]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: improve affine wakeups
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
1da177e4 69
5517d86b 70#include <asm/tlb.h>
838225b4 71#include <asm/irq_regs.h>
1da177e4 72
b035b6de
AD
73/*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78unsigned long long __attribute__((weak)) sched_clock(void)
79{
d6322faf 80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
81}
82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
5517d86b
ED
117#ifdef CONFIG_SMP
118/*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123{
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125}
126
127/*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132{
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135}
136#endif
137
e05606d3
IM
138static inline int rt_policy(int policy)
139{
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143}
144
145static inline int task_has_rt_policy(struct task_struct *p)
146{
147 return rt_policy(p->policy);
148}
149
1da177e4 150/*
6aa645ea 151 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 152 */
6aa645ea
IM
153struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156};
157
052f1dc7 158#ifdef CONFIG_GROUP_SCHED
29f59db3 159
68318b8e
SV
160#include <linux/cgroup.h>
161
29f59db3
SV
162struct cfs_rq;
163
6f505b16
PZ
164static LIST_HEAD(task_groups);
165
29f59db3 166/* task group related information */
4cf86d77 167struct task_group {
052f1dc7 168#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
169 struct cgroup_subsys_state css;
170#endif
052f1dc7
PZ
171
172#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
052f1dc7
PZ
178#endif
179
180#ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
183
184 u64 rt_runtime;
185#endif
6b2d7700 186
ae8393e5 187 struct rcu_head rcu;
6f505b16 188 struct list_head list;
29f59db3
SV
189};
190
052f1dc7 191#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
192/* Default task group's sched entity on each cpu */
193static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194/* Default task group's cfs_rq on each cpu */
195static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
196
9b5b7751
SV
197static struct sched_entity *init_sched_entity_p[NR_CPUS];
198static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
052f1dc7
PZ
199#endif
200
201#ifdef CONFIG_RT_GROUP_SCHED
202static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
29f59db3 204
6f505b16
PZ
205static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206static struct rt_rq *init_rt_rq_p[NR_CPUS];
052f1dc7 207#endif
6f505b16 208
8ed36996 209/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
210 * a task group's cpu shares.
211 */
8ed36996 212static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 213
a1835615
SV
214/* doms_cur_mutex serializes access to doms_cur[] array */
215static DEFINE_MUTEX(doms_cur_mutex);
216
052f1dc7 217#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
218#ifdef CONFIG_USER_SCHED
219# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
220#else
221# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
222#endif
223
052f1dc7
PZ
224static int init_task_group_load = INIT_TASK_GROUP_LOAD;
225#endif
226
29f59db3 227/* Default task group.
3a252015 228 * Every task in system belong to this group at bootup.
29f59db3 229 */
4cf86d77 230struct task_group init_task_group = {
052f1dc7 231#ifdef CONFIG_FAIR_GROUP_SCHED
0eab9146 232 .se = init_sched_entity_p,
3a252015 233 .cfs_rq = init_cfs_rq_p,
052f1dc7 234#endif
6f505b16 235
052f1dc7 236#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
24e377a8 239#endif
052f1dc7 240};
29f59db3
SV
241
242/* return group to which a task belongs */
4cf86d77 243static inline struct task_group *task_group(struct task_struct *p)
29f59db3 244{
4cf86d77 245 struct task_group *tg;
9b5b7751 246
052f1dc7 247#ifdef CONFIG_USER_SCHED
24e377a8 248 tg = p->user->tg;
052f1dc7 249#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
24e377a8 252#else
41a2d6cf 253 tg = &init_task_group;
24e377a8 254#endif
9b5b7751 255 return tg;
29f59db3
SV
256}
257
258/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 259static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 260{
052f1dc7 261#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
052f1dc7 264#endif
6f505b16 265
052f1dc7 266#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 269#endif
29f59db3
SV
270}
271
a1835615
SV
272static inline void lock_doms_cur(void)
273{
274 mutex_lock(&doms_cur_mutex);
275}
276
277static inline void unlock_doms_cur(void)
278{
279 mutex_unlock(&doms_cur_mutex);
280}
281
29f59db3
SV
282#else
283
6f505b16 284static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
285static inline void lock_doms_cur(void) { }
286static inline void unlock_doms_cur(void) { }
29f59db3 287
052f1dc7 288#endif /* CONFIG_GROUP_SCHED */
29f59db3 289
6aa645ea
IM
290/* CFS-related fields in a runqueue */
291struct cfs_rq {
292 struct load_weight load;
293 unsigned long nr_running;
294
6aa645ea 295 u64 exec_clock;
e9acbff6 296 u64 min_vruntime;
6aa645ea
IM
297
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
303 */
aa2ac252 304 struct sched_entity *curr, *next;
ddc97297
PZ
305
306 unsigned long nr_spread_over;
307
62160e3f 308#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
310
41a2d6cf
IM
311 /*
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
315 *
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
318 */
41a2d6cf
IM
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
321#endif
322};
1da177e4 323
6aa645ea
IM
324/* Real-Time classes' related field in a runqueue: */
325struct rt_rq {
326 struct rt_prio_array active;
63489e45 327 unsigned long rt_nr_running;
052f1dc7 328#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
329 int highest_prio; /* highest queued rt task prio */
330#endif
fa85ae24 331#ifdef CONFIG_SMP
73fe6aae 332 unsigned long rt_nr_migratory;
a22d7fc1 333 int overloaded;
fa85ae24 334#endif
6f505b16 335 int rt_throttled;
fa85ae24 336 u64 rt_time;
6f505b16 337
052f1dc7 338#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
339 unsigned long rt_nr_boosted;
340
6f505b16
PZ
341 struct rq *rq;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
345#endif
6aa645ea
IM
346};
347
57d885fe
GH
348#ifdef CONFIG_SMP
349
350/*
351 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
354 * exclusive cpuset is created, we also create and attach a new root-domain
355 * object.
356 *
57d885fe
GH
357 */
358struct root_domain {
359 atomic_t refcount;
360 cpumask_t span;
361 cpumask_t online;
637f5085 362
0eab9146 363 /*
637f5085
GH
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
366 */
367 cpumask_t rto_mask;
0eab9146 368 atomic_t rto_count;
57d885fe
GH
369};
370
dc938520
GH
371/*
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
374 */
57d885fe
GH
375static struct root_domain def_root_domain;
376
377#endif
378
1da177e4
LT
379/*
380 * This is the main, per-CPU runqueue data structure.
381 *
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
385 */
70b97a7f 386struct rq {
d8016491
IM
387 /* runqueue lock: */
388 spinlock_t lock;
1da177e4
LT
389
390 /*
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
393 */
394 unsigned long nr_running;
6aa645ea
IM
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 397 unsigned char idle_at_tick;
46cb4b7c
SS
398#ifdef CONFIG_NO_HZ
399 unsigned char in_nohz_recently;
400#endif
d8016491
IM
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
6aa645ea
IM
403 unsigned long nr_load_updates;
404 u64 nr_switches;
405
406 struct cfs_rq cfs;
6f505b16
PZ
407 struct rt_rq rt;
408 u64 rt_period_expire;
48d5e258 409 int rt_throttled;
6f505b16 410
6aa645ea 411#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
414#endif
415#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 416 struct list_head leaf_rt_rq_list;
1da177e4 417#endif
1da177e4
LT
418
419 /*
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
424 */
425 unsigned long nr_uninterruptible;
426
36c8b586 427 struct task_struct *curr, *idle;
c9819f45 428 unsigned long next_balance;
1da177e4 429 struct mm_struct *prev_mm;
6aa645ea 430
6aa645ea
IM
431 u64 clock, prev_clock_raw;
432 s64 clock_max_delta;
433
cc203d24 434 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
435 u64 idle_clock;
436 unsigned int clock_deep_idle_events;
529c7726 437 u64 tick_timestamp;
6aa645ea 438
1da177e4
LT
439 atomic_t nr_iowait;
440
441#ifdef CONFIG_SMP
0eab9146 442 struct root_domain *rd;
1da177e4
LT
443 struct sched_domain *sd;
444
445 /* For active balancing */
446 int active_balance;
447 int push_cpu;
d8016491
IM
448 /* cpu of this runqueue: */
449 int cpu;
1da177e4 450
36c8b586 451 struct task_struct *migration_thread;
1da177e4
LT
452 struct list_head migration_queue;
453#endif
454
8f4d37ec
PZ
455#ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
459#endif
460
1da177e4
LT
461#ifdef CONFIG_SCHEDSTATS
462 /* latency stats */
463 struct sched_info rq_sched_info;
464
465 /* sys_sched_yield() stats */
480b9434
KC
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
1da177e4
LT
470
471 /* schedule() stats */
480b9434
KC
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
1da177e4
LT
475
476 /* try_to_wake_up() stats */
480b9434
KC
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
b8efb561
IM
479
480 /* BKL stats */
480b9434 481 unsigned int bkl_count;
1da177e4 482#endif
fcb99371 483 struct lock_class_key rq_lock_key;
1da177e4
LT
484};
485
f34e3b61 486static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 487
dd41f596
IM
488static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
489{
490 rq->curr->sched_class->check_preempt_curr(rq, p);
491}
492
0a2966b4
CL
493static inline int cpu_of(struct rq *rq)
494{
495#ifdef CONFIG_SMP
496 return rq->cpu;
497#else
498 return 0;
499#endif
500}
501
20d315d4 502/*
b04a0f4c
IM
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
20d315d4 505 */
b04a0f4c 506static void __update_rq_clock(struct rq *rq)
20d315d4
IM
507{
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
512
b04a0f4c
IM
513#ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
515#endif
20d315d4
IM
516 /*
517 * Protect against sched_clock() occasionally going backwards:
518 */
519 if (unlikely(delta < 0)) {
520 clock++;
521 rq->clock_warps++;
522 } else {
523 /*
524 * Catch too large forward jumps too:
525 */
529c7726
IM
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
529 else
530 clock++;
20d315d4
IM
531 rq->clock_overflows++;
532 } else {
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
535 clock += delta;
536 }
537 }
538
539 rq->prev_clock_raw = now;
540 rq->clock = clock;
b04a0f4c 541}
20d315d4 542
b04a0f4c
IM
543static void update_rq_clock(struct rq *rq)
544{
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
20d315d4
IM
547}
548
674311d5
NP
549/*
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 551 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
552 *
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
555 */
48f24c4d
IM
556#define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
558
559#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560#define this_rq() (&__get_cpu_var(runqueues))
561#define task_rq(p) cpu_rq(task_cpu(p))
562#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
563
48d5e258
PZ
564unsigned long rt_needs_cpu(int cpu)
565{
566 struct rq *rq = cpu_rq(cpu);
567 u64 delta;
568
569 if (!rq->rt_throttled)
570 return 0;
571
572 if (rq->clock > rq->rt_period_expire)
573 return 1;
574
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
577
578 return (unsigned long)delta;
579}
580
bf5c91ba
IM
581/*
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
583 */
584#ifdef CONFIG_SCHED_DEBUG
585# define const_debug __read_mostly
586#else
587# define const_debug static const
588#endif
589
590/*
591 * Debugging: various feature bits
592 */
593enum {
bbdba7c0 594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
597 SCHED_FEAT_TREE_AVG = 8,
598 SCHED_FEAT_APPROX_AVG = 16,
8f4d37ec
PZ
599 SCHED_FEAT_HRTICK = 32,
600 SCHED_FEAT_DOUBLE_TICK = 64,
bf5c91ba
IM
601};
602
603const_debug unsigned int sysctl_sched_features =
8401f775 604 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 605 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
606 SCHED_FEAT_START_DEBIT * 1 |
607 SCHED_FEAT_TREE_AVG * 0 |
8f4d37ec
PZ
608 SCHED_FEAT_APPROX_AVG * 0 |
609 SCHED_FEAT_HRTICK * 1 |
610 SCHED_FEAT_DOUBLE_TICK * 0;
bf5c91ba
IM
611
612#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
613
b82d9fdd
PZ
614/*
615 * Number of tasks to iterate in a single balance run.
616 * Limited because this is done with IRQs disabled.
617 */
618const_debug unsigned int sysctl_sched_nr_migrate = 32;
619
fa85ae24 620/*
9f0c1e56 621 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
622 * default: 1s
623 */
9f0c1e56 624unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 625
6892b75e
IM
626static __read_mostly int scheduler_running;
627
9f0c1e56
PZ
628/*
629 * part of the period that we allow rt tasks to run in us.
630 * default: 0.95s
631 */
632int sysctl_sched_rt_runtime = 950000;
fa85ae24
PZ
633
634/*
9f0c1e56 635 * single value that denotes runtime == period, ie unlimited time.
fa85ae24 636 */
9f0c1e56 637#define RUNTIME_INF ((u64)~0ULL)
fa85ae24 638
e436d800
IM
639/*
640 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
641 * clock constructed from sched_clock():
642 */
643unsigned long long cpu_clock(int cpu)
644{
e436d800
IM
645 unsigned long long now;
646 unsigned long flags;
b04a0f4c 647 struct rq *rq;
e436d800 648
8ced5f69
IM
649 /*
650 * Only call sched_clock() if the scheduler has already been
651 * initialized (some code might call cpu_clock() very early):
652 */
6892b75e
IM
653 if (unlikely(!scheduler_running))
654 return 0;
655
656 local_irq_save(flags);
657 rq = cpu_rq(cpu);
658 update_rq_clock(rq);
b04a0f4c 659 now = rq->clock;
2cd4d0ea 660 local_irq_restore(flags);
e436d800
IM
661
662 return now;
663}
a58f6f25 664EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 665
1da177e4 666#ifndef prepare_arch_switch
4866cde0
NP
667# define prepare_arch_switch(next) do { } while (0)
668#endif
669#ifndef finish_arch_switch
670# define finish_arch_switch(prev) do { } while (0)
671#endif
672
051a1d1a
DA
673static inline int task_current(struct rq *rq, struct task_struct *p)
674{
675 return rq->curr == p;
676}
677
4866cde0 678#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 679static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 680{
051a1d1a 681 return task_current(rq, p);
4866cde0
NP
682}
683
70b97a7f 684static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
685{
686}
687
70b97a7f 688static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 689{
da04c035
IM
690#ifdef CONFIG_DEBUG_SPINLOCK
691 /* this is a valid case when another task releases the spinlock */
692 rq->lock.owner = current;
693#endif
8a25d5de
IM
694 /*
695 * If we are tracking spinlock dependencies then we have to
696 * fix up the runqueue lock - which gets 'carried over' from
697 * prev into current:
698 */
699 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
700
4866cde0
NP
701 spin_unlock_irq(&rq->lock);
702}
703
704#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 705static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
706{
707#ifdef CONFIG_SMP
708 return p->oncpu;
709#else
051a1d1a 710 return task_current(rq, p);
4866cde0
NP
711#endif
712}
713
70b97a7f 714static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
715{
716#ifdef CONFIG_SMP
717 /*
718 * We can optimise this out completely for !SMP, because the
719 * SMP rebalancing from interrupt is the only thing that cares
720 * here.
721 */
722 next->oncpu = 1;
723#endif
724#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
725 spin_unlock_irq(&rq->lock);
726#else
727 spin_unlock(&rq->lock);
728#endif
729}
730
70b97a7f 731static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
732{
733#ifdef CONFIG_SMP
734 /*
735 * After ->oncpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
737 * finished.
738 */
739 smp_wmb();
740 prev->oncpu = 0;
741#endif
742#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
743 local_irq_enable();
1da177e4 744#endif
4866cde0
NP
745}
746#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 747
b29739f9
IM
748/*
749 * __task_rq_lock - lock the runqueue a given task resides on.
750 * Must be called interrupts disabled.
751 */
70b97a7f 752static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
753 __acquires(rq->lock)
754{
3a5c359a
AK
755 for (;;) {
756 struct rq *rq = task_rq(p);
757 spin_lock(&rq->lock);
758 if (likely(rq == task_rq(p)))
759 return rq;
b29739f9 760 spin_unlock(&rq->lock);
b29739f9 761 }
b29739f9
IM
762}
763
1da177e4
LT
764/*
765 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 766 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
767 * explicitly disabling preemption.
768 */
70b97a7f 769static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
770 __acquires(rq->lock)
771{
70b97a7f 772 struct rq *rq;
1da177e4 773
3a5c359a
AK
774 for (;;) {
775 local_irq_save(*flags);
776 rq = task_rq(p);
777 spin_lock(&rq->lock);
778 if (likely(rq == task_rq(p)))
779 return rq;
1da177e4 780 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 781 }
1da177e4
LT
782}
783
a9957449 784static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
785 __releases(rq->lock)
786{
787 spin_unlock(&rq->lock);
788}
789
70b97a7f 790static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
791 __releases(rq->lock)
792{
793 spin_unlock_irqrestore(&rq->lock, *flags);
794}
795
1da177e4 796/*
cc2a73b5 797 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 798 */
a9957449 799static struct rq *this_rq_lock(void)
1da177e4
LT
800 __acquires(rq->lock)
801{
70b97a7f 802 struct rq *rq;
1da177e4
LT
803
804 local_irq_disable();
805 rq = this_rq();
806 spin_lock(&rq->lock);
807
808 return rq;
809}
810
1b9f19c2 811/*
2aa44d05 812 * We are going deep-idle (irqs are disabled):
1b9f19c2 813 */
2aa44d05 814void sched_clock_idle_sleep_event(void)
1b9f19c2 815{
2aa44d05
IM
816 struct rq *rq = cpu_rq(smp_processor_id());
817
818 spin_lock(&rq->lock);
819 __update_rq_clock(rq);
820 spin_unlock(&rq->lock);
821 rq->clock_deep_idle_events++;
822}
823EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
824
825/*
826 * We just idled delta nanoseconds (called with irqs disabled):
827 */
828void sched_clock_idle_wakeup_event(u64 delta_ns)
829{
830 struct rq *rq = cpu_rq(smp_processor_id());
831 u64 now = sched_clock();
1b9f19c2 832
2aa44d05
IM
833 rq->idle_clock += delta_ns;
834 /*
835 * Override the previous timestamp and ignore all
836 * sched_clock() deltas that occured while we idled,
837 * and use the PM-provided delta_ns to advance the
838 * rq clock:
839 */
840 spin_lock(&rq->lock);
841 rq->prev_clock_raw = now;
842 rq->clock += delta_ns;
843 spin_unlock(&rq->lock);
782daeee 844 touch_softlockup_watchdog();
1b9f19c2 845}
2aa44d05 846EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 847
8f4d37ec
PZ
848static void __resched_task(struct task_struct *p, int tif_bit);
849
850static inline void resched_task(struct task_struct *p)
851{
852 __resched_task(p, TIF_NEED_RESCHED);
853}
854
855#ifdef CONFIG_SCHED_HRTICK
856/*
857 * Use HR-timers to deliver accurate preemption points.
858 *
859 * Its all a bit involved since we cannot program an hrt while holding the
860 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
861 * reschedule event.
862 *
863 * When we get rescheduled we reprogram the hrtick_timer outside of the
864 * rq->lock.
865 */
866static inline void resched_hrt(struct task_struct *p)
867{
868 __resched_task(p, TIF_HRTICK_RESCHED);
869}
870
871static inline void resched_rq(struct rq *rq)
872{
873 unsigned long flags;
874
875 spin_lock_irqsave(&rq->lock, flags);
876 resched_task(rq->curr);
877 spin_unlock_irqrestore(&rq->lock, flags);
878}
879
880enum {
881 HRTICK_SET, /* re-programm hrtick_timer */
882 HRTICK_RESET, /* not a new slice */
883};
884
885/*
886 * Use hrtick when:
887 * - enabled by features
888 * - hrtimer is actually high res
889 */
890static inline int hrtick_enabled(struct rq *rq)
891{
892 if (!sched_feat(HRTICK))
893 return 0;
894 return hrtimer_is_hres_active(&rq->hrtick_timer);
895}
896
897/*
898 * Called to set the hrtick timer state.
899 *
900 * called with rq->lock held and irqs disabled
901 */
902static void hrtick_start(struct rq *rq, u64 delay, int reset)
903{
904 assert_spin_locked(&rq->lock);
905
906 /*
907 * preempt at: now + delay
908 */
909 rq->hrtick_expire =
910 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
911 /*
912 * indicate we need to program the timer
913 */
914 __set_bit(HRTICK_SET, &rq->hrtick_flags);
915 if (reset)
916 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
917
918 /*
919 * New slices are called from the schedule path and don't need a
920 * forced reschedule.
921 */
922 if (reset)
923 resched_hrt(rq->curr);
924}
925
926static void hrtick_clear(struct rq *rq)
927{
928 if (hrtimer_active(&rq->hrtick_timer))
929 hrtimer_cancel(&rq->hrtick_timer);
930}
931
932/*
933 * Update the timer from the possible pending state.
934 */
935static void hrtick_set(struct rq *rq)
936{
937 ktime_t time;
938 int set, reset;
939 unsigned long flags;
940
941 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
942
943 spin_lock_irqsave(&rq->lock, flags);
944 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
945 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
946 time = rq->hrtick_expire;
947 clear_thread_flag(TIF_HRTICK_RESCHED);
948 spin_unlock_irqrestore(&rq->lock, flags);
949
950 if (set) {
951 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
952 if (reset && !hrtimer_active(&rq->hrtick_timer))
953 resched_rq(rq);
954 } else
955 hrtick_clear(rq);
956}
957
958/*
959 * High-resolution timer tick.
960 * Runs from hardirq context with interrupts disabled.
961 */
962static enum hrtimer_restart hrtick(struct hrtimer *timer)
963{
964 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
965
966 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
967
968 spin_lock(&rq->lock);
969 __update_rq_clock(rq);
970 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
971 spin_unlock(&rq->lock);
972
973 return HRTIMER_NORESTART;
974}
975
976static inline void init_rq_hrtick(struct rq *rq)
977{
978 rq->hrtick_flags = 0;
979 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
980 rq->hrtick_timer.function = hrtick;
981 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
982}
983
984void hrtick_resched(void)
985{
986 struct rq *rq;
987 unsigned long flags;
988
989 if (!test_thread_flag(TIF_HRTICK_RESCHED))
990 return;
991
992 local_irq_save(flags);
993 rq = cpu_rq(smp_processor_id());
994 hrtick_set(rq);
995 local_irq_restore(flags);
996}
997#else
998static inline void hrtick_clear(struct rq *rq)
999{
1000}
1001
1002static inline void hrtick_set(struct rq *rq)
1003{
1004}
1005
1006static inline void init_rq_hrtick(struct rq *rq)
1007{
1008}
1009
1010void hrtick_resched(void)
1011{
1012}
1013#endif
1014
c24d20db
IM
1015/*
1016 * resched_task - mark a task 'to be rescheduled now'.
1017 *
1018 * On UP this means the setting of the need_resched flag, on SMP it
1019 * might also involve a cross-CPU call to trigger the scheduler on
1020 * the target CPU.
1021 */
1022#ifdef CONFIG_SMP
1023
1024#ifndef tsk_is_polling
1025#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1026#endif
1027
8f4d37ec 1028static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1029{
1030 int cpu;
1031
1032 assert_spin_locked(&task_rq(p)->lock);
1033
8f4d37ec 1034 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1035 return;
1036
8f4d37ec 1037 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1038
1039 cpu = task_cpu(p);
1040 if (cpu == smp_processor_id())
1041 return;
1042
1043 /* NEED_RESCHED must be visible before we test polling */
1044 smp_mb();
1045 if (!tsk_is_polling(p))
1046 smp_send_reschedule(cpu);
1047}
1048
1049static void resched_cpu(int cpu)
1050{
1051 struct rq *rq = cpu_rq(cpu);
1052 unsigned long flags;
1053
1054 if (!spin_trylock_irqsave(&rq->lock, flags))
1055 return;
1056 resched_task(cpu_curr(cpu));
1057 spin_unlock_irqrestore(&rq->lock, flags);
1058}
1059#else
8f4d37ec 1060static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1061{
1062 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1063 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1064}
1065#endif
1066
45bf76df
IM
1067#if BITS_PER_LONG == 32
1068# define WMULT_CONST (~0UL)
1069#else
1070# define WMULT_CONST (1UL << 32)
1071#endif
1072
1073#define WMULT_SHIFT 32
1074
194081eb
IM
1075/*
1076 * Shift right and round:
1077 */
cf2ab469 1078#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1079
cb1c4fc9 1080static unsigned long
45bf76df
IM
1081calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1082 struct load_weight *lw)
1083{
1084 u64 tmp;
1085
1086 if (unlikely(!lw->inv_weight))
27d11726 1087 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1088
1089 tmp = (u64)delta_exec * weight;
1090 /*
1091 * Check whether we'd overflow the 64-bit multiplication:
1092 */
194081eb 1093 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1094 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1095 WMULT_SHIFT/2);
1096 else
cf2ab469 1097 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1098
ecf691da 1099 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1100}
1101
1102static inline unsigned long
1103calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1104{
1105 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1106}
1107
1091985b 1108static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1109{
1110 lw->weight += inc;
e89996ae 1111 lw->inv_weight = 0;
45bf76df
IM
1112}
1113
1091985b 1114static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1115{
1116 lw->weight -= dec;
e89996ae 1117 lw->inv_weight = 0;
45bf76df
IM
1118}
1119
2dd73a4f
PW
1120/*
1121 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1122 * of tasks with abnormal "nice" values across CPUs the contribution that
1123 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1124 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1125 * scaled version of the new time slice allocation that they receive on time
1126 * slice expiry etc.
1127 */
1128
dd41f596
IM
1129#define WEIGHT_IDLEPRIO 2
1130#define WMULT_IDLEPRIO (1 << 31)
1131
1132/*
1133 * Nice levels are multiplicative, with a gentle 10% change for every
1134 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1135 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1136 * that remained on nice 0.
1137 *
1138 * The "10% effect" is relative and cumulative: from _any_ nice level,
1139 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1140 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1141 * If a task goes up by ~10% and another task goes down by ~10% then
1142 * the relative distance between them is ~25%.)
dd41f596
IM
1143 */
1144static const int prio_to_weight[40] = {
254753dc
IM
1145 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1146 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1147 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1148 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1149 /* 0 */ 1024, 820, 655, 526, 423,
1150 /* 5 */ 335, 272, 215, 172, 137,
1151 /* 10 */ 110, 87, 70, 56, 45,
1152 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1153};
1154
5714d2de
IM
1155/*
1156 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1157 *
1158 * In cases where the weight does not change often, we can use the
1159 * precalculated inverse to speed up arithmetics by turning divisions
1160 * into multiplications:
1161 */
dd41f596 1162static const u32 prio_to_wmult[40] = {
254753dc
IM
1163 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1164 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1165 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1166 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1167 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1168 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1169 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1170 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1171};
2dd73a4f 1172
dd41f596
IM
1173static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1174
1175/*
1176 * runqueue iterator, to support SMP load-balancing between different
1177 * scheduling classes, without having to expose their internal data
1178 * structures to the load-balancing proper:
1179 */
1180struct rq_iterator {
1181 void *arg;
1182 struct task_struct *(*start)(void *);
1183 struct task_struct *(*next)(void *);
1184};
1185
e1d1484f
PW
1186#ifdef CONFIG_SMP
1187static unsigned long
1188balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1189 unsigned long max_load_move, struct sched_domain *sd,
1190 enum cpu_idle_type idle, int *all_pinned,
1191 int *this_best_prio, struct rq_iterator *iterator);
1192
1193static int
1194iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1195 struct sched_domain *sd, enum cpu_idle_type idle,
1196 struct rq_iterator *iterator);
e1d1484f 1197#endif
dd41f596 1198
d842de87
SV
1199#ifdef CONFIG_CGROUP_CPUACCT
1200static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1201#else
1202static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1203#endif
1204
e7693a36
GH
1205#ifdef CONFIG_SMP
1206static unsigned long source_load(int cpu, int type);
1207static unsigned long target_load(int cpu, int type);
1208static unsigned long cpu_avg_load_per_task(int cpu);
1209static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1210#endif /* CONFIG_SMP */
1211
dd41f596 1212#include "sched_stats.h"
dd41f596 1213#include "sched_idletask.c"
5522d5d5
IM
1214#include "sched_fair.c"
1215#include "sched_rt.c"
dd41f596
IM
1216#ifdef CONFIG_SCHED_DEBUG
1217# include "sched_debug.c"
1218#endif
1219
1220#define sched_class_highest (&rt_sched_class)
1221
62fb1851
PZ
1222static inline void inc_load(struct rq *rq, const struct task_struct *p)
1223{
1224 update_load_add(&rq->load, p->se.load.weight);
1225}
1226
1227static inline void dec_load(struct rq *rq, const struct task_struct *p)
1228{
1229 update_load_sub(&rq->load, p->se.load.weight);
1230}
1231
1232static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1233{
1234 rq->nr_running++;
62fb1851 1235 inc_load(rq, p);
9c217245
IM
1236}
1237
62fb1851 1238static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1239{
1240 rq->nr_running--;
62fb1851 1241 dec_load(rq, p);
9c217245
IM
1242}
1243
45bf76df
IM
1244static void set_load_weight(struct task_struct *p)
1245{
1246 if (task_has_rt_policy(p)) {
dd41f596
IM
1247 p->se.load.weight = prio_to_weight[0] * 2;
1248 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1249 return;
1250 }
45bf76df 1251
dd41f596
IM
1252 /*
1253 * SCHED_IDLE tasks get minimal weight:
1254 */
1255 if (p->policy == SCHED_IDLE) {
1256 p->se.load.weight = WEIGHT_IDLEPRIO;
1257 p->se.load.inv_weight = WMULT_IDLEPRIO;
1258 return;
1259 }
71f8bd46 1260
dd41f596
IM
1261 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1262 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1263}
1264
8159f87e 1265static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1266{
dd41f596 1267 sched_info_queued(p);
fd390f6a 1268 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1269 p->se.on_rq = 1;
71f8bd46
IM
1270}
1271
69be72c1 1272static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1273{
f02231e5 1274 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1275 p->se.on_rq = 0;
71f8bd46
IM
1276}
1277
14531189 1278/*
dd41f596 1279 * __normal_prio - return the priority that is based on the static prio
14531189 1280 */
14531189
IM
1281static inline int __normal_prio(struct task_struct *p)
1282{
dd41f596 1283 return p->static_prio;
14531189
IM
1284}
1285
b29739f9
IM
1286/*
1287 * Calculate the expected normal priority: i.e. priority
1288 * without taking RT-inheritance into account. Might be
1289 * boosted by interactivity modifiers. Changes upon fork,
1290 * setprio syscalls, and whenever the interactivity
1291 * estimator recalculates.
1292 */
36c8b586 1293static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1294{
1295 int prio;
1296
e05606d3 1297 if (task_has_rt_policy(p))
b29739f9
IM
1298 prio = MAX_RT_PRIO-1 - p->rt_priority;
1299 else
1300 prio = __normal_prio(p);
1301 return prio;
1302}
1303
1304/*
1305 * Calculate the current priority, i.e. the priority
1306 * taken into account by the scheduler. This value might
1307 * be boosted by RT tasks, or might be boosted by
1308 * interactivity modifiers. Will be RT if the task got
1309 * RT-boosted. If not then it returns p->normal_prio.
1310 */
36c8b586 1311static int effective_prio(struct task_struct *p)
b29739f9
IM
1312{
1313 p->normal_prio = normal_prio(p);
1314 /*
1315 * If we are RT tasks or we were boosted to RT priority,
1316 * keep the priority unchanged. Otherwise, update priority
1317 * to the normal priority:
1318 */
1319 if (!rt_prio(p->prio))
1320 return p->normal_prio;
1321 return p->prio;
1322}
1323
1da177e4 1324/*
dd41f596 1325 * activate_task - move a task to the runqueue.
1da177e4 1326 */
dd41f596 1327static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1328{
d9514f6c 1329 if (task_contributes_to_load(p))
dd41f596 1330 rq->nr_uninterruptible--;
1da177e4 1331
8159f87e 1332 enqueue_task(rq, p, wakeup);
62fb1851 1333 inc_nr_running(p, rq);
1da177e4
LT
1334}
1335
1da177e4
LT
1336/*
1337 * deactivate_task - remove a task from the runqueue.
1338 */
2e1cb74a 1339static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1340{
d9514f6c 1341 if (task_contributes_to_load(p))
dd41f596
IM
1342 rq->nr_uninterruptible++;
1343
69be72c1 1344 dequeue_task(rq, p, sleep);
62fb1851 1345 dec_nr_running(p, rq);
1da177e4
LT
1346}
1347
1da177e4
LT
1348/**
1349 * task_curr - is this task currently executing on a CPU?
1350 * @p: the task in question.
1351 */
36c8b586 1352inline int task_curr(const struct task_struct *p)
1da177e4
LT
1353{
1354 return cpu_curr(task_cpu(p)) == p;
1355}
1356
2dd73a4f
PW
1357/* Used instead of source_load when we know the type == 0 */
1358unsigned long weighted_cpuload(const int cpu)
1359{
495eca49 1360 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1361}
1362
1363static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1364{
6f505b16 1365 set_task_rq(p, cpu);
dd41f596 1366#ifdef CONFIG_SMP
ce96b5ac
DA
1367 /*
1368 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1369 * successfuly executed on another CPU. We must ensure that updates of
1370 * per-task data have been completed by this moment.
1371 */
1372 smp_wmb();
dd41f596 1373 task_thread_info(p)->cpu = cpu;
dd41f596 1374#endif
2dd73a4f
PW
1375}
1376
cb469845
SR
1377static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1378 const struct sched_class *prev_class,
1379 int oldprio, int running)
1380{
1381 if (prev_class != p->sched_class) {
1382 if (prev_class->switched_from)
1383 prev_class->switched_from(rq, p, running);
1384 p->sched_class->switched_to(rq, p, running);
1385 } else
1386 p->sched_class->prio_changed(rq, p, oldprio, running);
1387}
1388
1da177e4 1389#ifdef CONFIG_SMP
c65cc870 1390
cc367732
IM
1391/*
1392 * Is this task likely cache-hot:
1393 */
e7693a36 1394static int
cc367732
IM
1395task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1396{
1397 s64 delta;
1398
1399 if (p->sched_class != &fair_sched_class)
1400 return 0;
1401
6bc1665b
IM
1402 if (sysctl_sched_migration_cost == -1)
1403 return 1;
1404 if (sysctl_sched_migration_cost == 0)
1405 return 0;
1406
cc367732
IM
1407 delta = now - p->se.exec_start;
1408
1409 return delta < (s64)sysctl_sched_migration_cost;
1410}
1411
1412
dd41f596 1413void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1414{
dd41f596
IM
1415 int old_cpu = task_cpu(p);
1416 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1417 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1418 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1419 u64 clock_offset;
dd41f596
IM
1420
1421 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1422
1423#ifdef CONFIG_SCHEDSTATS
1424 if (p->se.wait_start)
1425 p->se.wait_start -= clock_offset;
dd41f596
IM
1426 if (p->se.sleep_start)
1427 p->se.sleep_start -= clock_offset;
1428 if (p->se.block_start)
1429 p->se.block_start -= clock_offset;
cc367732
IM
1430 if (old_cpu != new_cpu) {
1431 schedstat_inc(p, se.nr_migrations);
1432 if (task_hot(p, old_rq->clock, NULL))
1433 schedstat_inc(p, se.nr_forced2_migrations);
1434 }
6cfb0d5d 1435#endif
2830cf8c
SV
1436 p->se.vruntime -= old_cfsrq->min_vruntime -
1437 new_cfsrq->min_vruntime;
dd41f596
IM
1438
1439 __set_task_cpu(p, new_cpu);
c65cc870
IM
1440}
1441
70b97a7f 1442struct migration_req {
1da177e4 1443 struct list_head list;
1da177e4 1444
36c8b586 1445 struct task_struct *task;
1da177e4
LT
1446 int dest_cpu;
1447
1da177e4 1448 struct completion done;
70b97a7f 1449};
1da177e4
LT
1450
1451/*
1452 * The task's runqueue lock must be held.
1453 * Returns true if you have to wait for migration thread.
1454 */
36c8b586 1455static int
70b97a7f 1456migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1457{
70b97a7f 1458 struct rq *rq = task_rq(p);
1da177e4
LT
1459
1460 /*
1461 * If the task is not on a runqueue (and not running), then
1462 * it is sufficient to simply update the task's cpu field.
1463 */
dd41f596 1464 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1465 set_task_cpu(p, dest_cpu);
1466 return 0;
1467 }
1468
1469 init_completion(&req->done);
1da177e4
LT
1470 req->task = p;
1471 req->dest_cpu = dest_cpu;
1472 list_add(&req->list, &rq->migration_queue);
48f24c4d 1473
1da177e4
LT
1474 return 1;
1475}
1476
1477/*
1478 * wait_task_inactive - wait for a thread to unschedule.
1479 *
1480 * The caller must ensure that the task *will* unschedule sometime soon,
1481 * else this function might spin for a *long* time. This function can't
1482 * be called with interrupts off, or it may introduce deadlock with
1483 * smp_call_function() if an IPI is sent by the same process we are
1484 * waiting to become inactive.
1485 */
36c8b586 1486void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1487{
1488 unsigned long flags;
dd41f596 1489 int running, on_rq;
70b97a7f 1490 struct rq *rq;
1da177e4 1491
3a5c359a
AK
1492 for (;;) {
1493 /*
1494 * We do the initial early heuristics without holding
1495 * any task-queue locks at all. We'll only try to get
1496 * the runqueue lock when things look like they will
1497 * work out!
1498 */
1499 rq = task_rq(p);
fa490cfd 1500
3a5c359a
AK
1501 /*
1502 * If the task is actively running on another CPU
1503 * still, just relax and busy-wait without holding
1504 * any locks.
1505 *
1506 * NOTE! Since we don't hold any locks, it's not
1507 * even sure that "rq" stays as the right runqueue!
1508 * But we don't care, since "task_running()" will
1509 * return false if the runqueue has changed and p
1510 * is actually now running somewhere else!
1511 */
1512 while (task_running(rq, p))
1513 cpu_relax();
fa490cfd 1514
3a5c359a
AK
1515 /*
1516 * Ok, time to look more closely! We need the rq
1517 * lock now, to be *sure*. If we're wrong, we'll
1518 * just go back and repeat.
1519 */
1520 rq = task_rq_lock(p, &flags);
1521 running = task_running(rq, p);
1522 on_rq = p->se.on_rq;
1523 task_rq_unlock(rq, &flags);
fa490cfd 1524
3a5c359a
AK
1525 /*
1526 * Was it really running after all now that we
1527 * checked with the proper locks actually held?
1528 *
1529 * Oops. Go back and try again..
1530 */
1531 if (unlikely(running)) {
1532 cpu_relax();
1533 continue;
1534 }
fa490cfd 1535
3a5c359a
AK
1536 /*
1537 * It's not enough that it's not actively running,
1538 * it must be off the runqueue _entirely_, and not
1539 * preempted!
1540 *
1541 * So if it wa still runnable (but just not actively
1542 * running right now), it's preempted, and we should
1543 * yield - it could be a while.
1544 */
1545 if (unlikely(on_rq)) {
1546 schedule_timeout_uninterruptible(1);
1547 continue;
1548 }
fa490cfd 1549
3a5c359a
AK
1550 /*
1551 * Ahh, all good. It wasn't running, and it wasn't
1552 * runnable, which means that it will never become
1553 * running in the future either. We're all done!
1554 */
1555 break;
1556 }
1da177e4
LT
1557}
1558
1559/***
1560 * kick_process - kick a running thread to enter/exit the kernel
1561 * @p: the to-be-kicked thread
1562 *
1563 * Cause a process which is running on another CPU to enter
1564 * kernel-mode, without any delay. (to get signals handled.)
1565 *
1566 * NOTE: this function doesnt have to take the runqueue lock,
1567 * because all it wants to ensure is that the remote task enters
1568 * the kernel. If the IPI races and the task has been migrated
1569 * to another CPU then no harm is done and the purpose has been
1570 * achieved as well.
1571 */
36c8b586 1572void kick_process(struct task_struct *p)
1da177e4
LT
1573{
1574 int cpu;
1575
1576 preempt_disable();
1577 cpu = task_cpu(p);
1578 if ((cpu != smp_processor_id()) && task_curr(p))
1579 smp_send_reschedule(cpu);
1580 preempt_enable();
1581}
1582
1583/*
2dd73a4f
PW
1584 * Return a low guess at the load of a migration-source cpu weighted
1585 * according to the scheduling class and "nice" value.
1da177e4
LT
1586 *
1587 * We want to under-estimate the load of migration sources, to
1588 * balance conservatively.
1589 */
a9957449 1590static unsigned long source_load(int cpu, int type)
1da177e4 1591{
70b97a7f 1592 struct rq *rq = cpu_rq(cpu);
dd41f596 1593 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1594
3b0bd9bc 1595 if (type == 0)
dd41f596 1596 return total;
b910472d 1597
dd41f596 1598 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1599}
1600
1601/*
2dd73a4f
PW
1602 * Return a high guess at the load of a migration-target cpu weighted
1603 * according to the scheduling class and "nice" value.
1da177e4 1604 */
a9957449 1605static unsigned long target_load(int cpu, int type)
1da177e4 1606{
70b97a7f 1607 struct rq *rq = cpu_rq(cpu);
dd41f596 1608 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1609
7897986b 1610 if (type == 0)
dd41f596 1611 return total;
3b0bd9bc 1612
dd41f596 1613 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1614}
1615
1616/*
1617 * Return the average load per task on the cpu's run queue
1618 */
e7693a36 1619static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1620{
70b97a7f 1621 struct rq *rq = cpu_rq(cpu);
dd41f596 1622 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1623 unsigned long n = rq->nr_running;
1624
dd41f596 1625 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1626}
1627
147cbb4b
NP
1628/*
1629 * find_idlest_group finds and returns the least busy CPU group within the
1630 * domain.
1631 */
1632static struct sched_group *
1633find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1634{
1635 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1636 unsigned long min_load = ULONG_MAX, this_load = 0;
1637 int load_idx = sd->forkexec_idx;
1638 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1639
1640 do {
1641 unsigned long load, avg_load;
1642 int local_group;
1643 int i;
1644
da5a5522
BD
1645 /* Skip over this group if it has no CPUs allowed */
1646 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1647 continue;
da5a5522 1648
147cbb4b 1649 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1650
1651 /* Tally up the load of all CPUs in the group */
1652 avg_load = 0;
1653
1654 for_each_cpu_mask(i, group->cpumask) {
1655 /* Bias balancing toward cpus of our domain */
1656 if (local_group)
1657 load = source_load(i, load_idx);
1658 else
1659 load = target_load(i, load_idx);
1660
1661 avg_load += load;
1662 }
1663
1664 /* Adjust by relative CPU power of the group */
5517d86b
ED
1665 avg_load = sg_div_cpu_power(group,
1666 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1667
1668 if (local_group) {
1669 this_load = avg_load;
1670 this = group;
1671 } else if (avg_load < min_load) {
1672 min_load = avg_load;
1673 idlest = group;
1674 }
3a5c359a 1675 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1676
1677 if (!idlest || 100*this_load < imbalance*min_load)
1678 return NULL;
1679 return idlest;
1680}
1681
1682/*
0feaece9 1683 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1684 */
95cdf3b7
IM
1685static int
1686find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1687{
da5a5522 1688 cpumask_t tmp;
147cbb4b
NP
1689 unsigned long load, min_load = ULONG_MAX;
1690 int idlest = -1;
1691 int i;
1692
da5a5522
BD
1693 /* Traverse only the allowed CPUs */
1694 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1695
1696 for_each_cpu_mask(i, tmp) {
2dd73a4f 1697 load = weighted_cpuload(i);
147cbb4b
NP
1698
1699 if (load < min_load || (load == min_load && i == this_cpu)) {
1700 min_load = load;
1701 idlest = i;
1702 }
1703 }
1704
1705 return idlest;
1706}
1707
476d139c
NP
1708/*
1709 * sched_balance_self: balance the current task (running on cpu) in domains
1710 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1711 * SD_BALANCE_EXEC.
1712 *
1713 * Balance, ie. select the least loaded group.
1714 *
1715 * Returns the target CPU number, or the same CPU if no balancing is needed.
1716 *
1717 * preempt must be disabled.
1718 */
1719static int sched_balance_self(int cpu, int flag)
1720{
1721 struct task_struct *t = current;
1722 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1723
c96d145e 1724 for_each_domain(cpu, tmp) {
9761eea8
IM
1725 /*
1726 * If power savings logic is enabled for a domain, stop there.
1727 */
5c45bf27
SS
1728 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1729 break;
476d139c
NP
1730 if (tmp->flags & flag)
1731 sd = tmp;
c96d145e 1732 }
476d139c
NP
1733
1734 while (sd) {
1735 cpumask_t span;
1736 struct sched_group *group;
1a848870
SS
1737 int new_cpu, weight;
1738
1739 if (!(sd->flags & flag)) {
1740 sd = sd->child;
1741 continue;
1742 }
476d139c
NP
1743
1744 span = sd->span;
1745 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1746 if (!group) {
1747 sd = sd->child;
1748 continue;
1749 }
476d139c 1750
da5a5522 1751 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1752 if (new_cpu == -1 || new_cpu == cpu) {
1753 /* Now try balancing at a lower domain level of cpu */
1754 sd = sd->child;
1755 continue;
1756 }
476d139c 1757
1a848870 1758 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1759 cpu = new_cpu;
476d139c
NP
1760 sd = NULL;
1761 weight = cpus_weight(span);
1762 for_each_domain(cpu, tmp) {
1763 if (weight <= cpus_weight(tmp->span))
1764 break;
1765 if (tmp->flags & flag)
1766 sd = tmp;
1767 }
1768 /* while loop will break here if sd == NULL */
1769 }
1770
1771 return cpu;
1772}
1773
1774#endif /* CONFIG_SMP */
1da177e4 1775
1da177e4
LT
1776/***
1777 * try_to_wake_up - wake up a thread
1778 * @p: the to-be-woken-up thread
1779 * @state: the mask of task states that can be woken
1780 * @sync: do a synchronous wakeup?
1781 *
1782 * Put it on the run-queue if it's not already there. The "current"
1783 * thread is always on the run-queue (except when the actual
1784 * re-schedule is in progress), and as such you're allowed to do
1785 * the simpler "current->state = TASK_RUNNING" to mark yourself
1786 * runnable without the overhead of this.
1787 *
1788 * returns failure only if the task is already active.
1789 */
36c8b586 1790static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1791{
cc367732 1792 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1793 unsigned long flags;
1794 long old_state;
70b97a7f 1795 struct rq *rq;
1da177e4 1796
04e2f174 1797 smp_wmb();
1da177e4
LT
1798 rq = task_rq_lock(p, &flags);
1799 old_state = p->state;
1800 if (!(old_state & state))
1801 goto out;
1802
dd41f596 1803 if (p->se.on_rq)
1da177e4
LT
1804 goto out_running;
1805
1806 cpu = task_cpu(p);
cc367732 1807 orig_cpu = cpu;
1da177e4
LT
1808 this_cpu = smp_processor_id();
1809
1810#ifdef CONFIG_SMP
1811 if (unlikely(task_running(rq, p)))
1812 goto out_activate;
1813
5d2f5a61
DA
1814 cpu = p->sched_class->select_task_rq(p, sync);
1815 if (cpu != orig_cpu) {
1816 set_task_cpu(p, cpu);
1da177e4
LT
1817 task_rq_unlock(rq, &flags);
1818 /* might preempt at this point */
1819 rq = task_rq_lock(p, &flags);
1820 old_state = p->state;
1821 if (!(old_state & state))
1822 goto out;
dd41f596 1823 if (p->se.on_rq)
1da177e4
LT
1824 goto out_running;
1825
1826 this_cpu = smp_processor_id();
1827 cpu = task_cpu(p);
1828 }
1829
e7693a36
GH
1830#ifdef CONFIG_SCHEDSTATS
1831 schedstat_inc(rq, ttwu_count);
1832 if (cpu == this_cpu)
1833 schedstat_inc(rq, ttwu_local);
1834 else {
1835 struct sched_domain *sd;
1836 for_each_domain(this_cpu, sd) {
1837 if (cpu_isset(cpu, sd->span)) {
1838 schedstat_inc(sd, ttwu_wake_remote);
1839 break;
1840 }
1841 }
1842 }
e7693a36
GH
1843#endif
1844
1da177e4
LT
1845out_activate:
1846#endif /* CONFIG_SMP */
cc367732
IM
1847 schedstat_inc(p, se.nr_wakeups);
1848 if (sync)
1849 schedstat_inc(p, se.nr_wakeups_sync);
1850 if (orig_cpu != cpu)
1851 schedstat_inc(p, se.nr_wakeups_migrate);
1852 if (cpu == this_cpu)
1853 schedstat_inc(p, se.nr_wakeups_local);
1854 else
1855 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1856 update_rq_clock(rq);
dd41f596 1857 activate_task(rq, p, 1);
1da177e4
LT
1858 success = 1;
1859
1860out_running:
4ae7d5ce
IM
1861 check_preempt_curr(rq, p);
1862
1da177e4 1863 p->state = TASK_RUNNING;
9a897c5a
SR
1864#ifdef CONFIG_SMP
1865 if (p->sched_class->task_wake_up)
1866 p->sched_class->task_wake_up(rq, p);
1867#endif
1da177e4
LT
1868out:
1869 task_rq_unlock(rq, &flags);
1870
1871 return success;
1872}
1873
7ad5b3a5 1874int wake_up_process(struct task_struct *p)
1da177e4 1875{
d9514f6c 1876 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1877}
1da177e4
LT
1878EXPORT_SYMBOL(wake_up_process);
1879
7ad5b3a5 1880int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1881{
1882 return try_to_wake_up(p, state, 0);
1883}
1884
1da177e4
LT
1885/*
1886 * Perform scheduler related setup for a newly forked process p.
1887 * p is forked by current.
dd41f596
IM
1888 *
1889 * __sched_fork() is basic setup used by init_idle() too:
1890 */
1891static void __sched_fork(struct task_struct *p)
1892{
dd41f596
IM
1893 p->se.exec_start = 0;
1894 p->se.sum_exec_runtime = 0;
f6cf891c 1895 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
1896 p->se.last_wakeup = 0;
1897 p->se.avg_overlap = 0;
6cfb0d5d
IM
1898
1899#ifdef CONFIG_SCHEDSTATS
1900 p->se.wait_start = 0;
dd41f596
IM
1901 p->se.sum_sleep_runtime = 0;
1902 p->se.sleep_start = 0;
dd41f596
IM
1903 p->se.block_start = 0;
1904 p->se.sleep_max = 0;
1905 p->se.block_max = 0;
1906 p->se.exec_max = 0;
eba1ed4b 1907 p->se.slice_max = 0;
dd41f596 1908 p->se.wait_max = 0;
6cfb0d5d 1909#endif
476d139c 1910
fa717060 1911 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 1912 p->se.on_rq = 0;
476d139c 1913
e107be36
AK
1914#ifdef CONFIG_PREEMPT_NOTIFIERS
1915 INIT_HLIST_HEAD(&p->preempt_notifiers);
1916#endif
1917
1da177e4
LT
1918 /*
1919 * We mark the process as running here, but have not actually
1920 * inserted it onto the runqueue yet. This guarantees that
1921 * nobody will actually run it, and a signal or other external
1922 * event cannot wake it up and insert it on the runqueue either.
1923 */
1924 p->state = TASK_RUNNING;
dd41f596
IM
1925}
1926
1927/*
1928 * fork()/clone()-time setup:
1929 */
1930void sched_fork(struct task_struct *p, int clone_flags)
1931{
1932 int cpu = get_cpu();
1933
1934 __sched_fork(p);
1935
1936#ifdef CONFIG_SMP
1937 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1938#endif
02e4bac2 1939 set_task_cpu(p, cpu);
b29739f9
IM
1940
1941 /*
1942 * Make sure we do not leak PI boosting priority to the child:
1943 */
1944 p->prio = current->normal_prio;
2ddbf952
HS
1945 if (!rt_prio(p->prio))
1946 p->sched_class = &fair_sched_class;
b29739f9 1947
52f17b6c 1948#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1949 if (likely(sched_info_on()))
52f17b6c 1950 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1951#endif
d6077cb8 1952#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1953 p->oncpu = 0;
1954#endif
1da177e4 1955#ifdef CONFIG_PREEMPT
4866cde0 1956 /* Want to start with kernel preemption disabled. */
a1261f54 1957 task_thread_info(p)->preempt_count = 1;
1da177e4 1958#endif
476d139c 1959 put_cpu();
1da177e4
LT
1960}
1961
1962/*
1963 * wake_up_new_task - wake up a newly created task for the first time.
1964 *
1965 * This function will do some initial scheduler statistics housekeeping
1966 * that must be done for every newly created context, then puts the task
1967 * on the runqueue and wakes it.
1968 */
7ad5b3a5 1969void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1970{
1971 unsigned long flags;
dd41f596 1972 struct rq *rq;
1da177e4
LT
1973
1974 rq = task_rq_lock(p, &flags);
147cbb4b 1975 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1976 update_rq_clock(rq);
1da177e4
LT
1977
1978 p->prio = effective_prio(p);
1979
b9dca1e0 1980 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1981 activate_task(rq, p, 0);
1da177e4 1982 } else {
1da177e4 1983 /*
dd41f596
IM
1984 * Let the scheduling class do new task startup
1985 * management (if any):
1da177e4 1986 */
ee0827d8 1987 p->sched_class->task_new(rq, p);
62fb1851 1988 inc_nr_running(p, rq);
1da177e4 1989 }
dd41f596 1990 check_preempt_curr(rq, p);
9a897c5a
SR
1991#ifdef CONFIG_SMP
1992 if (p->sched_class->task_wake_up)
1993 p->sched_class->task_wake_up(rq, p);
1994#endif
dd41f596 1995 task_rq_unlock(rq, &flags);
1da177e4
LT
1996}
1997
e107be36
AK
1998#ifdef CONFIG_PREEMPT_NOTIFIERS
1999
2000/**
421cee29
RD
2001 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2002 * @notifier: notifier struct to register
e107be36
AK
2003 */
2004void preempt_notifier_register(struct preempt_notifier *notifier)
2005{
2006 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2007}
2008EXPORT_SYMBOL_GPL(preempt_notifier_register);
2009
2010/**
2011 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2012 * @notifier: notifier struct to unregister
e107be36
AK
2013 *
2014 * This is safe to call from within a preemption notifier.
2015 */
2016void preempt_notifier_unregister(struct preempt_notifier *notifier)
2017{
2018 hlist_del(&notifier->link);
2019}
2020EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2021
2022static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2023{
2024 struct preempt_notifier *notifier;
2025 struct hlist_node *node;
2026
2027 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2028 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2029}
2030
2031static void
2032fire_sched_out_preempt_notifiers(struct task_struct *curr,
2033 struct task_struct *next)
2034{
2035 struct preempt_notifier *notifier;
2036 struct hlist_node *node;
2037
2038 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2039 notifier->ops->sched_out(notifier, next);
2040}
2041
2042#else
2043
2044static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2045{
2046}
2047
2048static void
2049fire_sched_out_preempt_notifiers(struct task_struct *curr,
2050 struct task_struct *next)
2051{
2052}
2053
2054#endif
2055
4866cde0
NP
2056/**
2057 * prepare_task_switch - prepare to switch tasks
2058 * @rq: the runqueue preparing to switch
421cee29 2059 * @prev: the current task that is being switched out
4866cde0
NP
2060 * @next: the task we are going to switch to.
2061 *
2062 * This is called with the rq lock held and interrupts off. It must
2063 * be paired with a subsequent finish_task_switch after the context
2064 * switch.
2065 *
2066 * prepare_task_switch sets up locking and calls architecture specific
2067 * hooks.
2068 */
e107be36
AK
2069static inline void
2070prepare_task_switch(struct rq *rq, struct task_struct *prev,
2071 struct task_struct *next)
4866cde0 2072{
e107be36 2073 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2074 prepare_lock_switch(rq, next);
2075 prepare_arch_switch(next);
2076}
2077
1da177e4
LT
2078/**
2079 * finish_task_switch - clean up after a task-switch
344babaa 2080 * @rq: runqueue associated with task-switch
1da177e4
LT
2081 * @prev: the thread we just switched away from.
2082 *
4866cde0
NP
2083 * finish_task_switch must be called after the context switch, paired
2084 * with a prepare_task_switch call before the context switch.
2085 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2086 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2087 *
2088 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2089 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2090 * with the lock held can cause deadlocks; see schedule() for
2091 * details.)
2092 */
a9957449 2093static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2094 __releases(rq->lock)
2095{
1da177e4 2096 struct mm_struct *mm = rq->prev_mm;
55a101f8 2097 long prev_state;
1da177e4
LT
2098
2099 rq->prev_mm = NULL;
2100
2101 /*
2102 * A task struct has one reference for the use as "current".
c394cc9f 2103 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2104 * schedule one last time. The schedule call will never return, and
2105 * the scheduled task must drop that reference.
c394cc9f 2106 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2107 * still held, otherwise prev could be scheduled on another cpu, die
2108 * there before we look at prev->state, and then the reference would
2109 * be dropped twice.
2110 * Manfred Spraul <manfred@colorfullife.com>
2111 */
55a101f8 2112 prev_state = prev->state;
4866cde0
NP
2113 finish_arch_switch(prev);
2114 finish_lock_switch(rq, prev);
9a897c5a
SR
2115#ifdef CONFIG_SMP
2116 if (current->sched_class->post_schedule)
2117 current->sched_class->post_schedule(rq);
2118#endif
e8fa1362 2119
e107be36 2120 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2121 if (mm)
2122 mmdrop(mm);
c394cc9f 2123 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2124 /*
2125 * Remove function-return probe instances associated with this
2126 * task and put them back on the free list.
9761eea8 2127 */
c6fd91f0 2128 kprobe_flush_task(prev);
1da177e4 2129 put_task_struct(prev);
c6fd91f0 2130 }
1da177e4
LT
2131}
2132
2133/**
2134 * schedule_tail - first thing a freshly forked thread must call.
2135 * @prev: the thread we just switched away from.
2136 */
36c8b586 2137asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2138 __releases(rq->lock)
2139{
70b97a7f
IM
2140 struct rq *rq = this_rq();
2141
4866cde0
NP
2142 finish_task_switch(rq, prev);
2143#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2144 /* In this case, finish_task_switch does not reenable preemption */
2145 preempt_enable();
2146#endif
1da177e4 2147 if (current->set_child_tid)
b488893a 2148 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2149}
2150
2151/*
2152 * context_switch - switch to the new MM and the new
2153 * thread's register state.
2154 */
dd41f596 2155static inline void
70b97a7f 2156context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2157 struct task_struct *next)
1da177e4 2158{
dd41f596 2159 struct mm_struct *mm, *oldmm;
1da177e4 2160
e107be36 2161 prepare_task_switch(rq, prev, next);
dd41f596
IM
2162 mm = next->mm;
2163 oldmm = prev->active_mm;
9226d125
ZA
2164 /*
2165 * For paravirt, this is coupled with an exit in switch_to to
2166 * combine the page table reload and the switch backend into
2167 * one hypercall.
2168 */
2169 arch_enter_lazy_cpu_mode();
2170
dd41f596 2171 if (unlikely(!mm)) {
1da177e4
LT
2172 next->active_mm = oldmm;
2173 atomic_inc(&oldmm->mm_count);
2174 enter_lazy_tlb(oldmm, next);
2175 } else
2176 switch_mm(oldmm, mm, next);
2177
dd41f596 2178 if (unlikely(!prev->mm)) {
1da177e4 2179 prev->active_mm = NULL;
1da177e4
LT
2180 rq->prev_mm = oldmm;
2181 }
3a5f5e48
IM
2182 /*
2183 * Since the runqueue lock will be released by the next
2184 * task (which is an invalid locking op but in the case
2185 * of the scheduler it's an obvious special-case), so we
2186 * do an early lockdep release here:
2187 */
2188#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2189 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2190#endif
1da177e4
LT
2191
2192 /* Here we just switch the register state and the stack. */
2193 switch_to(prev, next, prev);
2194
dd41f596
IM
2195 barrier();
2196 /*
2197 * this_rq must be evaluated again because prev may have moved
2198 * CPUs since it called schedule(), thus the 'rq' on its stack
2199 * frame will be invalid.
2200 */
2201 finish_task_switch(this_rq(), prev);
1da177e4
LT
2202}
2203
2204/*
2205 * nr_running, nr_uninterruptible and nr_context_switches:
2206 *
2207 * externally visible scheduler statistics: current number of runnable
2208 * threads, current number of uninterruptible-sleeping threads, total
2209 * number of context switches performed since bootup.
2210 */
2211unsigned long nr_running(void)
2212{
2213 unsigned long i, sum = 0;
2214
2215 for_each_online_cpu(i)
2216 sum += cpu_rq(i)->nr_running;
2217
2218 return sum;
2219}
2220
2221unsigned long nr_uninterruptible(void)
2222{
2223 unsigned long i, sum = 0;
2224
0a945022 2225 for_each_possible_cpu(i)
1da177e4
LT
2226 sum += cpu_rq(i)->nr_uninterruptible;
2227
2228 /*
2229 * Since we read the counters lockless, it might be slightly
2230 * inaccurate. Do not allow it to go below zero though:
2231 */
2232 if (unlikely((long)sum < 0))
2233 sum = 0;
2234
2235 return sum;
2236}
2237
2238unsigned long long nr_context_switches(void)
2239{
cc94abfc
SR
2240 int i;
2241 unsigned long long sum = 0;
1da177e4 2242
0a945022 2243 for_each_possible_cpu(i)
1da177e4
LT
2244 sum += cpu_rq(i)->nr_switches;
2245
2246 return sum;
2247}
2248
2249unsigned long nr_iowait(void)
2250{
2251 unsigned long i, sum = 0;
2252
0a945022 2253 for_each_possible_cpu(i)
1da177e4
LT
2254 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2255
2256 return sum;
2257}
2258
db1b1fef
JS
2259unsigned long nr_active(void)
2260{
2261 unsigned long i, running = 0, uninterruptible = 0;
2262
2263 for_each_online_cpu(i) {
2264 running += cpu_rq(i)->nr_running;
2265 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2266 }
2267
2268 if (unlikely((long)uninterruptible < 0))
2269 uninterruptible = 0;
2270
2271 return running + uninterruptible;
2272}
2273
48f24c4d 2274/*
dd41f596
IM
2275 * Update rq->cpu_load[] statistics. This function is usually called every
2276 * scheduler tick (TICK_NSEC).
48f24c4d 2277 */
dd41f596 2278static void update_cpu_load(struct rq *this_rq)
48f24c4d 2279{
495eca49 2280 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2281 int i, scale;
2282
2283 this_rq->nr_load_updates++;
dd41f596
IM
2284
2285 /* Update our load: */
2286 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2287 unsigned long old_load, new_load;
2288
2289 /* scale is effectively 1 << i now, and >> i divides by scale */
2290
2291 old_load = this_rq->cpu_load[i];
2292 new_load = this_load;
a25707f3
IM
2293 /*
2294 * Round up the averaging division if load is increasing. This
2295 * prevents us from getting stuck on 9 if the load is 10, for
2296 * example.
2297 */
2298 if (new_load > old_load)
2299 new_load += scale-1;
dd41f596
IM
2300 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2301 }
48f24c4d
IM
2302}
2303
dd41f596
IM
2304#ifdef CONFIG_SMP
2305
1da177e4
LT
2306/*
2307 * double_rq_lock - safely lock two runqueues
2308 *
2309 * Note this does not disable interrupts like task_rq_lock,
2310 * you need to do so manually before calling.
2311 */
70b97a7f 2312static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2313 __acquires(rq1->lock)
2314 __acquires(rq2->lock)
2315{
054b9108 2316 BUG_ON(!irqs_disabled());
1da177e4
LT
2317 if (rq1 == rq2) {
2318 spin_lock(&rq1->lock);
2319 __acquire(rq2->lock); /* Fake it out ;) */
2320 } else {
c96d145e 2321 if (rq1 < rq2) {
1da177e4
LT
2322 spin_lock(&rq1->lock);
2323 spin_lock(&rq2->lock);
2324 } else {
2325 spin_lock(&rq2->lock);
2326 spin_lock(&rq1->lock);
2327 }
2328 }
6e82a3be
IM
2329 update_rq_clock(rq1);
2330 update_rq_clock(rq2);
1da177e4
LT
2331}
2332
2333/*
2334 * double_rq_unlock - safely unlock two runqueues
2335 *
2336 * Note this does not restore interrupts like task_rq_unlock,
2337 * you need to do so manually after calling.
2338 */
70b97a7f 2339static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2340 __releases(rq1->lock)
2341 __releases(rq2->lock)
2342{
2343 spin_unlock(&rq1->lock);
2344 if (rq1 != rq2)
2345 spin_unlock(&rq2->lock);
2346 else
2347 __release(rq2->lock);
2348}
2349
2350/*
2351 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2352 */
e8fa1362 2353static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2354 __releases(this_rq->lock)
2355 __acquires(busiest->lock)
2356 __acquires(this_rq->lock)
2357{
e8fa1362
SR
2358 int ret = 0;
2359
054b9108
KK
2360 if (unlikely(!irqs_disabled())) {
2361 /* printk() doesn't work good under rq->lock */
2362 spin_unlock(&this_rq->lock);
2363 BUG_ON(1);
2364 }
1da177e4 2365 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2366 if (busiest < this_rq) {
1da177e4
LT
2367 spin_unlock(&this_rq->lock);
2368 spin_lock(&busiest->lock);
2369 spin_lock(&this_rq->lock);
e8fa1362 2370 ret = 1;
1da177e4
LT
2371 } else
2372 spin_lock(&busiest->lock);
2373 }
e8fa1362 2374 return ret;
1da177e4
LT
2375}
2376
1da177e4
LT
2377/*
2378 * If dest_cpu is allowed for this process, migrate the task to it.
2379 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2380 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2381 * the cpu_allowed mask is restored.
2382 */
36c8b586 2383static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2384{
70b97a7f 2385 struct migration_req req;
1da177e4 2386 unsigned long flags;
70b97a7f 2387 struct rq *rq;
1da177e4
LT
2388
2389 rq = task_rq_lock(p, &flags);
2390 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2391 || unlikely(cpu_is_offline(dest_cpu)))
2392 goto out;
2393
2394 /* force the process onto the specified CPU */
2395 if (migrate_task(p, dest_cpu, &req)) {
2396 /* Need to wait for migration thread (might exit: take ref). */
2397 struct task_struct *mt = rq->migration_thread;
36c8b586 2398
1da177e4
LT
2399 get_task_struct(mt);
2400 task_rq_unlock(rq, &flags);
2401 wake_up_process(mt);
2402 put_task_struct(mt);
2403 wait_for_completion(&req.done);
36c8b586 2404
1da177e4
LT
2405 return;
2406 }
2407out:
2408 task_rq_unlock(rq, &flags);
2409}
2410
2411/*
476d139c
NP
2412 * sched_exec - execve() is a valuable balancing opportunity, because at
2413 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2414 */
2415void sched_exec(void)
2416{
1da177e4 2417 int new_cpu, this_cpu = get_cpu();
476d139c 2418 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2419 put_cpu();
476d139c
NP
2420 if (new_cpu != this_cpu)
2421 sched_migrate_task(current, new_cpu);
1da177e4
LT
2422}
2423
2424/*
2425 * pull_task - move a task from a remote runqueue to the local runqueue.
2426 * Both runqueues must be locked.
2427 */
dd41f596
IM
2428static void pull_task(struct rq *src_rq, struct task_struct *p,
2429 struct rq *this_rq, int this_cpu)
1da177e4 2430{
2e1cb74a 2431 deactivate_task(src_rq, p, 0);
1da177e4 2432 set_task_cpu(p, this_cpu);
dd41f596 2433 activate_task(this_rq, p, 0);
1da177e4
LT
2434 /*
2435 * Note that idle threads have a prio of MAX_PRIO, for this test
2436 * to be always true for them.
2437 */
dd41f596 2438 check_preempt_curr(this_rq, p);
1da177e4
LT
2439}
2440
2441/*
2442 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2443 */
858119e1 2444static
70b97a7f 2445int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2446 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2447 int *all_pinned)
1da177e4
LT
2448{
2449 /*
2450 * We do not migrate tasks that are:
2451 * 1) running (obviously), or
2452 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2453 * 3) are cache-hot on their current CPU.
2454 */
cc367732
IM
2455 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2456 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2457 return 0;
cc367732 2458 }
81026794
NP
2459 *all_pinned = 0;
2460
cc367732
IM
2461 if (task_running(rq, p)) {
2462 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2463 return 0;
cc367732 2464 }
1da177e4 2465
da84d961
IM
2466 /*
2467 * Aggressive migration if:
2468 * 1) task is cache cold, or
2469 * 2) too many balance attempts have failed.
2470 */
2471
6bc1665b
IM
2472 if (!task_hot(p, rq->clock, sd) ||
2473 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2474#ifdef CONFIG_SCHEDSTATS
cc367732 2475 if (task_hot(p, rq->clock, sd)) {
da84d961 2476 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2477 schedstat_inc(p, se.nr_forced_migrations);
2478 }
da84d961
IM
2479#endif
2480 return 1;
2481 }
2482
cc367732
IM
2483 if (task_hot(p, rq->clock, sd)) {
2484 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2485 return 0;
cc367732 2486 }
1da177e4
LT
2487 return 1;
2488}
2489
e1d1484f
PW
2490static unsigned long
2491balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2492 unsigned long max_load_move, struct sched_domain *sd,
2493 enum cpu_idle_type idle, int *all_pinned,
2494 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2495{
b82d9fdd 2496 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2497 struct task_struct *p;
2498 long rem_load_move = max_load_move;
1da177e4 2499
e1d1484f 2500 if (max_load_move == 0)
1da177e4
LT
2501 goto out;
2502
81026794
NP
2503 pinned = 1;
2504
1da177e4 2505 /*
dd41f596 2506 * Start the load-balancing iterator:
1da177e4 2507 */
dd41f596
IM
2508 p = iterator->start(iterator->arg);
2509next:
b82d9fdd 2510 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2511 goto out;
50ddd969 2512 /*
b82d9fdd 2513 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2514 * skip a task if it will be the highest priority task (i.e. smallest
2515 * prio value) on its new queue regardless of its load weight
2516 */
dd41f596
IM
2517 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2518 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2519 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2520 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2521 p = iterator->next(iterator->arg);
2522 goto next;
1da177e4
LT
2523 }
2524
dd41f596 2525 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2526 pulled++;
dd41f596 2527 rem_load_move -= p->se.load.weight;
1da177e4 2528
2dd73a4f 2529 /*
b82d9fdd 2530 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2531 */
e1d1484f 2532 if (rem_load_move > 0) {
a4ac01c3
PW
2533 if (p->prio < *this_best_prio)
2534 *this_best_prio = p->prio;
dd41f596
IM
2535 p = iterator->next(iterator->arg);
2536 goto next;
1da177e4
LT
2537 }
2538out:
2539 /*
e1d1484f 2540 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2541 * so we can safely collect pull_task() stats here rather than
2542 * inside pull_task().
2543 */
2544 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2545
2546 if (all_pinned)
2547 *all_pinned = pinned;
e1d1484f
PW
2548
2549 return max_load_move - rem_load_move;
1da177e4
LT
2550}
2551
dd41f596 2552/*
43010659
PW
2553 * move_tasks tries to move up to max_load_move weighted load from busiest to
2554 * this_rq, as part of a balancing operation within domain "sd".
2555 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2556 *
2557 * Called with both runqueues locked.
2558 */
2559static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2560 unsigned long max_load_move,
dd41f596
IM
2561 struct sched_domain *sd, enum cpu_idle_type idle,
2562 int *all_pinned)
2563{
5522d5d5 2564 const struct sched_class *class = sched_class_highest;
43010659 2565 unsigned long total_load_moved = 0;
a4ac01c3 2566 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2567
2568 do {
43010659
PW
2569 total_load_moved +=
2570 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2571 max_load_move - total_load_moved,
a4ac01c3 2572 sd, idle, all_pinned, &this_best_prio);
dd41f596 2573 class = class->next;
43010659 2574 } while (class && max_load_move > total_load_moved);
dd41f596 2575
43010659
PW
2576 return total_load_moved > 0;
2577}
2578
e1d1484f
PW
2579static int
2580iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2581 struct sched_domain *sd, enum cpu_idle_type idle,
2582 struct rq_iterator *iterator)
2583{
2584 struct task_struct *p = iterator->start(iterator->arg);
2585 int pinned = 0;
2586
2587 while (p) {
2588 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2589 pull_task(busiest, p, this_rq, this_cpu);
2590 /*
2591 * Right now, this is only the second place pull_task()
2592 * is called, so we can safely collect pull_task()
2593 * stats here rather than inside pull_task().
2594 */
2595 schedstat_inc(sd, lb_gained[idle]);
2596
2597 return 1;
2598 }
2599 p = iterator->next(iterator->arg);
2600 }
2601
2602 return 0;
2603}
2604
43010659
PW
2605/*
2606 * move_one_task tries to move exactly one task from busiest to this_rq, as
2607 * part of active balancing operations within "domain".
2608 * Returns 1 if successful and 0 otherwise.
2609 *
2610 * Called with both runqueues locked.
2611 */
2612static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2613 struct sched_domain *sd, enum cpu_idle_type idle)
2614{
5522d5d5 2615 const struct sched_class *class;
43010659
PW
2616
2617 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2618 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2619 return 1;
2620
2621 return 0;
dd41f596
IM
2622}
2623
1da177e4
LT
2624/*
2625 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2626 * domain. It calculates and returns the amount of weighted load which
2627 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2628 */
2629static struct sched_group *
2630find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2631 unsigned long *imbalance, enum cpu_idle_type idle,
2632 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2633{
2634 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2635 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2636 unsigned long max_pull;
2dd73a4f
PW
2637 unsigned long busiest_load_per_task, busiest_nr_running;
2638 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2639 int load_idx, group_imb = 0;
5c45bf27
SS
2640#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2641 int power_savings_balance = 1;
2642 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2643 unsigned long min_nr_running = ULONG_MAX;
2644 struct sched_group *group_min = NULL, *group_leader = NULL;
2645#endif
1da177e4
LT
2646
2647 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2648 busiest_load_per_task = busiest_nr_running = 0;
2649 this_load_per_task = this_nr_running = 0;
d15bcfdb 2650 if (idle == CPU_NOT_IDLE)
7897986b 2651 load_idx = sd->busy_idx;
d15bcfdb 2652 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2653 load_idx = sd->newidle_idx;
2654 else
2655 load_idx = sd->idle_idx;
1da177e4
LT
2656
2657 do {
908a7c1b 2658 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2659 int local_group;
2660 int i;
908a7c1b 2661 int __group_imb = 0;
783609c6 2662 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2663 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2664
2665 local_group = cpu_isset(this_cpu, group->cpumask);
2666
783609c6
SS
2667 if (local_group)
2668 balance_cpu = first_cpu(group->cpumask);
2669
1da177e4 2670 /* Tally up the load of all CPUs in the group */
2dd73a4f 2671 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2672 max_cpu_load = 0;
2673 min_cpu_load = ~0UL;
1da177e4
LT
2674
2675 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2676 struct rq *rq;
2677
2678 if (!cpu_isset(i, *cpus))
2679 continue;
2680
2681 rq = cpu_rq(i);
2dd73a4f 2682
9439aab8 2683 if (*sd_idle && rq->nr_running)
5969fe06
NP
2684 *sd_idle = 0;
2685
1da177e4 2686 /* Bias balancing toward cpus of our domain */
783609c6
SS
2687 if (local_group) {
2688 if (idle_cpu(i) && !first_idle_cpu) {
2689 first_idle_cpu = 1;
2690 balance_cpu = i;
2691 }
2692
a2000572 2693 load = target_load(i, load_idx);
908a7c1b 2694 } else {
a2000572 2695 load = source_load(i, load_idx);
908a7c1b
KC
2696 if (load > max_cpu_load)
2697 max_cpu_load = load;
2698 if (min_cpu_load > load)
2699 min_cpu_load = load;
2700 }
1da177e4
LT
2701
2702 avg_load += load;
2dd73a4f 2703 sum_nr_running += rq->nr_running;
dd41f596 2704 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2705 }
2706
783609c6
SS
2707 /*
2708 * First idle cpu or the first cpu(busiest) in this sched group
2709 * is eligible for doing load balancing at this and above
9439aab8
SS
2710 * domains. In the newly idle case, we will allow all the cpu's
2711 * to do the newly idle load balance.
783609c6 2712 */
9439aab8
SS
2713 if (idle != CPU_NEWLY_IDLE && local_group &&
2714 balance_cpu != this_cpu && balance) {
783609c6
SS
2715 *balance = 0;
2716 goto ret;
2717 }
2718
1da177e4 2719 total_load += avg_load;
5517d86b 2720 total_pwr += group->__cpu_power;
1da177e4
LT
2721
2722 /* Adjust by relative CPU power of the group */
5517d86b
ED
2723 avg_load = sg_div_cpu_power(group,
2724 avg_load * SCHED_LOAD_SCALE);
1da177e4 2725
908a7c1b
KC
2726 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2727 __group_imb = 1;
2728
5517d86b 2729 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2730
1da177e4
LT
2731 if (local_group) {
2732 this_load = avg_load;
2733 this = group;
2dd73a4f
PW
2734 this_nr_running = sum_nr_running;
2735 this_load_per_task = sum_weighted_load;
2736 } else if (avg_load > max_load &&
908a7c1b 2737 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2738 max_load = avg_load;
2739 busiest = group;
2dd73a4f
PW
2740 busiest_nr_running = sum_nr_running;
2741 busiest_load_per_task = sum_weighted_load;
908a7c1b 2742 group_imb = __group_imb;
1da177e4 2743 }
5c45bf27
SS
2744
2745#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2746 /*
2747 * Busy processors will not participate in power savings
2748 * balance.
2749 */
dd41f596
IM
2750 if (idle == CPU_NOT_IDLE ||
2751 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2752 goto group_next;
5c45bf27
SS
2753
2754 /*
2755 * If the local group is idle or completely loaded
2756 * no need to do power savings balance at this domain
2757 */
2758 if (local_group && (this_nr_running >= group_capacity ||
2759 !this_nr_running))
2760 power_savings_balance = 0;
2761
dd41f596 2762 /*
5c45bf27
SS
2763 * If a group is already running at full capacity or idle,
2764 * don't include that group in power savings calculations
dd41f596
IM
2765 */
2766 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2767 || !sum_nr_running)
dd41f596 2768 goto group_next;
5c45bf27 2769
dd41f596 2770 /*
5c45bf27 2771 * Calculate the group which has the least non-idle load.
dd41f596
IM
2772 * This is the group from where we need to pick up the load
2773 * for saving power
2774 */
2775 if ((sum_nr_running < min_nr_running) ||
2776 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2777 first_cpu(group->cpumask) <
2778 first_cpu(group_min->cpumask))) {
dd41f596
IM
2779 group_min = group;
2780 min_nr_running = sum_nr_running;
5c45bf27
SS
2781 min_load_per_task = sum_weighted_load /
2782 sum_nr_running;
dd41f596 2783 }
5c45bf27 2784
dd41f596 2785 /*
5c45bf27 2786 * Calculate the group which is almost near its
dd41f596
IM
2787 * capacity but still has some space to pick up some load
2788 * from other group and save more power
2789 */
2790 if (sum_nr_running <= group_capacity - 1) {
2791 if (sum_nr_running > leader_nr_running ||
2792 (sum_nr_running == leader_nr_running &&
2793 first_cpu(group->cpumask) >
2794 first_cpu(group_leader->cpumask))) {
2795 group_leader = group;
2796 leader_nr_running = sum_nr_running;
2797 }
48f24c4d 2798 }
5c45bf27
SS
2799group_next:
2800#endif
1da177e4
LT
2801 group = group->next;
2802 } while (group != sd->groups);
2803
2dd73a4f 2804 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2805 goto out_balanced;
2806
2807 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2808
2809 if (this_load >= avg_load ||
2810 100*max_load <= sd->imbalance_pct*this_load)
2811 goto out_balanced;
2812
2dd73a4f 2813 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2814 if (group_imb)
2815 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2816
1da177e4
LT
2817 /*
2818 * We're trying to get all the cpus to the average_load, so we don't
2819 * want to push ourselves above the average load, nor do we wish to
2820 * reduce the max loaded cpu below the average load, as either of these
2821 * actions would just result in more rebalancing later, and ping-pong
2822 * tasks around. Thus we look for the minimum possible imbalance.
2823 * Negative imbalances (*we* are more loaded than anyone else) will
2824 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2825 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2826 * appear as very large values with unsigned longs.
2827 */
2dd73a4f
PW
2828 if (max_load <= busiest_load_per_task)
2829 goto out_balanced;
2830
2831 /*
2832 * In the presence of smp nice balancing, certain scenarios can have
2833 * max load less than avg load(as we skip the groups at or below
2834 * its cpu_power, while calculating max_load..)
2835 */
2836 if (max_load < avg_load) {
2837 *imbalance = 0;
2838 goto small_imbalance;
2839 }
0c117f1b
SS
2840
2841 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2842 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2843
1da177e4 2844 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2845 *imbalance = min(max_pull * busiest->__cpu_power,
2846 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2847 / SCHED_LOAD_SCALE;
2848
2dd73a4f
PW
2849 /*
2850 * if *imbalance is less than the average load per runnable task
2851 * there is no gaurantee that any tasks will be moved so we'll have
2852 * a think about bumping its value to force at least one task to be
2853 * moved
2854 */
7fd0d2dd 2855 if (*imbalance < busiest_load_per_task) {
48f24c4d 2856 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2857 unsigned int imbn;
2858
2859small_imbalance:
2860 pwr_move = pwr_now = 0;
2861 imbn = 2;
2862 if (this_nr_running) {
2863 this_load_per_task /= this_nr_running;
2864 if (busiest_load_per_task > this_load_per_task)
2865 imbn = 1;
2866 } else
2867 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2868
dd41f596
IM
2869 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2870 busiest_load_per_task * imbn) {
2dd73a4f 2871 *imbalance = busiest_load_per_task;
1da177e4
LT
2872 return busiest;
2873 }
2874
2875 /*
2876 * OK, we don't have enough imbalance to justify moving tasks,
2877 * however we may be able to increase total CPU power used by
2878 * moving them.
2879 */
2880
5517d86b
ED
2881 pwr_now += busiest->__cpu_power *
2882 min(busiest_load_per_task, max_load);
2883 pwr_now += this->__cpu_power *
2884 min(this_load_per_task, this_load);
1da177e4
LT
2885 pwr_now /= SCHED_LOAD_SCALE;
2886
2887 /* Amount of load we'd subtract */
5517d86b
ED
2888 tmp = sg_div_cpu_power(busiest,
2889 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2890 if (max_load > tmp)
5517d86b 2891 pwr_move += busiest->__cpu_power *
2dd73a4f 2892 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2893
2894 /* Amount of load we'd add */
5517d86b 2895 if (max_load * busiest->__cpu_power <
33859f7f 2896 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2897 tmp = sg_div_cpu_power(this,
2898 max_load * busiest->__cpu_power);
1da177e4 2899 else
5517d86b
ED
2900 tmp = sg_div_cpu_power(this,
2901 busiest_load_per_task * SCHED_LOAD_SCALE);
2902 pwr_move += this->__cpu_power *
2903 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2904 pwr_move /= SCHED_LOAD_SCALE;
2905
2906 /* Move if we gain throughput */
7fd0d2dd
SS
2907 if (pwr_move > pwr_now)
2908 *imbalance = busiest_load_per_task;
1da177e4
LT
2909 }
2910
1da177e4
LT
2911 return busiest;
2912
2913out_balanced:
5c45bf27 2914#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2915 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2916 goto ret;
1da177e4 2917
5c45bf27
SS
2918 if (this == group_leader && group_leader != group_min) {
2919 *imbalance = min_load_per_task;
2920 return group_min;
2921 }
5c45bf27 2922#endif
783609c6 2923ret:
1da177e4
LT
2924 *imbalance = 0;
2925 return NULL;
2926}
2927
2928/*
2929 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2930 */
70b97a7f 2931static struct rq *
d15bcfdb 2932find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2933 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2934{
70b97a7f 2935 struct rq *busiest = NULL, *rq;
2dd73a4f 2936 unsigned long max_load = 0;
1da177e4
LT
2937 int i;
2938
2939 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2940 unsigned long wl;
0a2966b4
CL
2941
2942 if (!cpu_isset(i, *cpus))
2943 continue;
2944
48f24c4d 2945 rq = cpu_rq(i);
dd41f596 2946 wl = weighted_cpuload(i);
2dd73a4f 2947
dd41f596 2948 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2949 continue;
1da177e4 2950
dd41f596
IM
2951 if (wl > max_load) {
2952 max_load = wl;
48f24c4d 2953 busiest = rq;
1da177e4
LT
2954 }
2955 }
2956
2957 return busiest;
2958}
2959
77391d71
NP
2960/*
2961 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2962 * so long as it is large enough.
2963 */
2964#define MAX_PINNED_INTERVAL 512
2965
1da177e4
LT
2966/*
2967 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2968 * tasks if there is an imbalance.
1da177e4 2969 */
70b97a7f 2970static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2971 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2972 int *balance)
1da177e4 2973{
43010659 2974 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2975 struct sched_group *group;
1da177e4 2976 unsigned long imbalance;
70b97a7f 2977 struct rq *busiest;
0a2966b4 2978 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2979 unsigned long flags;
5969fe06 2980
89c4710e
SS
2981 /*
2982 * When power savings policy is enabled for the parent domain, idle
2983 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2984 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2985 * portraying it as CPU_NOT_IDLE.
89c4710e 2986 */
d15bcfdb 2987 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2988 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2989 sd_idle = 1;
1da177e4 2990
2d72376b 2991 schedstat_inc(sd, lb_count[idle]);
1da177e4 2992
0a2966b4
CL
2993redo:
2994 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2995 &cpus, balance);
2996
06066714 2997 if (*balance == 0)
783609c6 2998 goto out_balanced;
783609c6 2999
1da177e4
LT
3000 if (!group) {
3001 schedstat_inc(sd, lb_nobusyg[idle]);
3002 goto out_balanced;
3003 }
3004
0a2966b4 3005 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
3006 if (!busiest) {
3007 schedstat_inc(sd, lb_nobusyq[idle]);
3008 goto out_balanced;
3009 }
3010
db935dbd 3011 BUG_ON(busiest == this_rq);
1da177e4
LT
3012
3013 schedstat_add(sd, lb_imbalance[idle], imbalance);
3014
43010659 3015 ld_moved = 0;
1da177e4
LT
3016 if (busiest->nr_running > 1) {
3017 /*
3018 * Attempt to move tasks. If find_busiest_group has found
3019 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3020 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3021 * correctly treated as an imbalance.
3022 */
fe2eea3f 3023 local_irq_save(flags);
e17224bf 3024 double_rq_lock(this_rq, busiest);
43010659 3025 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3026 imbalance, sd, idle, &all_pinned);
e17224bf 3027 double_rq_unlock(this_rq, busiest);
fe2eea3f 3028 local_irq_restore(flags);
81026794 3029
46cb4b7c
SS
3030 /*
3031 * some other cpu did the load balance for us.
3032 */
43010659 3033 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3034 resched_cpu(this_cpu);
3035
81026794 3036 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
3037 if (unlikely(all_pinned)) {
3038 cpu_clear(cpu_of(busiest), cpus);
3039 if (!cpus_empty(cpus))
3040 goto redo;
81026794 3041 goto out_balanced;
0a2966b4 3042 }
1da177e4 3043 }
81026794 3044
43010659 3045 if (!ld_moved) {
1da177e4
LT
3046 schedstat_inc(sd, lb_failed[idle]);
3047 sd->nr_balance_failed++;
3048
3049 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3050
fe2eea3f 3051 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3052
3053 /* don't kick the migration_thread, if the curr
3054 * task on busiest cpu can't be moved to this_cpu
3055 */
3056 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3057 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3058 all_pinned = 1;
3059 goto out_one_pinned;
3060 }
3061
1da177e4
LT
3062 if (!busiest->active_balance) {
3063 busiest->active_balance = 1;
3064 busiest->push_cpu = this_cpu;
81026794 3065 active_balance = 1;
1da177e4 3066 }
fe2eea3f 3067 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3068 if (active_balance)
1da177e4
LT
3069 wake_up_process(busiest->migration_thread);
3070
3071 /*
3072 * We've kicked active balancing, reset the failure
3073 * counter.
3074 */
39507451 3075 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3076 }
81026794 3077 } else
1da177e4
LT
3078 sd->nr_balance_failed = 0;
3079
81026794 3080 if (likely(!active_balance)) {
1da177e4
LT
3081 /* We were unbalanced, so reset the balancing interval */
3082 sd->balance_interval = sd->min_interval;
81026794
NP
3083 } else {
3084 /*
3085 * If we've begun active balancing, start to back off. This
3086 * case may not be covered by the all_pinned logic if there
3087 * is only 1 task on the busy runqueue (because we don't call
3088 * move_tasks).
3089 */
3090 if (sd->balance_interval < sd->max_interval)
3091 sd->balance_interval *= 2;
1da177e4
LT
3092 }
3093
43010659 3094 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3095 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3096 return -1;
43010659 3097 return ld_moved;
1da177e4
LT
3098
3099out_balanced:
1da177e4
LT
3100 schedstat_inc(sd, lb_balanced[idle]);
3101
16cfb1c0 3102 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3103
3104out_one_pinned:
1da177e4 3105 /* tune up the balancing interval */
77391d71
NP
3106 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3107 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3108 sd->balance_interval *= 2;
3109
48f24c4d 3110 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3111 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3112 return -1;
1da177e4
LT
3113 return 0;
3114}
3115
3116/*
3117 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3118 * tasks if there is an imbalance.
3119 *
d15bcfdb 3120 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3121 * this_rq is locked.
3122 */
48f24c4d 3123static int
70b97a7f 3124load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
3125{
3126 struct sched_group *group;
70b97a7f 3127 struct rq *busiest = NULL;
1da177e4 3128 unsigned long imbalance;
43010659 3129 int ld_moved = 0;
5969fe06 3130 int sd_idle = 0;
969bb4e4 3131 int all_pinned = 0;
0a2966b4 3132 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 3133
89c4710e
SS
3134 /*
3135 * When power savings policy is enabled for the parent domain, idle
3136 * sibling can pick up load irrespective of busy siblings. In this case,
3137 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3138 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3139 */
3140 if (sd->flags & SD_SHARE_CPUPOWER &&
3141 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3142 sd_idle = 1;
1da177e4 3143
2d72376b 3144 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3145redo:
d15bcfdb 3146 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 3147 &sd_idle, &cpus, NULL);
1da177e4 3148 if (!group) {
d15bcfdb 3149 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3150 goto out_balanced;
1da177e4
LT
3151 }
3152
d15bcfdb 3153 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 3154 &cpus);
db935dbd 3155 if (!busiest) {
d15bcfdb 3156 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3157 goto out_balanced;
1da177e4
LT
3158 }
3159
db935dbd
NP
3160 BUG_ON(busiest == this_rq);
3161
d15bcfdb 3162 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3163
43010659 3164 ld_moved = 0;
d6d5cfaf
NP
3165 if (busiest->nr_running > 1) {
3166 /* Attempt to move tasks */
3167 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3168 /* this_rq->clock is already updated */
3169 update_rq_clock(busiest);
43010659 3170 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3171 imbalance, sd, CPU_NEWLY_IDLE,
3172 &all_pinned);
d6d5cfaf 3173 spin_unlock(&busiest->lock);
0a2966b4 3174
969bb4e4 3175 if (unlikely(all_pinned)) {
0a2966b4
CL
3176 cpu_clear(cpu_of(busiest), cpus);
3177 if (!cpus_empty(cpus))
3178 goto redo;
3179 }
d6d5cfaf
NP
3180 }
3181
43010659 3182 if (!ld_moved) {
d15bcfdb 3183 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3184 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3185 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3186 return -1;
3187 } else
16cfb1c0 3188 sd->nr_balance_failed = 0;
1da177e4 3189
43010659 3190 return ld_moved;
16cfb1c0
NP
3191
3192out_balanced:
d15bcfdb 3193 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3194 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3195 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3196 return -1;
16cfb1c0 3197 sd->nr_balance_failed = 0;
48f24c4d 3198
16cfb1c0 3199 return 0;
1da177e4
LT
3200}
3201
3202/*
3203 * idle_balance is called by schedule() if this_cpu is about to become
3204 * idle. Attempts to pull tasks from other CPUs.
3205 */
70b97a7f 3206static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3207{
3208 struct sched_domain *sd;
dd41f596
IM
3209 int pulled_task = -1;
3210 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3211
3212 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3213 unsigned long interval;
3214
3215 if (!(sd->flags & SD_LOAD_BALANCE))
3216 continue;
3217
3218 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3219 /* If we've pulled tasks over stop searching: */
1bd77f2d 3220 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3221 this_rq, sd);
3222
3223 interval = msecs_to_jiffies(sd->balance_interval);
3224 if (time_after(next_balance, sd->last_balance + interval))
3225 next_balance = sd->last_balance + interval;
3226 if (pulled_task)
3227 break;
1da177e4 3228 }
dd41f596 3229 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3230 /*
3231 * We are going idle. next_balance may be set based on
3232 * a busy processor. So reset next_balance.
3233 */
3234 this_rq->next_balance = next_balance;
dd41f596 3235 }
1da177e4
LT
3236}
3237
3238/*
3239 * active_load_balance is run by migration threads. It pushes running tasks
3240 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3241 * running on each physical CPU where possible, and avoids physical /
3242 * logical imbalances.
3243 *
3244 * Called with busiest_rq locked.
3245 */
70b97a7f 3246static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3247{
39507451 3248 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3249 struct sched_domain *sd;
3250 struct rq *target_rq;
39507451 3251
48f24c4d 3252 /* Is there any task to move? */
39507451 3253 if (busiest_rq->nr_running <= 1)
39507451
NP
3254 return;
3255
3256 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3257
3258 /*
39507451 3259 * This condition is "impossible", if it occurs
41a2d6cf 3260 * we need to fix it. Originally reported by
39507451 3261 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3262 */
39507451 3263 BUG_ON(busiest_rq == target_rq);
1da177e4 3264
39507451
NP
3265 /* move a task from busiest_rq to target_rq */
3266 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3267 update_rq_clock(busiest_rq);
3268 update_rq_clock(target_rq);
39507451
NP
3269
3270 /* Search for an sd spanning us and the target CPU. */
c96d145e 3271 for_each_domain(target_cpu, sd) {
39507451 3272 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3273 cpu_isset(busiest_cpu, sd->span))
39507451 3274 break;
c96d145e 3275 }
39507451 3276
48f24c4d 3277 if (likely(sd)) {
2d72376b 3278 schedstat_inc(sd, alb_count);
39507451 3279
43010659
PW
3280 if (move_one_task(target_rq, target_cpu, busiest_rq,
3281 sd, CPU_IDLE))
48f24c4d
IM
3282 schedstat_inc(sd, alb_pushed);
3283 else
3284 schedstat_inc(sd, alb_failed);
3285 }
39507451 3286 spin_unlock(&target_rq->lock);
1da177e4
LT
3287}
3288
46cb4b7c
SS
3289#ifdef CONFIG_NO_HZ
3290static struct {
3291 atomic_t load_balancer;
41a2d6cf 3292 cpumask_t cpu_mask;
46cb4b7c
SS
3293} nohz ____cacheline_aligned = {
3294 .load_balancer = ATOMIC_INIT(-1),
3295 .cpu_mask = CPU_MASK_NONE,
3296};
3297
7835b98b 3298/*
46cb4b7c
SS
3299 * This routine will try to nominate the ilb (idle load balancing)
3300 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3301 * load balancing on behalf of all those cpus. If all the cpus in the system
3302 * go into this tickless mode, then there will be no ilb owner (as there is
3303 * no need for one) and all the cpus will sleep till the next wakeup event
3304 * arrives...
3305 *
3306 * For the ilb owner, tick is not stopped. And this tick will be used
3307 * for idle load balancing. ilb owner will still be part of
3308 * nohz.cpu_mask..
7835b98b 3309 *
46cb4b7c
SS
3310 * While stopping the tick, this cpu will become the ilb owner if there
3311 * is no other owner. And will be the owner till that cpu becomes busy
3312 * or if all cpus in the system stop their ticks at which point
3313 * there is no need for ilb owner.
3314 *
3315 * When the ilb owner becomes busy, it nominates another owner, during the
3316 * next busy scheduler_tick()
3317 */
3318int select_nohz_load_balancer(int stop_tick)
3319{
3320 int cpu = smp_processor_id();
3321
3322 if (stop_tick) {
3323 cpu_set(cpu, nohz.cpu_mask);
3324 cpu_rq(cpu)->in_nohz_recently = 1;
3325
3326 /*
3327 * If we are going offline and still the leader, give up!
3328 */
3329 if (cpu_is_offline(cpu) &&
3330 atomic_read(&nohz.load_balancer) == cpu) {
3331 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3332 BUG();
3333 return 0;
3334 }
3335
3336 /* time for ilb owner also to sleep */
3337 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3338 if (atomic_read(&nohz.load_balancer) == cpu)
3339 atomic_set(&nohz.load_balancer, -1);
3340 return 0;
3341 }
3342
3343 if (atomic_read(&nohz.load_balancer) == -1) {
3344 /* make me the ilb owner */
3345 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3346 return 1;
3347 } else if (atomic_read(&nohz.load_balancer) == cpu)
3348 return 1;
3349 } else {
3350 if (!cpu_isset(cpu, nohz.cpu_mask))
3351 return 0;
3352
3353 cpu_clear(cpu, nohz.cpu_mask);
3354
3355 if (atomic_read(&nohz.load_balancer) == cpu)
3356 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3357 BUG();
3358 }
3359 return 0;
3360}
3361#endif
3362
3363static DEFINE_SPINLOCK(balancing);
3364
3365/*
7835b98b
CL
3366 * It checks each scheduling domain to see if it is due to be balanced,
3367 * and initiates a balancing operation if so.
3368 *
3369 * Balancing parameters are set up in arch_init_sched_domains.
3370 */
a9957449 3371static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3372{
46cb4b7c
SS
3373 int balance = 1;
3374 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3375 unsigned long interval;
3376 struct sched_domain *sd;
46cb4b7c 3377 /* Earliest time when we have to do rebalance again */
c9819f45 3378 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3379 int update_next_balance = 0;
1da177e4 3380
46cb4b7c 3381 for_each_domain(cpu, sd) {
1da177e4
LT
3382 if (!(sd->flags & SD_LOAD_BALANCE))
3383 continue;
3384
3385 interval = sd->balance_interval;
d15bcfdb 3386 if (idle != CPU_IDLE)
1da177e4
LT
3387 interval *= sd->busy_factor;
3388
3389 /* scale ms to jiffies */
3390 interval = msecs_to_jiffies(interval);
3391 if (unlikely(!interval))
3392 interval = 1;
dd41f596
IM
3393 if (interval > HZ*NR_CPUS/10)
3394 interval = HZ*NR_CPUS/10;
3395
1da177e4 3396
08c183f3
CL
3397 if (sd->flags & SD_SERIALIZE) {
3398 if (!spin_trylock(&balancing))
3399 goto out;
3400 }
3401
c9819f45 3402 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3403 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3404 /*
3405 * We've pulled tasks over so either we're no
5969fe06
NP
3406 * longer idle, or one of our SMT siblings is
3407 * not idle.
3408 */
d15bcfdb 3409 idle = CPU_NOT_IDLE;
1da177e4 3410 }
1bd77f2d 3411 sd->last_balance = jiffies;
1da177e4 3412 }
08c183f3
CL
3413 if (sd->flags & SD_SERIALIZE)
3414 spin_unlock(&balancing);
3415out:
f549da84 3416 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3417 next_balance = sd->last_balance + interval;
f549da84
SS
3418 update_next_balance = 1;
3419 }
783609c6
SS
3420
3421 /*
3422 * Stop the load balance at this level. There is another
3423 * CPU in our sched group which is doing load balancing more
3424 * actively.
3425 */
3426 if (!balance)
3427 break;
1da177e4 3428 }
f549da84
SS
3429
3430 /*
3431 * next_balance will be updated only when there is a need.
3432 * When the cpu is attached to null domain for ex, it will not be
3433 * updated.
3434 */
3435 if (likely(update_next_balance))
3436 rq->next_balance = next_balance;
46cb4b7c
SS
3437}
3438
3439/*
3440 * run_rebalance_domains is triggered when needed from the scheduler tick.
3441 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3442 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3443 */
3444static void run_rebalance_domains(struct softirq_action *h)
3445{
dd41f596
IM
3446 int this_cpu = smp_processor_id();
3447 struct rq *this_rq = cpu_rq(this_cpu);
3448 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3449 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3450
dd41f596 3451 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3452
3453#ifdef CONFIG_NO_HZ
3454 /*
3455 * If this cpu is the owner for idle load balancing, then do the
3456 * balancing on behalf of the other idle cpus whose ticks are
3457 * stopped.
3458 */
dd41f596
IM
3459 if (this_rq->idle_at_tick &&
3460 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3461 cpumask_t cpus = nohz.cpu_mask;
3462 struct rq *rq;
3463 int balance_cpu;
3464
dd41f596 3465 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3466 for_each_cpu_mask(balance_cpu, cpus) {
3467 /*
3468 * If this cpu gets work to do, stop the load balancing
3469 * work being done for other cpus. Next load
3470 * balancing owner will pick it up.
3471 */
3472 if (need_resched())
3473 break;
3474
de0cf899 3475 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3476
3477 rq = cpu_rq(balance_cpu);
dd41f596
IM
3478 if (time_after(this_rq->next_balance, rq->next_balance))
3479 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3480 }
3481 }
3482#endif
3483}
3484
3485/*
3486 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3487 *
3488 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3489 * idle load balancing owner or decide to stop the periodic load balancing,
3490 * if the whole system is idle.
3491 */
dd41f596 3492static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3493{
46cb4b7c
SS
3494#ifdef CONFIG_NO_HZ
3495 /*
3496 * If we were in the nohz mode recently and busy at the current
3497 * scheduler tick, then check if we need to nominate new idle
3498 * load balancer.
3499 */
3500 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3501 rq->in_nohz_recently = 0;
3502
3503 if (atomic_read(&nohz.load_balancer) == cpu) {
3504 cpu_clear(cpu, nohz.cpu_mask);
3505 atomic_set(&nohz.load_balancer, -1);
3506 }
3507
3508 if (atomic_read(&nohz.load_balancer) == -1) {
3509 /*
3510 * simple selection for now: Nominate the
3511 * first cpu in the nohz list to be the next
3512 * ilb owner.
3513 *
3514 * TBD: Traverse the sched domains and nominate
3515 * the nearest cpu in the nohz.cpu_mask.
3516 */
3517 int ilb = first_cpu(nohz.cpu_mask);
3518
3519 if (ilb != NR_CPUS)
3520 resched_cpu(ilb);
3521 }
3522 }
3523
3524 /*
3525 * If this cpu is idle and doing idle load balancing for all the
3526 * cpus with ticks stopped, is it time for that to stop?
3527 */
3528 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3529 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3530 resched_cpu(cpu);
3531 return;
3532 }
3533
3534 /*
3535 * If this cpu is idle and the idle load balancing is done by
3536 * someone else, then no need raise the SCHED_SOFTIRQ
3537 */
3538 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3539 cpu_isset(cpu, nohz.cpu_mask))
3540 return;
3541#endif
3542 if (time_after_eq(jiffies, rq->next_balance))
3543 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3544}
dd41f596
IM
3545
3546#else /* CONFIG_SMP */
3547
1da177e4
LT
3548/*
3549 * on UP we do not need to balance between CPUs:
3550 */
70b97a7f 3551static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3552{
3553}
dd41f596 3554
1da177e4
LT
3555#endif
3556
1da177e4
LT
3557DEFINE_PER_CPU(struct kernel_stat, kstat);
3558
3559EXPORT_PER_CPU_SYMBOL(kstat);
3560
3561/*
41b86e9c
IM
3562 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3563 * that have not yet been banked in case the task is currently running.
1da177e4 3564 */
41b86e9c 3565unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3566{
1da177e4 3567 unsigned long flags;
41b86e9c
IM
3568 u64 ns, delta_exec;
3569 struct rq *rq;
48f24c4d 3570
41b86e9c
IM
3571 rq = task_rq_lock(p, &flags);
3572 ns = p->se.sum_exec_runtime;
051a1d1a 3573 if (task_current(rq, p)) {
a8e504d2
IM
3574 update_rq_clock(rq);
3575 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3576 if ((s64)delta_exec > 0)
3577 ns += delta_exec;
3578 }
3579 task_rq_unlock(rq, &flags);
48f24c4d 3580
1da177e4
LT
3581 return ns;
3582}
3583
1da177e4
LT
3584/*
3585 * Account user cpu time to a process.
3586 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3587 * @cputime: the cpu time spent in user space since the last update
3588 */
3589void account_user_time(struct task_struct *p, cputime_t cputime)
3590{
3591 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3592 cputime64_t tmp;
3593
3594 p->utime = cputime_add(p->utime, cputime);
3595
3596 /* Add user time to cpustat. */
3597 tmp = cputime_to_cputime64(cputime);
3598 if (TASK_NICE(p) > 0)
3599 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3600 else
3601 cpustat->user = cputime64_add(cpustat->user, tmp);
3602}
3603
94886b84
LV
3604/*
3605 * Account guest cpu time to a process.
3606 * @p: the process that the cpu time gets accounted to
3607 * @cputime: the cpu time spent in virtual machine since the last update
3608 */
f7402e03 3609static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3610{
3611 cputime64_t tmp;
3612 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3613
3614 tmp = cputime_to_cputime64(cputime);
3615
3616 p->utime = cputime_add(p->utime, cputime);
3617 p->gtime = cputime_add(p->gtime, cputime);
3618
3619 cpustat->user = cputime64_add(cpustat->user, tmp);
3620 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3621}
3622
c66f08be
MN
3623/*
3624 * Account scaled user cpu time to a process.
3625 * @p: the process that the cpu time gets accounted to
3626 * @cputime: the cpu time spent in user space since the last update
3627 */
3628void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3629{
3630 p->utimescaled = cputime_add(p->utimescaled, cputime);
3631}
3632
1da177e4
LT
3633/*
3634 * Account system cpu time to a process.
3635 * @p: the process that the cpu time gets accounted to
3636 * @hardirq_offset: the offset to subtract from hardirq_count()
3637 * @cputime: the cpu time spent in kernel space since the last update
3638 */
3639void account_system_time(struct task_struct *p, int hardirq_offset,
3640 cputime_t cputime)
3641{
3642 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3643 struct rq *rq = this_rq();
1da177e4
LT
3644 cputime64_t tmp;
3645
9778385d
CB
3646 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3647 return account_guest_time(p, cputime);
94886b84 3648
1da177e4
LT
3649 p->stime = cputime_add(p->stime, cputime);
3650
3651 /* Add system time to cpustat. */
3652 tmp = cputime_to_cputime64(cputime);
3653 if (hardirq_count() - hardirq_offset)
3654 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3655 else if (softirq_count())
3656 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3657 else if (p != rq->idle)
1da177e4 3658 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3659 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3660 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3661 else
3662 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3663 /* Account for system time used */
3664 acct_update_integrals(p);
1da177e4
LT
3665}
3666
c66f08be
MN
3667/*
3668 * Account scaled system cpu time to a process.
3669 * @p: the process that the cpu time gets accounted to
3670 * @hardirq_offset: the offset to subtract from hardirq_count()
3671 * @cputime: the cpu time spent in kernel space since the last update
3672 */
3673void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3674{
3675 p->stimescaled = cputime_add(p->stimescaled, cputime);
3676}
3677
1da177e4
LT
3678/*
3679 * Account for involuntary wait time.
3680 * @p: the process from which the cpu time has been stolen
3681 * @steal: the cpu time spent in involuntary wait
3682 */
3683void account_steal_time(struct task_struct *p, cputime_t steal)
3684{
3685 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3686 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3687 struct rq *rq = this_rq();
1da177e4
LT
3688
3689 if (p == rq->idle) {
3690 p->stime = cputime_add(p->stime, steal);
3691 if (atomic_read(&rq->nr_iowait) > 0)
3692 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3693 else
3694 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3695 } else
1da177e4
LT
3696 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3697}
3698
7835b98b
CL
3699/*
3700 * This function gets called by the timer code, with HZ frequency.
3701 * We call it with interrupts disabled.
3702 *
3703 * It also gets called by the fork code, when changing the parent's
3704 * timeslices.
3705 */
3706void scheduler_tick(void)
3707{
7835b98b
CL
3708 int cpu = smp_processor_id();
3709 struct rq *rq = cpu_rq(cpu);
dd41f596 3710 struct task_struct *curr = rq->curr;
529c7726 3711 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3712
3713 spin_lock(&rq->lock);
546fe3c9 3714 __update_rq_clock(rq);
529c7726
IM
3715 /*
3716 * Let rq->clock advance by at least TICK_NSEC:
3717 */
cc203d24 3718 if (unlikely(rq->clock < next_tick)) {
529c7726 3719 rq->clock = next_tick;
cc203d24
GC
3720 rq->clock_underflows++;
3721 }
529c7726 3722 rq->tick_timestamp = rq->clock;
f1a438d8 3723 update_cpu_load(rq);
fa85ae24
PZ
3724 curr->sched_class->task_tick(rq, curr, 0);
3725 update_sched_rt_period(rq);
dd41f596 3726 spin_unlock(&rq->lock);
7835b98b 3727
e418e1c2 3728#ifdef CONFIG_SMP
dd41f596
IM
3729 rq->idle_at_tick = idle_cpu(cpu);
3730 trigger_load_balance(rq, cpu);
e418e1c2 3731#endif
1da177e4
LT
3732}
3733
1da177e4
LT
3734#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3735
43627582 3736void __kprobes add_preempt_count(int val)
1da177e4
LT
3737{
3738 /*
3739 * Underflow?
3740 */
9a11b49a
IM
3741 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3742 return;
1da177e4
LT
3743 preempt_count() += val;
3744 /*
3745 * Spinlock count overflowing soon?
3746 */
33859f7f
MOS
3747 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3748 PREEMPT_MASK - 10);
1da177e4
LT
3749}
3750EXPORT_SYMBOL(add_preempt_count);
3751
43627582 3752void __kprobes sub_preempt_count(int val)
1da177e4
LT
3753{
3754 /*
3755 * Underflow?
3756 */
9a11b49a
IM
3757 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3758 return;
1da177e4
LT
3759 /*
3760 * Is the spinlock portion underflowing?
3761 */
9a11b49a
IM
3762 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3763 !(preempt_count() & PREEMPT_MASK)))
3764 return;
3765
1da177e4
LT
3766 preempt_count() -= val;
3767}
3768EXPORT_SYMBOL(sub_preempt_count);
3769
3770#endif
3771
3772/*
dd41f596 3773 * Print scheduling while atomic bug:
1da177e4 3774 */
dd41f596 3775static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3776{
838225b4
SS
3777 struct pt_regs *regs = get_irq_regs();
3778
3779 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3780 prev->comm, prev->pid, preempt_count());
3781
dd41f596
IM
3782 debug_show_held_locks(prev);
3783 if (irqs_disabled())
3784 print_irqtrace_events(prev);
838225b4
SS
3785
3786 if (regs)
3787 show_regs(regs);
3788 else
3789 dump_stack();
dd41f596 3790}
1da177e4 3791
dd41f596
IM
3792/*
3793 * Various schedule()-time debugging checks and statistics:
3794 */
3795static inline void schedule_debug(struct task_struct *prev)
3796{
1da177e4 3797 /*
41a2d6cf 3798 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3799 * schedule() atomically, we ignore that path for now.
3800 * Otherwise, whine if we are scheduling when we should not be.
3801 */
dd41f596
IM
3802 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3803 __schedule_bug(prev);
3804
1da177e4
LT
3805 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3806
2d72376b 3807 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3808#ifdef CONFIG_SCHEDSTATS
3809 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3810 schedstat_inc(this_rq(), bkl_count);
3811 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3812 }
3813#endif
dd41f596
IM
3814}
3815
3816/*
3817 * Pick up the highest-prio task:
3818 */
3819static inline struct task_struct *
ff95f3df 3820pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3821{
5522d5d5 3822 const struct sched_class *class;
dd41f596 3823 struct task_struct *p;
1da177e4
LT
3824
3825 /*
dd41f596
IM
3826 * Optimization: we know that if all tasks are in
3827 * the fair class we can call that function directly:
1da177e4 3828 */
dd41f596 3829 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3830 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3831 if (likely(p))
3832 return p;
1da177e4
LT
3833 }
3834
dd41f596
IM
3835 class = sched_class_highest;
3836 for ( ; ; ) {
fb8d4724 3837 p = class->pick_next_task(rq);
dd41f596
IM
3838 if (p)
3839 return p;
3840 /*
3841 * Will never be NULL as the idle class always
3842 * returns a non-NULL p:
3843 */
3844 class = class->next;
3845 }
3846}
1da177e4 3847
dd41f596
IM
3848/*
3849 * schedule() is the main scheduler function.
3850 */
3851asmlinkage void __sched schedule(void)
3852{
3853 struct task_struct *prev, *next;
67ca7bde 3854 unsigned long *switch_count;
dd41f596 3855 struct rq *rq;
dd41f596
IM
3856 int cpu;
3857
3858need_resched:
3859 preempt_disable();
3860 cpu = smp_processor_id();
3861 rq = cpu_rq(cpu);
3862 rcu_qsctr_inc(cpu);
3863 prev = rq->curr;
3864 switch_count = &prev->nivcsw;
3865
3866 release_kernel_lock(prev);
3867need_resched_nonpreemptible:
3868
3869 schedule_debug(prev);
1da177e4 3870
8f4d37ec
PZ
3871 hrtick_clear(rq);
3872
1e819950
IM
3873 /*
3874 * Do the rq-clock update outside the rq lock:
3875 */
3876 local_irq_disable();
c1b3da3e 3877 __update_rq_clock(rq);
1e819950
IM
3878 spin_lock(&rq->lock);
3879 clear_tsk_need_resched(prev);
1da177e4 3880
1da177e4 3881 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3882 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3883 unlikely(signal_pending(prev)))) {
1da177e4 3884 prev->state = TASK_RUNNING;
dd41f596 3885 } else {
2e1cb74a 3886 deactivate_task(rq, prev, 1);
1da177e4 3887 }
dd41f596 3888 switch_count = &prev->nvcsw;
1da177e4
LT
3889 }
3890
9a897c5a
SR
3891#ifdef CONFIG_SMP
3892 if (prev->sched_class->pre_schedule)
3893 prev->sched_class->pre_schedule(rq, prev);
3894#endif
f65eda4f 3895
dd41f596 3896 if (unlikely(!rq->nr_running))
1da177e4 3897 idle_balance(cpu, rq);
1da177e4 3898
31ee529c 3899 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3900 next = pick_next_task(rq, prev);
1da177e4
LT
3901
3902 sched_info_switch(prev, next);
dd41f596 3903
1da177e4 3904 if (likely(prev != next)) {
1da177e4
LT
3905 rq->nr_switches++;
3906 rq->curr = next;
3907 ++*switch_count;
3908
dd41f596 3909 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3910 /*
3911 * the context switch might have flipped the stack from under
3912 * us, hence refresh the local variables.
3913 */
3914 cpu = smp_processor_id();
3915 rq = cpu_rq(cpu);
1da177e4
LT
3916 } else
3917 spin_unlock_irq(&rq->lock);
3918
8f4d37ec
PZ
3919 hrtick_set(rq);
3920
3921 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 3922 goto need_resched_nonpreemptible;
8f4d37ec 3923
1da177e4
LT
3924 preempt_enable_no_resched();
3925 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3926 goto need_resched;
3927}
1da177e4
LT
3928EXPORT_SYMBOL(schedule);
3929
3930#ifdef CONFIG_PREEMPT
3931/*
2ed6e34f 3932 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3933 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3934 * occur there and call schedule directly.
3935 */
3936asmlinkage void __sched preempt_schedule(void)
3937{
3938 struct thread_info *ti = current_thread_info();
1da177e4
LT
3939 struct task_struct *task = current;
3940 int saved_lock_depth;
6478d880 3941
1da177e4
LT
3942 /*
3943 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3944 * we do not want to preempt the current task. Just return..
1da177e4 3945 */
beed33a8 3946 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3947 return;
3948
3a5c359a
AK
3949 do {
3950 add_preempt_count(PREEMPT_ACTIVE);
3951
3952 /*
3953 * We keep the big kernel semaphore locked, but we
3954 * clear ->lock_depth so that schedule() doesnt
3955 * auto-release the semaphore:
3956 */
3a5c359a
AK
3957 saved_lock_depth = task->lock_depth;
3958 task->lock_depth = -1;
3a5c359a 3959 schedule();
3a5c359a 3960 task->lock_depth = saved_lock_depth;
3a5c359a 3961 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3962
3a5c359a
AK
3963 /*
3964 * Check again in case we missed a preemption opportunity
3965 * between schedule and now.
3966 */
3967 barrier();
3968 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3969}
1da177e4
LT
3970EXPORT_SYMBOL(preempt_schedule);
3971
3972/*
2ed6e34f 3973 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3974 * off of irq context.
3975 * Note, that this is called and return with irqs disabled. This will
3976 * protect us against recursive calling from irq.
3977 */
3978asmlinkage void __sched preempt_schedule_irq(void)
3979{
3980 struct thread_info *ti = current_thread_info();
1da177e4
LT
3981 struct task_struct *task = current;
3982 int saved_lock_depth;
6478d880 3983
2ed6e34f 3984 /* Catch callers which need to be fixed */
1da177e4
LT
3985 BUG_ON(ti->preempt_count || !irqs_disabled());
3986
3a5c359a
AK
3987 do {
3988 add_preempt_count(PREEMPT_ACTIVE);
3989
3990 /*
3991 * We keep the big kernel semaphore locked, but we
3992 * clear ->lock_depth so that schedule() doesnt
3993 * auto-release the semaphore:
3994 */
3a5c359a
AK
3995 saved_lock_depth = task->lock_depth;
3996 task->lock_depth = -1;
3a5c359a
AK
3997 local_irq_enable();
3998 schedule();
3999 local_irq_disable();
3a5c359a 4000 task->lock_depth = saved_lock_depth;
3a5c359a 4001 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4002
3a5c359a
AK
4003 /*
4004 * Check again in case we missed a preemption opportunity
4005 * between schedule and now.
4006 */
4007 barrier();
4008 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4009}
4010
4011#endif /* CONFIG_PREEMPT */
4012
95cdf3b7
IM
4013int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4014 void *key)
1da177e4 4015{
48f24c4d 4016 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4017}
1da177e4
LT
4018EXPORT_SYMBOL(default_wake_function);
4019
4020/*
41a2d6cf
IM
4021 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4022 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4023 * number) then we wake all the non-exclusive tasks and one exclusive task.
4024 *
4025 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4026 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4027 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4028 */
4029static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4030 int nr_exclusive, int sync, void *key)
4031{
2e45874c 4032 wait_queue_t *curr, *next;
1da177e4 4033
2e45874c 4034 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4035 unsigned flags = curr->flags;
4036
1da177e4 4037 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4038 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4039 break;
4040 }
4041}
4042
4043/**
4044 * __wake_up - wake up threads blocked on a waitqueue.
4045 * @q: the waitqueue
4046 * @mode: which threads
4047 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4048 * @key: is directly passed to the wakeup function
1da177e4 4049 */
7ad5b3a5 4050void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4051 int nr_exclusive, void *key)
1da177e4
LT
4052{
4053 unsigned long flags;
4054
4055 spin_lock_irqsave(&q->lock, flags);
4056 __wake_up_common(q, mode, nr_exclusive, 0, key);
4057 spin_unlock_irqrestore(&q->lock, flags);
4058}
1da177e4
LT
4059EXPORT_SYMBOL(__wake_up);
4060
4061/*
4062 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4063 */
7ad5b3a5 4064void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4065{
4066 __wake_up_common(q, mode, 1, 0, NULL);
4067}
4068
4069/**
67be2dd1 4070 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4071 * @q: the waitqueue
4072 * @mode: which threads
4073 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4074 *
4075 * The sync wakeup differs that the waker knows that it will schedule
4076 * away soon, so while the target thread will be woken up, it will not
4077 * be migrated to another CPU - ie. the two threads are 'synchronized'
4078 * with each other. This can prevent needless bouncing between CPUs.
4079 *
4080 * On UP it can prevent extra preemption.
4081 */
7ad5b3a5 4082void
95cdf3b7 4083__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4084{
4085 unsigned long flags;
4086 int sync = 1;
4087
4088 if (unlikely(!q))
4089 return;
4090
4091 if (unlikely(!nr_exclusive))
4092 sync = 0;
4093
4094 spin_lock_irqsave(&q->lock, flags);
4095 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4096 spin_unlock_irqrestore(&q->lock, flags);
4097}
4098EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4099
b15136e9 4100void complete(struct completion *x)
1da177e4
LT
4101{
4102 unsigned long flags;
4103
4104 spin_lock_irqsave(&x->wait.lock, flags);
4105 x->done++;
d9514f6c 4106 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4107 spin_unlock_irqrestore(&x->wait.lock, flags);
4108}
4109EXPORT_SYMBOL(complete);
4110
b15136e9 4111void complete_all(struct completion *x)
1da177e4
LT
4112{
4113 unsigned long flags;
4114
4115 spin_lock_irqsave(&x->wait.lock, flags);
4116 x->done += UINT_MAX/2;
d9514f6c 4117 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4118 spin_unlock_irqrestore(&x->wait.lock, flags);
4119}
4120EXPORT_SYMBOL(complete_all);
4121
8cbbe86d
AK
4122static inline long __sched
4123do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4124{
1da177e4
LT
4125 if (!x->done) {
4126 DECLARE_WAITQUEUE(wait, current);
4127
4128 wait.flags |= WQ_FLAG_EXCLUSIVE;
4129 __add_wait_queue_tail(&x->wait, &wait);
4130 do {
009e577e
MW
4131 if ((state == TASK_INTERRUPTIBLE &&
4132 signal_pending(current)) ||
4133 (state == TASK_KILLABLE &&
4134 fatal_signal_pending(current))) {
8cbbe86d
AK
4135 __remove_wait_queue(&x->wait, &wait);
4136 return -ERESTARTSYS;
4137 }
4138 __set_current_state(state);
1da177e4
LT
4139 spin_unlock_irq(&x->wait.lock);
4140 timeout = schedule_timeout(timeout);
4141 spin_lock_irq(&x->wait.lock);
4142 if (!timeout) {
4143 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4144 return timeout;
1da177e4
LT
4145 }
4146 } while (!x->done);
4147 __remove_wait_queue(&x->wait, &wait);
4148 }
4149 x->done--;
1da177e4
LT
4150 return timeout;
4151}
1da177e4 4152
8cbbe86d
AK
4153static long __sched
4154wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4155{
1da177e4
LT
4156 might_sleep();
4157
4158 spin_lock_irq(&x->wait.lock);
8cbbe86d 4159 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4160 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4161 return timeout;
4162}
1da177e4 4163
b15136e9 4164void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4165{
4166 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4167}
8cbbe86d 4168EXPORT_SYMBOL(wait_for_completion);
1da177e4 4169
b15136e9 4170unsigned long __sched
8cbbe86d 4171wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4172{
8cbbe86d 4173 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4174}
8cbbe86d 4175EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4176
8cbbe86d 4177int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4178{
51e97990
AK
4179 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4180 if (t == -ERESTARTSYS)
4181 return t;
4182 return 0;
0fec171c 4183}
8cbbe86d 4184EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4185
b15136e9 4186unsigned long __sched
8cbbe86d
AK
4187wait_for_completion_interruptible_timeout(struct completion *x,
4188 unsigned long timeout)
0fec171c 4189{
8cbbe86d 4190 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4191}
8cbbe86d 4192EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4193
009e577e
MW
4194int __sched wait_for_completion_killable(struct completion *x)
4195{
4196 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4197 if (t == -ERESTARTSYS)
4198 return t;
4199 return 0;
4200}
4201EXPORT_SYMBOL(wait_for_completion_killable);
4202
8cbbe86d
AK
4203static long __sched
4204sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4205{
0fec171c
IM
4206 unsigned long flags;
4207 wait_queue_t wait;
4208
4209 init_waitqueue_entry(&wait, current);
1da177e4 4210
8cbbe86d 4211 __set_current_state(state);
1da177e4 4212
8cbbe86d
AK
4213 spin_lock_irqsave(&q->lock, flags);
4214 __add_wait_queue(q, &wait);
4215 spin_unlock(&q->lock);
4216 timeout = schedule_timeout(timeout);
4217 spin_lock_irq(&q->lock);
4218 __remove_wait_queue(q, &wait);
4219 spin_unlock_irqrestore(&q->lock, flags);
4220
4221 return timeout;
4222}
4223
4224void __sched interruptible_sleep_on(wait_queue_head_t *q)
4225{
4226 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4227}
1da177e4
LT
4228EXPORT_SYMBOL(interruptible_sleep_on);
4229
0fec171c 4230long __sched
95cdf3b7 4231interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4232{
8cbbe86d 4233 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4234}
1da177e4
LT
4235EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4236
0fec171c 4237void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4238{
8cbbe86d 4239 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4240}
1da177e4
LT
4241EXPORT_SYMBOL(sleep_on);
4242
0fec171c 4243long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4244{
8cbbe86d 4245 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4246}
1da177e4
LT
4247EXPORT_SYMBOL(sleep_on_timeout);
4248
b29739f9
IM
4249#ifdef CONFIG_RT_MUTEXES
4250
4251/*
4252 * rt_mutex_setprio - set the current priority of a task
4253 * @p: task
4254 * @prio: prio value (kernel-internal form)
4255 *
4256 * This function changes the 'effective' priority of a task. It does
4257 * not touch ->normal_prio like __setscheduler().
4258 *
4259 * Used by the rt_mutex code to implement priority inheritance logic.
4260 */
36c8b586 4261void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4262{
4263 unsigned long flags;
83b699ed 4264 int oldprio, on_rq, running;
70b97a7f 4265 struct rq *rq;
cb469845 4266 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4267
4268 BUG_ON(prio < 0 || prio > MAX_PRIO);
4269
4270 rq = task_rq_lock(p, &flags);
a8e504d2 4271 update_rq_clock(rq);
b29739f9 4272
d5f9f942 4273 oldprio = p->prio;
dd41f596 4274 on_rq = p->se.on_rq;
051a1d1a 4275 running = task_current(rq, p);
0e1f3483 4276 if (on_rq)
69be72c1 4277 dequeue_task(rq, p, 0);
0e1f3483
HS
4278 if (running)
4279 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4280
4281 if (rt_prio(prio))
4282 p->sched_class = &rt_sched_class;
4283 else
4284 p->sched_class = &fair_sched_class;
4285
b29739f9
IM
4286 p->prio = prio;
4287
0e1f3483
HS
4288 if (running)
4289 p->sched_class->set_curr_task(rq);
dd41f596 4290 if (on_rq) {
8159f87e 4291 enqueue_task(rq, p, 0);
cb469845
SR
4292
4293 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4294 }
4295 task_rq_unlock(rq, &flags);
4296}
4297
4298#endif
4299
36c8b586 4300void set_user_nice(struct task_struct *p, long nice)
1da177e4 4301{
dd41f596 4302 int old_prio, delta, on_rq;
1da177e4 4303 unsigned long flags;
70b97a7f 4304 struct rq *rq;
1da177e4
LT
4305
4306 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4307 return;
4308 /*
4309 * We have to be careful, if called from sys_setpriority(),
4310 * the task might be in the middle of scheduling on another CPU.
4311 */
4312 rq = task_rq_lock(p, &flags);
a8e504d2 4313 update_rq_clock(rq);
1da177e4
LT
4314 /*
4315 * The RT priorities are set via sched_setscheduler(), but we still
4316 * allow the 'normal' nice value to be set - but as expected
4317 * it wont have any effect on scheduling until the task is
dd41f596 4318 * SCHED_FIFO/SCHED_RR:
1da177e4 4319 */
e05606d3 4320 if (task_has_rt_policy(p)) {
1da177e4
LT
4321 p->static_prio = NICE_TO_PRIO(nice);
4322 goto out_unlock;
4323 }
dd41f596 4324 on_rq = p->se.on_rq;
62fb1851 4325 if (on_rq) {
69be72c1 4326 dequeue_task(rq, p, 0);
62fb1851
PZ
4327 dec_load(rq, p);
4328 }
1da177e4 4329
1da177e4 4330 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4331 set_load_weight(p);
b29739f9
IM
4332 old_prio = p->prio;
4333 p->prio = effective_prio(p);
4334 delta = p->prio - old_prio;
1da177e4 4335
dd41f596 4336 if (on_rq) {
8159f87e 4337 enqueue_task(rq, p, 0);
62fb1851 4338 inc_load(rq, p);
1da177e4 4339 /*
d5f9f942
AM
4340 * If the task increased its priority or is running and
4341 * lowered its priority, then reschedule its CPU:
1da177e4 4342 */
d5f9f942 4343 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4344 resched_task(rq->curr);
4345 }
4346out_unlock:
4347 task_rq_unlock(rq, &flags);
4348}
1da177e4
LT
4349EXPORT_SYMBOL(set_user_nice);
4350
e43379f1
MM
4351/*
4352 * can_nice - check if a task can reduce its nice value
4353 * @p: task
4354 * @nice: nice value
4355 */
36c8b586 4356int can_nice(const struct task_struct *p, const int nice)
e43379f1 4357{
024f4747
MM
4358 /* convert nice value [19,-20] to rlimit style value [1,40] */
4359 int nice_rlim = 20 - nice;
48f24c4d 4360
e43379f1
MM
4361 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4362 capable(CAP_SYS_NICE));
4363}
4364
1da177e4
LT
4365#ifdef __ARCH_WANT_SYS_NICE
4366
4367/*
4368 * sys_nice - change the priority of the current process.
4369 * @increment: priority increment
4370 *
4371 * sys_setpriority is a more generic, but much slower function that
4372 * does similar things.
4373 */
4374asmlinkage long sys_nice(int increment)
4375{
48f24c4d 4376 long nice, retval;
1da177e4
LT
4377
4378 /*
4379 * Setpriority might change our priority at the same moment.
4380 * We don't have to worry. Conceptually one call occurs first
4381 * and we have a single winner.
4382 */
e43379f1
MM
4383 if (increment < -40)
4384 increment = -40;
1da177e4
LT
4385 if (increment > 40)
4386 increment = 40;
4387
4388 nice = PRIO_TO_NICE(current->static_prio) + increment;
4389 if (nice < -20)
4390 nice = -20;
4391 if (nice > 19)
4392 nice = 19;
4393
e43379f1
MM
4394 if (increment < 0 && !can_nice(current, nice))
4395 return -EPERM;
4396
1da177e4
LT
4397 retval = security_task_setnice(current, nice);
4398 if (retval)
4399 return retval;
4400
4401 set_user_nice(current, nice);
4402 return 0;
4403}
4404
4405#endif
4406
4407/**
4408 * task_prio - return the priority value of a given task.
4409 * @p: the task in question.
4410 *
4411 * This is the priority value as seen by users in /proc.
4412 * RT tasks are offset by -200. Normal tasks are centered
4413 * around 0, value goes from -16 to +15.
4414 */
36c8b586 4415int task_prio(const struct task_struct *p)
1da177e4
LT
4416{
4417 return p->prio - MAX_RT_PRIO;
4418}
4419
4420/**
4421 * task_nice - return the nice value of a given task.
4422 * @p: the task in question.
4423 */
36c8b586 4424int task_nice(const struct task_struct *p)
1da177e4
LT
4425{
4426 return TASK_NICE(p);
4427}
150d8bed 4428EXPORT_SYMBOL(task_nice);
1da177e4
LT
4429
4430/**
4431 * idle_cpu - is a given cpu idle currently?
4432 * @cpu: the processor in question.
4433 */
4434int idle_cpu(int cpu)
4435{
4436 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4437}
4438
1da177e4
LT
4439/**
4440 * idle_task - return the idle task for a given cpu.
4441 * @cpu: the processor in question.
4442 */
36c8b586 4443struct task_struct *idle_task(int cpu)
1da177e4
LT
4444{
4445 return cpu_rq(cpu)->idle;
4446}
4447
4448/**
4449 * find_process_by_pid - find a process with a matching PID value.
4450 * @pid: the pid in question.
4451 */
a9957449 4452static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4453{
228ebcbe 4454 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4455}
4456
4457/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4458static void
4459__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4460{
dd41f596 4461 BUG_ON(p->se.on_rq);
48f24c4d 4462
1da177e4 4463 p->policy = policy;
dd41f596
IM
4464 switch (p->policy) {
4465 case SCHED_NORMAL:
4466 case SCHED_BATCH:
4467 case SCHED_IDLE:
4468 p->sched_class = &fair_sched_class;
4469 break;
4470 case SCHED_FIFO:
4471 case SCHED_RR:
4472 p->sched_class = &rt_sched_class;
4473 break;
4474 }
4475
1da177e4 4476 p->rt_priority = prio;
b29739f9
IM
4477 p->normal_prio = normal_prio(p);
4478 /* we are holding p->pi_lock already */
4479 p->prio = rt_mutex_getprio(p);
2dd73a4f 4480 set_load_weight(p);
1da177e4
LT
4481}
4482
4483/**
72fd4a35 4484 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4485 * @p: the task in question.
4486 * @policy: new policy.
4487 * @param: structure containing the new RT priority.
5fe1d75f 4488 *
72fd4a35 4489 * NOTE that the task may be already dead.
1da177e4 4490 */
95cdf3b7
IM
4491int sched_setscheduler(struct task_struct *p, int policy,
4492 struct sched_param *param)
1da177e4 4493{
83b699ed 4494 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4495 unsigned long flags;
cb469845 4496 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4497 struct rq *rq;
1da177e4 4498
66e5393a
SR
4499 /* may grab non-irq protected spin_locks */
4500 BUG_ON(in_interrupt());
1da177e4
LT
4501recheck:
4502 /* double check policy once rq lock held */
4503 if (policy < 0)
4504 policy = oldpolicy = p->policy;
4505 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4506 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4507 policy != SCHED_IDLE)
b0a9499c 4508 return -EINVAL;
1da177e4
LT
4509 /*
4510 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4511 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4512 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4513 */
4514 if (param->sched_priority < 0 ||
95cdf3b7 4515 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4516 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4517 return -EINVAL;
e05606d3 4518 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4519 return -EINVAL;
4520
37e4ab3f
OC
4521 /*
4522 * Allow unprivileged RT tasks to decrease priority:
4523 */
4524 if (!capable(CAP_SYS_NICE)) {
e05606d3 4525 if (rt_policy(policy)) {
8dc3e909 4526 unsigned long rlim_rtprio;
8dc3e909
ON
4527
4528 if (!lock_task_sighand(p, &flags))
4529 return -ESRCH;
4530 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4531 unlock_task_sighand(p, &flags);
4532
4533 /* can't set/change the rt policy */
4534 if (policy != p->policy && !rlim_rtprio)
4535 return -EPERM;
4536
4537 /* can't increase priority */
4538 if (param->sched_priority > p->rt_priority &&
4539 param->sched_priority > rlim_rtprio)
4540 return -EPERM;
4541 }
dd41f596
IM
4542 /*
4543 * Like positive nice levels, dont allow tasks to
4544 * move out of SCHED_IDLE either:
4545 */
4546 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4547 return -EPERM;
5fe1d75f 4548
37e4ab3f
OC
4549 /* can't change other user's priorities */
4550 if ((current->euid != p->euid) &&
4551 (current->euid != p->uid))
4552 return -EPERM;
4553 }
1da177e4 4554
b68aa230
PZ
4555#ifdef CONFIG_RT_GROUP_SCHED
4556 /*
4557 * Do not allow realtime tasks into groups that have no runtime
4558 * assigned.
4559 */
4560 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4561 return -EPERM;
4562#endif
4563
1da177e4
LT
4564 retval = security_task_setscheduler(p, policy, param);
4565 if (retval)
4566 return retval;
b29739f9
IM
4567 /*
4568 * make sure no PI-waiters arrive (or leave) while we are
4569 * changing the priority of the task:
4570 */
4571 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4572 /*
4573 * To be able to change p->policy safely, the apropriate
4574 * runqueue lock must be held.
4575 */
b29739f9 4576 rq = __task_rq_lock(p);
1da177e4
LT
4577 /* recheck policy now with rq lock held */
4578 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4579 policy = oldpolicy = -1;
b29739f9
IM
4580 __task_rq_unlock(rq);
4581 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4582 goto recheck;
4583 }
2daa3577 4584 update_rq_clock(rq);
dd41f596 4585 on_rq = p->se.on_rq;
051a1d1a 4586 running = task_current(rq, p);
0e1f3483 4587 if (on_rq)
2e1cb74a 4588 deactivate_task(rq, p, 0);
0e1f3483
HS
4589 if (running)
4590 p->sched_class->put_prev_task(rq, p);
f6b53205 4591
1da177e4 4592 oldprio = p->prio;
dd41f596 4593 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4594
0e1f3483
HS
4595 if (running)
4596 p->sched_class->set_curr_task(rq);
dd41f596
IM
4597 if (on_rq) {
4598 activate_task(rq, p, 0);
cb469845
SR
4599
4600 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4601 }
b29739f9
IM
4602 __task_rq_unlock(rq);
4603 spin_unlock_irqrestore(&p->pi_lock, flags);
4604
95e02ca9
TG
4605 rt_mutex_adjust_pi(p);
4606
1da177e4
LT
4607 return 0;
4608}
4609EXPORT_SYMBOL_GPL(sched_setscheduler);
4610
95cdf3b7
IM
4611static int
4612do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4613{
1da177e4
LT
4614 struct sched_param lparam;
4615 struct task_struct *p;
36c8b586 4616 int retval;
1da177e4
LT
4617
4618 if (!param || pid < 0)
4619 return -EINVAL;
4620 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4621 return -EFAULT;
5fe1d75f
ON
4622
4623 rcu_read_lock();
4624 retval = -ESRCH;
1da177e4 4625 p = find_process_by_pid(pid);
5fe1d75f
ON
4626 if (p != NULL)
4627 retval = sched_setscheduler(p, policy, &lparam);
4628 rcu_read_unlock();
36c8b586 4629
1da177e4
LT
4630 return retval;
4631}
4632
4633/**
4634 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4635 * @pid: the pid in question.
4636 * @policy: new policy.
4637 * @param: structure containing the new RT priority.
4638 */
41a2d6cf
IM
4639asmlinkage long
4640sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4641{
c21761f1
JB
4642 /* negative values for policy are not valid */
4643 if (policy < 0)
4644 return -EINVAL;
4645
1da177e4
LT
4646 return do_sched_setscheduler(pid, policy, param);
4647}
4648
4649/**
4650 * sys_sched_setparam - set/change the RT priority of a thread
4651 * @pid: the pid in question.
4652 * @param: structure containing the new RT priority.
4653 */
4654asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4655{
4656 return do_sched_setscheduler(pid, -1, param);
4657}
4658
4659/**
4660 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4661 * @pid: the pid in question.
4662 */
4663asmlinkage long sys_sched_getscheduler(pid_t pid)
4664{
36c8b586 4665 struct task_struct *p;
3a5c359a 4666 int retval;
1da177e4
LT
4667
4668 if (pid < 0)
3a5c359a 4669 return -EINVAL;
1da177e4
LT
4670
4671 retval = -ESRCH;
4672 read_lock(&tasklist_lock);
4673 p = find_process_by_pid(pid);
4674 if (p) {
4675 retval = security_task_getscheduler(p);
4676 if (!retval)
4677 retval = p->policy;
4678 }
4679 read_unlock(&tasklist_lock);
1da177e4
LT
4680 return retval;
4681}
4682
4683/**
4684 * sys_sched_getscheduler - get the RT priority of a thread
4685 * @pid: the pid in question.
4686 * @param: structure containing the RT priority.
4687 */
4688asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4689{
4690 struct sched_param lp;
36c8b586 4691 struct task_struct *p;
3a5c359a 4692 int retval;
1da177e4
LT
4693
4694 if (!param || pid < 0)
3a5c359a 4695 return -EINVAL;
1da177e4
LT
4696
4697 read_lock(&tasklist_lock);
4698 p = find_process_by_pid(pid);
4699 retval = -ESRCH;
4700 if (!p)
4701 goto out_unlock;
4702
4703 retval = security_task_getscheduler(p);
4704 if (retval)
4705 goto out_unlock;
4706
4707 lp.sched_priority = p->rt_priority;
4708 read_unlock(&tasklist_lock);
4709
4710 /*
4711 * This one might sleep, we cannot do it with a spinlock held ...
4712 */
4713 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4714
1da177e4
LT
4715 return retval;
4716
4717out_unlock:
4718 read_unlock(&tasklist_lock);
4719 return retval;
4720}
4721
4722long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4723{
1da177e4 4724 cpumask_t cpus_allowed;
36c8b586
IM
4725 struct task_struct *p;
4726 int retval;
1da177e4 4727
95402b38 4728 get_online_cpus();
1da177e4
LT
4729 read_lock(&tasklist_lock);
4730
4731 p = find_process_by_pid(pid);
4732 if (!p) {
4733 read_unlock(&tasklist_lock);
95402b38 4734 put_online_cpus();
1da177e4
LT
4735 return -ESRCH;
4736 }
4737
4738 /*
4739 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4740 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4741 * usage count and then drop tasklist_lock.
4742 */
4743 get_task_struct(p);
4744 read_unlock(&tasklist_lock);
4745
4746 retval = -EPERM;
4747 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4748 !capable(CAP_SYS_NICE))
4749 goto out_unlock;
4750
e7834f8f
DQ
4751 retval = security_task_setscheduler(p, 0, NULL);
4752 if (retval)
4753 goto out_unlock;
4754
1da177e4
LT
4755 cpus_allowed = cpuset_cpus_allowed(p);
4756 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4757 again:
1da177e4
LT
4758 retval = set_cpus_allowed(p, new_mask);
4759
8707d8b8
PM
4760 if (!retval) {
4761 cpus_allowed = cpuset_cpus_allowed(p);
4762 if (!cpus_subset(new_mask, cpus_allowed)) {
4763 /*
4764 * We must have raced with a concurrent cpuset
4765 * update. Just reset the cpus_allowed to the
4766 * cpuset's cpus_allowed
4767 */
4768 new_mask = cpus_allowed;
4769 goto again;
4770 }
4771 }
1da177e4
LT
4772out_unlock:
4773 put_task_struct(p);
95402b38 4774 put_online_cpus();
1da177e4
LT
4775 return retval;
4776}
4777
4778static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4779 cpumask_t *new_mask)
4780{
4781 if (len < sizeof(cpumask_t)) {
4782 memset(new_mask, 0, sizeof(cpumask_t));
4783 } else if (len > sizeof(cpumask_t)) {
4784 len = sizeof(cpumask_t);
4785 }
4786 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4787}
4788
4789/**
4790 * sys_sched_setaffinity - set the cpu affinity of a process
4791 * @pid: pid of the process
4792 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4793 * @user_mask_ptr: user-space pointer to the new cpu mask
4794 */
4795asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4796 unsigned long __user *user_mask_ptr)
4797{
4798 cpumask_t new_mask;
4799 int retval;
4800
4801 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4802 if (retval)
4803 return retval;
4804
4805 return sched_setaffinity(pid, new_mask);
4806}
4807
4808/*
4809 * Represents all cpu's present in the system
4810 * In systems capable of hotplug, this map could dynamically grow
4811 * as new cpu's are detected in the system via any platform specific
4812 * method, such as ACPI for e.g.
4813 */
4814
4cef0c61 4815cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4816EXPORT_SYMBOL(cpu_present_map);
4817
4818#ifndef CONFIG_SMP
4cef0c61 4819cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4820EXPORT_SYMBOL(cpu_online_map);
4821
4cef0c61 4822cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4823EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4824#endif
4825
4826long sched_getaffinity(pid_t pid, cpumask_t *mask)
4827{
36c8b586 4828 struct task_struct *p;
1da177e4 4829 int retval;
1da177e4 4830
95402b38 4831 get_online_cpus();
1da177e4
LT
4832 read_lock(&tasklist_lock);
4833
4834 retval = -ESRCH;
4835 p = find_process_by_pid(pid);
4836 if (!p)
4837 goto out_unlock;
4838
e7834f8f
DQ
4839 retval = security_task_getscheduler(p);
4840 if (retval)
4841 goto out_unlock;
4842
2f7016d9 4843 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4844
4845out_unlock:
4846 read_unlock(&tasklist_lock);
95402b38 4847 put_online_cpus();
1da177e4 4848
9531b62f 4849 return retval;
1da177e4
LT
4850}
4851
4852/**
4853 * sys_sched_getaffinity - get the cpu affinity of a process
4854 * @pid: pid of the process
4855 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4856 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4857 */
4858asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4859 unsigned long __user *user_mask_ptr)
4860{
4861 int ret;
4862 cpumask_t mask;
4863
4864 if (len < sizeof(cpumask_t))
4865 return -EINVAL;
4866
4867 ret = sched_getaffinity(pid, &mask);
4868 if (ret < 0)
4869 return ret;
4870
4871 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4872 return -EFAULT;
4873
4874 return sizeof(cpumask_t);
4875}
4876
4877/**
4878 * sys_sched_yield - yield the current processor to other threads.
4879 *
dd41f596
IM
4880 * This function yields the current CPU to other tasks. If there are no
4881 * other threads running on this CPU then this function will return.
1da177e4
LT
4882 */
4883asmlinkage long sys_sched_yield(void)
4884{
70b97a7f 4885 struct rq *rq = this_rq_lock();
1da177e4 4886
2d72376b 4887 schedstat_inc(rq, yld_count);
4530d7ab 4888 current->sched_class->yield_task(rq);
1da177e4
LT
4889
4890 /*
4891 * Since we are going to call schedule() anyway, there's
4892 * no need to preempt or enable interrupts:
4893 */
4894 __release(rq->lock);
8a25d5de 4895 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4896 _raw_spin_unlock(&rq->lock);
4897 preempt_enable_no_resched();
4898
4899 schedule();
4900
4901 return 0;
4902}
4903
e7b38404 4904static void __cond_resched(void)
1da177e4 4905{
8e0a43d8
IM
4906#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4907 __might_sleep(__FILE__, __LINE__);
4908#endif
5bbcfd90
IM
4909 /*
4910 * The BKS might be reacquired before we have dropped
4911 * PREEMPT_ACTIVE, which could trigger a second
4912 * cond_resched() call.
4913 */
1da177e4
LT
4914 do {
4915 add_preempt_count(PREEMPT_ACTIVE);
4916 schedule();
4917 sub_preempt_count(PREEMPT_ACTIVE);
4918 } while (need_resched());
4919}
4920
02b67cc3
HX
4921#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4922int __sched _cond_resched(void)
1da177e4 4923{
9414232f
IM
4924 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4925 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4926 __cond_resched();
4927 return 1;
4928 }
4929 return 0;
4930}
02b67cc3
HX
4931EXPORT_SYMBOL(_cond_resched);
4932#endif
1da177e4
LT
4933
4934/*
4935 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4936 * call schedule, and on return reacquire the lock.
4937 *
41a2d6cf 4938 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4939 * operations here to prevent schedule() from being called twice (once via
4940 * spin_unlock(), once by hand).
4941 */
95cdf3b7 4942int cond_resched_lock(spinlock_t *lock)
1da177e4 4943{
95c354fe 4944 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
4945 int ret = 0;
4946
95c354fe 4947 if (spin_needbreak(lock) || resched) {
1da177e4 4948 spin_unlock(lock);
95c354fe
NP
4949 if (resched && need_resched())
4950 __cond_resched();
4951 else
4952 cpu_relax();
6df3cecb 4953 ret = 1;
1da177e4 4954 spin_lock(lock);
1da177e4 4955 }
6df3cecb 4956 return ret;
1da177e4 4957}
1da177e4
LT
4958EXPORT_SYMBOL(cond_resched_lock);
4959
4960int __sched cond_resched_softirq(void)
4961{
4962 BUG_ON(!in_softirq());
4963
9414232f 4964 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4965 local_bh_enable();
1da177e4
LT
4966 __cond_resched();
4967 local_bh_disable();
4968 return 1;
4969 }
4970 return 0;
4971}
1da177e4
LT
4972EXPORT_SYMBOL(cond_resched_softirq);
4973
1da177e4
LT
4974/**
4975 * yield - yield the current processor to other threads.
4976 *
72fd4a35 4977 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4978 * thread runnable and calls sys_sched_yield().
4979 */
4980void __sched yield(void)
4981{
4982 set_current_state(TASK_RUNNING);
4983 sys_sched_yield();
4984}
1da177e4
LT
4985EXPORT_SYMBOL(yield);
4986
4987/*
41a2d6cf 4988 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4989 * that process accounting knows that this is a task in IO wait state.
4990 *
4991 * But don't do that if it is a deliberate, throttling IO wait (this task
4992 * has set its backing_dev_info: the queue against which it should throttle)
4993 */
4994void __sched io_schedule(void)
4995{
70b97a7f 4996 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4997
0ff92245 4998 delayacct_blkio_start();
1da177e4
LT
4999 atomic_inc(&rq->nr_iowait);
5000 schedule();
5001 atomic_dec(&rq->nr_iowait);
0ff92245 5002 delayacct_blkio_end();
1da177e4 5003}
1da177e4
LT
5004EXPORT_SYMBOL(io_schedule);
5005
5006long __sched io_schedule_timeout(long timeout)
5007{
70b97a7f 5008 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5009 long ret;
5010
0ff92245 5011 delayacct_blkio_start();
1da177e4
LT
5012 atomic_inc(&rq->nr_iowait);
5013 ret = schedule_timeout(timeout);
5014 atomic_dec(&rq->nr_iowait);
0ff92245 5015 delayacct_blkio_end();
1da177e4
LT
5016 return ret;
5017}
5018
5019/**
5020 * sys_sched_get_priority_max - return maximum RT priority.
5021 * @policy: scheduling class.
5022 *
5023 * this syscall returns the maximum rt_priority that can be used
5024 * by a given scheduling class.
5025 */
5026asmlinkage long sys_sched_get_priority_max(int policy)
5027{
5028 int ret = -EINVAL;
5029
5030 switch (policy) {
5031 case SCHED_FIFO:
5032 case SCHED_RR:
5033 ret = MAX_USER_RT_PRIO-1;
5034 break;
5035 case SCHED_NORMAL:
b0a9499c 5036 case SCHED_BATCH:
dd41f596 5037 case SCHED_IDLE:
1da177e4
LT
5038 ret = 0;
5039 break;
5040 }
5041 return ret;
5042}
5043
5044/**
5045 * sys_sched_get_priority_min - return minimum RT priority.
5046 * @policy: scheduling class.
5047 *
5048 * this syscall returns the minimum rt_priority that can be used
5049 * by a given scheduling class.
5050 */
5051asmlinkage long sys_sched_get_priority_min(int policy)
5052{
5053 int ret = -EINVAL;
5054
5055 switch (policy) {
5056 case SCHED_FIFO:
5057 case SCHED_RR:
5058 ret = 1;
5059 break;
5060 case SCHED_NORMAL:
b0a9499c 5061 case SCHED_BATCH:
dd41f596 5062 case SCHED_IDLE:
1da177e4
LT
5063 ret = 0;
5064 }
5065 return ret;
5066}
5067
5068/**
5069 * sys_sched_rr_get_interval - return the default timeslice of a process.
5070 * @pid: pid of the process.
5071 * @interval: userspace pointer to the timeslice value.
5072 *
5073 * this syscall writes the default timeslice value of a given process
5074 * into the user-space timespec buffer. A value of '0' means infinity.
5075 */
5076asmlinkage
5077long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5078{
36c8b586 5079 struct task_struct *p;
a4ec24b4 5080 unsigned int time_slice;
3a5c359a 5081 int retval;
1da177e4 5082 struct timespec t;
1da177e4
LT
5083
5084 if (pid < 0)
3a5c359a 5085 return -EINVAL;
1da177e4
LT
5086
5087 retval = -ESRCH;
5088 read_lock(&tasklist_lock);
5089 p = find_process_by_pid(pid);
5090 if (!p)
5091 goto out_unlock;
5092
5093 retval = security_task_getscheduler(p);
5094 if (retval)
5095 goto out_unlock;
5096
77034937
IM
5097 /*
5098 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5099 * tasks that are on an otherwise idle runqueue:
5100 */
5101 time_slice = 0;
5102 if (p->policy == SCHED_RR) {
a4ec24b4 5103 time_slice = DEF_TIMESLICE;
1868f958 5104 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5105 struct sched_entity *se = &p->se;
5106 unsigned long flags;
5107 struct rq *rq;
5108
5109 rq = task_rq_lock(p, &flags);
77034937
IM
5110 if (rq->cfs.load.weight)
5111 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5112 task_rq_unlock(rq, &flags);
5113 }
1da177e4 5114 read_unlock(&tasklist_lock);
a4ec24b4 5115 jiffies_to_timespec(time_slice, &t);
1da177e4 5116 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5117 return retval;
3a5c359a 5118
1da177e4
LT
5119out_unlock:
5120 read_unlock(&tasklist_lock);
5121 return retval;
5122}
5123
2ed6e34f 5124static const char stat_nam[] = "RSDTtZX";
36c8b586 5125
82a1fcb9 5126void sched_show_task(struct task_struct *p)
1da177e4 5127{
1da177e4 5128 unsigned long free = 0;
36c8b586 5129 unsigned state;
1da177e4 5130
1da177e4 5131 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5132 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5133 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5134#if BITS_PER_LONG == 32
1da177e4 5135 if (state == TASK_RUNNING)
cc4ea795 5136 printk(KERN_CONT " running ");
1da177e4 5137 else
cc4ea795 5138 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5139#else
5140 if (state == TASK_RUNNING)
cc4ea795 5141 printk(KERN_CONT " running task ");
1da177e4 5142 else
cc4ea795 5143 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5144#endif
5145#ifdef CONFIG_DEBUG_STACK_USAGE
5146 {
10ebffde 5147 unsigned long *n = end_of_stack(p);
1da177e4
LT
5148 while (!*n)
5149 n++;
10ebffde 5150 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5151 }
5152#endif
ba25f9dc 5153 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5154 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5155
5fb5e6de 5156 show_stack(p, NULL);
1da177e4
LT
5157}
5158
e59e2ae2 5159void show_state_filter(unsigned long state_filter)
1da177e4 5160{
36c8b586 5161 struct task_struct *g, *p;
1da177e4 5162
4bd77321
IM
5163#if BITS_PER_LONG == 32
5164 printk(KERN_INFO
5165 " task PC stack pid father\n");
1da177e4 5166#else
4bd77321
IM
5167 printk(KERN_INFO
5168 " task PC stack pid father\n");
1da177e4
LT
5169#endif
5170 read_lock(&tasklist_lock);
5171 do_each_thread(g, p) {
5172 /*
5173 * reset the NMI-timeout, listing all files on a slow
5174 * console might take alot of time:
5175 */
5176 touch_nmi_watchdog();
39bc89fd 5177 if (!state_filter || (p->state & state_filter))
82a1fcb9 5178 sched_show_task(p);
1da177e4
LT
5179 } while_each_thread(g, p);
5180
04c9167f
JF
5181 touch_all_softlockup_watchdogs();
5182
dd41f596
IM
5183#ifdef CONFIG_SCHED_DEBUG
5184 sysrq_sched_debug_show();
5185#endif
1da177e4 5186 read_unlock(&tasklist_lock);
e59e2ae2
IM
5187 /*
5188 * Only show locks if all tasks are dumped:
5189 */
5190 if (state_filter == -1)
5191 debug_show_all_locks();
1da177e4
LT
5192}
5193
1df21055
IM
5194void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5195{
dd41f596 5196 idle->sched_class = &idle_sched_class;
1df21055
IM
5197}
5198
f340c0d1
IM
5199/**
5200 * init_idle - set up an idle thread for a given CPU
5201 * @idle: task in question
5202 * @cpu: cpu the idle task belongs to
5203 *
5204 * NOTE: this function does not set the idle thread's NEED_RESCHED
5205 * flag, to make booting more robust.
5206 */
5c1e1767 5207void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5208{
70b97a7f 5209 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5210 unsigned long flags;
5211
dd41f596
IM
5212 __sched_fork(idle);
5213 idle->se.exec_start = sched_clock();
5214
b29739f9 5215 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5216 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5217 __set_task_cpu(idle, cpu);
1da177e4
LT
5218
5219 spin_lock_irqsave(&rq->lock, flags);
5220 rq->curr = rq->idle = idle;
4866cde0
NP
5221#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5222 idle->oncpu = 1;
5223#endif
1da177e4
LT
5224 spin_unlock_irqrestore(&rq->lock, flags);
5225
5226 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5227 task_thread_info(idle)->preempt_count = 0;
6478d880 5228
dd41f596
IM
5229 /*
5230 * The idle tasks have their own, simple scheduling class:
5231 */
5232 idle->sched_class = &idle_sched_class;
1da177e4
LT
5233}
5234
5235/*
5236 * In a system that switches off the HZ timer nohz_cpu_mask
5237 * indicates which cpus entered this state. This is used
5238 * in the rcu update to wait only for active cpus. For system
5239 * which do not switch off the HZ timer nohz_cpu_mask should
5240 * always be CPU_MASK_NONE.
5241 */
5242cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5243
19978ca6
IM
5244/*
5245 * Increase the granularity value when there are more CPUs,
5246 * because with more CPUs the 'effective latency' as visible
5247 * to users decreases. But the relationship is not linear,
5248 * so pick a second-best guess by going with the log2 of the
5249 * number of CPUs.
5250 *
5251 * This idea comes from the SD scheduler of Con Kolivas:
5252 */
5253static inline void sched_init_granularity(void)
5254{
5255 unsigned int factor = 1 + ilog2(num_online_cpus());
5256 const unsigned long limit = 200000000;
5257
5258 sysctl_sched_min_granularity *= factor;
5259 if (sysctl_sched_min_granularity > limit)
5260 sysctl_sched_min_granularity = limit;
5261
5262 sysctl_sched_latency *= factor;
5263 if (sysctl_sched_latency > limit)
5264 sysctl_sched_latency = limit;
5265
5266 sysctl_sched_wakeup_granularity *= factor;
5267 sysctl_sched_batch_wakeup_granularity *= factor;
5268}
5269
1da177e4
LT
5270#ifdef CONFIG_SMP
5271/*
5272 * This is how migration works:
5273 *
70b97a7f 5274 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5275 * runqueue and wake up that CPU's migration thread.
5276 * 2) we down() the locked semaphore => thread blocks.
5277 * 3) migration thread wakes up (implicitly it forces the migrated
5278 * thread off the CPU)
5279 * 4) it gets the migration request and checks whether the migrated
5280 * task is still in the wrong runqueue.
5281 * 5) if it's in the wrong runqueue then the migration thread removes
5282 * it and puts it into the right queue.
5283 * 6) migration thread up()s the semaphore.
5284 * 7) we wake up and the migration is done.
5285 */
5286
5287/*
5288 * Change a given task's CPU affinity. Migrate the thread to a
5289 * proper CPU and schedule it away if the CPU it's executing on
5290 * is removed from the allowed bitmask.
5291 *
5292 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5293 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5294 * call is not atomic; no spinlocks may be held.
5295 */
36c8b586 5296int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5297{
70b97a7f 5298 struct migration_req req;
1da177e4 5299 unsigned long flags;
70b97a7f 5300 struct rq *rq;
48f24c4d 5301 int ret = 0;
1da177e4
LT
5302
5303 rq = task_rq_lock(p, &flags);
5304 if (!cpus_intersects(new_mask, cpu_online_map)) {
5305 ret = -EINVAL;
5306 goto out;
5307 }
5308
73fe6aae
GH
5309 if (p->sched_class->set_cpus_allowed)
5310 p->sched_class->set_cpus_allowed(p, &new_mask);
5311 else {
0eab9146 5312 p->cpus_allowed = new_mask;
6f505b16 5313 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
73fe6aae
GH
5314 }
5315
1da177e4
LT
5316 /* Can the task run on the task's current CPU? If so, we're done */
5317 if (cpu_isset(task_cpu(p), new_mask))
5318 goto out;
5319
5320 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5321 /* Need help from migration thread: drop lock and wait. */
5322 task_rq_unlock(rq, &flags);
5323 wake_up_process(rq->migration_thread);
5324 wait_for_completion(&req.done);
5325 tlb_migrate_finish(p->mm);
5326 return 0;
5327 }
5328out:
5329 task_rq_unlock(rq, &flags);
48f24c4d 5330
1da177e4
LT
5331 return ret;
5332}
1da177e4
LT
5333EXPORT_SYMBOL_GPL(set_cpus_allowed);
5334
5335/*
41a2d6cf 5336 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5337 * this because either it can't run here any more (set_cpus_allowed()
5338 * away from this CPU, or CPU going down), or because we're
5339 * attempting to rebalance this task on exec (sched_exec).
5340 *
5341 * So we race with normal scheduler movements, but that's OK, as long
5342 * as the task is no longer on this CPU.
efc30814
KK
5343 *
5344 * Returns non-zero if task was successfully migrated.
1da177e4 5345 */
efc30814 5346static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5347{
70b97a7f 5348 struct rq *rq_dest, *rq_src;
dd41f596 5349 int ret = 0, on_rq;
1da177e4
LT
5350
5351 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5352 return ret;
1da177e4
LT
5353
5354 rq_src = cpu_rq(src_cpu);
5355 rq_dest = cpu_rq(dest_cpu);
5356
5357 double_rq_lock(rq_src, rq_dest);
5358 /* Already moved. */
5359 if (task_cpu(p) != src_cpu)
5360 goto out;
5361 /* Affinity changed (again). */
5362 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5363 goto out;
5364
dd41f596 5365 on_rq = p->se.on_rq;
6e82a3be 5366 if (on_rq)
2e1cb74a 5367 deactivate_task(rq_src, p, 0);
6e82a3be 5368
1da177e4 5369 set_task_cpu(p, dest_cpu);
dd41f596
IM
5370 if (on_rq) {
5371 activate_task(rq_dest, p, 0);
5372 check_preempt_curr(rq_dest, p);
1da177e4 5373 }
efc30814 5374 ret = 1;
1da177e4
LT
5375out:
5376 double_rq_unlock(rq_src, rq_dest);
efc30814 5377 return ret;
1da177e4
LT
5378}
5379
5380/*
5381 * migration_thread - this is a highprio system thread that performs
5382 * thread migration by bumping thread off CPU then 'pushing' onto
5383 * another runqueue.
5384 */
95cdf3b7 5385static int migration_thread(void *data)
1da177e4 5386{
1da177e4 5387 int cpu = (long)data;
70b97a7f 5388 struct rq *rq;
1da177e4
LT
5389
5390 rq = cpu_rq(cpu);
5391 BUG_ON(rq->migration_thread != current);
5392
5393 set_current_state(TASK_INTERRUPTIBLE);
5394 while (!kthread_should_stop()) {
70b97a7f 5395 struct migration_req *req;
1da177e4 5396 struct list_head *head;
1da177e4 5397
1da177e4
LT
5398 spin_lock_irq(&rq->lock);
5399
5400 if (cpu_is_offline(cpu)) {
5401 spin_unlock_irq(&rq->lock);
5402 goto wait_to_die;
5403 }
5404
5405 if (rq->active_balance) {
5406 active_load_balance(rq, cpu);
5407 rq->active_balance = 0;
5408 }
5409
5410 head = &rq->migration_queue;
5411
5412 if (list_empty(head)) {
5413 spin_unlock_irq(&rq->lock);
5414 schedule();
5415 set_current_state(TASK_INTERRUPTIBLE);
5416 continue;
5417 }
70b97a7f 5418 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5419 list_del_init(head->next);
5420
674311d5
NP
5421 spin_unlock(&rq->lock);
5422 __migrate_task(req->task, cpu, req->dest_cpu);
5423 local_irq_enable();
1da177e4
LT
5424
5425 complete(&req->done);
5426 }
5427 __set_current_state(TASK_RUNNING);
5428 return 0;
5429
5430wait_to_die:
5431 /* Wait for kthread_stop */
5432 set_current_state(TASK_INTERRUPTIBLE);
5433 while (!kthread_should_stop()) {
5434 schedule();
5435 set_current_state(TASK_INTERRUPTIBLE);
5436 }
5437 __set_current_state(TASK_RUNNING);
5438 return 0;
5439}
5440
5441#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5442
5443static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5444{
5445 int ret;
5446
5447 local_irq_disable();
5448 ret = __migrate_task(p, src_cpu, dest_cpu);
5449 local_irq_enable();
5450 return ret;
5451}
5452
054b9108 5453/*
3a4fa0a2 5454 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5455 * NOTE: interrupts should be disabled by the caller
5456 */
48f24c4d 5457static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5458{
efc30814 5459 unsigned long flags;
1da177e4 5460 cpumask_t mask;
70b97a7f
IM
5461 struct rq *rq;
5462 int dest_cpu;
1da177e4 5463
3a5c359a
AK
5464 do {
5465 /* On same node? */
5466 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5467 cpus_and(mask, mask, p->cpus_allowed);
5468 dest_cpu = any_online_cpu(mask);
5469
5470 /* On any allowed CPU? */
5471 if (dest_cpu == NR_CPUS)
5472 dest_cpu = any_online_cpu(p->cpus_allowed);
5473
5474 /* No more Mr. Nice Guy. */
5475 if (dest_cpu == NR_CPUS) {
470fd646
CW
5476 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5477 /*
5478 * Try to stay on the same cpuset, where the
5479 * current cpuset may be a subset of all cpus.
5480 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5481 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5482 * called within calls to cpuset_lock/cpuset_unlock.
5483 */
3a5c359a 5484 rq = task_rq_lock(p, &flags);
470fd646 5485 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5486 dest_cpu = any_online_cpu(p->cpus_allowed);
5487 task_rq_unlock(rq, &flags);
1da177e4 5488
3a5c359a
AK
5489 /*
5490 * Don't tell them about moving exiting tasks or
5491 * kernel threads (both mm NULL), since they never
5492 * leave kernel.
5493 */
41a2d6cf 5494 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5495 printk(KERN_INFO "process %d (%s) no "
5496 "longer affine to cpu%d\n",
41a2d6cf
IM
5497 task_pid_nr(p), p->comm, dead_cpu);
5498 }
3a5c359a 5499 }
f7b4cddc 5500 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5501}
5502
5503/*
5504 * While a dead CPU has no uninterruptible tasks queued at this point,
5505 * it might still have a nonzero ->nr_uninterruptible counter, because
5506 * for performance reasons the counter is not stricly tracking tasks to
5507 * their home CPUs. So we just add the counter to another CPU's counter,
5508 * to keep the global sum constant after CPU-down:
5509 */
70b97a7f 5510static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5511{
70b97a7f 5512 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5513 unsigned long flags;
5514
5515 local_irq_save(flags);
5516 double_rq_lock(rq_src, rq_dest);
5517 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5518 rq_src->nr_uninterruptible = 0;
5519 double_rq_unlock(rq_src, rq_dest);
5520 local_irq_restore(flags);
5521}
5522
5523/* Run through task list and migrate tasks from the dead cpu. */
5524static void migrate_live_tasks(int src_cpu)
5525{
48f24c4d 5526 struct task_struct *p, *t;
1da177e4 5527
f7b4cddc 5528 read_lock(&tasklist_lock);
1da177e4 5529
48f24c4d
IM
5530 do_each_thread(t, p) {
5531 if (p == current)
1da177e4
LT
5532 continue;
5533
48f24c4d
IM
5534 if (task_cpu(p) == src_cpu)
5535 move_task_off_dead_cpu(src_cpu, p);
5536 } while_each_thread(t, p);
1da177e4 5537
f7b4cddc 5538 read_unlock(&tasklist_lock);
1da177e4
LT
5539}
5540
dd41f596
IM
5541/*
5542 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5543 * It does so by boosting its priority to highest possible.
5544 * Used by CPU offline code.
1da177e4
LT
5545 */
5546void sched_idle_next(void)
5547{
48f24c4d 5548 int this_cpu = smp_processor_id();
70b97a7f 5549 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5550 struct task_struct *p = rq->idle;
5551 unsigned long flags;
5552
5553 /* cpu has to be offline */
48f24c4d 5554 BUG_ON(cpu_online(this_cpu));
1da177e4 5555
48f24c4d
IM
5556 /*
5557 * Strictly not necessary since rest of the CPUs are stopped by now
5558 * and interrupts disabled on the current cpu.
1da177e4
LT
5559 */
5560 spin_lock_irqsave(&rq->lock, flags);
5561
dd41f596 5562 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5563
94bc9a7b
DA
5564 update_rq_clock(rq);
5565 activate_task(rq, p, 0);
1da177e4
LT
5566
5567 spin_unlock_irqrestore(&rq->lock, flags);
5568}
5569
48f24c4d
IM
5570/*
5571 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5572 * offline.
5573 */
5574void idle_task_exit(void)
5575{
5576 struct mm_struct *mm = current->active_mm;
5577
5578 BUG_ON(cpu_online(smp_processor_id()));
5579
5580 if (mm != &init_mm)
5581 switch_mm(mm, &init_mm, current);
5582 mmdrop(mm);
5583}
5584
054b9108 5585/* called under rq->lock with disabled interrupts */
36c8b586 5586static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5587{
70b97a7f 5588 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5589
5590 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5591 BUG_ON(!p->exit_state);
1da177e4
LT
5592
5593 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5594 BUG_ON(p->state == TASK_DEAD);
1da177e4 5595
48f24c4d 5596 get_task_struct(p);
1da177e4
LT
5597
5598 /*
5599 * Drop lock around migration; if someone else moves it,
41a2d6cf 5600 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5601 * fine.
5602 */
f7b4cddc 5603 spin_unlock_irq(&rq->lock);
48f24c4d 5604 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5605 spin_lock_irq(&rq->lock);
1da177e4 5606
48f24c4d 5607 put_task_struct(p);
1da177e4
LT
5608}
5609
5610/* release_task() removes task from tasklist, so we won't find dead tasks. */
5611static void migrate_dead_tasks(unsigned int dead_cpu)
5612{
70b97a7f 5613 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5614 struct task_struct *next;
48f24c4d 5615
dd41f596
IM
5616 for ( ; ; ) {
5617 if (!rq->nr_running)
5618 break;
a8e504d2 5619 update_rq_clock(rq);
ff95f3df 5620 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5621 if (!next)
5622 break;
5623 migrate_dead(dead_cpu, next);
e692ab53 5624
1da177e4
LT
5625 }
5626}
5627#endif /* CONFIG_HOTPLUG_CPU */
5628
e692ab53
NP
5629#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5630
5631static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5632 {
5633 .procname = "sched_domain",
c57baf1e 5634 .mode = 0555,
e0361851 5635 },
38605cae 5636 {0, },
e692ab53
NP
5637};
5638
5639static struct ctl_table sd_ctl_root[] = {
e0361851 5640 {
c57baf1e 5641 .ctl_name = CTL_KERN,
e0361851 5642 .procname = "kernel",
c57baf1e 5643 .mode = 0555,
e0361851
AD
5644 .child = sd_ctl_dir,
5645 },
38605cae 5646 {0, },
e692ab53
NP
5647};
5648
5649static struct ctl_table *sd_alloc_ctl_entry(int n)
5650{
5651 struct ctl_table *entry =
5cf9f062 5652 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5653
e692ab53
NP
5654 return entry;
5655}
5656
6382bc90
MM
5657static void sd_free_ctl_entry(struct ctl_table **tablep)
5658{
cd790076 5659 struct ctl_table *entry;
6382bc90 5660
cd790076
MM
5661 /*
5662 * In the intermediate directories, both the child directory and
5663 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5664 * will always be set. In the lowest directory the names are
cd790076
MM
5665 * static strings and all have proc handlers.
5666 */
5667 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5668 if (entry->child)
5669 sd_free_ctl_entry(&entry->child);
cd790076
MM
5670 if (entry->proc_handler == NULL)
5671 kfree(entry->procname);
5672 }
6382bc90
MM
5673
5674 kfree(*tablep);
5675 *tablep = NULL;
5676}
5677
e692ab53 5678static void
e0361851 5679set_table_entry(struct ctl_table *entry,
e692ab53
NP
5680 const char *procname, void *data, int maxlen,
5681 mode_t mode, proc_handler *proc_handler)
5682{
e692ab53
NP
5683 entry->procname = procname;
5684 entry->data = data;
5685 entry->maxlen = maxlen;
5686 entry->mode = mode;
5687 entry->proc_handler = proc_handler;
5688}
5689
5690static struct ctl_table *
5691sd_alloc_ctl_domain_table(struct sched_domain *sd)
5692{
ace8b3d6 5693 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5694
ad1cdc1d
MM
5695 if (table == NULL)
5696 return NULL;
5697
e0361851 5698 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5699 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5700 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5701 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5702 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5703 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5704 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5705 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5706 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5707 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5708 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5709 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5710 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5711 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5712 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5713 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5714 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5715 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5716 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5717 &sd->cache_nice_tries,
5718 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5719 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5720 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5721 /* &table[11] is terminator */
e692ab53
NP
5722
5723 return table;
5724}
5725
9a4e7159 5726static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5727{
5728 struct ctl_table *entry, *table;
5729 struct sched_domain *sd;
5730 int domain_num = 0, i;
5731 char buf[32];
5732
5733 for_each_domain(cpu, sd)
5734 domain_num++;
5735 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5736 if (table == NULL)
5737 return NULL;
e692ab53
NP
5738
5739 i = 0;
5740 for_each_domain(cpu, sd) {
5741 snprintf(buf, 32, "domain%d", i);
e692ab53 5742 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5743 entry->mode = 0555;
e692ab53
NP
5744 entry->child = sd_alloc_ctl_domain_table(sd);
5745 entry++;
5746 i++;
5747 }
5748 return table;
5749}
5750
5751static struct ctl_table_header *sd_sysctl_header;
6382bc90 5752static void register_sched_domain_sysctl(void)
e692ab53
NP
5753{
5754 int i, cpu_num = num_online_cpus();
5755 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5756 char buf[32];
5757
7378547f
MM
5758 WARN_ON(sd_ctl_dir[0].child);
5759 sd_ctl_dir[0].child = entry;
5760
ad1cdc1d
MM
5761 if (entry == NULL)
5762 return;
5763
97b6ea7b 5764 for_each_online_cpu(i) {
e692ab53 5765 snprintf(buf, 32, "cpu%d", i);
e692ab53 5766 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5767 entry->mode = 0555;
e692ab53 5768 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5769 entry++;
e692ab53 5770 }
7378547f
MM
5771
5772 WARN_ON(sd_sysctl_header);
e692ab53
NP
5773 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5774}
6382bc90 5775
7378547f 5776/* may be called multiple times per register */
6382bc90
MM
5777static void unregister_sched_domain_sysctl(void)
5778{
7378547f
MM
5779 if (sd_sysctl_header)
5780 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5781 sd_sysctl_header = NULL;
7378547f
MM
5782 if (sd_ctl_dir[0].child)
5783 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5784}
e692ab53 5785#else
6382bc90
MM
5786static void register_sched_domain_sysctl(void)
5787{
5788}
5789static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5790{
5791}
5792#endif
5793
1da177e4
LT
5794/*
5795 * migration_call - callback that gets triggered when a CPU is added.
5796 * Here we can start up the necessary migration thread for the new CPU.
5797 */
48f24c4d
IM
5798static int __cpuinit
5799migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5800{
1da177e4 5801 struct task_struct *p;
48f24c4d 5802 int cpu = (long)hcpu;
1da177e4 5803 unsigned long flags;
70b97a7f 5804 struct rq *rq;
1da177e4
LT
5805
5806 switch (action) {
5be9361c 5807
1da177e4 5808 case CPU_UP_PREPARE:
8bb78442 5809 case CPU_UP_PREPARE_FROZEN:
dd41f596 5810 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5811 if (IS_ERR(p))
5812 return NOTIFY_BAD;
1da177e4
LT
5813 kthread_bind(p, cpu);
5814 /* Must be high prio: stop_machine expects to yield to it. */
5815 rq = task_rq_lock(p, &flags);
dd41f596 5816 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5817 task_rq_unlock(rq, &flags);
5818 cpu_rq(cpu)->migration_thread = p;
5819 break;
48f24c4d 5820
1da177e4 5821 case CPU_ONLINE:
8bb78442 5822 case CPU_ONLINE_FROZEN:
3a4fa0a2 5823 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5824 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5825
5826 /* Update our root-domain */
5827 rq = cpu_rq(cpu);
5828 spin_lock_irqsave(&rq->lock, flags);
5829 if (rq->rd) {
5830 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5831 cpu_set(cpu, rq->rd->online);
5832 }
5833 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5834 break;
48f24c4d 5835
1da177e4
LT
5836#ifdef CONFIG_HOTPLUG_CPU
5837 case CPU_UP_CANCELED:
8bb78442 5838 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5839 if (!cpu_rq(cpu)->migration_thread)
5840 break;
41a2d6cf 5841 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5842 kthread_bind(cpu_rq(cpu)->migration_thread,
5843 any_online_cpu(cpu_online_map));
1da177e4
LT
5844 kthread_stop(cpu_rq(cpu)->migration_thread);
5845 cpu_rq(cpu)->migration_thread = NULL;
5846 break;
48f24c4d 5847
1da177e4 5848 case CPU_DEAD:
8bb78442 5849 case CPU_DEAD_FROZEN:
470fd646 5850 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5851 migrate_live_tasks(cpu);
5852 rq = cpu_rq(cpu);
5853 kthread_stop(rq->migration_thread);
5854 rq->migration_thread = NULL;
5855 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5856 spin_lock_irq(&rq->lock);
a8e504d2 5857 update_rq_clock(rq);
2e1cb74a 5858 deactivate_task(rq, rq->idle, 0);
1da177e4 5859 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5860 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5861 rq->idle->sched_class = &idle_sched_class;
1da177e4 5862 migrate_dead_tasks(cpu);
d2da272a 5863 spin_unlock_irq(&rq->lock);
470fd646 5864 cpuset_unlock();
1da177e4
LT
5865 migrate_nr_uninterruptible(rq);
5866 BUG_ON(rq->nr_running != 0);
5867
41a2d6cf
IM
5868 /*
5869 * No need to migrate the tasks: it was best-effort if
5870 * they didn't take sched_hotcpu_mutex. Just wake up
5871 * the requestors.
5872 */
1da177e4
LT
5873 spin_lock_irq(&rq->lock);
5874 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5875 struct migration_req *req;
5876
1da177e4 5877 req = list_entry(rq->migration_queue.next,
70b97a7f 5878 struct migration_req, list);
1da177e4
LT
5879 list_del_init(&req->list);
5880 complete(&req->done);
5881 }
5882 spin_unlock_irq(&rq->lock);
5883 break;
57d885fe 5884
08f503b0
GH
5885 case CPU_DYING:
5886 case CPU_DYING_FROZEN:
57d885fe
GH
5887 /* Update our root-domain */
5888 rq = cpu_rq(cpu);
5889 spin_lock_irqsave(&rq->lock, flags);
5890 if (rq->rd) {
5891 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5892 cpu_clear(cpu, rq->rd->online);
5893 }
5894 spin_unlock_irqrestore(&rq->lock, flags);
5895 break;
1da177e4
LT
5896#endif
5897 }
5898 return NOTIFY_OK;
5899}
5900
5901/* Register at highest priority so that task migration (migrate_all_tasks)
5902 * happens before everything else.
5903 */
26c2143b 5904static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5905 .notifier_call = migration_call,
5906 .priority = 10
5907};
5908
e6fe6649 5909void __init migration_init(void)
1da177e4
LT
5910{
5911 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5912 int err;
48f24c4d
IM
5913
5914 /* Start one for the boot CPU: */
07dccf33
AM
5915 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5916 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5917 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5918 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5919}
5920#endif
5921
5922#ifdef CONFIG_SMP
476f3534
CL
5923
5924/* Number of possible processor ids */
5925int nr_cpu_ids __read_mostly = NR_CPUS;
5926EXPORT_SYMBOL(nr_cpu_ids);
5927
3e9830dc 5928#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5929
5930static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5931{
4dcf6aff
IM
5932 struct sched_group *group = sd->groups;
5933 cpumask_t groupmask;
5934 char str[NR_CPUS];
1da177e4 5935
4dcf6aff
IM
5936 cpumask_scnprintf(str, NR_CPUS, sd->span);
5937 cpus_clear(groupmask);
5938
5939 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5940
5941 if (!(sd->flags & SD_LOAD_BALANCE)) {
5942 printk("does not load-balance\n");
5943 if (sd->parent)
5944 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5945 " has parent");
5946 return -1;
41c7ce9a
NP
5947 }
5948
4dcf6aff
IM
5949 printk(KERN_CONT "span %s\n", str);
5950
5951 if (!cpu_isset(cpu, sd->span)) {
5952 printk(KERN_ERR "ERROR: domain->span does not contain "
5953 "CPU%d\n", cpu);
5954 }
5955 if (!cpu_isset(cpu, group->cpumask)) {
5956 printk(KERN_ERR "ERROR: domain->groups does not contain"
5957 " CPU%d\n", cpu);
5958 }
1da177e4 5959
4dcf6aff 5960 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5961 do {
4dcf6aff
IM
5962 if (!group) {
5963 printk("\n");
5964 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5965 break;
5966 }
5967
4dcf6aff
IM
5968 if (!group->__cpu_power) {
5969 printk(KERN_CONT "\n");
5970 printk(KERN_ERR "ERROR: domain->cpu_power not "
5971 "set\n");
5972 break;
5973 }
1da177e4 5974
4dcf6aff
IM
5975 if (!cpus_weight(group->cpumask)) {
5976 printk(KERN_CONT "\n");
5977 printk(KERN_ERR "ERROR: empty group\n");
5978 break;
5979 }
1da177e4 5980
4dcf6aff
IM
5981 if (cpus_intersects(groupmask, group->cpumask)) {
5982 printk(KERN_CONT "\n");
5983 printk(KERN_ERR "ERROR: repeated CPUs\n");
5984 break;
5985 }
1da177e4 5986
4dcf6aff 5987 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5988
4dcf6aff
IM
5989 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5990 printk(KERN_CONT " %s", str);
1da177e4 5991
4dcf6aff
IM
5992 group = group->next;
5993 } while (group != sd->groups);
5994 printk(KERN_CONT "\n");
1da177e4 5995
4dcf6aff
IM
5996 if (!cpus_equal(sd->span, groupmask))
5997 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5998
4dcf6aff
IM
5999 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6000 printk(KERN_ERR "ERROR: parent span is not a superset "
6001 "of domain->span\n");
6002 return 0;
6003}
1da177e4 6004
4dcf6aff
IM
6005static void sched_domain_debug(struct sched_domain *sd, int cpu)
6006{
6007 int level = 0;
1da177e4 6008
4dcf6aff
IM
6009 if (!sd) {
6010 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6011 return;
6012 }
1da177e4 6013
4dcf6aff
IM
6014 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6015
6016 for (;;) {
6017 if (sched_domain_debug_one(sd, cpu, level))
6018 break;
1da177e4
LT
6019 level++;
6020 sd = sd->parent;
33859f7f 6021 if (!sd)
4dcf6aff
IM
6022 break;
6023 }
1da177e4
LT
6024}
6025#else
48f24c4d 6026# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6027#endif
6028
1a20ff27 6029static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6030{
6031 if (cpus_weight(sd->span) == 1)
6032 return 1;
6033
6034 /* Following flags need at least 2 groups */
6035 if (sd->flags & (SD_LOAD_BALANCE |
6036 SD_BALANCE_NEWIDLE |
6037 SD_BALANCE_FORK |
89c4710e
SS
6038 SD_BALANCE_EXEC |
6039 SD_SHARE_CPUPOWER |
6040 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6041 if (sd->groups != sd->groups->next)
6042 return 0;
6043 }
6044
6045 /* Following flags don't use groups */
6046 if (sd->flags & (SD_WAKE_IDLE |
6047 SD_WAKE_AFFINE |
6048 SD_WAKE_BALANCE))
6049 return 0;
6050
6051 return 1;
6052}
6053
48f24c4d
IM
6054static int
6055sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6056{
6057 unsigned long cflags = sd->flags, pflags = parent->flags;
6058
6059 if (sd_degenerate(parent))
6060 return 1;
6061
6062 if (!cpus_equal(sd->span, parent->span))
6063 return 0;
6064
6065 /* Does parent contain flags not in child? */
6066 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6067 if (cflags & SD_WAKE_AFFINE)
6068 pflags &= ~SD_WAKE_BALANCE;
6069 /* Flags needing groups don't count if only 1 group in parent */
6070 if (parent->groups == parent->groups->next) {
6071 pflags &= ~(SD_LOAD_BALANCE |
6072 SD_BALANCE_NEWIDLE |
6073 SD_BALANCE_FORK |
89c4710e
SS
6074 SD_BALANCE_EXEC |
6075 SD_SHARE_CPUPOWER |
6076 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6077 }
6078 if (~cflags & pflags)
6079 return 0;
6080
6081 return 1;
6082}
6083
57d885fe
GH
6084static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6085{
6086 unsigned long flags;
6087 const struct sched_class *class;
6088
6089 spin_lock_irqsave(&rq->lock, flags);
6090
6091 if (rq->rd) {
6092 struct root_domain *old_rd = rq->rd;
6093
0eab9146 6094 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6095 if (class->leave_domain)
6096 class->leave_domain(rq);
0eab9146 6097 }
57d885fe 6098
dc938520
GH
6099 cpu_clear(rq->cpu, old_rd->span);
6100 cpu_clear(rq->cpu, old_rd->online);
6101
57d885fe
GH
6102 if (atomic_dec_and_test(&old_rd->refcount))
6103 kfree(old_rd);
6104 }
6105
6106 atomic_inc(&rd->refcount);
6107 rq->rd = rd;
6108
dc938520 6109 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6110 if (cpu_isset(rq->cpu, cpu_online_map))
6111 cpu_set(rq->cpu, rd->online);
dc938520 6112
0eab9146 6113 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6114 if (class->join_domain)
6115 class->join_domain(rq);
0eab9146 6116 }
57d885fe
GH
6117
6118 spin_unlock_irqrestore(&rq->lock, flags);
6119}
6120
dc938520 6121static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6122{
6123 memset(rd, 0, sizeof(*rd));
6124
dc938520
GH
6125 cpus_clear(rd->span);
6126 cpus_clear(rd->online);
57d885fe
GH
6127}
6128
6129static void init_defrootdomain(void)
6130{
dc938520 6131 init_rootdomain(&def_root_domain);
57d885fe
GH
6132 atomic_set(&def_root_domain.refcount, 1);
6133}
6134
dc938520 6135static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6136{
6137 struct root_domain *rd;
6138
6139 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6140 if (!rd)
6141 return NULL;
6142
dc938520 6143 init_rootdomain(rd);
57d885fe
GH
6144
6145 return rd;
6146}
6147
1da177e4 6148/*
0eab9146 6149 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6150 * hold the hotplug lock.
6151 */
0eab9146
IM
6152static void
6153cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6154{
70b97a7f 6155 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6156 struct sched_domain *tmp;
6157
6158 /* Remove the sched domains which do not contribute to scheduling. */
6159 for (tmp = sd; tmp; tmp = tmp->parent) {
6160 struct sched_domain *parent = tmp->parent;
6161 if (!parent)
6162 break;
1a848870 6163 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6164 tmp->parent = parent->parent;
1a848870
SS
6165 if (parent->parent)
6166 parent->parent->child = tmp;
6167 }
245af2c7
SS
6168 }
6169
1a848870 6170 if (sd && sd_degenerate(sd)) {
245af2c7 6171 sd = sd->parent;
1a848870
SS
6172 if (sd)
6173 sd->child = NULL;
6174 }
1da177e4
LT
6175
6176 sched_domain_debug(sd, cpu);
6177
57d885fe 6178 rq_attach_root(rq, rd);
674311d5 6179 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6180}
6181
6182/* cpus with isolated domains */
67af63a6 6183static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6184
6185/* Setup the mask of cpus configured for isolated domains */
6186static int __init isolated_cpu_setup(char *str)
6187{
6188 int ints[NR_CPUS], i;
6189
6190 str = get_options(str, ARRAY_SIZE(ints), ints);
6191 cpus_clear(cpu_isolated_map);
6192 for (i = 1; i <= ints[0]; i++)
6193 if (ints[i] < NR_CPUS)
6194 cpu_set(ints[i], cpu_isolated_map);
6195 return 1;
6196}
6197
8927f494 6198__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6199
6200/*
6711cab4
SS
6201 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6202 * to a function which identifies what group(along with sched group) a CPU
6203 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6204 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6205 *
6206 * init_sched_build_groups will build a circular linked list of the groups
6207 * covered by the given span, and will set each group's ->cpumask correctly,
6208 * and ->cpu_power to 0.
6209 */
a616058b 6210static void
6711cab4
SS
6211init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6212 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6213 struct sched_group **sg))
1da177e4
LT
6214{
6215 struct sched_group *first = NULL, *last = NULL;
6216 cpumask_t covered = CPU_MASK_NONE;
6217 int i;
6218
6219 for_each_cpu_mask(i, span) {
6711cab4
SS
6220 struct sched_group *sg;
6221 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
6222 int j;
6223
6224 if (cpu_isset(i, covered))
6225 continue;
6226
6227 sg->cpumask = CPU_MASK_NONE;
5517d86b 6228 sg->__cpu_power = 0;
1da177e4
LT
6229
6230 for_each_cpu_mask(j, span) {
6711cab4 6231 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
6232 continue;
6233
6234 cpu_set(j, covered);
6235 cpu_set(j, sg->cpumask);
6236 }
6237 if (!first)
6238 first = sg;
6239 if (last)
6240 last->next = sg;
6241 last = sg;
6242 }
6243 last->next = first;
6244}
6245
9c1cfda2 6246#define SD_NODES_PER_DOMAIN 16
1da177e4 6247
9c1cfda2 6248#ifdef CONFIG_NUMA
198e2f18 6249
9c1cfda2
JH
6250/**
6251 * find_next_best_node - find the next node to include in a sched_domain
6252 * @node: node whose sched_domain we're building
6253 * @used_nodes: nodes already in the sched_domain
6254 *
41a2d6cf 6255 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6256 * finds the closest node not already in the @used_nodes map.
6257 *
6258 * Should use nodemask_t.
6259 */
6260static int find_next_best_node(int node, unsigned long *used_nodes)
6261{
6262 int i, n, val, min_val, best_node = 0;
6263
6264 min_val = INT_MAX;
6265
6266 for (i = 0; i < MAX_NUMNODES; i++) {
6267 /* Start at @node */
6268 n = (node + i) % MAX_NUMNODES;
6269
6270 if (!nr_cpus_node(n))
6271 continue;
6272
6273 /* Skip already used nodes */
6274 if (test_bit(n, used_nodes))
6275 continue;
6276
6277 /* Simple min distance search */
6278 val = node_distance(node, n);
6279
6280 if (val < min_val) {
6281 min_val = val;
6282 best_node = n;
6283 }
6284 }
6285
6286 set_bit(best_node, used_nodes);
6287 return best_node;
6288}
6289
6290/**
6291 * sched_domain_node_span - get a cpumask for a node's sched_domain
6292 * @node: node whose cpumask we're constructing
6293 * @size: number of nodes to include in this span
6294 *
41a2d6cf 6295 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6296 * should be one that prevents unnecessary balancing, but also spreads tasks
6297 * out optimally.
6298 */
6299static cpumask_t sched_domain_node_span(int node)
6300{
9c1cfda2 6301 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6302 cpumask_t span, nodemask;
6303 int i;
9c1cfda2
JH
6304
6305 cpus_clear(span);
6306 bitmap_zero(used_nodes, MAX_NUMNODES);
6307
6308 nodemask = node_to_cpumask(node);
6309 cpus_or(span, span, nodemask);
6310 set_bit(node, used_nodes);
6311
6312 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6313 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6314
9c1cfda2
JH
6315 nodemask = node_to_cpumask(next_node);
6316 cpus_or(span, span, nodemask);
6317 }
6318
6319 return span;
6320}
6321#endif
6322
5c45bf27 6323int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6324
9c1cfda2 6325/*
48f24c4d 6326 * SMT sched-domains:
9c1cfda2 6327 */
1da177e4
LT
6328#ifdef CONFIG_SCHED_SMT
6329static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6330static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6331
41a2d6cf
IM
6332static int
6333cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6334{
6711cab4
SS
6335 if (sg)
6336 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6337 return cpu;
6338}
6339#endif
6340
48f24c4d
IM
6341/*
6342 * multi-core sched-domains:
6343 */
1e9f28fa
SS
6344#ifdef CONFIG_SCHED_MC
6345static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6346static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6347#endif
6348
6349#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6350static int
6351cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6352{
6711cab4 6353 int group;
d5a7430d 6354 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6355 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6356 group = first_cpu(mask);
6357 if (sg)
6358 *sg = &per_cpu(sched_group_core, group);
6359 return group;
1e9f28fa
SS
6360}
6361#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6362static int
6363cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6364{
6711cab4
SS
6365 if (sg)
6366 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6367 return cpu;
6368}
6369#endif
6370
1da177e4 6371static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6372static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6373
41a2d6cf
IM
6374static int
6375cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6376{
6711cab4 6377 int group;
48f24c4d 6378#ifdef CONFIG_SCHED_MC
1e9f28fa 6379 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6380 cpus_and(mask, mask, *cpu_map);
6711cab4 6381 group = first_cpu(mask);
1e9f28fa 6382#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6383 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6384 cpus_and(mask, mask, *cpu_map);
6711cab4 6385 group = first_cpu(mask);
1da177e4 6386#else
6711cab4 6387 group = cpu;
1da177e4 6388#endif
6711cab4
SS
6389 if (sg)
6390 *sg = &per_cpu(sched_group_phys, group);
6391 return group;
1da177e4
LT
6392}
6393
6394#ifdef CONFIG_NUMA
1da177e4 6395/*
9c1cfda2
JH
6396 * The init_sched_build_groups can't handle what we want to do with node
6397 * groups, so roll our own. Now each node has its own list of groups which
6398 * gets dynamically allocated.
1da177e4 6399 */
9c1cfda2 6400static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6401static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6402
9c1cfda2 6403static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6404static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6405
6711cab4
SS
6406static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6407 struct sched_group **sg)
9c1cfda2 6408{
6711cab4
SS
6409 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6410 int group;
6411
6412 cpus_and(nodemask, nodemask, *cpu_map);
6413 group = first_cpu(nodemask);
6414
6415 if (sg)
6416 *sg = &per_cpu(sched_group_allnodes, group);
6417 return group;
1da177e4 6418}
6711cab4 6419
08069033
SS
6420static void init_numa_sched_groups_power(struct sched_group *group_head)
6421{
6422 struct sched_group *sg = group_head;
6423 int j;
6424
6425 if (!sg)
6426 return;
3a5c359a
AK
6427 do {
6428 for_each_cpu_mask(j, sg->cpumask) {
6429 struct sched_domain *sd;
08069033 6430
3a5c359a
AK
6431 sd = &per_cpu(phys_domains, j);
6432 if (j != first_cpu(sd->groups->cpumask)) {
6433 /*
6434 * Only add "power" once for each
6435 * physical package.
6436 */
6437 continue;
6438 }
08069033 6439
3a5c359a
AK
6440 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6441 }
6442 sg = sg->next;
6443 } while (sg != group_head);
08069033 6444}
1da177e4
LT
6445#endif
6446
a616058b 6447#ifdef CONFIG_NUMA
51888ca2
SV
6448/* Free memory allocated for various sched_group structures */
6449static void free_sched_groups(const cpumask_t *cpu_map)
6450{
a616058b 6451 int cpu, i;
51888ca2
SV
6452
6453 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6454 struct sched_group **sched_group_nodes
6455 = sched_group_nodes_bycpu[cpu];
6456
51888ca2
SV
6457 if (!sched_group_nodes)
6458 continue;
6459
6460 for (i = 0; i < MAX_NUMNODES; i++) {
6461 cpumask_t nodemask = node_to_cpumask(i);
6462 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6463
6464 cpus_and(nodemask, nodemask, *cpu_map);
6465 if (cpus_empty(nodemask))
6466 continue;
6467
6468 if (sg == NULL)
6469 continue;
6470 sg = sg->next;
6471next_sg:
6472 oldsg = sg;
6473 sg = sg->next;
6474 kfree(oldsg);
6475 if (oldsg != sched_group_nodes[i])
6476 goto next_sg;
6477 }
6478 kfree(sched_group_nodes);
6479 sched_group_nodes_bycpu[cpu] = NULL;
6480 }
51888ca2 6481}
a616058b
SS
6482#else
6483static void free_sched_groups(const cpumask_t *cpu_map)
6484{
6485}
6486#endif
51888ca2 6487
89c4710e
SS
6488/*
6489 * Initialize sched groups cpu_power.
6490 *
6491 * cpu_power indicates the capacity of sched group, which is used while
6492 * distributing the load between different sched groups in a sched domain.
6493 * Typically cpu_power for all the groups in a sched domain will be same unless
6494 * there are asymmetries in the topology. If there are asymmetries, group
6495 * having more cpu_power will pickup more load compared to the group having
6496 * less cpu_power.
6497 *
6498 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6499 * the maximum number of tasks a group can handle in the presence of other idle
6500 * or lightly loaded groups in the same sched domain.
6501 */
6502static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6503{
6504 struct sched_domain *child;
6505 struct sched_group *group;
6506
6507 WARN_ON(!sd || !sd->groups);
6508
6509 if (cpu != first_cpu(sd->groups->cpumask))
6510 return;
6511
6512 child = sd->child;
6513
5517d86b
ED
6514 sd->groups->__cpu_power = 0;
6515
89c4710e
SS
6516 /*
6517 * For perf policy, if the groups in child domain share resources
6518 * (for example cores sharing some portions of the cache hierarchy
6519 * or SMT), then set this domain groups cpu_power such that each group
6520 * can handle only one task, when there are other idle groups in the
6521 * same sched domain.
6522 */
6523 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6524 (child->flags &
6525 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6526 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6527 return;
6528 }
6529
89c4710e
SS
6530 /*
6531 * add cpu_power of each child group to this groups cpu_power
6532 */
6533 group = child->groups;
6534 do {
5517d86b 6535 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6536 group = group->next;
6537 } while (group != child->groups);
6538}
6539
1da177e4 6540/*
1a20ff27
DG
6541 * Build sched domains for a given set of cpus and attach the sched domains
6542 * to the individual cpus
1da177e4 6543 */
51888ca2 6544static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6545{
6546 int i;
57d885fe 6547 struct root_domain *rd;
d1b55138
JH
6548#ifdef CONFIG_NUMA
6549 struct sched_group **sched_group_nodes = NULL;
6711cab4 6550 int sd_allnodes = 0;
d1b55138
JH
6551
6552 /*
6553 * Allocate the per-node list of sched groups
6554 */
5cf9f062 6555 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6556 GFP_KERNEL);
d1b55138
JH
6557 if (!sched_group_nodes) {
6558 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6559 return -ENOMEM;
d1b55138
JH
6560 }
6561 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6562#endif
1da177e4 6563
dc938520 6564 rd = alloc_rootdomain();
57d885fe
GH
6565 if (!rd) {
6566 printk(KERN_WARNING "Cannot alloc root domain\n");
6567 return -ENOMEM;
6568 }
6569
1da177e4 6570 /*
1a20ff27 6571 * Set up domains for cpus specified by the cpu_map.
1da177e4 6572 */
1a20ff27 6573 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6574 struct sched_domain *sd = NULL, *p;
6575 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6576
1a20ff27 6577 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6578
6579#ifdef CONFIG_NUMA
dd41f596
IM
6580 if (cpus_weight(*cpu_map) >
6581 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6582 sd = &per_cpu(allnodes_domains, i);
6583 *sd = SD_ALLNODES_INIT;
6584 sd->span = *cpu_map;
6711cab4 6585 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6586 p = sd;
6711cab4 6587 sd_allnodes = 1;
9c1cfda2
JH
6588 } else
6589 p = NULL;
6590
1da177e4 6591 sd = &per_cpu(node_domains, i);
1da177e4 6592 *sd = SD_NODE_INIT;
9c1cfda2
JH
6593 sd->span = sched_domain_node_span(cpu_to_node(i));
6594 sd->parent = p;
1a848870
SS
6595 if (p)
6596 p->child = sd;
9c1cfda2 6597 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6598#endif
6599
6600 p = sd;
6601 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6602 *sd = SD_CPU_INIT;
6603 sd->span = nodemask;
6604 sd->parent = p;
1a848870
SS
6605 if (p)
6606 p->child = sd;
6711cab4 6607 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6608
1e9f28fa
SS
6609#ifdef CONFIG_SCHED_MC
6610 p = sd;
6611 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6612 *sd = SD_MC_INIT;
6613 sd->span = cpu_coregroup_map(i);
6614 cpus_and(sd->span, sd->span, *cpu_map);
6615 sd->parent = p;
1a848870 6616 p->child = sd;
6711cab4 6617 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6618#endif
6619
1da177e4
LT
6620#ifdef CONFIG_SCHED_SMT
6621 p = sd;
6622 sd = &per_cpu(cpu_domains, i);
1da177e4 6623 *sd = SD_SIBLING_INIT;
d5a7430d 6624 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6625 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6626 sd->parent = p;
1a848870 6627 p->child = sd;
6711cab4 6628 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6629#endif
6630 }
6631
6632#ifdef CONFIG_SCHED_SMT
6633 /* Set up CPU (sibling) groups */
9c1cfda2 6634 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6635 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6636 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6637 if (i != first_cpu(this_sibling_map))
6638 continue;
6639
dd41f596
IM
6640 init_sched_build_groups(this_sibling_map, cpu_map,
6641 &cpu_to_cpu_group);
1da177e4
LT
6642 }
6643#endif
6644
1e9f28fa
SS
6645#ifdef CONFIG_SCHED_MC
6646 /* Set up multi-core groups */
6647 for_each_cpu_mask(i, *cpu_map) {
6648 cpumask_t this_core_map = cpu_coregroup_map(i);
6649 cpus_and(this_core_map, this_core_map, *cpu_map);
6650 if (i != first_cpu(this_core_map))
6651 continue;
dd41f596
IM
6652 init_sched_build_groups(this_core_map, cpu_map,
6653 &cpu_to_core_group);
1e9f28fa
SS
6654 }
6655#endif
6656
1da177e4
LT
6657 /* Set up physical groups */
6658 for (i = 0; i < MAX_NUMNODES; i++) {
6659 cpumask_t nodemask = node_to_cpumask(i);
6660
1a20ff27 6661 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6662 if (cpus_empty(nodemask))
6663 continue;
6664
6711cab4 6665 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6666 }
6667
6668#ifdef CONFIG_NUMA
6669 /* Set up node groups */
6711cab4 6670 if (sd_allnodes)
dd41f596
IM
6671 init_sched_build_groups(*cpu_map, cpu_map,
6672 &cpu_to_allnodes_group);
9c1cfda2
JH
6673
6674 for (i = 0; i < MAX_NUMNODES; i++) {
6675 /* Set up node groups */
6676 struct sched_group *sg, *prev;
6677 cpumask_t nodemask = node_to_cpumask(i);
6678 cpumask_t domainspan;
6679 cpumask_t covered = CPU_MASK_NONE;
6680 int j;
6681
6682 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6683 if (cpus_empty(nodemask)) {
6684 sched_group_nodes[i] = NULL;
9c1cfda2 6685 continue;
d1b55138 6686 }
9c1cfda2
JH
6687
6688 domainspan = sched_domain_node_span(i);
6689 cpus_and(domainspan, domainspan, *cpu_map);
6690
15f0b676 6691 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6692 if (!sg) {
6693 printk(KERN_WARNING "Can not alloc domain group for "
6694 "node %d\n", i);
6695 goto error;
6696 }
9c1cfda2
JH
6697 sched_group_nodes[i] = sg;
6698 for_each_cpu_mask(j, nodemask) {
6699 struct sched_domain *sd;
9761eea8 6700
9c1cfda2
JH
6701 sd = &per_cpu(node_domains, j);
6702 sd->groups = sg;
9c1cfda2 6703 }
5517d86b 6704 sg->__cpu_power = 0;
9c1cfda2 6705 sg->cpumask = nodemask;
51888ca2 6706 sg->next = sg;
9c1cfda2
JH
6707 cpus_or(covered, covered, nodemask);
6708 prev = sg;
6709
6710 for (j = 0; j < MAX_NUMNODES; j++) {
6711 cpumask_t tmp, notcovered;
6712 int n = (i + j) % MAX_NUMNODES;
6713
6714 cpus_complement(notcovered, covered);
6715 cpus_and(tmp, notcovered, *cpu_map);
6716 cpus_and(tmp, tmp, domainspan);
6717 if (cpus_empty(tmp))
6718 break;
6719
6720 nodemask = node_to_cpumask(n);
6721 cpus_and(tmp, tmp, nodemask);
6722 if (cpus_empty(tmp))
6723 continue;
6724
15f0b676
SV
6725 sg = kmalloc_node(sizeof(struct sched_group),
6726 GFP_KERNEL, i);
9c1cfda2
JH
6727 if (!sg) {
6728 printk(KERN_WARNING
6729 "Can not alloc domain group for node %d\n", j);
51888ca2 6730 goto error;
9c1cfda2 6731 }
5517d86b 6732 sg->__cpu_power = 0;
9c1cfda2 6733 sg->cpumask = tmp;
51888ca2 6734 sg->next = prev->next;
9c1cfda2
JH
6735 cpus_or(covered, covered, tmp);
6736 prev->next = sg;
6737 prev = sg;
6738 }
9c1cfda2 6739 }
1da177e4
LT
6740#endif
6741
6742 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6743#ifdef CONFIG_SCHED_SMT
1a20ff27 6744 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6745 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6746
89c4710e 6747 init_sched_groups_power(i, sd);
5c45bf27 6748 }
1da177e4 6749#endif
1e9f28fa 6750#ifdef CONFIG_SCHED_MC
5c45bf27 6751 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6752 struct sched_domain *sd = &per_cpu(core_domains, i);
6753
89c4710e 6754 init_sched_groups_power(i, sd);
5c45bf27
SS
6755 }
6756#endif
1e9f28fa 6757
5c45bf27 6758 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6759 struct sched_domain *sd = &per_cpu(phys_domains, i);
6760
89c4710e 6761 init_sched_groups_power(i, sd);
1da177e4
LT
6762 }
6763
9c1cfda2 6764#ifdef CONFIG_NUMA
08069033
SS
6765 for (i = 0; i < MAX_NUMNODES; i++)
6766 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6767
6711cab4
SS
6768 if (sd_allnodes) {
6769 struct sched_group *sg;
f712c0c7 6770
6711cab4 6771 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6772 init_numa_sched_groups_power(sg);
6773 }
9c1cfda2
JH
6774#endif
6775
1da177e4 6776 /* Attach the domains */
1a20ff27 6777 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6778 struct sched_domain *sd;
6779#ifdef CONFIG_SCHED_SMT
6780 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6781#elif defined(CONFIG_SCHED_MC)
6782 sd = &per_cpu(core_domains, i);
1da177e4
LT
6783#else
6784 sd = &per_cpu(phys_domains, i);
6785#endif
57d885fe 6786 cpu_attach_domain(sd, rd, i);
1da177e4 6787 }
51888ca2
SV
6788
6789 return 0;
6790
a616058b 6791#ifdef CONFIG_NUMA
51888ca2
SV
6792error:
6793 free_sched_groups(cpu_map);
6794 return -ENOMEM;
a616058b 6795#endif
1da177e4 6796}
029190c5
PJ
6797
6798static cpumask_t *doms_cur; /* current sched domains */
6799static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6800
6801/*
6802 * Special case: If a kmalloc of a doms_cur partition (array of
6803 * cpumask_t) fails, then fallback to a single sched domain,
6804 * as determined by the single cpumask_t fallback_doms.
6805 */
6806static cpumask_t fallback_doms;
6807
1a20ff27 6808/*
41a2d6cf 6809 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6810 * For now this just excludes isolated cpus, but could be used to
6811 * exclude other special cases in the future.
1a20ff27 6812 */
51888ca2 6813static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6814{
7378547f
MM
6815 int err;
6816
029190c5
PJ
6817 ndoms_cur = 1;
6818 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6819 if (!doms_cur)
6820 doms_cur = &fallback_doms;
6821 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6822 err = build_sched_domains(doms_cur);
6382bc90 6823 register_sched_domain_sysctl();
7378547f
MM
6824
6825 return err;
1a20ff27
DG
6826}
6827
6828static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6829{
51888ca2 6830 free_sched_groups(cpu_map);
9c1cfda2 6831}
1da177e4 6832
1a20ff27
DG
6833/*
6834 * Detach sched domains from a group of cpus specified in cpu_map
6835 * These cpus will now be attached to the NULL domain
6836 */
858119e1 6837static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6838{
6839 int i;
6840
6382bc90
MM
6841 unregister_sched_domain_sysctl();
6842
1a20ff27 6843 for_each_cpu_mask(i, *cpu_map)
57d885fe 6844 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6845 synchronize_sched();
6846 arch_destroy_sched_domains(cpu_map);
6847}
6848
029190c5
PJ
6849/*
6850 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6851 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6852 * doms_new[] to the current sched domain partitioning, doms_cur[].
6853 * It destroys each deleted domain and builds each new domain.
6854 *
6855 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6856 * The masks don't intersect (don't overlap.) We should setup one
6857 * sched domain for each mask. CPUs not in any of the cpumasks will
6858 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6859 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6860 * it as it is.
6861 *
41a2d6cf
IM
6862 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6863 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6864 * failed the kmalloc call, then it can pass in doms_new == NULL,
6865 * and partition_sched_domains() will fallback to the single partition
6866 * 'fallback_doms'.
6867 *
6868 * Call with hotplug lock held
6869 */
6870void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6871{
6872 int i, j;
6873
a1835615
SV
6874 lock_doms_cur();
6875
7378547f
MM
6876 /* always unregister in case we don't destroy any domains */
6877 unregister_sched_domain_sysctl();
6878
029190c5
PJ
6879 if (doms_new == NULL) {
6880 ndoms_new = 1;
6881 doms_new = &fallback_doms;
6882 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6883 }
6884
6885 /* Destroy deleted domains */
6886 for (i = 0; i < ndoms_cur; i++) {
6887 for (j = 0; j < ndoms_new; j++) {
6888 if (cpus_equal(doms_cur[i], doms_new[j]))
6889 goto match1;
6890 }
6891 /* no match - a current sched domain not in new doms_new[] */
6892 detach_destroy_domains(doms_cur + i);
6893match1:
6894 ;
6895 }
6896
6897 /* Build new domains */
6898 for (i = 0; i < ndoms_new; i++) {
6899 for (j = 0; j < ndoms_cur; j++) {
6900 if (cpus_equal(doms_new[i], doms_cur[j]))
6901 goto match2;
6902 }
6903 /* no match - add a new doms_new */
6904 build_sched_domains(doms_new + i);
6905match2:
6906 ;
6907 }
6908
6909 /* Remember the new sched domains */
6910 if (doms_cur != &fallback_doms)
6911 kfree(doms_cur);
6912 doms_cur = doms_new;
6913 ndoms_cur = ndoms_new;
7378547f
MM
6914
6915 register_sched_domain_sysctl();
a1835615
SV
6916
6917 unlock_doms_cur();
029190c5
PJ
6918}
6919
5c45bf27 6920#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6921static int arch_reinit_sched_domains(void)
5c45bf27
SS
6922{
6923 int err;
6924
95402b38 6925 get_online_cpus();
5c45bf27
SS
6926 detach_destroy_domains(&cpu_online_map);
6927 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6928 put_online_cpus();
5c45bf27
SS
6929
6930 return err;
6931}
6932
6933static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6934{
6935 int ret;
6936
6937 if (buf[0] != '0' && buf[0] != '1')
6938 return -EINVAL;
6939
6940 if (smt)
6941 sched_smt_power_savings = (buf[0] == '1');
6942 else
6943 sched_mc_power_savings = (buf[0] == '1');
6944
6945 ret = arch_reinit_sched_domains();
6946
6947 return ret ? ret : count;
6948}
6949
5c45bf27
SS
6950#ifdef CONFIG_SCHED_MC
6951static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6952{
6953 return sprintf(page, "%u\n", sched_mc_power_savings);
6954}
48f24c4d
IM
6955static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6956 const char *buf, size_t count)
5c45bf27
SS
6957{
6958 return sched_power_savings_store(buf, count, 0);
6959}
6707de00
AB
6960static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6961 sched_mc_power_savings_store);
5c45bf27
SS
6962#endif
6963
6964#ifdef CONFIG_SCHED_SMT
6965static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6966{
6967 return sprintf(page, "%u\n", sched_smt_power_savings);
6968}
48f24c4d
IM
6969static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6970 const char *buf, size_t count)
5c45bf27
SS
6971{
6972 return sched_power_savings_store(buf, count, 1);
6973}
6707de00
AB
6974static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6975 sched_smt_power_savings_store);
6976#endif
6977
6978int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6979{
6980 int err = 0;
6981
6982#ifdef CONFIG_SCHED_SMT
6983 if (smt_capable())
6984 err = sysfs_create_file(&cls->kset.kobj,
6985 &attr_sched_smt_power_savings.attr);
6986#endif
6987#ifdef CONFIG_SCHED_MC
6988 if (!err && mc_capable())
6989 err = sysfs_create_file(&cls->kset.kobj,
6990 &attr_sched_mc_power_savings.attr);
6991#endif
6992 return err;
6993}
5c45bf27
SS
6994#endif
6995
1da177e4 6996/*
41a2d6cf 6997 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6998 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6999 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7000 * which will prevent rebalancing while the sched domains are recalculated.
7001 */
7002static int update_sched_domains(struct notifier_block *nfb,
7003 unsigned long action, void *hcpu)
7004{
1da177e4
LT
7005 switch (action) {
7006 case CPU_UP_PREPARE:
8bb78442 7007 case CPU_UP_PREPARE_FROZEN:
1da177e4 7008 case CPU_DOWN_PREPARE:
8bb78442 7009 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7010 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7011 return NOTIFY_OK;
7012
7013 case CPU_UP_CANCELED:
8bb78442 7014 case CPU_UP_CANCELED_FROZEN:
1da177e4 7015 case CPU_DOWN_FAILED:
8bb78442 7016 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7017 case CPU_ONLINE:
8bb78442 7018 case CPU_ONLINE_FROZEN:
1da177e4 7019 case CPU_DEAD:
8bb78442 7020 case CPU_DEAD_FROZEN:
1da177e4
LT
7021 /*
7022 * Fall through and re-initialise the domains.
7023 */
7024 break;
7025 default:
7026 return NOTIFY_DONE;
7027 }
7028
7029 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7030 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7031
7032 return NOTIFY_OK;
7033}
1da177e4
LT
7034
7035void __init sched_init_smp(void)
7036{
5c1e1767
NP
7037 cpumask_t non_isolated_cpus;
7038
95402b38 7039 get_online_cpus();
1a20ff27 7040 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7041 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7042 if (cpus_empty(non_isolated_cpus))
7043 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7044 put_online_cpus();
1da177e4
LT
7045 /* XXX: Theoretical race here - CPU may be hotplugged now */
7046 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7047
7048 /* Move init over to a non-isolated CPU */
7049 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7050 BUG();
19978ca6 7051 sched_init_granularity();
1da177e4
LT
7052}
7053#else
7054void __init sched_init_smp(void)
7055{
19978ca6 7056 sched_init_granularity();
1da177e4
LT
7057}
7058#endif /* CONFIG_SMP */
7059
7060int in_sched_functions(unsigned long addr)
7061{
1da177e4
LT
7062 return in_lock_functions(addr) ||
7063 (addr >= (unsigned long)__sched_text_start
7064 && addr < (unsigned long)__sched_text_end);
7065}
7066
a9957449 7067static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7068{
7069 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7070#ifdef CONFIG_FAIR_GROUP_SCHED
7071 cfs_rq->rq = rq;
7072#endif
67e9fb2a 7073 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7074}
7075
fa85ae24
PZ
7076static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7077{
7078 struct rt_prio_array *array;
7079 int i;
7080
7081 array = &rt_rq->active;
7082 for (i = 0; i < MAX_RT_PRIO; i++) {
7083 INIT_LIST_HEAD(array->queue + i);
7084 __clear_bit(i, array->bitmap);
7085 }
7086 /* delimiter for bitsearch: */
7087 __set_bit(MAX_RT_PRIO, array->bitmap);
7088
052f1dc7 7089#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7090 rt_rq->highest_prio = MAX_RT_PRIO;
7091#endif
fa85ae24
PZ
7092#ifdef CONFIG_SMP
7093 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7094 rt_rq->overloaded = 0;
7095#endif
7096
7097 rt_rq->rt_time = 0;
7098 rt_rq->rt_throttled = 0;
6f505b16 7099
052f1dc7 7100#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7101 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7102 rt_rq->rq = rq;
7103#endif
fa85ae24
PZ
7104}
7105
6f505b16
PZ
7106#ifdef CONFIG_FAIR_GROUP_SCHED
7107static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7108 struct cfs_rq *cfs_rq, struct sched_entity *se,
7109 int cpu, int add)
7110{
7111 tg->cfs_rq[cpu] = cfs_rq;
7112 init_cfs_rq(cfs_rq, rq);
7113 cfs_rq->tg = tg;
7114 if (add)
7115 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7116
7117 tg->se[cpu] = se;
7118 se->cfs_rq = &rq->cfs;
7119 se->my_q = cfs_rq;
7120 se->load.weight = tg->shares;
7121 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7122 se->parent = NULL;
7123}
052f1dc7 7124#endif
6f505b16 7125
052f1dc7 7126#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7127static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7128 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7129 int cpu, int add)
7130{
7131 tg->rt_rq[cpu] = rt_rq;
7132 init_rt_rq(rt_rq, rq);
7133 rt_rq->tg = tg;
7134 rt_rq->rt_se = rt_se;
7135 if (add)
7136 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7137
7138 tg->rt_se[cpu] = rt_se;
7139 rt_se->rt_rq = &rq->rt;
7140 rt_se->my_q = rt_rq;
7141 rt_se->parent = NULL;
7142 INIT_LIST_HEAD(&rt_se->run_list);
7143}
7144#endif
7145
1da177e4
LT
7146void __init sched_init(void)
7147{
476f3534 7148 int highest_cpu = 0;
dd41f596
IM
7149 int i, j;
7150
57d885fe
GH
7151#ifdef CONFIG_SMP
7152 init_defrootdomain();
7153#endif
7154
052f1dc7 7155#ifdef CONFIG_GROUP_SCHED
6f505b16
PZ
7156 list_add(&init_task_group.list, &task_groups);
7157#endif
7158
0a945022 7159 for_each_possible_cpu(i) {
70b97a7f 7160 struct rq *rq;
1da177e4
LT
7161
7162 rq = cpu_rq(i);
7163 spin_lock_init(&rq->lock);
fcb99371 7164 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7165 rq->nr_running = 0;
dd41f596
IM
7166 rq->clock = 1;
7167 init_cfs_rq(&rq->cfs, rq);
6f505b16 7168 init_rt_rq(&rq->rt, rq);
dd41f596 7169#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7170 init_task_group.shares = init_task_group_load;
6f505b16
PZ
7171 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7172 init_tg_cfs_entry(rq, &init_task_group,
7173 &per_cpu(init_cfs_rq, i),
7174 &per_cpu(init_sched_entity, i), i, 1);
7175
052f1dc7
PZ
7176#endif
7177#ifdef CONFIG_RT_GROUP_SCHED
9f0c1e56
PZ
7178 init_task_group.rt_runtime =
7179 sysctl_sched_rt_runtime * NSEC_PER_USEC;
6f505b16
PZ
7180 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7181 init_tg_rt_entry(rq, &init_task_group,
7182 &per_cpu(init_rt_rq, i),
7183 &per_cpu(init_sched_rt_entity, i), i, 1);
dd41f596 7184#endif
fa85ae24 7185 rq->rt_period_expire = 0;
48d5e258 7186 rq->rt_throttled = 0;
1da177e4 7187
dd41f596
IM
7188 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7189 rq->cpu_load[j] = 0;
1da177e4 7190#ifdef CONFIG_SMP
41c7ce9a 7191 rq->sd = NULL;
57d885fe 7192 rq->rd = NULL;
1da177e4 7193 rq->active_balance = 0;
dd41f596 7194 rq->next_balance = jiffies;
1da177e4 7195 rq->push_cpu = 0;
0a2966b4 7196 rq->cpu = i;
1da177e4
LT
7197 rq->migration_thread = NULL;
7198 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7199 rq_attach_root(rq, &def_root_domain);
1da177e4 7200#endif
8f4d37ec 7201 init_rq_hrtick(rq);
1da177e4 7202 atomic_set(&rq->nr_iowait, 0);
476f3534 7203 highest_cpu = i;
1da177e4
LT
7204 }
7205
2dd73a4f 7206 set_load_weight(&init_task);
b50f60ce 7207
e107be36
AK
7208#ifdef CONFIG_PREEMPT_NOTIFIERS
7209 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7210#endif
7211
c9819f45 7212#ifdef CONFIG_SMP
476f3534 7213 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
7214 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7215#endif
7216
b50f60ce
HC
7217#ifdef CONFIG_RT_MUTEXES
7218 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7219#endif
7220
1da177e4
LT
7221 /*
7222 * The boot idle thread does lazy MMU switching as well:
7223 */
7224 atomic_inc(&init_mm.mm_count);
7225 enter_lazy_tlb(&init_mm, current);
7226
7227 /*
7228 * Make us the idle thread. Technically, schedule() should not be
7229 * called from this thread, however somewhere below it might be,
7230 * but because we are the idle thread, we just pick up running again
7231 * when this runqueue becomes "idle".
7232 */
7233 init_idle(current, smp_processor_id());
dd41f596
IM
7234 /*
7235 * During early bootup we pretend to be a normal task:
7236 */
7237 current->sched_class = &fair_sched_class;
6892b75e
IM
7238
7239 scheduler_running = 1;
1da177e4
LT
7240}
7241
7242#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7243void __might_sleep(char *file, int line)
7244{
48f24c4d 7245#ifdef in_atomic
1da177e4
LT
7246 static unsigned long prev_jiffy; /* ratelimiting */
7247
7248 if ((in_atomic() || irqs_disabled()) &&
7249 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7250 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7251 return;
7252 prev_jiffy = jiffies;
91368d73 7253 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7254 " context at %s:%d\n", file, line);
7255 printk("in_atomic():%d, irqs_disabled():%d\n",
7256 in_atomic(), irqs_disabled());
a4c410f0 7257 debug_show_held_locks(current);
3117df04
IM
7258 if (irqs_disabled())
7259 print_irqtrace_events(current);
1da177e4
LT
7260 dump_stack();
7261 }
7262#endif
7263}
7264EXPORT_SYMBOL(__might_sleep);
7265#endif
7266
7267#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7268static void normalize_task(struct rq *rq, struct task_struct *p)
7269{
7270 int on_rq;
7271 update_rq_clock(rq);
7272 on_rq = p->se.on_rq;
7273 if (on_rq)
7274 deactivate_task(rq, p, 0);
7275 __setscheduler(rq, p, SCHED_NORMAL, 0);
7276 if (on_rq) {
7277 activate_task(rq, p, 0);
7278 resched_task(rq->curr);
7279 }
7280}
7281
1da177e4
LT
7282void normalize_rt_tasks(void)
7283{
a0f98a1c 7284 struct task_struct *g, *p;
1da177e4 7285 unsigned long flags;
70b97a7f 7286 struct rq *rq;
1da177e4 7287
4cf5d77a 7288 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7289 do_each_thread(g, p) {
178be793
IM
7290 /*
7291 * Only normalize user tasks:
7292 */
7293 if (!p->mm)
7294 continue;
7295
6cfb0d5d 7296 p->se.exec_start = 0;
6cfb0d5d 7297#ifdef CONFIG_SCHEDSTATS
dd41f596 7298 p->se.wait_start = 0;
dd41f596 7299 p->se.sleep_start = 0;
dd41f596 7300 p->se.block_start = 0;
6cfb0d5d 7301#endif
dd41f596
IM
7302 task_rq(p)->clock = 0;
7303
7304 if (!rt_task(p)) {
7305 /*
7306 * Renice negative nice level userspace
7307 * tasks back to 0:
7308 */
7309 if (TASK_NICE(p) < 0 && p->mm)
7310 set_user_nice(p, 0);
1da177e4 7311 continue;
dd41f596 7312 }
1da177e4 7313
4cf5d77a 7314 spin_lock(&p->pi_lock);
b29739f9 7315 rq = __task_rq_lock(p);
1da177e4 7316
178be793 7317 normalize_task(rq, p);
3a5e4dc1 7318
b29739f9 7319 __task_rq_unlock(rq);
4cf5d77a 7320 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7321 } while_each_thread(g, p);
7322
4cf5d77a 7323 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7324}
7325
7326#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7327
7328#ifdef CONFIG_IA64
7329/*
7330 * These functions are only useful for the IA64 MCA handling.
7331 *
7332 * They can only be called when the whole system has been
7333 * stopped - every CPU needs to be quiescent, and no scheduling
7334 * activity can take place. Using them for anything else would
7335 * be a serious bug, and as a result, they aren't even visible
7336 * under any other configuration.
7337 */
7338
7339/**
7340 * curr_task - return the current task for a given cpu.
7341 * @cpu: the processor in question.
7342 *
7343 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7344 */
36c8b586 7345struct task_struct *curr_task(int cpu)
1df5c10a
LT
7346{
7347 return cpu_curr(cpu);
7348}
7349
7350/**
7351 * set_curr_task - set the current task for a given cpu.
7352 * @cpu: the processor in question.
7353 * @p: the task pointer to set.
7354 *
7355 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7356 * are serviced on a separate stack. It allows the architecture to switch the
7357 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7358 * must be called with all CPU's synchronized, and interrupts disabled, the
7359 * and caller must save the original value of the current task (see
7360 * curr_task() above) and restore that value before reenabling interrupts and
7361 * re-starting the system.
7362 *
7363 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7364 */
36c8b586 7365void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7366{
7367 cpu_curr(cpu) = p;
7368}
7369
7370#endif
29f59db3 7371
052f1dc7 7372#ifdef CONFIG_GROUP_SCHED
29f59db3 7373
bccbe08a
PZ
7374#ifdef CONFIG_FAIR_GROUP_SCHED
7375static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7376{
7377 int i;
7378
7379 for_each_possible_cpu(i) {
7380 if (tg->cfs_rq)
7381 kfree(tg->cfs_rq[i]);
7382 if (tg->se)
7383 kfree(tg->se[i]);
6f505b16
PZ
7384 }
7385
7386 kfree(tg->cfs_rq);
7387 kfree(tg->se);
6f505b16
PZ
7388}
7389
bccbe08a 7390static int alloc_fair_sched_group(struct task_group *tg)
29f59db3 7391{
29f59db3
SV
7392 struct cfs_rq *cfs_rq;
7393 struct sched_entity *se;
9b5b7751 7394 struct rq *rq;
29f59db3
SV
7395 int i;
7396
9b5b7751 7397 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7398 if (!tg->cfs_rq)
7399 goto err;
9b5b7751 7400 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7401 if (!tg->se)
7402 goto err;
052f1dc7
PZ
7403
7404 tg->shares = NICE_0_LOAD;
29f59db3
SV
7405
7406 for_each_possible_cpu(i) {
9b5b7751 7407 rq = cpu_rq(i);
29f59db3 7408
6f505b16
PZ
7409 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7410 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7411 if (!cfs_rq)
7412 goto err;
7413
6f505b16
PZ
7414 se = kmalloc_node(sizeof(struct sched_entity),
7415 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7416 if (!se)
7417 goto err;
7418
052f1dc7 7419 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
bccbe08a
PZ
7420 }
7421
7422 return 1;
7423
7424 err:
7425 return 0;
7426}
7427
7428static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7429{
7430 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7431 &cpu_rq(cpu)->leaf_cfs_rq_list);
7432}
7433
7434static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7435{
7436 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7437}
7438#else
7439static inline void free_fair_sched_group(struct task_group *tg)
7440{
7441}
7442
7443static inline int alloc_fair_sched_group(struct task_group *tg)
7444{
7445 return 1;
7446}
7447
7448static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7449{
7450}
7451
7452static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7453{
7454}
052f1dc7
PZ
7455#endif
7456
7457#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7458static void free_rt_sched_group(struct task_group *tg)
7459{
7460 int i;
7461
7462 for_each_possible_cpu(i) {
7463 if (tg->rt_rq)
7464 kfree(tg->rt_rq[i]);
7465 if (tg->rt_se)
7466 kfree(tg->rt_se[i]);
7467 }
7468
7469 kfree(tg->rt_rq);
7470 kfree(tg->rt_se);
7471}
7472
7473static int alloc_rt_sched_group(struct task_group *tg)
7474{
7475 struct rt_rq *rt_rq;
7476 struct sched_rt_entity *rt_se;
7477 struct rq *rq;
7478 int i;
7479
7480 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7481 if (!tg->rt_rq)
7482 goto err;
7483 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7484 if (!tg->rt_se)
7485 goto err;
7486
7487 tg->rt_runtime = 0;
7488
7489 for_each_possible_cpu(i) {
7490 rq = cpu_rq(i);
7491
6f505b16
PZ
7492 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7493 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7494 if (!rt_rq)
7495 goto err;
29f59db3 7496
6f505b16
PZ
7497 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7498 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7499 if (!rt_se)
7500 goto err;
29f59db3 7501
6f505b16 7502 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7503 }
7504
bccbe08a
PZ
7505 return 1;
7506
7507 err:
7508 return 0;
7509}
7510
7511static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7512{
7513 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7514 &cpu_rq(cpu)->leaf_rt_rq_list);
7515}
7516
7517static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7518{
7519 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7520}
7521#else
7522static inline void free_rt_sched_group(struct task_group *tg)
7523{
7524}
7525
7526static inline int alloc_rt_sched_group(struct task_group *tg)
7527{
7528 return 1;
7529}
7530
7531static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7532{
7533}
7534
7535static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7536{
7537}
7538#endif
7539
7540static void free_sched_group(struct task_group *tg)
7541{
7542 free_fair_sched_group(tg);
7543 free_rt_sched_group(tg);
7544 kfree(tg);
7545}
7546
7547/* allocate runqueue etc for a new task group */
7548struct task_group *sched_create_group(void)
7549{
7550 struct task_group *tg;
7551 unsigned long flags;
7552 int i;
7553
7554 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7555 if (!tg)
7556 return ERR_PTR(-ENOMEM);
7557
7558 if (!alloc_fair_sched_group(tg))
7559 goto err;
7560
7561 if (!alloc_rt_sched_group(tg))
7562 goto err;
7563
8ed36996 7564 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7565 for_each_possible_cpu(i) {
bccbe08a
PZ
7566 register_fair_sched_group(tg, i);
7567 register_rt_sched_group(tg, i);
9b5b7751 7568 }
6f505b16 7569 list_add_rcu(&tg->list, &task_groups);
8ed36996 7570 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7571
9b5b7751 7572 return tg;
29f59db3
SV
7573
7574err:
6f505b16 7575 free_sched_group(tg);
29f59db3
SV
7576 return ERR_PTR(-ENOMEM);
7577}
7578
9b5b7751 7579/* rcu callback to free various structures associated with a task group */
6f505b16 7580static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7581{
29f59db3 7582 /* now it should be safe to free those cfs_rqs */
6f505b16 7583 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7584}
7585
9b5b7751 7586/* Destroy runqueue etc associated with a task group */
4cf86d77 7587void sched_destroy_group(struct task_group *tg)
29f59db3 7588{
8ed36996 7589 unsigned long flags;
9b5b7751 7590 int i;
29f59db3 7591
8ed36996 7592 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7593 for_each_possible_cpu(i) {
bccbe08a
PZ
7594 unregister_fair_sched_group(tg, i);
7595 unregister_rt_sched_group(tg, i);
9b5b7751 7596 }
6f505b16 7597 list_del_rcu(&tg->list);
8ed36996 7598 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7599
9b5b7751 7600 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7601 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7602}
7603
9b5b7751 7604/* change task's runqueue when it moves between groups.
3a252015
IM
7605 * The caller of this function should have put the task in its new group
7606 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7607 * reflect its new group.
9b5b7751
SV
7608 */
7609void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7610{
7611 int on_rq, running;
7612 unsigned long flags;
7613 struct rq *rq;
7614
7615 rq = task_rq_lock(tsk, &flags);
7616
29f59db3
SV
7617 update_rq_clock(rq);
7618
051a1d1a 7619 running = task_current(rq, tsk);
29f59db3
SV
7620 on_rq = tsk->se.on_rq;
7621
0e1f3483 7622 if (on_rq)
29f59db3 7623 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7624 if (unlikely(running))
7625 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7626
6f505b16 7627 set_task_rq(tsk, task_cpu(tsk));
29f59db3 7628
810b3817
PZ
7629#ifdef CONFIG_FAIR_GROUP_SCHED
7630 if (tsk->sched_class->moved_group)
7631 tsk->sched_class->moved_group(tsk);
7632#endif
7633
0e1f3483
HS
7634 if (unlikely(running))
7635 tsk->sched_class->set_curr_task(rq);
7636 if (on_rq)
7074badb 7637 enqueue_task(rq, tsk, 0);
29f59db3 7638
29f59db3
SV
7639 task_rq_unlock(rq, &flags);
7640}
7641
052f1dc7 7642#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
7643static void set_se_shares(struct sched_entity *se, unsigned long shares)
7644{
7645 struct cfs_rq *cfs_rq = se->cfs_rq;
7646 struct rq *rq = cfs_rq->rq;
7647 int on_rq;
7648
62fb1851 7649 spin_lock_irq(&rq->lock);
29f59db3
SV
7650
7651 on_rq = se->on_rq;
62fb1851 7652 if (on_rq)
29f59db3
SV
7653 dequeue_entity(cfs_rq, se, 0);
7654
7655 se->load.weight = shares;
7656 se->load.inv_weight = div64_64((1ULL<<32), shares);
7657
62fb1851 7658 if (on_rq)
29f59db3 7659 enqueue_entity(cfs_rq, se, 0);
62fb1851
PZ
7660
7661 spin_unlock_irq(&rq->lock);
29f59db3
SV
7662}
7663
8ed36996
PZ
7664static DEFINE_MUTEX(shares_mutex);
7665
4cf86d77 7666int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7667{
7668 int i;
8ed36996 7669 unsigned long flags;
c61935fd 7670
62fb1851
PZ
7671 /*
7672 * A weight of 0 or 1 can cause arithmetics problems.
7673 * (The default weight is 1024 - so there's no practical
7674 * limitation from this.)
7675 */
7676 if (shares < 2)
7677 shares = 2;
7678
8ed36996 7679 mutex_lock(&shares_mutex);
9b5b7751 7680 if (tg->shares == shares)
5cb350ba 7681 goto done;
29f59db3 7682
8ed36996 7683 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7684 for_each_possible_cpu(i)
7685 unregister_fair_sched_group(tg, i);
8ed36996 7686 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
7687
7688 /* wait for any ongoing reference to this group to finish */
7689 synchronize_sched();
7690
7691 /*
7692 * Now we are free to modify the group's share on each cpu
7693 * w/o tripping rebalance_share or load_balance_fair.
7694 */
9b5b7751 7695 tg->shares = shares;
62fb1851 7696 for_each_possible_cpu(i)
9b5b7751 7697 set_se_shares(tg->se[i], shares);
29f59db3 7698
6b2d7700
SV
7699 /*
7700 * Enable load balance activity on this group, by inserting it back on
7701 * each cpu's rq->leaf_cfs_rq_list.
7702 */
8ed36996 7703 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7704 for_each_possible_cpu(i)
7705 register_fair_sched_group(tg, i);
8ed36996 7706 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 7707done:
8ed36996 7708 mutex_unlock(&shares_mutex);
9b5b7751 7709 return 0;
29f59db3
SV
7710}
7711
5cb350ba
DG
7712unsigned long sched_group_shares(struct task_group *tg)
7713{
7714 return tg->shares;
7715}
052f1dc7 7716#endif
5cb350ba 7717
052f1dc7 7718#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7719/*
9f0c1e56 7720 * Ensure that the real time constraints are schedulable.
6f505b16 7721 */
9f0c1e56
PZ
7722static DEFINE_MUTEX(rt_constraints_mutex);
7723
7724static unsigned long to_ratio(u64 period, u64 runtime)
7725{
7726 if (runtime == RUNTIME_INF)
7727 return 1ULL << 16;
7728
2692a240 7729 return div64_64(runtime << 16, period);
9f0c1e56
PZ
7730}
7731
7732static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
7733{
7734 struct task_group *tgi;
7735 unsigned long total = 0;
9f0c1e56
PZ
7736 unsigned long global_ratio =
7737 to_ratio(sysctl_sched_rt_period,
7738 sysctl_sched_rt_runtime < 0 ?
7739 RUNTIME_INF : sysctl_sched_rt_runtime);
6f505b16
PZ
7740
7741 rcu_read_lock();
9f0c1e56
PZ
7742 list_for_each_entry_rcu(tgi, &task_groups, list) {
7743 if (tgi == tg)
7744 continue;
6f505b16 7745
9f0c1e56
PZ
7746 total += to_ratio(period, tgi->rt_runtime);
7747 }
7748 rcu_read_unlock();
6f505b16 7749
9f0c1e56 7750 return total + to_ratio(period, runtime) < global_ratio;
6f505b16
PZ
7751}
7752
521f1a24
DG
7753/* Must be called with tasklist_lock held */
7754static inline int tg_has_rt_tasks(struct task_group *tg)
7755{
7756 struct task_struct *g, *p;
7757 do_each_thread(g, p) {
7758 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7759 return 1;
7760 } while_each_thread(g, p);
7761 return 0;
7762}
7763
9f0c1e56 7764int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6f505b16 7765{
9f0c1e56
PZ
7766 u64 rt_runtime, rt_period;
7767 int err = 0;
7768
2692a240 7769 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
9f0c1e56
PZ
7770 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7771 if (rt_runtime_us == -1)
2692a240 7772 rt_runtime = RUNTIME_INF;
9f0c1e56
PZ
7773
7774 mutex_lock(&rt_constraints_mutex);
521f1a24
DG
7775 read_lock(&tasklist_lock);
7776 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7777 err = -EBUSY;
7778 goto unlock;
7779 }
9f0c1e56
PZ
7780 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7781 err = -EINVAL;
7782 goto unlock;
7783 }
9f0c1e56
PZ
7784 tg->rt_runtime = rt_runtime;
7785 unlock:
521f1a24 7786 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7787 mutex_unlock(&rt_constraints_mutex);
7788
7789 return err;
6f505b16
PZ
7790}
7791
9f0c1e56
PZ
7792long sched_group_rt_runtime(struct task_group *tg)
7793{
7794 u64 rt_runtime_us;
7795
7796 if (tg->rt_runtime == RUNTIME_INF)
7797 return -1;
7798
7799 rt_runtime_us = tg->rt_runtime;
7800 do_div(rt_runtime_us, NSEC_PER_USEC);
7801 return rt_runtime_us;
7802}
052f1dc7
PZ
7803#endif
7804#endif /* CONFIG_GROUP_SCHED */
68318b8e 7805
052f1dc7 7806#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7807
7808/* return corresponding task_group object of a cgroup */
2b01dfe3 7809static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7810{
2b01dfe3
PM
7811 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7812 struct task_group, css);
68318b8e
SV
7813}
7814
7815static struct cgroup_subsys_state *
2b01dfe3 7816cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7817{
7818 struct task_group *tg;
7819
2b01dfe3 7820 if (!cgrp->parent) {
68318b8e 7821 /* This is early initialization for the top cgroup */
2b01dfe3 7822 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7823 return &init_task_group.css;
7824 }
7825
7826 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7827 if (cgrp->parent->parent)
68318b8e
SV
7828 return ERR_PTR(-EINVAL);
7829
7830 tg = sched_create_group();
7831 if (IS_ERR(tg))
7832 return ERR_PTR(-ENOMEM);
7833
7834 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7835 tg->css.cgroup = cgrp;
68318b8e
SV
7836
7837 return &tg->css;
7838}
7839
41a2d6cf
IM
7840static void
7841cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7842{
2b01dfe3 7843 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7844
7845 sched_destroy_group(tg);
7846}
7847
41a2d6cf
IM
7848static int
7849cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7850 struct task_struct *tsk)
68318b8e 7851{
b68aa230
PZ
7852#ifdef CONFIG_RT_GROUP_SCHED
7853 /* Don't accept realtime tasks when there is no way for them to run */
7854 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7855 return -EINVAL;
7856#else
68318b8e
SV
7857 /* We don't support RT-tasks being in separate groups */
7858 if (tsk->sched_class != &fair_sched_class)
7859 return -EINVAL;
b68aa230 7860#endif
68318b8e
SV
7861
7862 return 0;
7863}
7864
7865static void
2b01dfe3 7866cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7867 struct cgroup *old_cont, struct task_struct *tsk)
7868{
7869 sched_move_task(tsk);
7870}
7871
052f1dc7 7872#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
7873static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7874 u64 shareval)
68318b8e 7875{
2b01dfe3 7876 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7877}
7878
2b01dfe3 7879static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7880{
2b01dfe3 7881 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7882
7883 return (u64) tg->shares;
7884}
052f1dc7 7885#endif
68318b8e 7886
052f1dc7 7887#ifdef CONFIG_RT_GROUP_SCHED
9f0c1e56
PZ
7888static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7889 struct file *file,
7890 const char __user *userbuf,
7891 size_t nbytes, loff_t *unused_ppos)
6f505b16 7892{
9f0c1e56
PZ
7893 char buffer[64];
7894 int retval = 0;
7895 s64 val;
7896 char *end;
7897
7898 if (!nbytes)
7899 return -EINVAL;
7900 if (nbytes >= sizeof(buffer))
7901 return -E2BIG;
7902 if (copy_from_user(buffer, userbuf, nbytes))
7903 return -EFAULT;
7904
7905 buffer[nbytes] = 0; /* nul-terminate */
7906
7907 /* strip newline if necessary */
7908 if (nbytes && (buffer[nbytes-1] == '\n'))
7909 buffer[nbytes-1] = 0;
7910 val = simple_strtoll(buffer, &end, 0);
7911 if (*end)
7912 return -EINVAL;
7913
7914 /* Pass to subsystem */
7915 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7916 if (!retval)
7917 retval = nbytes;
7918 return retval;
6f505b16
PZ
7919}
7920
9f0c1e56
PZ
7921static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7922 struct file *file,
7923 char __user *buf, size_t nbytes,
7924 loff_t *ppos)
6f505b16 7925{
9f0c1e56
PZ
7926 char tmp[64];
7927 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7928 int len = sprintf(tmp, "%ld\n", val);
6f505b16 7929
9f0c1e56 7930 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 7931}
052f1dc7 7932#endif
6f505b16 7933
fe5c7cc2 7934static struct cftype cpu_files[] = {
052f1dc7 7935#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7936 {
7937 .name = "shares",
7938 .read_uint = cpu_shares_read_uint,
7939 .write_uint = cpu_shares_write_uint,
7940 },
052f1dc7
PZ
7941#endif
7942#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7943 {
9f0c1e56
PZ
7944 .name = "rt_runtime_us",
7945 .read = cpu_rt_runtime_read,
7946 .write = cpu_rt_runtime_write,
6f505b16 7947 },
052f1dc7 7948#endif
68318b8e
SV
7949};
7950
7951static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7952{
fe5c7cc2 7953 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7954}
7955
7956struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7957 .name = "cpu",
7958 .create = cpu_cgroup_create,
7959 .destroy = cpu_cgroup_destroy,
7960 .can_attach = cpu_cgroup_can_attach,
7961 .attach = cpu_cgroup_attach,
7962 .populate = cpu_cgroup_populate,
7963 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7964 .early_init = 1,
7965};
7966
052f1dc7 7967#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7968
7969#ifdef CONFIG_CGROUP_CPUACCT
7970
7971/*
7972 * CPU accounting code for task groups.
7973 *
7974 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7975 * (balbir@in.ibm.com).
7976 */
7977
7978/* track cpu usage of a group of tasks */
7979struct cpuacct {
7980 struct cgroup_subsys_state css;
7981 /* cpuusage holds pointer to a u64-type object on every cpu */
7982 u64 *cpuusage;
7983};
7984
7985struct cgroup_subsys cpuacct_subsys;
7986
7987/* return cpu accounting group corresponding to this container */
7988static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7989{
7990 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7991 struct cpuacct, css);
7992}
7993
7994/* return cpu accounting group to which this task belongs */
7995static inline struct cpuacct *task_ca(struct task_struct *tsk)
7996{
7997 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7998 struct cpuacct, css);
7999}
8000
8001/* create a new cpu accounting group */
8002static struct cgroup_subsys_state *cpuacct_create(
8003 struct cgroup_subsys *ss, struct cgroup *cont)
8004{
8005 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8006
8007 if (!ca)
8008 return ERR_PTR(-ENOMEM);
8009
8010 ca->cpuusage = alloc_percpu(u64);
8011 if (!ca->cpuusage) {
8012 kfree(ca);
8013 return ERR_PTR(-ENOMEM);
8014 }
8015
8016 return &ca->css;
8017}
8018
8019/* destroy an existing cpu accounting group */
41a2d6cf
IM
8020static void
8021cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
8022{
8023 struct cpuacct *ca = cgroup_ca(cont);
8024
8025 free_percpu(ca->cpuusage);
8026 kfree(ca);
8027}
8028
8029/* return total cpu usage (in nanoseconds) of a group */
8030static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8031{
8032 struct cpuacct *ca = cgroup_ca(cont);
8033 u64 totalcpuusage = 0;
8034 int i;
8035
8036 for_each_possible_cpu(i) {
8037 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8038
8039 /*
8040 * Take rq->lock to make 64-bit addition safe on 32-bit
8041 * platforms.
8042 */
8043 spin_lock_irq(&cpu_rq(i)->lock);
8044 totalcpuusage += *cpuusage;
8045 spin_unlock_irq(&cpu_rq(i)->lock);
8046 }
8047
8048 return totalcpuusage;
8049}
8050
8051static struct cftype files[] = {
8052 {
8053 .name = "usage",
8054 .read_uint = cpuusage_read,
8055 },
8056};
8057
8058static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8059{
8060 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8061}
8062
8063/*
8064 * charge this task's execution time to its accounting group.
8065 *
8066 * called with rq->lock held.
8067 */
8068static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8069{
8070 struct cpuacct *ca;
8071
8072 if (!cpuacct_subsys.active)
8073 return;
8074
8075 ca = task_ca(tsk);
8076 if (ca) {
8077 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8078
8079 *cpuusage += cputime;
8080 }
8081}
8082
8083struct cgroup_subsys cpuacct_subsys = {
8084 .name = "cpuacct",
8085 .create = cpuacct_create,
8086 .destroy = cpuacct_destroy,
8087 .populate = cpuacct_populate,
8088 .subsys_id = cpuacct_subsys_id,
8089};
8090#endif /* CONFIG_CGROUP_CPUACCT */