4 6651 case CPU_DEAD:
8bb78442 6652 case CPU_DEAD_FROZEN:
1da177e4
LT
6653 /*
6654 * Fall through and re-initialise the domains.
6655 */
6656 break;
6657 default:
6658 return NOTIFY_DONE;
6659 }
6660
6661 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6662 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6663
6664 return NOTIFY_OK;
6665}
1da177e4
LT
6666
6667void __init sched_init_smp(void)
6668{
5c1e1767
NP
6669 cpumask_t non_isolated_cpus;
6670
95402b38 6671 get_online_cpus();
1a20ff27 6672 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6673 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6674 if (cpus_empty(non_isolated_cpus))
6675 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6676 put_online_cpus();
1da177e4
LT
6677 /* XXX: Theoretical race here - CPU may be hotplugged now */
6678 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6679
6680 /* Move init over to a non-isolated CPU */
6681 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6682 BUG();
19978ca6 6683 sched_init_granularity();
6b2d7700
SV
6684
6685#ifdef CONFIG_FAIR_GROUP_SCHED
6686 if (nr_cpu_ids == 1)
6687 return;
6688
6689 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6690 "group_balance");
6691 if (!IS_ERR(lb_monitor_task)) {
6692 lb_monitor_task->flags |= PF_NOFREEZE;
6693 wake_up_process(lb_monitor_task);
6694 } else {
6695 printk(KERN_ERR "Could not create load balance monitor thread"
6696 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6697 }
6698#endif
1da177e4
LT
6699}
6700#else
6701void __init sched_init_smp(void)
6702{
19978ca6 6703 sched_init_granularity();
1da177e4
LT
6704}
6705#endif /* CONFIG_SMP */
6706
6707int in_sched_functions(unsigned long addr)
6708{
1da177e4
LT
6709 return in_lock_functions(addr) ||
6710 (addr >= (unsigned long)__sched_text_start
6711 && addr < (unsigned long)__sched_text_end);
6712}
6713
a9957449 6714static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6715{
6716 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6717#ifdef CONFIG_FAIR_GROUP_SCHED
6718 cfs_rq->rq = rq;
6719#endif
67e9fb2a 6720 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6721}
6722
1da177e4
LT
6723void __init sched_init(void)
6724{
476f3534 6725 int highest_cpu = 0;
dd41f596
IM
6726 int i, j;
6727
0a945022 6728 for_each_possible_cpu(i) {
dd41f596 6729 struct rt_prio_array *array;
70b97a7f 6730 struct rq *rq;
1da177e4
LT
6731
6732 rq = cpu_rq(i);
6733 spin_lock_init(&rq->lock);
fcb99371 6734 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6735 rq->nr_running = 0;
dd41f596
IM
6736 rq->clock = 1;
6737 init_cfs_rq(&rq->cfs, rq);
6738#ifdef CONFIG_FAIR_GROUP_SCHED
6739 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6740 {
6741 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6742 struct sched_entity *se =
6743 &per_cpu(init_sched_entity, i);
6744
6745 init_cfs_rq_p[i] = cfs_rq;
6746 init_cfs_rq(cfs_rq, rq);
4cf86d77 6747 cfs_rq->tg = &init_task_group;
3a252015 6748 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6749 &rq->leaf_cfs_rq_list);
6750
3a252015
IM
6751 init_sched_entity_p[i] = se;
6752 se->cfs_rq = &rq->cfs;
6753 se->my_q = cfs_rq;
4cf86d77 6754 se->load.weight = init_task_group_load;
9b5b7751 6755 se->load.inv_weight =
4cf86d77 6756 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6757 se->parent = NULL;
6758 }
4cf86d77 6759 init_task_group.shares = init_task_group_load;
dd41f596 6760#endif
1da177e4 6761
dd41f596
IM
6762 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6763 rq->cpu_load[j] = 0;
1da177e4 6764#ifdef CONFIG_SMP
41c7ce9a 6765 rq->sd = NULL;
1da177e4 6766 rq->active_balance = 0;
dd41f596 6767 rq->next_balance = jiffies;
1da177e4 6768 rq->push_cpu = 0;
0a2966b4 6769 rq->cpu = i;
1da177e4
LT
6770 rq->migration_thread = NULL;
6771 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6772 rq->rt.highest_prio = MAX_RT_PRIO;
1da177e4
LT
6773#endif
6774 atomic_set(&rq->nr_iowait, 0);
6775
dd41f596
IM
6776 array = &rq->rt.active;
6777 for (j = 0; j < MAX_RT_PRIO; j++) {
6778 INIT_LIST_HEAD(array->queue + j);
6779 __clear_bit(j, array->bitmap);
1da177e4 6780 }
476f3534 6781 highest_cpu = i;
dd41f596
IM
6782 /* delimiter for bitsearch: */
6783 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6784 }
6785
2dd73a4f 6786 set_load_weight(&init_task);
b50f60ce 6787
e107be36
AK
6788#ifdef CONFIG_PREEMPT_NOTIFIERS
6789 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6790#endif
6791
c9819f45 6792#ifdef CONFIG_SMP
476f3534 6793 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6794 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6795#endif
6796
b50f60ce
HC
6797#ifdef CONFIG_RT_MUTEXES
6798 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6799#endif
6800
1da177e4
LT
6801 /*
6802 * The boot idle thread does lazy MMU switching as well:
6803 */
6804 atomic_inc(&init_mm.mm_count);
6805 enter_lazy_tlb(&init_mm, current);
6806
6807 /*
6808 * Make us the idle thread. Technically, schedule() should not be
6809 * called from this thread, however somewhere below it might be,
6810 * but because we are the idle thread, we just pick up running again
6811 * when this runqueue becomes "idle".
6812 */
6813 init_idle(current, smp_processor_id());
dd41f596
IM
6814 /*
6815 * During early bootup we pretend to be a normal task:
6816 */
6817 current->sched_class = &fair_sched_class;
1da177e4
LT
6818}
6819
6820#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6821void __might_sleep(char *file, int line)
6822{
48f24c4d 6823#ifdef in_atomic
1da177e4
LT
6824 static unsigned long prev_jiffy; /* ratelimiting */
6825
6826 if ((in_atomic() || irqs_disabled()) &&
6827 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6828 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6829 return;
6830 prev_jiffy = jiffies;
91368d73 6831 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6832 " context at %s:%d\n", file, line);
6833 printk("in_atomic():%d, irqs_disabled():%d\n",
6834 in_atomic(), irqs_disabled());
a4c410f0 6835 debug_show_held_locks(current);
3117df04
IM
6836 if (irqs_disabled())
6837 print_irqtrace_events(current);
1da177e4
LT
6838 dump_stack();
6839 }
6840#endif
6841}
6842EXPORT_SYMBOL(__might_sleep);
6843#endif
6844
6845#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6846static void normalize_task(struct rq *rq, struct task_struct *p)
6847{
6848 int on_rq;
6849 update_rq_clock(rq);
6850 on_rq = p->se.on_rq;
6851 if (on_rq)
6852 deactivate_task(rq, p, 0);
6853 __setscheduler(rq, p, SCHED_NORMAL, 0);
6854 if (on_rq) {
6855 activate_task(rq, p, 0);
6856 resched_task(rq->curr);
6857 }
6858}
6859
1da177e4
LT
6860void normalize_rt_tasks(void)
6861{
a0f98a1c 6862 struct task_struct *g, *p;
1da177e4 6863 unsigned long flags;
70b97a7f 6864 struct rq *rq;
1da177e4
LT
6865
6866 read_lock_irq(&tasklist_lock);
a0f98a1c 6867 do_each_thread(g, p) {
178be793
IM
6868 /*
6869 * Only normalize user tasks:
6870 */
6871 if (!p->mm)
6872 continue;
6873
6cfb0d5d 6874 p->se.exec_start = 0;
6cfb0d5d 6875#ifdef CONFIG_SCHEDSTATS
dd41f596 6876 p->se.wait_start = 0;
dd41f596 6877 p->se.sleep_start = 0;
dd41f596 6878 p->se.block_start = 0;
6cfb0d5d 6879#endif
dd41f596
IM
6880 task_rq(p)->clock = 0;
6881
6882 if (!rt_task(p)) {
6883 /*
6884 * Renice negative nice level userspace
6885 * tasks back to 0:
6886 */
6887 if (TASK_NICE(p) < 0 && p->mm)
6888 set_user_nice(p, 0);
1da177e4 6889 continue;
dd41f596 6890 }
1da177e4 6891
b29739f9
IM
6892 spin_lock_irqsave(&p->pi_lock, flags);
6893 rq = __task_rq_lock(p);
1da177e4 6894
178be793 6895 normalize_task(rq, p);
3a5e4dc1 6896
b29739f9
IM
6897 __task_rq_unlock(rq);
6898 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6899 } while_each_thread(g, p);
6900
1da177e4
LT
6901 read_unlock_irq(&tasklist_lock);
6902}
6903
6904#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6905
6906#ifdef CONFIG_IA64
6907/*
6908 * These functions are only useful for the IA64 MCA handling.
6909 *
6910 * They can only be called when the whole system has been
6911 * stopped - every CPU needs to be quiescent, and no scheduling
6912 * activity can take place. Using them for anything else would
6913 * be a serious bug, and as a result, they aren't even visible
6914 * under any other configuration.
6915 */
6916
6917/**
6918 * curr_task - return the current task for a given cpu.
6919 * @cpu: the processor in question.
6920 *
6921 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6922 */
36c8b586 6923struct task_struct *curr_task(int cpu)
1df5c10a
LT
6924{
6925 return cpu_curr(cpu);
6926}
6927
6928/**
6929 * set_curr_task - set the current task for a given cpu.
6930 * @cpu: the processor in question.
6931 * @p: the task pointer to set.
6932 *
6933 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6934 * are serviced on a separate stack. It allows the architecture to switch the
6935 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6936 * must be called with all CPU's synchronized, and interrupts disabled, the
6937 * and caller must save the original value of the current task (see
6938 * curr_task() above) and restore that value before reenabling interrupts and
6939 * re-starting the system.
6940 *
6941 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6942 */
36c8b586 6943void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6944{
6945 cpu_curr(cpu) = p;
6946}
6947
6948#endif
29f59db3
SV
6949
6950#ifdef CONFIG_FAIR_GROUP_SCHED
6951
6b2d7700
SV
6952#ifdef CONFIG_SMP
6953/*
6954 * distribute shares of all task groups among their schedulable entities,
6955 * to reflect load distrbution across cpus.
6956 */
6957static int rebalance_shares(struct sched_domain *sd, int this_cpu)
6958{
6959 struct cfs_rq *cfs_rq;
6960 struct rq *rq = cpu_rq(this_cpu);
6961 cpumask_t sdspan = sd->span;
6962 int balanced = 1;
6963
6964 /* Walk thr' all the task groups that we have */
6965 for_each_leaf_cfs_rq(rq, cfs_rq) {
6966 int i;
6967 unsigned long total_load = 0, total_shares;
6968 struct task_group *tg = cfs_rq->tg;
6969
6970 /* Gather total task load of this group across cpus */
6971 for_each_cpu_mask(i, sdspan)
6972 total_load += tg->cfs_rq[i]->load.weight;
6973
6974 /* Nothing to do if this group has no load */
6975 if (!total_load)
6976 continue;
6977
6978 /*
6979 * tg->shares represents the number of cpu shares the task group
6980 * is eligible to hold on a single cpu. On N cpus, it is
6981 * eligible to hold (N * tg->shares) number of cpu shares.
6982 */
6983 total_shares = tg->shares * cpus_weight(sdspan);
6984
6985 /*
6986 * redistribute total_shares across cpus as per the task load
6987 * distribution.
6988 */
6989 for_each_cpu_mask(i, sdspan) {
6990 unsigned long local_load, local_shares;
6991
6992 local_load = tg->cfs_rq[i]->load.weight;
6993 local_shares = (local_load * total_shares) / total_load;
6994 if (!local_shares)
6995 local_shares = MIN_GROUP_SHARES;
6996 if (local_shares == tg->se[i]->load.weight)
6997 continue;
6998
6999 spin_lock_irq(&cpu_rq(i)->lock);
7000 set_se_shares(tg->se[i], local_shares);
7001 spin_unlock_irq(&cpu_rq(i)->lock);
7002 balanced = 0;
7003 }
7004 }
7005
7006 return balanced;
7007}
7008
7009/*
7010 * How frequently should we rebalance_shares() across cpus?
7011 *
7012 * The more frequently we rebalance shares, the more accurate is the fairness
7013 * of cpu bandwidth distribution between task groups. However higher frequency
7014 * also implies increased scheduling overhead.
7015 *
7016 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7017 * consecutive calls to rebalance_shares() in the same sched domain.
7018 *
7019 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7020 * consecutive calls to rebalance_shares() in the same sched domain.
7021 *
7022 * These settings allows for the appropriate tradeoff between accuracy of
7023 * fairness and the associated overhead.
7024 *
7025 */
7026
7027/* default: 8ms, units: milliseconds */
7028const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7029
7030/* default: 128ms, units: milliseconds */
7031const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7032
7033/* kernel thread that runs rebalance_shares() periodically */
7034static int load_balance_monitor(void *unused)
7035{
7036 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7037 struct sched_param schedparm;
7038 int ret;
7039
7040 /*
7041 * We don't want this thread's execution to be limited by the shares
7042 * assigned to default group (init_task_group). Hence make it run
7043 * as a SCHED_RR RT task at the lowest priority.
7044 */
7045 schedparm.sched_priority = 1;
7046 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7047 if (ret)
7048 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7049 " monitor thread (error = %d) \n", ret);
7050
7051 while (!kthread_should_stop()) {
7052 int i, cpu, balanced = 1;
7053
7054 /* Prevent cpus going down or coming up */
86ef5c9a 7055 get_online_cpus();
6b2d7700
SV
7056 /* lockout changes to doms_cur[] array */
7057 lock_doms_cur();
7058 /*
7059 * Enter a rcu read-side critical section to safely walk rq->sd
7060 * chain on various cpus and to walk task group list
7061 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7062 */
7063 rcu_read_lock();
7064
7065 for (i = 0; i < ndoms_cur; i++) {
7066 cpumask_t cpumap = doms_cur[i];
7067 struct sched_domain *sd = NULL, *sd_prev = NULL;
7068
7069 cpu = first_cpu(cpumap);
7070
7071 /* Find the highest domain at which to balance shares */
7072 for_each_domain(cpu, sd) {
7073 if (!(sd->flags & SD_LOAD_BALANCE))
7074 continue;
7075 sd_prev = sd;
7076 }
7077
7078 sd = sd_prev;
7079 /* sd == NULL? No load balance reqd in this domain */
7080 if (!sd)
7081 continue;
7082
7083 balanced &= rebalance_shares(sd, cpu);
7084 }
7085
7086 rcu_read_unlock();
7087
7088 unlock_doms_cur();
86ef5c9a 7089 put_online_cpus();
6b2d7700
SV
7090
7091 if (!balanced)
7092 timeout = sysctl_sched_min_bal_int_shares;
7093 else if (timeout < sysctl_sched_max_bal_int_shares)
7094 timeout *= 2;
7095
7096 msleep_interruptible(timeout);
7097 }
7098
7099 return 0;
7100}
7101#endif /* CONFIG_SMP */
7102
29f59db3 7103/* allocate runqueue etc for a new task group */
4cf86d77 7104struct task_group *sched_create_group(void)
29f59db3 7105{
4cf86d77 7106 struct task_group *tg;
29f59db3
SV
7107 struct cfs_rq *cfs_rq;
7108 struct sched_entity *se;
9b5b7751 7109 struct rq *rq;
29f59db3
SV
7110 int i;
7111
29f59db3
SV
7112 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7113 if (!tg)
7114 return ERR_PTR(-ENOMEM);
7115
9b5b7751 7116 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7117 if (!tg->cfs_rq)
7118 goto err;
9b5b7751 7119 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7120 if (!tg->se)
7121 goto err;
7122
7123 for_each_possible_cpu(i) {
9b5b7751 7124 rq = cpu_rq(i);
29f59db3
SV
7125
7126 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7127 cpu_to_node(i));
7128 if (!cfs_rq)
7129 goto err;
7130
7131 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7132 cpu_to_node(i));
7133 if (!se)
7134 goto err;
7135
7136 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7137 memset(se, 0, sizeof(struct sched_entity));
7138
7139 tg->cfs_rq[i] = cfs_rq;
7140 init_cfs_rq(cfs_rq, rq);
7141 cfs_rq->tg = tg;
29f59db3
SV
7142
7143 tg->se[i] = se;
7144 se->cfs_rq = &rq->cfs;
7145 se->my_q = cfs_rq;
7146 se->load.weight = NICE_0_LOAD;
7147 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7148 se->parent = NULL;
7149 }
7150
ec2c507f
SV
7151 tg->shares = NICE_0_LOAD;
7152
7153 lock_task_group_list();
9b5b7751
SV
7154 for_each_possible_cpu(i) {
7155 rq = cpu_rq(i);
7156 cfs_rq = tg->cfs_rq[i];
7157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7158 }
ec2c507f 7159 unlock_task_group_list();
29f59db3 7160
9b5b7751 7161 return tg;
29f59db3
SV
7162
7163err:
7164 for_each_possible_cpu(i) {
a65914b3 7165 if (tg->cfs_rq)
29f59db3 7166 kfree(tg->cfs_rq[i]);
a65914b3 7167 if (tg->se)
29f59db3
SV
7168 kfree(tg->se[i]);
7169 }
a65914b3
IM
7170 kfree(tg->cfs_rq);
7171 kfree(tg->se);
7172 kfree(tg);
29f59db3
SV
7173
7174 return ERR_PTR(-ENOMEM);
7175}
7176
9b5b7751
SV
7177/* rcu callback to free various structures associated with a task group */
7178static void free_sched_group(struct rcu_head *rhp)
29f59db3 7179{
ae8393e5
SV
7180 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7181 struct cfs_rq *cfs_rq;
29f59db3
SV
7182 struct sched_entity *se;
7183 int i;
7184
29f59db3
SV
7185 /* now it should be safe to free those cfs_rqs */
7186 for_each_possible_cpu(i) {
7187 cfs_rq = tg->cfs_rq[i];
7188 kfree(cfs_rq);
7189
7190 se = tg->se[i];
7191 kfree(se);
7192 }
7193
7194 kfree(tg->cfs_rq);
7195 kfree(tg->se);
7196 kfree(tg);
7197}
7198
9b5b7751 7199/* Destroy runqueue etc associated with a task group */
4cf86d77 7200void sched_destroy_group(struct task_group *tg)
29f59db3 7201{
7bae49d4 7202 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7203 int i;
29f59db3 7204
ec2c507f 7205 lock_task_group_list();
9b5b7751
SV
7206 for_each_possible_cpu(i) {
7207 cfs_rq = tg->cfs_rq[i];
7208 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7209 }
ec2c507f 7210 unlock_task_group_list();
9b5b7751 7211
7bae49d4 7212 BUG_ON(!cfs_rq);
9b5b7751
SV
7213
7214 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7215 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7216}
7217
9b5b7751 7218/* change task's runqueue when it moves between groups.
3a252015
IM
7219 * The caller of this function should have put the task in its new group
7220 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7221 * reflect its new group.
9b5b7751
SV
7222 */
7223void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7224{
7225 int on_rq, running;
7226 unsigned long flags;
7227 struct rq *rq;
7228
7229 rq = task_rq_lock(tsk, &flags);
7230
dae51f56 7231 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7232 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7233 goto done;
dae51f56 7234 }
29f59db3
SV
7235
7236 update_rq_clock(rq);
7237
051a1d1a 7238 running = task_current(rq, tsk);
29f59db3
SV
7239 on_rq = tsk->se.on_rq;
7240
83b699ed 7241 if (on_rq) {
29f59db3 7242 dequeue_task(rq, tsk, 0);
83b699ed
SV
7243 if (unlikely(running))
7244 tsk->sched_class->put_prev_task(rq, tsk);
7245 }
29f59db3 7246
ce96b5ac 7247 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7248
83b699ed
SV
7249 if (on_rq) {
7250 if (unlikely(running))
7251 tsk->sched_class->set_curr_task(rq);
7074badb 7252 enqueue_task(rq, tsk, 0);
83b699ed 7253 }
29f59db3
SV
7254
7255done:
7256 task_rq_unlock(rq, &flags);
7257}
7258
6b2d7700 7259/* rq->lock to be locked by caller */
29f59db3
SV
7260static void set_se_shares(struct sched_entity *se, unsigned long shares)
7261{
7262 struct cfs_rq *cfs_rq = se->cfs_rq;
7263 struct rq *rq = cfs_rq->rq;
7264 int on_rq;
7265
6b2d7700
SV
7266 if (!shares)
7267 shares = MIN_GROUP_SHARES;
29f59db3
SV
7268
7269 on_rq = se->on_rq;
6b2d7700 7270 if (on_rq) {
29f59db3 7271 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7272 dec_cpu_load(rq, se->load.weight);
7273 }
29f59db3
SV
7274
7275 se->load.weight = shares;
7276 se->load.inv_weight = div64_64((1ULL<<32), shares);
7277
6b2d7700 7278 if (on_rq) {
29f59db3 7279 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7280 inc_cpu_load(rq, se->load.weight);
7281 }
29f59db3
SV
7282}
7283
4cf86d77 7284int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7285{
7286 int i;
6b2d7700
SV
7287 struct cfs_rq *cfs_rq;
7288 struct rq *rq;
c61935fd 7289
ec2c507f 7290 lock_task_group_list();
9b5b7751 7291 if (tg->shares == shares)
5cb350ba 7292 goto done;
29f59db3 7293
6b2d7700
SV
7294 if (shares < MIN_GROUP_SHARES)
7295 shares = MIN_GROUP_SHARES;
7296
7297 /*
7298 * Prevent any load balance activity (rebalance_shares,
7299 * load_balance_fair) from referring to this group first,
7300 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7301 */
7302 for_each_possible_cpu(i) {
7303 cfs_rq = tg->cfs_rq[i];
7304 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7305 }
7306
7307 /* wait for any ongoing reference to this group to finish */
7308 synchronize_sched();
7309
7310 /*
7311 * Now we are free to modify the group's share on each cpu
7312 * w/o tripping rebalance_share or load_balance_fair.
7313 */
9b5b7751 7314 tg->shares = shares;
6b2d7700
SV
7315 for_each_possible_cpu(i) {
7316 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7317 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7318 spin_unlock_irq(&cpu_rq(i)->lock);
7319 }
29f59db3 7320
6b2d7700
SV
7321 /*
7322 * Enable load balance activity on this group, by inserting it back on
7323 * each cpu's rq->leaf_cfs_rq_list.
7324 */
7325 for_each_possible_cpu(i) {
7326 rq = cpu_rq(i);
7327 cfs_rq = tg->cfs_rq[i];
7328 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7329 }
5cb350ba 7330done:
ec2c507f 7331 unlock_task_group_list();
9b5b7751 7332 return 0;
29f59db3
SV
7333}
7334
5cb350ba
DG
7335unsigned long sched_group_shares(struct task_group *tg)
7336{
7337 return tg->shares;
7338}
7339
3a252015 7340#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7341
7342#ifdef CONFIG_FAIR_CGROUP_SCHED
7343
7344/* return corresponding task_group object of a cgroup */
2b01dfe3 7345static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7346{
2b01dfe3
PM
7347 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7348 struct task_group, css);
68318b8e
SV
7349}
7350
7351static struct cgroup_subsys_state *
2b01dfe3 7352cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7353{
7354 struct task_group *tg;
7355
2b01dfe3 7356 if (!cgrp->parent) {
68318b8e 7357 /* This is early initialization for the top cgroup */
2b01dfe3 7358 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7359 return &init_task_group.css;
7360 }
7361
7362 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7363 if (cgrp->parent->parent)
68318b8e
SV
7364 return ERR_PTR(-EINVAL);
7365
7366 tg = sched_create_group();
7367 if (IS_ERR(tg))
7368 return ERR_PTR(-ENOMEM);
7369
7370 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7371 tg->css.cgroup = cgrp;
68318b8e
SV
7372
7373 return &tg->css;
7374}
7375
41a2d6cf
IM
7376static void
7377cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7378{
2b01dfe3 7379 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7380
7381 sched_destroy_group(tg);
7382}
7383
41a2d6cf
IM
7384static int
7385cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7386 struct task_struct *tsk)
68318b8e
SV
7387{
7388 /* We don't support RT-tasks being in separate groups */
7389 if (tsk->sched_class != &fair_sched_class)
7390 return -EINVAL;
7391
7392 return 0;
7393}
7394
7395static void
2b01dfe3 7396cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7397 struct cgroup *old_cont, struct task_struct *tsk)
7398{
7399 sched_move_task(tsk);
7400}
7401
2b01dfe3
PM
7402static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7403 u64 shareval)
68318b8e 7404{
2b01dfe3 7405 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7406}
7407
2b01dfe3 7408static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7409{
2b01dfe3 7410 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7411
7412 return (u64) tg->shares;
7413}
7414
fe5c7cc2
PM
7415static struct cftype cpu_files[] = {
7416 {
7417 .name = "shares",
7418 .read_uint = cpu_shares_read_uint,
7419 .write_uint = cpu_shares_write_uint,
7420 },
68318b8e
SV
7421};
7422
7423static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7424{
fe5c7cc2 7425 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7426}
7427
7428struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7429 .name = "cpu",
7430 .create = cpu_cgroup_create,
7431 .destroy = cpu_cgroup_destroy,
7432 .can_attach = cpu_cgroup_can_attach,
7433 .attach = cpu_cgroup_attach,
7434 .populate = cpu_cgroup_populate,
7435 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7436 .early_init = 1,
7437};
7438
7439#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7440
7441#ifdef CONFIG_CGROUP_CPUACCT
7442
7443/*
7444 * CPU accounting code for task groups.
7445 *
7446 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7447 * (balbir@in.ibm.com).
7448 */
7449
7450/* track cpu usage of a group of tasks */
7451struct cpuacct {
7452 struct cgroup_subsys_state css;
7453 /* cpuusage holds pointer to a u64-type object on every cpu */
7454 u64 *cpuusage;
7455};
7456
7457struct cgroup_subsys cpuacct_subsys;
7458
7459/* return cpu accounting group corresponding to this container */
7460static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7461{
7462 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7463 struct cpuacct, css);
7464}
7465
7466/* return cpu accounting group to which this task belongs */
7467static inline struct cpuacct *task_ca(struct task_struct *tsk)
7468{
7469 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7470 struct cpuacct, css);
7471}
7472
7473/* create a new cpu accounting group */
7474static struct cgroup_subsys_state *cpuacct_create(
7475 struct cgroup_subsys *ss, struct cgroup *cont)
7476{
7477 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7478
7479 if (!ca)
7480 return ERR_PTR(-ENOMEM);
7481
7482 ca->cpuusage = alloc_percpu(u64);
7483 if (!ca->cpuusage) {
7484 kfree(ca);
7485 return ERR_PTR(-ENOMEM);
7486 }
7487
7488 return &ca->css;
7489}
7490
7491/* destroy an existing cpu accounting group */
41a2d6cf
IM
7492static void
7493cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7494{
7495 struct cpuacct *ca = cgroup_ca(cont);
7496
7497 free_percpu(ca->cpuusage);
7498 kfree(ca);
7499}
7500
7501/* return total cpu usage (in nanoseconds) of a group */
7502static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7503{
7504 struct cpuacct *ca = cgroup_ca(cont);
7505 u64 totalcpuusage = 0;
7506 int i;
7507
7508 for_each_possible_cpu(i) {
7509 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7510
7511 /*
7512 * Take rq->lock to make 64-bit addition safe on 32-bit
7513 * platforms.
7514 */
7515 spin_lock_irq(&cpu_rq(i)->lock);
7516 totalcpuusage += *cpuusage;
7517 spin_unlock_irq(&cpu_rq(i)->lock);
7518 }
7519
7520 return totalcpuusage;
7521}
7522
7523static struct cftype files[] = {
7524 {
7525 .name = "usage",
7526 .read_uint = cpuusage_read,
7527 },
7528};
7529
7530static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7531{
7532 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7533}
7534
7535/*
7536 * charge this task's execution time to its accounting group.
7537 *
7538 * called with rq->lock held.
7539 */
7540static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7541{
7542 struct cpuacct *ca;
7543
7544 if (!cpuacct_subsys.active)
7545 return;
7546
7547 ca = task_ca(tsk);
7548 if (ca) {
7549 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7550
7551 *cpuusage += cputime;
7552 }
7553}
7554
7555struct cgroup_subsys cpuacct_subsys = {
7556 .name = "cpuacct",
7557 .create = cpuacct_create,
7558 .destroy = cpuacct_destroy,
7559 .populate = cpuacct_populate,
7560 .subsys_id = cpuacct_subsys_id,
7561};
7562#endif /* CONFIG_CGROUP_CPUACCT */