]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: group scheduling, change how cpu load is calculated
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
ae8393e5 172 struct rcu_head rcu;
29f59db3
SV
173};
174
175/* Default task group's sched entity on each cpu */
176static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
177/* Default task group's cfs_rq on each cpu */
178static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
179
9b5b7751
SV
180static struct sched_entity *init_sched_entity_p[NR_CPUS];
181static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 182
ec2c507f
SV
183/* task_group_mutex serializes add/remove of task groups and also changes to
184 * a task group's cpu shares.
185 */
186static DEFINE_MUTEX(task_group_mutex);
187
29f59db3 188/* Default task group.
3a252015 189 * Every task in system belong to this group at bootup.
29f59db3 190 */
4cf86d77 191struct task_group init_task_group = {
3a252015
IM
192 .se = init_sched_entity_p,
193 .cfs_rq = init_cfs_rq_p,
194};
9b5b7751 195
24e377a8 196#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 197# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 198#else
93f992cc 199# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
200#endif
201
93f992cc 202static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
203
204/* return group to which a task belongs */
4cf86d77 205static inline struct task_group *task_group(struct task_struct *p)
29f59db3 206{
4cf86d77 207 struct task_group *tg;
9b5b7751 208
24e377a8
SV
209#ifdef CONFIG_FAIR_USER_SCHED
210 tg = p->user->tg;
68318b8e
SV
211#elif defined(CONFIG_FAIR_CGROUP_SCHED)
212 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
213 struct task_group, css);
24e377a8 214#else
41a2d6cf 215 tg = &init_task_group;
24e377a8 216#endif
9b5b7751 217 return tg;
29f59db3
SV
218}
219
220/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 221static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 222{
ce96b5ac
DA
223 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
224 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
225}
226
ec2c507f
SV
227static inline void lock_task_group_list(void)
228{
229 mutex_lock(&task_group_mutex);
230}
231
232static inline void unlock_task_group_list(void)
233{
234 mutex_unlock(&task_group_mutex);
235}
236
29f59db3
SV
237#else
238
ce96b5ac 239static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
240static inline void lock_task_group_list(void) { }
241static inline void unlock_task_group_list(void) { }
29f59db3
SV
242
243#endif /* CONFIG_FAIR_GROUP_SCHED */
244
6aa645ea
IM
245/* CFS-related fields in a runqueue */
246struct cfs_rq {
247 struct load_weight load;
248 unsigned long nr_running;
249
6aa645ea 250 u64 exec_clock;
e9acbff6 251 u64 min_vruntime;
6aa645ea
IM
252
253 struct rb_root tasks_timeline;
254 struct rb_node *rb_leftmost;
255 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
256 /* 'curr' points to currently running entity on this cfs_rq.
257 * It is set to NULL otherwise (i.e when none are currently running).
258 */
259 struct sched_entity *curr;
ddc97297
PZ
260
261 unsigned long nr_spread_over;
262
62160e3f 263#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
264 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
265
41a2d6cf
IM
266 /*
267 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
268 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
269 * (like users, containers etc.)
270 *
271 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
272 * list is used during load balance.
273 */
41a2d6cf
IM
274 struct list_head leaf_cfs_rq_list;
275 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
276#endif
277};
1da177e4 278
6aa645ea
IM
279/* Real-Time classes' related field in a runqueue: */
280struct rt_rq {
281 struct rt_prio_array active;
282 int rt_load_balance_idx;
283 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
284};
285
1da177e4
LT
286/*
287 * This is the main, per-CPU runqueue data structure.
288 *
289 * Locking rule: those places that want to lock multiple runqueues
290 * (such as the load balancing or the thread migration code), lock
291 * acquire operations must be ordered by ascending &runqueue.
292 */
70b97a7f 293struct rq {
d8016491
IM
294 /* runqueue lock: */
295 spinlock_t lock;
1da177e4
LT
296
297 /*
298 * nr_running and cpu_load should be in the same cacheline because
299 * remote CPUs use both these fields when doing load calculation.
300 */
301 unsigned long nr_running;
6aa645ea
IM
302 #define CPU_LOAD_IDX_MAX 5
303 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 304 unsigned char idle_at_tick;
46cb4b7c
SS
305#ifdef CONFIG_NO_HZ
306 unsigned char in_nohz_recently;
307#endif
d8016491
IM
308 /* capture load from *all* tasks on this cpu: */
309 struct load_weight load;
6aa645ea
IM
310 unsigned long nr_load_updates;
311 u64 nr_switches;
312
313 struct cfs_rq cfs;
314#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
315 /* list of leaf cfs_rq on this cpu: */
316 struct list_head leaf_cfs_rq_list;
1da177e4 317#endif
41a2d6cf 318 struct rt_rq rt;
1da177e4
LT
319
320 /*
321 * This is part of a global counter where only the total sum
322 * over all CPUs matters. A task can increase this counter on
323 * one CPU and if it got migrated afterwards it may decrease
324 * it on another CPU. Always updated under the runqueue lock:
325 */
326 unsigned long nr_uninterruptible;
327
36c8b586 328 struct task_struct *curr, *idle;
c9819f45 329 unsigned long next_balance;
1da177e4 330 struct mm_struct *prev_mm;
6aa645ea 331
6aa645ea
IM
332 u64 clock, prev_clock_raw;
333 s64 clock_max_delta;
334
335 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
336 u64 idle_clock;
337 unsigned int clock_deep_idle_events;
529c7726 338 u64 tick_timestamp;
6aa645ea 339
1da177e4
LT
340 atomic_t nr_iowait;
341
342#ifdef CONFIG_SMP
343 struct sched_domain *sd;
344
345 /* For active balancing */
346 int active_balance;
347 int push_cpu;
d8016491
IM
348 /* cpu of this runqueue: */
349 int cpu;
1da177e4 350
36c8b586 351 struct task_struct *migration_thread;
1da177e4
LT
352 struct list_head migration_queue;
353#endif
354
355#ifdef CONFIG_SCHEDSTATS
356 /* latency stats */
357 struct sched_info rq_sched_info;
358
359 /* sys_sched_yield() stats */
480b9434
KC
360 unsigned int yld_exp_empty;
361 unsigned int yld_act_empty;
362 unsigned int yld_both_empty;
363 unsigned int yld_count;
1da177e4
LT
364
365 /* schedule() stats */
480b9434
KC
366 unsigned int sched_switch;
367 unsigned int sched_count;
368 unsigned int sched_goidle;
1da177e4
LT
369
370 /* try_to_wake_up() stats */
480b9434
KC
371 unsigned int ttwu_count;
372 unsigned int ttwu_local;
b8efb561
IM
373
374 /* BKL stats */
480b9434 375 unsigned int bkl_count;
1da177e4 376#endif
fcb99371 377 struct lock_class_key rq_lock_key;
1da177e4
LT
378};
379
f34e3b61 380static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 381static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 382
dd41f596
IM
383static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
384{
385 rq->curr->sched_class->check_preempt_curr(rq, p);
386}
387
0a2966b4
CL
388static inline int cpu_of(struct rq *rq)
389{
390#ifdef CONFIG_SMP
391 return rq->cpu;
392#else
393 return 0;
394#endif
395}
396
20d315d4 397/*
b04a0f4c
IM
398 * Update the per-runqueue clock, as finegrained as the platform can give
399 * us, but without assuming monotonicity, etc.:
20d315d4 400 */
b04a0f4c 401static void __update_rq_clock(struct rq *rq)
20d315d4
IM
402{
403 u64 prev_raw = rq->prev_clock_raw;
404 u64 now = sched_clock();
405 s64 delta = now - prev_raw;
406 u64 clock = rq->clock;
407
b04a0f4c
IM
408#ifdef CONFIG_SCHED_DEBUG
409 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
410#endif
20d315d4
IM
411 /*
412 * Protect against sched_clock() occasionally going backwards:
413 */
414 if (unlikely(delta < 0)) {
415 clock++;
416 rq->clock_warps++;
417 } else {
418 /*
419 * Catch too large forward jumps too:
420 */
529c7726
IM
421 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
422 if (clock < rq->tick_timestamp + TICK_NSEC)
423 clock = rq->tick_timestamp + TICK_NSEC;
424 else
425 clock++;
20d315d4
IM
426 rq->clock_overflows++;
427 } else {
428 if (unlikely(delta > rq->clock_max_delta))
429 rq->clock_max_delta = delta;
430 clock += delta;
431 }
432 }
433
434 rq->prev_clock_raw = now;
435 rq->clock = clock;
b04a0f4c 436}
20d315d4 437
b04a0f4c
IM
438static void update_rq_clock(struct rq *rq)
439{
440 if (likely(smp_processor_id() == cpu_of(rq)))
441 __update_rq_clock(rq);
20d315d4
IM
442}
443
674311d5
NP
444/*
445 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 446 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
447 *
448 * The domain tree of any CPU may only be accessed from within
449 * preempt-disabled sections.
450 */
48f24c4d
IM
451#define for_each_domain(cpu, __sd) \
452 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
453
454#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
455#define this_rq() (&__get_cpu_var(runqueues))
456#define task_rq(p) cpu_rq(task_cpu(p))
457#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
458
bf5c91ba
IM
459/*
460 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
461 */
462#ifdef CONFIG_SCHED_DEBUG
463# define const_debug __read_mostly
464#else
465# define const_debug static const
466#endif
467
468/*
469 * Debugging: various feature bits
470 */
471enum {
bbdba7c0 472 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
473 SCHED_FEAT_WAKEUP_PREEMPT = 2,
474 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
475 SCHED_FEAT_TREE_AVG = 8,
476 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
477};
478
479const_debug unsigned int sysctl_sched_features =
8401f775 480 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 481 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
482 SCHED_FEAT_START_DEBIT * 1 |
483 SCHED_FEAT_TREE_AVG * 0 |
9612633a 484 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
485
486#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
487
b82d9fdd
PZ
488/*
489 * Number of tasks to iterate in a single balance run.
490 * Limited because this is done with IRQs disabled.
491 */
492const_debug unsigned int sysctl_sched_nr_migrate = 32;
493
e436d800
IM
494/*
495 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
496 * clock constructed from sched_clock():
497 */
498unsigned long long cpu_clock(int cpu)
499{
e436d800
IM
500 unsigned long long now;
501 unsigned long flags;
b04a0f4c 502 struct rq *rq;
e436d800 503
2cd4d0ea 504 local_irq_save(flags);
b04a0f4c 505 rq = cpu_rq(cpu);
8ced5f69
IM
506 /*
507 * Only call sched_clock() if the scheduler has already been
508 * initialized (some code might call cpu_clock() very early):
509 */
510 if (rq->idle)
511 update_rq_clock(rq);
b04a0f4c 512 now = rq->clock;
2cd4d0ea 513 local_irq_restore(flags);
e436d800
IM
514
515 return now;
516}
a58f6f25 517EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 518
1da177e4 519#ifndef prepare_arch_switch
4866cde0
NP
520# define prepare_arch_switch(next) do { } while (0)
521#endif
522#ifndef finish_arch_switch
523# define finish_arch_switch(prev) do { } while (0)
524#endif
525
051a1d1a
DA
526static inline int task_current(struct rq *rq, struct task_struct *p)
527{
528 return rq->curr == p;
529}
530
4866cde0 531#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 532static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 533{
051a1d1a 534 return task_current(rq, p);
4866cde0
NP
535}
536
70b97a7f 537static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
538{
539}
540
70b97a7f 541static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 542{
da04c035
IM
543#ifdef CONFIG_DEBUG_SPINLOCK
544 /* this is a valid case when another task releases the spinlock */
545 rq->lock.owner = current;
546#endif
8a25d5de
IM
547 /*
548 * If we are tracking spinlock dependencies then we have to
549 * fix up the runqueue lock - which gets 'carried over' from
550 * prev into current:
551 */
552 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
553
4866cde0
NP
554 spin_unlock_irq(&rq->lock);
555}
556
557#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 558static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
559{
560#ifdef CONFIG_SMP
561 return p->oncpu;
562#else
051a1d1a 563 return task_current(rq, p);
4866cde0
NP
564#endif
565}
566
70b97a7f 567static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
568{
569#ifdef CONFIG_SMP
570 /*
571 * We can optimise this out completely for !SMP, because the
572 * SMP rebalancing from interrupt is the only thing that cares
573 * here.
574 */
575 next->oncpu = 1;
576#endif
577#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
578 spin_unlock_irq(&rq->lock);
579#else
580 spin_unlock(&rq->lock);
581#endif
582}
583
70b97a7f 584static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
585{
586#ifdef CONFIG_SMP
587 /*
588 * After ->oncpu is cleared, the task can be moved to a different CPU.
589 * We must ensure this doesn't happen until the switch is completely
590 * finished.
591 */
592 smp_wmb();
593 prev->oncpu = 0;
594#endif
595#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
596 local_irq_enable();
1da177e4 597#endif
4866cde0
NP
598}
599#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 600
b29739f9
IM
601/*
602 * __task_rq_lock - lock the runqueue a given task resides on.
603 * Must be called interrupts disabled.
604 */
70b97a7f 605static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
606 __acquires(rq->lock)
607{
3a5c359a
AK
608 for (;;) {
609 struct rq *rq = task_rq(p);
610 spin_lock(&rq->lock);
611 if (likely(rq == task_rq(p)))
612 return rq;
b29739f9 613 spin_unlock(&rq->lock);
b29739f9 614 }
b29739f9
IM
615}
616
1da177e4
LT
617/*
618 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 619 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
620 * explicitly disabling preemption.
621 */
70b97a7f 622static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
623 __acquires(rq->lock)
624{
70b97a7f 625 struct rq *rq;
1da177e4 626
3a5c359a
AK
627 for (;;) {
628 local_irq_save(*flags);
629 rq = task_rq(p);
630 spin_lock(&rq->lock);
631 if (likely(rq == task_rq(p)))
632 return rq;
1da177e4 633 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 634 }
1da177e4
LT
635}
636
a9957449 637static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
638 __releases(rq->lock)
639{
640 spin_unlock(&rq->lock);
641}
642
70b97a7f 643static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
644 __releases(rq->lock)
645{
646 spin_unlock_irqrestore(&rq->lock, *flags);
647}
648
1da177e4 649/*
cc2a73b5 650 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 651 */
a9957449 652static struct rq *this_rq_lock(void)
1da177e4
LT
653 __acquires(rq->lock)
654{
70b97a7f 655 struct rq *rq;
1da177e4
LT
656
657 local_irq_disable();
658 rq = this_rq();
659 spin_lock(&rq->lock);
660
661 return rq;
662}
663
1b9f19c2 664/*
2aa44d05 665 * We are going deep-idle (irqs are disabled):
1b9f19c2 666 */
2aa44d05 667void sched_clock_idle_sleep_event(void)
1b9f19c2 668{
2aa44d05
IM
669 struct rq *rq = cpu_rq(smp_processor_id());
670
671 spin_lock(&rq->lock);
672 __update_rq_clock(rq);
673 spin_unlock(&rq->lock);
674 rq->clock_deep_idle_events++;
675}
676EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
677
678/*
679 * We just idled delta nanoseconds (called with irqs disabled):
680 */
681void sched_clock_idle_wakeup_event(u64 delta_ns)
682{
683 struct rq *rq = cpu_rq(smp_processor_id());
684 u64 now = sched_clock();
1b9f19c2 685
2bacec8c 686 touch_softlockup_watchdog();
2aa44d05
IM
687 rq->idle_clock += delta_ns;
688 /*
689 * Override the previous timestamp and ignore all
690 * sched_clock() deltas that occured while we idled,
691 * and use the PM-provided delta_ns to advance the
692 * rq clock:
693 */
694 spin_lock(&rq->lock);
695 rq->prev_clock_raw = now;
696 rq->clock += delta_ns;
697 spin_unlock(&rq->lock);
1b9f19c2 698}
2aa44d05 699EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 700
c24d20db
IM
701/*
702 * resched_task - mark a task 'to be rescheduled now'.
703 *
704 * On UP this means the setting of the need_resched flag, on SMP it
705 * might also involve a cross-CPU call to trigger the scheduler on
706 * the target CPU.
707 */
708#ifdef CONFIG_SMP
709
710#ifndef tsk_is_polling
711#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
712#endif
713
714static void resched_task(struct task_struct *p)
715{
716 int cpu;
717
718 assert_spin_locked(&task_rq(p)->lock);
719
720 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
721 return;
722
723 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
724
725 cpu = task_cpu(p);
726 if (cpu == smp_processor_id())
727 return;
728
729 /* NEED_RESCHED must be visible before we test polling */
730 smp_mb();
731 if (!tsk_is_polling(p))
732 smp_send_reschedule(cpu);
733}
734
735static void resched_cpu(int cpu)
736{
737 struct rq *rq = cpu_rq(cpu);
738 unsigned long flags;
739
740 if (!spin_trylock_irqsave(&rq->lock, flags))
741 return;
742 resched_task(cpu_curr(cpu));
743 spin_unlock_irqrestore(&rq->lock, flags);
744}
745#else
746static inline void resched_task(struct task_struct *p)
747{
748 assert_spin_locked(&task_rq(p)->lock);
749 set_tsk_need_resched(p);
750}
751#endif
752
45bf76df
IM
753#if BITS_PER_LONG == 32
754# define WMULT_CONST (~0UL)
755#else
756# define WMULT_CONST (1UL << 32)
757#endif
758
759#define WMULT_SHIFT 32
760
194081eb
IM
761/*
762 * Shift right and round:
763 */
cf2ab469 764#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 765
cb1c4fc9 766static unsigned long
45bf76df
IM
767calc_delta_mine(unsigned long delta_exec, unsigned long weight,
768 struct load_weight *lw)
769{
770 u64 tmp;
771
772 if (unlikely(!lw->inv_weight))
194081eb 773 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
774
775 tmp = (u64)delta_exec * weight;
776 /*
777 * Check whether we'd overflow the 64-bit multiplication:
778 */
194081eb 779 if (unlikely(tmp > WMULT_CONST))
cf2ab469 780 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
781 WMULT_SHIFT/2);
782 else
cf2ab469 783 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 784
ecf691da 785 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
786}
787
788static inline unsigned long
789calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
790{
791 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
792}
793
1091985b 794static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
795{
796 lw->weight += inc;
45bf76df
IM
797}
798
1091985b 799static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
800{
801 lw->weight -= dec;
45bf76df
IM
802}
803
2dd73a4f
PW
804/*
805 * To aid in avoiding the subversion of "niceness" due to uneven distribution
806 * of tasks with abnormal "nice" values across CPUs the contribution that
807 * each task makes to its run queue's load is weighted according to its
41a2d6cf 808 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
809 * scaled version of the new time slice allocation that they receive on time
810 * slice expiry etc.
811 */
812
dd41f596
IM
813#define WEIGHT_IDLEPRIO 2
814#define WMULT_IDLEPRIO (1 << 31)
815
816/*
817 * Nice levels are multiplicative, with a gentle 10% change for every
818 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
819 * nice 1, it will get ~10% less CPU time than another CPU-bound task
820 * that remained on nice 0.
821 *
822 * The "10% effect" is relative and cumulative: from _any_ nice level,
823 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
824 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
825 * If a task goes up by ~10% and another task goes down by ~10% then
826 * the relative distance between them is ~25%.)
dd41f596
IM
827 */
828static const int prio_to_weight[40] = {
254753dc
IM
829 /* -20 */ 88761, 71755, 56483, 46273, 36291,
830 /* -15 */ 29154, 23254, 18705, 14949, 11916,
831 /* -10 */ 9548, 7620, 6100, 4904, 3906,
832 /* -5 */ 3121, 2501, 1991, 1586, 1277,
833 /* 0 */ 1024, 820, 655, 526, 423,
834 /* 5 */ 335, 272, 215, 172, 137,
835 /* 10 */ 110, 87, 70, 56, 45,
836 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
837};
838
5714d2de
IM
839/*
840 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
841 *
842 * In cases where the weight does not change often, we can use the
843 * precalculated inverse to speed up arithmetics by turning divisions
844 * into multiplications:
845 */
dd41f596 846static const u32 prio_to_wmult[40] = {
254753dc
IM
847 /* -20 */ 48388, 59856, 76040, 92818, 118348,
848 /* -15 */ 147320, 184698, 229616, 287308, 360437,
849 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
850 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
851 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
852 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
853 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
854 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 855};
2dd73a4f 856
dd41f596
IM
857static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
858
859/*
860 * runqueue iterator, to support SMP load-balancing between different
861 * scheduling classes, without having to expose their internal data
862 * structures to the load-balancing proper:
863 */
864struct rq_iterator {
865 void *arg;
866 struct task_struct *(*start)(void *);
867 struct task_struct *(*next)(void *);
868};
869
e1d1484f
PW
870#ifdef CONFIG_SMP
871static unsigned long
872balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
873 unsigned long max_load_move, struct sched_domain *sd,
874 enum cpu_idle_type idle, int *all_pinned,
875 int *this_best_prio, struct rq_iterator *iterator);
876
877static int
878iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
879 struct sched_domain *sd, enum cpu_idle_type idle,
880 struct rq_iterator *iterator);
e1d1484f 881#endif
dd41f596 882
d842de87
SV
883#ifdef CONFIG_CGROUP_CPUACCT
884static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
885#else
886static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
887#endif
888
58e2d4ca
SV
889static inline void inc_cpu_load(struct rq *rq, unsigned long load)
890{
891 update_load_add(&rq->load, load);
892}
893
894static inline void dec_cpu_load(struct rq *rq, unsigned long load)
895{
896 update_load_sub(&rq->load, load);
897}
898
dd41f596 899#include "sched_stats.h"
dd41f596 900#include "sched_idletask.c"
5522d5d5
IM
901#include "sched_fair.c"
902#include "sched_rt.c"
dd41f596
IM
903#ifdef CONFIG_SCHED_DEBUG
904# include "sched_debug.c"
905#endif
906
907#define sched_class_highest (&rt_sched_class)
908
e5fa2237 909static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
910{
911 rq->nr_running++;
9c217245
IM
912}
913
db53181e 914static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
915{
916 rq->nr_running--;
9c217245
IM
917}
918
45bf76df
IM
919static void set_load_weight(struct task_struct *p)
920{
921 if (task_has_rt_policy(p)) {
dd41f596
IM
922 p->se.load.weight = prio_to_weight[0] * 2;
923 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
924 return;
925 }
45bf76df 926
dd41f596
IM
927 /*
928 * SCHED_IDLE tasks get minimal weight:
929 */
930 if (p->policy == SCHED_IDLE) {
931 p->se.load.weight = WEIGHT_IDLEPRIO;
932 p->se.load.inv_weight = WMULT_IDLEPRIO;
933 return;
934 }
71f8bd46 935
dd41f596
IM
936 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
937 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
938}
939
8159f87e 940static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 941{
dd41f596 942 sched_info_queued(p);
fd390f6a 943 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 944 p->se.on_rq = 1;
71f8bd46
IM
945}
946
69be72c1 947static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 948{
f02231e5 949 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 950 p->se.on_rq = 0;
71f8bd46
IM
951}
952
14531189 953/*
dd41f596 954 * __normal_prio - return the priority that is based on the static prio
14531189 955 */
14531189
IM
956static inline int __normal_prio(struct task_struct *p)
957{
dd41f596 958 return p->static_prio;
14531189
IM
959}
960
b29739f9
IM
961/*
962 * Calculate the expected normal priority: i.e. priority
963 * without taking RT-inheritance into account. Might be
964 * boosted by interactivity modifiers. Changes upon fork,
965 * setprio syscalls, and whenever the interactivity
966 * estimator recalculates.
967 */
36c8b586 968static inline int normal_prio(struct task_struct *p)
b29739f9
IM
969{
970 int prio;
971
e05606d3 972 if (task_has_rt_policy(p))
b29739f9
IM
973 prio = MAX_RT_PRIO-1 - p->rt_priority;
974 else
975 prio = __normal_prio(p);
976 return prio;
977}
978
979/*
980 * Calculate the current priority, i.e. the priority
981 * taken into account by the scheduler. This value might
982 * be boosted by RT tasks, or might be boosted by
983 * interactivity modifiers. Will be RT if the task got
984 * RT-boosted. If not then it returns p->normal_prio.
985 */
36c8b586 986static int effective_prio(struct task_struct *p)
b29739f9
IM
987{
988 p->normal_prio = normal_prio(p);
989 /*
990 * If we are RT tasks or we were boosted to RT priority,
991 * keep the priority unchanged. Otherwise, update priority
992 * to the normal priority:
993 */
994 if (!rt_prio(p->prio))
995 return p->normal_prio;
996 return p->prio;
997}
998
1da177e4 999/*
dd41f596 1000 * activate_task - move a task to the runqueue.
1da177e4 1001 */
dd41f596 1002static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1003{
dd41f596
IM
1004 if (p->state == TASK_UNINTERRUPTIBLE)
1005 rq->nr_uninterruptible--;
1da177e4 1006
8159f87e 1007 enqueue_task(rq, p, wakeup);
e5fa2237 1008 inc_nr_running(p, rq);
1da177e4
LT
1009}
1010
1da177e4
LT
1011/*
1012 * deactivate_task - remove a task from the runqueue.
1013 */
2e1cb74a 1014static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1015{
dd41f596
IM
1016 if (p->state == TASK_UNINTERRUPTIBLE)
1017 rq->nr_uninterruptible++;
1018
69be72c1 1019 dequeue_task(rq, p, sleep);
db53181e 1020 dec_nr_running(p, rq);
1da177e4
LT
1021}
1022
1da177e4
LT
1023/**
1024 * task_curr - is this task currently executing on a CPU?
1025 * @p: the task in question.
1026 */
36c8b586 1027inline int task_curr(const struct task_struct *p)
1da177e4
LT
1028{
1029 return cpu_curr(task_cpu(p)) == p;
1030}
1031
2dd73a4f
PW
1032/* Used instead of source_load when we know the type == 0 */
1033unsigned long weighted_cpuload(const int cpu)
1034{
495eca49 1035 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1036}
1037
1038static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1039{
ce96b5ac 1040 set_task_cfs_rq(p, cpu);
dd41f596 1041#ifdef CONFIG_SMP
ce96b5ac
DA
1042 /*
1043 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1044 * successfuly executed on another CPU. We must ensure that updates of
1045 * per-task data have been completed by this moment.
1046 */
1047 smp_wmb();
dd41f596 1048 task_thread_info(p)->cpu = cpu;
dd41f596 1049#endif
2dd73a4f
PW
1050}
1051
1da177e4 1052#ifdef CONFIG_SMP
c65cc870 1053
cc367732
IM
1054/*
1055 * Is this task likely cache-hot:
1056 */
1057static inline int
1058task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1059{
1060 s64 delta;
1061
1062 if (p->sched_class != &fair_sched_class)
1063 return 0;
1064
6bc1665b
IM
1065 if (sysctl_sched_migration_cost == -1)
1066 return 1;
1067 if (sysctl_sched_migration_cost == 0)
1068 return 0;
1069
cc367732
IM
1070 delta = now - p->se.exec_start;
1071
1072 return delta < (s64)sysctl_sched_migration_cost;
1073}
1074
1075
dd41f596 1076void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1077{
dd41f596
IM
1078 int old_cpu = task_cpu(p);
1079 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1080 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1081 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1082 u64 clock_offset;
dd41f596
IM
1083
1084 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1085
1086#ifdef CONFIG_SCHEDSTATS
1087 if (p->se.wait_start)
1088 p->se.wait_start -= clock_offset;
dd41f596
IM
1089 if (p->se.sleep_start)
1090 p->se.sleep_start -= clock_offset;
1091 if (p->se.block_start)
1092 p->se.block_start -= clock_offset;
cc367732
IM
1093 if (old_cpu != new_cpu) {
1094 schedstat_inc(p, se.nr_migrations);
1095 if (task_hot(p, old_rq->clock, NULL))
1096 schedstat_inc(p, se.nr_forced2_migrations);
1097 }
6cfb0d5d 1098#endif
2830cf8c
SV
1099 p->se.vruntime -= old_cfsrq->min_vruntime -
1100 new_cfsrq->min_vruntime;
dd41f596
IM
1101
1102 __set_task_cpu(p, new_cpu);
c65cc870
IM
1103}
1104
70b97a7f 1105struct migration_req {
1da177e4 1106 struct list_head list;
1da177e4 1107
36c8b586 1108 struct task_struct *task;
1da177e4
LT
1109 int dest_cpu;
1110
1da177e4 1111 struct completion done;
70b97a7f 1112};
1da177e4
LT
1113
1114/*
1115 * The task's runqueue lock must be held.
1116 * Returns true if you have to wait for migration thread.
1117 */
36c8b586 1118static int
70b97a7f 1119migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1120{
70b97a7f 1121 struct rq *rq = task_rq(p);
1da177e4
LT
1122
1123 /*
1124 * If the task is not on a runqueue (and not running), then
1125 * it is sufficient to simply update the task's cpu field.
1126 */
dd41f596 1127 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1128 set_task_cpu(p, dest_cpu);
1129 return 0;
1130 }
1131
1132 init_completion(&req->done);
1da177e4
LT
1133 req->task = p;
1134 req->dest_cpu = dest_cpu;
1135 list_add(&req->list, &rq->migration_queue);
48f24c4d 1136
1da177e4
LT
1137 return 1;
1138}
1139
1140/*
1141 * wait_task_inactive - wait for a thread to unschedule.
1142 *
1143 * The caller must ensure that the task *will* unschedule sometime soon,
1144 * else this function might spin for a *long* time. This function can't
1145 * be called with interrupts off, or it may introduce deadlock with
1146 * smp_call_function() if an IPI is sent by the same process we are
1147 * waiting to become inactive.
1148 */
36c8b586 1149void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1150{
1151 unsigned long flags;
dd41f596 1152 int running, on_rq;
70b97a7f 1153 struct rq *rq;
1da177e4 1154
3a5c359a
AK
1155 for (;;) {
1156 /*
1157 * We do the initial early heuristics without holding
1158 * any task-queue locks at all. We'll only try to get
1159 * the runqueue lock when things look like they will
1160 * work out!
1161 */
1162 rq = task_rq(p);
fa490cfd 1163
3a5c359a
AK
1164 /*
1165 * If the task is actively running on another CPU
1166 * still, just relax and busy-wait without holding
1167 * any locks.
1168 *
1169 * NOTE! Since we don't hold any locks, it's not
1170 * even sure that "rq" stays as the right runqueue!
1171 * But we don't care, since "task_running()" will
1172 * return false if the runqueue has changed and p
1173 * is actually now running somewhere else!
1174 */
1175 while (task_running(rq, p))
1176 cpu_relax();
fa490cfd 1177
3a5c359a
AK
1178 /*
1179 * Ok, time to look more closely! We need the rq
1180 * lock now, to be *sure*. If we're wrong, we'll
1181 * just go back and repeat.
1182 */
1183 rq = task_rq_lock(p, &flags);
1184 running = task_running(rq, p);
1185 on_rq = p->se.on_rq;
1186 task_rq_unlock(rq, &flags);
fa490cfd 1187
3a5c359a
AK
1188 /*
1189 * Was it really running after all now that we
1190 * checked with the proper locks actually held?
1191 *
1192 * Oops. Go back and try again..
1193 */
1194 if (unlikely(running)) {
1195 cpu_relax();
1196 continue;
1197 }
fa490cfd 1198
3a5c359a
AK
1199 /*
1200 * It's not enough that it's not actively running,
1201 * it must be off the runqueue _entirely_, and not
1202 * preempted!
1203 *
1204 * So if it wa still runnable (but just not actively
1205 * running right now), it's preempted, and we should
1206 * yield - it could be a while.
1207 */
1208 if (unlikely(on_rq)) {
1209 schedule_timeout_uninterruptible(1);
1210 continue;
1211 }
fa490cfd 1212
3a5c359a
AK
1213 /*
1214 * Ahh, all good. It wasn't running, and it wasn't
1215 * runnable, which means that it will never become
1216 * running in the future either. We're all done!
1217 */
1218 break;
1219 }
1da177e4
LT
1220}
1221
1222/***
1223 * kick_process - kick a running thread to enter/exit the kernel
1224 * @p: the to-be-kicked thread
1225 *
1226 * Cause a process which is running on another CPU to enter
1227 * kernel-mode, without any delay. (to get signals handled.)
1228 *
1229 * NOTE: this function doesnt have to take the runqueue lock,
1230 * because all it wants to ensure is that the remote task enters
1231 * the kernel. If the IPI races and the task has been migrated
1232 * to another CPU then no harm is done and the purpose has been
1233 * achieved as well.
1234 */
36c8b586 1235void kick_process(struct task_struct *p)
1da177e4
LT
1236{
1237 int cpu;
1238
1239 preempt_disable();
1240 cpu = task_cpu(p);
1241 if ((cpu != smp_processor_id()) && task_curr(p))
1242 smp_send_reschedule(cpu);
1243 preempt_enable();
1244}
1245
1246/*
2dd73a4f
PW
1247 * Return a low guess at the load of a migration-source cpu weighted
1248 * according to the scheduling class and "nice" value.
1da177e4
LT
1249 *
1250 * We want to under-estimate the load of migration sources, to
1251 * balance conservatively.
1252 */
a9957449 1253static unsigned long source_load(int cpu, int type)
1da177e4 1254{
70b97a7f 1255 struct rq *rq = cpu_rq(cpu);
dd41f596 1256 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1257
3b0bd9bc 1258 if (type == 0)
dd41f596 1259 return total;
b910472d 1260
dd41f596 1261 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1262}
1263
1264/*
2dd73a4f
PW
1265 * Return a high guess at the load of a migration-target cpu weighted
1266 * according to the scheduling class and "nice" value.
1da177e4 1267 */
a9957449 1268static unsigned long target_load(int cpu, int type)
1da177e4 1269{
70b97a7f 1270 struct rq *rq = cpu_rq(cpu);
dd41f596 1271 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1272
7897986b 1273 if (type == 0)
dd41f596 1274 return total;
3b0bd9bc 1275
dd41f596 1276 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1277}
1278
1279/*
1280 * Return the average load per task on the cpu's run queue
1281 */
1282static inline unsigned long cpu_avg_load_per_task(int cpu)
1283{
70b97a7f 1284 struct rq *rq = cpu_rq(cpu);
dd41f596 1285 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1286 unsigned long n = rq->nr_running;
1287
dd41f596 1288 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1289}
1290
147cbb4b
NP
1291/*
1292 * find_idlest_group finds and returns the least busy CPU group within the
1293 * domain.
1294 */
1295static struct sched_group *
1296find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1297{
1298 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1299 unsigned long min_load = ULONG_MAX, this_load = 0;
1300 int load_idx = sd->forkexec_idx;
1301 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1302
1303 do {
1304 unsigned long load, avg_load;
1305 int local_group;
1306 int i;
1307
da5a5522
BD
1308 /* Skip over this group if it has no CPUs allowed */
1309 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1310 continue;
da5a5522 1311
147cbb4b 1312 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1313
1314 /* Tally up the load of all CPUs in the group */
1315 avg_load = 0;
1316
1317 for_each_cpu_mask(i, group->cpumask) {
1318 /* Bias balancing toward cpus of our domain */
1319 if (local_group)
1320 load = source_load(i, load_idx);
1321 else
1322 load = target_load(i, load_idx);
1323
1324 avg_load += load;
1325 }
1326
1327 /* Adjust by relative CPU power of the group */
5517d86b
ED
1328 avg_load = sg_div_cpu_power(group,
1329 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1330
1331 if (local_group) {
1332 this_load = avg_load;
1333 this = group;
1334 } else if (avg_load < min_load) {
1335 min_load = avg_load;
1336 idlest = group;
1337 }
3a5c359a 1338 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1339
1340 if (!idlest || 100*this_load < imbalance*min_load)
1341 return NULL;
1342 return idlest;
1343}
1344
1345/*
0feaece9 1346 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1347 */
95cdf3b7
IM
1348static int
1349find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1350{
da5a5522 1351 cpumask_t tmp;
147cbb4b
NP
1352 unsigned long load, min_load = ULONG_MAX;
1353 int idlest = -1;
1354 int i;
1355
da5a5522
BD
1356 /* Traverse only the allowed CPUs */
1357 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1358
1359 for_each_cpu_mask(i, tmp) {
2dd73a4f 1360 load = weighted_cpuload(i);
147cbb4b
NP
1361
1362 if (load < min_load || (load == min_load && i == this_cpu)) {
1363 min_load = load;
1364 idlest = i;
1365 }
1366 }
1367
1368 return idlest;
1369}
1370
476d139c
NP
1371/*
1372 * sched_balance_self: balance the current task (running on cpu) in domains
1373 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1374 * SD_BALANCE_EXEC.
1375 *
1376 * Balance, ie. select the least loaded group.
1377 *
1378 * Returns the target CPU number, or the same CPU if no balancing is needed.
1379 *
1380 * preempt must be disabled.
1381 */
1382static int sched_balance_self(int cpu, int flag)
1383{
1384 struct task_struct *t = current;
1385 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1386
c96d145e 1387 for_each_domain(cpu, tmp) {
9761eea8
IM
1388 /*
1389 * If power savings logic is enabled for a domain, stop there.
1390 */
5c45bf27
SS
1391 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1392 break;
476d139c
NP
1393 if (tmp->flags & flag)
1394 sd = tmp;
c96d145e 1395 }
476d139c
NP
1396
1397 while (sd) {
1398 cpumask_t span;
1399 struct sched_group *group;
1a848870
SS
1400 int new_cpu, weight;
1401
1402 if (!(sd->flags & flag)) {
1403 sd = sd->child;
1404 continue;
1405 }
476d139c
NP
1406
1407 span = sd->span;
1408 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1409 if (!group) {
1410 sd = sd->child;
1411 continue;
1412 }
476d139c 1413
da5a5522 1414 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1415 if (new_cpu == -1 || new_cpu == cpu) {
1416 /* Now try balancing at a lower domain level of cpu */
1417 sd = sd->child;
1418 continue;
1419 }
476d139c 1420
1a848870 1421 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1422 cpu = new_cpu;
476d139c
NP
1423 sd = NULL;
1424 weight = cpus_weight(span);
1425 for_each_domain(cpu, tmp) {
1426 if (weight <= cpus_weight(tmp->span))
1427 break;
1428 if (tmp->flags & flag)
1429 sd = tmp;
1430 }
1431 /* while loop will break here if sd == NULL */
1432 }
1433
1434 return cpu;
1435}
1436
1437#endif /* CONFIG_SMP */
1da177e4
LT
1438
1439/*
1440 * wake_idle() will wake a task on an idle cpu if task->cpu is
1441 * not idle and an idle cpu is available. The span of cpus to
1442 * search starts with cpus closest then further out as needed,
1443 * so we always favor a closer, idle cpu.
1444 *
1445 * Returns the CPU we should wake onto.
1446 */
1447#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1448static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1449{
1450 cpumask_t tmp;
1451 struct sched_domain *sd;
1452 int i;
1453
4953198b
SS
1454 /*
1455 * If it is idle, then it is the best cpu to run this task.
1456 *
1457 * This cpu is also the best, if it has more than one task already.
1458 * Siblings must be also busy(in most cases) as they didn't already
1459 * pickup the extra load from this cpu and hence we need not check
1460 * sibling runqueue info. This will avoid the checks and cache miss
1461 * penalities associated with that.
1462 */
1463 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1464 return cpu;
1465
1466 for_each_domain(cpu, sd) {
1467 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1468 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1469 for_each_cpu_mask(i, tmp) {
cc367732
IM
1470 if (idle_cpu(i)) {
1471 if (i != task_cpu(p)) {
1472 schedstat_inc(p,
1473 se.nr_wakeups_idle);
1474 }
1da177e4 1475 return i;
cc367732 1476 }
1da177e4 1477 }
9761eea8 1478 } else {
e0f364f4 1479 break;
9761eea8 1480 }
1da177e4
LT
1481 }
1482 return cpu;
1483}
1484#else
36c8b586 1485static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1486{
1487 return cpu;
1488}
1489#endif
1490
1491/***
1492 * try_to_wake_up - wake up a thread
1493 * @p: the to-be-woken-up thread
1494 * @state: the mask of task states that can be woken
1495 * @sync: do a synchronous wakeup?
1496 *
1497 * Put it on the run-queue if it's not already there. The "current"
1498 * thread is always on the run-queue (except when the actual
1499 * re-schedule is in progress), and as such you're allowed to do
1500 * the simpler "current->state = TASK_RUNNING" to mark yourself
1501 * runnable without the overhead of this.
1502 *
1503 * returns failure only if the task is already active.
1504 */
36c8b586 1505static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1506{
cc367732 1507 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1508 unsigned long flags;
1509 long old_state;
70b97a7f 1510 struct rq *rq;
1da177e4 1511#ifdef CONFIG_SMP
7897986b 1512 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1513 unsigned long load, this_load;
1da177e4
LT
1514 int new_cpu;
1515#endif
1516
1517 rq = task_rq_lock(p, &flags);
1518 old_state = p->state;
1519 if (!(old_state & state))
1520 goto out;
1521
dd41f596 1522 if (p->se.on_rq)
1da177e4
LT
1523 goto out_running;
1524
1525 cpu = task_cpu(p);
cc367732 1526 orig_cpu = cpu;
1da177e4
LT
1527 this_cpu = smp_processor_id();
1528
1529#ifdef CONFIG_SMP
1530 if (unlikely(task_running(rq, p)))
1531 goto out_activate;
1532
7897986b
NP
1533 new_cpu = cpu;
1534
2d72376b 1535 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1536 if (cpu == this_cpu) {
1537 schedstat_inc(rq, ttwu_local);
7897986b
NP
1538 goto out_set_cpu;
1539 }
1540
1541 for_each_domain(this_cpu, sd) {
1542 if (cpu_isset(cpu, sd->span)) {
1543 schedstat_inc(sd, ttwu_wake_remote);
1544 this_sd = sd;
1545 break;
1da177e4
LT
1546 }
1547 }
1da177e4 1548
7897986b 1549 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1550 goto out_set_cpu;
1551
1da177e4 1552 /*
7897986b 1553 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1554 */
7897986b
NP
1555 if (this_sd) {
1556 int idx = this_sd->wake_idx;
1557 unsigned int imbalance;
1da177e4 1558
a3f21bce
NP
1559 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1560
7897986b
NP
1561 load = source_load(cpu, idx);
1562 this_load = target_load(this_cpu, idx);
1da177e4 1563
7897986b
NP
1564 new_cpu = this_cpu; /* Wake to this CPU if we can */
1565
a3f21bce
NP
1566 if (this_sd->flags & SD_WAKE_AFFINE) {
1567 unsigned long tl = this_load;
33859f7f
MOS
1568 unsigned long tl_per_task;
1569
71e20f18
IM
1570 /*
1571 * Attract cache-cold tasks on sync wakeups:
1572 */
1573 if (sync && !task_hot(p, rq->clock, this_sd))
1574 goto out_set_cpu;
1575
cc367732 1576 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1577 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1578
1da177e4 1579 /*
a3f21bce
NP
1580 * If sync wakeup then subtract the (maximum possible)
1581 * effect of the currently running task from the load
1582 * of the current CPU:
1da177e4 1583 */
a3f21bce 1584 if (sync)
dd41f596 1585 tl -= current->se.load.weight;
a3f21bce
NP
1586
1587 if ((tl <= load &&
2dd73a4f 1588 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1589 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1590 /*
1591 * This domain has SD_WAKE_AFFINE and
1592 * p is cache cold in this domain, and
1593 * there is no bad imbalance.
1594 */
1595 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1596 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1597 goto out_set_cpu;
1598 }
1599 }
1600
1601 /*
1602 * Start passive balancing when half the imbalance_pct
1603 * limit is reached.
1604 */
1605 if (this_sd->flags & SD_WAKE_BALANCE) {
1606 if (imbalance*this_load <= 100*load) {
1607 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1608 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1609 goto out_set_cpu;
1610 }
1da177e4
LT
1611 }
1612 }
1613
1614 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1615out_set_cpu:
1616 new_cpu = wake_idle(new_cpu, p);
1617 if (new_cpu != cpu) {
1618 set_task_cpu(p, new_cpu);
1619 task_rq_unlock(rq, &flags);
1620 /* might preempt at this point */
1621 rq = task_rq_lock(p, &flags);
1622 old_state = p->state;
1623 if (!(old_state & state))
1624 goto out;
dd41f596 1625 if (p->se.on_rq)
1da177e4
LT
1626 goto out_running;
1627
1628 this_cpu = smp_processor_id();
1629 cpu = task_cpu(p);
1630 }
1631
1632out_activate:
1633#endif /* CONFIG_SMP */
cc367732
IM
1634 schedstat_inc(p, se.nr_wakeups);
1635 if (sync)
1636 schedstat_inc(p, se.nr_wakeups_sync);
1637 if (orig_cpu != cpu)
1638 schedstat_inc(p, se.nr_wakeups_migrate);
1639 if (cpu == this_cpu)
1640 schedstat_inc(p, se.nr_wakeups_local);
1641 else
1642 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1643 update_rq_clock(rq);
dd41f596 1644 activate_task(rq, p, 1);
9c63d9c0 1645 check_preempt_curr(rq, p);
1da177e4
LT
1646 success = 1;
1647
1648out_running:
1649 p->state = TASK_RUNNING;
1650out:
1651 task_rq_unlock(rq, &flags);
1652
1653 return success;
1654}
1655
36c8b586 1656int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1657{
1658 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1659 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1660}
1da177e4
LT
1661EXPORT_SYMBOL(wake_up_process);
1662
36c8b586 1663int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1664{
1665 return try_to_wake_up(p, state, 0);
1666}
1667
1da177e4
LT
1668/*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
dd41f596
IM
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674static void __sched_fork(struct task_struct *p)
1675{
dd41f596
IM
1676 p->se.exec_start = 0;
1677 p->se.sum_exec_runtime = 0;
f6cf891c 1678 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1679
1680#ifdef CONFIG_SCHEDSTATS
1681 p->se.wait_start = 0;
dd41f596
IM
1682 p->se.sum_sleep_runtime = 0;
1683 p->se.sleep_start = 0;
dd41f596
IM
1684 p->se.block_start = 0;
1685 p->se.sleep_max = 0;
1686 p->se.block_max = 0;
1687 p->se.exec_max = 0;
eba1ed4b 1688 p->se.slice_max = 0;
dd41f596 1689 p->se.wait_max = 0;
6cfb0d5d 1690#endif
476d139c 1691
dd41f596
IM
1692 INIT_LIST_HEAD(&p->run_list);
1693 p->se.on_rq = 0;
476d139c 1694
e107be36
AK
1695#ifdef CONFIG_PREEMPT_NOTIFIERS
1696 INIT_HLIST_HEAD(&p->preempt_notifiers);
1697#endif
1698
1da177e4
LT
1699 /*
1700 * We mark the process as running here, but have not actually
1701 * inserted it onto the runqueue yet. This guarantees that
1702 * nobody will actually run it, and a signal or other external
1703 * event cannot wake it up and insert it on the runqueue either.
1704 */
1705 p->state = TASK_RUNNING;
dd41f596
IM
1706}
1707
1708/*
1709 * fork()/clone()-time setup:
1710 */
1711void sched_fork(struct task_struct *p, int clone_flags)
1712{
1713 int cpu = get_cpu();
1714
1715 __sched_fork(p);
1716
1717#ifdef CONFIG_SMP
1718 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1719#endif
02e4bac2 1720 set_task_cpu(p, cpu);
b29739f9
IM
1721
1722 /*
1723 * Make sure we do not leak PI boosting priority to the child:
1724 */
1725 p->prio = current->normal_prio;
2ddbf952
HS
1726 if (!rt_prio(p->prio))
1727 p->sched_class = &fair_sched_class;
b29739f9 1728
52f17b6c 1729#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1730 if (likely(sched_info_on()))
52f17b6c 1731 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1732#endif
d6077cb8 1733#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1734 p->oncpu = 0;
1735#endif
1da177e4 1736#ifdef CONFIG_PREEMPT
4866cde0 1737 /* Want to start with kernel preemption disabled. */
a1261f54 1738 task_thread_info(p)->preempt_count = 1;
1da177e4 1739#endif
476d139c 1740 put_cpu();
1da177e4
LT
1741}
1742
1743/*
1744 * wake_up_new_task - wake up a newly created task for the first time.
1745 *
1746 * This function will do some initial scheduler statistics housekeeping
1747 * that must be done for every newly created context, then puts the task
1748 * on the runqueue and wakes it.
1749 */
36c8b586 1750void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1751{
1752 unsigned long flags;
dd41f596 1753 struct rq *rq;
1da177e4
LT
1754
1755 rq = task_rq_lock(p, &flags);
147cbb4b 1756 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1757 update_rq_clock(rq);
1da177e4
LT
1758
1759 p->prio = effective_prio(p);
1760
b9dca1e0 1761 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1762 activate_task(rq, p, 0);
1da177e4 1763 } else {
1da177e4 1764 /*
dd41f596
IM
1765 * Let the scheduling class do new task startup
1766 * management (if any):
1da177e4 1767 */
ee0827d8 1768 p->sched_class->task_new(rq, p);
e5fa2237 1769 inc_nr_running(p, rq);
1da177e4 1770 }
dd41f596
IM
1771 check_preempt_curr(rq, p);
1772 task_rq_unlock(rq, &flags);
1da177e4
LT
1773}
1774
e107be36
AK
1775#ifdef CONFIG_PREEMPT_NOTIFIERS
1776
1777/**
421cee29
RD
1778 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1779 * @notifier: notifier struct to register
e107be36
AK
1780 */
1781void preempt_notifier_register(struct preempt_notifier *notifier)
1782{
1783 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1784}
1785EXPORT_SYMBOL_GPL(preempt_notifier_register);
1786
1787/**
1788 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1789 * @notifier: notifier struct to unregister
e107be36
AK
1790 *
1791 * This is safe to call from within a preemption notifier.
1792 */
1793void preempt_notifier_unregister(struct preempt_notifier *notifier)
1794{
1795 hlist_del(&notifier->link);
1796}
1797EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1798
1799static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1800{
1801 struct preempt_notifier *notifier;
1802 struct hlist_node *node;
1803
1804 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1805 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1806}
1807
1808static void
1809fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810 struct task_struct *next)
1811{
1812 struct preempt_notifier *notifier;
1813 struct hlist_node *node;
1814
1815 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1816 notifier->ops->sched_out(notifier, next);
1817}
1818
1819#else
1820
1821static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1822{
1823}
1824
1825static void
1826fire_sched_out_preempt_notifiers(struct task_struct *curr,
1827 struct task_struct *next)
1828{
1829}
1830
1831#endif
1832
4866cde0
NP
1833/**
1834 * prepare_task_switch - prepare to switch tasks
1835 * @rq: the runqueue preparing to switch
421cee29 1836 * @prev: the current task that is being switched out
4866cde0
NP
1837 * @next: the task we are going to switch to.
1838 *
1839 * This is called with the rq lock held and interrupts off. It must
1840 * be paired with a subsequent finish_task_switch after the context
1841 * switch.
1842 *
1843 * prepare_task_switch sets up locking and calls architecture specific
1844 * hooks.
1845 */
e107be36
AK
1846static inline void
1847prepare_task_switch(struct rq *rq, struct task_struct *prev,
1848 struct task_struct *next)
4866cde0 1849{
e107be36 1850 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1851 prepare_lock_switch(rq, next);
1852 prepare_arch_switch(next);
1853}
1854
1da177e4
LT
1855/**
1856 * finish_task_switch - clean up after a task-switch
344babaa 1857 * @rq: runqueue associated with task-switch
1da177e4
LT
1858 * @prev: the thread we just switched away from.
1859 *
4866cde0
NP
1860 * finish_task_switch must be called after the context switch, paired
1861 * with a prepare_task_switch call before the context switch.
1862 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1863 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1864 *
1865 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1866 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1867 * with the lock held can cause deadlocks; see schedule() for
1868 * details.)
1869 */
a9957449 1870static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1871 __releases(rq->lock)
1872{
1da177e4 1873 struct mm_struct *mm = rq->prev_mm;
55a101f8 1874 long prev_state;
1da177e4
LT
1875
1876 rq->prev_mm = NULL;
1877
1878 /*
1879 * A task struct has one reference for the use as "current".
c394cc9f 1880 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1881 * schedule one last time. The schedule call will never return, and
1882 * the scheduled task must drop that reference.
c394cc9f 1883 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1884 * still held, otherwise prev could be scheduled on another cpu, die
1885 * there before we look at prev->state, and then the reference would
1886 * be dropped twice.
1887 * Manfred Spraul <manfred@colorfullife.com>
1888 */
55a101f8 1889 prev_state = prev->state;
4866cde0
NP
1890 finish_arch_switch(prev);
1891 finish_lock_switch(rq, prev);
e107be36 1892 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1893 if (mm)
1894 mmdrop(mm);
c394cc9f 1895 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1896 /*
1897 * Remove function-return probe instances associated with this
1898 * task and put them back on the free list.
9761eea8 1899 */
c6fd91f0 1900 kprobe_flush_task(prev);
1da177e4 1901 put_task_struct(prev);
c6fd91f0 1902 }
1da177e4
LT
1903}
1904
1905/**
1906 * schedule_tail - first thing a freshly forked thread must call.
1907 * @prev: the thread we just switched away from.
1908 */
36c8b586 1909asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1910 __releases(rq->lock)
1911{
70b97a7f
IM
1912 struct rq *rq = this_rq();
1913
4866cde0
NP
1914 finish_task_switch(rq, prev);
1915#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1916 /* In this case, finish_task_switch does not reenable preemption */
1917 preempt_enable();
1918#endif
1da177e4 1919 if (current->set_child_tid)
b488893a 1920 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1921}
1922
1923/*
1924 * context_switch - switch to the new MM and the new
1925 * thread's register state.
1926 */
dd41f596 1927static inline void
70b97a7f 1928context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1929 struct task_struct *next)
1da177e4 1930{
dd41f596 1931 struct mm_struct *mm, *oldmm;
1da177e4 1932
e107be36 1933 prepare_task_switch(rq, prev, next);
dd41f596
IM
1934 mm = next->mm;
1935 oldmm = prev->active_mm;
9226d125
ZA
1936 /*
1937 * For paravirt, this is coupled with an exit in switch_to to
1938 * combine the page table reload and the switch backend into
1939 * one hypercall.
1940 */
1941 arch_enter_lazy_cpu_mode();
1942
dd41f596 1943 if (unlikely(!mm)) {
1da177e4
LT
1944 next->active_mm = oldmm;
1945 atomic_inc(&oldmm->mm_count);
1946 enter_lazy_tlb(oldmm, next);
1947 } else
1948 switch_mm(oldmm, mm, next);
1949
dd41f596 1950 if (unlikely(!prev->mm)) {
1da177e4 1951 prev->active_mm = NULL;
1da177e4
LT
1952 rq->prev_mm = oldmm;
1953 }
3a5f5e48
IM
1954 /*
1955 * Since the runqueue lock will be released by the next
1956 * task (which is an invalid locking op but in the case
1957 * of the scheduler it's an obvious special-case), so we
1958 * do an early lockdep release here:
1959 */
1960#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1961 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1962#endif
1da177e4
LT
1963
1964 /* Here we just switch the register state and the stack. */
1965 switch_to(prev, next, prev);
1966
dd41f596
IM
1967 barrier();
1968 /*
1969 * this_rq must be evaluated again because prev may have moved
1970 * CPUs since it called schedule(), thus the 'rq' on its stack
1971 * frame will be invalid.
1972 */
1973 finish_task_switch(this_rq(), prev);
1da177e4
LT
1974}
1975
1976/*
1977 * nr_running, nr_uninterruptible and nr_context_switches:
1978 *
1979 * externally visible scheduler statistics: current number of runnable
1980 * threads, current number of uninterruptible-sleeping threads, total
1981 * number of context switches performed since bootup.
1982 */
1983unsigned long nr_running(void)
1984{
1985 unsigned long i, sum = 0;
1986
1987 for_each_online_cpu(i)
1988 sum += cpu_rq(i)->nr_running;
1989
1990 return sum;
1991}
1992
1993unsigned long nr_uninterruptible(void)
1994{
1995 unsigned long i, sum = 0;
1996
0a945022 1997 for_each_possible_cpu(i)
1da177e4
LT
1998 sum += cpu_rq(i)->nr_uninterruptible;
1999
2000 /*
2001 * Since we read the counters lockless, it might be slightly
2002 * inaccurate. Do not allow it to go below zero though:
2003 */
2004 if (unlikely((long)sum < 0))
2005 sum = 0;
2006
2007 return sum;
2008}
2009
2010unsigned long long nr_context_switches(void)
2011{
cc94abfc
SR
2012 int i;
2013 unsigned long long sum = 0;
1da177e4 2014
0a945022 2015 for_each_possible_cpu(i)
1da177e4
LT
2016 sum += cpu_rq(i)->nr_switches;
2017
2018 return sum;
2019}
2020
2021unsigned long nr_iowait(void)
2022{
2023 unsigned long i, sum = 0;
2024
0a945022 2025 for_each_possible_cpu(i)
1da177e4
LT
2026 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2027
2028 return sum;
2029}
2030
db1b1fef
JS
2031unsigned long nr_active(void)
2032{
2033 unsigned long i, running = 0, uninterruptible = 0;
2034
2035 for_each_online_cpu(i) {
2036 running += cpu_rq(i)->nr_running;
2037 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2038 }
2039
2040 if (unlikely((long)uninterruptible < 0))
2041 uninterruptible = 0;
2042
2043 return running + uninterruptible;
2044}
2045
48f24c4d 2046/*
dd41f596
IM
2047 * Update rq->cpu_load[] statistics. This function is usually called every
2048 * scheduler tick (TICK_NSEC).
48f24c4d 2049 */
dd41f596 2050static void update_cpu_load(struct rq *this_rq)
48f24c4d 2051{
495eca49 2052 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2053 int i, scale;
2054
2055 this_rq->nr_load_updates++;
dd41f596
IM
2056
2057 /* Update our load: */
2058 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2059 unsigned long old_load, new_load;
2060
2061 /* scale is effectively 1 << i now, and >> i divides by scale */
2062
2063 old_load = this_rq->cpu_load[i];
2064 new_load = this_load;
a25707f3
IM
2065 /*
2066 * Round up the averaging division if load is increasing. This
2067 * prevents us from getting stuck on 9 if the load is 10, for
2068 * example.
2069 */
2070 if (new_load > old_load)
2071 new_load += scale-1;
dd41f596
IM
2072 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2073 }
48f24c4d
IM
2074}
2075
dd41f596
IM
2076#ifdef CONFIG_SMP
2077
1da177e4
LT
2078/*
2079 * double_rq_lock - safely lock two runqueues
2080 *
2081 * Note this does not disable interrupts like task_rq_lock,
2082 * you need to do so manually before calling.
2083 */
70b97a7f 2084static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2085 __acquires(rq1->lock)
2086 __acquires(rq2->lock)
2087{
054b9108 2088 BUG_ON(!irqs_disabled());
1da177e4
LT
2089 if (rq1 == rq2) {
2090 spin_lock(&rq1->lock);
2091 __acquire(rq2->lock); /* Fake it out ;) */
2092 } else {
c96d145e 2093 if (rq1 < rq2) {
1da177e4
LT
2094 spin_lock(&rq1->lock);
2095 spin_lock(&rq2->lock);
2096 } else {
2097 spin_lock(&rq2->lock);
2098 spin_lock(&rq1->lock);
2099 }
2100 }
6e82a3be
IM
2101 update_rq_clock(rq1);
2102 update_rq_clock(rq2);
1da177e4
LT
2103}
2104
2105/*
2106 * double_rq_unlock - safely unlock two runqueues
2107 *
2108 * Note this does not restore interrupts like task_rq_unlock,
2109 * you need to do so manually after calling.
2110 */
70b97a7f 2111static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2112 __releases(rq1->lock)
2113 __releases(rq2->lock)
2114{
2115 spin_unlock(&rq1->lock);
2116 if (rq1 != rq2)
2117 spin_unlock(&rq2->lock);
2118 else
2119 __release(rq2->lock);
2120}
2121
2122/*
2123 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2124 */
70b97a7f 2125static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2126 __releases(this_rq->lock)
2127 __acquires(busiest->lock)
2128 __acquires(this_rq->lock)
2129{
054b9108
KK
2130 if (unlikely(!irqs_disabled())) {
2131 /* printk() doesn't work good under rq->lock */
2132 spin_unlock(&this_rq->lock);
2133 BUG_ON(1);
2134 }
1da177e4 2135 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2136 if (busiest < this_rq) {
1da177e4
LT
2137 spin_unlock(&this_rq->lock);
2138 spin_lock(&busiest->lock);
2139 spin_lock(&this_rq->lock);
2140 } else
2141 spin_lock(&busiest->lock);
2142 }
2143}
2144
1da177e4
LT
2145/*
2146 * If dest_cpu is allowed for this process, migrate the task to it.
2147 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2148 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2149 * the cpu_allowed mask is restored.
2150 */
36c8b586 2151static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2152{
70b97a7f 2153 struct migration_req req;
1da177e4 2154 unsigned long flags;
70b97a7f 2155 struct rq *rq;
1da177e4
LT
2156
2157 rq = task_rq_lock(p, &flags);
2158 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2159 || unlikely(cpu_is_offline(dest_cpu)))
2160 goto out;
2161
2162 /* force the process onto the specified CPU */
2163 if (migrate_task(p, dest_cpu, &req)) {
2164 /* Need to wait for migration thread (might exit: take ref). */
2165 struct task_struct *mt = rq->migration_thread;
36c8b586 2166
1da177e4
LT
2167 get_task_struct(mt);
2168 task_rq_unlock(rq, &flags);
2169 wake_up_process(mt);
2170 put_task_struct(mt);
2171 wait_for_completion(&req.done);
36c8b586 2172
1da177e4
LT
2173 return;
2174 }
2175out:
2176 task_rq_unlock(rq, &flags);
2177}
2178
2179/*
476d139c
NP
2180 * sched_exec - execve() is a valuable balancing opportunity, because at
2181 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2182 */
2183void sched_exec(void)
2184{
1da177e4 2185 int new_cpu, this_cpu = get_cpu();
476d139c 2186 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2187 put_cpu();
476d139c
NP
2188 if (new_cpu != this_cpu)
2189 sched_migrate_task(current, new_cpu);
1da177e4
LT
2190}
2191
2192/*
2193 * pull_task - move a task from a remote runqueue to the local runqueue.
2194 * Both runqueues must be locked.
2195 */
dd41f596
IM
2196static void pull_task(struct rq *src_rq, struct task_struct *p,
2197 struct rq *this_rq, int this_cpu)
1da177e4 2198{
2e1cb74a 2199 deactivate_task(src_rq, p, 0);
1da177e4 2200 set_task_cpu(p, this_cpu);
dd41f596 2201 activate_task(this_rq, p, 0);
1da177e4
LT
2202 /*
2203 * Note that idle threads have a prio of MAX_PRIO, for this test
2204 * to be always true for them.
2205 */
dd41f596 2206 check_preempt_curr(this_rq, p);
1da177e4
LT
2207}
2208
2209/*
2210 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2211 */
858119e1 2212static
70b97a7f 2213int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2214 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2215 int *all_pinned)
1da177e4
LT
2216{
2217 /*
2218 * We do not migrate tasks that are:
2219 * 1) running (obviously), or
2220 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2221 * 3) are cache-hot on their current CPU.
2222 */
cc367732
IM
2223 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2224 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2225 return 0;
cc367732 2226 }
81026794
NP
2227 *all_pinned = 0;
2228
cc367732
IM
2229 if (task_running(rq, p)) {
2230 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2231 return 0;
cc367732 2232 }
1da177e4 2233
da84d961
IM
2234 /*
2235 * Aggressive migration if:
2236 * 1) task is cache cold, or
2237 * 2) too many balance attempts have failed.
2238 */
2239
6bc1665b
IM
2240 if (!task_hot(p, rq->clock, sd) ||
2241 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2242#ifdef CONFIG_SCHEDSTATS
cc367732 2243 if (task_hot(p, rq->clock, sd)) {
da84d961 2244 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2245 schedstat_inc(p, se.nr_forced_migrations);
2246 }
da84d961
IM
2247#endif
2248 return 1;
2249 }
2250
cc367732
IM
2251 if (task_hot(p, rq->clock, sd)) {
2252 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2253 return 0;
cc367732 2254 }
1da177e4
LT
2255 return 1;
2256}
2257
e1d1484f
PW
2258static unsigned long
2259balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2260 unsigned long max_load_move, struct sched_domain *sd,
2261 enum cpu_idle_type idle, int *all_pinned,
2262 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2263{
b82d9fdd 2264 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2265 struct task_struct *p;
2266 long rem_load_move = max_load_move;
1da177e4 2267
e1d1484f 2268 if (max_load_move == 0)
1da177e4
LT
2269 goto out;
2270
81026794
NP
2271 pinned = 1;
2272
1da177e4 2273 /*
dd41f596 2274 * Start the load-balancing iterator:
1da177e4 2275 */
dd41f596
IM
2276 p = iterator->start(iterator->arg);
2277next:
b82d9fdd 2278 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2279 goto out;
50ddd969 2280 /*
b82d9fdd 2281 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2282 * skip a task if it will be the highest priority task (i.e. smallest
2283 * prio value) on its new queue regardless of its load weight
2284 */
dd41f596
IM
2285 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2286 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2287 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2288 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2289 p = iterator->next(iterator->arg);
2290 goto next;
1da177e4
LT
2291 }
2292
dd41f596 2293 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2294 pulled++;
dd41f596 2295 rem_load_move -= p->se.load.weight;
1da177e4 2296
2dd73a4f 2297 /*
b82d9fdd 2298 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2299 */
e1d1484f 2300 if (rem_load_move > 0) {
a4ac01c3
PW
2301 if (p->prio < *this_best_prio)
2302 *this_best_prio = p->prio;
dd41f596
IM
2303 p = iterator->next(iterator->arg);
2304 goto next;
1da177e4
LT
2305 }
2306out:
2307 /*
e1d1484f 2308 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2309 * so we can safely collect pull_task() stats here rather than
2310 * inside pull_task().
2311 */
2312 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2313
2314 if (all_pinned)
2315 *all_pinned = pinned;
e1d1484f
PW
2316
2317 return max_load_move - rem_load_move;
1da177e4
LT
2318}
2319
dd41f596 2320/*
43010659
PW
2321 * move_tasks tries to move up to max_load_move weighted load from busiest to
2322 * this_rq, as part of a balancing operation within domain "sd".
2323 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2324 *
2325 * Called with both runqueues locked.
2326 */
2327static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2328 unsigned long max_load_move,
dd41f596
IM
2329 struct sched_domain *sd, enum cpu_idle_type idle,
2330 int *all_pinned)
2331{
5522d5d5 2332 const struct sched_class *class = sched_class_highest;
43010659 2333 unsigned long total_load_moved = 0;
a4ac01c3 2334 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2335
2336 do {
43010659
PW
2337 total_load_moved +=
2338 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2339 max_load_move - total_load_moved,
a4ac01c3 2340 sd, idle, all_pinned, &this_best_prio);
dd41f596 2341 class = class->next;
43010659 2342 } while (class && max_load_move > total_load_moved);
dd41f596 2343
43010659
PW
2344 return total_load_moved > 0;
2345}
2346
e1d1484f
PW
2347static int
2348iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2349 struct sched_domain *sd, enum cpu_idle_type idle,
2350 struct rq_iterator *iterator)
2351{
2352 struct task_struct *p = iterator->start(iterator->arg);
2353 int pinned = 0;
2354
2355 while (p) {
2356 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2357 pull_task(busiest, p, this_rq, this_cpu);
2358 /*
2359 * Right now, this is only the second place pull_task()
2360 * is called, so we can safely collect pull_task()
2361 * stats here rather than inside pull_task().
2362 */
2363 schedstat_inc(sd, lb_gained[idle]);
2364
2365 return 1;
2366 }
2367 p = iterator->next(iterator->arg);
2368 }
2369
2370 return 0;
2371}
2372
43010659
PW
2373/*
2374 * move_one_task tries to move exactly one task from busiest to this_rq, as
2375 * part of active balancing operations within "domain".
2376 * Returns 1 if successful and 0 otherwise.
2377 *
2378 * Called with both runqueues locked.
2379 */
2380static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2381 struct sched_domain *sd, enum cpu_idle_type idle)
2382{
5522d5d5 2383 const struct sched_class *class;
43010659
PW
2384
2385 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2386 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2387 return 1;
2388
2389 return 0;
dd41f596
IM
2390}
2391
1da177e4
LT
2392/*
2393 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2394 * domain. It calculates and returns the amount of weighted load which
2395 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2396 */
2397static struct sched_group *
2398find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2399 unsigned long *imbalance, enum cpu_idle_type idle,
2400 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2401{
2402 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2403 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2404 unsigned long max_pull;
2dd73a4f
PW
2405 unsigned long busiest_load_per_task, busiest_nr_running;
2406 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2407 int load_idx, group_imb = 0;
5c45bf27
SS
2408#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2409 int power_savings_balance = 1;
2410 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2411 unsigned long min_nr_running = ULONG_MAX;
2412 struct sched_group *group_min = NULL, *group_leader = NULL;
2413#endif
1da177e4
LT
2414
2415 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2416 busiest_load_per_task = busiest_nr_running = 0;
2417 this_load_per_task = this_nr_running = 0;
d15bcfdb 2418 if (idle == CPU_NOT_IDLE)
7897986b 2419 load_idx = sd->busy_idx;
d15bcfdb 2420 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2421 load_idx = sd->newidle_idx;
2422 else
2423 load_idx = sd->idle_idx;
1da177e4
LT
2424
2425 do {
908a7c1b 2426 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2427 int local_group;
2428 int i;
908a7c1b 2429 int __group_imb = 0;
783609c6 2430 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2431 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2432
2433 local_group = cpu_isset(this_cpu, group->cpumask);
2434
783609c6
SS
2435 if (local_group)
2436 balance_cpu = first_cpu(group->cpumask);
2437
1da177e4 2438 /* Tally up the load of all CPUs in the group */
2dd73a4f 2439 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2440 max_cpu_load = 0;
2441 min_cpu_load = ~0UL;
1da177e4
LT
2442
2443 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2444 struct rq *rq;
2445
2446 if (!cpu_isset(i, *cpus))
2447 continue;
2448
2449 rq = cpu_rq(i);
2dd73a4f 2450
9439aab8 2451 if (*sd_idle && rq->nr_running)
5969fe06
NP
2452 *sd_idle = 0;
2453
1da177e4 2454 /* Bias balancing toward cpus of our domain */
783609c6
SS
2455 if (local_group) {
2456 if (idle_cpu(i) && !first_idle_cpu) {
2457 first_idle_cpu = 1;
2458 balance_cpu = i;
2459 }
2460
a2000572 2461 load = target_load(i, load_idx);
908a7c1b 2462 } else {
a2000572 2463 load = source_load(i, load_idx);
908a7c1b
KC
2464 if (load > max_cpu_load)
2465 max_cpu_load = load;
2466 if (min_cpu_load > load)
2467 min_cpu_load = load;
2468 }
1da177e4
LT
2469
2470 avg_load += load;
2dd73a4f 2471 sum_nr_running += rq->nr_running;
dd41f596 2472 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2473 }
2474
783609c6
SS
2475 /*
2476 * First idle cpu or the first cpu(busiest) in this sched group
2477 * is eligible for doing load balancing at this and above
9439aab8
SS
2478 * domains. In the newly idle case, we will allow all the cpu's
2479 * to do the newly idle load balance.
783609c6 2480 */
9439aab8
SS
2481 if (idle != CPU_NEWLY_IDLE && local_group &&
2482 balance_cpu != this_cpu && balance) {
783609c6
SS
2483 *balance = 0;
2484 goto ret;
2485 }
2486
1da177e4 2487 total_load += avg_load;
5517d86b 2488 total_pwr += group->__cpu_power;
1da177e4
LT
2489
2490 /* Adjust by relative CPU power of the group */
5517d86b
ED
2491 avg_load = sg_div_cpu_power(group,
2492 avg_load * SCHED_LOAD_SCALE);
1da177e4 2493
908a7c1b
KC
2494 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2495 __group_imb = 1;
2496
5517d86b 2497 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2498
1da177e4
LT
2499 if (local_group) {
2500 this_load = avg_load;
2501 this = group;
2dd73a4f
PW
2502 this_nr_running = sum_nr_running;
2503 this_load_per_task = sum_weighted_load;
2504 } else if (avg_load > max_load &&
908a7c1b 2505 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2506 max_load = avg_load;
2507 busiest = group;
2dd73a4f
PW
2508 busiest_nr_running = sum_nr_running;
2509 busiest_load_per_task = sum_weighted_load;
908a7c1b 2510 group_imb = __group_imb;
1da177e4 2511 }
5c45bf27
SS
2512
2513#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2514 /*
2515 * Busy processors will not participate in power savings
2516 * balance.
2517 */
dd41f596
IM
2518 if (idle == CPU_NOT_IDLE ||
2519 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2520 goto group_next;
5c45bf27
SS
2521
2522 /*
2523 * If the local group is idle or completely loaded
2524 * no need to do power savings balance at this domain
2525 */
2526 if (local_group && (this_nr_running >= group_capacity ||
2527 !this_nr_running))
2528 power_savings_balance = 0;
2529
dd41f596 2530 /*
5c45bf27
SS
2531 * If a group is already running at full capacity or idle,
2532 * don't include that group in power savings calculations
dd41f596
IM
2533 */
2534 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2535 || !sum_nr_running)
dd41f596 2536 goto group_next;
5c45bf27 2537
dd41f596 2538 /*
5c45bf27 2539 * Calculate the group which has the least non-idle load.
dd41f596
IM
2540 * This is the group from where we need to pick up the load
2541 * for saving power
2542 */
2543 if ((sum_nr_running < min_nr_running) ||
2544 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2545 first_cpu(group->cpumask) <
2546 first_cpu(group_min->cpumask))) {
dd41f596
IM
2547 group_min = group;
2548 min_nr_running = sum_nr_running;
5c45bf27
SS
2549 min_load_per_task = sum_weighted_load /
2550 sum_nr_running;
dd41f596 2551 }
5c45bf27 2552
dd41f596 2553 /*
5c45bf27 2554 * Calculate the group which is almost near its
dd41f596
IM
2555 * capacity but still has some space to pick up some load
2556 * from other group and save more power
2557 */
2558 if (sum_nr_running <= group_capacity - 1) {
2559 if (sum_nr_running > leader_nr_running ||
2560 (sum_nr_running == leader_nr_running &&
2561 first_cpu(group->cpumask) >
2562 first_cpu(group_leader->cpumask))) {
2563 group_leader = group;
2564 leader_nr_running = sum_nr_running;
2565 }
48f24c4d 2566 }
5c45bf27
SS
2567group_next:
2568#endif
1da177e4
LT
2569 group = group->next;
2570 } while (group != sd->groups);
2571
2dd73a4f 2572 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2573 goto out_balanced;
2574
2575 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2576
2577 if (this_load >= avg_load ||
2578 100*max_load <= sd->imbalance_pct*this_load)
2579 goto out_balanced;
2580
2dd73a4f 2581 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2582 if (group_imb)
2583 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2584
1da177e4
LT
2585 /*
2586 * We're trying to get all the cpus to the average_load, so we don't
2587 * want to push ourselves above the average load, nor do we wish to
2588 * reduce the max loaded cpu below the average load, as either of these
2589 * actions would just result in more rebalancing later, and ping-pong
2590 * tasks around. Thus we look for the minimum possible imbalance.
2591 * Negative imbalances (*we* are more loaded than anyone else) will
2592 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2593 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2594 * appear as very large values with unsigned longs.
2595 */
2dd73a4f
PW
2596 if (max_load <= busiest_load_per_task)
2597 goto out_balanced;
2598
2599 /*
2600 * In the presence of smp nice balancing, certain scenarios can have
2601 * max load less than avg load(as we skip the groups at or below
2602 * its cpu_power, while calculating max_load..)
2603 */
2604 if (max_load < avg_load) {
2605 *imbalance = 0;
2606 goto small_imbalance;
2607 }
0c117f1b
SS
2608
2609 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2610 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2611
1da177e4 2612 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2613 *imbalance = min(max_pull * busiest->__cpu_power,
2614 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2615 / SCHED_LOAD_SCALE;
2616
2dd73a4f
PW
2617 /*
2618 * if *imbalance is less than the average load per runnable task
2619 * there is no gaurantee that any tasks will be moved so we'll have
2620 * a think about bumping its value to force at least one task to be
2621 * moved
2622 */
7fd0d2dd 2623 if (*imbalance < busiest_load_per_task) {
48f24c4d 2624 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2625 unsigned int imbn;
2626
2627small_imbalance:
2628 pwr_move = pwr_now = 0;
2629 imbn = 2;
2630 if (this_nr_running) {
2631 this_load_per_task /= this_nr_running;
2632 if (busiest_load_per_task > this_load_per_task)
2633 imbn = 1;
2634 } else
2635 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2636
dd41f596
IM
2637 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2638 busiest_load_per_task * imbn) {
2dd73a4f 2639 *imbalance = busiest_load_per_task;
1da177e4
LT
2640 return busiest;
2641 }
2642
2643 /*
2644 * OK, we don't have enough imbalance to justify moving tasks,
2645 * however we may be able to increase total CPU power used by
2646 * moving them.
2647 */
2648
5517d86b
ED
2649 pwr_now += busiest->__cpu_power *
2650 min(busiest_load_per_task, max_load);
2651 pwr_now += this->__cpu_power *
2652 min(this_load_per_task, this_load);
1da177e4
LT
2653 pwr_now /= SCHED_LOAD_SCALE;
2654
2655 /* Amount of load we'd subtract */
5517d86b
ED
2656 tmp = sg_div_cpu_power(busiest,
2657 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2658 if (max_load > tmp)
5517d86b 2659 pwr_move += busiest->__cpu_power *
2dd73a4f 2660 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2661
2662 /* Amount of load we'd add */
5517d86b 2663 if (max_load * busiest->__cpu_power <
33859f7f 2664 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2665 tmp = sg_div_cpu_power(this,
2666 max_load * busiest->__cpu_power);
1da177e4 2667 else
5517d86b
ED
2668 tmp = sg_div_cpu_power(this,
2669 busiest_load_per_task * SCHED_LOAD_SCALE);
2670 pwr_move += this->__cpu_power *
2671 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2672 pwr_move /= SCHED_LOAD_SCALE;
2673
2674 /* Move if we gain throughput */
7fd0d2dd
SS
2675 if (pwr_move > pwr_now)
2676 *imbalance = busiest_load_per_task;
1da177e4
LT
2677 }
2678
1da177e4
LT
2679 return busiest;
2680
2681out_balanced:
5c45bf27 2682#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2683 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2684 goto ret;
1da177e4 2685
5c45bf27
SS
2686 if (this == group_leader && group_leader != group_min) {
2687 *imbalance = min_load_per_task;
2688 return group_min;
2689 }
5c45bf27 2690#endif
783609c6 2691ret:
1da177e4
LT
2692 *imbalance = 0;
2693 return NULL;
2694}
2695
2696/*
2697 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2698 */
70b97a7f 2699static struct rq *
d15bcfdb 2700find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2701 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2702{
70b97a7f 2703 struct rq *busiest = NULL, *rq;
2dd73a4f 2704 unsigned long max_load = 0;
1da177e4
LT
2705 int i;
2706
2707 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2708 unsigned long wl;
0a2966b4
CL
2709
2710 if (!cpu_isset(i, *cpus))
2711 continue;
2712
48f24c4d 2713 rq = cpu_rq(i);
dd41f596 2714 wl = weighted_cpuload(i);
2dd73a4f 2715
dd41f596 2716 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2717 continue;
1da177e4 2718
dd41f596
IM
2719 if (wl > max_load) {
2720 max_load = wl;
48f24c4d 2721 busiest = rq;
1da177e4
LT
2722 }
2723 }
2724
2725 return busiest;
2726}
2727
77391d71
NP
2728/*
2729 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2730 * so long as it is large enough.
2731 */
2732#define MAX_PINNED_INTERVAL 512
2733
1da177e4
LT
2734/*
2735 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2736 * tasks if there is an imbalance.
1da177e4 2737 */
70b97a7f 2738static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2739 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2740 int *balance)
1da177e4 2741{
43010659 2742 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2743 struct sched_group *group;
1da177e4 2744 unsigned long imbalance;
70b97a7f 2745 struct rq *busiest;
0a2966b4 2746 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2747 unsigned long flags;
5969fe06 2748
89c4710e
SS
2749 /*
2750 * When power savings policy is enabled for the parent domain, idle
2751 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2752 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2753 * portraying it as CPU_NOT_IDLE.
89c4710e 2754 */
d15bcfdb 2755 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2756 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2757 sd_idle = 1;
1da177e4 2758
2d72376b 2759 schedstat_inc(sd, lb_count[idle]);
1da177e4 2760
0a2966b4
CL
2761redo:
2762 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2763 &cpus, balance);
2764
06066714 2765 if (*balance == 0)
783609c6 2766 goto out_balanced;
783609c6 2767
1da177e4
LT
2768 if (!group) {
2769 schedstat_inc(sd, lb_nobusyg[idle]);
2770 goto out_balanced;
2771 }
2772
0a2966b4 2773 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2774 if (!busiest) {
2775 schedstat_inc(sd, lb_nobusyq[idle]);
2776 goto out_balanced;
2777 }
2778
db935dbd 2779 BUG_ON(busiest == this_rq);
1da177e4
LT
2780
2781 schedstat_add(sd, lb_imbalance[idle], imbalance);
2782
43010659 2783 ld_moved = 0;
1da177e4
LT
2784 if (busiest->nr_running > 1) {
2785 /*
2786 * Attempt to move tasks. If find_busiest_group has found
2787 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2788 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2789 * correctly treated as an imbalance.
2790 */
fe2eea3f 2791 local_irq_save(flags);
e17224bf 2792 double_rq_lock(this_rq, busiest);
43010659 2793 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2794 imbalance, sd, idle, &all_pinned);
e17224bf 2795 double_rq_unlock(this_rq, busiest);
fe2eea3f 2796 local_irq_restore(flags);
81026794 2797
46cb4b7c
SS
2798 /*
2799 * some other cpu did the load balance for us.
2800 */
43010659 2801 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2802 resched_cpu(this_cpu);
2803
81026794 2804 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2805 if (unlikely(all_pinned)) {
2806 cpu_clear(cpu_of(busiest), cpus);
2807 if (!cpus_empty(cpus))
2808 goto redo;
81026794 2809 goto out_balanced;
0a2966b4 2810 }
1da177e4 2811 }
81026794 2812
43010659 2813 if (!ld_moved) {
1da177e4
LT
2814 schedstat_inc(sd, lb_failed[idle]);
2815 sd->nr_balance_failed++;
2816
2817 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2818
fe2eea3f 2819 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2820
2821 /* don't kick the migration_thread, if the curr
2822 * task on busiest cpu can't be moved to this_cpu
2823 */
2824 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2825 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2826 all_pinned = 1;
2827 goto out_one_pinned;
2828 }
2829
1da177e4
LT
2830 if (!busiest->active_balance) {
2831 busiest->active_balance = 1;
2832 busiest->push_cpu = this_cpu;
81026794 2833 active_balance = 1;
1da177e4 2834 }
fe2eea3f 2835 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2836 if (active_balance)
1da177e4
LT
2837 wake_up_process(busiest->migration_thread);
2838
2839 /*
2840 * We've kicked active balancing, reset the failure
2841 * counter.
2842 */
39507451 2843 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2844 }
81026794 2845 } else
1da177e4
LT
2846 sd->nr_balance_failed = 0;
2847
81026794 2848 if (likely(!active_balance)) {
1da177e4
LT
2849 /* We were unbalanced, so reset the balancing interval */
2850 sd->balance_interval = sd->min_interval;
81026794
NP
2851 } else {
2852 /*
2853 * If we've begun active balancing, start to back off. This
2854 * case may not be covered by the all_pinned logic if there
2855 * is only 1 task on the busy runqueue (because we don't call
2856 * move_tasks).
2857 */
2858 if (sd->balance_interval < sd->max_interval)
2859 sd->balance_interval *= 2;
1da177e4
LT
2860 }
2861
43010659 2862 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2863 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2864 return -1;
43010659 2865 return ld_moved;
1da177e4
LT
2866
2867out_balanced:
1da177e4
LT
2868 schedstat_inc(sd, lb_balanced[idle]);
2869
16cfb1c0 2870 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2871
2872out_one_pinned:
1da177e4 2873 /* tune up the balancing interval */
77391d71
NP
2874 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2875 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2876 sd->balance_interval *= 2;
2877
48f24c4d 2878 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2879 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2880 return -1;
1da177e4
LT
2881 return 0;
2882}
2883
2884/*
2885 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2886 * tasks if there is an imbalance.
2887 *
d15bcfdb 2888 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2889 * this_rq is locked.
2890 */
48f24c4d 2891static int
70b97a7f 2892load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2893{
2894 struct sched_group *group;
70b97a7f 2895 struct rq *busiest = NULL;
1da177e4 2896 unsigned long imbalance;
43010659 2897 int ld_moved = 0;
5969fe06 2898 int sd_idle = 0;
969bb4e4 2899 int all_pinned = 0;
0a2966b4 2900 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2901
89c4710e
SS
2902 /*
2903 * When power savings policy is enabled for the parent domain, idle
2904 * sibling can pick up load irrespective of busy siblings. In this case,
2905 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2906 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2907 */
2908 if (sd->flags & SD_SHARE_CPUPOWER &&
2909 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2910 sd_idle = 1;
1da177e4 2911
2d72376b 2912 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2913redo:
d15bcfdb 2914 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2915 &sd_idle, &cpus, NULL);
1da177e4 2916 if (!group) {
d15bcfdb 2917 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2918 goto out_balanced;
1da177e4
LT
2919 }
2920
d15bcfdb 2921 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2922 &cpus);
db935dbd 2923 if (!busiest) {
d15bcfdb 2924 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2925 goto out_balanced;
1da177e4
LT
2926 }
2927
db935dbd
NP
2928 BUG_ON(busiest == this_rq);
2929
d15bcfdb 2930 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2931
43010659 2932 ld_moved = 0;
d6d5cfaf
NP
2933 if (busiest->nr_running > 1) {
2934 /* Attempt to move tasks */
2935 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2936 /* this_rq->clock is already updated */
2937 update_rq_clock(busiest);
43010659 2938 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2939 imbalance, sd, CPU_NEWLY_IDLE,
2940 &all_pinned);
d6d5cfaf 2941 spin_unlock(&busiest->lock);
0a2966b4 2942
969bb4e4 2943 if (unlikely(all_pinned)) {
0a2966b4
CL
2944 cpu_clear(cpu_of(busiest), cpus);
2945 if (!cpus_empty(cpus))
2946 goto redo;
2947 }
d6d5cfaf
NP
2948 }
2949
43010659 2950 if (!ld_moved) {
d15bcfdb 2951 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2952 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2953 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2954 return -1;
2955 } else
16cfb1c0 2956 sd->nr_balance_failed = 0;
1da177e4 2957
43010659 2958 return ld_moved;
16cfb1c0
NP
2959
2960out_balanced:
d15bcfdb 2961 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2962 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2963 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2964 return -1;
16cfb1c0 2965 sd->nr_balance_failed = 0;
48f24c4d 2966
16cfb1c0 2967 return 0;
1da177e4
LT
2968}
2969
2970/*
2971 * idle_balance is called by schedule() if this_cpu is about to become
2972 * idle. Attempts to pull tasks from other CPUs.
2973 */
70b97a7f 2974static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2975{
2976 struct sched_domain *sd;
dd41f596
IM
2977 int pulled_task = -1;
2978 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2979
2980 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2981 unsigned long interval;
2982
2983 if (!(sd->flags & SD_LOAD_BALANCE))
2984 continue;
2985
2986 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2987 /* If we've pulled tasks over stop searching: */
1bd77f2d 2988 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2989 this_rq, sd);
2990
2991 interval = msecs_to_jiffies(sd->balance_interval);
2992 if (time_after(next_balance, sd->last_balance + interval))
2993 next_balance = sd->last_balance + interval;
2994 if (pulled_task)
2995 break;
1da177e4 2996 }
dd41f596 2997 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2998 /*
2999 * We are going idle. next_balance may be set based on
3000 * a busy processor. So reset next_balance.
3001 */
3002 this_rq->next_balance = next_balance;
dd41f596 3003 }
1da177e4
LT
3004}
3005
3006/*
3007 * active_load_balance is run by migration threads. It pushes running tasks
3008 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3009 * running on each physical CPU where possible, and avoids physical /
3010 * logical imbalances.
3011 *
3012 * Called with busiest_rq locked.
3013 */
70b97a7f 3014static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3015{
39507451 3016 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3017 struct sched_domain *sd;
3018 struct rq *target_rq;
39507451 3019
48f24c4d 3020 /* Is there any task to move? */
39507451 3021 if (busiest_rq->nr_running <= 1)
39507451
NP
3022 return;
3023
3024 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3025
3026 /*
39507451 3027 * This condition is "impossible", if it occurs
41a2d6cf 3028 * we need to fix it. Originally reported by
39507451 3029 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3030 */
39507451 3031 BUG_ON(busiest_rq == target_rq);
1da177e4 3032
39507451
NP
3033 /* move a task from busiest_rq to target_rq */
3034 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3035 update_rq_clock(busiest_rq);
3036 update_rq_clock(target_rq);
39507451
NP
3037
3038 /* Search for an sd spanning us and the target CPU. */
c96d145e 3039 for_each_domain(target_cpu, sd) {
39507451 3040 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3041 cpu_isset(busiest_cpu, sd->span))
39507451 3042 break;
c96d145e 3043 }
39507451 3044
48f24c4d 3045 if (likely(sd)) {
2d72376b 3046 schedstat_inc(sd, alb_count);
39507451 3047
43010659
PW
3048 if (move_one_task(target_rq, target_cpu, busiest_rq,
3049 sd, CPU_IDLE))
48f24c4d
IM
3050 schedstat_inc(sd, alb_pushed);
3051 else
3052 schedstat_inc(sd, alb_failed);
3053 }
39507451 3054 spin_unlock(&target_rq->lock);
1da177e4
LT
3055}
3056
46cb4b7c
SS
3057#ifdef CONFIG_NO_HZ
3058static struct {
3059 atomic_t load_balancer;
41a2d6cf 3060 cpumask_t cpu_mask;
46cb4b7c
SS
3061} nohz ____cacheline_aligned = {
3062 .load_balancer = ATOMIC_INIT(-1),
3063 .cpu_mask = CPU_MASK_NONE,
3064};
3065
7835b98b 3066/*
46cb4b7c
SS
3067 * This routine will try to nominate the ilb (idle load balancing)
3068 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3069 * load balancing on behalf of all those cpus. If all the cpus in the system
3070 * go into this tickless mode, then there will be no ilb owner (as there is
3071 * no need for one) and all the cpus will sleep till the next wakeup event
3072 * arrives...
3073 *
3074 * For the ilb owner, tick is not stopped. And this tick will be used
3075 * for idle load balancing. ilb owner will still be part of
3076 * nohz.cpu_mask..
7835b98b 3077 *
46cb4b7c
SS
3078 * While stopping the tick, this cpu will become the ilb owner if there
3079 * is no other owner. And will be the owner till that cpu becomes busy
3080 * or if all cpus in the system stop their ticks at which point
3081 * there is no need for ilb owner.
3082 *
3083 * When the ilb owner becomes busy, it nominates another owner, during the
3084 * next busy scheduler_tick()
3085 */
3086int select_nohz_load_balancer(int stop_tick)
3087{
3088 int cpu = smp_processor_id();
3089
3090 if (stop_tick) {
3091 cpu_set(cpu, nohz.cpu_mask);
3092 cpu_rq(cpu)->in_nohz_recently = 1;
3093
3094 /*
3095 * If we are going offline and still the leader, give up!
3096 */
3097 if (cpu_is_offline(cpu) &&
3098 atomic_read(&nohz.load_balancer) == cpu) {
3099 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3100 BUG();
3101 return 0;
3102 }
3103
3104 /* time for ilb owner also to sleep */
3105 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3106 if (atomic_read(&nohz.load_balancer) == cpu)
3107 atomic_set(&nohz.load_balancer, -1);
3108 return 0;
3109 }
3110
3111 if (atomic_read(&nohz.load_balancer) == -1) {
3112 /* make me the ilb owner */
3113 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3114 return 1;
3115 } else if (atomic_read(&nohz.load_balancer) == cpu)
3116 return 1;
3117 } else {
3118 if (!cpu_isset(cpu, nohz.cpu_mask))
3119 return 0;
3120
3121 cpu_clear(cpu, nohz.cpu_mask);
3122
3123 if (atomic_read(&nohz.load_balancer) == cpu)
3124 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3125 BUG();
3126 }
3127 return 0;
3128}
3129#endif
3130
3131static DEFINE_SPINLOCK(balancing);
3132
3133/*
7835b98b
CL
3134 * It checks each scheduling domain to see if it is due to be balanced,
3135 * and initiates a balancing operation if so.
3136 *
3137 * Balancing parameters are set up in arch_init_sched_domains.
3138 */
a9957449 3139static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3140{
46cb4b7c
SS
3141 int balance = 1;
3142 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3143 unsigned long interval;
3144 struct sched_domain *sd;
46cb4b7c 3145 /* Earliest time when we have to do rebalance again */
c9819f45 3146 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3147 int update_next_balance = 0;
1da177e4 3148
46cb4b7c 3149 for_each_domain(cpu, sd) {
1da177e4
LT
3150 if (!(sd->flags & SD_LOAD_BALANCE))
3151 continue;
3152
3153 interval = sd->balance_interval;
d15bcfdb 3154 if (idle != CPU_IDLE)
1da177e4
LT
3155 interval *= sd->busy_factor;
3156
3157 /* scale ms to jiffies */
3158 interval = msecs_to_jiffies(interval);
3159 if (unlikely(!interval))
3160 interval = 1;
dd41f596
IM
3161 if (interval > HZ*NR_CPUS/10)
3162 interval = HZ*NR_CPUS/10;
3163
1da177e4 3164
08c183f3
CL
3165 if (sd->flags & SD_SERIALIZE) {
3166 if (!spin_trylock(&balancing))
3167 goto out;
3168 }
3169
c9819f45 3170 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3171 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3172 /*
3173 * We've pulled tasks over so either we're no
5969fe06
NP
3174 * longer idle, or one of our SMT siblings is
3175 * not idle.
3176 */
d15bcfdb 3177 idle = CPU_NOT_IDLE;
1da177e4 3178 }
1bd77f2d 3179 sd->last_balance = jiffies;
1da177e4 3180 }
08c183f3
CL
3181 if (sd->flags & SD_SERIALIZE)
3182 spin_unlock(&balancing);
3183out:
f549da84 3184 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3185 next_balance = sd->last_balance + interval;
f549da84
SS
3186 update_next_balance = 1;
3187 }
783609c6
SS
3188
3189 /*
3190 * Stop the load balance at this level. There is another
3191 * CPU in our sched group which is doing load balancing more
3192 * actively.
3193 */
3194 if (!balance)
3195 break;
1da177e4 3196 }
f549da84
SS
3197
3198 /*
3199 * next_balance will be updated only when there is a need.
3200 * When the cpu is attached to null domain for ex, it will not be
3201 * updated.
3202 */
3203 if (likely(update_next_balance))
3204 rq->next_balance = next_balance;
46cb4b7c
SS
3205}
3206
3207/*
3208 * run_rebalance_domains is triggered when needed from the scheduler tick.
3209 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3210 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3211 */
3212static void run_rebalance_domains(struct softirq_action *h)
3213{
dd41f596
IM
3214 int this_cpu = smp_processor_id();
3215 struct rq *this_rq = cpu_rq(this_cpu);
3216 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3217 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3218
dd41f596 3219 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3220
3221#ifdef CONFIG_NO_HZ
3222 /*
3223 * If this cpu is the owner for idle load balancing, then do the
3224 * balancing on behalf of the other idle cpus whose ticks are
3225 * stopped.
3226 */
dd41f596
IM
3227 if (this_rq->idle_at_tick &&
3228 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3229 cpumask_t cpus = nohz.cpu_mask;
3230 struct rq *rq;
3231 int balance_cpu;
3232
dd41f596 3233 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3234 for_each_cpu_mask(balance_cpu, cpus) {
3235 /*
3236 * If this cpu gets work to do, stop the load balancing
3237 * work being done for other cpus. Next load
3238 * balancing owner will pick it up.
3239 */
3240 if (need_resched())
3241 break;
3242
de0cf899 3243 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3244
3245 rq = cpu_rq(balance_cpu);
dd41f596
IM
3246 if (time_after(this_rq->next_balance, rq->next_balance))
3247 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3248 }
3249 }
3250#endif
3251}
3252
3253/*
3254 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3255 *
3256 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3257 * idle load balancing owner or decide to stop the periodic load balancing,
3258 * if the whole system is idle.
3259 */
dd41f596 3260static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3261{
46cb4b7c
SS
3262#ifdef CONFIG_NO_HZ
3263 /*
3264 * If we were in the nohz mode recently and busy at the current
3265 * scheduler tick, then check if we need to nominate new idle
3266 * load balancer.
3267 */
3268 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3269 rq->in_nohz_recently = 0;
3270
3271 if (atomic_read(&nohz.load_balancer) == cpu) {
3272 cpu_clear(cpu, nohz.cpu_mask);
3273 atomic_set(&nohz.load_balancer, -1);
3274 }
3275
3276 if (atomic_read(&nohz.load_balancer) == -1) {
3277 /*
3278 * simple selection for now: Nominate the
3279 * first cpu in the nohz list to be the next
3280 * ilb owner.
3281 *
3282 * TBD: Traverse the sched domains and nominate
3283 * the nearest cpu in the nohz.cpu_mask.
3284 */
3285 int ilb = first_cpu(nohz.cpu_mask);
3286
3287 if (ilb != NR_CPUS)
3288 resched_cpu(ilb);
3289 }
3290 }
3291
3292 /*
3293 * If this cpu is idle and doing idle load balancing for all the
3294 * cpus with ticks stopped, is it time for that to stop?
3295 */
3296 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3297 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3298 resched_cpu(cpu);
3299 return;
3300 }
3301
3302 /*
3303 * If this cpu is idle and the idle load balancing is done by
3304 * someone else, then no need raise the SCHED_SOFTIRQ
3305 */
3306 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3307 cpu_isset(cpu, nohz.cpu_mask))
3308 return;
3309#endif
3310 if (time_after_eq(jiffies, rq->next_balance))
3311 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3312}
dd41f596
IM
3313
3314#else /* CONFIG_SMP */
3315
1da177e4
LT
3316/*
3317 * on UP we do not need to balance between CPUs:
3318 */
70b97a7f 3319static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3320{
3321}
dd41f596 3322
1da177e4
LT
3323#endif
3324
1da177e4
LT
3325DEFINE_PER_CPU(struct kernel_stat, kstat);
3326
3327EXPORT_PER_CPU_SYMBOL(kstat);
3328
3329/*
41b86e9c
IM
3330 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3331 * that have not yet been banked in case the task is currently running.
1da177e4 3332 */
41b86e9c 3333unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3334{
1da177e4 3335 unsigned long flags;
41b86e9c
IM
3336 u64 ns, delta_exec;
3337 struct rq *rq;
48f24c4d 3338
41b86e9c
IM
3339 rq = task_rq_lock(p, &flags);
3340 ns = p->se.sum_exec_runtime;
051a1d1a 3341 if (task_current(rq, p)) {
a8e504d2
IM
3342 update_rq_clock(rq);
3343 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3344 if ((s64)delta_exec > 0)
3345 ns += delta_exec;
3346 }
3347 task_rq_unlock(rq, &flags);
48f24c4d 3348
1da177e4
LT
3349 return ns;
3350}
3351
1da177e4
LT
3352/*
3353 * Account user cpu time to a process.
3354 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3355 * @cputime: the cpu time spent in user space since the last update
3356 */
3357void account_user_time(struct task_struct *p, cputime_t cputime)
3358{
3359 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3360 cputime64_t tmp;
3361
3362 p->utime = cputime_add(p->utime, cputime);
3363
3364 /* Add user time to cpustat. */
3365 tmp = cputime_to_cputime64(cputime);
3366 if (TASK_NICE(p) > 0)
3367 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3368 else
3369 cpustat->user = cputime64_add(cpustat->user, tmp);
3370}
3371
94886b84
LV
3372/*
3373 * Account guest cpu time to a process.
3374 * @p: the process that the cpu time gets accounted to
3375 * @cputime: the cpu time spent in virtual machine since the last update
3376 */
f7402e03 3377static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3378{
3379 cputime64_t tmp;
3380 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3381
3382 tmp = cputime_to_cputime64(cputime);
3383
3384 p->utime = cputime_add(p->utime, cputime);
3385 p->gtime = cputime_add(p->gtime, cputime);
3386
3387 cpustat->user = cputime64_add(cpustat->user, tmp);
3388 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3389}
3390
c66f08be
MN
3391/*
3392 * Account scaled user cpu time to a process.
3393 * @p: the process that the cpu time gets accounted to
3394 * @cputime: the cpu time spent in user space since the last update
3395 */
3396void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3397{
3398 p->utimescaled = cputime_add(p->utimescaled, cputime);
3399}
3400
1da177e4
LT
3401/*
3402 * Account system cpu time to a process.
3403 * @p: the process that the cpu time gets accounted to
3404 * @hardirq_offset: the offset to subtract from hardirq_count()
3405 * @cputime: the cpu time spent in kernel space since the last update
3406 */
3407void account_system_time(struct task_struct *p, int hardirq_offset,
3408 cputime_t cputime)
3409{
3410 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3411 struct rq *rq = this_rq();
1da177e4
LT
3412 cputime64_t tmp;
3413
9778385d
CB
3414 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3415 return account_guest_time(p, cputime);
94886b84 3416
1da177e4
LT
3417 p->stime = cputime_add(p->stime, cputime);
3418
3419 /* Add system time to cpustat. */
3420 tmp = cputime_to_cputime64(cputime);
3421 if (hardirq_count() - hardirq_offset)
3422 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3423 else if (softirq_count())
3424 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3425 else if (p != rq->idle)
1da177e4 3426 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3427 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3428 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3429 else
3430 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3431 /* Account for system time used */
3432 acct_update_integrals(p);
1da177e4
LT
3433}
3434
c66f08be
MN
3435/*
3436 * Account scaled system cpu time to a process.
3437 * @p: the process that the cpu time gets accounted to
3438 * @hardirq_offset: the offset to subtract from hardirq_count()
3439 * @cputime: the cpu time spent in kernel space since the last update
3440 */
3441void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3442{
3443 p->stimescaled = cputime_add(p->stimescaled, cputime);
3444}
3445
1da177e4
LT
3446/*
3447 * Account for involuntary wait time.
3448 * @p: the process from which the cpu time has been stolen
3449 * @steal: the cpu time spent in involuntary wait
3450 */
3451void account_steal_time(struct task_struct *p, cputime_t steal)
3452{
3453 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3454 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3455 struct rq *rq = this_rq();
1da177e4
LT
3456
3457 if (p == rq->idle) {
3458 p->stime = cputime_add(p->stime, steal);
3459 if (atomic_read(&rq->nr_iowait) > 0)
3460 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3461 else
3462 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3463 } else
1da177e4
LT
3464 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3465}
3466
7835b98b
CL
3467/*
3468 * This function gets called by the timer code, with HZ frequency.
3469 * We call it with interrupts disabled.
3470 *
3471 * It also gets called by the fork code, when changing the parent's
3472 * timeslices.
3473 */
3474void scheduler_tick(void)
3475{
7835b98b
CL
3476 int cpu = smp_processor_id();
3477 struct rq *rq = cpu_rq(cpu);
dd41f596 3478 struct task_struct *curr = rq->curr;
529c7726 3479 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3480
3481 spin_lock(&rq->lock);
546fe3c9 3482 __update_rq_clock(rq);
529c7726
IM
3483 /*
3484 * Let rq->clock advance by at least TICK_NSEC:
3485 */
3486 if (unlikely(rq->clock < next_tick))
3487 rq->clock = next_tick;
3488 rq->tick_timestamp = rq->clock;
f1a438d8 3489 update_cpu_load(rq);
dd41f596
IM
3490 if (curr != rq->idle) /* FIXME: needed? */
3491 curr->sched_class->task_tick(rq, curr);
dd41f596 3492 spin_unlock(&rq->lock);
7835b98b 3493
e418e1c2 3494#ifdef CONFIG_SMP
dd41f596
IM
3495 rq->idle_at_tick = idle_cpu(cpu);
3496 trigger_load_balance(rq, cpu);
e418e1c2 3497#endif
1da177e4
LT
3498}
3499
1da177e4
LT
3500#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3501
3502void fastcall add_preempt_count(int val)
3503{
3504 /*
3505 * Underflow?
3506 */
9a11b49a
IM
3507 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3508 return;
1da177e4
LT
3509 preempt_count() += val;
3510 /*
3511 * Spinlock count overflowing soon?
3512 */
33859f7f
MOS
3513 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3514 PREEMPT_MASK - 10);
1da177e4
LT
3515}
3516EXPORT_SYMBOL(add_preempt_count);
3517
3518void fastcall sub_preempt_count(int val)
3519{
3520 /*
3521 * Underflow?
3522 */
9a11b49a
IM
3523 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3524 return;
1da177e4
LT
3525 /*
3526 * Is the spinlock portion underflowing?
3527 */
9a11b49a
IM
3528 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3529 !(preempt_count() & PREEMPT_MASK)))
3530 return;
3531
1da177e4
LT
3532 preempt_count() -= val;
3533}
3534EXPORT_SYMBOL(sub_preempt_count);
3535
3536#endif
3537
3538/*
dd41f596 3539 * Print scheduling while atomic bug:
1da177e4 3540 */
dd41f596 3541static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3542{
838225b4
SS
3543 struct pt_regs *regs = get_irq_regs();
3544
3545 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3546 prev->comm, prev->pid, preempt_count());
3547
dd41f596
IM
3548 debug_show_held_locks(prev);
3549 if (irqs_disabled())
3550 print_irqtrace_events(prev);
838225b4
SS
3551
3552 if (regs)
3553 show_regs(regs);
3554 else
3555 dump_stack();
dd41f596 3556}
1da177e4 3557
dd41f596
IM
3558/*
3559 * Various schedule()-time debugging checks and statistics:
3560 */
3561static inline void schedule_debug(struct task_struct *prev)
3562{
1da177e4 3563 /*
41a2d6cf 3564 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3565 * schedule() atomically, we ignore that path for now.
3566 * Otherwise, whine if we are scheduling when we should not be.
3567 */
dd41f596
IM
3568 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3569 __schedule_bug(prev);
3570
1da177e4
LT
3571 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3572
2d72376b 3573 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3574#ifdef CONFIG_SCHEDSTATS
3575 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3576 schedstat_inc(this_rq(), bkl_count);
3577 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3578 }
3579#endif
dd41f596
IM
3580}
3581
3582/*
3583 * Pick up the highest-prio task:
3584 */
3585static inline struct task_struct *
ff95f3df 3586pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3587{
5522d5d5 3588 const struct sched_class *class;
dd41f596 3589 struct task_struct *p;
1da177e4
LT
3590
3591 /*
dd41f596
IM
3592 * Optimization: we know that if all tasks are in
3593 * the fair class we can call that function directly:
1da177e4 3594 */
dd41f596 3595 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3596 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3597 if (likely(p))
3598 return p;
1da177e4
LT
3599 }
3600
dd41f596
IM
3601 class = sched_class_highest;
3602 for ( ; ; ) {
fb8d4724 3603 p = class->pick_next_task(rq);
dd41f596
IM
3604 if (p)
3605 return p;
3606 /*
3607 * Will never be NULL as the idle class always
3608 * returns a non-NULL p:
3609 */
3610 class = class->next;
3611 }
3612}
1da177e4 3613
dd41f596
IM
3614/*
3615 * schedule() is the main scheduler function.
3616 */
3617asmlinkage void __sched schedule(void)
3618{
3619 struct task_struct *prev, *next;
3620 long *switch_count;
3621 struct rq *rq;
dd41f596
IM
3622 int cpu;
3623
3624need_resched:
3625 preempt_disable();
3626 cpu = smp_processor_id();
3627 rq = cpu_rq(cpu);
3628 rcu_qsctr_inc(cpu);
3629 prev = rq->curr;
3630 switch_count = &prev->nivcsw;
3631
3632 release_kernel_lock(prev);
3633need_resched_nonpreemptible:
3634
3635 schedule_debug(prev);
1da177e4 3636
1e819950
IM
3637 /*
3638 * Do the rq-clock update outside the rq lock:
3639 */
3640 local_irq_disable();
c1b3da3e 3641 __update_rq_clock(rq);
1e819950
IM
3642 spin_lock(&rq->lock);
3643 clear_tsk_need_resched(prev);
1da177e4 3644
1da177e4 3645 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3646 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3647 unlikely(signal_pending(prev)))) {
1da177e4 3648 prev->state = TASK_RUNNING;
dd41f596 3649 } else {
2e1cb74a 3650 deactivate_task(rq, prev, 1);
1da177e4 3651 }
dd41f596 3652 switch_count = &prev->nvcsw;
1da177e4
LT
3653 }
3654
dd41f596 3655 if (unlikely(!rq->nr_running))
1da177e4 3656 idle_balance(cpu, rq);
1da177e4 3657
31ee529c 3658 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3659 next = pick_next_task(rq, prev);
1da177e4
LT
3660
3661 sched_info_switch(prev, next);
dd41f596 3662
1da177e4 3663 if (likely(prev != next)) {
1da177e4
LT
3664 rq->nr_switches++;
3665 rq->curr = next;
3666 ++*switch_count;
3667
dd41f596 3668 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3669 } else
3670 spin_unlock_irq(&rq->lock);
3671
dd41f596
IM
3672 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3673 cpu = smp_processor_id();
3674 rq = cpu_rq(cpu);
1da177e4 3675 goto need_resched_nonpreemptible;
dd41f596 3676 }
1da177e4
LT
3677 preempt_enable_no_resched();
3678 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3679 goto need_resched;
3680}
1da177e4
LT
3681EXPORT_SYMBOL(schedule);
3682
3683#ifdef CONFIG_PREEMPT
3684/*
2ed6e34f 3685 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3686 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3687 * occur there and call schedule directly.
3688 */
3689asmlinkage void __sched preempt_schedule(void)
3690{
3691 struct thread_info *ti = current_thread_info();
3692#ifdef CONFIG_PREEMPT_BKL
3693 struct task_struct *task = current;
3694 int saved_lock_depth;
3695#endif
3696 /*
3697 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3698 * we do not want to preempt the current task. Just return..
1da177e4 3699 */
beed33a8 3700 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3701 return;
3702
3a5c359a
AK
3703 do {
3704 add_preempt_count(PREEMPT_ACTIVE);
3705
3706 /*
3707 * We keep the big kernel semaphore locked, but we
3708 * clear ->lock_depth so that schedule() doesnt
3709 * auto-release the semaphore:
3710 */
1da177e4 3711#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3712 saved_lock_depth = task->lock_depth;
3713 task->lock_depth = -1;
1da177e4 3714#endif
3a5c359a 3715 schedule();
1da177e4 3716#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3717 task->lock_depth = saved_lock_depth;
1da177e4 3718#endif
3a5c359a 3719 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3720
3a5c359a
AK
3721 /*
3722 * Check again in case we missed a preemption opportunity
3723 * between schedule and now.
3724 */
3725 barrier();
3726 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3727}
1da177e4
LT
3728EXPORT_SYMBOL(preempt_schedule);
3729
3730/*
2ed6e34f 3731 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3732 * off of irq context.
3733 * Note, that this is called and return with irqs disabled. This will
3734 * protect us against recursive calling from irq.
3735 */
3736asmlinkage void __sched preempt_schedule_irq(void)
3737{
3738 struct thread_info *ti = current_thread_info();
3739#ifdef CONFIG_PREEMPT_BKL
3740 struct task_struct *task = current;
3741 int saved_lock_depth;
3742#endif
2ed6e34f 3743 /* Catch callers which need to be fixed */
1da177e4
LT
3744 BUG_ON(ti->preempt_count || !irqs_disabled());
3745
3a5c359a
AK
3746 do {
3747 add_preempt_count(PREEMPT_ACTIVE);
3748
3749 /*
3750 * We keep the big kernel semaphore locked, but we
3751 * clear ->lock_depth so that schedule() doesnt
3752 * auto-release the semaphore:
3753 */
1da177e4 3754#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3755 saved_lock_depth = task->lock_depth;
3756 task->lock_depth = -1;
1da177e4 3757#endif
3a5c359a
AK
3758 local_irq_enable();
3759 schedule();
3760 local_irq_disable();
1da177e4 3761#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3762 task->lock_depth = saved_lock_depth;
1da177e4 3763#endif
3a5c359a 3764 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3765
3a5c359a
AK
3766 /*
3767 * Check again in case we missed a preemption opportunity
3768 * between schedule and now.
3769 */
3770 barrier();
3771 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3772}
3773
3774#endif /* CONFIG_PREEMPT */
3775
95cdf3b7
IM
3776int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3777 void *key)
1da177e4 3778{
48f24c4d 3779 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3780}
1da177e4
LT
3781EXPORT_SYMBOL(default_wake_function);
3782
3783/*
41a2d6cf
IM
3784 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3785 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3786 * number) then we wake all the non-exclusive tasks and one exclusive task.
3787 *
3788 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3789 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3790 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3791 */
3792static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3793 int nr_exclusive, int sync, void *key)
3794{
2e45874c 3795 wait_queue_t *curr, *next;
1da177e4 3796
2e45874c 3797 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3798 unsigned flags = curr->flags;
3799
1da177e4 3800 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3801 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3802 break;
3803 }
3804}
3805
3806/**
3807 * __wake_up - wake up threads blocked on a waitqueue.
3808 * @q: the waitqueue
3809 * @mode: which threads
3810 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3811 * @key: is directly passed to the wakeup function
1da177e4
LT
3812 */
3813void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3814 int nr_exclusive, void *key)
1da177e4
LT
3815{
3816 unsigned long flags;
3817
3818 spin_lock_irqsave(&q->lock, flags);
3819 __wake_up_common(q, mode, nr_exclusive, 0, key);
3820 spin_unlock_irqrestore(&q->lock, flags);
3821}
1da177e4
LT
3822EXPORT_SYMBOL(__wake_up);
3823
3824/*
3825 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3826 */
3827void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3828{
3829 __wake_up_common(q, mode, 1, 0, NULL);
3830}
3831
3832/**
67be2dd1 3833 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3834 * @q: the waitqueue
3835 * @mode: which threads
3836 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3837 *
3838 * The sync wakeup differs that the waker knows that it will schedule
3839 * away soon, so while the target thread will be woken up, it will not
3840 * be migrated to another CPU - ie. the two threads are 'synchronized'
3841 * with each other. This can prevent needless bouncing between CPUs.
3842 *
3843 * On UP it can prevent extra preemption.
3844 */
95cdf3b7
IM
3845void fastcall
3846__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3847{
3848 unsigned long flags;
3849 int sync = 1;
3850
3851 if (unlikely(!q))
3852 return;
3853
3854 if (unlikely(!nr_exclusive))
3855 sync = 0;
3856
3857 spin_lock_irqsave(&q->lock, flags);
3858 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3859 spin_unlock_irqrestore(&q->lock, flags);
3860}
3861EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3862
b15136e9 3863void complete(struct completion *x)
1da177e4
LT
3864{
3865 unsigned long flags;
3866
3867 spin_lock_irqsave(&x->wait.lock, flags);
3868 x->done++;
3869 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3870 1, 0, NULL);
3871 spin_unlock_irqrestore(&x->wait.lock, flags);
3872}
3873EXPORT_SYMBOL(complete);
3874
b15136e9 3875void complete_all(struct completion *x)
1da177e4
LT
3876{
3877 unsigned long flags;
3878
3879 spin_lock_irqsave(&x->wait.lock, flags);
3880 x->done += UINT_MAX/2;
3881 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3882 0, 0, NULL);
3883 spin_unlock_irqrestore(&x->wait.lock, flags);
3884}
3885EXPORT_SYMBOL(complete_all);
3886
8cbbe86d
AK
3887static inline long __sched
3888do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3889{
1da177e4
LT
3890 if (!x->done) {
3891 DECLARE_WAITQUEUE(wait, current);
3892
3893 wait.flags |= WQ_FLAG_EXCLUSIVE;
3894 __add_wait_queue_tail(&x->wait, &wait);
3895 do {
8cbbe86d
AK
3896 if (state == TASK_INTERRUPTIBLE &&
3897 signal_pending(current)) {
3898 __remove_wait_queue(&x->wait, &wait);
3899 return -ERESTARTSYS;
3900 }
3901 __set_current_state(state);
1da177e4
LT
3902 spin_unlock_irq(&x->wait.lock);
3903 timeout = schedule_timeout(timeout);
3904 spin_lock_irq(&x->wait.lock);
3905 if (!timeout) {
3906 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3907 return timeout;
1da177e4
LT
3908 }
3909 } while (!x->done);
3910 __remove_wait_queue(&x->wait, &wait);
3911 }
3912 x->done--;
1da177e4
LT
3913 return timeout;
3914}
1da177e4 3915
8cbbe86d
AK
3916static long __sched
3917wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3918{
1da177e4
LT
3919 might_sleep();
3920
3921 spin_lock_irq(&x->wait.lock);
8cbbe86d 3922 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3923 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3924 return timeout;
3925}
1da177e4 3926
b15136e9 3927void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3928{
3929 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3930}
8cbbe86d 3931EXPORT_SYMBOL(wait_for_completion);
1da177e4 3932
b15136e9 3933unsigned long __sched
8cbbe86d 3934wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3935{
8cbbe86d 3936 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3937}
8cbbe86d 3938EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3939
8cbbe86d 3940int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3941{
51e97990
AK
3942 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3943 if (t == -ERESTARTSYS)
3944 return t;
3945 return 0;
0fec171c 3946}
8cbbe86d 3947EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3948
b15136e9 3949unsigned long __sched
8cbbe86d
AK
3950wait_for_completion_interruptible_timeout(struct completion *x,
3951 unsigned long timeout)
0fec171c 3952{
8cbbe86d 3953 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3954}
8cbbe86d 3955EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3956
8cbbe86d
AK
3957static long __sched
3958sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3959{
0fec171c
IM
3960 unsigned long flags;
3961 wait_queue_t wait;
3962
3963 init_waitqueue_entry(&wait, current);
1da177e4 3964
8cbbe86d 3965 __set_current_state(state);
1da177e4 3966
8cbbe86d
AK
3967 spin_lock_irqsave(&q->lock, flags);
3968 __add_wait_queue(q, &wait);
3969 spin_unlock(&q->lock);
3970 timeout = schedule_timeout(timeout);
3971 spin_lock_irq(&q->lock);
3972 __remove_wait_queue(q, &wait);
3973 spin_unlock_irqrestore(&q->lock, flags);
3974
3975 return timeout;
3976}
3977
3978void __sched interruptible_sleep_on(wait_queue_head_t *q)
3979{
3980 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3981}
1da177e4
LT
3982EXPORT_SYMBOL(interruptible_sleep_on);
3983
0fec171c 3984long __sched
95cdf3b7 3985interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3986{
8cbbe86d 3987 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3988}
1da177e4
LT
3989EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3990
0fec171c 3991void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3992{
8cbbe86d 3993 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3994}
1da177e4
LT
3995EXPORT_SYMBOL(sleep_on);
3996
0fec171c 3997long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3998{
8cbbe86d 3999 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4000}
1da177e4
LT
4001EXPORT_SYMBOL(sleep_on_timeout);
4002
b29739f9
IM
4003#ifdef CONFIG_RT_MUTEXES
4004
4005/*
4006 * rt_mutex_setprio - set the current priority of a task
4007 * @p: task
4008 * @prio: prio value (kernel-internal form)
4009 *
4010 * This function changes the 'effective' priority of a task. It does
4011 * not touch ->normal_prio like __setscheduler().
4012 *
4013 * Used by the rt_mutex code to implement priority inheritance logic.
4014 */
36c8b586 4015void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4016{
4017 unsigned long flags;
83b699ed 4018 int oldprio, on_rq, running;
70b97a7f 4019 struct rq *rq;
b29739f9
IM
4020
4021 BUG_ON(prio < 0 || prio > MAX_PRIO);
4022
4023 rq = task_rq_lock(p, &flags);
a8e504d2 4024 update_rq_clock(rq);
b29739f9 4025
d5f9f942 4026 oldprio = p->prio;
dd41f596 4027 on_rq = p->se.on_rq;
051a1d1a 4028 running = task_current(rq, p);
83b699ed 4029 if (on_rq) {
69be72c1 4030 dequeue_task(rq, p, 0);
83b699ed
SV
4031 if (running)
4032 p->sched_class->put_prev_task(rq, p);
4033 }
dd41f596
IM
4034
4035 if (rt_prio(prio))
4036 p->sched_class = &rt_sched_class;
4037 else
4038 p->sched_class = &fair_sched_class;
4039
b29739f9
IM
4040 p->prio = prio;
4041
dd41f596 4042 if (on_rq) {
83b699ed
SV
4043 if (running)
4044 p->sched_class->set_curr_task(rq);
8159f87e 4045 enqueue_task(rq, p, 0);
b29739f9
IM
4046 /*
4047 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4048 * our priority decreased, or if we are not currently running on
4049 * this runqueue and our priority is higher than the current's
b29739f9 4050 */
83b699ed 4051 if (running) {
d5f9f942
AM
4052 if (p->prio > oldprio)
4053 resched_task(rq->curr);
dd41f596
IM
4054 } else {
4055 check_preempt_curr(rq, p);
4056 }
b29739f9
IM
4057 }
4058 task_rq_unlock(rq, &flags);
4059}
4060
4061#endif
4062
36c8b586 4063void set_user_nice(struct task_struct *p, long nice)
1da177e4 4064{
dd41f596 4065 int old_prio, delta, on_rq;
1da177e4 4066 unsigned long flags;
70b97a7f 4067 struct rq *rq;
1da177e4
LT
4068
4069 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4070 return;
4071 /*
4072 * We have to be careful, if called from sys_setpriority(),
4073 * the task might be in the middle of scheduling on another CPU.
4074 */
4075 rq = task_rq_lock(p, &flags);
a8e504d2 4076 update_rq_clock(rq);
1da177e4
LT
4077 /*
4078 * The RT priorities are set via sched_setscheduler(), but we still
4079 * allow the 'normal' nice value to be set - but as expected
4080 * it wont have any effect on scheduling until the task is
dd41f596 4081 * SCHED_FIFO/SCHED_RR:
1da177e4 4082 */
e05606d3 4083 if (task_has_rt_policy(p)) {
1da177e4
LT
4084 p->static_prio = NICE_TO_PRIO(nice);
4085 goto out_unlock;
4086 }
dd41f596 4087 on_rq = p->se.on_rq;
58e2d4ca 4088 if (on_rq)
69be72c1 4089 dequeue_task(rq, p, 0);
1da177e4 4090
1da177e4 4091 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4092 set_load_weight(p);
b29739f9
IM
4093 old_prio = p->prio;
4094 p->prio = effective_prio(p);
4095 delta = p->prio - old_prio;
1da177e4 4096
dd41f596 4097 if (on_rq) {
8159f87e 4098 enqueue_task(rq, p, 0);
1da177e4 4099 /*
d5f9f942
AM
4100 * If the task increased its priority or is running and
4101 * lowered its priority, then reschedule its CPU:
1da177e4 4102 */
d5f9f942 4103 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4104 resched_task(rq->curr);
4105 }
4106out_unlock:
4107 task_rq_unlock(rq, &flags);
4108}
1da177e4
LT
4109EXPORT_SYMBOL(set_user_nice);
4110
e43379f1
MM
4111/*
4112 * can_nice - check if a task can reduce its nice value
4113 * @p: task
4114 * @nice: nice value
4115 */
36c8b586 4116int can_nice(const struct task_struct *p, const int nice)
e43379f1 4117{
024f4747
MM
4118 /* convert nice value [19,-20] to rlimit style value [1,40] */
4119 int nice_rlim = 20 - nice;
48f24c4d 4120
e43379f1
MM
4121 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4122 capable(CAP_SYS_NICE));
4123}
4124
1da177e4
LT
4125#ifdef __ARCH_WANT_SYS_NICE
4126
4127/*
4128 * sys_nice - change the priority of the current process.
4129 * @increment: priority increment
4130 *
4131 * sys_setpriority is a more generic, but much slower function that
4132 * does similar things.
4133 */
4134asmlinkage long sys_nice(int increment)
4135{
48f24c4d 4136 long nice, retval;
1da177e4
LT
4137
4138 /*
4139 * Setpriority might change our priority at the same moment.
4140 * We don't have to worry. Conceptually one call occurs first
4141 * and we have a single winner.
4142 */
e43379f1
MM
4143 if (increment < -40)
4144 increment = -40;
1da177e4
LT
4145 if (increment > 40)
4146 increment = 40;
4147
4148 nice = PRIO_TO_NICE(current->static_prio) + increment;
4149 if (nice < -20)
4150 nice = -20;
4151 if (nice > 19)
4152 nice = 19;
4153
e43379f1
MM
4154 if (increment < 0 && !can_nice(current, nice))
4155 return -EPERM;
4156
1da177e4
LT
4157 retval = security_task_setnice(current, nice);
4158 if (retval)
4159 return retval;
4160
4161 set_user_nice(current, nice);
4162 return 0;
4163}
4164
4165#endif
4166
4167/**
4168 * task_prio - return the priority value of a given task.
4169 * @p: the task in question.
4170 *
4171 * This is the priority value as seen by users in /proc.
4172 * RT tasks are offset by -200. Normal tasks are centered
4173 * around 0, value goes from -16 to +15.
4174 */
36c8b586 4175int task_prio(const struct task_struct *p)
1da177e4
LT
4176{
4177 return p->prio - MAX_RT_PRIO;
4178}
4179
4180/**
4181 * task_nice - return the nice value of a given task.
4182 * @p: the task in question.
4183 */
36c8b586 4184int task_nice(const struct task_struct *p)
1da177e4
LT
4185{
4186 return TASK_NICE(p);
4187}
1da177e4 4188EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4189
4190/**
4191 * idle_cpu - is a given cpu idle currently?
4192 * @cpu: the processor in question.
4193 */
4194int idle_cpu(int cpu)
4195{
4196 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4197}
4198
1da177e4
LT
4199/**
4200 * idle_task - return the idle task for a given cpu.
4201 * @cpu: the processor in question.
4202 */
36c8b586 4203struct task_struct *idle_task(int cpu)
1da177e4
LT
4204{
4205 return cpu_rq(cpu)->idle;
4206}
4207
4208/**
4209 * find_process_by_pid - find a process with a matching PID value.
4210 * @pid: the pid in question.
4211 */
a9957449 4212static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4213{
228ebcbe 4214 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4215}
4216
4217/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4218static void
4219__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4220{
dd41f596 4221 BUG_ON(p->se.on_rq);
48f24c4d 4222
1da177e4 4223 p->policy = policy;
dd41f596
IM
4224 switch (p->policy) {
4225 case SCHED_NORMAL:
4226 case SCHED_BATCH:
4227 case SCHED_IDLE:
4228 p->sched_class = &fair_sched_class;
4229 break;
4230 case SCHED_FIFO:
4231 case SCHED_RR:
4232 p->sched_class = &rt_sched_class;
4233 break;
4234 }
4235
1da177e4 4236 p->rt_priority = prio;
b29739f9
IM
4237 p->normal_prio = normal_prio(p);
4238 /* we are holding p->pi_lock already */
4239 p->prio = rt_mutex_getprio(p);
2dd73a4f 4240 set_load_weight(p);
1da177e4
LT
4241}
4242
4243/**
72fd4a35 4244 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4245 * @p: the task in question.
4246 * @policy: new policy.
4247 * @param: structure containing the new RT priority.
5fe1d75f 4248 *
72fd4a35 4249 * NOTE that the task may be already dead.
1da177e4 4250 */
95cdf3b7
IM
4251int sched_setscheduler(struct task_struct *p, int policy,
4252 struct sched_param *param)
1da177e4 4253{
83b699ed 4254 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4255 unsigned long flags;
70b97a7f 4256 struct rq *rq;
1da177e4 4257
66e5393a
SR
4258 /* may grab non-irq protected spin_locks */
4259 BUG_ON(in_interrupt());
1da177e4
LT
4260recheck:
4261 /* double check policy once rq lock held */
4262 if (policy < 0)
4263 policy = oldpolicy = p->policy;
4264 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4265 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4266 policy != SCHED_IDLE)
b0a9499c 4267 return -EINVAL;
1da177e4
LT
4268 /*
4269 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4270 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4271 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4272 */
4273 if (param->sched_priority < 0 ||
95cdf3b7 4274 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4275 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4276 return -EINVAL;
e05606d3 4277 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4278 return -EINVAL;
4279
37e4ab3f
OC
4280 /*
4281 * Allow unprivileged RT tasks to decrease priority:
4282 */
4283 if (!capable(CAP_SYS_NICE)) {
e05606d3 4284 if (rt_policy(policy)) {
8dc3e909 4285 unsigned long rlim_rtprio;
8dc3e909
ON
4286
4287 if (!lock_task_sighand(p, &flags))
4288 return -ESRCH;
4289 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4290 unlock_task_sighand(p, &flags);
4291
4292 /* can't set/change the rt policy */
4293 if (policy != p->policy && !rlim_rtprio)
4294 return -EPERM;
4295
4296 /* can't increase priority */
4297 if (param->sched_priority > p->rt_priority &&
4298 param->sched_priority > rlim_rtprio)
4299 return -EPERM;
4300 }
dd41f596
IM
4301 /*
4302 * Like positive nice levels, dont allow tasks to
4303 * move out of SCHED_IDLE either:
4304 */
4305 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4306 return -EPERM;
5fe1d75f 4307
37e4ab3f
OC
4308 /* can't change other user's priorities */
4309 if ((current->euid != p->euid) &&
4310 (current->euid != p->uid))
4311 return -EPERM;
4312 }
1da177e4
LT
4313
4314 retval = security_task_setscheduler(p, policy, param);
4315 if (retval)
4316 return retval;
b29739f9
IM
4317 /*
4318 * make sure no PI-waiters arrive (or leave) while we are
4319 * changing the priority of the task:
4320 */
4321 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4322 /*
4323 * To be able to change p->policy safely, the apropriate
4324 * runqueue lock must be held.
4325 */
b29739f9 4326 rq = __task_rq_lock(p);
1da177e4
LT
4327 /* recheck policy now with rq lock held */
4328 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4329 policy = oldpolicy = -1;
b29739f9
IM
4330 __task_rq_unlock(rq);
4331 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4332 goto recheck;
4333 }
2daa3577 4334 update_rq_clock(rq);
dd41f596 4335 on_rq = p->se.on_rq;
051a1d1a 4336 running = task_current(rq, p);
83b699ed 4337 if (on_rq) {
2e1cb74a 4338 deactivate_task(rq, p, 0);
83b699ed
SV
4339 if (running)
4340 p->sched_class->put_prev_task(rq, p);
4341 }
f6b53205 4342
1da177e4 4343 oldprio = p->prio;
dd41f596 4344 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4345
dd41f596 4346 if (on_rq) {
83b699ed
SV
4347 if (running)
4348 p->sched_class->set_curr_task(rq);
dd41f596 4349 activate_task(rq, p, 0);
1da177e4
LT
4350 /*
4351 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4352 * our priority decreased, or if we are not currently running on
4353 * this runqueue and our priority is higher than the current's
1da177e4 4354 */
83b699ed 4355 if (running) {
d5f9f942
AM
4356 if (p->prio > oldprio)
4357 resched_task(rq->curr);
dd41f596
IM
4358 } else {
4359 check_preempt_curr(rq, p);
4360 }
1da177e4 4361 }
b29739f9
IM
4362 __task_rq_unlock(rq);
4363 spin_unlock_irqrestore(&p->pi_lock, flags);
4364
95e02ca9
TG
4365 rt_mutex_adjust_pi(p);
4366
1da177e4
LT
4367 return 0;
4368}
4369EXPORT_SYMBOL_GPL(sched_setscheduler);
4370
95cdf3b7
IM
4371static int
4372do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4373{
1da177e4
LT
4374 struct sched_param lparam;
4375 struct task_struct *p;
36c8b586 4376 int retval;
1da177e4
LT
4377
4378 if (!param || pid < 0)
4379 return -EINVAL;
4380 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4381 return -EFAULT;
5fe1d75f
ON
4382
4383 rcu_read_lock();
4384 retval = -ESRCH;
1da177e4 4385 p = find_process_by_pid(pid);
5fe1d75f
ON
4386 if (p != NULL)
4387 retval = sched_setscheduler(p, policy, &lparam);
4388 rcu_read_unlock();
36c8b586 4389
1da177e4
LT
4390 return retval;
4391}
4392
4393/**
4394 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4395 * @pid: the pid in question.
4396 * @policy: new policy.
4397 * @param: structure containing the new RT priority.
4398 */
41a2d6cf
IM
4399asmlinkage long
4400sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4401{
c21761f1
JB
4402 /* negative values for policy are not valid */
4403 if (policy < 0)
4404 return -EINVAL;
4405
1da177e4
LT
4406 return do_sched_setscheduler(pid, policy, param);
4407}
4408
4409/**
4410 * sys_sched_setparam - set/change the RT priority of a thread
4411 * @pid: the pid in question.
4412 * @param: structure containing the new RT priority.
4413 */
4414asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4415{
4416 return do_sched_setscheduler(pid, -1, param);
4417}
4418
4419/**
4420 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4421 * @pid: the pid in question.
4422 */
4423asmlinkage long sys_sched_getscheduler(pid_t pid)
4424{
36c8b586 4425 struct task_struct *p;
3a5c359a 4426 int retval;
1da177e4
LT
4427
4428 if (pid < 0)
3a5c359a 4429 return -EINVAL;
1da177e4
LT
4430
4431 retval = -ESRCH;
4432 read_lock(&tasklist_lock);
4433 p = find_process_by_pid(pid);
4434 if (p) {
4435 retval = security_task_getscheduler(p);
4436 if (!retval)
4437 retval = p->policy;
4438 }
4439 read_unlock(&tasklist_lock);
1da177e4
LT
4440 return retval;
4441}
4442
4443/**
4444 * sys_sched_getscheduler - get the RT priority of a thread
4445 * @pid: the pid in question.
4446 * @param: structure containing the RT priority.
4447 */
4448asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4449{
4450 struct sched_param lp;
36c8b586 4451 struct task_struct *p;
3a5c359a 4452 int retval;
1da177e4
LT
4453
4454 if (!param || pid < 0)
3a5c359a 4455 return -EINVAL;
1da177e4
LT
4456
4457 read_lock(&tasklist_lock);
4458 p = find_process_by_pid(pid);
4459 retval = -ESRCH;
4460 if (!p)
4461 goto out_unlock;
4462
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
4467 lp.sched_priority = p->rt_priority;
4468 read_unlock(&tasklist_lock);
4469
4470 /*
4471 * This one might sleep, we cannot do it with a spinlock held ...
4472 */
4473 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4474
1da177e4
LT
4475 return retval;
4476
4477out_unlock:
4478 read_unlock(&tasklist_lock);
4479 return retval;
4480}
4481
4482long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4483{
1da177e4 4484 cpumask_t cpus_allowed;
36c8b586
IM
4485 struct task_struct *p;
4486 int retval;
1da177e4 4487
5be9361c 4488 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4489 read_lock(&tasklist_lock);
4490
4491 p = find_process_by_pid(pid);
4492 if (!p) {
4493 read_unlock(&tasklist_lock);
5be9361c 4494 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4495 return -ESRCH;
4496 }
4497
4498 /*
4499 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4500 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4501 * usage count and then drop tasklist_lock.
4502 */
4503 get_task_struct(p);
4504 read_unlock(&tasklist_lock);
4505
4506 retval = -EPERM;
4507 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4508 !capable(CAP_SYS_NICE))
4509 goto out_unlock;
4510
e7834f8f
DQ
4511 retval = security_task_setscheduler(p, 0, NULL);
4512 if (retval)
4513 goto out_unlock;
4514
1da177e4
LT
4515 cpus_allowed = cpuset_cpus_allowed(p);
4516 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4517 again:
1da177e4
LT
4518 retval = set_cpus_allowed(p, new_mask);
4519
8707d8b8
PM
4520 if (!retval) {
4521 cpus_allowed = cpuset_cpus_allowed(p);
4522 if (!cpus_subset(new_mask, cpus_allowed)) {
4523 /*
4524 * We must have raced with a concurrent cpuset
4525 * update. Just reset the cpus_allowed to the
4526 * cpuset's cpus_allowed
4527 */
4528 new_mask = cpus_allowed;
4529 goto again;
4530 }
4531 }
1da177e4
LT
4532out_unlock:
4533 put_task_struct(p);
5be9361c 4534 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4535 return retval;
4536}
4537
4538static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4539 cpumask_t *new_mask)
4540{
4541 if (len < sizeof(cpumask_t)) {
4542 memset(new_mask, 0, sizeof(cpumask_t));
4543 } else if (len > sizeof(cpumask_t)) {
4544 len = sizeof(cpumask_t);
4545 }
4546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4547}
4548
4549/**
4550 * sys_sched_setaffinity - set the cpu affinity of a process
4551 * @pid: pid of the process
4552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4553 * @user_mask_ptr: user-space pointer to the new cpu mask
4554 */
4555asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4556 unsigned long __user *user_mask_ptr)
4557{
4558 cpumask_t new_mask;
4559 int retval;
4560
4561 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4562 if (retval)
4563 return retval;
4564
4565 return sched_setaffinity(pid, new_mask);
4566}
4567
4568/*
4569 * Represents all cpu's present in the system
4570 * In systems capable of hotplug, this map could dynamically grow
4571 * as new cpu's are detected in the system via any platform specific
4572 * method, such as ACPI for e.g.
4573 */
4574
4cef0c61 4575cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4576EXPORT_SYMBOL(cpu_present_map);
4577
4578#ifndef CONFIG_SMP
4cef0c61 4579cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4580EXPORT_SYMBOL(cpu_online_map);
4581
4cef0c61 4582cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4583EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4584#endif
4585
4586long sched_getaffinity(pid_t pid, cpumask_t *mask)
4587{
36c8b586 4588 struct task_struct *p;
1da177e4 4589 int retval;
1da177e4 4590
5be9361c 4591 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4592 read_lock(&tasklist_lock);
4593
4594 retval = -ESRCH;
4595 p = find_process_by_pid(pid);
4596 if (!p)
4597 goto out_unlock;
4598
e7834f8f
DQ
4599 retval = security_task_getscheduler(p);
4600 if (retval)
4601 goto out_unlock;
4602
2f7016d9 4603 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4604
4605out_unlock:
4606 read_unlock(&tasklist_lock);
5be9361c 4607 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4608
9531b62f 4609 return retval;
1da177e4
LT
4610}
4611
4612/**
4613 * sys_sched_getaffinity - get the cpu affinity of a process
4614 * @pid: pid of the process
4615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4616 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4617 */
4618asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4619 unsigned long __user *user_mask_ptr)
4620{
4621 int ret;
4622 cpumask_t mask;
4623
4624 if (len < sizeof(cpumask_t))
4625 return -EINVAL;
4626
4627 ret = sched_getaffinity(pid, &mask);
4628 if (ret < 0)
4629 return ret;
4630
4631 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4632 return -EFAULT;
4633
4634 return sizeof(cpumask_t);
4635}
4636
4637/**
4638 * sys_sched_yield - yield the current processor to other threads.
4639 *
dd41f596
IM
4640 * This function yields the current CPU to other tasks. If there are no
4641 * other threads running on this CPU then this function will return.
1da177e4
LT
4642 */
4643asmlinkage long sys_sched_yield(void)
4644{
70b97a7f 4645 struct rq *rq = this_rq_lock();
1da177e4 4646
2d72376b 4647 schedstat_inc(rq, yld_count);
4530d7ab 4648 current->sched_class->yield_task(rq);
1da177e4
LT
4649
4650 /*
4651 * Since we are going to call schedule() anyway, there's
4652 * no need to preempt or enable interrupts:
4653 */
4654 __release(rq->lock);
8a25d5de 4655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4656 _raw_spin_unlock(&rq->lock);
4657 preempt_enable_no_resched();
4658
4659 schedule();
4660
4661 return 0;
4662}
4663
e7b38404 4664static void __cond_resched(void)
1da177e4 4665{
8e0a43d8
IM
4666#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4667 __might_sleep(__FILE__, __LINE__);
4668#endif
5bbcfd90
IM
4669 /*
4670 * The BKS might be reacquired before we have dropped
4671 * PREEMPT_ACTIVE, which could trigger a second
4672 * cond_resched() call.
4673 */
1da177e4
LT
4674 do {
4675 add_preempt_count(PREEMPT_ACTIVE);
4676 schedule();
4677 sub_preempt_count(PREEMPT_ACTIVE);
4678 } while (need_resched());
4679}
4680
4681int __sched cond_resched(void)
4682{
9414232f
IM
4683 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4684 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4685 __cond_resched();
4686 return 1;
4687 }
4688 return 0;
4689}
1da177e4
LT
4690EXPORT_SYMBOL(cond_resched);
4691
4692/*
4693 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4694 * call schedule, and on return reacquire the lock.
4695 *
41a2d6cf 4696 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4697 * operations here to prevent schedule() from being called twice (once via
4698 * spin_unlock(), once by hand).
4699 */
95cdf3b7 4700int cond_resched_lock(spinlock_t *lock)
1da177e4 4701{
6df3cecb
JK
4702 int ret = 0;
4703
1da177e4
LT
4704 if (need_lockbreak(lock)) {
4705 spin_unlock(lock);
4706 cpu_relax();
6df3cecb 4707 ret = 1;
1da177e4
LT
4708 spin_lock(lock);
4709 }
9414232f 4710 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4711 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4712 _raw_spin_unlock(lock);
4713 preempt_enable_no_resched();
4714 __cond_resched();
6df3cecb 4715 ret = 1;
1da177e4 4716 spin_lock(lock);
1da177e4 4717 }
6df3cecb 4718 return ret;
1da177e4 4719}
1da177e4
LT
4720EXPORT_SYMBOL(cond_resched_lock);
4721
4722int __sched cond_resched_softirq(void)
4723{
4724 BUG_ON(!in_softirq());
4725
9414232f 4726 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4727 local_bh_enable();
1da177e4
LT
4728 __cond_resched();
4729 local_bh_disable();
4730 return 1;
4731 }
4732 return 0;
4733}
1da177e4
LT
4734EXPORT_SYMBOL(cond_resched_softirq);
4735
1da177e4
LT
4736/**
4737 * yield - yield the current processor to other threads.
4738 *
72fd4a35 4739 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4740 * thread runnable and calls sys_sched_yield().
4741 */
4742void __sched yield(void)
4743{
4744 set_current_state(TASK_RUNNING);
4745 sys_sched_yield();
4746}
1da177e4
LT
4747EXPORT_SYMBOL(yield);
4748
4749/*
41a2d6cf 4750 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4751 * that process accounting knows that this is a task in IO wait state.
4752 *
4753 * But don't do that if it is a deliberate, throttling IO wait (this task
4754 * has set its backing_dev_info: the queue against which it should throttle)
4755 */
4756void __sched io_schedule(void)
4757{
70b97a7f 4758 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4759
0ff92245 4760 delayacct_blkio_start();
1da177e4
LT
4761 atomic_inc(&rq->nr_iowait);
4762 schedule();
4763 atomic_dec(&rq->nr_iowait);
0ff92245 4764 delayacct_blkio_end();
1da177e4 4765}
1da177e4
LT
4766EXPORT_SYMBOL(io_schedule);
4767
4768long __sched io_schedule_timeout(long timeout)
4769{
70b97a7f 4770 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4771 long ret;
4772
0ff92245 4773 delayacct_blkio_start();
1da177e4
LT
4774 atomic_inc(&rq->nr_iowait);
4775 ret = schedule_timeout(timeout);
4776 atomic_dec(&rq->nr_iowait);
0ff92245 4777 delayacct_blkio_end();
1da177e4
LT
4778 return ret;
4779}
4780
4781/**
4782 * sys_sched_get_priority_max - return maximum RT priority.
4783 * @policy: scheduling class.
4784 *
4785 * this syscall returns the maximum rt_priority that can be used
4786 * by a given scheduling class.
4787 */
4788asmlinkage long sys_sched_get_priority_max(int policy)
4789{
4790 int ret = -EINVAL;
4791
4792 switch (policy) {
4793 case SCHED_FIFO:
4794 case SCHED_RR:
4795 ret = MAX_USER_RT_PRIO-1;
4796 break;
4797 case SCHED_NORMAL:
b0a9499c 4798 case SCHED_BATCH:
dd41f596 4799 case SCHED_IDLE:
1da177e4
LT
4800 ret = 0;
4801 break;
4802 }
4803 return ret;
4804}
4805
4806/**
4807 * sys_sched_get_priority_min - return minimum RT priority.
4808 * @policy: scheduling class.
4809 *
4810 * this syscall returns the minimum rt_priority that can be used
4811 * by a given scheduling class.
4812 */
4813asmlinkage long sys_sched_get_priority_min(int policy)
4814{
4815 int ret = -EINVAL;
4816
4817 switch (policy) {
4818 case SCHED_FIFO:
4819 case SCHED_RR:
4820 ret = 1;
4821 break;
4822 case SCHED_NORMAL:
b0a9499c 4823 case SCHED_BATCH:
dd41f596 4824 case SCHED_IDLE:
1da177e4
LT
4825 ret = 0;
4826 }
4827 return ret;
4828}
4829
4830/**
4831 * sys_sched_rr_get_interval - return the default timeslice of a process.
4832 * @pid: pid of the process.
4833 * @interval: userspace pointer to the timeslice value.
4834 *
4835 * this syscall writes the default timeslice value of a given process
4836 * into the user-space timespec buffer. A value of '0' means infinity.
4837 */
4838asmlinkage
4839long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4840{
36c8b586 4841 struct task_struct *p;
a4ec24b4 4842 unsigned int time_slice;
3a5c359a 4843 int retval;
1da177e4 4844 struct timespec t;
1da177e4
LT
4845
4846 if (pid < 0)
3a5c359a 4847 return -EINVAL;
1da177e4
LT
4848
4849 retval = -ESRCH;
4850 read_lock(&tasklist_lock);
4851 p = find_process_by_pid(pid);
4852 if (!p)
4853 goto out_unlock;
4854
4855 retval = security_task_getscheduler(p);
4856 if (retval)
4857 goto out_unlock;
4858
77034937
IM
4859 /*
4860 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4861 * tasks that are on an otherwise idle runqueue:
4862 */
4863 time_slice = 0;
4864 if (p->policy == SCHED_RR) {
a4ec24b4 4865 time_slice = DEF_TIMESLICE;
77034937 4866 } else {
a4ec24b4
DA
4867 struct sched_entity *se = &p->se;
4868 unsigned long flags;
4869 struct rq *rq;
4870
4871 rq = task_rq_lock(p, &flags);
77034937
IM
4872 if (rq->cfs.load.weight)
4873 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4874 task_rq_unlock(rq, &flags);
4875 }
1da177e4 4876 read_unlock(&tasklist_lock);
a4ec24b4 4877 jiffies_to_timespec(time_slice, &t);
1da177e4 4878 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4879 return retval;
3a5c359a 4880
1da177e4
LT
4881out_unlock:
4882 read_unlock(&tasklist_lock);
4883 return retval;
4884}
4885
2ed6e34f 4886static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4887
4888static void show_task(struct task_struct *p)
1da177e4 4889{
1da177e4 4890 unsigned long free = 0;
36c8b586 4891 unsigned state;
1da177e4 4892
1da177e4 4893 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4894 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4895 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4896#if BITS_PER_LONG == 32
1da177e4 4897 if (state == TASK_RUNNING)
cc4ea795 4898 printk(KERN_CONT " running ");
1da177e4 4899 else
cc4ea795 4900 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4901#else
4902 if (state == TASK_RUNNING)
cc4ea795 4903 printk(KERN_CONT " running task ");
1da177e4 4904 else
cc4ea795 4905 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4906#endif
4907#ifdef CONFIG_DEBUG_STACK_USAGE
4908 {
10ebffde 4909 unsigned long *n = end_of_stack(p);
1da177e4
LT
4910 while (!*n)
4911 n++;
10ebffde 4912 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4913 }
4914#endif
ba25f9dc 4915 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4916 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4917
4918 if (state != TASK_RUNNING)
4919 show_stack(p, NULL);
4920}
4921
e59e2ae2 4922void show_state_filter(unsigned long state_filter)
1da177e4 4923{
36c8b586 4924 struct task_struct *g, *p;
1da177e4 4925
4bd77321
IM
4926#if BITS_PER_LONG == 32
4927 printk(KERN_INFO
4928 " task PC stack pid father\n");
1da177e4 4929#else
4bd77321
IM
4930 printk(KERN_INFO
4931 " task PC stack pid father\n");
1da177e4
LT
4932#endif
4933 read_lock(&tasklist_lock);
4934 do_each_thread(g, p) {
4935 /*
4936 * reset the NMI-timeout, listing all files on a slow
4937 * console might take alot of time:
4938 */
4939 touch_nmi_watchdog();
39bc89fd 4940 if (!state_filter || (p->state & state_filter))
e59e2ae2 4941 show_task(p);
1da177e4
LT
4942 } while_each_thread(g, p);
4943
04c9167f
JF
4944 touch_all_softlockup_watchdogs();
4945
dd41f596
IM
4946#ifdef CONFIG_SCHED_DEBUG
4947 sysrq_sched_debug_show();
4948#endif
1da177e4 4949 read_unlock(&tasklist_lock);
e59e2ae2
IM
4950 /*
4951 * Only show locks if all tasks are dumped:
4952 */
4953 if (state_filter == -1)
4954 debug_show_all_locks();
1da177e4
LT
4955}
4956
1df21055
IM
4957void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4958{
dd41f596 4959 idle->sched_class = &idle_sched_class;
1df21055
IM
4960}
4961
f340c0d1
IM
4962/**
4963 * init_idle - set up an idle thread for a given CPU
4964 * @idle: task in question
4965 * @cpu: cpu the idle task belongs to
4966 *
4967 * NOTE: this function does not set the idle thread's NEED_RESCHED
4968 * flag, to make booting more robust.
4969 */
5c1e1767 4970void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4971{
70b97a7f 4972 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4973 unsigned long flags;
4974
dd41f596
IM
4975 __sched_fork(idle);
4976 idle->se.exec_start = sched_clock();
4977
b29739f9 4978 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4979 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4980 __set_task_cpu(idle, cpu);
1da177e4
LT
4981
4982 spin_lock_irqsave(&rq->lock, flags);
4983 rq->curr = rq->idle = idle;
4866cde0
NP
4984#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4985 idle->oncpu = 1;
4986#endif
1da177e4
LT
4987 spin_unlock_irqrestore(&rq->lock, flags);
4988
4989 /* Set the preempt count _outside_ the spinlocks! */
4990#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4991 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4992#else
a1261f54 4993 task_thread_info(idle)->preempt_count = 0;
1da177e4 4994#endif
dd41f596
IM
4995 /*
4996 * The idle tasks have their own, simple scheduling class:
4997 */
4998 idle->sched_class = &idle_sched_class;
1da177e4
LT
4999}
5000
5001/*
5002 * In a system that switches off the HZ timer nohz_cpu_mask
5003 * indicates which cpus entered this state. This is used
5004 * in the rcu update to wait only for active cpus. For system
5005 * which do not switch off the HZ timer nohz_cpu_mask should
5006 * always be CPU_MASK_NONE.
5007 */
5008cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5009
19978ca6
IM
5010/*
5011 * Increase the granularity value when there are more CPUs,
5012 * because with more CPUs the 'effective latency' as visible
5013 * to users decreases. But the relationship is not linear,
5014 * so pick a second-best guess by going with the log2 of the
5015 * number of CPUs.
5016 *
5017 * This idea comes from the SD scheduler of Con Kolivas:
5018 */
5019static inline void sched_init_granularity(void)
5020{
5021 unsigned int factor = 1 + ilog2(num_online_cpus());
5022 const unsigned long limit = 200000000;
5023
5024 sysctl_sched_min_granularity *= factor;
5025 if (sysctl_sched_min_granularity > limit)
5026 sysctl_sched_min_granularity = limit;
5027
5028 sysctl_sched_latency *= factor;
5029 if (sysctl_sched_latency > limit)
5030 sysctl_sched_latency = limit;
5031
5032 sysctl_sched_wakeup_granularity *= factor;
5033 sysctl_sched_batch_wakeup_granularity *= factor;
5034}
5035
1da177e4
LT
5036#ifdef CONFIG_SMP
5037/*
5038 * This is how migration works:
5039 *
70b97a7f 5040 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5041 * runqueue and wake up that CPU's migration thread.
5042 * 2) we down() the locked semaphore => thread blocks.
5043 * 3) migration thread wakes up (implicitly it forces the migrated
5044 * thread off the CPU)
5045 * 4) it gets the migration request and checks whether the migrated
5046 * task is still in the wrong runqueue.
5047 * 5) if it's in the wrong runqueue then the migration thread removes
5048 * it and puts it into the right queue.
5049 * 6) migration thread up()s the semaphore.
5050 * 7) we wake up and the migration is done.
5051 */
5052
5053/*
5054 * Change a given task's CPU affinity. Migrate the thread to a
5055 * proper CPU and schedule it away if the CPU it's executing on
5056 * is removed from the allowed bitmask.
5057 *
5058 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5059 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5060 * call is not atomic; no spinlocks may be held.
5061 */
36c8b586 5062int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5063{
70b97a7f 5064 struct migration_req req;
1da177e4 5065 unsigned long flags;
70b97a7f 5066 struct rq *rq;
48f24c4d 5067 int ret = 0;
1da177e4
LT
5068
5069 rq = task_rq_lock(p, &flags);
5070 if (!cpus_intersects(new_mask, cpu_online_map)) {
5071 ret = -EINVAL;
5072 goto out;
5073 }
5074
5075 p->cpus_allowed = new_mask;
5076 /* Can the task run on the task's current CPU? If so, we're done */
5077 if (cpu_isset(task_cpu(p), new_mask))
5078 goto out;
5079
5080 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5081 /* Need help from migration thread: drop lock and wait. */
5082 task_rq_unlock(rq, &flags);
5083 wake_up_process(rq->migration_thread);
5084 wait_for_completion(&req.done);
5085 tlb_migrate_finish(p->mm);
5086 return 0;
5087 }
5088out:
5089 task_rq_unlock(rq, &flags);
48f24c4d 5090
1da177e4
LT
5091 return ret;
5092}
1da177e4
LT
5093EXPORT_SYMBOL_GPL(set_cpus_allowed);
5094
5095/*
41a2d6cf 5096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5097 * this because either it can't run here any more (set_cpus_allowed()
5098 * away from this CPU, or CPU going down), or because we're
5099 * attempting to rebalance this task on exec (sched_exec).
5100 *
5101 * So we race with normal scheduler movements, but that's OK, as long
5102 * as the task is no longer on this CPU.
efc30814
KK
5103 *
5104 * Returns non-zero if task was successfully migrated.
1da177e4 5105 */
efc30814 5106static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5107{
70b97a7f 5108 struct rq *rq_dest, *rq_src;
dd41f596 5109 int ret = 0, on_rq;
1da177e4
LT
5110
5111 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5112 return ret;
1da177e4
LT
5113
5114 rq_src = cpu_rq(src_cpu);
5115 rq_dest = cpu_rq(dest_cpu);
5116
5117 double_rq_lock(rq_src, rq_dest);
5118 /* Already moved. */
5119 if (task_cpu(p) != src_cpu)
5120 goto out;
5121 /* Affinity changed (again). */
5122 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5123 goto out;
5124
dd41f596 5125 on_rq = p->se.on_rq;
6e82a3be 5126 if (on_rq)
2e1cb74a 5127 deactivate_task(rq_src, p, 0);
6e82a3be 5128
1da177e4 5129 set_task_cpu(p, dest_cpu);
dd41f596
IM
5130 if (on_rq) {
5131 activate_task(rq_dest, p, 0);
5132 check_preempt_curr(rq_dest, p);
1da177e4 5133 }
efc30814 5134 ret = 1;
1da177e4
LT
5135out:
5136 double_rq_unlock(rq_src, rq_dest);
efc30814 5137 return ret;
1da177e4
LT
5138}
5139
5140/*
5141 * migration_thread - this is a highprio system thread that performs
5142 * thread migration by bumping thread off CPU then 'pushing' onto
5143 * another runqueue.
5144 */
95cdf3b7 5145static int migration_thread(void *data)
1da177e4 5146{
1da177e4 5147 int cpu = (long)data;
70b97a7f 5148 struct rq *rq;
1da177e4
LT
5149
5150 rq = cpu_rq(cpu);
5151 BUG_ON(rq->migration_thread != current);
5152
5153 set_current_state(TASK_INTERRUPTIBLE);
5154 while (!kthread_should_stop()) {
70b97a7f 5155 struct migration_req *req;
1da177e4 5156 struct list_head *head;
1da177e4 5157
1da177e4
LT
5158 spin_lock_irq(&rq->lock);
5159
5160 if (cpu_is_offline(cpu)) {
5161 spin_unlock_irq(&rq->lock);
5162 goto wait_to_die;
5163 }
5164
5165 if (rq->active_balance) {
5166 active_load_balance(rq, cpu);
5167 rq->active_balance = 0;
5168 }
5169
5170 head = &rq->migration_queue;
5171
5172 if (list_empty(head)) {
5173 spin_unlock_irq(&rq->lock);
5174 schedule();
5175 set_current_state(TASK_INTERRUPTIBLE);
5176 continue;
5177 }
70b97a7f 5178 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5179 list_del_init(head->next);
5180
674311d5
NP
5181 spin_unlock(&rq->lock);
5182 __migrate_task(req->task, cpu, req->dest_cpu);
5183 local_irq_enable();
1da177e4
LT
5184
5185 complete(&req->done);
5186 }
5187 __set_current_state(TASK_RUNNING);
5188 return 0;
5189
5190wait_to_die:
5191 /* Wait for kthread_stop */
5192 set_current_state(TASK_INTERRUPTIBLE);
5193 while (!kthread_should_stop()) {
5194 schedule();
5195 set_current_state(TASK_INTERRUPTIBLE);
5196 }
5197 __set_current_state(TASK_RUNNING);
5198 return 0;
5199}
5200
5201#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5202
5203static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5204{
5205 int ret;
5206
5207 local_irq_disable();
5208 ret = __migrate_task(p, src_cpu, dest_cpu);
5209 local_irq_enable();
5210 return ret;
5211}
5212
054b9108 5213/*
3a4fa0a2 5214 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5215 * NOTE: interrupts should be disabled by the caller
5216 */
48f24c4d 5217static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5218{
efc30814 5219 unsigned long flags;
1da177e4 5220 cpumask_t mask;
70b97a7f
IM
5221 struct rq *rq;
5222 int dest_cpu;
1da177e4 5223
3a5c359a
AK
5224 do {
5225 /* On same node? */
5226 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5227 cpus_and(mask, mask, p->cpus_allowed);
5228 dest_cpu = any_online_cpu(mask);
5229
5230 /* On any allowed CPU? */
5231 if (dest_cpu == NR_CPUS)
5232 dest_cpu = any_online_cpu(p->cpus_allowed);
5233
5234 /* No more Mr. Nice Guy. */
5235 if (dest_cpu == NR_CPUS) {
470fd646
CW
5236 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5237 /*
5238 * Try to stay on the same cpuset, where the
5239 * current cpuset may be a subset of all cpus.
5240 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5241 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5242 * called within calls to cpuset_lock/cpuset_unlock.
5243 */
3a5c359a 5244 rq = task_rq_lock(p, &flags);
470fd646 5245 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5246 dest_cpu = any_online_cpu(p->cpus_allowed);
5247 task_rq_unlock(rq, &flags);
1da177e4 5248
3a5c359a
AK
5249 /*
5250 * Don't tell them about moving exiting tasks or
5251 * kernel threads (both mm NULL), since they never
5252 * leave kernel.
5253 */
41a2d6cf 5254 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5255 printk(KERN_INFO "process %d (%s) no "
5256 "longer affine to cpu%d\n",
41a2d6cf
IM
5257 task_pid_nr(p), p->comm, dead_cpu);
5258 }
3a5c359a 5259 }
f7b4cddc 5260 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5261}
5262
5263/*
5264 * While a dead CPU has no uninterruptible tasks queued at this point,
5265 * it might still have a nonzero ->nr_uninterruptible counter, because
5266 * for performance reasons the counter is not stricly tracking tasks to
5267 * their home CPUs. So we just add the counter to another CPU's counter,
5268 * to keep the global sum constant after CPU-down:
5269 */
70b97a7f 5270static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5271{
70b97a7f 5272 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5273 unsigned long flags;
5274
5275 local_irq_save(flags);
5276 double_rq_lock(rq_src, rq_dest);
5277 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5278 rq_src->nr_uninterruptible = 0;
5279 double_rq_unlock(rq_src, rq_dest);
5280 local_irq_restore(flags);
5281}
5282
5283/* Run through task list and migrate tasks from the dead cpu. */
5284static void migrate_live_tasks(int src_cpu)
5285{
48f24c4d 5286 struct task_struct *p, *t;
1da177e4 5287
f7b4cddc 5288 read_lock(&tasklist_lock);
1da177e4 5289
48f24c4d
IM
5290 do_each_thread(t, p) {
5291 if (p == current)
1da177e4
LT
5292 continue;
5293
48f24c4d
IM
5294 if (task_cpu(p) == src_cpu)
5295 move_task_off_dead_cpu(src_cpu, p);
5296 } while_each_thread(t, p);
1da177e4 5297
f7b4cddc 5298 read_unlock(&tasklist_lock);
1da177e4
LT
5299}
5300
dd41f596
IM
5301/*
5302 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5303 * It does so by boosting its priority to highest possible.
5304 * Used by CPU offline code.
1da177e4
LT
5305 */
5306void sched_idle_next(void)
5307{
48f24c4d 5308 int this_cpu = smp_processor_id();
70b97a7f 5309 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5310 struct task_struct *p = rq->idle;
5311 unsigned long flags;
5312
5313 /* cpu has to be offline */
48f24c4d 5314 BUG_ON(cpu_online(this_cpu));
1da177e4 5315
48f24c4d
IM
5316 /*
5317 * Strictly not necessary since rest of the CPUs are stopped by now
5318 * and interrupts disabled on the current cpu.
1da177e4
LT
5319 */
5320 spin_lock_irqsave(&rq->lock, flags);
5321
dd41f596 5322 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5323
94bc9a7b
DA
5324 update_rq_clock(rq);
5325 activate_task(rq, p, 0);
1da177e4
LT
5326
5327 spin_unlock_irqrestore(&rq->lock, flags);
5328}
5329
48f24c4d
IM
5330/*
5331 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5332 * offline.
5333 */
5334void idle_task_exit(void)
5335{
5336 struct mm_struct *mm = current->active_mm;
5337
5338 BUG_ON(cpu_online(smp_processor_id()));
5339
5340 if (mm != &init_mm)
5341 switch_mm(mm, &init_mm, current);
5342 mmdrop(mm);
5343}
5344
054b9108 5345/* called under rq->lock with disabled interrupts */
36c8b586 5346static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5347{
70b97a7f 5348 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5349
5350 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5351 BUG_ON(!p->exit_state);
1da177e4
LT
5352
5353 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5354 BUG_ON(p->state == TASK_DEAD);
1da177e4 5355
48f24c4d 5356 get_task_struct(p);
1da177e4
LT
5357
5358 /*
5359 * Drop lock around migration; if someone else moves it,
41a2d6cf 5360 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5361 * fine.
5362 */
f7b4cddc 5363 spin_unlock_irq(&rq->lock);
48f24c4d 5364 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5365 spin_lock_irq(&rq->lock);
1da177e4 5366
48f24c4d 5367 put_task_struct(p);
1da177e4
LT
5368}
5369
5370/* release_task() removes task from tasklist, so we won't find dead tasks. */
5371static void migrate_dead_tasks(unsigned int dead_cpu)
5372{
70b97a7f 5373 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5374 struct task_struct *next;
48f24c4d 5375
dd41f596
IM
5376 for ( ; ; ) {
5377 if (!rq->nr_running)
5378 break;
a8e504d2 5379 update_rq_clock(rq);
ff95f3df 5380 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5381 if (!next)
5382 break;
5383 migrate_dead(dead_cpu, next);
e692ab53 5384
1da177e4
LT
5385 }
5386}
5387#endif /* CONFIG_HOTPLUG_CPU */
5388
e692ab53
NP
5389#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5390
5391static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5392 {
5393 .procname = "sched_domain",
c57baf1e 5394 .mode = 0555,
e0361851 5395 },
38605cae 5396 {0, },
e692ab53
NP
5397};
5398
5399static struct ctl_table sd_ctl_root[] = {
e0361851 5400 {
c57baf1e 5401 .ctl_name = CTL_KERN,
e0361851 5402 .procname = "kernel",
c57baf1e 5403 .mode = 0555,
e0361851
AD
5404 .child = sd_ctl_dir,
5405 },
38605cae 5406 {0, },
e692ab53
NP
5407};
5408
5409static struct ctl_table *sd_alloc_ctl_entry(int n)
5410{
5411 struct ctl_table *entry =
5cf9f062 5412 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5413
e692ab53
NP
5414 return entry;
5415}
5416
6382bc90
MM
5417static void sd_free_ctl_entry(struct ctl_table **tablep)
5418{
cd790076 5419 struct ctl_table *entry;
6382bc90 5420
cd790076
MM
5421 /*
5422 * In the intermediate directories, both the child directory and
5423 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5424 * will always be set. In the lowest directory the names are
cd790076
MM
5425 * static strings and all have proc handlers.
5426 */
5427 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5428 if (entry->child)
5429 sd_free_ctl_entry(&entry->child);
cd790076
MM
5430 if (entry->proc_handler == NULL)
5431 kfree(entry->procname);
5432 }
6382bc90
MM
5433
5434 kfree(*tablep);
5435 *tablep = NULL;
5436}
5437
e692ab53 5438static void
e0361851 5439set_table_entry(struct ctl_table *entry,
e692ab53
NP
5440 const char *procname, void *data, int maxlen,
5441 mode_t mode, proc_handler *proc_handler)
5442{
e692ab53
NP
5443 entry->procname = procname;
5444 entry->data = data;
5445 entry->maxlen = maxlen;
5446 entry->mode = mode;
5447 entry->proc_handler = proc_handler;
5448}
5449
5450static struct ctl_table *
5451sd_alloc_ctl_domain_table(struct sched_domain *sd)
5452{
ace8b3d6 5453 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5454
ad1cdc1d
MM
5455 if (table == NULL)
5456 return NULL;
5457
e0361851 5458 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5459 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5460 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5461 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5462 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5463 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5464 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5465 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5466 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5467 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5468 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5469 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5470 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5471 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5472 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5473 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5474 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5475 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5476 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5477 &sd->cache_nice_tries,
5478 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5479 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5480 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5481 /* &table[11] is terminator */
e692ab53
NP
5482
5483 return table;
5484}
5485
9a4e7159 5486static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5487{
5488 struct ctl_table *entry, *table;
5489 struct sched_domain *sd;
5490 int domain_num = 0, i;
5491 char buf[32];
5492
5493 for_each_domain(cpu, sd)
5494 domain_num++;
5495 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5496 if (table == NULL)
5497 return NULL;
e692ab53
NP
5498
5499 i = 0;
5500 for_each_domain(cpu, sd) {
5501 snprintf(buf, 32, "domain%d", i);
e692ab53 5502 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5503 entry->mode = 0555;
e692ab53
NP
5504 entry->child = sd_alloc_ctl_domain_table(sd);
5505 entry++;
5506 i++;
5507 }
5508 return table;
5509}
5510
5511static struct ctl_table_header *sd_sysctl_header;
6382bc90 5512static void register_sched_domain_sysctl(void)
e692ab53
NP
5513{
5514 int i, cpu_num = num_online_cpus();
5515 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5516 char buf[32];
5517
7378547f
MM
5518 WARN_ON(sd_ctl_dir[0].child);
5519 sd_ctl_dir[0].child = entry;
5520
ad1cdc1d
MM
5521 if (entry == NULL)
5522 return;
5523
97b6ea7b 5524 for_each_online_cpu(i) {
e692ab53 5525 snprintf(buf, 32, "cpu%d", i);
e692ab53 5526 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5527 entry->mode = 0555;
e692ab53 5528 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5529 entry++;
e692ab53 5530 }
7378547f
MM
5531
5532 WARN_ON(sd_sysctl_header);
e692ab53
NP
5533 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5534}
6382bc90 5535
7378547f 5536/* may be called multiple times per register */
6382bc90
MM
5537static void unregister_sched_domain_sysctl(void)
5538{
7378547f
MM
5539 if (sd_sysctl_header)
5540 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5541 sd_sysctl_header = NULL;
7378547f
MM
5542 if (sd_ctl_dir[0].child)
5543 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5544}
e692ab53 5545#else
6382bc90
MM
5546static void register_sched_domain_sysctl(void)
5547{
5548}
5549static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5550{
5551}
5552#endif
5553
1da177e4
LT
5554/*
5555 * migration_call - callback that gets triggered when a CPU is added.
5556 * Here we can start up the necessary migration thread for the new CPU.
5557 */
48f24c4d
IM
5558static int __cpuinit
5559migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5560{
1da177e4 5561 struct task_struct *p;
48f24c4d 5562 int cpu = (long)hcpu;
1da177e4 5563 unsigned long flags;
70b97a7f 5564 struct rq *rq;
1da177e4
LT
5565
5566 switch (action) {
5be9361c
GS
5567 case CPU_LOCK_ACQUIRE:
5568 mutex_lock(&sched_hotcpu_mutex);
5569 break;
5570
1da177e4 5571 case CPU_UP_PREPARE:
8bb78442 5572 case CPU_UP_PREPARE_FROZEN:
dd41f596 5573 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5574 if (IS_ERR(p))
5575 return NOTIFY_BAD;
1da177e4
LT
5576 kthread_bind(p, cpu);
5577 /* Must be high prio: stop_machine expects to yield to it. */
5578 rq = task_rq_lock(p, &flags);
dd41f596 5579 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5580 task_rq_unlock(rq, &flags);
5581 cpu_rq(cpu)->migration_thread = p;
5582 break;
48f24c4d 5583
1da177e4 5584 case CPU_ONLINE:
8bb78442 5585 case CPU_ONLINE_FROZEN:
3a4fa0a2 5586 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5587 wake_up_process(cpu_rq(cpu)->migration_thread);
5588 break;
48f24c4d 5589
1da177e4
LT
5590#ifdef CONFIG_HOTPLUG_CPU
5591 case CPU_UP_CANCELED:
8bb78442 5592 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5593 if (!cpu_rq(cpu)->migration_thread)
5594 break;
41a2d6cf 5595 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5596 kthread_bind(cpu_rq(cpu)->migration_thread,
5597 any_online_cpu(cpu_online_map));
1da177e4
LT
5598 kthread_stop(cpu_rq(cpu)->migration_thread);
5599 cpu_rq(cpu)->migration_thread = NULL;
5600 break;
48f24c4d 5601
1da177e4 5602 case CPU_DEAD:
8bb78442 5603 case CPU_DEAD_FROZEN:
470fd646 5604 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5605 migrate_live_tasks(cpu);
5606 rq = cpu_rq(cpu);
5607 kthread_stop(rq->migration_thread);
5608 rq->migration_thread = NULL;
5609 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5610 spin_lock_irq(&rq->lock);
a8e504d2 5611 update_rq_clock(rq);
2e1cb74a 5612 deactivate_task(rq, rq->idle, 0);
1da177e4 5613 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5614 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5615 rq->idle->sched_class = &idle_sched_class;
1da177e4 5616 migrate_dead_tasks(cpu);
d2da272a 5617 spin_unlock_irq(&rq->lock);
470fd646 5618 cpuset_unlock();
1da177e4
LT
5619 migrate_nr_uninterruptible(rq);
5620 BUG_ON(rq->nr_running != 0);
5621
41a2d6cf
IM
5622 /*
5623 * No need to migrate the tasks: it was best-effort if
5624 * they didn't take sched_hotcpu_mutex. Just wake up
5625 * the requestors.
5626 */
1da177e4
LT
5627 spin_lock_irq(&rq->lock);
5628 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5629 struct migration_req *req;
5630
1da177e4 5631 req = list_entry(rq->migration_queue.next,
70b97a7f 5632 struct migration_req, list);
1da177e4
LT
5633 list_del_init(&req->list);
5634 complete(&req->done);
5635 }
5636 spin_unlock_irq(&rq->lock);
5637 break;
5638#endif
5be9361c
GS
5639 case CPU_LOCK_RELEASE:
5640 mutex_unlock(&sched_hotcpu_mutex);
5641 break;
1da177e4
LT
5642 }
5643 return NOTIFY_OK;
5644}
5645
5646/* Register at highest priority so that task migration (migrate_all_tasks)
5647 * happens before everything else.
5648 */
26c2143b 5649static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5650 .notifier_call = migration_call,
5651 .priority = 10
5652};
5653
e6fe6649 5654void __init migration_init(void)
1da177e4
LT
5655{
5656 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5657 int err;
48f24c4d
IM
5658
5659 /* Start one for the boot CPU: */
07dccf33
AM
5660 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5661 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5662 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5663 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5664}
5665#endif
5666
5667#ifdef CONFIG_SMP
476f3534
CL
5668
5669/* Number of possible processor ids */
5670int nr_cpu_ids __read_mostly = NR_CPUS;
5671EXPORT_SYMBOL(nr_cpu_ids);
5672
3e9830dc 5673#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5674
5675static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5676{
4dcf6aff
IM
5677 struct sched_group *group = sd->groups;
5678 cpumask_t groupmask;
5679 char str[NR_CPUS];
1da177e4 5680
4dcf6aff
IM
5681 cpumask_scnprintf(str, NR_CPUS, sd->span);
5682 cpus_clear(groupmask);
5683
5684 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5685
5686 if (!(sd->flags & SD_LOAD_BALANCE)) {
5687 printk("does not load-balance\n");
5688 if (sd->parent)
5689 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5690 " has parent");
5691 return -1;
41c7ce9a
NP
5692 }
5693
4dcf6aff
IM
5694 printk(KERN_CONT "span %s\n", str);
5695
5696 if (!cpu_isset(cpu, sd->span)) {
5697 printk(KERN_ERR "ERROR: domain->span does not contain "
5698 "CPU%d\n", cpu);
5699 }
5700 if (!cpu_isset(cpu, group->cpumask)) {
5701 printk(KERN_ERR "ERROR: domain->groups does not contain"
5702 " CPU%d\n", cpu);
5703 }
1da177e4 5704
4dcf6aff 5705 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5706 do {
4dcf6aff
IM
5707 if (!group) {
5708 printk("\n");
5709 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5710 break;
5711 }
5712
4dcf6aff
IM
5713 if (!group->__cpu_power) {
5714 printk(KERN_CONT "\n");
5715 printk(KERN_ERR "ERROR: domain->cpu_power not "
5716 "set\n");
5717 break;
5718 }
1da177e4 5719
4dcf6aff
IM
5720 if (!cpus_weight(group->cpumask)) {
5721 printk(KERN_CONT "\n");
5722 printk(KERN_ERR "ERROR: empty group\n");
5723 break;
5724 }
1da177e4 5725
4dcf6aff
IM
5726 if (cpus_intersects(groupmask, group->cpumask)) {
5727 printk(KERN_CONT "\n");
5728 printk(KERN_ERR "ERROR: repeated CPUs\n");
5729 break;
5730 }
1da177e4 5731
4dcf6aff 5732 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5733
4dcf6aff
IM
5734 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5735 printk(KERN_CONT " %s", str);
1da177e4 5736
4dcf6aff
IM
5737 group = group->next;
5738 } while (group != sd->groups);
5739 printk(KERN_CONT "\n");
1da177e4 5740
4dcf6aff
IM
5741 if (!cpus_equal(sd->span, groupmask))
5742 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5743
4dcf6aff
IM
5744 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5745 printk(KERN_ERR "ERROR: parent span is not a superset "
5746 "of domain->span\n");
5747 return 0;
5748}
1da177e4 5749
4dcf6aff
IM
5750static void sched_domain_debug(struct sched_domain *sd, int cpu)
5751{
5752 int level = 0;
1da177e4 5753
4dcf6aff
IM
5754 if (!sd) {
5755 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5756 return;
5757 }
1da177e4 5758
4dcf6aff
IM
5759 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5760
5761 for (;;) {
5762 if (sched_domain_debug_one(sd, cpu, level))
5763 break;
1da177e4
LT
5764 level++;
5765 sd = sd->parent;
33859f7f 5766 if (!sd)
4dcf6aff
IM
5767 break;
5768 }
1da177e4
LT
5769}
5770#else
48f24c4d 5771# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5772#endif
5773
1a20ff27 5774static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5775{
5776 if (cpus_weight(sd->span) == 1)
5777 return 1;
5778
5779 /* Following flags need at least 2 groups */
5780 if (sd->flags & (SD_LOAD_BALANCE |
5781 SD_BALANCE_NEWIDLE |
5782 SD_BALANCE_FORK |
89c4710e
SS
5783 SD_BALANCE_EXEC |
5784 SD_SHARE_CPUPOWER |
5785 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5786 if (sd->groups != sd->groups->next)
5787 return 0;
5788 }
5789
5790 /* Following flags don't use groups */
5791 if (sd->flags & (SD_WAKE_IDLE |
5792 SD_WAKE_AFFINE |
5793 SD_WAKE_BALANCE))
5794 return 0;
5795
5796 return 1;
5797}
5798
48f24c4d
IM
5799static int
5800sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5801{
5802 unsigned long cflags = sd->flags, pflags = parent->flags;
5803
5804 if (sd_degenerate(parent))
5805 return 1;
5806
5807 if (!cpus_equal(sd->span, parent->span))
5808 return 0;
5809
5810 /* Does parent contain flags not in child? */
5811 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5812 if (cflags & SD_WAKE_AFFINE)
5813 pflags &= ~SD_WAKE_BALANCE;
5814 /* Flags needing groups don't count if only 1 group in parent */
5815 if (parent->groups == parent->groups->next) {
5816 pflags &= ~(SD_LOAD_BALANCE |
5817 SD_BALANCE_NEWIDLE |
5818 SD_BALANCE_FORK |
89c4710e
SS
5819 SD_BALANCE_EXEC |
5820 SD_SHARE_CPUPOWER |
5821 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5822 }
5823 if (~cflags & pflags)
5824 return 0;
5825
5826 return 1;
5827}
5828
1da177e4
LT
5829/*
5830 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5831 * hold the hotplug lock.
5832 */
9c1cfda2 5833static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5834{
70b97a7f 5835 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5836 struct sched_domain *tmp;
5837
5838 /* Remove the sched domains which do not contribute to scheduling. */
5839 for (tmp = sd; tmp; tmp = tmp->parent) {
5840 struct sched_domain *parent = tmp->parent;
5841 if (!parent)
5842 break;
1a848870 5843 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5844 tmp->parent = parent->parent;
1a848870
SS
5845 if (parent->parent)
5846 parent->parent->child = tmp;
5847 }
245af2c7
SS
5848 }
5849
1a848870 5850 if (sd && sd_degenerate(sd)) {
245af2c7 5851 sd = sd->parent;
1a848870
SS
5852 if (sd)
5853 sd->child = NULL;
5854 }
1da177e4
LT
5855
5856 sched_domain_debug(sd, cpu);
5857
674311d5 5858 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5859}
5860
5861/* cpus with isolated domains */
67af63a6 5862static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5863
5864/* Setup the mask of cpus configured for isolated domains */
5865static int __init isolated_cpu_setup(char *str)
5866{
5867 int ints[NR_CPUS], i;
5868
5869 str = get_options(str, ARRAY_SIZE(ints), ints);
5870 cpus_clear(cpu_isolated_map);
5871 for (i = 1; i <= ints[0]; i++)
5872 if (ints[i] < NR_CPUS)
5873 cpu_set(ints[i], cpu_isolated_map);
5874 return 1;
5875}
5876
8927f494 5877__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5878
5879/*
6711cab4
SS
5880 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5881 * to a function which identifies what group(along with sched group) a CPU
5882 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5883 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5884 *
5885 * init_sched_build_groups will build a circular linked list of the groups
5886 * covered by the given span, and will set each group's ->cpumask correctly,
5887 * and ->cpu_power to 0.
5888 */
a616058b 5889static void
6711cab4
SS
5890init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5891 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5892 struct sched_group **sg))
1da177e4
LT
5893{
5894 struct sched_group *first = NULL, *last = NULL;
5895 cpumask_t covered = CPU_MASK_NONE;
5896 int i;
5897
5898 for_each_cpu_mask(i, span) {
6711cab4
SS
5899 struct sched_group *sg;
5900 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5901 int j;
5902
5903 if (cpu_isset(i, covered))
5904 continue;
5905
5906 sg->cpumask = CPU_MASK_NONE;
5517d86b 5907 sg->__cpu_power = 0;
1da177e4
LT
5908
5909 for_each_cpu_mask(j, span) {
6711cab4 5910 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5911 continue;
5912
5913 cpu_set(j, covered);
5914 cpu_set(j, sg->cpumask);
5915 }
5916 if (!first)
5917 first = sg;
5918 if (last)
5919 last->next = sg;
5920 last = sg;
5921 }
5922 last->next = first;
5923}
5924
9c1cfda2 5925#define SD_NODES_PER_DOMAIN 16
1da177e4 5926
9c1cfda2 5927#ifdef CONFIG_NUMA
198e2f18 5928
9c1cfda2
JH
5929/**
5930 * find_next_best_node - find the next node to include in a sched_domain
5931 * @node: node whose sched_domain we're building
5932 * @used_nodes: nodes already in the sched_domain
5933 *
41a2d6cf 5934 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5935 * finds the closest node not already in the @used_nodes map.
5936 *
5937 * Should use nodemask_t.
5938 */
5939static int find_next_best_node(int node, unsigned long *used_nodes)
5940{
5941 int i, n, val, min_val, best_node = 0;
5942
5943 min_val = INT_MAX;
5944
5945 for (i = 0; i < MAX_NUMNODES; i++) {
5946 /* Start at @node */
5947 n = (node + i) % MAX_NUMNODES;
5948
5949 if (!nr_cpus_node(n))
5950 continue;
5951
5952 /* Skip already used nodes */
5953 if (test_bit(n, used_nodes))
5954 continue;
5955
5956 /* Simple min distance search */
5957 val = node_distance(node, n);
5958
5959 if (val < min_val) {
5960 min_val = val;
5961 best_node = n;
5962 }
5963 }
5964
5965 set_bit(best_node, used_nodes);
5966 return best_node;
5967}
5968
5969/**
5970 * sched_domain_node_span - get a cpumask for a node's sched_domain
5971 * @node: node whose cpumask we're constructing
5972 * @size: number of nodes to include in this span
5973 *
41a2d6cf 5974 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5975 * should be one that prevents unnecessary balancing, but also spreads tasks
5976 * out optimally.
5977 */
5978static cpumask_t sched_domain_node_span(int node)
5979{
9c1cfda2 5980 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5981 cpumask_t span, nodemask;
5982 int i;
9c1cfda2
JH
5983
5984 cpus_clear(span);
5985 bitmap_zero(used_nodes, MAX_NUMNODES);
5986
5987 nodemask = node_to_cpumask(node);
5988 cpus_or(span, span, nodemask);
5989 set_bit(node, used_nodes);
5990
5991 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5992 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5993
9c1cfda2
JH
5994 nodemask = node_to_cpumask(next_node);
5995 cpus_or(span, span, nodemask);
5996 }
5997
5998 return span;
5999}
6000#endif
6001
5c45bf27 6002int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6003
9c1cfda2 6004/*
48f24c4d 6005 * SMT sched-domains:
9c1cfda2 6006 */
1da177e4
LT
6007#ifdef CONFIG_SCHED_SMT
6008static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6009static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6010
41a2d6cf
IM
6011static int
6012cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6013{
6711cab4
SS
6014 if (sg)
6015 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6016 return cpu;
6017}
6018#endif
6019
48f24c4d
IM
6020/*
6021 * multi-core sched-domains:
6022 */
1e9f28fa
SS
6023#ifdef CONFIG_SCHED_MC
6024static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6025static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6026#endif
6027
6028#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6029static int
6030cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6031{
6711cab4 6032 int group;
d5a7430d 6033 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6034 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6035 group = first_cpu(mask);
6036 if (sg)
6037 *sg = &per_cpu(sched_group_core, group);
6038 return group;
1e9f28fa
SS
6039}
6040#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6041static int
6042cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6043{
6711cab4
SS
6044 if (sg)
6045 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6046 return cpu;
6047}
6048#endif
6049
1da177e4 6050static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6051static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6052
41a2d6cf
IM
6053static int
6054cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6055{
6711cab4 6056 int group;
48f24c4d 6057#ifdef CONFIG_SCHED_MC
1e9f28fa 6058 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6059 cpus_and(mask, mask, *cpu_map);
6711cab4 6060 group = first_cpu(mask);
1e9f28fa 6061#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6062 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6063 cpus_and(mask, mask, *cpu_map);
6711cab4 6064 group = first_cpu(mask);
1da177e4 6065#else
6711cab4 6066 group = cpu;
1da177e4 6067#endif
6711cab4
SS
6068 if (sg)
6069 *sg = &per_cpu(sched_group_phys, group);
6070 return group;
1da177e4
LT
6071}
6072
6073#ifdef CONFIG_NUMA
1da177e4 6074/*
9c1cfda2
JH
6075 * The init_sched_build_groups can't handle what we want to do with node
6076 * groups, so roll our own. Now each node has its own list of groups which
6077 * gets dynamically allocated.
1da177e4 6078 */
9c1cfda2 6079static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6080static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6081
9c1cfda2 6082static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6083static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6084
6711cab4
SS
6085static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6086 struct sched_group **sg)
9c1cfda2 6087{
6711cab4
SS
6088 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6089 int group;
6090
6091 cpus_and(nodemask, nodemask, *cpu_map);
6092 group = first_cpu(nodemask);
6093
6094 if (sg)
6095 *sg = &per_cpu(sched_group_allnodes, group);
6096 return group;
1da177e4 6097}
6711cab4 6098
08069033
SS
6099static void init_numa_sched_groups_power(struct sched_group *group_head)
6100{
6101 struct sched_group *sg = group_head;
6102 int j;
6103
6104 if (!sg)
6105 return;
3a5c359a
AK
6106 do {
6107 for_each_cpu_mask(j, sg->cpumask) {
6108 struct sched_domain *sd;
08069033 6109
3a5c359a
AK
6110 sd = &per_cpu(phys_domains, j);
6111 if (j != first_cpu(sd->groups->cpumask)) {
6112 /*
6113 * Only add "power" once for each
6114 * physical package.
6115 */
6116 continue;
6117 }
08069033 6118
3a5c359a
AK
6119 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6120 }
6121 sg = sg->next;
6122 } while (sg != group_head);
08069033 6123}
1da177e4
LT
6124#endif
6125
a616058b 6126#ifdef CONFIG_NUMA
51888ca2
SV
6127/* Free memory allocated for various sched_group structures */
6128static void free_sched_groups(const cpumask_t *cpu_map)
6129{
a616058b 6130 int cpu, i;
51888ca2
SV
6131
6132 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6133 struct sched_group **sched_group_nodes
6134 = sched_group_nodes_bycpu[cpu];
6135
51888ca2
SV
6136 if (!sched_group_nodes)
6137 continue;
6138
6139 for (i = 0; i < MAX_NUMNODES; i++) {
6140 cpumask_t nodemask = node_to_cpumask(i);
6141 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6142
6143 cpus_and(nodemask, nodemask, *cpu_map);
6144 if (cpus_empty(nodemask))
6145 continue;
6146
6147 if (sg == NULL)
6148 continue;
6149 sg = sg->next;
6150next_sg:
6151 oldsg = sg;
6152 sg = sg->next;
6153 kfree(oldsg);
6154 if (oldsg != sched_group_nodes[i])
6155 goto next_sg;
6156 }
6157 kfree(sched_group_nodes);
6158 sched_group_nodes_bycpu[cpu] = NULL;
6159 }
51888ca2 6160}
a616058b
SS
6161#else
6162static void free_sched_groups(const cpumask_t *cpu_map)
6163{
6164}
6165#endif
51888ca2 6166
89c4710e
SS
6167/*
6168 * Initialize sched groups cpu_power.
6169 *
6170 * cpu_power indicates the capacity of sched group, which is used while
6171 * distributing the load between different sched groups in a sched domain.
6172 * Typically cpu_power for all the groups in a sched domain will be same unless
6173 * there are asymmetries in the topology. If there are asymmetries, group
6174 * having more cpu_power will pickup more load compared to the group having
6175 * less cpu_power.
6176 *
6177 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6178 * the maximum number of tasks a group can handle in the presence of other idle
6179 * or lightly loaded groups in the same sched domain.
6180 */
6181static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6182{
6183 struct sched_domain *child;
6184 struct sched_group *group;
6185
6186 WARN_ON(!sd || !sd->groups);
6187
6188 if (cpu != first_cpu(sd->groups->cpumask))
6189 return;
6190
6191 child = sd->child;
6192
5517d86b
ED
6193 sd->groups->__cpu_power = 0;
6194
89c4710e
SS
6195 /*
6196 * For perf policy, if the groups in child domain share resources
6197 * (for example cores sharing some portions of the cache hierarchy
6198 * or SMT), then set this domain groups cpu_power such that each group
6199 * can handle only one task, when there are other idle groups in the
6200 * same sched domain.
6201 */
6202 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6203 (child->flags &
6204 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6205 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6206 return;
6207 }
6208
89c4710e
SS
6209 /*
6210 * add cpu_power of each child group to this groups cpu_power
6211 */
6212 group = child->groups;
6213 do {
5517d86b 6214 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6215 group = group->next;
6216 } while (group != child->groups);
6217}
6218
1da177e4 6219/*
1a20ff27
DG
6220 * Build sched domains for a given set of cpus and attach the sched domains
6221 * to the individual cpus
1da177e4 6222 */
51888ca2 6223static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6224{
6225 int i;
d1b55138
JH
6226#ifdef CONFIG_NUMA
6227 struct sched_group **sched_group_nodes = NULL;
6711cab4 6228 int sd_allnodes = 0;
d1b55138
JH
6229
6230 /*
6231 * Allocate the per-node list of sched groups
6232 */
5cf9f062 6233 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6234 GFP_KERNEL);
d1b55138
JH
6235 if (!sched_group_nodes) {
6236 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6237 return -ENOMEM;
d1b55138
JH
6238 }
6239 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6240#endif
1da177e4
LT
6241
6242 /*
1a20ff27 6243 * Set up domains for cpus specified by the cpu_map.
1da177e4 6244 */
1a20ff27 6245 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6246 struct sched_domain *sd = NULL, *p;
6247 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6248
1a20ff27 6249 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6250
6251#ifdef CONFIG_NUMA
dd41f596
IM
6252 if (cpus_weight(*cpu_map) >
6253 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6254 sd = &per_cpu(allnodes_domains, i);
6255 *sd = SD_ALLNODES_INIT;
6256 sd->span = *cpu_map;
6711cab4 6257 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6258 p = sd;
6711cab4 6259 sd_allnodes = 1;
9c1cfda2
JH
6260 } else
6261 p = NULL;
6262
1da177e4 6263 sd = &per_cpu(node_domains, i);
1da177e4 6264 *sd = SD_NODE_INIT;
9c1cfda2
JH
6265 sd->span = sched_domain_node_span(cpu_to_node(i));
6266 sd->parent = p;
1a848870
SS
6267 if (p)
6268 p->child = sd;
9c1cfda2 6269 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6270#endif
6271
6272 p = sd;
6273 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6274 *sd = SD_CPU_INIT;
6275 sd->span = nodemask;
6276 sd->parent = p;
1a848870
SS
6277 if (p)
6278 p->child = sd;
6711cab4 6279 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6280
1e9f28fa
SS
6281#ifdef CONFIG_SCHED_MC
6282 p = sd;
6283 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6284 *sd = SD_MC_INIT;
6285 sd->span = cpu_coregroup_map(i);
6286 cpus_and(sd->span, sd->span, *cpu_map);
6287 sd->parent = p;
1a848870 6288 p->child = sd;
6711cab4 6289 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6290#endif
6291
1da177e4
LT
6292#ifdef CONFIG_SCHED_SMT
6293 p = sd;
6294 sd = &per_cpu(cpu_domains, i);
1da177e4 6295 *sd = SD_SIBLING_INIT;
d5a7430d 6296 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6297 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6298 sd->parent = p;
1a848870 6299 p->child = sd;
6711cab4 6300 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6301#endif
6302 }
6303
6304#ifdef CONFIG_SCHED_SMT
6305 /* Set up CPU (sibling) groups */
9c1cfda2 6306 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6307 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6308 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6309 if (i != first_cpu(this_sibling_map))
6310 continue;
6311
dd41f596
IM
6312 init_sched_build_groups(this_sibling_map, cpu_map,
6313 &cpu_to_cpu_group);
1da177e4
LT
6314 }
6315#endif
6316
1e9f28fa
SS
6317#ifdef CONFIG_SCHED_MC
6318 /* Set up multi-core groups */
6319 for_each_cpu_mask(i, *cpu_map) {
6320 cpumask_t this_core_map = cpu_coregroup_map(i);
6321 cpus_and(this_core_map, this_core_map, *cpu_map);
6322 if (i != first_cpu(this_core_map))
6323 continue;
dd41f596
IM
6324 init_sched_build_groups(this_core_map, cpu_map,
6325 &cpu_to_core_group);
1e9f28fa
SS
6326 }
6327#endif
6328
1da177e4
LT
6329 /* Set up physical groups */
6330 for (i = 0; i < MAX_NUMNODES; i++) {
6331 cpumask_t nodemask = node_to_cpumask(i);
6332
1a20ff27 6333 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6334 if (cpus_empty(nodemask))
6335 continue;
6336
6711cab4 6337 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6338 }
6339
6340#ifdef CONFIG_NUMA
6341 /* Set up node groups */
6711cab4 6342 if (sd_allnodes)
dd41f596
IM
6343 init_sched_build_groups(*cpu_map, cpu_map,
6344 &cpu_to_allnodes_group);
9c1cfda2
JH
6345
6346 for (i = 0; i < MAX_NUMNODES; i++) {
6347 /* Set up node groups */
6348 struct sched_group *sg, *prev;
6349 cpumask_t nodemask = node_to_cpumask(i);
6350 cpumask_t domainspan;
6351 cpumask_t covered = CPU_MASK_NONE;
6352 int j;
6353
6354 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6355 if (cpus_empty(nodemask)) {
6356 sched_group_nodes[i] = NULL;
9c1cfda2 6357 continue;
d1b55138 6358 }
9c1cfda2
JH
6359
6360 domainspan = sched_domain_node_span(i);
6361 cpus_and(domainspan, domainspan, *cpu_map);
6362
15f0b676 6363 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6364 if (!sg) {
6365 printk(KERN_WARNING "Can not alloc domain group for "
6366 "node %d\n", i);
6367 goto error;
6368 }
9c1cfda2
JH
6369 sched_group_nodes[i] = sg;
6370 for_each_cpu_mask(j, nodemask) {
6371 struct sched_domain *sd;
9761eea8 6372
9c1cfda2
JH
6373 sd = &per_cpu(node_domains, j);
6374 sd->groups = sg;
9c1cfda2 6375 }
5517d86b 6376 sg->__cpu_power = 0;
9c1cfda2 6377 sg->cpumask = nodemask;
51888ca2 6378 sg->next = sg;
9c1cfda2
JH
6379 cpus_or(covered, covered, nodemask);
6380 prev = sg;
6381
6382 for (j = 0; j < MAX_NUMNODES; j++) {
6383 cpumask_t tmp, notcovered;
6384 int n = (i + j) % MAX_NUMNODES;
6385
6386 cpus_complement(notcovered, covered);
6387 cpus_and(tmp, notcovered, *cpu_map);
6388 cpus_and(tmp, tmp, domainspan);
6389 if (cpus_empty(tmp))
6390 break;
6391
6392 nodemask = node_to_cpumask(n);
6393 cpus_and(tmp, tmp, nodemask);
6394 if (cpus_empty(tmp))
6395 continue;
6396
15f0b676
SV
6397 sg = kmalloc_node(sizeof(struct sched_group),
6398 GFP_KERNEL, i);
9c1cfda2
JH
6399 if (!sg) {
6400 printk(KERN_WARNING
6401 "Can not alloc domain group for node %d\n", j);
51888ca2 6402 goto error;
9c1cfda2 6403 }
5517d86b 6404 sg->__cpu_power = 0;
9c1cfda2 6405 sg->cpumask = tmp;
51888ca2 6406 sg->next = prev->next;
9c1cfda2
JH
6407 cpus_or(covered, covered, tmp);
6408 prev->next = sg;
6409 prev = sg;
6410 }
9c1cfda2 6411 }
1da177e4
LT
6412#endif
6413
6414 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6415#ifdef CONFIG_SCHED_SMT
1a20ff27 6416 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6417 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6418
89c4710e 6419 init_sched_groups_power(i, sd);
5c45bf27 6420 }
1da177e4 6421#endif
1e9f28fa 6422#ifdef CONFIG_SCHED_MC
5c45bf27 6423 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6424 struct sched_domain *sd = &per_cpu(core_domains, i);
6425
89c4710e 6426 init_sched_groups_power(i, sd);
5c45bf27
SS
6427 }
6428#endif
1e9f28fa 6429
5c45bf27 6430 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6431 struct sched_domain *sd = &per_cpu(phys_domains, i);
6432
89c4710e 6433 init_sched_groups_power(i, sd);
1da177e4
LT
6434 }
6435
9c1cfda2 6436#ifdef CONFIG_NUMA
08069033
SS
6437 for (i = 0; i < MAX_NUMNODES; i++)
6438 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6439
6711cab4
SS
6440 if (sd_allnodes) {
6441 struct sched_group *sg;
f712c0c7 6442
6711cab4 6443 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6444 init_numa_sched_groups_power(sg);
6445 }
9c1cfda2
JH
6446#endif
6447
1da177e4 6448 /* Attach the domains */
1a20ff27 6449 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6450 struct sched_domain *sd;
6451#ifdef CONFIG_SCHED_SMT
6452 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6453#elif defined(CONFIG_SCHED_MC)
6454 sd = &per_cpu(core_domains, i);
1da177e4
LT
6455#else
6456 sd = &per_cpu(phys_domains, i);
6457#endif
6458 cpu_attach_domain(sd, i);
6459 }
51888ca2
SV
6460
6461 return 0;
6462
a616058b 6463#ifdef CONFIG_NUMA
51888ca2
SV
6464error:
6465 free_sched_groups(cpu_map);
6466 return -ENOMEM;
a616058b 6467#endif
1da177e4 6468}
029190c5
PJ
6469
6470static cpumask_t *doms_cur; /* current sched domains */
6471static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6472
6473/*
6474 * Special case: If a kmalloc of a doms_cur partition (array of
6475 * cpumask_t) fails, then fallback to a single sched domain,
6476 * as determined by the single cpumask_t fallback_doms.
6477 */
6478static cpumask_t fallback_doms;
6479
1a20ff27 6480/*
41a2d6cf 6481 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6482 * For now this just excludes isolated cpus, but could be used to
6483 * exclude other special cases in the future.
1a20ff27 6484 */
51888ca2 6485static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6486{
7378547f
MM
6487 int err;
6488
029190c5
PJ
6489 ndoms_cur = 1;
6490 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6491 if (!doms_cur)
6492 doms_cur = &fallback_doms;
6493 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6494 err = build_sched_domains(doms_cur);
6382bc90 6495 register_sched_domain_sysctl();
7378547f
MM
6496
6497 return err;
1a20ff27
DG
6498}
6499
6500static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6501{
51888ca2 6502 free_sched_groups(cpu_map);
9c1cfda2 6503}
1da177e4 6504
1a20ff27
DG
6505/*
6506 * Detach sched domains from a group of cpus specified in cpu_map
6507 * These cpus will now be attached to the NULL domain
6508 */
858119e1 6509static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6510{
6511 int i;
6512
6382bc90
MM
6513 unregister_sched_domain_sysctl();
6514
1a20ff27
DG
6515 for_each_cpu_mask(i, *cpu_map)
6516 cpu_attach_domain(NULL, i);
6517 synchronize_sched();
6518 arch_destroy_sched_domains(cpu_map);
6519}
6520
029190c5
PJ
6521/*
6522 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6523 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6524 * doms_new[] to the current sched domain partitioning, doms_cur[].
6525 * It destroys each deleted domain and builds each new domain.
6526 *
6527 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6528 * The masks don't intersect (don't overlap.) We should setup one
6529 * sched domain for each mask. CPUs not in any of the cpumasks will
6530 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6531 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6532 * it as it is.
6533 *
41a2d6cf
IM
6534 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6535 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6536 * failed the kmalloc call, then it can pass in doms_new == NULL,
6537 * and partition_sched_domains() will fallback to the single partition
6538 * 'fallback_doms'.
6539 *
6540 * Call with hotplug lock held
6541 */
6542void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6543{
6544 int i, j;
6545
7378547f
MM
6546 /* always unregister in case we don't destroy any domains */
6547 unregister_sched_domain_sysctl();
6548
029190c5
PJ
6549 if (doms_new == NULL) {
6550 ndoms_new = 1;
6551 doms_new = &fallback_doms;
6552 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6553 }
6554
6555 /* Destroy deleted domains */
6556 for (i = 0; i < ndoms_cur; i++) {
6557 for (j = 0; j < ndoms_new; j++) {
6558 if (cpus_equal(doms_cur[i], doms_new[j]))
6559 goto match1;
6560 }
6561 /* no match - a current sched domain not in new doms_new[] */
6562 detach_destroy_domains(doms_cur + i);
6563match1:
6564 ;
6565 }
6566
6567 /* Build new domains */
6568 for (i = 0; i < ndoms_new; i++) {
6569 for (j = 0; j < ndoms_cur; j++) {
6570 if (cpus_equal(doms_new[i], doms_cur[j]))
6571 goto match2;
6572 }
6573 /* no match - add a new doms_new */
6574 build_sched_domains(doms_new + i);
6575match2:
6576 ;
6577 }
6578
6579 /* Remember the new sched domains */
6580 if (doms_cur != &fallback_doms)
6581 kfree(doms_cur);
6582 doms_cur = doms_new;
6583 ndoms_cur = ndoms_new;
7378547f
MM
6584
6585 register_sched_domain_sysctl();
029190c5
PJ
6586}
6587
5c45bf27 6588#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6589static int arch_reinit_sched_domains(void)
5c45bf27
SS
6590{
6591 int err;
6592
5be9361c 6593 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6594 detach_destroy_domains(&cpu_online_map);
6595 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6596 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6597
6598 return err;
6599}
6600
6601static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6602{
6603 int ret;
6604
6605 if (buf[0] != '0' && buf[0] != '1')
6606 return -EINVAL;
6607
6608 if (smt)
6609 sched_smt_power_savings = (buf[0] == '1');
6610 else
6611 sched_mc_power_savings = (buf[0] == '1');
6612
6613 ret = arch_reinit_sched_domains();
6614
6615 return ret ? ret : count;
6616}
6617
5c45bf27
SS
6618#ifdef CONFIG_SCHED_MC
6619static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6620{
6621 return sprintf(page, "%u\n", sched_mc_power_savings);
6622}
48f24c4d
IM
6623static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6624 const char *buf, size_t count)
5c45bf27
SS
6625{
6626 return sched_power_savings_store(buf, count, 0);
6627}
6707de00
AB
6628static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6629 sched_mc_power_savings_store);
5c45bf27
SS
6630#endif
6631
6632#ifdef CONFIG_SCHED_SMT
6633static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6634{
6635 return sprintf(page, "%u\n", sched_smt_power_savings);
6636}
48f24c4d
IM
6637static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6638 const char *buf, size_t count)
5c45bf27
SS
6639{
6640 return sched_power_savings_store(buf, count, 1);
6641}
6707de00
AB
6642static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6643 sched_smt_power_savings_store);
6644#endif
6645
6646int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6647{
6648 int err = 0;
6649
6650#ifdef CONFIG_SCHED_SMT
6651 if (smt_capable())
6652 err = sysfs_create_file(&cls->kset.kobj,
6653 &attr_sched_smt_power_savings.attr);
6654#endif
6655#ifdef CONFIG_SCHED_MC
6656 if (!err && mc_capable())
6657 err = sysfs_create_file(&cls->kset.kobj,
6658 &attr_sched_mc_power_savings.attr);
6659#endif
6660 return err;
6661}
5c45bf27
SS
6662#endif
6663
1da177e4 6664/*
41a2d6cf 6665 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6666 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6667 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6668 * which will prevent rebalancing while the sched domains are recalculated.
6669 */
6670static int update_sched_domains(struct notifier_block *nfb,
6671 unsigned long action, void *hcpu)
6672{
1da177e4
LT
6673 switch (action) {
6674 case CPU_UP_PREPARE:
8bb78442 6675 case CPU_UP_PREPARE_FROZEN:
1da177e4 6676 case CPU_DOWN_PREPARE:
8bb78442 6677 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6678 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6679 return NOTIFY_OK;
6680
6681 case CPU_UP_CANCELED:
8bb78442 6682 case CPU_UP_CANCELED_FROZEN:
1da177e4 6683 case CPU_DOWN_FAILED:
8bb78442 6684 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6685 case CPU_ONLINE:
8bb78442 6686 case CPU_ONLINE_FROZEN:
1da177e4 6687 case CPU_DEAD:
8bb78442 6688 case CPU_DEAD_FROZEN:
1da177e4
LT
6689 /*
6690 * Fall through and re-initialise the domains.
6691 */
6692 break;
6693 default:
6694 return NOTIFY_DONE;
6695 }
6696
6697 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6698 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6699
6700 return NOTIFY_OK;
6701}
1da177e4
LT
6702
6703void __init sched_init_smp(void)
6704{
5c1e1767
NP
6705 cpumask_t non_isolated_cpus;
6706
5be9361c 6707 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6708 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6709 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6710 if (cpus_empty(non_isolated_cpus))
6711 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6712 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6713 /* XXX: Theoretical race here - CPU may be hotplugged now */
6714 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6715
6716 /* Move init over to a non-isolated CPU */
6717 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6718 BUG();
19978ca6 6719 sched_init_granularity();
1da177e4
LT
6720}
6721#else
6722void __init sched_init_smp(void)
6723{
19978ca6 6724 sched_init_granularity();
1da177e4
LT
6725}
6726#endif /* CONFIG_SMP */
6727
6728int in_sched_functions(unsigned long addr)
6729{
1da177e4
LT
6730 return in_lock_functions(addr) ||
6731 (addr >= (unsigned long)__sched_text_start
6732 && addr < (unsigned long)__sched_text_end);
6733}
6734
a9957449 6735static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6736{
6737 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6738#ifdef CONFIG_FAIR_GROUP_SCHED
6739 cfs_rq->rq = rq;
6740#endif
67e9fb2a 6741 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6742}
6743
1da177e4
LT
6744void __init sched_init(void)
6745{
476f3534 6746 int highest_cpu = 0;
dd41f596
IM
6747 int i, j;
6748
0a945022 6749 for_each_possible_cpu(i) {
dd41f596 6750 struct rt_prio_array *array;
70b97a7f 6751 struct rq *rq;
1da177e4
LT
6752
6753 rq = cpu_rq(i);
6754 spin_lock_init(&rq->lock);
fcb99371 6755 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6756 rq->nr_running = 0;
dd41f596
IM
6757 rq->clock = 1;
6758 init_cfs_rq(&rq->cfs, rq);
6759#ifdef CONFIG_FAIR_GROUP_SCHED
6760 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6761 {
6762 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6763 struct sched_entity *se =
6764 &per_cpu(init_sched_entity, i);
6765
6766 init_cfs_rq_p[i] = cfs_rq;
6767 init_cfs_rq(cfs_rq, rq);
4cf86d77 6768 cfs_rq->tg = &init_task_group;
3a252015 6769 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6770 &rq->leaf_cfs_rq_list);
6771
3a252015
IM
6772 init_sched_entity_p[i] = se;
6773 se->cfs_rq = &rq->cfs;
6774 se->my_q = cfs_rq;
4cf86d77 6775 se->load.weight = init_task_group_load;
9b5b7751 6776 se->load.inv_weight =
4cf86d77 6777 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6778 se->parent = NULL;
6779 }
4cf86d77 6780 init_task_group.shares = init_task_group_load;
dd41f596 6781#endif
1da177e4 6782
dd41f596
IM
6783 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6784 rq->cpu_load[j] = 0;
1da177e4 6785#ifdef CONFIG_SMP
41c7ce9a 6786 rq->sd = NULL;
1da177e4 6787 rq->active_balance = 0;
dd41f596 6788 rq->next_balance = jiffies;
1da177e4 6789 rq->push_cpu = 0;
0a2966b4 6790 rq->cpu = i;
1da177e4
LT
6791 rq->migration_thread = NULL;
6792 INIT_LIST_HEAD(&rq->migration_queue);
6793#endif
6794 atomic_set(&rq->nr_iowait, 0);
6795
dd41f596
IM
6796 array = &rq->rt.active;
6797 for (j = 0; j < MAX_RT_PRIO; j++) {
6798 INIT_LIST_HEAD(array->queue + j);
6799 __clear_bit(j, array->bitmap);
1da177e4 6800 }
476f3534 6801 highest_cpu = i;
dd41f596
IM
6802 /* delimiter for bitsearch: */
6803 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6804 }
6805
2dd73a4f 6806 set_load_weight(&init_task);
b50f60ce 6807
e107be36
AK
6808#ifdef CONFIG_PREEMPT_NOTIFIERS
6809 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6810#endif
6811
c9819f45 6812#ifdef CONFIG_SMP
476f3534 6813 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6814 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6815#endif
6816
b50f60ce
HC
6817#ifdef CONFIG_RT_MUTEXES
6818 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6819#endif
6820
1da177e4
LT
6821 /*
6822 * The boot idle thread does lazy MMU switching as well:
6823 */
6824 atomic_inc(&init_mm.mm_count);
6825 enter_lazy_tlb(&init_mm, current);
6826
6827 /*
6828 * Make us the idle thread. Technically, schedule() should not be
6829 * called from this thread, however somewhere below it might be,
6830 * but because we are the idle thread, we just pick up running again
6831 * when this runqueue becomes "idle".
6832 */
6833 init_idle(current, smp_processor_id());
dd41f596
IM
6834 /*
6835 * During early bootup we pretend to be a normal task:
6836 */
6837 current->sched_class = &fair_sched_class;
1da177e4
LT
6838}
6839
6840#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6841void __might_sleep(char *file, int line)
6842{
48f24c4d 6843#ifdef in_atomic
1da177e4
LT
6844 static unsigned long prev_jiffy; /* ratelimiting */
6845
6846 if ((in_atomic() || irqs_disabled()) &&
6847 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6848 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6849 return;
6850 prev_jiffy = jiffies;
91368d73 6851 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6852 " context at %s:%d\n", file, line);
6853 printk("in_atomic():%d, irqs_disabled():%d\n",
6854 in_atomic(), irqs_disabled());
a4c410f0 6855 debug_show_held_locks(current);
3117df04
IM
6856 if (irqs_disabled())
6857 print_irqtrace_events(current);
1da177e4
LT
6858 dump_stack();
6859 }
6860#endif
6861}
6862EXPORT_SYMBOL(__might_sleep);
6863#endif
6864
6865#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6866static void normalize_task(struct rq *rq, struct task_struct *p)
6867{
6868 int on_rq;
6869 update_rq_clock(rq);
6870 on_rq = p->se.on_rq;
6871 if (on_rq)
6872 deactivate_task(rq, p, 0);
6873 __setscheduler(rq, p, SCHED_NORMAL, 0);
6874 if (on_rq) {
6875 activate_task(rq, p, 0);
6876 resched_task(rq->curr);
6877 }
6878}
6879
1da177e4
LT
6880void normalize_rt_tasks(void)
6881{
a0f98a1c 6882 struct task_struct *g, *p;
1da177e4 6883 unsigned long flags;
70b97a7f 6884 struct rq *rq;
1da177e4
LT
6885
6886 read_lock_irq(&tasklist_lock);
a0f98a1c 6887 do_each_thread(g, p) {
178be793
IM
6888 /*
6889 * Only normalize user tasks:
6890 */
6891 if (!p->mm)
6892 continue;
6893
6cfb0d5d 6894 p->se.exec_start = 0;
6cfb0d5d 6895#ifdef CONFIG_SCHEDSTATS
dd41f596 6896 p->se.wait_start = 0;
dd41f596 6897 p->se.sleep_start = 0;
dd41f596 6898 p->se.block_start = 0;
6cfb0d5d 6899#endif
dd41f596
IM
6900 task_rq(p)->clock = 0;
6901
6902 if (!rt_task(p)) {
6903 /*
6904 * Renice negative nice level userspace
6905 * tasks back to 0:
6906 */
6907 if (TASK_NICE(p) < 0 && p->mm)
6908 set_user_nice(p, 0);
1da177e4 6909 continue;
dd41f596 6910 }
1da177e4 6911
b29739f9
IM
6912 spin_lock_irqsave(&p->pi_lock, flags);
6913 rq = __task_rq_lock(p);
1da177e4 6914
178be793 6915 normalize_task(rq, p);
3a5e4dc1 6916
b29739f9
IM
6917 __task_rq_unlock(rq);
6918 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6919 } while_each_thread(g, p);
6920
1da177e4
LT
6921 read_unlock_irq(&tasklist_lock);
6922}
6923
6924#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6925
6926#ifdef CONFIG_IA64
6927/*
6928 * These functions are only useful for the IA64 MCA handling.
6929 *
6930 * They can only be called when the whole system has been
6931 * stopped - every CPU needs to be quiescent, and no scheduling
6932 * activity can take place. Using them for anything else would
6933 * be a serious bug, and as a result, they aren't even visible
6934 * under any other configuration.
6935 */
6936
6937/**
6938 * curr_task - return the current task for a given cpu.
6939 * @cpu: the processor in question.
6940 *
6941 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6942 */
36c8b586 6943struct task_struct *curr_task(int cpu)
1df5c10a
LT
6944{
6945 return cpu_curr(cpu);
6946}
6947
6948/**
6949 * set_curr_task - set the current task for a given cpu.
6950 * @cpu: the processor in question.
6951 * @p: the task pointer to set.
6952 *
6953 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6954 * are serviced on a separate stack. It allows the architecture to switch the
6955 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6956 * must be called with all CPU's synchronized, and interrupts disabled, the
6957 * and caller must save the original value of the current task (see
6958 * curr_task() above) and restore that value before reenabling interrupts and
6959 * re-starting the system.
6960 *
6961 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6962 */
36c8b586 6963void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6964{
6965 cpu_curr(cpu) = p;
6966}
6967
6968#endif
29f59db3
SV
6969
6970#ifdef CONFIG_FAIR_GROUP_SCHED
6971
29f59db3 6972/* allocate runqueue etc for a new task group */
4cf86d77 6973struct task_group *sched_create_group(void)
29f59db3 6974{
4cf86d77 6975 struct task_group *tg;
29f59db3
SV
6976 struct cfs_rq *cfs_rq;
6977 struct sched_entity *se;
9b5b7751 6978 struct rq *rq;
29f59db3
SV
6979 int i;
6980
29f59db3
SV
6981 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6982 if (!tg)
6983 return ERR_PTR(-ENOMEM);
6984
9b5b7751 6985 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6986 if (!tg->cfs_rq)
6987 goto err;
9b5b7751 6988 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6989 if (!tg->se)
6990 goto err;
6991
6992 for_each_possible_cpu(i) {
9b5b7751 6993 rq = cpu_rq(i);
29f59db3
SV
6994
6995 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6996 cpu_to_node(i));
6997 if (!cfs_rq)
6998 goto err;
6999
7000 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7001 cpu_to_node(i));
7002 if (!se)
7003 goto err;
7004
7005 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7006 memset(se, 0, sizeof(struct sched_entity));
7007
7008 tg->cfs_rq[i] = cfs_rq;
7009 init_cfs_rq(cfs_rq, rq);
7010 cfs_rq->tg = tg;
29f59db3
SV
7011
7012 tg->se[i] = se;
7013 se->cfs_rq = &rq->cfs;
7014 se->my_q = cfs_rq;
7015 se->load.weight = NICE_0_LOAD;
7016 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7017 se->parent = NULL;
7018 }
7019
ec2c507f
SV
7020 tg->shares = NICE_0_LOAD;
7021
7022 lock_task_group_list();
9b5b7751
SV
7023 for_each_possible_cpu(i) {
7024 rq = cpu_rq(i);
7025 cfs_rq = tg->cfs_rq[i];
7026 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7027 }
ec2c507f 7028 unlock_task_group_list();
29f59db3 7029
9b5b7751 7030 return tg;
29f59db3
SV
7031
7032err:
7033 for_each_possible_cpu(i) {
a65914b3 7034 if (tg->cfs_rq)
29f59db3 7035 kfree(tg->cfs_rq[i]);
a65914b3 7036 if (tg->se)
29f59db3
SV
7037 kfree(tg->se[i]);
7038 }
a65914b3
IM
7039 kfree(tg->cfs_rq);
7040 kfree(tg->se);
7041 kfree(tg);
29f59db3
SV
7042
7043 return ERR_PTR(-ENOMEM);
7044}
7045
9b5b7751
SV
7046/* rcu callback to free various structures associated with a task group */
7047static void free_sched_group(struct rcu_head *rhp)
29f59db3 7048{
ae8393e5
SV
7049 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7050 struct cfs_rq *cfs_rq;
29f59db3
SV
7051 struct sched_entity *se;
7052 int i;
7053
29f59db3
SV
7054 /* now it should be safe to free those cfs_rqs */
7055 for_each_possible_cpu(i) {
7056 cfs_rq = tg->cfs_rq[i];
7057 kfree(cfs_rq);
7058
7059 se = tg->se[i];
7060 kfree(se);
7061 }
7062
7063 kfree(tg->cfs_rq);
7064 kfree(tg->se);
7065 kfree(tg);
7066}
7067
9b5b7751 7068/* Destroy runqueue etc associated with a task group */
4cf86d77 7069void sched_destroy_group(struct task_group *tg)
29f59db3 7070{
7bae49d4 7071 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7072 int i;
29f59db3 7073
ec2c507f 7074 lock_task_group_list();
9b5b7751
SV
7075 for_each_possible_cpu(i) {
7076 cfs_rq = tg->cfs_rq[i];
7077 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7078 }
ec2c507f 7079 unlock_task_group_list();
9b5b7751 7080
7bae49d4 7081 BUG_ON(!cfs_rq);
9b5b7751
SV
7082
7083 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7084 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7085}
7086
9b5b7751 7087/* change task's runqueue when it moves between groups.
3a252015
IM
7088 * The caller of this function should have put the task in its new group
7089 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7090 * reflect its new group.
9b5b7751
SV
7091 */
7092void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7093{
7094 int on_rq, running;
7095 unsigned long flags;
7096 struct rq *rq;
7097
7098 rq = task_rq_lock(tsk, &flags);
7099
dae51f56 7100 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7101 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7102 goto done;
dae51f56 7103 }
29f59db3
SV
7104
7105 update_rq_clock(rq);
7106
051a1d1a 7107 running = task_current(rq, tsk);
29f59db3
SV
7108 on_rq = tsk->se.on_rq;
7109
83b699ed 7110 if (on_rq) {
29f59db3 7111 dequeue_task(rq, tsk, 0);
83b699ed
SV
7112 if (unlikely(running))
7113 tsk->sched_class->put_prev_task(rq, tsk);
7114 }
29f59db3 7115
ce96b5ac 7116 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7117
83b699ed
SV
7118 if (on_rq) {
7119 if (unlikely(running))
7120 tsk->sched_class->set_curr_task(rq);
7074badb 7121 enqueue_task(rq, tsk, 0);
83b699ed 7122 }
29f59db3
SV
7123
7124done:
7125 task_rq_unlock(rq, &flags);
7126}
7127
7128static void set_se_shares(struct sched_entity *se, unsigned long shares)
7129{
7130 struct cfs_rq *cfs_rq = se->cfs_rq;
7131 struct rq *rq = cfs_rq->rq;
7132 int on_rq;
7133
7134 spin_lock_irq(&rq->lock);
7135
7136 on_rq = se->on_rq;
7137 if (on_rq)
7138 dequeue_entity(cfs_rq, se, 0);
7139
7140 se->load.weight = shares;
7141 se->load.inv_weight = div64_64((1ULL<<32), shares);
7142
7143 if (on_rq)
7144 enqueue_entity(cfs_rq, se, 0);
7145
7146 spin_unlock_irq(&rq->lock);
7147}
7148
4cf86d77 7149int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7150{
7151 int i;
29f59db3 7152
c61935fd
IM
7153 /*
7154 * A weight of 0 or 1 can cause arithmetics problems.
7155 * (The default weight is 1024 - so there's no practical
7156 * limitation from this.)
7157 */
7158 if (shares < 2)
7159 shares = 2;
7160
ec2c507f 7161 lock_task_group_list();
9b5b7751 7162 if (tg->shares == shares)
5cb350ba 7163 goto done;
29f59db3 7164
9b5b7751 7165 tg->shares = shares;
29f59db3 7166 for_each_possible_cpu(i)
9b5b7751 7167 set_se_shares(tg->se[i], shares);
29f59db3 7168
5cb350ba 7169done:
ec2c507f 7170 unlock_task_group_list();
9b5b7751 7171 return 0;
29f59db3
SV
7172}
7173
5cb350ba
DG
7174unsigned long sched_group_shares(struct task_group *tg)
7175{
7176 return tg->shares;
7177}
7178
3a252015 7179#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7180
7181#ifdef CONFIG_FAIR_CGROUP_SCHED
7182
7183/* return corresponding task_group object of a cgroup */
2b01dfe3 7184static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7185{
2b01dfe3
PM
7186 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7187 struct task_group, css);
68318b8e
SV
7188}
7189
7190static struct cgroup_subsys_state *
2b01dfe3 7191cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7192{
7193 struct task_group *tg;
7194
2b01dfe3 7195 if (!cgrp->parent) {
68318b8e 7196 /* This is early initialization for the top cgroup */
2b01dfe3 7197 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7198 return &init_task_group.css;
7199 }
7200
7201 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7202 if (cgrp->parent->parent)
68318b8e
SV
7203 return ERR_PTR(-EINVAL);
7204
7205 tg = sched_create_group();
7206 if (IS_ERR(tg))
7207 return ERR_PTR(-ENOMEM);
7208
7209 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7210 tg->css.cgroup = cgrp;
68318b8e
SV
7211
7212 return &tg->css;
7213}
7214
41a2d6cf
IM
7215static void
7216cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7217{
2b01dfe3 7218 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7219
7220 sched_destroy_group(tg);
7221}
7222
41a2d6cf
IM
7223static int
7224cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7225 struct task_struct *tsk)
68318b8e
SV
7226{
7227 /* We don't support RT-tasks being in separate groups */
7228 if (tsk->sched_class != &fair_sched_class)
7229 return -EINVAL;
7230
7231 return 0;
7232}
7233
7234static void
2b01dfe3 7235cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7236 struct cgroup *old_cont, struct task_struct *tsk)
7237{
7238 sched_move_task(tsk);
7239}
7240
2b01dfe3
PM
7241static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7242 u64 shareval)
68318b8e 7243{
2b01dfe3 7244 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7245}
7246
2b01dfe3 7247static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7248{
2b01dfe3 7249 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7250
7251 return (u64) tg->shares;
7252}
7253
fe5c7cc2
PM
7254static struct cftype cpu_files[] = {
7255 {
7256 .name = "shares",
7257 .read_uint = cpu_shares_read_uint,
7258 .write_uint = cpu_shares_write_uint,
7259 },
68318b8e
SV
7260};
7261
7262static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7263{
fe5c7cc2 7264 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7265}
7266
7267struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7268 .name = "cpu",
7269 .create = cpu_cgroup_create,
7270 .destroy = cpu_cgroup_destroy,
7271 .can_attach = cpu_cgroup_can_attach,
7272 .attach = cpu_cgroup_attach,
7273 .populate = cpu_cgroup_populate,
7274 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7275 .early_init = 1,
7276};
7277
7278#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7279
7280#ifdef CONFIG_CGROUP_CPUACCT
7281
7282/*
7283 * CPU accounting code for task groups.
7284 *
7285 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7286 * (balbir@in.ibm.com).
7287 */
7288
7289/* track cpu usage of a group of tasks */
7290struct cpuacct {
7291 struct cgroup_subsys_state css;
7292 /* cpuusage holds pointer to a u64-type object on every cpu */
7293 u64 *cpuusage;
7294};
7295
7296struct cgroup_subsys cpuacct_subsys;
7297
7298/* return cpu accounting group corresponding to this container */
7299static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7300{
7301 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7302 struct cpuacct, css);
7303}
7304
7305/* return cpu accounting group to which this task belongs */
7306static inline struct cpuacct *task_ca(struct task_struct *tsk)
7307{
7308 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7309 struct cpuacct, css);
7310}
7311
7312/* create a new cpu accounting group */
7313static struct cgroup_subsys_state *cpuacct_create(
7314 struct cgroup_subsys *ss, struct cgroup *cont)
7315{
7316 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7317
7318 if (!ca)
7319 return ERR_PTR(-ENOMEM);
7320
7321 ca->cpuusage = alloc_percpu(u64);
7322 if (!ca->cpuusage) {
7323 kfree(ca);
7324 return ERR_PTR(-ENOMEM);
7325 }
7326
7327 return &ca->css;
7328}
7329
7330/* destroy an existing cpu accounting group */
41a2d6cf
IM
7331static void
7332cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7333{
7334 struct cpuacct *ca = cgroup_ca(cont);
7335
7336 free_percpu(ca->cpuusage);
7337 kfree(ca);
7338}
7339
7340/* return total cpu usage (in nanoseconds) of a group */
7341static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7342{
7343 struct cpuacct *ca = cgroup_ca(cont);
7344 u64 totalcpuusage = 0;
7345 int i;
7346
7347 for_each_possible_cpu(i) {
7348 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7349
7350 /*
7351 * Take rq->lock to make 64-bit addition safe on 32-bit
7352 * platforms.
7353 */
7354 spin_lock_irq(&cpu_rq(i)->lock);
7355 totalcpuusage += *cpuusage;
7356 spin_unlock_irq(&cpu_rq(i)->lock);
7357 }
7358
7359 return totalcpuusage;
7360}
7361
7362static struct cftype files[] = {
7363 {
7364 .name = "usage",
7365 .read_uint = cpuusage_read,
7366 },
7367};
7368
7369static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7370{
7371 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7372}
7373
7374/*
7375 * charge this task's execution time to its accounting group.
7376 *
7377 * called with rq->lock held.
7378 */
7379static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7380{
7381 struct cpuacct *ca;
7382
7383 if (!cpuacct_subsys.active)
7384 return;
7385
7386 ca = task_ca(tsk);
7387 if (ca) {
7388 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7389
7390 *cpuusage += cputime;
7391 }
7392}
7393
7394struct cgroup_subsys cpuacct_subsys = {
7395 .name = "cpuacct",
7396 .create = cpuacct_create,
7397 .destroy = cpuacct_destroy,
7398 .populate = cpuacct_populate,
7399 .subsys_id = cpuacct_subsys_id,
7400};
7401#endif /* CONFIG_CGROUP_CPUACCT */