]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Revert "cpu hotplug: adjust root-domain->online span in response to hotplug event"
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
1da177e4 69
5517d86b 70#include <asm/tlb.h>
838225b4 71#include <asm/irq_regs.h>
1da177e4 72
b035b6de
AD
73/*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78unsigned long long __attribute__((weak)) sched_clock(void)
79{
d6322faf 80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
81}
82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
5517d86b
ED
117#ifdef CONFIG_SMP
118/*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123{
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125}
126
127/*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132{
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135}
136#endif
137
e05606d3
IM
138static inline int rt_policy(int policy)
139{
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143}
144
145static inline int task_has_rt_policy(struct task_struct *p)
146{
147 return rt_policy(p->policy);
148}
149
1da177e4 150/*
6aa645ea 151 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 152 */
6aa645ea
IM
153struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156};
157
052f1dc7 158#ifdef CONFIG_GROUP_SCHED
29f59db3 159
68318b8e
SV
160#include <linux/cgroup.h>
161
29f59db3
SV
162struct cfs_rq;
163
6f505b16
PZ
164static LIST_HEAD(task_groups);
165
29f59db3 166/* task group related information */
4cf86d77 167struct task_group {
052f1dc7 168#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
169 struct cgroup_subsys_state css;
170#endif
052f1dc7
PZ
171
172#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
052f1dc7
PZ
178#endif
179
180#ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
183
184 u64 rt_runtime;
185#endif
6b2d7700 186
ae8393e5 187 struct rcu_head rcu;
6f505b16 188 struct list_head list;
29f59db3
SV
189};
190
052f1dc7 191#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
192/* Default task group's sched entity on each cpu */
193static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194/* Default task group's cfs_rq on each cpu */
195static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
196
9b5b7751
SV
197static struct sched_entity *init_sched_entity_p[NR_CPUS];
198static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
052f1dc7
PZ
199#endif
200
201#ifdef CONFIG_RT_GROUP_SCHED
202static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
29f59db3 204
6f505b16
PZ
205static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206static struct rt_rq *init_rt_rq_p[NR_CPUS];
052f1dc7 207#endif
6f505b16 208
8ed36996 209/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
210 * a task group's cpu shares.
211 */
8ed36996 212static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 213
a1835615
SV
214/* doms_cur_mutex serializes access to doms_cur[] array */
215static DEFINE_MUTEX(doms_cur_mutex);
216
052f1dc7 217#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
218#ifdef CONFIG_USER_SCHED
219# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
220#else
221# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
222#endif
223
052f1dc7
PZ
224static int init_task_group_load = INIT_TASK_GROUP_LOAD;
225#endif
226
29f59db3 227/* Default task group.
3a252015 228 * Every task in system belong to this group at bootup.
29f59db3 229 */
4cf86d77 230struct task_group init_task_group = {
052f1dc7 231#ifdef CONFIG_FAIR_GROUP_SCHED
0eab9146 232 .se = init_sched_entity_p,
3a252015 233 .cfs_rq = init_cfs_rq_p,
052f1dc7 234#endif
6f505b16 235
052f1dc7 236#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
24e377a8 239#endif
052f1dc7 240};
29f59db3
SV
241
242/* return group to which a task belongs */
4cf86d77 243static inline struct task_group *task_group(struct task_struct *p)
29f59db3 244{
4cf86d77 245 struct task_group *tg;
9b5b7751 246
052f1dc7 247#ifdef CONFIG_USER_SCHED
24e377a8 248 tg = p->user->tg;
052f1dc7 249#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
24e377a8 252#else
41a2d6cf 253 tg = &init_task_group;
24e377a8 254#endif
9b5b7751 255 return tg;
29f59db3
SV
256}
257
258/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 259static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 260{
052f1dc7 261#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
052f1dc7 264#endif
6f505b16 265
052f1dc7 266#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 269#endif
29f59db3
SV
270}
271
a1835615
SV
272static inline void lock_doms_cur(void)
273{
274 mutex_lock(&doms_cur_mutex);
275}
276
277static inline void unlock_doms_cur(void)
278{
279 mutex_unlock(&doms_cur_mutex);
280}
281
29f59db3
SV
282#else
283
6f505b16 284static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
285static inline void lock_doms_cur(void) { }
286static inline void unlock_doms_cur(void) { }
29f59db3 287
052f1dc7 288#endif /* CONFIG_GROUP_SCHED */
29f59db3 289
6aa645ea
IM
290/* CFS-related fields in a runqueue */
291struct cfs_rq {
292 struct load_weight load;
293 unsigned long nr_running;
294
6aa645ea 295 u64 exec_clock;
e9acbff6 296 u64 min_vruntime;
6aa645ea
IM
297
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
303 */
304 struct sched_entity *curr;
ddc97297
PZ
305
306 unsigned long nr_spread_over;
307
62160e3f 308#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
310
41a2d6cf
IM
311 /*
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
315 *
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
318 */
41a2d6cf
IM
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
321#endif
322};
1da177e4 323
6aa645ea
IM
324/* Real-Time classes' related field in a runqueue: */
325struct rt_rq {
326 struct rt_prio_array active;
63489e45 327 unsigned long rt_nr_running;
052f1dc7 328#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
329 int highest_prio; /* highest queued rt task prio */
330#endif
fa85ae24 331#ifdef CONFIG_SMP
73fe6aae 332 unsigned long rt_nr_migratory;
a22d7fc1 333 int overloaded;
fa85ae24 334#endif
6f505b16 335 int rt_throttled;
fa85ae24 336 u64 rt_time;
6f505b16 337
052f1dc7 338#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
339 unsigned long rt_nr_boosted;
340
6f505b16
PZ
341 struct rq *rq;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
345#endif
6aa645ea
IM
346};
347
57d885fe
GH
348#ifdef CONFIG_SMP
349
350/*
351 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
354 * exclusive cpuset is created, we also create and attach a new root-domain
355 * object.
356 *
57d885fe
GH
357 */
358struct root_domain {
359 atomic_t refcount;
360 cpumask_t span;
361 cpumask_t online;
637f5085 362
0eab9146 363 /*
637f5085
GH
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
366 */
367 cpumask_t rto_mask;
0eab9146 368 atomic_t rto_count;
57d885fe
GH
369};
370
dc938520
GH
371/*
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
374 */
57d885fe
GH
375static struct root_domain def_root_domain;
376
377#endif
378
1da177e4
LT
379/*
380 * This is the main, per-CPU runqueue data structure.
381 *
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
385 */
70b97a7f 386struct rq {
d8016491
IM
387 /* runqueue lock: */
388 spinlock_t lock;
1da177e4
LT
389
390 /*
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
393 */
394 unsigned long nr_running;
6aa645ea
IM
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 397 unsigned char idle_at_tick;
46cb4b7c
SS
398#ifdef CONFIG_NO_HZ
399 unsigned char in_nohz_recently;
400#endif
d8016491
IM
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
6aa645ea
IM
403 unsigned long nr_load_updates;
404 u64 nr_switches;
405
406 struct cfs_rq cfs;
6f505b16
PZ
407 struct rt_rq rt;
408 u64 rt_period_expire;
48d5e258 409 int rt_throttled;
6f505b16 410
6aa645ea 411#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
414#endif
415#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 416 struct list_head leaf_rt_rq_list;
1da177e4 417#endif
1da177e4
LT
418
419 /*
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
424 */
425 unsigned long nr_uninterruptible;
426
36c8b586 427 struct task_struct *curr, *idle;
c9819f45 428 unsigned long next_balance;
1da177e4 429 struct mm_struct *prev_mm;
6aa645ea 430
6aa645ea
IM
431 u64 clock, prev_clock_raw;
432 s64 clock_max_delta;
433
cc203d24 434 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
435 u64 idle_clock;
436 unsigned int clock_deep_idle_events;
529c7726 437 u64 tick_timestamp;
6aa645ea 438
1da177e4
LT
439 atomic_t nr_iowait;
440
441#ifdef CONFIG_SMP
0eab9146 442 struct root_domain *rd;
1da177e4
LT
443 struct sched_domain *sd;
444
445 /* For active balancing */
446 int active_balance;
447 int push_cpu;
d8016491
IM
448 /* cpu of this runqueue: */
449 int cpu;
1da177e4 450
36c8b586 451 struct task_struct *migration_thread;
1da177e4
LT
452 struct list_head migration_queue;
453#endif
454
8f4d37ec
PZ
455#ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
459#endif
460
1da177e4
LT
461#ifdef CONFIG_SCHEDSTATS
462 /* latency stats */
463 struct sched_info rq_sched_info;
464
465 /* sys_sched_yield() stats */
480b9434
KC
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
1da177e4
LT
470
471 /* schedule() stats */
480b9434
KC
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
1da177e4
LT
475
476 /* try_to_wake_up() stats */
480b9434
KC
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
b8efb561
IM
479
480 /* BKL stats */
480b9434 481 unsigned int bkl_count;
1da177e4 482#endif
fcb99371 483 struct lock_class_key rq_lock_key;
1da177e4
LT
484};
485
f34e3b61 486static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 487
dd41f596
IM
488static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
489{
490 rq->curr->sched_class->check_preempt_curr(rq, p);
491}
492
0a2966b4
CL
493static inline int cpu_of(struct rq *rq)
494{
495#ifdef CONFIG_SMP
496 return rq->cpu;
497#else
498 return 0;
499#endif
500}
501
20d315d4 502/*
b04a0f4c
IM
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
20d315d4 505 */
b04a0f4c 506static void __update_rq_clock(struct rq *rq)
20d315d4
IM
507{
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
512
b04a0f4c
IM
513#ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
515#endif
20d315d4
IM
516 /*
517 * Protect against sched_clock() occasionally going backwards:
518 */
519 if (unlikely(delta < 0)) {
520 clock++;
521 rq->clock_warps++;
522 } else {
523 /*
524 * Catch too large forward jumps too:
525 */
529c7726
IM
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
529 else
530 clock++;
20d315d4
IM
531 rq->clock_overflows++;
532 } else {
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
535 clock += delta;
536 }
537 }
538
539 rq->prev_clock_raw = now;
540 rq->clock = clock;
b04a0f4c 541}
20d315d4 542
b04a0f4c
IM
543static void update_rq_clock(struct rq *rq)
544{
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
20d315d4
IM
547}
548
674311d5
NP
549/*
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 551 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
552 *
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
555 */
48f24c4d
IM
556#define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
558
559#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560#define this_rq() (&__get_cpu_var(runqueues))
561#define task_rq(p) cpu_rq(task_cpu(p))
562#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
563
48d5e258
PZ
564unsigned long rt_needs_cpu(int cpu)
565{
566 struct rq *rq = cpu_rq(cpu);
567 u64 delta;
568
569 if (!rq->rt_throttled)
570 return 0;
571
572 if (rq->clock > rq->rt_period_expire)
573 return 1;
574
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
577
578 return (unsigned long)delta;
579}
580
bf5c91ba
IM
581/*
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
583 */
584#ifdef CONFIG_SCHED_DEBUG
585# define const_debug __read_mostly
586#else
587# define const_debug static const
588#endif
589
590/*
591 * Debugging: various feature bits
592 */
593enum {
bbdba7c0 594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
597 SCHED_FEAT_TREE_AVG = 8,
598 SCHED_FEAT_APPROX_AVG = 16,
8f4d37ec
PZ
599 SCHED_FEAT_HRTICK = 32,
600 SCHED_FEAT_DOUBLE_TICK = 64,
bf5c91ba
IM
601};
602
603const_debug unsigned int sysctl_sched_features =
8401f775 604 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 605 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
606 SCHED_FEAT_START_DEBIT * 1 |
607 SCHED_FEAT_TREE_AVG * 0 |
8f4d37ec
PZ
608 SCHED_FEAT_APPROX_AVG * 0 |
609 SCHED_FEAT_HRTICK * 1 |
610 SCHED_FEAT_DOUBLE_TICK * 0;
bf5c91ba
IM
611
612#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
613
b82d9fdd
PZ
614/*
615 * Number of tasks to iterate in a single balance run.
616 * Limited because this is done with IRQs disabled.
617 */
618const_debug unsigned int sysctl_sched_nr_migrate = 32;
619
fa85ae24 620/*
9f0c1e56 621 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
622 * default: 1s
623 */
9f0c1e56 624unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 625
6892b75e
IM
626static __read_mostly int scheduler_running;
627
9f0c1e56
PZ
628/*
629 * part of the period that we allow rt tasks to run in us.
630 * default: 0.95s
631 */
632int sysctl_sched_rt_runtime = 950000;
fa85ae24
PZ
633
634/*
9f0c1e56 635 * single value that denotes runtime == period, ie unlimited time.
fa85ae24 636 */
9f0c1e56 637#define RUNTIME_INF ((u64)~0ULL)
fa85ae24 638
e436d800
IM
639/*
640 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
641 * clock constructed from sched_clock():
642 */
643unsigned long long cpu_clock(int cpu)
644{
e436d800
IM
645 unsigned long long now;
646 unsigned long flags;
b04a0f4c 647 struct rq *rq;
e436d800 648
8ced5f69
IM
649 /*
650 * Only call sched_clock() if the scheduler has already been
651 * initialized (some code might call cpu_clock() very early):
652 */
6892b75e
IM
653 if (unlikely(!scheduler_running))
654 return 0;
655
656 local_irq_save(flags);
657 rq = cpu_rq(cpu);
658 update_rq_clock(rq);
b04a0f4c 659 now = rq->clock;
2cd4d0ea 660 local_irq_restore(flags);
e436d800
IM
661
662 return now;
663}
a58f6f25 664EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 665
1da177e4 666#ifndef prepare_arch_switch
4866cde0
NP
667# define prepare_arch_switch(next) do { } while (0)
668#endif
669#ifndef finish_arch_switch
670# define finish_arch_switch(prev) do { } while (0)
671#endif
672
051a1d1a
DA
673static inline int task_current(struct rq *rq, struct task_struct *p)
674{
675 return rq->curr == p;
676}
677
4866cde0 678#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 679static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 680{
051a1d1a 681 return task_current(rq, p);
4866cde0
NP
682}
683
70b97a7f 684static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
685{
686}
687
70b97a7f 688static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 689{
da04c035
IM
690#ifdef CONFIG_DEBUG_SPINLOCK
691 /* this is a valid case when another task releases the spinlock */
692 rq->lock.owner = current;
693#endif
8a25d5de
IM
694 /*
695 * If we are tracking spinlock dependencies then we have to
696 * fix up the runqueue lock - which gets 'carried over' from
697 * prev into current:
698 */
699 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
700
4866cde0
NP
701 spin_unlock_irq(&rq->lock);
702}
703
704#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 705static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
706{
707#ifdef CONFIG_SMP
708 return p->oncpu;
709#else
051a1d1a 710 return task_current(rq, p);
4866cde0
NP
711#endif
712}
713
70b97a7f 714static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
715{
716#ifdef CONFIG_SMP
717 /*
718 * We can optimise this out completely for !SMP, because the
719 * SMP rebalancing from interrupt is the only thing that cares
720 * here.
721 */
722 next->oncpu = 1;
723#endif
724#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
725 spin_unlock_irq(&rq->lock);
726#else
727 spin_unlock(&rq->lock);
728#endif
729}
730
70b97a7f 731static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
732{
733#ifdef CONFIG_SMP
734 /*
735 * After ->oncpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
737 * finished.
738 */
739 smp_wmb();
740 prev->oncpu = 0;
741#endif
742#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
743 local_irq_enable();
1da177e4 744#endif
4866cde0
NP
745}
746#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 747
b29739f9
IM
748/*
749 * __task_rq_lock - lock the runqueue a given task resides on.
750 * Must be called interrupts disabled.
751 */
70b97a7f 752static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
753 __acquires(rq->lock)
754{
3a5c359a
AK
755 for (;;) {
756 struct rq *rq = task_rq(p);
757 spin_lock(&rq->lock);
758 if (likely(rq == task_rq(p)))
759 return rq;
b29739f9 760 spin_unlock(&rq->lock);
b29739f9 761 }
b29739f9
IM
762}
763
1da177e4
LT
764/*
765 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 766 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
767 * explicitly disabling preemption.
768 */
70b97a7f 769static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
770 __acquires(rq->lock)
771{
70b97a7f 772 struct rq *rq;
1da177e4 773
3a5c359a
AK
774 for (;;) {
775 local_irq_save(*flags);
776 rq = task_rq(p);
777 spin_lock(&rq->lock);
778 if (likely(rq == task_rq(p)))
779 return rq;
1da177e4 780 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 781 }
1da177e4
LT
782}
783
a9957449 784static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
785 __releases(rq->lock)
786{
787 spin_unlock(&rq->lock);
788}
789
70b97a7f 790static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
791 __releases(rq->lock)
792{
793 spin_unlock_irqrestore(&rq->lock, *flags);
794}
795
1da177e4 796/*
cc2a73b5 797 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 798 */
a9957449 799static struct rq *this_rq_lock(void)
1da177e4
LT
800 __acquires(rq->lock)
801{
70b97a7f 802 struct rq *rq;
1da177e4
LT
803
804 local_irq_disable();
805 rq = this_rq();
806 spin_lock(&rq->lock);
807
808 return rq;
809}
810
1b9f19c2 811/*
2aa44d05 812 * We are going deep-idle (irqs are disabled):
1b9f19c2 813 */
2aa44d05 814void sched_clock_idle_sleep_event(void)
1b9f19c2 815{
2aa44d05
IM
816 struct rq *rq = cpu_rq(smp_processor_id());
817
818 spin_lock(&rq->lock);
819 __update_rq_clock(rq);
820 spin_unlock(&rq->lock);
821 rq->clock_deep_idle_events++;
822}
823EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
824
825/*
826 * We just idled delta nanoseconds (called with irqs disabled):
827 */
828void sched_clock_idle_wakeup_event(u64 delta_ns)
829{
830 struct rq *rq = cpu_rq(smp_processor_id());
831 u64 now = sched_clock();
1b9f19c2 832
2aa44d05
IM
833 rq->idle_clock += delta_ns;
834 /*
835 * Override the previous timestamp and ignore all
836 * sched_clock() deltas that occured while we idled,
837 * and use the PM-provided delta_ns to advance the
838 * rq clock:
839 */
840 spin_lock(&rq->lock);
841 rq->prev_clock_raw = now;
842 rq->clock += delta_ns;
843 spin_unlock(&rq->lock);
782daeee 844 touch_softlockup_watchdog();
1b9f19c2 845}
2aa44d05 846EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 847
8f4d37ec
PZ
848static void __resched_task(struct task_struct *p, int tif_bit);
849
850static inline void resched_task(struct task_struct *p)
851{
852 __resched_task(p, TIF_NEED_RESCHED);
853}
854
855#ifdef CONFIG_SCHED_HRTICK
856/*
857 * Use HR-timers to deliver accurate preemption points.
858 *
859 * Its all a bit involved since we cannot program an hrt while holding the
860 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
861 * reschedule event.
862 *
863 * When we get rescheduled we reprogram the hrtick_timer outside of the
864 * rq->lock.
865 */
866static inline void resched_hrt(struct task_struct *p)
867{
868 __resched_task(p, TIF_HRTICK_RESCHED);
869}
870
871static inline void resched_rq(struct rq *rq)
872{
873 unsigned long flags;
874
875 spin_lock_irqsave(&rq->lock, flags);
876 resched_task(rq->curr);
877 spin_unlock_irqrestore(&rq->lock, flags);
878}
879
880enum {
881 HRTICK_SET, /* re-programm hrtick_timer */
882 HRTICK_RESET, /* not a new slice */
883};
884
885/*
886 * Use hrtick when:
887 * - enabled by features
888 * - hrtimer is actually high res
889 */
890static inline int hrtick_enabled(struct rq *rq)
891{
892 if (!sched_feat(HRTICK))
893 return 0;
894 return hrtimer_is_hres_active(&rq->hrtick_timer);
895}
896
897/*
898 * Called to set the hrtick timer state.
899 *
900 * called with rq->lock held and irqs disabled
901 */
902static void hrtick_start(struct rq *rq, u64 delay, int reset)
903{
904 assert_spin_locked(&rq->lock);
905
906 /*
907 * preempt at: now + delay
908 */
909 rq->hrtick_expire =
910 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
911 /*
912 * indicate we need to program the timer
913 */
914 __set_bit(HRTICK_SET, &rq->hrtick_flags);
915 if (reset)
916 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
917
918 /*
919 * New slices are called from the schedule path and don't need a
920 * forced reschedule.
921 */
922 if (reset)
923 resched_hrt(rq->curr);
924}
925
926static void hrtick_clear(struct rq *rq)
927{
928 if (hrtimer_active(&rq->hrtick_timer))
929 hrtimer_cancel(&rq->hrtick_timer);
930}
931
932/*
933 * Update the timer from the possible pending state.
934 */
935static void hrtick_set(struct rq *rq)
936{
937 ktime_t time;
938 int set, reset;
939 unsigned long flags;
940
941 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
942
943 spin_lock_irqsave(&rq->lock, flags);
944 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
945 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
946 time = rq->hrtick_expire;
947 clear_thread_flag(TIF_HRTICK_RESCHED);
948 spin_unlock_irqrestore(&rq->lock, flags);
949
950 if (set) {
951 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
952 if (reset && !hrtimer_active(&rq->hrtick_timer))
953 resched_rq(rq);
954 } else
955 hrtick_clear(rq);
956}
957
958/*
959 * High-resolution timer tick.
960 * Runs from hardirq context with interrupts disabled.
961 */
962static enum hrtimer_restart hrtick(struct hrtimer *timer)
963{
964 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
965
966 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
967
968 spin_lock(&rq->lock);
969 __update_rq_clock(rq);
970 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
971 spin_unlock(&rq->lock);
972
973 return HRTIMER_NORESTART;
974}
975
976static inline void init_rq_hrtick(struct rq *rq)
977{
978 rq->hrtick_flags = 0;
979 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
980 rq->hrtick_timer.function = hrtick;
981 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
982}
983
984void hrtick_resched(void)
985{
986 struct rq *rq;
987 unsigned long flags;
988
989 if (!test_thread_flag(TIF_HRTICK_RESCHED))
990 return;
991
992 local_irq_save(flags);
993 rq = cpu_rq(smp_processor_id());
994 hrtick_set(rq);
995 local_irq_restore(flags);
996}
997#else
998static inline void hrtick_clear(struct rq *rq)
999{
1000}
1001
1002static inline void hrtick_set(struct rq *rq)
1003{
1004}
1005
1006static inline void init_rq_hrtick(struct rq *rq)
1007{
1008}
1009
1010void hrtick_resched(void)
1011{
1012}
1013#endif
1014
c24d20db
IM
1015/*
1016 * resched_task - mark a task 'to be rescheduled now'.
1017 *
1018 * On UP this means the setting of the need_resched flag, on SMP it
1019 * might also involve a cross-CPU call to trigger the scheduler on
1020 * the target CPU.
1021 */
1022#ifdef CONFIG_SMP
1023
1024#ifndef tsk_is_polling
1025#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1026#endif
1027
8f4d37ec 1028static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1029{
1030 int cpu;
1031
1032 assert_spin_locked(&task_rq(p)->lock);
1033
8f4d37ec 1034 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1035 return;
1036
8f4d37ec 1037 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1038
1039 cpu = task_cpu(p);
1040 if (cpu == smp_processor_id())
1041 return;
1042
1043 /* NEED_RESCHED must be visible before we test polling */
1044 smp_mb();
1045 if (!tsk_is_polling(p))
1046 smp_send_reschedule(cpu);
1047}
1048
1049static void resched_cpu(int cpu)
1050{
1051 struct rq *rq = cpu_rq(cpu);
1052 unsigned long flags;
1053
1054 if (!spin_trylock_irqsave(&rq->lock, flags))
1055 return;
1056 resched_task(cpu_curr(cpu));
1057 spin_unlock_irqrestore(&rq->lock, flags);
1058}
1059#else
8f4d37ec 1060static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1061{
1062 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1063 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1064}
1065#endif
1066
45bf76df
IM
1067#if BITS_PER_LONG == 32
1068# define WMULT_CONST (~0UL)
1069#else
1070# define WMULT_CONST (1UL << 32)
1071#endif
1072
1073#define WMULT_SHIFT 32
1074
194081eb
IM
1075/*
1076 * Shift right and round:
1077 */
cf2ab469 1078#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1079
cb1c4fc9 1080static unsigned long
45bf76df
IM
1081calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1082 struct load_weight *lw)
1083{
1084 u64 tmp;
1085
1086 if (unlikely(!lw->inv_weight))
194081eb 1087 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
1088
1089 tmp = (u64)delta_exec * weight;
1090 /*
1091 * Check whether we'd overflow the 64-bit multiplication:
1092 */
194081eb 1093 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1094 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1095 WMULT_SHIFT/2);
1096 else
cf2ab469 1097 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1098
ecf691da 1099 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1100}
1101
1102static inline unsigned long
1103calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1104{
1105 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1106}
1107
1091985b 1108static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1109{
1110 lw->weight += inc;
45bf76df
IM
1111}
1112
1091985b 1113static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1114{
1115 lw->weight -= dec;
45bf76df
IM
1116}
1117
2dd73a4f
PW
1118/*
1119 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1120 * of tasks with abnormal "nice" values across CPUs the contribution that
1121 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1122 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1123 * scaled version of the new time slice allocation that they receive on time
1124 * slice expiry etc.
1125 */
1126
dd41f596
IM
1127#define WEIGHT_IDLEPRIO 2
1128#define WMULT_IDLEPRIO (1 << 31)
1129
1130/*
1131 * Nice levels are multiplicative, with a gentle 10% change for every
1132 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1133 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1134 * that remained on nice 0.
1135 *
1136 * The "10% effect" is relative and cumulative: from _any_ nice level,
1137 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1138 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1139 * If a task goes up by ~10% and another task goes down by ~10% then
1140 * the relative distance between them is ~25%.)
dd41f596
IM
1141 */
1142static const int prio_to_weight[40] = {
254753dc
IM
1143 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1144 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1145 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1146 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1147 /* 0 */ 1024, 820, 655, 526, 423,
1148 /* 5 */ 335, 272, 215, 172, 137,
1149 /* 10 */ 110, 87, 70, 56, 45,
1150 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1151};
1152
5714d2de
IM
1153/*
1154 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1155 *
1156 * In cases where the weight does not change often, we can use the
1157 * precalculated inverse to speed up arithmetics by turning divisions
1158 * into multiplications:
1159 */
dd41f596 1160static const u32 prio_to_wmult[40] = {
254753dc
IM
1161 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1162 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1163 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1164 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1165 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1166 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1167 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1168 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1169};
2dd73a4f 1170
dd41f596
IM
1171static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1172
1173/*
1174 * runqueue iterator, to support SMP load-balancing between different
1175 * scheduling classes, without having to expose their internal data
1176 * structures to the load-balancing proper:
1177 */
1178struct rq_iterator {
1179 void *arg;
1180 struct task_struct *(*start)(void *);
1181 struct task_struct *(*next)(void *);
1182};
1183
e1d1484f
PW
1184#ifdef CONFIG_SMP
1185static unsigned long
1186balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1187 unsigned long max_load_move, struct sched_domain *sd,
1188 enum cpu_idle_type idle, int *all_pinned,
1189 int *this_best_prio, struct rq_iterator *iterator);
1190
1191static int
1192iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1193 struct sched_domain *sd, enum cpu_idle_type idle,
1194 struct rq_iterator *iterator);
e1d1484f 1195#endif
dd41f596 1196
d842de87
SV
1197#ifdef CONFIG_CGROUP_CPUACCT
1198static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1199#else
1200static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1201#endif
1202
e7693a36
GH
1203#ifdef CONFIG_SMP
1204static unsigned long source_load(int cpu, int type);
1205static unsigned long target_load(int cpu, int type);
1206static unsigned long cpu_avg_load_per_task(int cpu);
1207static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1208#endif /* CONFIG_SMP */
1209
dd41f596 1210#include "sched_stats.h"
dd41f596 1211#include "sched_idletask.c"
5522d5d5
IM
1212#include "sched_fair.c"
1213#include "sched_rt.c"
dd41f596
IM
1214#ifdef CONFIG_SCHED_DEBUG
1215# include "sched_debug.c"
1216#endif
1217
1218#define sched_class_highest (&rt_sched_class)
1219
62fb1851
PZ
1220static inline void inc_load(struct rq *rq, const struct task_struct *p)
1221{
1222 update_load_add(&rq->load, p->se.load.weight);
1223}
1224
1225static inline void dec_load(struct rq *rq, const struct task_struct *p)
1226{
1227 update_load_sub(&rq->load, p->se.load.weight);
1228}
1229
1230static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1231{
1232 rq->nr_running++;
62fb1851 1233 inc_load(rq, p);
9c217245
IM
1234}
1235
62fb1851 1236static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1237{
1238 rq->nr_running--;
62fb1851 1239 dec_load(rq, p);
9c217245
IM
1240}
1241
45bf76df
IM
1242static void set_load_weight(struct task_struct *p)
1243{
1244 if (task_has_rt_policy(p)) {
dd41f596
IM
1245 p->se.load.weight = prio_to_weight[0] * 2;
1246 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1247 return;
1248 }
45bf76df 1249
dd41f596
IM
1250 /*
1251 * SCHED_IDLE tasks get minimal weight:
1252 */
1253 if (p->policy == SCHED_IDLE) {
1254 p->se.load.weight = WEIGHT_IDLEPRIO;
1255 p->se.load.inv_weight = WMULT_IDLEPRIO;
1256 return;
1257 }
71f8bd46 1258
dd41f596
IM
1259 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1260 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1261}
1262
8159f87e 1263static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1264{
dd41f596 1265 sched_info_queued(p);
fd390f6a 1266 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1267 p->se.on_rq = 1;
71f8bd46
IM
1268}
1269
69be72c1 1270static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1271{
f02231e5 1272 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1273 p->se.on_rq = 0;
71f8bd46
IM
1274}
1275
14531189 1276/*
dd41f596 1277 * __normal_prio - return the priority that is based on the static prio
14531189 1278 */
14531189
IM
1279static inline int __normal_prio(struct task_struct *p)
1280{
dd41f596 1281 return p->static_prio;
14531189
IM
1282}
1283
b29739f9
IM
1284/*
1285 * Calculate the expected normal priority: i.e. priority
1286 * without taking RT-inheritance into account. Might be
1287 * boosted by interactivity modifiers. Changes upon fork,
1288 * setprio syscalls, and whenever the interactivity
1289 * estimator recalculates.
1290 */
36c8b586 1291static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1292{
1293 int prio;
1294
e05606d3 1295 if (task_has_rt_policy(p))
b29739f9
IM
1296 prio = MAX_RT_PRIO-1 - p->rt_priority;
1297 else
1298 prio = __normal_prio(p);
1299 return prio;
1300}
1301
1302/*
1303 * Calculate the current priority, i.e. the priority
1304 * taken into account by the scheduler. This value might
1305 * be boosted by RT tasks, or might be boosted by
1306 * interactivity modifiers. Will be RT if the task got
1307 * RT-boosted. If not then it returns p->normal_prio.
1308 */
36c8b586 1309static int effective_prio(struct task_struct *p)
b29739f9
IM
1310{
1311 p->normal_prio = normal_prio(p);
1312 /*
1313 * If we are RT tasks or we were boosted to RT priority,
1314 * keep the priority unchanged. Otherwise, update priority
1315 * to the normal priority:
1316 */
1317 if (!rt_prio(p->prio))
1318 return p->normal_prio;
1319 return p->prio;
1320}
1321
1da177e4 1322/*
dd41f596 1323 * activate_task - move a task to the runqueue.
1da177e4 1324 */
dd41f596 1325static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1326{
d9514f6c 1327 if (task_contributes_to_load(p))
dd41f596 1328 rq->nr_uninterruptible--;
1da177e4 1329
8159f87e 1330 enqueue_task(rq, p, wakeup);
62fb1851 1331 inc_nr_running(p, rq);
1da177e4
LT
1332}
1333
1da177e4
LT
1334/*
1335 * deactivate_task - remove a task from the runqueue.
1336 */
2e1cb74a 1337static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1338{
d9514f6c 1339 if (task_contributes_to_load(p))
dd41f596
IM
1340 rq->nr_uninterruptible++;
1341
69be72c1 1342 dequeue_task(rq, p, sleep);
62fb1851 1343 dec_nr_running(p, rq);
1da177e4
LT
1344}
1345
1da177e4
LT
1346/**
1347 * task_curr - is this task currently executing on a CPU?
1348 * @p: the task in question.
1349 */
36c8b586 1350inline int task_curr(const struct task_struct *p)
1da177e4
LT
1351{
1352 return cpu_curr(task_cpu(p)) == p;
1353}
1354
2dd73a4f
PW
1355/* Used instead of source_load when we know the type == 0 */
1356unsigned long weighted_cpuload(const int cpu)
1357{
495eca49 1358 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1359}
1360
1361static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1362{
6f505b16 1363 set_task_rq(p, cpu);
dd41f596 1364#ifdef CONFIG_SMP
ce96b5ac
DA
1365 /*
1366 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1367 * successfuly executed on another CPU. We must ensure that updates of
1368 * per-task data have been completed by this moment.
1369 */
1370 smp_wmb();
dd41f596 1371 task_thread_info(p)->cpu = cpu;
dd41f596 1372#endif
2dd73a4f
PW
1373}
1374
cb469845
SR
1375static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1376 const struct sched_class *prev_class,
1377 int oldprio, int running)
1378{
1379 if (prev_class != p->sched_class) {
1380 if (prev_class->switched_from)
1381 prev_class->switched_from(rq, p, running);
1382 p->sched_class->switched_to(rq, p, running);
1383 } else
1384 p->sched_class->prio_changed(rq, p, oldprio, running);
1385}
1386
1da177e4 1387#ifdef CONFIG_SMP
c65cc870 1388
cc367732
IM
1389/*
1390 * Is this task likely cache-hot:
1391 */
e7693a36 1392static int
cc367732
IM
1393task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1394{
1395 s64 delta;
1396
1397 if (p->sched_class != &fair_sched_class)
1398 return 0;
1399
6bc1665b
IM
1400 if (sysctl_sched_migration_cost == -1)
1401 return 1;
1402 if (sysctl_sched_migration_cost == 0)
1403 return 0;
1404
cc367732
IM
1405 delta = now - p->se.exec_start;
1406
1407 return delta < (s64)sysctl_sched_migration_cost;
1408}
1409
1410
dd41f596 1411void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1412{
dd41f596
IM
1413 int old_cpu = task_cpu(p);
1414 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1415 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1416 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1417 u64 clock_offset;
dd41f596
IM
1418
1419 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1420
1421#ifdef CONFIG_SCHEDSTATS
1422 if (p->se.wait_start)
1423 p->se.wait_start -= clock_offset;
dd41f596
IM
1424 if (p->se.sleep_start)
1425 p->se.sleep_start -= clock_offset;
1426 if (p->se.block_start)
1427 p->se.block_start -= clock_offset;
cc367732
IM
1428 if (old_cpu != new_cpu) {
1429 schedstat_inc(p, se.nr_migrations);
1430 if (task_hot(p, old_rq->clock, NULL))
1431 schedstat_inc(p, se.nr_forced2_migrations);
1432 }
6cfb0d5d 1433#endif
2830cf8c
SV
1434 p->se.vruntime -= old_cfsrq->min_vruntime -
1435 new_cfsrq->min_vruntime;
dd41f596
IM
1436
1437 __set_task_cpu(p, new_cpu);
c65cc870
IM
1438}
1439
70b97a7f 1440struct migration_req {
1da177e4 1441 struct list_head list;
1da177e4 1442
36c8b586 1443 struct task_struct *task;
1da177e4
LT
1444 int dest_cpu;
1445
1da177e4 1446 struct completion done;
70b97a7f 1447};
1da177e4
LT
1448
1449/*
1450 * The task's runqueue lock must be held.
1451 * Returns true if you have to wait for migration thread.
1452 */
36c8b586 1453static int
70b97a7f 1454migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1455{
70b97a7f 1456 struct rq *rq = task_rq(p);
1da177e4
LT
1457
1458 /*
1459 * If the task is not on a runqueue (and not running), then
1460 * it is sufficient to simply update the task's cpu field.
1461 */
dd41f596 1462 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1463 set_task_cpu(p, dest_cpu);
1464 return 0;
1465 }
1466
1467 init_completion(&req->done);
1da177e4
LT
1468 req->task = p;
1469 req->dest_cpu = dest_cpu;
1470 list_add(&req->list, &rq->migration_queue);
48f24c4d 1471
1da177e4
LT
1472 return 1;
1473}
1474
1475/*
1476 * wait_task_inactive - wait for a thread to unschedule.
1477 *
1478 * The caller must ensure that the task *will* unschedule sometime soon,
1479 * else this function might spin for a *long* time. This function can't
1480 * be called with interrupts off, or it may introduce deadlock with
1481 * smp_call_function() if an IPI is sent by the same process we are
1482 * waiting to become inactive.
1483 */
36c8b586 1484void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1485{
1486 unsigned long flags;
dd41f596 1487 int running, on_rq;
70b97a7f 1488 struct rq *rq;
1da177e4 1489
3a5c359a
AK
1490 for (;;) {
1491 /*
1492 * We do the initial early heuristics without holding
1493 * any task-queue locks at all. We'll only try to get
1494 * the runqueue lock when things look like they will
1495 * work out!
1496 */
1497 rq = task_rq(p);
fa490cfd 1498
3a5c359a
AK
1499 /*
1500 * If the task is actively running on another CPU
1501 * still, just relax and busy-wait without holding
1502 * any locks.
1503 *
1504 * NOTE! Since we don't hold any locks, it's not
1505 * even sure that "rq" stays as the right runqueue!
1506 * But we don't care, since "task_running()" will
1507 * return false if the runqueue has changed and p
1508 * is actually now running somewhere else!
1509 */
1510 while (task_running(rq, p))
1511 cpu_relax();
fa490cfd 1512
3a5c359a
AK
1513 /*
1514 * Ok, time to look more closely! We need the rq
1515 * lock now, to be *sure*. If we're wrong, we'll
1516 * just go back and repeat.
1517 */
1518 rq = task_rq_lock(p, &flags);
1519 running = task_running(rq, p);
1520 on_rq = p->se.on_rq;
1521 task_rq_unlock(rq, &flags);
fa490cfd 1522
3a5c359a
AK
1523 /*
1524 * Was it really running after all now that we
1525 * checked with the proper locks actually held?
1526 *
1527 * Oops. Go back and try again..
1528 */
1529 if (unlikely(running)) {
1530 cpu_relax();
1531 continue;
1532 }
fa490cfd 1533
3a5c359a
AK
1534 /*
1535 * It's not enough that it's not actively running,
1536 * it must be off the runqueue _entirely_, and not
1537 * preempted!
1538 *
1539 * So if it wa still runnable (but just not actively
1540 * running right now), it's preempted, and we should
1541 * yield - it could be a while.
1542 */
1543 if (unlikely(on_rq)) {
1544 schedule_timeout_uninterruptible(1);
1545 continue;
1546 }
fa490cfd 1547
3a5c359a
AK
1548 /*
1549 * Ahh, all good. It wasn't running, and it wasn't
1550 * runnable, which means that it will never become
1551 * running in the future either. We're all done!
1552 */
1553 break;
1554 }
1da177e4
LT
1555}
1556
1557/***
1558 * kick_process - kick a running thread to enter/exit the kernel
1559 * @p: the to-be-kicked thread
1560 *
1561 * Cause a process which is running on another CPU to enter
1562 * kernel-mode, without any delay. (to get signals handled.)
1563 *
1564 * NOTE: this function doesnt have to take the runqueue lock,
1565 * because all it wants to ensure is that the remote task enters
1566 * the kernel. If the IPI races and the task has been migrated
1567 * to another CPU then no harm is done and the purpose has been
1568 * achieved as well.
1569 */
36c8b586 1570void kick_process(struct task_struct *p)
1da177e4
LT
1571{
1572 int cpu;
1573
1574 preempt_disable();
1575 cpu = task_cpu(p);
1576 if ((cpu != smp_processor_id()) && task_curr(p))
1577 smp_send_reschedule(cpu);
1578 preempt_enable();
1579}
1580
1581/*
2dd73a4f
PW
1582 * Return a low guess at the load of a migration-source cpu weighted
1583 * according to the scheduling class and "nice" value.
1da177e4
LT
1584 *
1585 * We want to under-estimate the load of migration sources, to
1586 * balance conservatively.
1587 */
a9957449 1588static unsigned long source_load(int cpu, int type)
1da177e4 1589{
70b97a7f 1590 struct rq *rq = cpu_rq(cpu);
dd41f596 1591 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1592
3b0bd9bc 1593 if (type == 0)
dd41f596 1594 return total;
b910472d 1595
dd41f596 1596 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1597}
1598
1599/*
2dd73a4f
PW
1600 * Return a high guess at the load of a migration-target cpu weighted
1601 * according to the scheduling class and "nice" value.
1da177e4 1602 */
a9957449 1603static unsigned long target_load(int cpu, int type)
1da177e4 1604{
70b97a7f 1605 struct rq *rq = cpu_rq(cpu);
dd41f596 1606 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1607
7897986b 1608 if (type == 0)
dd41f596 1609 return total;
3b0bd9bc 1610
dd41f596 1611 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1612}
1613
1614/*
1615 * Return the average load per task on the cpu's run queue
1616 */
e7693a36 1617static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1618{
70b97a7f 1619 struct rq *rq = cpu_rq(cpu);
dd41f596 1620 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1621 unsigned long n = rq->nr_running;
1622
dd41f596 1623 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1624}
1625
147cbb4b
NP
1626/*
1627 * find_idlest_group finds and returns the least busy CPU group within the
1628 * domain.
1629 */
1630static struct sched_group *
1631find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1632{
1633 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1634 unsigned long min_load = ULONG_MAX, this_load = 0;
1635 int load_idx = sd->forkexec_idx;
1636 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1637
1638 do {
1639 unsigned long load, avg_load;
1640 int local_group;
1641 int i;
1642
da5a5522
BD
1643 /* Skip over this group if it has no CPUs allowed */
1644 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1645 continue;
da5a5522 1646
147cbb4b 1647 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1648
1649 /* Tally up the load of all CPUs in the group */
1650 avg_load = 0;
1651
1652 for_each_cpu_mask(i, group->cpumask) {
1653 /* Bias balancing toward cpus of our domain */
1654 if (local_group)
1655 load = source_load(i, load_idx);
1656 else
1657 load = target_load(i, load_idx);
1658
1659 avg_load += load;
1660 }
1661
1662 /* Adjust by relative CPU power of the group */
5517d86b
ED
1663 avg_load = sg_div_cpu_power(group,
1664 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1665
1666 if (local_group) {
1667 this_load = avg_load;
1668 this = group;
1669 } else if (avg_load < min_load) {
1670 min_load = avg_load;
1671 idlest = group;
1672 }
3a5c359a 1673 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1674
1675 if (!idlest || 100*this_load < imbalance*min_load)
1676 return NULL;
1677 return idlest;
1678}
1679
1680/*
0feaece9 1681 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1682 */
95cdf3b7
IM
1683static int
1684find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1685{
da5a5522 1686 cpumask_t tmp;
147cbb4b
NP
1687 unsigned long load, min_load = ULONG_MAX;
1688 int idlest = -1;
1689 int i;
1690
da5a5522
BD
1691 /* Traverse only the allowed CPUs */
1692 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1693
1694 for_each_cpu_mask(i, tmp) {
2dd73a4f 1695 load = weighted_cpuload(i);
147cbb4b
NP
1696
1697 if (load < min_load || (load == min_load && i == this_cpu)) {
1698 min_load = load;
1699 idlest = i;
1700 }
1701 }
1702
1703 return idlest;
1704}
1705
476d139c
NP
1706/*
1707 * sched_balance_self: balance the current task (running on cpu) in domains
1708 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1709 * SD_BALANCE_EXEC.
1710 *
1711 * Balance, ie. select the least loaded group.
1712 *
1713 * Returns the target CPU number, or the same CPU if no balancing is needed.
1714 *
1715 * preempt must be disabled.
1716 */
1717static int sched_balance_self(int cpu, int flag)
1718{
1719 struct task_struct *t = current;
1720 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1721
c96d145e 1722 for_each_domain(cpu, tmp) {
9761eea8
IM
1723 /*
1724 * If power savings logic is enabled for a domain, stop there.
1725 */
5c45bf27
SS
1726 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1727 break;
476d139c
NP
1728 if (tmp->flags & flag)
1729 sd = tmp;
c96d145e 1730 }
476d139c
NP
1731
1732 while (sd) {
1733 cpumask_t span;
1734 struct sched_group *group;
1a848870
SS
1735 int new_cpu, weight;
1736
1737 if (!(sd->flags & flag)) {
1738 sd = sd->child;
1739 continue;
1740 }
476d139c
NP
1741
1742 span = sd->span;
1743 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1744 if (!group) {
1745 sd = sd->child;
1746 continue;
1747 }
476d139c 1748
da5a5522 1749 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1750 if (new_cpu == -1 || new_cpu == cpu) {
1751 /* Now try balancing at a lower domain level of cpu */
1752 sd = sd->child;
1753 continue;
1754 }
476d139c 1755
1a848870 1756 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1757 cpu = new_cpu;
476d139c
NP
1758 sd = NULL;
1759 weight = cpus_weight(span);
1760 for_each_domain(cpu, tmp) {
1761 if (weight <= cpus_weight(tmp->span))
1762 break;
1763 if (tmp->flags & flag)
1764 sd = tmp;
1765 }
1766 /* while loop will break here if sd == NULL */
1767 }
1768
1769 return cpu;
1770}
1771
1772#endif /* CONFIG_SMP */
1da177e4 1773
1da177e4
LT
1774/***
1775 * try_to_wake_up - wake up a thread
1776 * @p: the to-be-woken-up thread
1777 * @state: the mask of task states that can be woken
1778 * @sync: do a synchronous wakeup?
1779 *
1780 * Put it on the run-queue if it's not already there. The "current"
1781 * thread is always on the run-queue (except when the actual
1782 * re-schedule is in progress), and as such you're allowed to do
1783 * the simpler "current->state = TASK_RUNNING" to mark yourself
1784 * runnable without the overhead of this.
1785 *
1786 * returns failure only if the task is already active.
1787 */
36c8b586 1788static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1789{
cc367732 1790 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1791 unsigned long flags;
1792 long old_state;
70b97a7f 1793 struct rq *rq;
1da177e4 1794
04e2f174 1795 smp_wmb();
1da177e4
LT
1796 rq = task_rq_lock(p, &flags);
1797 old_state = p->state;
1798 if (!(old_state & state))
1799 goto out;
1800
dd41f596 1801 if (p->se.on_rq)
1da177e4
LT
1802 goto out_running;
1803
1804 cpu = task_cpu(p);
cc367732 1805 orig_cpu = cpu;
1da177e4
LT
1806 this_cpu = smp_processor_id();
1807
1808#ifdef CONFIG_SMP
1809 if (unlikely(task_running(rq, p)))
1810 goto out_activate;
1811
5d2f5a61
DA
1812 cpu = p->sched_class->select_task_rq(p, sync);
1813 if (cpu != orig_cpu) {
1814 set_task_cpu(p, cpu);
1da177e4
LT
1815 task_rq_unlock(rq, &flags);
1816 /* might preempt at this point */
1817 rq = task_rq_lock(p, &flags);
1818 old_state = p->state;
1819 if (!(old_state & state))
1820 goto out;
dd41f596 1821 if (p->se.on_rq)
1da177e4
LT
1822 goto out_running;
1823
1824 this_cpu = smp_processor_id();
1825 cpu = task_cpu(p);
1826 }
1827
e7693a36
GH
1828#ifdef CONFIG_SCHEDSTATS
1829 schedstat_inc(rq, ttwu_count);
1830 if (cpu == this_cpu)
1831 schedstat_inc(rq, ttwu_local);
1832 else {
1833 struct sched_domain *sd;
1834 for_each_domain(this_cpu, sd) {
1835 if (cpu_isset(cpu, sd->span)) {
1836 schedstat_inc(sd, ttwu_wake_remote);
1837 break;
1838 }
1839 }
1840 }
e7693a36
GH
1841#endif
1842
1da177e4
LT
1843out_activate:
1844#endif /* CONFIG_SMP */
cc367732
IM
1845 schedstat_inc(p, se.nr_wakeups);
1846 if (sync)
1847 schedstat_inc(p, se.nr_wakeups_sync);
1848 if (orig_cpu != cpu)
1849 schedstat_inc(p, se.nr_wakeups_migrate);
1850 if (cpu == this_cpu)
1851 schedstat_inc(p, se.nr_wakeups_local);
1852 else
1853 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1854 update_rq_clock(rq);
dd41f596 1855 activate_task(rq, p, 1);
9c63d9c0 1856 check_preempt_curr(rq, p);
1da177e4
LT
1857 success = 1;
1858
1859out_running:
1860 p->state = TASK_RUNNING;
9a897c5a
SR
1861#ifdef CONFIG_SMP
1862 if (p->sched_class->task_wake_up)
1863 p->sched_class->task_wake_up(rq, p);
1864#endif
1da177e4
LT
1865out:
1866 task_rq_unlock(rq, &flags);
1867
1868 return success;
1869}
1870
7ad5b3a5 1871int wake_up_process(struct task_struct *p)
1da177e4 1872{
d9514f6c 1873 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1874}
1da177e4
LT
1875EXPORT_SYMBOL(wake_up_process);
1876
7ad5b3a5 1877int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1878{
1879 return try_to_wake_up(p, state, 0);
1880}
1881
1da177e4
LT
1882/*
1883 * Perform scheduler related setup for a newly forked process p.
1884 * p is forked by current.
dd41f596
IM
1885 *
1886 * __sched_fork() is basic setup used by init_idle() too:
1887 */
1888static void __sched_fork(struct task_struct *p)
1889{
dd41f596
IM
1890 p->se.exec_start = 0;
1891 p->se.sum_exec_runtime = 0;
f6cf891c 1892 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1893
1894#ifdef CONFIG_SCHEDSTATS
1895 p->se.wait_start = 0;
dd41f596
IM
1896 p->se.sum_sleep_runtime = 0;
1897 p->se.sleep_start = 0;
dd41f596
IM
1898 p->se.block_start = 0;
1899 p->se.sleep_max = 0;
1900 p->se.block_max = 0;
1901 p->se.exec_max = 0;
eba1ed4b 1902 p->se.slice_max = 0;
dd41f596 1903 p->se.wait_max = 0;
6cfb0d5d 1904#endif
476d139c 1905
fa717060 1906 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 1907 p->se.on_rq = 0;
476d139c 1908
e107be36
AK
1909#ifdef CONFIG_PREEMPT_NOTIFIERS
1910 INIT_HLIST_HEAD(&p->preempt_notifiers);
1911#endif
1912
1da177e4
LT
1913 /*
1914 * We mark the process as running here, but have not actually
1915 * inserted it onto the runqueue yet. This guarantees that
1916 * nobody will actually run it, and a signal or other external
1917 * event cannot wake it up and insert it on the runqueue either.
1918 */
1919 p->state = TASK_RUNNING;
dd41f596
IM
1920}
1921
1922/*
1923 * fork()/clone()-time setup:
1924 */
1925void sched_fork(struct task_struct *p, int clone_flags)
1926{
1927 int cpu = get_cpu();
1928
1929 __sched_fork(p);
1930
1931#ifdef CONFIG_SMP
1932 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1933#endif
02e4bac2 1934 set_task_cpu(p, cpu);
b29739f9
IM
1935
1936 /*
1937 * Make sure we do not leak PI boosting priority to the child:
1938 */
1939 p->prio = current->normal_prio;
2ddbf952
HS
1940 if (!rt_prio(p->prio))
1941 p->sched_class = &fair_sched_class;
b29739f9 1942
52f17b6c 1943#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1944 if (likely(sched_info_on()))
52f17b6c 1945 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1946#endif
d6077cb8 1947#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1948 p->oncpu = 0;
1949#endif
1da177e4 1950#ifdef CONFIG_PREEMPT
4866cde0 1951 /* Want to start with kernel preemption disabled. */
a1261f54 1952 task_thread_info(p)->preempt_count = 1;
1da177e4 1953#endif
476d139c 1954 put_cpu();
1da177e4
LT
1955}
1956
1957/*
1958 * wake_up_new_task - wake up a newly created task for the first time.
1959 *
1960 * This function will do some initial scheduler statistics housekeeping
1961 * that must be done for every newly created context, then puts the task
1962 * on the runqueue and wakes it.
1963 */
7ad5b3a5 1964void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1965{
1966 unsigned long flags;
dd41f596 1967 struct rq *rq;
1da177e4
LT
1968
1969 rq = task_rq_lock(p, &flags);
147cbb4b 1970 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1971 update_rq_clock(rq);
1da177e4
LT
1972
1973 p->prio = effective_prio(p);
1974
b9dca1e0 1975 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1976 activate_task(rq, p, 0);
1da177e4 1977 } else {
1da177e4 1978 /*
dd41f596
IM
1979 * Let the scheduling class do new task startup
1980 * management (if any):
1da177e4 1981 */
ee0827d8 1982 p->sched_class->task_new(rq, p);
62fb1851 1983 inc_nr_running(p, rq);
1da177e4 1984 }
dd41f596 1985 check_preempt_curr(rq, p);
9a897c5a
SR
1986#ifdef CONFIG_SMP
1987 if (p->sched_class->task_wake_up)
1988 p->sched_class->task_wake_up(rq, p);
1989#endif
dd41f596 1990 task_rq_unlock(rq, &flags);
1da177e4
LT
1991}
1992
e107be36
AK
1993#ifdef CONFIG_PREEMPT_NOTIFIERS
1994
1995/**
421cee29
RD
1996 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1997 * @notifier: notifier struct to register
e107be36
AK
1998 */
1999void preempt_notifier_register(struct preempt_notifier *notifier)
2000{
2001 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2002}
2003EXPORT_SYMBOL_GPL(preempt_notifier_register);
2004
2005/**
2006 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2007 * @notifier: notifier struct to unregister
e107be36
AK
2008 *
2009 * This is safe to call from within a preemption notifier.
2010 */
2011void preempt_notifier_unregister(struct preempt_notifier *notifier)
2012{
2013 hlist_del(&notifier->link);
2014}
2015EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2016
2017static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2018{
2019 struct preempt_notifier *notifier;
2020 struct hlist_node *node;
2021
2022 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2023 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2024}
2025
2026static void
2027fire_sched_out_preempt_notifiers(struct task_struct *curr,
2028 struct task_struct *next)
2029{
2030 struct preempt_notifier *notifier;
2031 struct hlist_node *node;
2032
2033 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2034 notifier->ops->sched_out(notifier, next);
2035}
2036
2037#else
2038
2039static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2040{
2041}
2042
2043static void
2044fire_sched_out_preempt_notifiers(struct task_struct *curr,
2045 struct task_struct *next)
2046{
2047}
2048
2049#endif
2050
4866cde0
NP
2051/**
2052 * prepare_task_switch - prepare to switch tasks
2053 * @rq: the runqueue preparing to switch
421cee29 2054 * @prev: the current task that is being switched out
4866cde0
NP
2055 * @next: the task we are going to switch to.
2056 *
2057 * This is called with the rq lock held and interrupts off. It must
2058 * be paired with a subsequent finish_task_switch after the context
2059 * switch.
2060 *
2061 * prepare_task_switch sets up locking and calls architecture specific
2062 * hooks.
2063 */
e107be36
AK
2064static inline void
2065prepare_task_switch(struct rq *rq, struct task_struct *prev,
2066 struct task_struct *next)
4866cde0 2067{
e107be36 2068 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2069 prepare_lock_switch(rq, next);
2070 prepare_arch_switch(next);
2071}
2072
1da177e4
LT
2073/**
2074 * finish_task_switch - clean up after a task-switch
344babaa 2075 * @rq: runqueue associated with task-switch
1da177e4
LT
2076 * @prev: the thread we just switched away from.
2077 *
4866cde0
NP
2078 * finish_task_switch must be called after the context switch, paired
2079 * with a prepare_task_switch call before the context switch.
2080 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2081 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2082 *
2083 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2084 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2085 * with the lock held can cause deadlocks; see schedule() for
2086 * details.)
2087 */
a9957449 2088static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2089 __releases(rq->lock)
2090{
1da177e4 2091 struct mm_struct *mm = rq->prev_mm;
55a101f8 2092 long prev_state;
1da177e4
LT
2093
2094 rq->prev_mm = NULL;
2095
2096 /*
2097 * A task struct has one reference for the use as "current".
c394cc9f 2098 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2099 * schedule one last time. The schedule call will never return, and
2100 * the scheduled task must drop that reference.
c394cc9f 2101 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2102 * still held, otherwise prev could be scheduled on another cpu, die
2103 * there before we look at prev->state, and then the reference would
2104 * be dropped twice.
2105 * Manfred Spraul <manfred@colorfullife.com>
2106 */
55a101f8 2107 prev_state = prev->state;
4866cde0
NP
2108 finish_arch_switch(prev);
2109 finish_lock_switch(rq, prev);
9a897c5a
SR
2110#ifdef CONFIG_SMP
2111 if (current->sched_class->post_schedule)
2112 current->sched_class->post_schedule(rq);
2113#endif
e8fa1362 2114
e107be36 2115 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2116 if (mm)
2117 mmdrop(mm);
c394cc9f 2118 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2119 /*
2120 * Remove function-return probe instances associated with this
2121 * task and put them back on the free list.
9761eea8 2122 */
c6fd91f0 2123 kprobe_flush_task(prev);
1da177e4 2124 put_task_struct(prev);
c6fd91f0 2125 }
1da177e4
LT
2126}
2127
2128/**
2129 * schedule_tail - first thing a freshly forked thread must call.
2130 * @prev: the thread we just switched away from.
2131 */
36c8b586 2132asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2133 __releases(rq->lock)
2134{
70b97a7f
IM
2135 struct rq *rq = this_rq();
2136
4866cde0
NP
2137 finish_task_switch(rq, prev);
2138#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2139 /* In this case, finish_task_switch does not reenable preemption */
2140 preempt_enable();
2141#endif
1da177e4 2142 if (current->set_child_tid)
b488893a 2143 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2144}
2145
2146/*
2147 * context_switch - switch to the new MM and the new
2148 * thread's register state.
2149 */
dd41f596 2150static inline void
70b97a7f 2151context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2152 struct task_struct *next)
1da177e4 2153{
dd41f596 2154 struct mm_struct *mm, *oldmm;
1da177e4 2155
e107be36 2156 prepare_task_switch(rq, prev, next);
dd41f596
IM
2157 mm = next->mm;
2158 oldmm = prev->active_mm;
9226d125
ZA
2159 /*
2160 * For paravirt, this is coupled with an exit in switch_to to
2161 * combine the page table reload and the switch backend into
2162 * one hypercall.
2163 */
2164 arch_enter_lazy_cpu_mode();
2165
dd41f596 2166 if (unlikely(!mm)) {
1da177e4
LT
2167 next->active_mm = oldmm;
2168 atomic_inc(&oldmm->mm_count);
2169 enter_lazy_tlb(oldmm, next);
2170 } else
2171 switch_mm(oldmm, mm, next);
2172
dd41f596 2173 if (unlikely(!prev->mm)) {
1da177e4 2174 prev->active_mm = NULL;
1da177e4
LT
2175 rq->prev_mm = oldmm;
2176 }
3a5f5e48
IM
2177 /*
2178 * Since the runqueue lock will be released by the next
2179 * task (which is an invalid locking op but in the case
2180 * of the scheduler it's an obvious special-case), so we
2181 * do an early lockdep release here:
2182 */
2183#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2184 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2185#endif
1da177e4
LT
2186
2187 /* Here we just switch the register state and the stack. */
2188 switch_to(prev, next, prev);
2189
dd41f596
IM
2190 barrier();
2191 /*
2192 * this_rq must be evaluated again because prev may have moved
2193 * CPUs since it called schedule(), thus the 'rq' on its stack
2194 * frame will be invalid.
2195 */
2196 finish_task_switch(this_rq(), prev);
1da177e4
LT
2197}
2198
2199/*
2200 * nr_running, nr_uninterruptible and nr_context_switches:
2201 *
2202 * externally visible scheduler statistics: current number of runnable
2203 * threads, current number of uninterruptible-sleeping threads, total
2204 * number of context switches performed since bootup.
2205 */
2206unsigned long nr_running(void)
2207{
2208 unsigned long i, sum = 0;
2209
2210 for_each_online_cpu(i)
2211 sum += cpu_rq(i)->nr_running;
2212
2213 return sum;
2214}
2215
2216unsigned long nr_uninterruptible(void)
2217{
2218 unsigned long i, sum = 0;
2219
0a945022 2220 for_each_possible_cpu(i)
1da177e4
LT
2221 sum += cpu_rq(i)->nr_uninterruptible;
2222
2223 /*
2224 * Since we read the counters lockless, it might be slightly
2225 * inaccurate. Do not allow it to go below zero though:
2226 */
2227 if (unlikely((long)sum < 0))
2228 sum = 0;
2229
2230 return sum;
2231}
2232
2233unsigned long long nr_context_switches(void)
2234{
cc94abfc
SR
2235 int i;
2236 unsigned long long sum = 0;
1da177e4 2237
0a945022 2238 for_each_possible_cpu(i)
1da177e4
LT
2239 sum += cpu_rq(i)->nr_switches;
2240
2241 return sum;
2242}
2243
2244unsigned long nr_iowait(void)
2245{
2246 unsigned long i, sum = 0;
2247
0a945022 2248 for_each_possible_cpu(i)
1da177e4
LT
2249 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2250
2251 return sum;
2252}
2253
db1b1fef
JS
2254unsigned long nr_active(void)
2255{
2256 unsigned long i, running = 0, uninterruptible = 0;
2257
2258 for_each_online_cpu(i) {
2259 running += cpu_rq(i)->nr_running;
2260 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2261 }
2262
2263 if (unlikely((long)uninterruptible < 0))
2264 uninterruptible = 0;
2265
2266 return running + uninterruptible;
2267}
2268
48f24c4d 2269/*
dd41f596
IM
2270 * Update rq->cpu_load[] statistics. This function is usually called every
2271 * scheduler tick (TICK_NSEC).
48f24c4d 2272 */
dd41f596 2273static void update_cpu_load(struct rq *this_rq)
48f24c4d 2274{
495eca49 2275 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2276 int i, scale;
2277
2278 this_rq->nr_load_updates++;
dd41f596
IM
2279
2280 /* Update our load: */
2281 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2282 unsigned long old_load, new_load;
2283
2284 /* scale is effectively 1 << i now, and >> i divides by scale */
2285
2286 old_load = this_rq->cpu_load[i];
2287 new_load = this_load;
a25707f3
IM
2288 /*
2289 * Round up the averaging division if load is increasing. This
2290 * prevents us from getting stuck on 9 if the load is 10, for
2291 * example.
2292 */
2293 if (new_load > old_load)
2294 new_load += scale-1;
dd41f596
IM
2295 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2296 }
48f24c4d
IM
2297}
2298
dd41f596
IM
2299#ifdef CONFIG_SMP
2300
1da177e4
LT
2301/*
2302 * double_rq_lock - safely lock two runqueues
2303 *
2304 * Note this does not disable interrupts like task_rq_lock,
2305 * you need to do so manually before calling.
2306 */
70b97a7f 2307static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2308 __acquires(rq1->lock)
2309 __acquires(rq2->lock)
2310{
054b9108 2311 BUG_ON(!irqs_disabled());
1da177e4
LT
2312 if (rq1 == rq2) {
2313 spin_lock(&rq1->lock);
2314 __acquire(rq2->lock); /* Fake it out ;) */
2315 } else {
c96d145e 2316 if (rq1 < rq2) {
1da177e4
LT
2317 spin_lock(&rq1->lock);
2318 spin_lock(&rq2->lock);
2319 } else {
2320 spin_lock(&rq2->lock);
2321 spin_lock(&rq1->lock);
2322 }
2323 }
6e82a3be
IM
2324 update_rq_clock(rq1);
2325 update_rq_clock(rq2);
1da177e4
LT
2326}
2327
2328/*
2329 * double_rq_unlock - safely unlock two runqueues
2330 *
2331 * Note this does not restore interrupts like task_rq_unlock,
2332 * you need to do so manually after calling.
2333 */
70b97a7f 2334static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2335 __releases(rq1->lock)
2336 __releases(rq2->lock)
2337{
2338 spin_unlock(&rq1->lock);
2339 if (rq1 != rq2)
2340 spin_unlock(&rq2->lock);
2341 else
2342 __release(rq2->lock);
2343}
2344
2345/*
2346 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2347 */
e8fa1362 2348static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2349 __releases(this_rq->lock)
2350 __acquires(busiest->lock)
2351 __acquires(this_rq->lock)
2352{
e8fa1362
SR
2353 int ret = 0;
2354
054b9108
KK
2355 if (unlikely(!irqs_disabled())) {
2356 /* printk() doesn't work good under rq->lock */
2357 spin_unlock(&this_rq->lock);
2358 BUG_ON(1);
2359 }
1da177e4 2360 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2361 if (busiest < this_rq) {
1da177e4
LT
2362 spin_unlock(&this_rq->lock);
2363 spin_lock(&busiest->lock);
2364 spin_lock(&this_rq->lock);
e8fa1362 2365 ret = 1;
1da177e4
LT
2366 } else
2367 spin_lock(&busiest->lock);
2368 }
e8fa1362 2369 return ret;
1da177e4
LT
2370}
2371
1da177e4
LT
2372/*
2373 * If dest_cpu is allowed for this process, migrate the task to it.
2374 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2375 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2376 * the cpu_allowed mask is restored.
2377 */
36c8b586 2378static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2379{
70b97a7f 2380 struct migration_req req;
1da177e4 2381 unsigned long flags;
70b97a7f 2382 struct rq *rq;
1da177e4
LT
2383
2384 rq = task_rq_lock(p, &flags);
2385 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2386 || unlikely(cpu_is_offline(dest_cpu)))
2387 goto out;
2388
2389 /* force the process onto the specified CPU */
2390 if (migrate_task(p, dest_cpu, &req)) {
2391 /* Need to wait for migration thread (might exit: take ref). */
2392 struct task_struct *mt = rq->migration_thread;
36c8b586 2393
1da177e4
LT
2394 get_task_struct(mt);
2395 task_rq_unlock(rq, &flags);
2396 wake_up_process(mt);
2397 put_task_struct(mt);
2398 wait_for_completion(&req.done);
36c8b586 2399
1da177e4
LT
2400 return;
2401 }
2402out:
2403 task_rq_unlock(rq, &flags);
2404}
2405
2406/*
476d139c
NP
2407 * sched_exec - execve() is a valuable balancing opportunity, because at
2408 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2409 */
2410void sched_exec(void)
2411{
1da177e4 2412 int new_cpu, this_cpu = get_cpu();
476d139c 2413 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2414 put_cpu();
476d139c
NP
2415 if (new_cpu != this_cpu)
2416 sched_migrate_task(current, new_cpu);
1da177e4
LT
2417}
2418
2419/*
2420 * pull_task - move a task from a remote runqueue to the local runqueue.
2421 * Both runqueues must be locked.
2422 */
dd41f596
IM
2423static void pull_task(struct rq *src_rq, struct task_struct *p,
2424 struct rq *this_rq, int this_cpu)
1da177e4 2425{
2e1cb74a 2426 deactivate_task(src_rq, p, 0);
1da177e4 2427 set_task_cpu(p, this_cpu);
dd41f596 2428 activate_task(this_rq, p, 0);
1da177e4
LT
2429 /*
2430 * Note that idle threads have a prio of MAX_PRIO, for this test
2431 * to be always true for them.
2432 */
dd41f596 2433 check_preempt_curr(this_rq, p);
1da177e4
LT
2434}
2435
2436/*
2437 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2438 */
858119e1 2439static
70b97a7f 2440int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2441 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2442 int *all_pinned)
1da177e4
LT
2443{
2444 /*
2445 * We do not migrate tasks that are:
2446 * 1) running (obviously), or
2447 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2448 * 3) are cache-hot on their current CPU.
2449 */
cc367732
IM
2450 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2451 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2452 return 0;
cc367732 2453 }
81026794
NP
2454 *all_pinned = 0;
2455
cc367732
IM
2456 if (task_running(rq, p)) {
2457 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2458 return 0;
cc367732 2459 }
1da177e4 2460
da84d961
IM
2461 /*
2462 * Aggressive migration if:
2463 * 1) task is cache cold, or
2464 * 2) too many balance attempts have failed.
2465 */
2466
6bc1665b
IM
2467 if (!task_hot(p, rq->clock, sd) ||
2468 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2469#ifdef CONFIG_SCHEDSTATS
cc367732 2470 if (task_hot(p, rq->clock, sd)) {
da84d961 2471 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2472 schedstat_inc(p, se.nr_forced_migrations);
2473 }
da84d961
IM
2474#endif
2475 return 1;
2476 }
2477
cc367732
IM
2478 if (task_hot(p, rq->clock, sd)) {
2479 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2480 return 0;
cc367732 2481 }
1da177e4
LT
2482 return 1;
2483}
2484
e1d1484f
PW
2485static unsigned long
2486balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2487 unsigned long max_load_move, struct sched_domain *sd,
2488 enum cpu_idle_type idle, int *all_pinned,
2489 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2490{
b82d9fdd 2491 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2492 struct task_struct *p;
2493 long rem_load_move = max_load_move;
1da177e4 2494
e1d1484f 2495 if (max_load_move == 0)
1da177e4
LT
2496 goto out;
2497
81026794
NP
2498 pinned = 1;
2499
1da177e4 2500 /*
dd41f596 2501 * Start the load-balancing iterator:
1da177e4 2502 */
dd41f596
IM
2503 p = iterator->start(iterator->arg);
2504next:
b82d9fdd 2505 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2506 goto out;
50ddd969 2507 /*
b82d9fdd 2508 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2509 * skip a task if it will be the highest priority task (i.e. smallest
2510 * prio value) on its new queue regardless of its load weight
2511 */
dd41f596
IM
2512 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2513 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2514 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2515 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2516 p = iterator->next(iterator->arg);
2517 goto next;
1da177e4
LT
2518 }
2519
dd41f596 2520 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2521 pulled++;
dd41f596 2522 rem_load_move -= p->se.load.weight;
1da177e4 2523
2dd73a4f 2524 /*
b82d9fdd 2525 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2526 */
e1d1484f 2527 if (rem_load_move > 0) {
a4ac01c3
PW
2528 if (p->prio < *this_best_prio)
2529 *this_best_prio = p->prio;
dd41f596
IM
2530 p = iterator->next(iterator->arg);
2531 goto next;
1da177e4
LT
2532 }
2533out:
2534 /*
e1d1484f 2535 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2536 * so we can safely collect pull_task() stats here rather than
2537 * inside pull_task().
2538 */
2539 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2540
2541 if (all_pinned)
2542 *all_pinned = pinned;
e1d1484f
PW
2543
2544 return max_load_move - rem_load_move;
1da177e4
LT
2545}
2546
dd41f596 2547/*
43010659
PW
2548 * move_tasks tries to move up to max_load_move weighted load from busiest to
2549 * this_rq, as part of a balancing operation within domain "sd".
2550 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2551 *
2552 * Called with both runqueues locked.
2553 */
2554static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2555 unsigned long max_load_move,
dd41f596
IM
2556 struct sched_domain *sd, enum cpu_idle_type idle,
2557 int *all_pinned)
2558{
5522d5d5 2559 const struct sched_class *class = sched_class_highest;
43010659 2560 unsigned long total_load_moved = 0;
a4ac01c3 2561 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2562
2563 do {
43010659
PW
2564 total_load_moved +=
2565 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2566 max_load_move - total_load_moved,
a4ac01c3 2567 sd, idle, all_pinned, &this_best_prio);
dd41f596 2568 class = class->next;
43010659 2569 } while (class && max_load_move > total_load_moved);
dd41f596 2570
43010659
PW
2571 return total_load_moved > 0;
2572}
2573
e1d1484f
PW
2574static int
2575iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2576 struct sched_domain *sd, enum cpu_idle_type idle,
2577 struct rq_iterator *iterator)
2578{
2579 struct task_struct *p = iterator->start(iterator->arg);
2580 int pinned = 0;
2581
2582 while (p) {
2583 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2584 pull_task(busiest, p, this_rq, this_cpu);
2585 /*
2586 * Right now, this is only the second place pull_task()
2587 * is called, so we can safely collect pull_task()
2588 * stats here rather than inside pull_task().
2589 */
2590 schedstat_inc(sd, lb_gained[idle]);
2591
2592 return 1;
2593 }
2594 p = iterator->next(iterator->arg);
2595 }
2596
2597 return 0;
2598}
2599
43010659
PW
2600/*
2601 * move_one_task tries to move exactly one task from busiest to this_rq, as
2602 * part of active balancing operations within "domain".
2603 * Returns 1 if successful and 0 otherwise.
2604 *
2605 * Called with both runqueues locked.
2606 */
2607static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2608 struct sched_domain *sd, enum cpu_idle_type idle)
2609{
5522d5d5 2610 const struct sched_class *class;
43010659
PW
2611
2612 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2613 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2614 return 1;
2615
2616 return 0;
dd41f596
IM
2617}
2618
1da177e4
LT
2619/*
2620 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2621 * domain. It calculates and returns the amount of weighted load which
2622 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2623 */
2624static struct sched_group *
2625find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2626 unsigned long *imbalance, enum cpu_idle_type idle,
2627 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2628{
2629 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2630 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2631 unsigned long max_pull;
2dd73a4f
PW
2632 unsigned long busiest_load_per_task, busiest_nr_running;
2633 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2634 int load_idx, group_imb = 0;
5c45bf27
SS
2635#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2636 int power_savings_balance = 1;
2637 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2638 unsigned long min_nr_running = ULONG_MAX;
2639 struct sched_group *group_min = NULL, *group_leader = NULL;
2640#endif
1da177e4
LT
2641
2642 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2643 busiest_load_per_task = busiest_nr_running = 0;
2644 this_load_per_task = this_nr_running = 0;
d15bcfdb 2645 if (idle == CPU_NOT_IDLE)
7897986b 2646 load_idx = sd->busy_idx;
d15bcfdb 2647 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2648 load_idx = sd->newidle_idx;
2649 else
2650 load_idx = sd->idle_idx;
1da177e4
LT
2651
2652 do {
908a7c1b 2653 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2654 int local_group;
2655 int i;
908a7c1b 2656 int __group_imb = 0;
783609c6 2657 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2658 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2659
2660 local_group = cpu_isset(this_cpu, group->cpumask);
2661
783609c6
SS
2662 if (local_group)
2663 balance_cpu = first_cpu(group->cpumask);
2664
1da177e4 2665 /* Tally up the load of all CPUs in the group */
2dd73a4f 2666 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2667 max_cpu_load = 0;
2668 min_cpu_load = ~0UL;
1da177e4
LT
2669
2670 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2671 struct rq *rq;
2672
2673 if (!cpu_isset(i, *cpus))
2674 continue;
2675
2676 rq = cpu_rq(i);
2dd73a4f 2677
9439aab8 2678 if (*sd_idle && rq->nr_running)
5969fe06
NP
2679 *sd_idle = 0;
2680
1da177e4 2681 /* Bias balancing toward cpus of our domain */
783609c6
SS
2682 if (local_group) {
2683 if (idle_cpu(i) && !first_idle_cpu) {
2684 first_idle_cpu = 1;
2685 balance_cpu = i;
2686 }
2687
a2000572 2688 load = target_load(i, load_idx);
908a7c1b 2689 } else {
a2000572 2690 load = source_load(i, load_idx);
908a7c1b
KC
2691 if (load > max_cpu_load)
2692 max_cpu_load = load;
2693 if (min_cpu_load > load)
2694 min_cpu_load = load;
2695 }
1da177e4
LT
2696
2697 avg_load += load;
2dd73a4f 2698 sum_nr_running += rq->nr_running;
dd41f596 2699 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2700 }
2701
783609c6
SS
2702 /*
2703 * First idle cpu or the first cpu(busiest) in this sched group
2704 * is eligible for doing load balancing at this and above
9439aab8
SS
2705 * domains. In the newly idle case, we will allow all the cpu's
2706 * to do the newly idle load balance.
783609c6 2707 */
9439aab8
SS
2708 if (idle != CPU_NEWLY_IDLE && local_group &&
2709 balance_cpu != this_cpu && balance) {
783609c6
SS
2710 *balance = 0;
2711 goto ret;
2712 }
2713
1da177e4 2714 total_load += avg_load;
5517d86b 2715 total_pwr += group->__cpu_power;
1da177e4
LT
2716
2717 /* Adjust by relative CPU power of the group */
5517d86b
ED
2718 avg_load = sg_div_cpu_power(group,
2719 avg_load * SCHED_LOAD_SCALE);
1da177e4 2720
908a7c1b
KC
2721 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2722 __group_imb = 1;
2723
5517d86b 2724 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2725
1da177e4
LT
2726 if (local_group) {
2727 this_load = avg_load;
2728 this = group;
2dd73a4f
PW
2729 this_nr_running = sum_nr_running;
2730 this_load_per_task = sum_weighted_load;
2731 } else if (avg_load > max_load &&
908a7c1b 2732 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2733 max_load = avg_load;
2734 busiest = group;
2dd73a4f
PW
2735 busiest_nr_running = sum_nr_running;
2736 busiest_load_per_task = sum_weighted_load;
908a7c1b 2737 group_imb = __group_imb;
1da177e4 2738 }
5c45bf27
SS
2739
2740#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2741 /*
2742 * Busy processors will not participate in power savings
2743 * balance.
2744 */
dd41f596
IM
2745 if (idle == CPU_NOT_IDLE ||
2746 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2747 goto group_next;
5c45bf27
SS
2748
2749 /*
2750 * If the local group is idle or completely loaded
2751 * no need to do power savings balance at this domain
2752 */
2753 if (local_group && (this_nr_running >= group_capacity ||
2754 !this_nr_running))
2755 power_savings_balance = 0;
2756
dd41f596 2757 /*
5c45bf27
SS
2758 * If a group is already running at full capacity or idle,
2759 * don't include that group in power savings calculations
dd41f596
IM
2760 */
2761 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2762 || !sum_nr_running)
dd41f596 2763 goto group_next;
5c45bf27 2764
dd41f596 2765 /*
5c45bf27 2766 * Calculate the group which has the least non-idle load.
dd41f596
IM
2767 * This is the group from where we need to pick up the load
2768 * for saving power
2769 */
2770 if ((sum_nr_running < min_nr_running) ||
2771 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2772 first_cpu(group->cpumask) <
2773 first_cpu(group_min->cpumask))) {
dd41f596
IM
2774 group_min = group;
2775 min_nr_running = sum_nr_running;
5c45bf27
SS
2776 min_load_per_task = sum_weighted_load /
2777 sum_nr_running;
dd41f596 2778 }
5c45bf27 2779
dd41f596 2780 /*
5c45bf27 2781 * Calculate the group which is almost near its
dd41f596
IM
2782 * capacity but still has some space to pick up some load
2783 * from other group and save more power
2784 */
2785 if (sum_nr_running <= group_capacity - 1) {
2786 if (sum_nr_running > leader_nr_running ||
2787 (sum_nr_running == leader_nr_running &&
2788 first_cpu(group->cpumask) >
2789 first_cpu(group_leader->cpumask))) {
2790 group_leader = group;
2791 leader_nr_running = sum_nr_running;
2792 }
48f24c4d 2793 }
5c45bf27
SS
2794group_next:
2795#endif
1da177e4
LT
2796 group = group->next;
2797 } while (group != sd->groups);
2798
2dd73a4f 2799 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2800 goto out_balanced;
2801
2802 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2803
2804 if (this_load >= avg_load ||
2805 100*max_load <= sd->imbalance_pct*this_load)
2806 goto out_balanced;
2807
2dd73a4f 2808 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2809 if (group_imb)
2810 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2811
1da177e4
LT
2812 /*
2813 * We're trying to get all the cpus to the average_load, so we don't
2814 * want to push ourselves above the average load, nor do we wish to
2815 * reduce the max loaded cpu below the average load, as either of these
2816 * actions would just result in more rebalancing later, and ping-pong
2817 * tasks around. Thus we look for the minimum possible imbalance.
2818 * Negative imbalances (*we* are more loaded than anyone else) will
2819 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2820 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2821 * appear as very large values with unsigned longs.
2822 */
2dd73a4f
PW
2823 if (max_load <= busiest_load_per_task)
2824 goto out_balanced;
2825
2826 /*
2827 * In the presence of smp nice balancing, certain scenarios can have
2828 * max load less than avg load(as we skip the groups at or below
2829 * its cpu_power, while calculating max_load..)
2830 */
2831 if (max_load < avg_load) {
2832 *imbalance = 0;
2833 goto small_imbalance;
2834 }
0c117f1b
SS
2835
2836 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2837 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2838
1da177e4 2839 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2840 *imbalance = min(max_pull * busiest->__cpu_power,
2841 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2842 / SCHED_LOAD_SCALE;
2843
2dd73a4f
PW
2844 /*
2845 * if *imbalance is less than the average load per runnable task
2846 * there is no gaurantee that any tasks will be moved so we'll have
2847 * a think about bumping its value to force at least one task to be
2848 * moved
2849 */
7fd0d2dd 2850 if (*imbalance < busiest_load_per_task) {
48f24c4d 2851 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2852 unsigned int imbn;
2853
2854small_imbalance:
2855 pwr_move = pwr_now = 0;
2856 imbn = 2;
2857 if (this_nr_running) {
2858 this_load_per_task /= this_nr_running;
2859 if (busiest_load_per_task > this_load_per_task)
2860 imbn = 1;
2861 } else
2862 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2863
dd41f596
IM
2864 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2865 busiest_load_per_task * imbn) {
2dd73a4f 2866 *imbalance = busiest_load_per_task;
1da177e4
LT
2867 return busiest;
2868 }
2869
2870 /*
2871 * OK, we don't have enough imbalance to justify moving tasks,
2872 * however we may be able to increase total CPU power used by
2873 * moving them.
2874 */
2875
5517d86b
ED
2876 pwr_now += busiest->__cpu_power *
2877 min(busiest_load_per_task, max_load);
2878 pwr_now += this->__cpu_power *
2879 min(this_load_per_task, this_load);
1da177e4
LT
2880 pwr_now /= SCHED_LOAD_SCALE;
2881
2882 /* Amount of load we'd subtract */
5517d86b
ED
2883 tmp = sg_div_cpu_power(busiest,
2884 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2885 if (max_load > tmp)
5517d86b 2886 pwr_move += busiest->__cpu_power *
2dd73a4f 2887 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2888
2889 /* Amount of load we'd add */
5517d86b 2890 if (max_load * busiest->__cpu_power <
33859f7f 2891 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2892 tmp = sg_div_cpu_power(this,
2893 max_load * busiest->__cpu_power);
1da177e4 2894 else
5517d86b
ED
2895 tmp = sg_div_cpu_power(this,
2896 busiest_load_per_task * SCHED_LOAD_SCALE);
2897 pwr_move += this->__cpu_power *
2898 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2899 pwr_move /= SCHED_LOAD_SCALE;
2900
2901 /* Move if we gain throughput */
7fd0d2dd
SS
2902 if (pwr_move > pwr_now)
2903 *imbalance = busiest_load_per_task;
1da177e4
LT
2904 }
2905
1da177e4
LT
2906 return busiest;
2907
2908out_balanced:
5c45bf27 2909#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2910 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2911 goto ret;
1da177e4 2912
5c45bf27
SS
2913 if (this == group_leader && group_leader != group_min) {
2914 *imbalance = min_load_per_task;
2915 return group_min;
2916 }
5c45bf27 2917#endif
783609c6 2918ret:
1da177e4
LT
2919 *imbalance = 0;
2920 return NULL;
2921}
2922
2923/*
2924 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2925 */
70b97a7f 2926static struct rq *
d15bcfdb 2927find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2928 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2929{
70b97a7f 2930 struct rq *busiest = NULL, *rq;
2dd73a4f 2931 unsigned long max_load = 0;
1da177e4
LT
2932 int i;
2933
2934 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2935 unsigned long wl;
0a2966b4
CL
2936
2937 if (!cpu_isset(i, *cpus))
2938 continue;
2939
48f24c4d 2940 rq = cpu_rq(i);
dd41f596 2941 wl = weighted_cpuload(i);
2dd73a4f 2942
dd41f596 2943 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2944 continue;
1da177e4 2945
dd41f596
IM
2946 if (wl > max_load) {
2947 max_load = wl;
48f24c4d 2948 busiest = rq;
1da177e4
LT
2949 }
2950 }
2951
2952 return busiest;
2953}
2954
77391d71
NP
2955/*
2956 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2957 * so long as it is large enough.
2958 */
2959#define MAX_PINNED_INTERVAL 512
2960
1da177e4
LT
2961/*
2962 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2963 * tasks if there is an imbalance.
1da177e4 2964 */
70b97a7f 2965static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2966 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2967 int *balance)
1da177e4 2968{
43010659 2969 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2970 struct sched_group *group;
1da177e4 2971 unsigned long imbalance;
70b97a7f 2972 struct rq *busiest;
0a2966b4 2973 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2974 unsigned long flags;
5969fe06 2975
89c4710e
SS
2976 /*
2977 * When power savings policy is enabled for the parent domain, idle
2978 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2979 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2980 * portraying it as CPU_NOT_IDLE.
89c4710e 2981 */
d15bcfdb 2982 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2983 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2984 sd_idle = 1;
1da177e4 2985
2d72376b 2986 schedstat_inc(sd, lb_count[idle]);
1da177e4 2987
0a2966b4
CL
2988redo:
2989 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2990 &cpus, balance);
2991
06066714 2992 if (*balance == 0)
783609c6 2993 goto out_balanced;
783609c6 2994
1da177e4
LT
2995 if (!group) {
2996 schedstat_inc(sd, lb_nobusyg[idle]);
2997 goto out_balanced;
2998 }
2999
0a2966b4 3000 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
3001 if (!busiest) {
3002 schedstat_inc(sd, lb_nobusyq[idle]);
3003 goto out_balanced;
3004 }
3005
db935dbd 3006 BUG_ON(busiest == this_rq);
1da177e4
LT
3007
3008 schedstat_add(sd, lb_imbalance[idle], imbalance);
3009
43010659 3010 ld_moved = 0;
1da177e4
LT
3011 if (busiest->nr_running > 1) {
3012 /*
3013 * Attempt to move tasks. If find_busiest_group has found
3014 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3015 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3016 * correctly treated as an imbalance.
3017 */
fe2eea3f 3018 local_irq_save(flags);
e17224bf 3019 double_rq_lock(this_rq, busiest);
43010659 3020 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3021 imbalance, sd, idle, &all_pinned);
e17224bf 3022 double_rq_unlock(this_rq, busiest);
fe2eea3f 3023 local_irq_restore(flags);
81026794 3024
46cb4b7c
SS
3025 /*
3026 * some other cpu did the load balance for us.
3027 */
43010659 3028 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3029 resched_cpu(this_cpu);
3030
81026794 3031 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
3032 if (unlikely(all_pinned)) {
3033 cpu_clear(cpu_of(busiest), cpus);
3034 if (!cpus_empty(cpus))
3035 goto redo;
81026794 3036 goto out_balanced;
0a2966b4 3037 }
1da177e4 3038 }
81026794 3039
43010659 3040 if (!ld_moved) {
1da177e4
LT
3041 schedstat_inc(sd, lb_failed[idle]);
3042 sd->nr_balance_failed++;
3043
3044 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3045
fe2eea3f 3046 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3047
3048 /* don't kick the migration_thread, if the curr
3049 * task on busiest cpu can't be moved to this_cpu
3050 */
3051 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3052 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3053 all_pinned = 1;
3054 goto out_one_pinned;
3055 }
3056
1da177e4
LT
3057 if (!busiest->active_balance) {
3058 busiest->active_balance = 1;
3059 busiest->push_cpu = this_cpu;
81026794 3060 active_balance = 1;
1da177e4 3061 }
fe2eea3f 3062 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3063 if (active_balance)
1da177e4
LT
3064 wake_up_process(busiest->migration_thread);
3065
3066 /*
3067 * We've kicked active balancing, reset the failure
3068 * counter.
3069 */
39507451 3070 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3071 }
81026794 3072 } else
1da177e4
LT
3073 sd->nr_balance_failed = 0;
3074
81026794 3075 if (likely(!active_balance)) {
1da177e4
LT
3076 /* We were unbalanced, so reset the balancing interval */
3077 sd->balance_interval = sd->min_interval;
81026794
NP
3078 } else {
3079 /*
3080 * If we've begun active balancing, start to back off. This
3081 * case may not be covered by the all_pinned logic if there
3082 * is only 1 task on the busy runqueue (because we don't call
3083 * move_tasks).
3084 */
3085 if (sd->balance_interval < sd->max_interval)
3086 sd->balance_interval *= 2;
1da177e4
LT
3087 }
3088
43010659 3089 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3090 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3091 return -1;
43010659 3092 return ld_moved;
1da177e4
LT
3093
3094out_balanced:
1da177e4
LT
3095 schedstat_inc(sd, lb_balanced[idle]);
3096
16cfb1c0 3097 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3098
3099out_one_pinned:
1da177e4 3100 /* tune up the balancing interval */
77391d71
NP
3101 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3102 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3103 sd->balance_interval *= 2;
3104
48f24c4d 3105 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3106 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3107 return -1;
1da177e4
LT
3108 return 0;
3109}
3110
3111/*
3112 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3113 * tasks if there is an imbalance.
3114 *
d15bcfdb 3115 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3116 * this_rq is locked.
3117 */
48f24c4d 3118static int
70b97a7f 3119load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
3120{
3121 struct sched_group *group;
70b97a7f 3122 struct rq *busiest = NULL;
1da177e4 3123 unsigned long imbalance;
43010659 3124 int ld_moved = 0;
5969fe06 3125 int sd_idle = 0;
969bb4e4 3126 int all_pinned = 0;
0a2966b4 3127 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 3128
89c4710e
SS
3129 /*
3130 * When power savings policy is enabled for the parent domain, idle
3131 * sibling can pick up load irrespective of busy siblings. In this case,
3132 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3133 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3134 */
3135 if (sd->flags & SD_SHARE_CPUPOWER &&
3136 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3137 sd_idle = 1;
1da177e4 3138
2d72376b 3139 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3140redo:
d15bcfdb 3141 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 3142 &sd_idle, &cpus, NULL);
1da177e4 3143 if (!group) {
d15bcfdb 3144 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3145 goto out_balanced;
1da177e4
LT
3146 }
3147
d15bcfdb 3148 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 3149 &cpus);
db935dbd 3150 if (!busiest) {
d15bcfdb 3151 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3152 goto out_balanced;
1da177e4
LT
3153 }
3154
db935dbd
NP
3155 BUG_ON(busiest == this_rq);
3156
d15bcfdb 3157 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3158
43010659 3159 ld_moved = 0;
d6d5cfaf
NP
3160 if (busiest->nr_running > 1) {
3161 /* Attempt to move tasks */
3162 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3163 /* this_rq->clock is already updated */
3164 update_rq_clock(busiest);
43010659 3165 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3166 imbalance, sd, CPU_NEWLY_IDLE,
3167 &all_pinned);
d6d5cfaf 3168 spin_unlock(&busiest->lock);
0a2966b4 3169
969bb4e4 3170 if (unlikely(all_pinned)) {
0a2966b4
CL
3171 cpu_clear(cpu_of(busiest), cpus);
3172 if (!cpus_empty(cpus))
3173 goto redo;
3174 }
d6d5cfaf
NP
3175 }
3176
43010659 3177 if (!ld_moved) {
d15bcfdb 3178 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3179 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3180 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3181 return -1;
3182 } else
16cfb1c0 3183 sd->nr_balance_failed = 0;
1da177e4 3184
43010659 3185 return ld_moved;
16cfb1c0
NP
3186
3187out_balanced:
d15bcfdb 3188 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3189 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3190 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3191 return -1;
16cfb1c0 3192 sd->nr_balance_failed = 0;
48f24c4d 3193
16cfb1c0 3194 return 0;
1da177e4
LT
3195}
3196
3197/*
3198 * idle_balance is called by schedule() if this_cpu is about to become
3199 * idle. Attempts to pull tasks from other CPUs.
3200 */
70b97a7f 3201static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3202{
3203 struct sched_domain *sd;
dd41f596
IM
3204 int pulled_task = -1;
3205 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3206
3207 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3208 unsigned long interval;
3209
3210 if (!(sd->flags & SD_LOAD_BALANCE))
3211 continue;
3212
3213 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3214 /* If we've pulled tasks over stop searching: */
1bd77f2d 3215 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3216 this_rq, sd);
3217
3218 interval = msecs_to_jiffies(sd->balance_interval);
3219 if (time_after(next_balance, sd->last_balance + interval))
3220 next_balance = sd->last_balance + interval;
3221 if (pulled_task)
3222 break;
1da177e4 3223 }
dd41f596 3224 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3225 /*
3226 * We are going idle. next_balance may be set based on
3227 * a busy processor. So reset next_balance.
3228 */
3229 this_rq->next_balance = next_balance;
dd41f596 3230 }
1da177e4
LT
3231}
3232
3233/*
3234 * active_load_balance is run by migration threads. It pushes running tasks
3235 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3236 * running on each physical CPU where possible, and avoids physical /
3237 * logical imbalances.
3238 *
3239 * Called with busiest_rq locked.
3240 */
70b97a7f 3241static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3242{
39507451 3243 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3244 struct sched_domain *sd;
3245 struct rq *target_rq;
39507451 3246
48f24c4d 3247 /* Is there any task to move? */
39507451 3248 if (busiest_rq->nr_running <= 1)
39507451
NP
3249 return;
3250
3251 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3252
3253 /*
39507451 3254 * This condition is "impossible", if it occurs
41a2d6cf 3255 * we need to fix it. Originally reported by
39507451 3256 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3257 */
39507451 3258 BUG_ON(busiest_rq == target_rq);
1da177e4 3259
39507451
NP
3260 /* move a task from busiest_rq to target_rq */
3261 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3262 update_rq_clock(busiest_rq);
3263 update_rq_clock(target_rq);
39507451
NP
3264
3265 /* Search for an sd spanning us and the target CPU. */
c96d145e 3266 for_each_domain(target_cpu, sd) {
39507451 3267 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3268 cpu_isset(busiest_cpu, sd->span))
39507451 3269 break;
c96d145e 3270 }
39507451 3271
48f24c4d 3272 if (likely(sd)) {
2d72376b 3273 schedstat_inc(sd, alb_count);
39507451 3274
43010659
PW
3275 if (move_one_task(target_rq, target_cpu, busiest_rq,
3276 sd, CPU_IDLE))
48f24c4d
IM
3277 schedstat_inc(sd, alb_pushed);
3278 else
3279 schedstat_inc(sd, alb_failed);
3280 }
39507451 3281 spin_unlock(&target_rq->lock);
1da177e4
LT
3282}
3283
46cb4b7c
SS
3284#ifdef CONFIG_NO_HZ
3285static struct {
3286 atomic_t load_balancer;
41a2d6cf 3287 cpumask_t cpu_mask;
46cb4b7c
SS
3288} nohz ____cacheline_aligned = {
3289 .load_balancer = ATOMIC_INIT(-1),
3290 .cpu_mask = CPU_MASK_NONE,
3291};
3292
7835b98b 3293/*
46cb4b7c
SS
3294 * This routine will try to nominate the ilb (idle load balancing)
3295 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3296 * load balancing on behalf of all those cpus. If all the cpus in the system
3297 * go into this tickless mode, then there will be no ilb owner (as there is
3298 * no need for one) and all the cpus will sleep till the next wakeup event
3299 * arrives...
3300 *
3301 * For the ilb owner, tick is not stopped. And this tick will be used
3302 * for idle load balancing. ilb owner will still be part of
3303 * nohz.cpu_mask..
7835b98b 3304 *
46cb4b7c
SS
3305 * While stopping the tick, this cpu will become the ilb owner if there
3306 * is no other owner. And will be the owner till that cpu becomes busy
3307 * or if all cpus in the system stop their ticks at which point
3308 * there is no need for ilb owner.
3309 *
3310 * When the ilb owner becomes busy, it nominates another owner, during the
3311 * next busy scheduler_tick()
3312 */
3313int select_nohz_load_balancer(int stop_tick)
3314{
3315 int cpu = smp_processor_id();
3316
3317 if (stop_tick) {
3318 cpu_set(cpu, nohz.cpu_mask);
3319 cpu_rq(cpu)->in_nohz_recently = 1;
3320
3321 /*
3322 * If we are going offline and still the leader, give up!
3323 */
3324 if (cpu_is_offline(cpu) &&
3325 atomic_read(&nohz.load_balancer) == cpu) {
3326 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3327 BUG();
3328 return 0;
3329 }
3330
3331 /* time for ilb owner also to sleep */
3332 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3333 if (atomic_read(&nohz.load_balancer) == cpu)
3334 atomic_set(&nohz.load_balancer, -1);
3335 return 0;
3336 }
3337
3338 if (atomic_read(&nohz.load_balancer) == -1) {
3339 /* make me the ilb owner */
3340 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3341 return 1;
3342 } else if (atomic_read(&nohz.load_balancer) == cpu)
3343 return 1;
3344 } else {
3345 if (!cpu_isset(cpu, nohz.cpu_mask))
3346 return 0;
3347
3348 cpu_clear(cpu, nohz.cpu_mask);
3349
3350 if (atomic_read(&nohz.load_balancer) == cpu)
3351 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3352 BUG();
3353 }
3354 return 0;
3355}
3356#endif
3357
3358static DEFINE_SPINLOCK(balancing);
3359
3360/*
7835b98b
CL
3361 * It checks each scheduling domain to see if it is due to be balanced,
3362 * and initiates a balancing operation if so.
3363 *
3364 * Balancing parameters are set up in arch_init_sched_domains.
3365 */
a9957449 3366static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3367{
46cb4b7c
SS
3368 int balance = 1;
3369 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3370 unsigned long interval;
3371 struct sched_domain *sd;
46cb4b7c 3372 /* Earliest time when we have to do rebalance again */
c9819f45 3373 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3374 int update_next_balance = 0;
1da177e4 3375
46cb4b7c 3376 for_each_domain(cpu, sd) {
1da177e4
LT
3377 if (!(sd->flags & SD_LOAD_BALANCE))
3378 continue;
3379
3380 interval = sd->balance_interval;
d15bcfdb 3381 if (idle != CPU_IDLE)
1da177e4
LT
3382 interval *= sd->busy_factor;
3383
3384 /* scale ms to jiffies */
3385 interval = msecs_to_jiffies(interval);
3386 if (unlikely(!interval))
3387 interval = 1;
dd41f596
IM
3388 if (interval > HZ*NR_CPUS/10)
3389 interval = HZ*NR_CPUS/10;
3390
1da177e4 3391
08c183f3
CL
3392 if (sd->flags & SD_SERIALIZE) {
3393 if (!spin_trylock(&balancing))
3394 goto out;
3395 }
3396
c9819f45 3397 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3398 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3399 /*
3400 * We've pulled tasks over so either we're no
5969fe06
NP
3401 * longer idle, or one of our SMT siblings is
3402 * not idle.
3403 */
d15bcfdb 3404 idle = CPU_NOT_IDLE;
1da177e4 3405 }
1bd77f2d 3406 sd->last_balance = jiffies;
1da177e4 3407 }
08c183f3
CL
3408 if (sd->flags & SD_SERIALIZE)
3409 spin_unlock(&balancing);
3410out:
f549da84 3411 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3412 next_balance = sd->last_balance + interval;
f549da84
SS
3413 update_next_balance = 1;
3414 }
783609c6
SS
3415
3416 /*
3417 * Stop the load balance at this level. There is another
3418 * CPU in our sched group which is doing load balancing more
3419 * actively.
3420 */
3421 if (!balance)
3422 break;
1da177e4 3423 }
f549da84
SS
3424
3425 /*
3426 * next_balance will be updated only when there is a need.
3427 * When the cpu is attached to null domain for ex, it will not be
3428 * updated.
3429 */
3430 if (likely(update_next_balance))
3431 rq->next_balance = next_balance;
46cb4b7c
SS
3432}
3433
3434/*
3435 * run_rebalance_domains is triggered when needed from the scheduler tick.
3436 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3437 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3438 */
3439static void run_rebalance_domains(struct softirq_action *h)
3440{
dd41f596
IM
3441 int this_cpu = smp_processor_id();
3442 struct rq *this_rq = cpu_rq(this_cpu);
3443 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3444 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3445
dd41f596 3446 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3447
3448#ifdef CONFIG_NO_HZ
3449 /*
3450 * If this cpu is the owner for idle load balancing, then do the
3451 * balancing on behalf of the other idle cpus whose ticks are
3452 * stopped.
3453 */
dd41f596
IM
3454 if (this_rq->idle_at_tick &&
3455 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3456 cpumask_t cpus = nohz.cpu_mask;
3457 struct rq *rq;
3458 int balance_cpu;
3459
dd41f596 3460 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3461 for_each_cpu_mask(balance_cpu, cpus) {
3462 /*
3463 * If this cpu gets work to do, stop the load balancing
3464 * work being done for other cpus. Next load
3465 * balancing owner will pick it up.
3466 */
3467 if (need_resched())
3468 break;
3469
de0cf899 3470 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3471
3472 rq = cpu_rq(balance_cpu);
dd41f596
IM
3473 if (time_after(this_rq->next_balance, rq->next_balance))
3474 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3475 }
3476 }
3477#endif
3478}
3479
3480/*
3481 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3482 *
3483 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3484 * idle load balancing owner or decide to stop the periodic load balancing,
3485 * if the whole system is idle.
3486 */
dd41f596 3487static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3488{
46cb4b7c
SS
3489#ifdef CONFIG_NO_HZ
3490 /*
3491 * If we were in the nohz mode recently and busy at the current
3492 * scheduler tick, then check if we need to nominate new idle
3493 * load balancer.
3494 */
3495 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3496 rq->in_nohz_recently = 0;
3497
3498 if (atomic_read(&nohz.load_balancer) == cpu) {
3499 cpu_clear(cpu, nohz.cpu_mask);
3500 atomic_set(&nohz.load_balancer, -1);
3501 }
3502
3503 if (atomic_read(&nohz.load_balancer) == -1) {
3504 /*
3505 * simple selection for now: Nominate the
3506 * first cpu in the nohz list to be the next
3507 * ilb owner.
3508 *
3509 * TBD: Traverse the sched domains and nominate
3510 * the nearest cpu in the nohz.cpu_mask.
3511 */
3512 int ilb = first_cpu(nohz.cpu_mask);
3513
3514 if (ilb != NR_CPUS)
3515 resched_cpu(ilb);
3516 }
3517 }
3518
3519 /*
3520 * If this cpu is idle and doing idle load balancing for all the
3521 * cpus with ticks stopped, is it time for that to stop?
3522 */
3523 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3524 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3525 resched_cpu(cpu);
3526 return;
3527 }
3528
3529 /*
3530 * If this cpu is idle and the idle load balancing is done by
3531 * someone else, then no need raise the SCHED_SOFTIRQ
3532 */
3533 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3534 cpu_isset(cpu, nohz.cpu_mask))
3535 return;
3536#endif
3537 if (time_after_eq(jiffies, rq->next_balance))
3538 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3539}
dd41f596
IM
3540
3541#else /* CONFIG_SMP */
3542
1da177e4
LT
3543/*
3544 * on UP we do not need to balance between CPUs:
3545 */
70b97a7f 3546static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3547{
3548}
dd41f596 3549
1da177e4
LT
3550#endif
3551
1da177e4
LT
3552DEFINE_PER_CPU(struct kernel_stat, kstat);
3553
3554EXPORT_PER_CPU_SYMBOL(kstat);
3555
3556/*
41b86e9c
IM
3557 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3558 * that have not yet been banked in case the task is currently running.
1da177e4 3559 */
41b86e9c 3560unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3561{
1da177e4 3562 unsigned long flags;
41b86e9c
IM
3563 u64 ns, delta_exec;
3564 struct rq *rq;
48f24c4d 3565
41b86e9c
IM
3566 rq = task_rq_lock(p, &flags);
3567 ns = p->se.sum_exec_runtime;
051a1d1a 3568 if (task_current(rq, p)) {
a8e504d2
IM
3569 update_rq_clock(rq);
3570 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3571 if ((s64)delta_exec > 0)
3572 ns += delta_exec;
3573 }
3574 task_rq_unlock(rq, &flags);
48f24c4d 3575
1da177e4
LT
3576 return ns;
3577}
3578
1da177e4
LT
3579/*
3580 * Account user cpu time to a process.
3581 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3582 * @cputime: the cpu time spent in user space since the last update
3583 */
3584void account_user_time(struct task_struct *p, cputime_t cputime)
3585{
3586 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3587 cputime64_t tmp;
3588
3589 p->utime = cputime_add(p->utime, cputime);
3590
3591 /* Add user time to cpustat. */
3592 tmp = cputime_to_cputime64(cputime);
3593 if (TASK_NICE(p) > 0)
3594 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3595 else
3596 cpustat->user = cputime64_add(cpustat->user, tmp);
3597}
3598
94886b84
LV
3599/*
3600 * Account guest cpu time to a process.
3601 * @p: the process that the cpu time gets accounted to
3602 * @cputime: the cpu time spent in virtual machine since the last update
3603 */
f7402e03 3604static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3605{
3606 cputime64_t tmp;
3607 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3608
3609 tmp = cputime_to_cputime64(cputime);
3610
3611 p->utime = cputime_add(p->utime, cputime);
3612 p->gtime = cputime_add(p->gtime, cputime);
3613
3614 cpustat->user = cputime64_add(cpustat->user, tmp);
3615 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3616}
3617
c66f08be
MN
3618/*
3619 * Account scaled user cpu time to a process.
3620 * @p: the process that the cpu time gets accounted to
3621 * @cputime: the cpu time spent in user space since the last update
3622 */
3623void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3624{
3625 p->utimescaled = cputime_add(p->utimescaled, cputime);
3626}
3627
1da177e4
LT
3628/*
3629 * Account system cpu time to a process.
3630 * @p: the process that the cpu time gets accounted to
3631 * @hardirq_offset: the offset to subtract from hardirq_count()
3632 * @cputime: the cpu time spent in kernel space since the last update
3633 */
3634void account_system_time(struct task_struct *p, int hardirq_offset,
3635 cputime_t cputime)
3636{
3637 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3638 struct rq *rq = this_rq();
1da177e4
LT
3639 cputime64_t tmp;
3640
9778385d
CB
3641 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3642 return account_guest_time(p, cputime);
94886b84 3643
1da177e4
LT
3644 p->stime = cputime_add(p->stime, cputime);
3645
3646 /* Add system time to cpustat. */
3647 tmp = cputime_to_cputime64(cputime);
3648 if (hardirq_count() - hardirq_offset)
3649 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3650 else if (softirq_count())
3651 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3652 else if (p != rq->idle)
1da177e4 3653 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3654 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3655 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3656 else
3657 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3658 /* Account for system time used */
3659 acct_update_integrals(p);
1da177e4
LT
3660}
3661
c66f08be
MN
3662/*
3663 * Account scaled system cpu time to a process.
3664 * @p: the process that the cpu time gets accounted to
3665 * @hardirq_offset: the offset to subtract from hardirq_count()
3666 * @cputime: the cpu time spent in kernel space since the last update
3667 */
3668void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3669{
3670 p->stimescaled = cputime_add(p->stimescaled, cputime);
3671}
3672
1da177e4
LT
3673/*
3674 * Account for involuntary wait time.
3675 * @p: the process from which the cpu time has been stolen
3676 * @steal: the cpu time spent in involuntary wait
3677 */
3678void account_steal_time(struct task_struct *p, cputime_t steal)
3679{
3680 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3681 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3682 struct rq *rq = this_rq();
1da177e4
LT
3683
3684 if (p == rq->idle) {
3685 p->stime = cputime_add(p->stime, steal);
3686 if (atomic_read(&rq->nr_iowait) > 0)
3687 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3688 else
3689 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3690 } else
1da177e4
LT
3691 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3692}
3693
7835b98b
CL
3694/*
3695 * This function gets called by the timer code, with HZ frequency.
3696 * We call it with interrupts disabled.
3697 *
3698 * It also gets called by the fork code, when changing the parent's
3699 * timeslices.
3700 */
3701void scheduler_tick(void)
3702{
7835b98b
CL
3703 int cpu = smp_processor_id();
3704 struct rq *rq = cpu_rq(cpu);
dd41f596 3705 struct task_struct *curr = rq->curr;
529c7726 3706 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3707
3708 spin_lock(&rq->lock);
546fe3c9 3709 __update_rq_clock(rq);
529c7726
IM
3710 /*
3711 * Let rq->clock advance by at least TICK_NSEC:
3712 */
cc203d24 3713 if (unlikely(rq->clock < next_tick)) {
529c7726 3714 rq->clock = next_tick;
cc203d24
GC
3715 rq->clock_underflows++;
3716 }
529c7726 3717 rq->tick_timestamp = rq->clock;
f1a438d8 3718 update_cpu_load(rq);
fa85ae24
PZ
3719 curr->sched_class->task_tick(rq, curr, 0);
3720 update_sched_rt_period(rq);
dd41f596 3721 spin_unlock(&rq->lock);
7835b98b 3722
e418e1c2 3723#ifdef CONFIG_SMP
dd41f596
IM
3724 rq->idle_at_tick = idle_cpu(cpu);
3725 trigger_load_balance(rq, cpu);
e418e1c2 3726#endif
1da177e4
LT
3727}
3728
1da177e4
LT
3729#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3730
43627582 3731void __kprobes add_preempt_count(int val)
1da177e4
LT
3732{
3733 /*
3734 * Underflow?
3735 */
9a11b49a
IM
3736 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3737 return;
1da177e4
LT
3738 preempt_count() += val;
3739 /*
3740 * Spinlock count overflowing soon?
3741 */
33859f7f
MOS
3742 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3743 PREEMPT_MASK - 10);
1da177e4
LT
3744}
3745EXPORT_SYMBOL(add_preempt_count);
3746
43627582 3747void __kprobes sub_preempt_count(int val)
1da177e4
LT
3748{
3749 /*
3750 * Underflow?
3751 */
9a11b49a
IM
3752 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3753 return;
1da177e4
LT
3754 /*
3755 * Is the spinlock portion underflowing?
3756 */
9a11b49a
IM
3757 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3758 !(preempt_count() & PREEMPT_MASK)))
3759 return;
3760
1da177e4
LT
3761 preempt_count() -= val;
3762}
3763EXPORT_SYMBOL(sub_preempt_count);
3764
3765#endif
3766
3767/*
dd41f596 3768 * Print scheduling while atomic bug:
1da177e4 3769 */
dd41f596 3770static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3771{
838225b4
SS
3772 struct pt_regs *regs = get_irq_regs();
3773
3774 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3775 prev->comm, prev->pid, preempt_count());
3776
dd41f596
IM
3777 debug_show_held_locks(prev);
3778 if (irqs_disabled())
3779 print_irqtrace_events(prev);
838225b4
SS
3780
3781 if (regs)
3782 show_regs(regs);
3783 else
3784 dump_stack();
dd41f596 3785}
1da177e4 3786
dd41f596
IM
3787/*
3788 * Various schedule()-time debugging checks and statistics:
3789 */
3790static inline void schedule_debug(struct task_struct *prev)
3791{
1da177e4 3792 /*
41a2d6cf 3793 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3794 * schedule() atomically, we ignore that path for now.
3795 * Otherwise, whine if we are scheduling when we should not be.
3796 */
dd41f596
IM
3797 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3798 __schedule_bug(prev);
3799
1da177e4
LT
3800 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3801
2d72376b 3802 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3803#ifdef CONFIG_SCHEDSTATS
3804 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3805 schedstat_inc(this_rq(), bkl_count);
3806 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3807 }
3808#endif
dd41f596
IM
3809}
3810
3811/*
3812 * Pick up the highest-prio task:
3813 */
3814static inline struct task_struct *
ff95f3df 3815pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3816{
5522d5d5 3817 const struct sched_class *class;
dd41f596 3818 struct task_struct *p;
1da177e4
LT
3819
3820 /*
dd41f596
IM
3821 * Optimization: we know that if all tasks are in
3822 * the fair class we can call that function directly:
1da177e4 3823 */
dd41f596 3824 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3825 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3826 if (likely(p))
3827 return p;
1da177e4
LT
3828 }
3829
dd41f596
IM
3830 class = sched_class_highest;
3831 for ( ; ; ) {
fb8d4724 3832 p = class->pick_next_task(rq);
dd41f596
IM
3833 if (p)
3834 return p;
3835 /*
3836 * Will never be NULL as the idle class always
3837 * returns a non-NULL p:
3838 */
3839 class = class->next;
3840 }
3841}
1da177e4 3842
dd41f596
IM
3843/*
3844 * schedule() is the main scheduler function.
3845 */
3846asmlinkage void __sched schedule(void)
3847{
3848 struct task_struct *prev, *next;
67ca7bde 3849 unsigned long *switch_count;
dd41f596 3850 struct rq *rq;
dd41f596
IM
3851 int cpu;
3852
3853need_resched:
3854 preempt_disable();
3855 cpu = smp_processor_id();
3856 rq = cpu_rq(cpu);
3857 rcu_qsctr_inc(cpu);
3858 prev = rq->curr;
3859 switch_count = &prev->nivcsw;
3860
3861 release_kernel_lock(prev);
3862need_resched_nonpreemptible:
3863
3864 schedule_debug(prev);
1da177e4 3865
8f4d37ec
PZ
3866 hrtick_clear(rq);
3867
1e819950
IM
3868 /*
3869 * Do the rq-clock update outside the rq lock:
3870 */
3871 local_irq_disable();
c1b3da3e 3872 __update_rq_clock(rq);
1e819950
IM
3873 spin_lock(&rq->lock);
3874 clear_tsk_need_resched(prev);
1da177e4 3875
1da177e4 3876 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3877 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3878 unlikely(signal_pending(prev)))) {
1da177e4 3879 prev->state = TASK_RUNNING;
dd41f596 3880 } else {
2e1cb74a 3881 deactivate_task(rq, prev, 1);
1da177e4 3882 }
dd41f596 3883 switch_count = &prev->nvcsw;
1da177e4
LT
3884 }
3885
9a897c5a
SR
3886#ifdef CONFIG_SMP
3887 if (prev->sched_class->pre_schedule)
3888 prev->sched_class->pre_schedule(rq, prev);
3889#endif
f65eda4f 3890
dd41f596 3891 if (unlikely(!rq->nr_running))
1da177e4 3892 idle_balance(cpu, rq);
1da177e4 3893
31ee529c 3894 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3895 next = pick_next_task(rq, prev);
1da177e4
LT
3896
3897 sched_info_switch(prev, next);
dd41f596 3898
1da177e4 3899 if (likely(prev != next)) {
1da177e4
LT
3900 rq->nr_switches++;
3901 rq->curr = next;
3902 ++*switch_count;
3903
dd41f596 3904 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3905 /*
3906 * the context switch might have flipped the stack from under
3907 * us, hence refresh the local variables.
3908 */
3909 cpu = smp_processor_id();
3910 rq = cpu_rq(cpu);
1da177e4
LT
3911 } else
3912 spin_unlock_irq(&rq->lock);
3913
8f4d37ec
PZ
3914 hrtick_set(rq);
3915
3916 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 3917 goto need_resched_nonpreemptible;
8f4d37ec 3918
1da177e4
LT
3919 preempt_enable_no_resched();
3920 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3921 goto need_resched;
3922}
1da177e4
LT
3923EXPORT_SYMBOL(schedule);
3924
3925#ifdef CONFIG_PREEMPT
3926/*
2ed6e34f 3927 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3928 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3929 * occur there and call schedule directly.
3930 */
3931asmlinkage void __sched preempt_schedule(void)
3932{
3933 struct thread_info *ti = current_thread_info();
1da177e4
LT
3934 struct task_struct *task = current;
3935 int saved_lock_depth;
6478d880 3936
1da177e4
LT
3937 /*
3938 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3939 * we do not want to preempt the current task. Just return..
1da177e4 3940 */
beed33a8 3941 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3942 return;
3943
3a5c359a
AK
3944 do {
3945 add_preempt_count(PREEMPT_ACTIVE);
3946
3947 /*
3948 * We keep the big kernel semaphore locked, but we
3949 * clear ->lock_depth so that schedule() doesnt
3950 * auto-release the semaphore:
3951 */
3a5c359a
AK
3952 saved_lock_depth = task->lock_depth;
3953 task->lock_depth = -1;
3a5c359a 3954 schedule();
3a5c359a 3955 task->lock_depth = saved_lock_depth;
3a5c359a 3956 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3957
3a5c359a
AK
3958 /*
3959 * Check again in case we missed a preemption opportunity
3960 * between schedule and now.
3961 */
3962 barrier();
3963 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3964}
1da177e4
LT
3965EXPORT_SYMBOL(preempt_schedule);
3966
3967/*
2ed6e34f 3968 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3969 * off of irq context.
3970 * Note, that this is called and return with irqs disabled. This will
3971 * protect us against recursive calling from irq.
3972 */
3973asmlinkage void __sched preempt_schedule_irq(void)
3974{
3975 struct thread_info *ti = current_thread_info();
1da177e4
LT
3976 struct task_struct *task = current;
3977 int saved_lock_depth;
6478d880 3978
2ed6e34f 3979 /* Catch callers which need to be fixed */
1da177e4
LT
3980 BUG_ON(ti->preempt_count || !irqs_disabled());
3981
3a5c359a
AK
3982 do {
3983 add_preempt_count(PREEMPT_ACTIVE);
3984
3985 /*
3986 * We keep the big kernel semaphore locked, but we
3987 * clear ->lock_depth so that schedule() doesnt
3988 * auto-release the semaphore:
3989 */
3a5c359a
AK
3990 saved_lock_depth = task->lock_depth;
3991 task->lock_depth = -1;
3a5c359a
AK
3992 local_irq_enable();
3993 schedule();
3994 local_irq_disable();
3a5c359a 3995 task->lock_depth = saved_lock_depth;
3a5c359a 3996 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3997
3a5c359a
AK
3998 /*
3999 * Check again in case we missed a preemption opportunity
4000 * between schedule and now.
4001 */
4002 barrier();
4003 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4004}
4005
4006#endif /* CONFIG_PREEMPT */
4007
95cdf3b7
IM
4008int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4009 void *key)
1da177e4 4010{
48f24c4d 4011 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4012}
1da177e4
LT
4013EXPORT_SYMBOL(default_wake_function);
4014
4015/*
41a2d6cf
IM
4016 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4017 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4018 * number) then we wake all the non-exclusive tasks and one exclusive task.
4019 *
4020 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4021 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4022 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4023 */
4024static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4025 int nr_exclusive, int sync, void *key)
4026{
2e45874c 4027 wait_queue_t *curr, *next;
1da177e4 4028
2e45874c 4029 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4030 unsigned flags = curr->flags;
4031
1da177e4 4032 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4033 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4034 break;
4035 }
4036}
4037
4038/**
4039 * __wake_up - wake up threads blocked on a waitqueue.
4040 * @q: the waitqueue
4041 * @mode: which threads
4042 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4043 * @key: is directly passed to the wakeup function
1da177e4 4044 */
7ad5b3a5 4045void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4046 int nr_exclusive, void *key)
1da177e4
LT
4047{
4048 unsigned long flags;
4049
4050 spin_lock_irqsave(&q->lock, flags);
4051 __wake_up_common(q, mode, nr_exclusive, 0, key);
4052 spin_unlock_irqrestore(&q->lock, flags);
4053}
1da177e4
LT
4054EXPORT_SYMBOL(__wake_up);
4055
4056/*
4057 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4058 */
7ad5b3a5 4059void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4060{
4061 __wake_up_common(q, mode, 1, 0, NULL);
4062}
4063
4064/**
67be2dd1 4065 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4066 * @q: the waitqueue
4067 * @mode: which threads
4068 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4069 *
4070 * The sync wakeup differs that the waker knows that it will schedule
4071 * away soon, so while the target thread will be woken up, it will not
4072 * be migrated to another CPU - ie. the two threads are 'synchronized'
4073 * with each other. This can prevent needless bouncing between CPUs.
4074 *
4075 * On UP it can prevent extra preemption.
4076 */
7ad5b3a5 4077void
95cdf3b7 4078__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4079{
4080 unsigned long flags;
4081 int sync = 1;
4082
4083 if (unlikely(!q))
4084 return;
4085
4086 if (unlikely(!nr_exclusive))
4087 sync = 0;
4088
4089 spin_lock_irqsave(&q->lock, flags);
4090 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4091 spin_unlock_irqrestore(&q->lock, flags);
4092}
4093EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4094
b15136e9 4095void complete(struct completion *x)
1da177e4
LT
4096{
4097 unsigned long flags;
4098
4099 spin_lock_irqsave(&x->wait.lock, flags);
4100 x->done++;
d9514f6c 4101 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4102 spin_unlock_irqrestore(&x->wait.lock, flags);
4103}
4104EXPORT_SYMBOL(complete);
4105
b15136e9 4106void complete_all(struct completion *x)
1da177e4
LT
4107{
4108 unsigned long flags;
4109
4110 spin_lock_irqsave(&x->wait.lock, flags);
4111 x->done += UINT_MAX/2;
d9514f6c 4112 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4113 spin_unlock_irqrestore(&x->wait.lock, flags);
4114}
4115EXPORT_SYMBOL(complete_all);
4116
8cbbe86d
AK
4117static inline long __sched
4118do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4119{
1da177e4
LT
4120 if (!x->done) {
4121 DECLARE_WAITQUEUE(wait, current);
4122
4123 wait.flags |= WQ_FLAG_EXCLUSIVE;
4124 __add_wait_queue_tail(&x->wait, &wait);
4125 do {
009e577e
MW
4126 if ((state == TASK_INTERRUPTIBLE &&
4127 signal_pending(current)) ||
4128 (state == TASK_KILLABLE &&
4129 fatal_signal_pending(current))) {
8cbbe86d
AK
4130 __remove_wait_queue(&x->wait, &wait);
4131 return -ERESTARTSYS;
4132 }
4133 __set_current_state(state);
1da177e4
LT
4134 spin_unlock_irq(&x->wait.lock);
4135 timeout = schedule_timeout(timeout);
4136 spin_lock_irq(&x->wait.lock);
4137 if (!timeout) {
4138 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4139 return timeout;
1da177e4
LT
4140 }
4141 } while (!x->done);
4142 __remove_wait_queue(&x->wait, &wait);
4143 }
4144 x->done--;
1da177e4
LT
4145 return timeout;
4146}
1da177e4 4147
8cbbe86d
AK
4148static long __sched
4149wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4150{
1da177e4
LT
4151 might_sleep();
4152
4153 spin_lock_irq(&x->wait.lock);
8cbbe86d 4154 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4155 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4156 return timeout;
4157}
1da177e4 4158
b15136e9 4159void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4160{
4161 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4162}
8cbbe86d 4163EXPORT_SYMBOL(wait_for_completion);
1da177e4 4164
b15136e9 4165unsigned long __sched
8cbbe86d 4166wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4167{
8cbbe86d 4168 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4169}
8cbbe86d 4170EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4171
8cbbe86d 4172int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4173{
51e97990
AK
4174 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4175 if (t == -ERESTARTSYS)
4176 return t;
4177 return 0;
0fec171c 4178}
8cbbe86d 4179EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4180
b15136e9 4181unsigned long __sched
8cbbe86d
AK
4182wait_for_completion_interruptible_timeout(struct completion *x,
4183 unsigned long timeout)
0fec171c 4184{
8cbbe86d 4185 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4186}
8cbbe86d 4187EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4188
009e577e
MW
4189int __sched wait_for_completion_killable(struct completion *x)
4190{
4191 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4192 if (t == -ERESTARTSYS)
4193 return t;
4194 return 0;
4195}
4196EXPORT_SYMBOL(wait_for_completion_killable);
4197
8cbbe86d
AK
4198static long __sched
4199sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4200{
0fec171c
IM
4201 unsigned long flags;
4202 wait_queue_t wait;
4203
4204 init_waitqueue_entry(&wait, current);
1da177e4 4205
8cbbe86d 4206 __set_current_state(state);
1da177e4 4207
8cbbe86d
AK
4208 spin_lock_irqsave(&q->lock, flags);
4209 __add_wait_queue(q, &wait);
4210 spin_unlock(&q->lock);
4211 timeout = schedule_timeout(timeout);
4212 spin_lock_irq(&q->lock);
4213 __remove_wait_queue(q, &wait);
4214 spin_unlock_irqrestore(&q->lock, flags);
4215
4216 return timeout;
4217}
4218
4219void __sched interruptible_sleep_on(wait_queue_head_t *q)
4220{
4221 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4222}
1da177e4
LT
4223EXPORT_SYMBOL(interruptible_sleep_on);
4224
0fec171c 4225long __sched
95cdf3b7 4226interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4227{
8cbbe86d 4228 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4229}
1da177e4
LT
4230EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4231
0fec171c 4232void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4233{
8cbbe86d 4234 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4235}
1da177e4
LT
4236EXPORT_SYMBOL(sleep_on);
4237
0fec171c 4238long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4239{
8cbbe86d 4240 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4241}
1da177e4
LT
4242EXPORT_SYMBOL(sleep_on_timeout);
4243
b29739f9
IM
4244#ifdef CONFIG_RT_MUTEXES
4245
4246/*
4247 * rt_mutex_setprio - set the current priority of a task
4248 * @p: task
4249 * @prio: prio value (kernel-internal form)
4250 *
4251 * This function changes the 'effective' priority of a task. It does
4252 * not touch ->normal_prio like __setscheduler().
4253 *
4254 * Used by the rt_mutex code to implement priority inheritance logic.
4255 */
36c8b586 4256void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4257{
4258 unsigned long flags;
83b699ed 4259 int oldprio, on_rq, running;
70b97a7f 4260 struct rq *rq;
cb469845 4261 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4262
4263 BUG_ON(prio < 0 || prio > MAX_PRIO);
4264
4265 rq = task_rq_lock(p, &flags);
a8e504d2 4266 update_rq_clock(rq);
b29739f9 4267
d5f9f942 4268 oldprio = p->prio;
dd41f596 4269 on_rq = p->se.on_rq;
051a1d1a 4270 running = task_current(rq, p);
83b699ed 4271 if (on_rq) {
69be72c1 4272 dequeue_task(rq, p, 0);
83b699ed
SV
4273 if (running)
4274 p->sched_class->put_prev_task(rq, p);
4275 }
dd41f596
IM
4276
4277 if (rt_prio(prio))
4278 p->sched_class = &rt_sched_class;
4279 else
4280 p->sched_class = &fair_sched_class;
4281
b29739f9
IM
4282 p->prio = prio;
4283
dd41f596 4284 if (on_rq) {
83b699ed
SV
4285 if (running)
4286 p->sched_class->set_curr_task(rq);
cb469845 4287
8159f87e 4288 enqueue_task(rq, p, 0);
cb469845
SR
4289
4290 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4291 }
4292 task_rq_unlock(rq, &flags);
4293}
4294
4295#endif
4296
36c8b586 4297void set_user_nice(struct task_struct *p, long nice)
1da177e4 4298{
dd41f596 4299 int old_prio, delta, on_rq;
1da177e4 4300 unsigned long flags;
70b97a7f 4301 struct rq *rq;
1da177e4
LT
4302
4303 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4304 return;
4305 /*
4306 * We have to be careful, if called from sys_setpriority(),
4307 * the task might be in the middle of scheduling on another CPU.
4308 */
4309 rq = task_rq_lock(p, &flags);
a8e504d2 4310 update_rq_clock(rq);
1da177e4
LT
4311 /*
4312 * The RT priorities are set via sched_setscheduler(), but we still
4313 * allow the 'normal' nice value to be set - but as expected
4314 * it wont have any effect on scheduling until the task is
dd41f596 4315 * SCHED_FIFO/SCHED_RR:
1da177e4 4316 */
e05606d3 4317 if (task_has_rt_policy(p)) {
1da177e4
LT
4318 p->static_prio = NICE_TO_PRIO(nice);
4319 goto out_unlock;
4320 }
dd41f596 4321 on_rq = p->se.on_rq;
62fb1851 4322 if (on_rq) {
69be72c1 4323 dequeue_task(rq, p, 0);
62fb1851
PZ
4324 dec_load(rq, p);
4325 }
1da177e4 4326
1da177e4 4327 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4328 set_load_weight(p);
b29739f9
IM
4329 old_prio = p->prio;
4330 p->prio = effective_prio(p);
4331 delta = p->prio - old_prio;
1da177e4 4332
dd41f596 4333 if (on_rq) {
8159f87e 4334 enqueue_task(rq, p, 0);
62fb1851 4335 inc_load(rq, p);
1da177e4 4336 /*
d5f9f942
AM
4337 * If the task increased its priority or is running and
4338 * lowered its priority, then reschedule its CPU:
1da177e4 4339 */
d5f9f942 4340 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4341 resched_task(rq->curr);
4342 }
4343out_unlock:
4344 task_rq_unlock(rq, &flags);
4345}
1da177e4
LT
4346EXPORT_SYMBOL(set_user_nice);
4347
e43379f1
MM
4348/*
4349 * can_nice - check if a task can reduce its nice value
4350 * @p: task
4351 * @nice: nice value
4352 */
36c8b586 4353int can_nice(const struct task_struct *p, const int nice)
e43379f1 4354{
024f4747
MM
4355 /* convert nice value [19,-20] to rlimit style value [1,40] */
4356 int nice_rlim = 20 - nice;
48f24c4d 4357
e43379f1
MM
4358 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4359 capable(CAP_SYS_NICE));
4360}
4361
1da177e4
LT
4362#ifdef __ARCH_WANT_SYS_NICE
4363
4364/*
4365 * sys_nice - change the priority of the current process.
4366 * @increment: priority increment
4367 *
4368 * sys_setpriority is a more generic, but much slower function that
4369 * does similar things.
4370 */
4371asmlinkage long sys_nice(int increment)
4372{
48f24c4d 4373 long nice, retval;
1da177e4
LT
4374
4375 /*
4376 * Setpriority might change our priority at the same moment.
4377 * We don't have to worry. Conceptually one call occurs first
4378 * and we have a single winner.
4379 */
e43379f1
MM
4380 if (increment < -40)
4381 increment = -40;
1da177e4
LT
4382 if (increment > 40)
4383 increment = 40;
4384
4385 nice = PRIO_TO_NICE(current->static_prio) + increment;
4386 if (nice < -20)
4387 nice = -20;
4388 if (nice > 19)
4389 nice = 19;
4390
e43379f1
MM
4391 if (increment < 0 && !can_nice(current, nice))
4392 return -EPERM;
4393
1da177e4
LT
4394 retval = security_task_setnice(current, nice);
4395 if (retval)
4396 return retval;
4397
4398 set_user_nice(current, nice);
4399 return 0;
4400}
4401
4402#endif
4403
4404/**
4405 * task_prio - return the priority value of a given task.
4406 * @p: the task in question.
4407 *
4408 * This is the priority value as seen by users in /proc.
4409 * RT tasks are offset by -200. Normal tasks are centered
4410 * around 0, value goes from -16 to +15.
4411 */
36c8b586 4412int task_prio(const struct task_struct *p)
1da177e4
LT
4413{
4414 return p->prio - MAX_RT_PRIO;
4415}
4416
4417/**
4418 * task_nice - return the nice value of a given task.
4419 * @p: the task in question.
4420 */
36c8b586 4421int task_nice(const struct task_struct *p)
1da177e4
LT
4422{
4423 return TASK_NICE(p);
4424}
150d8bed 4425EXPORT_SYMBOL(task_nice);
1da177e4
LT
4426
4427/**
4428 * idle_cpu - is a given cpu idle currently?
4429 * @cpu: the processor in question.
4430 */
4431int idle_cpu(int cpu)
4432{
4433 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4434}
4435
1da177e4
LT
4436/**
4437 * idle_task - return the idle task for a given cpu.
4438 * @cpu: the processor in question.
4439 */
36c8b586 4440struct task_struct *idle_task(int cpu)
1da177e4
LT
4441{
4442 return cpu_rq(cpu)->idle;
4443}
4444
4445/**
4446 * find_process_by_pid - find a process with a matching PID value.
4447 * @pid: the pid in question.
4448 */
a9957449 4449static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4450{
228ebcbe 4451 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4452}
4453
4454/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4455static void
4456__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4457{
dd41f596 4458 BUG_ON(p->se.on_rq);
48f24c4d 4459
1da177e4 4460 p->policy = policy;
dd41f596
IM
4461 switch (p->policy) {
4462 case SCHED_NORMAL:
4463 case SCHED_BATCH:
4464 case SCHED_IDLE:
4465 p->sched_class = &fair_sched_class;
4466 break;
4467 case SCHED_FIFO:
4468 case SCHED_RR:
4469 p->sched_class = &rt_sched_class;
4470 break;
4471 }
4472
1da177e4 4473 p->rt_priority = prio;
b29739f9
IM
4474 p->normal_prio = normal_prio(p);
4475 /* we are holding p->pi_lock already */
4476 p->prio = rt_mutex_getprio(p);
2dd73a4f 4477 set_load_weight(p);
1da177e4
LT
4478}
4479
4480/**
72fd4a35 4481 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4482 * @p: the task in question.
4483 * @policy: new policy.
4484 * @param: structure containing the new RT priority.
5fe1d75f 4485 *
72fd4a35 4486 * NOTE that the task may be already dead.
1da177e4 4487 */
95cdf3b7
IM
4488int sched_setscheduler(struct task_struct *p, int policy,
4489 struct sched_param *param)
1da177e4 4490{
83b699ed 4491 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4492 unsigned long flags;
cb469845 4493 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4494 struct rq *rq;
1da177e4 4495
66e5393a
SR
4496 /* may grab non-irq protected spin_locks */
4497 BUG_ON(in_interrupt());
1da177e4
LT
4498recheck:
4499 /* double check policy once rq lock held */
4500 if (policy < 0)
4501 policy = oldpolicy = p->policy;
4502 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4503 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4504 policy != SCHED_IDLE)
b0a9499c 4505 return -EINVAL;
1da177e4
LT
4506 /*
4507 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4508 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4509 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4510 */
4511 if (param->sched_priority < 0 ||
95cdf3b7 4512 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4513 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4514 return -EINVAL;
e05606d3 4515 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4516 return -EINVAL;
4517
37e4ab3f
OC
4518 /*
4519 * Allow unprivileged RT tasks to decrease priority:
4520 */
4521 if (!capable(CAP_SYS_NICE)) {
e05606d3 4522 if (rt_policy(policy)) {
8dc3e909 4523 unsigned long rlim_rtprio;
8dc3e909
ON
4524
4525 if (!lock_task_sighand(p, &flags))
4526 return -ESRCH;
4527 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4528 unlock_task_sighand(p, &flags);
4529
4530 /* can't set/change the rt policy */
4531 if (policy != p->policy && !rlim_rtprio)
4532 return -EPERM;
4533
4534 /* can't increase priority */
4535 if (param->sched_priority > p->rt_priority &&
4536 param->sched_priority > rlim_rtprio)
4537 return -EPERM;
4538 }
dd41f596
IM
4539 /*
4540 * Like positive nice levels, dont allow tasks to
4541 * move out of SCHED_IDLE either:
4542 */
4543 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4544 return -EPERM;
5fe1d75f 4545
37e4ab3f
OC
4546 /* can't change other user's priorities */
4547 if ((current->euid != p->euid) &&
4548 (current->euid != p->uid))
4549 return -EPERM;
4550 }
1da177e4 4551
b68aa230
PZ
4552#ifdef CONFIG_RT_GROUP_SCHED
4553 /*
4554 * Do not allow realtime tasks into groups that have no runtime
4555 * assigned.
4556 */
4557 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4558 return -EPERM;
4559#endif
4560
1da177e4
LT
4561 retval = security_task_setscheduler(p, policy, param);
4562 if (retval)
4563 return retval;
b29739f9
IM
4564 /*
4565 * make sure no PI-waiters arrive (or leave) while we are
4566 * changing the priority of the task:
4567 */
4568 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4569 /*
4570 * To be able to change p->policy safely, the apropriate
4571 * runqueue lock must be held.
4572 */
b29739f9 4573 rq = __task_rq_lock(p);
1da177e4
LT
4574 /* recheck policy now with rq lock held */
4575 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4576 policy = oldpolicy = -1;
b29739f9
IM
4577 __task_rq_unlock(rq);
4578 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4579 goto recheck;
4580 }
2daa3577 4581 update_rq_clock(rq);
dd41f596 4582 on_rq = p->se.on_rq;
051a1d1a 4583 running = task_current(rq, p);
83b699ed 4584 if (on_rq) {
2e1cb74a 4585 deactivate_task(rq, p, 0);
83b699ed
SV
4586 if (running)
4587 p->sched_class->put_prev_task(rq, p);
4588 }
f6b53205 4589
1da177e4 4590 oldprio = p->prio;
dd41f596 4591 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4592
dd41f596 4593 if (on_rq) {
83b699ed
SV
4594 if (running)
4595 p->sched_class->set_curr_task(rq);
cb469845 4596
dd41f596 4597 activate_task(rq, p, 0);
cb469845
SR
4598
4599 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4600 }
b29739f9
IM
4601 __task_rq_unlock(rq);
4602 spin_unlock_irqrestore(&p->pi_lock, flags);
4603
95e02ca9
TG
4604 rt_mutex_adjust_pi(p);
4605
1da177e4
LT
4606 return 0;
4607}
4608EXPORT_SYMBOL_GPL(sched_setscheduler);
4609
95cdf3b7
IM
4610static int
4611do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4612{
1da177e4
LT
4613 struct sched_param lparam;
4614 struct task_struct *p;
36c8b586 4615 int retval;
1da177e4
LT
4616
4617 if (!param || pid < 0)
4618 return -EINVAL;
4619 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4620 return -EFAULT;
5fe1d75f
ON
4621
4622 rcu_read_lock();
4623 retval = -ESRCH;
1da177e4 4624 p = find_process_by_pid(pid);
5fe1d75f
ON
4625 if (p != NULL)
4626 retval = sched_setscheduler(p, policy, &lparam);
4627 rcu_read_unlock();
36c8b586 4628
1da177e4
LT
4629 return retval;
4630}
4631
4632/**
4633 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4634 * @pid: the pid in question.
4635 * @policy: new policy.
4636 * @param: structure containing the new RT priority.
4637 */
41a2d6cf
IM
4638asmlinkage long
4639sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4640{
c21761f1
JB
4641 /* negative values for policy are not valid */
4642 if (policy < 0)
4643 return -EINVAL;
4644
1da177e4
LT
4645 return do_sched_setscheduler(pid, policy, param);
4646}
4647
4648/**
4649 * sys_sched_setparam - set/change the RT priority of a thread
4650 * @pid: the pid in question.
4651 * @param: structure containing the new RT priority.
4652 */
4653asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4654{
4655 return do_sched_setscheduler(pid, -1, param);
4656}
4657
4658/**
4659 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4660 * @pid: the pid in question.
4661 */
4662asmlinkage long sys_sched_getscheduler(pid_t pid)
4663{
36c8b586 4664 struct task_struct *p;
3a5c359a 4665 int retval;
1da177e4
LT
4666
4667 if (pid < 0)
3a5c359a 4668 return -EINVAL;
1da177e4
LT
4669
4670 retval = -ESRCH;
4671 read_lock(&tasklist_lock);
4672 p = find_process_by_pid(pid);
4673 if (p) {
4674 retval = security_task_getscheduler(p);
4675 if (!retval)
4676 retval = p->policy;
4677 }
4678 read_unlock(&tasklist_lock);
1da177e4
LT
4679 return retval;
4680}
4681
4682/**
4683 * sys_sched_getscheduler - get the RT priority of a thread
4684 * @pid: the pid in question.
4685 * @param: structure containing the RT priority.
4686 */
4687asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4688{
4689 struct sched_param lp;
36c8b586 4690 struct task_struct *p;
3a5c359a 4691 int retval;
1da177e4
LT
4692
4693 if (!param || pid < 0)
3a5c359a 4694 return -EINVAL;
1da177e4
LT
4695
4696 read_lock(&tasklist_lock);
4697 p = find_process_by_pid(pid);
4698 retval = -ESRCH;
4699 if (!p)
4700 goto out_unlock;
4701
4702 retval = security_task_getscheduler(p);
4703 if (retval)
4704 goto out_unlock;
4705
4706 lp.sched_priority = p->rt_priority;
4707 read_unlock(&tasklist_lock);
4708
4709 /*
4710 * This one might sleep, we cannot do it with a spinlock held ...
4711 */
4712 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4713
1da177e4
LT
4714 return retval;
4715
4716out_unlock:
4717 read_unlock(&tasklist_lock);
4718 return retval;
4719}
4720
4721long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4722{
1da177e4 4723 cpumask_t cpus_allowed;
36c8b586
IM
4724 struct task_struct *p;
4725 int retval;
1da177e4 4726
95402b38 4727 get_online_cpus();
1da177e4
LT
4728 read_lock(&tasklist_lock);
4729
4730 p = find_process_by_pid(pid);
4731 if (!p) {
4732 read_unlock(&tasklist_lock);
95402b38 4733 put_online_cpus();
1da177e4
LT
4734 return -ESRCH;
4735 }
4736
4737 /*
4738 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4739 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4740 * usage count and then drop tasklist_lock.
4741 */
4742 get_task_struct(p);
4743 read_unlock(&tasklist_lock);
4744
4745 retval = -EPERM;
4746 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4747 !capable(CAP_SYS_NICE))
4748 goto out_unlock;
4749
e7834f8f
DQ
4750 retval = security_task_setscheduler(p, 0, NULL);
4751 if (retval)
4752 goto out_unlock;
4753
1da177e4
LT
4754 cpus_allowed = cpuset_cpus_allowed(p);
4755 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4756 again:
1da177e4
LT
4757 retval = set_cpus_allowed(p, new_mask);
4758
8707d8b8
PM
4759 if (!retval) {
4760 cpus_allowed = cpuset_cpus_allowed(p);
4761 if (!cpus_subset(new_mask, cpus_allowed)) {
4762 /*
4763 * We must have raced with a concurrent cpuset
4764 * update. Just reset the cpus_allowed to the
4765 * cpuset's cpus_allowed
4766 */
4767 new_mask = cpus_allowed;
4768 goto again;
4769 }
4770 }
1da177e4
LT
4771out_unlock:
4772 put_task_struct(p);
95402b38 4773 put_online_cpus();
1da177e4
LT
4774 return retval;
4775}
4776
4777static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4778 cpumask_t *new_mask)
4779{
4780 if (len < sizeof(cpumask_t)) {
4781 memset(new_mask, 0, sizeof(cpumask_t));
4782 } else if (len > sizeof(cpumask_t)) {
4783 len = sizeof(cpumask_t);
4784 }
4785 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4786}
4787
4788/**
4789 * sys_sched_setaffinity - set the cpu affinity of a process
4790 * @pid: pid of the process
4791 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4792 * @user_mask_ptr: user-space pointer to the new cpu mask
4793 */
4794asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4795 unsigned long __user *user_mask_ptr)
4796{
4797 cpumask_t new_mask;
4798 int retval;
4799
4800 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4801 if (retval)
4802 return retval;
4803
4804 return sched_setaffinity(pid, new_mask);
4805}
4806
4807/*
4808 * Represents all cpu's present in the system
4809 * In systems capable of hotplug, this map could dynamically grow
4810 * as new cpu's are detected in the system via any platform specific
4811 * method, such as ACPI for e.g.
4812 */
4813
4cef0c61 4814cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4815EXPORT_SYMBOL(cpu_present_map);
4816
4817#ifndef CONFIG_SMP
4cef0c61 4818cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4819EXPORT_SYMBOL(cpu_online_map);
4820
4cef0c61 4821cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4822EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4823#endif
4824
4825long sched_getaffinity(pid_t pid, cpumask_t *mask)
4826{
36c8b586 4827 struct task_struct *p;
1da177e4 4828 int retval;
1da177e4 4829
95402b38 4830 get_online_cpus();
1da177e4
LT
4831 read_lock(&tasklist_lock);
4832
4833 retval = -ESRCH;
4834 p = find_process_by_pid(pid);
4835 if (!p)
4836 goto out_unlock;
4837
e7834f8f
DQ
4838 retval = security_task_getscheduler(p);
4839 if (retval)
4840 goto out_unlock;
4841
2f7016d9 4842 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4843
4844out_unlock:
4845 read_unlock(&tasklist_lock);
95402b38 4846 put_online_cpus();
1da177e4 4847
9531b62f 4848 return retval;
1da177e4
LT
4849}
4850
4851/**
4852 * sys_sched_getaffinity - get the cpu affinity of a process
4853 * @pid: pid of the process
4854 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4855 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4856 */
4857asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4858 unsigned long __user *user_mask_ptr)
4859{
4860 int ret;
4861 cpumask_t mask;
4862
4863 if (len < sizeof(cpumask_t))
4864 return -EINVAL;
4865
4866 ret = sched_getaffinity(pid, &mask);
4867 if (ret < 0)
4868 return ret;
4869
4870 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4871 return -EFAULT;
4872
4873 return sizeof(cpumask_t);
4874}
4875
4876/**
4877 * sys_sched_yield - yield the current processor to other threads.
4878 *
dd41f596
IM
4879 * This function yields the current CPU to other tasks. If there are no
4880 * other threads running on this CPU then this function will return.
1da177e4
LT
4881 */
4882asmlinkage long sys_sched_yield(void)
4883{
70b97a7f 4884 struct rq *rq = this_rq_lock();
1da177e4 4885
2d72376b 4886 schedstat_inc(rq, yld_count);
4530d7ab 4887 current->sched_class->yield_task(rq);
1da177e4
LT
4888
4889 /*
4890 * Since we are going to call schedule() anyway, there's
4891 * no need to preempt or enable interrupts:
4892 */
4893 __release(rq->lock);
8a25d5de 4894 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4895 _raw_spin_unlock(&rq->lock);
4896 preempt_enable_no_resched();
4897
4898 schedule();
4899
4900 return 0;
4901}
4902
e7b38404 4903static void __cond_resched(void)
1da177e4 4904{
8e0a43d8
IM
4905#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4906 __might_sleep(__FILE__, __LINE__);
4907#endif
5bbcfd90
IM
4908 /*
4909 * The BKS might be reacquired before we have dropped
4910 * PREEMPT_ACTIVE, which could trigger a second
4911 * cond_resched() call.
4912 */
1da177e4
LT
4913 do {
4914 add_preempt_count(PREEMPT_ACTIVE);
4915 schedule();
4916 sub_preempt_count(PREEMPT_ACTIVE);
4917 } while (need_resched());
4918}
4919
02b67cc3
HX
4920#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4921int __sched _cond_resched(void)
1da177e4 4922{
9414232f
IM
4923 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4924 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4925 __cond_resched();
4926 return 1;
4927 }
4928 return 0;
4929}
02b67cc3
HX
4930EXPORT_SYMBOL(_cond_resched);
4931#endif
1da177e4
LT
4932
4933/*
4934 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4935 * call schedule, and on return reacquire the lock.
4936 *
41a2d6cf 4937 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4938 * operations here to prevent schedule() from being called twice (once via
4939 * spin_unlock(), once by hand).
4940 */
95cdf3b7 4941int cond_resched_lock(spinlock_t *lock)
1da177e4 4942{
95c354fe 4943 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
4944 int ret = 0;
4945
95c354fe 4946 if (spin_needbreak(lock) || resched) {
1da177e4 4947 spin_unlock(lock);
95c354fe
NP
4948 if (resched && need_resched())
4949 __cond_resched();
4950 else
4951 cpu_relax();
6df3cecb 4952 ret = 1;
1da177e4 4953 spin_lock(lock);
1da177e4 4954 }
6df3cecb 4955 return ret;
1da177e4 4956}
1da177e4
LT
4957EXPORT_SYMBOL(cond_resched_lock);
4958
4959int __sched cond_resched_softirq(void)
4960{
4961 BUG_ON(!in_softirq());
4962
9414232f 4963 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4964 local_bh_enable();
1da177e4
LT
4965 __cond_resched();
4966 local_bh_disable();
4967 return 1;
4968 }
4969 return 0;
4970}
1da177e4
LT
4971EXPORT_SYMBOL(cond_resched_softirq);
4972
1da177e4
LT
4973/**
4974 * yield - yield the current processor to other threads.
4975 *
72fd4a35 4976 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4977 * thread runnable and calls sys_sched_yield().
4978 */
4979void __sched yield(void)
4980{
4981 set_current_state(TASK_RUNNING);
4982 sys_sched_yield();
4983}
1da177e4
LT
4984EXPORT_SYMBOL(yield);
4985
4986/*
41a2d6cf 4987 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4988 * that process accounting knows that this is a task in IO wait state.
4989 *
4990 * But don't do that if it is a deliberate, throttling IO wait (this task
4991 * has set its backing_dev_info: the queue against which it should throttle)
4992 */
4993void __sched io_schedule(void)
4994{
70b97a7f 4995 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4996
0ff92245 4997 delayacct_blkio_start();
1da177e4
LT
4998 atomic_inc(&rq->nr_iowait);
4999 schedule();
5000 atomic_dec(&rq->nr_iowait);
0ff92245 5001 delayacct_blkio_end();
1da177e4 5002}
1da177e4
LT
5003EXPORT_SYMBOL(io_schedule);
5004
5005long __sched io_schedule_timeout(long timeout)
5006{
70b97a7f 5007 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5008 long ret;
5009
0ff92245 5010 delayacct_blkio_start();
1da177e4
LT
5011 atomic_inc(&rq->nr_iowait);
5012 ret = schedule_timeout(timeout);
5013 atomic_dec(&rq->nr_iowait);
0ff92245 5014 delayacct_blkio_end();
1da177e4
LT
5015 return ret;
5016}
5017
5018/**
5019 * sys_sched_get_priority_max - return maximum RT priority.
5020 * @policy: scheduling class.
5021 *
5022 * this syscall returns the maximum rt_priority that can be used
5023 * by a given scheduling class.
5024 */
5025asmlinkage long sys_sched_get_priority_max(int policy)
5026{
5027 int ret = -EINVAL;
5028
5029 switch (policy) {
5030 case SCHED_FIFO:
5031 case SCHED_RR:
5032 ret = MAX_USER_RT_PRIO-1;
5033 break;
5034 case SCHED_NORMAL:
b0a9499c 5035 case SCHED_BATCH:
dd41f596 5036 case SCHED_IDLE:
1da177e4
LT
5037 ret = 0;
5038 break;
5039 }
5040 return ret;
5041}
5042
5043/**
5044 * sys_sched_get_priority_min - return minimum RT priority.
5045 * @policy: scheduling class.
5046 *
5047 * this syscall returns the minimum rt_priority that can be used
5048 * by a given scheduling class.
5049 */
5050asmlinkage long sys_sched_get_priority_min(int policy)
5051{
5052 int ret = -EINVAL;
5053
5054 switch (policy) {
5055 case SCHED_FIFO:
5056 case SCHED_RR:
5057 ret = 1;
5058 break;
5059 case SCHED_NORMAL:
b0a9499c 5060 case SCHED_BATCH:
dd41f596 5061 case SCHED_IDLE:
1da177e4
LT
5062 ret = 0;
5063 }
5064 return ret;
5065}
5066
5067/**
5068 * sys_sched_rr_get_interval - return the default timeslice of a process.
5069 * @pid: pid of the process.
5070 * @interval: userspace pointer to the timeslice value.
5071 *
5072 * this syscall writes the default timeslice value of a given process
5073 * into the user-space timespec buffer. A value of '0' means infinity.
5074 */
5075asmlinkage
5076long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5077{
36c8b586 5078 struct task_struct *p;
a4ec24b4 5079 unsigned int time_slice;
3a5c359a 5080 int retval;
1da177e4 5081 struct timespec t;
1da177e4
LT
5082
5083 if (pid < 0)
3a5c359a 5084 return -EINVAL;
1da177e4
LT
5085
5086 retval = -ESRCH;
5087 read_lock(&tasklist_lock);
5088 p = find_process_by_pid(pid);
5089 if (!p)
5090 goto out_unlock;
5091
5092 retval = security_task_getscheduler(p);
5093 if (retval)
5094 goto out_unlock;
5095
77034937
IM
5096 /*
5097 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5098 * tasks that are on an otherwise idle runqueue:
5099 */
5100 time_slice = 0;
5101 if (p->policy == SCHED_RR) {
a4ec24b4 5102 time_slice = DEF_TIMESLICE;
1868f958 5103 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5104 struct sched_entity *se = &p->se;
5105 unsigned long flags;
5106 struct rq *rq;
5107
5108 rq = task_rq_lock(p, &flags);
77034937
IM
5109 if (rq->cfs.load.weight)
5110 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5111 task_rq_unlock(rq, &flags);
5112 }
1da177e4 5113 read_unlock(&tasklist_lock);
a4ec24b4 5114 jiffies_to_timespec(time_slice, &t);
1da177e4 5115 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5116 return retval;
3a5c359a 5117
1da177e4
LT
5118out_unlock:
5119 read_unlock(&tasklist_lock);
5120 return retval;
5121}
5122
2ed6e34f 5123static const char stat_nam[] = "RSDTtZX";
36c8b586 5124
82a1fcb9 5125void sched_show_task(struct task_struct *p)
1da177e4 5126{
1da177e4 5127 unsigned long free = 0;
36c8b586 5128 unsigned state;
1da177e4 5129
1da177e4 5130 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5131 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5132 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5133#if BITS_PER_LONG == 32
1da177e4 5134 if (state == TASK_RUNNING)
cc4ea795 5135 printk(KERN_CONT " running ");
1da177e4 5136 else
cc4ea795 5137 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5138#else
5139 if (state == TASK_RUNNING)
cc4ea795 5140 printk(KERN_CONT " running task ");
1da177e4 5141 else
cc4ea795 5142 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5143#endif
5144#ifdef CONFIG_DEBUG_STACK_USAGE
5145 {
10ebffde 5146 unsigned long *n = end_of_stack(p);
1da177e4
LT
5147 while (!*n)
5148 n++;
10ebffde 5149 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5150 }
5151#endif
ba25f9dc 5152 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5153 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5154
5fb5e6de 5155 show_stack(p, NULL);
1da177e4
LT
5156}
5157
e59e2ae2 5158void show_state_filter(unsigned long state_filter)
1da177e4 5159{
36c8b586 5160 struct task_struct *g, *p;
1da177e4 5161
4bd77321
IM
5162#if BITS_PER_LONG == 32
5163 printk(KERN_INFO
5164 " task PC stack pid father\n");
1da177e4 5165#else
4bd77321
IM
5166 printk(KERN_INFO
5167 " task PC stack pid father\n");
1da177e4
LT
5168#endif
5169 read_lock(&tasklist_lock);
5170 do_each_thread(g, p) {
5171 /*
5172 * reset the NMI-timeout, listing all files on a slow
5173 * console might take alot of time:
5174 */
5175 touch_nmi_watchdog();
39bc89fd 5176 if (!state_filter || (p->state & state_filter))
82a1fcb9 5177 sched_show_task(p);
1da177e4
LT
5178 } while_each_thread(g, p);
5179
04c9167f
JF
5180 touch_all_softlockup_watchdogs();
5181
dd41f596
IM
5182#ifdef CONFIG_SCHED_DEBUG
5183 sysrq_sched_debug_show();
5184#endif
1da177e4 5185 read_unlock(&tasklist_lock);
e59e2ae2
IM
5186 /*
5187 * Only show locks if all tasks are dumped:
5188 */
5189 if (state_filter == -1)
5190 debug_show_all_locks();
1da177e4
LT
5191}
5192
1df21055
IM
5193void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5194{
dd41f596 5195 idle->sched_class = &idle_sched_class;
1df21055
IM
5196}
5197
f340c0d1
IM
5198/**
5199 * init_idle - set up an idle thread for a given CPU
5200 * @idle: task in question
5201 * @cpu: cpu the idle task belongs to
5202 *
5203 * NOTE: this function does not set the idle thread's NEED_RESCHED
5204 * flag, to make booting more robust.
5205 */
5c1e1767 5206void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5207{
70b97a7f 5208 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5209 unsigned long flags;
5210
dd41f596
IM
5211 __sched_fork(idle);
5212 idle->se.exec_start = sched_clock();
5213
b29739f9 5214 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5215 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5216 __set_task_cpu(idle, cpu);
1da177e4
LT
5217
5218 spin_lock_irqsave(&rq->lock, flags);
5219 rq->curr = rq->idle = idle;
4866cde0
NP
5220#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5221 idle->oncpu = 1;
5222#endif
1da177e4
LT
5223 spin_unlock_irqrestore(&rq->lock, flags);
5224
5225 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5226 task_thread_info(idle)->preempt_count = 0;
6478d880 5227
dd41f596
IM
5228 /*
5229 * The idle tasks have their own, simple scheduling class:
5230 */
5231 idle->sched_class = &idle_sched_class;
1da177e4
LT
5232}
5233
5234/*
5235 * In a system that switches off the HZ timer nohz_cpu_mask
5236 * indicates which cpus entered this state. This is used
5237 * in the rcu update to wait only for active cpus. For system
5238 * which do not switch off the HZ timer nohz_cpu_mask should
5239 * always be CPU_MASK_NONE.
5240 */
5241cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5242
19978ca6
IM
5243/*
5244 * Increase the granularity value when there are more CPUs,
5245 * because with more CPUs the 'effective latency' as visible
5246 * to users decreases. But the relationship is not linear,
5247 * so pick a second-best guess by going with the log2 of the
5248 * number of CPUs.
5249 *
5250 * This idea comes from the SD scheduler of Con Kolivas:
5251 */
5252static inline void sched_init_granularity(void)
5253{
5254 unsigned int factor = 1 + ilog2(num_online_cpus());
5255 const unsigned long limit = 200000000;
5256
5257 sysctl_sched_min_granularity *= factor;
5258 if (sysctl_sched_min_granularity > limit)
5259 sysctl_sched_min_granularity = limit;
5260
5261 sysctl_sched_latency *= factor;
5262 if (sysctl_sched_latency > limit)
5263 sysctl_sched_latency = limit;
5264
5265 sysctl_sched_wakeup_granularity *= factor;
5266 sysctl_sched_batch_wakeup_granularity *= factor;
5267}
5268
1da177e4
LT
5269#ifdef CONFIG_SMP
5270/*
5271 * This is how migration works:
5272 *
70b97a7f 5273 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5274 * runqueue and wake up that CPU's migration thread.
5275 * 2) we down() the locked semaphore => thread blocks.
5276 * 3) migration thread wakes up (implicitly it forces the migrated
5277 * thread off the CPU)
5278 * 4) it gets the migration request and checks whether the migrated
5279 * task is still in the wrong runqueue.
5280 * 5) if it's in the wrong runqueue then the migration thread removes
5281 * it and puts it into the right queue.
5282 * 6) migration thread up()s the semaphore.
5283 * 7) we wake up and the migration is done.
5284 */
5285
5286/*
5287 * Change a given task's CPU affinity. Migrate the thread to a
5288 * proper CPU and schedule it away if the CPU it's executing on
5289 * is removed from the allowed bitmask.
5290 *
5291 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5292 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5293 * call is not atomic; no spinlocks may be held.
5294 */
36c8b586 5295int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5296{
70b97a7f 5297 struct migration_req req;
1da177e4 5298 unsigned long flags;
70b97a7f 5299 struct rq *rq;
48f24c4d 5300 int ret = 0;
1da177e4
LT
5301
5302 rq = task_rq_lock(p, &flags);
5303 if (!cpus_intersects(new_mask, cpu_online_map)) {
5304 ret = -EINVAL;
5305 goto out;
5306 }
5307
73fe6aae
GH
5308 if (p->sched_class->set_cpus_allowed)
5309 p->sched_class->set_cpus_allowed(p, &new_mask);
5310 else {
0eab9146 5311 p->cpus_allowed = new_mask;
6f505b16 5312 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
73fe6aae
GH
5313 }
5314
1da177e4
LT
5315 /* Can the task run on the task's current CPU? If so, we're done */
5316 if (cpu_isset(task_cpu(p), new_mask))
5317 goto out;
5318
5319 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5320 /* Need help from migration thread: drop lock and wait. */
5321 task_rq_unlock(rq, &flags);
5322 wake_up_process(rq->migration_thread);
5323 wait_for_completion(&req.done);
5324 tlb_migrate_finish(p->mm);
5325 return 0;
5326 }
5327out:
5328 task_rq_unlock(rq, &flags);
48f24c4d 5329
1da177e4
LT
5330 return ret;
5331}
1da177e4
LT
5332EXPORT_SYMBOL_GPL(set_cpus_allowed);
5333
5334/*
41a2d6cf 5335 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5336 * this because either it can't run here any more (set_cpus_allowed()
5337 * away from this CPU, or CPU going down), or because we're
5338 * attempting to rebalance this task on exec (sched_exec).
5339 *
5340 * So we race with normal scheduler movements, but that's OK, as long
5341 * as the task is no longer on this CPU.
efc30814
KK
5342 *
5343 * Returns non-zero if task was successfully migrated.
1da177e4 5344 */
efc30814 5345static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5346{
70b97a7f 5347 struct rq *rq_dest, *rq_src;
dd41f596 5348 int ret = 0, on_rq;
1da177e4
LT
5349
5350 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5351 return ret;
1da177e4
LT
5352
5353 rq_src = cpu_rq(src_cpu);
5354 rq_dest = cpu_rq(dest_cpu);
5355
5356 double_rq_lock(rq_src, rq_dest);
5357 /* Already moved. */
5358 if (task_cpu(p) != src_cpu)
5359 goto out;
5360 /* Affinity changed (again). */
5361 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5362 goto out;
5363
dd41f596 5364 on_rq = p->se.on_rq;
6e82a3be 5365 if (on_rq)
2e1cb74a 5366 deactivate_task(rq_src, p, 0);
6e82a3be 5367
1da177e4 5368 set_task_cpu(p, dest_cpu);
dd41f596
IM
5369 if (on_rq) {
5370 activate_task(rq_dest, p, 0);
5371 check_preempt_curr(rq_dest, p);
1da177e4 5372 }
efc30814 5373 ret = 1;
1da177e4
LT
5374out:
5375 double_rq_unlock(rq_src, rq_dest);
efc30814 5376 return ret;
1da177e4
LT
5377}
5378
5379/*
5380 * migration_thread - this is a highprio system thread that performs
5381 * thread migration by bumping thread off CPU then 'pushing' onto
5382 * another runqueue.
5383 */
95cdf3b7 5384static int migration_thread(void *data)
1da177e4 5385{
1da177e4 5386 int cpu = (long)data;
70b97a7f 5387 struct rq *rq;
1da177e4
LT
5388
5389 rq = cpu_rq(cpu);
5390 BUG_ON(rq->migration_thread != current);
5391
5392 set_current_state(TASK_INTERRUPTIBLE);
5393 while (!kthread_should_stop()) {
70b97a7f 5394 struct migration_req *req;
1da177e4 5395 struct list_head *head;
1da177e4 5396
1da177e4
LT
5397 spin_lock_irq(&rq->lock);
5398
5399 if (cpu_is_offline(cpu)) {
5400 spin_unlock_irq(&rq->lock);
5401 goto wait_to_die;
5402 }
5403
5404 if (rq->active_balance) {
5405 active_load_balance(rq, cpu);
5406 rq->active_balance = 0;
5407 }
5408
5409 head = &rq->migration_queue;
5410
5411 if (list_empty(head)) {
5412 spin_unlock_irq(&rq->lock);
5413 schedule();
5414 set_current_state(TASK_INTERRUPTIBLE);
5415 continue;
5416 }
70b97a7f 5417 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5418 list_del_init(head->next);
5419
674311d5
NP
5420 spin_unlock(&rq->lock);
5421 __migrate_task(req->task, cpu, req->dest_cpu);
5422 local_irq_enable();
1da177e4
LT
5423
5424 complete(&req->done);
5425 }
5426 __set_current_state(TASK_RUNNING);
5427 return 0;
5428
5429wait_to_die:
5430 /* Wait for kthread_stop */
5431 set_current_state(TASK_INTERRUPTIBLE);
5432 while (!kthread_should_stop()) {
5433 schedule();
5434 set_current_state(TASK_INTERRUPTIBLE);
5435 }
5436 __set_current_state(TASK_RUNNING);
5437 return 0;
5438}
5439
5440#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5441
5442static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5443{
5444 int ret;
5445
5446 local_irq_disable();
5447 ret = __migrate_task(p, src_cpu, dest_cpu);
5448 local_irq_enable();
5449 return ret;
5450}
5451
054b9108 5452/*
3a4fa0a2 5453 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5454 * NOTE: interrupts should be disabled by the caller
5455 */
48f24c4d 5456static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5457{
efc30814 5458 unsigned long flags;
1da177e4 5459 cpumask_t mask;
70b97a7f
IM
5460 struct rq *rq;
5461 int dest_cpu;
1da177e4 5462
3a5c359a
AK
5463 do {
5464 /* On same node? */
5465 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5466 cpus_and(mask, mask, p->cpus_allowed);
5467 dest_cpu = any_online_cpu(mask);
5468
5469 /* On any allowed CPU? */
5470 if (dest_cpu == NR_CPUS)
5471 dest_cpu = any_online_cpu(p->cpus_allowed);
5472
5473 /* No more Mr. Nice Guy. */
5474 if (dest_cpu == NR_CPUS) {
470fd646
CW
5475 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5476 /*
5477 * Try to stay on the same cpuset, where the
5478 * current cpuset may be a subset of all cpus.
5479 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5480 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5481 * called within calls to cpuset_lock/cpuset_unlock.
5482 */
3a5c359a 5483 rq = task_rq_lock(p, &flags);
470fd646 5484 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5485 dest_cpu = any_online_cpu(p->cpus_allowed);
5486 task_rq_unlock(rq, &flags);
1da177e4 5487
3a5c359a
AK
5488 /*
5489 * Don't tell them about moving exiting tasks or
5490 * kernel threads (both mm NULL), since they never
5491 * leave kernel.
5492 */
41a2d6cf 5493 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5494 printk(KERN_INFO "process %d (%s) no "
5495 "longer affine to cpu%d\n",
41a2d6cf
IM
5496 task_pid_nr(p), p->comm, dead_cpu);
5497 }
3a5c359a 5498 }
f7b4cddc 5499 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5500}
5501
5502/*
5503 * While a dead CPU has no uninterruptible tasks queued at this point,
5504 * it might still have a nonzero ->nr_uninterruptible counter, because
5505 * for performance reasons the counter is not stricly tracking tasks to
5506 * their home CPUs. So we just add the counter to another CPU's counter,
5507 * to keep the global sum constant after CPU-down:
5508 */
70b97a7f 5509static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5510{
70b97a7f 5511 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5512 unsigned long flags;
5513
5514 local_irq_save(flags);
5515 double_rq_lock(rq_src, rq_dest);
5516 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5517 rq_src->nr_uninterruptible = 0;
5518 double_rq_unlock(rq_src, rq_dest);
5519 local_irq_restore(flags);
5520}
5521
5522/* Run through task list and migrate tasks from the dead cpu. */
5523static void migrate_live_tasks(int src_cpu)
5524{
48f24c4d 5525 struct task_struct *p, *t;
1da177e4 5526
f7b4cddc 5527 read_lock(&tasklist_lock);
1da177e4 5528
48f24c4d
IM
5529 do_each_thread(t, p) {
5530 if (p == current)
1da177e4
LT
5531 continue;
5532
48f24c4d
IM
5533 if (task_cpu(p) == src_cpu)
5534 move_task_off_dead_cpu(src_cpu, p);
5535 } while_each_thread(t, p);
1da177e4 5536
f7b4cddc 5537 read_unlock(&tasklist_lock);
1da177e4
LT
5538}
5539
dd41f596
IM
5540/*
5541 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5542 * It does so by boosting its priority to highest possible.
5543 * Used by CPU offline code.
1da177e4
LT
5544 */
5545void sched_idle_next(void)
5546{
48f24c4d 5547 int this_cpu = smp_processor_id();
70b97a7f 5548 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5549 struct task_struct *p = rq->idle;
5550 unsigned long flags;
5551
5552 /* cpu has to be offline */
48f24c4d 5553 BUG_ON(cpu_online(this_cpu));
1da177e4 5554
48f24c4d
IM
5555 /*
5556 * Strictly not necessary since rest of the CPUs are stopped by now
5557 * and interrupts disabled on the current cpu.
1da177e4
LT
5558 */
5559 spin_lock_irqsave(&rq->lock, flags);
5560
dd41f596 5561 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5562
94bc9a7b
DA
5563 update_rq_clock(rq);
5564 activate_task(rq, p, 0);
1da177e4
LT
5565
5566 spin_unlock_irqrestore(&rq->lock, flags);
5567}
5568
48f24c4d
IM
5569/*
5570 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5571 * offline.
5572 */
5573void idle_task_exit(void)
5574{
5575 struct mm_struct *mm = current->active_mm;
5576
5577 BUG_ON(cpu_online(smp_processor_id()));
5578
5579 if (mm != &init_mm)
5580 switch_mm(mm, &init_mm, current);
5581 mmdrop(mm);
5582}
5583
054b9108 5584/* called under rq->lock with disabled interrupts */
36c8b586 5585static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5586{
70b97a7f 5587 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5588
5589 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5590 BUG_ON(!p->exit_state);
1da177e4
LT
5591
5592 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5593 BUG_ON(p->state == TASK_DEAD);
1da177e4 5594
48f24c4d 5595 get_task_struct(p);
1da177e4
LT
5596
5597 /*
5598 * Drop lock around migration; if someone else moves it,
41a2d6cf 5599 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5600 * fine.
5601 */
f7b4cddc 5602 spin_unlock_irq(&rq->lock);
48f24c4d 5603 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5604 spin_lock_irq(&rq->lock);
1da177e4 5605
48f24c4d 5606 put_task_struct(p);
1da177e4
LT
5607}
5608
5609/* release_task() removes task from tasklist, so we won't find dead tasks. */
5610static void migrate_dead_tasks(unsigned int dead_cpu)
5611{
70b97a7f 5612 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5613 struct task_struct *next;
48f24c4d 5614
dd41f596
IM
5615 for ( ; ; ) {
5616 if (!rq->nr_running)
5617 break;
a8e504d2 5618 update_rq_clock(rq);
ff95f3df 5619 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5620 if (!next)
5621 break;
5622 migrate_dead(dead_cpu, next);
e692ab53 5623
1da177e4
LT
5624 }
5625}
5626#endif /* CONFIG_HOTPLUG_CPU */
5627
e692ab53
NP
5628#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5629
5630static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5631 {
5632 .procname = "sched_domain",
c57baf1e 5633 .mode = 0555,
e0361851 5634 },
38605cae 5635 {0, },
e692ab53
NP
5636};
5637
5638static struct ctl_table sd_ctl_root[] = {
e0361851 5639 {
c57baf1e 5640 .ctl_name = CTL_KERN,
e0361851 5641 .procname = "kernel",
c57baf1e 5642 .mode = 0555,
e0361851
AD
5643 .child = sd_ctl_dir,
5644 },
38605cae 5645 {0, },
e692ab53
NP
5646};
5647
5648static struct ctl_table *sd_alloc_ctl_entry(int n)
5649{
5650 struct ctl_table *entry =
5cf9f062 5651 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5652
e692ab53
NP
5653 return entry;
5654}
5655
6382bc90
MM
5656static void sd_free_ctl_entry(struct ctl_table **tablep)
5657{
cd790076 5658 struct ctl_table *entry;
6382bc90 5659
cd790076
MM
5660 /*
5661 * In the intermediate directories, both the child directory and
5662 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5663 * will always be set. In the lowest directory the names are
cd790076
MM
5664 * static strings and all have proc handlers.
5665 */
5666 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5667 if (entry->child)
5668 sd_free_ctl_entry(&entry->child);
cd790076
MM
5669 if (entry->proc_handler == NULL)
5670 kfree(entry->procname);
5671 }
6382bc90
MM
5672
5673 kfree(*tablep);
5674 *tablep = NULL;
5675}
5676
e692ab53 5677static void
e0361851 5678set_table_entry(struct ctl_table *entry,
e692ab53
NP
5679 const char *procname, void *data, int maxlen,
5680 mode_t mode, proc_handler *proc_handler)
5681{
e692ab53
NP
5682 entry->procname = procname;
5683 entry->data = data;
5684 entry->maxlen = maxlen;
5685 entry->mode = mode;
5686 entry->proc_handler = proc_handler;
5687}
5688
5689static struct ctl_table *
5690sd_alloc_ctl_domain_table(struct sched_domain *sd)
5691{
ace8b3d6 5692 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5693
ad1cdc1d
MM
5694 if (table == NULL)
5695 return NULL;
5696
e0361851 5697 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5698 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5699 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5700 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5701 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5702 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5703 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5704 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5705 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5706 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5707 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5708 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5709 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5710 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5711 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5712 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5713 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5714 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5715 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5716 &sd->cache_nice_tries,
5717 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5718 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5719 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5720 /* &table[11] is terminator */
e692ab53
NP
5721
5722 return table;
5723}
5724
9a4e7159 5725static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5726{
5727 struct ctl_table *entry, *table;
5728 struct sched_domain *sd;
5729 int domain_num = 0, i;
5730 char buf[32];
5731
5732 for_each_domain(cpu, sd)
5733 domain_num++;
5734 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5735 if (table == NULL)
5736 return NULL;
e692ab53
NP
5737
5738 i = 0;
5739 for_each_domain(cpu, sd) {
5740 snprintf(buf, 32, "domain%d", i);
e692ab53 5741 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5742 entry->mode = 0555;
e692ab53
NP
5743 entry->child = sd_alloc_ctl_domain_table(sd);
5744 entry++;
5745 i++;
5746 }
5747 return table;
5748}
5749
5750static struct ctl_table_header *sd_sysctl_header;
6382bc90 5751static void register_sched_domain_sysctl(void)
e692ab53
NP
5752{
5753 int i, cpu_num = num_online_cpus();
5754 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5755 char buf[32];
5756
7378547f
MM
5757 WARN_ON(sd_ctl_dir[0].child);
5758 sd_ctl_dir[0].child = entry;
5759
ad1cdc1d
MM
5760 if (entry == NULL)
5761 return;
5762
97b6ea7b 5763 for_each_online_cpu(i) {
e692ab53 5764 snprintf(buf, 32, "cpu%d", i);
e692ab53 5765 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5766 entry->mode = 0555;
e692ab53 5767 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5768 entry++;
e692ab53 5769 }
7378547f
MM
5770
5771 WARN_ON(sd_sysctl_header);
e692ab53
NP
5772 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5773}
6382bc90 5774
7378547f 5775/* may be called multiple times per register */
6382bc90
MM
5776static void unregister_sched_domain_sysctl(void)
5777{
7378547f
MM
5778 if (sd_sysctl_header)
5779 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5780 sd_sysctl_header = NULL;
7378547f
MM
5781 if (sd_ctl_dir[0].child)
5782 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5783}
e692ab53 5784#else
6382bc90
MM
5785static void register_sched_domain_sysctl(void)
5786{
5787}
5788static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5789{
5790}
5791#endif
5792
1da177e4
LT
5793/*
5794 * migration_call - callback that gets triggered when a CPU is added.
5795 * Here we can start up the necessary migration thread for the new CPU.
5796 */
48f24c4d
IM
5797static int __cpuinit
5798migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5799{
1da177e4 5800 struct task_struct *p;
48f24c4d 5801 int cpu = (long)hcpu;
1da177e4 5802 unsigned long flags;
70b97a7f 5803 struct rq *rq;
1da177e4
LT
5804
5805 switch (action) {
5be9361c 5806
1da177e4 5807 case CPU_UP_PREPARE:
8bb78442 5808 case CPU_UP_PREPARE_FROZEN:
dd41f596 5809 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5810 if (IS_ERR(p))
5811 return NOTIFY_BAD;
1da177e4
LT
5812 kthread_bind(p, cpu);
5813 /* Must be high prio: stop_machine expects to yield to it. */
5814 rq = task_rq_lock(p, &flags);
dd41f596 5815 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5816 task_rq_unlock(rq, &flags);
5817 cpu_rq(cpu)->migration_thread = p;
5818 break;
48f24c4d 5819
1da177e4 5820 case CPU_ONLINE:
8bb78442 5821 case CPU_ONLINE_FROZEN:
3a4fa0a2 5822 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5823 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5824
5825 /* Update our root-domain */
5826 rq = cpu_rq(cpu);
5827 spin_lock_irqsave(&rq->lock, flags);
5828 if (rq->rd) {
5829 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5830 cpu_set(cpu, rq->rd->online);
5831 }
5832 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5833 break;
48f24c4d 5834
1da177e4
LT
5835#ifdef CONFIG_HOTPLUG_CPU
5836 case CPU_UP_CANCELED:
8bb78442 5837 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5838 if (!cpu_rq(cpu)->migration_thread)
5839 break;
41a2d6cf 5840 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5841 kthread_bind(cpu_rq(cpu)->migration_thread,
5842 any_online_cpu(cpu_online_map));
1da177e4
LT
5843 kthread_stop(cpu_rq(cpu)->migration_thread);
5844 cpu_rq(cpu)->migration_thread = NULL;
5845 break;
48f24c4d 5846
1da177e4 5847 case CPU_DEAD:
8bb78442 5848 case CPU_DEAD_FROZEN:
470fd646 5849 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5850 migrate_live_tasks(cpu);
5851 rq = cpu_rq(cpu);
5852 kthread_stop(rq->migration_thread);
5853 rq->migration_thread = NULL;
5854 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5855 spin_lock_irq(&rq->lock);
a8e504d2 5856 update_rq_clock(rq);
2e1cb74a 5857 deactivate_task(rq, rq->idle, 0);
1da177e4 5858 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5859 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5860 rq->idle->sched_class = &idle_sched_class;
1da177e4 5861 migrate_dead_tasks(cpu);
d2da272a 5862 spin_unlock_irq(&rq->lock);
470fd646 5863 cpuset_unlock();
1da177e4
LT
5864 migrate_nr_uninterruptible(rq);
5865 BUG_ON(rq->nr_running != 0);
5866
41a2d6cf
IM
5867 /*
5868 * No need to migrate the tasks: it was best-effort if
5869 * they didn't take sched_hotcpu_mutex. Just wake up
5870 * the requestors.
5871 */
1da177e4
LT
5872 spin_lock_irq(&rq->lock);
5873 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5874 struct migration_req *req;
5875
1da177e4 5876 req = list_entry(rq->migration_queue.next,
70b97a7f 5877 struct migration_req, list);
1da177e4
LT
5878 list_del_init(&req->list);
5879 complete(&req->done);
5880 }
5881 spin_unlock_irq(&rq->lock);
5882 break;
57d885fe
GH
5883
5884 case CPU_DOWN_PREPARE:
5885 /* Update our root-domain */
5886 rq = cpu_rq(cpu);
5887 spin_lock_irqsave(&rq->lock, flags);
5888 if (rq->rd) {
5889 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5890 cpu_clear(cpu, rq->rd->online);
5891 }
5892 spin_unlock_irqrestore(&rq->lock, flags);
5893 break;
1da177e4
LT
5894#endif
5895 }
5896 return NOTIFY_OK;
5897}
5898
5899/* Register at highest priority so that task migration (migrate_all_tasks)
5900 * happens before everything else.
5901 */
26c2143b 5902static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5903 .notifier_call = migration_call,
5904 .priority = 10
5905};
5906
e6fe6649 5907void __init migration_init(void)
1da177e4
LT
5908{
5909 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5910 int err;
48f24c4d
IM
5911
5912 /* Start one for the boot CPU: */
07dccf33
AM
5913 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5914 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5915 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5916 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5917}
5918#endif
5919
5920#ifdef CONFIG_SMP
476f3534
CL
5921
5922/* Number of possible processor ids */
5923int nr_cpu_ids __read_mostly = NR_CPUS;
5924EXPORT_SYMBOL(nr_cpu_ids);
5925
3e9830dc 5926#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5927
5928static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5929{
4dcf6aff
IM
5930 struct sched_group *group = sd->groups;
5931 cpumask_t groupmask;
5932 char str[NR_CPUS];
1da177e4 5933
4dcf6aff
IM
5934 cpumask_scnprintf(str, NR_CPUS, sd->span);
5935 cpus_clear(groupmask);
5936
5937 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5938
5939 if (!(sd->flags & SD_LOAD_BALANCE)) {
5940 printk("does not load-balance\n");
5941 if (sd->parent)
5942 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5943 " has parent");
5944 return -1;
41c7ce9a
NP
5945 }
5946
4dcf6aff
IM
5947 printk(KERN_CONT "span %s\n", str);
5948
5949 if (!cpu_isset(cpu, sd->span)) {
5950 printk(KERN_ERR "ERROR: domain->span does not contain "
5951 "CPU%d\n", cpu);
5952 }
5953 if (!cpu_isset(cpu, group->cpumask)) {
5954 printk(KERN_ERR "ERROR: domain->groups does not contain"
5955 " CPU%d\n", cpu);
5956 }
1da177e4 5957
4dcf6aff 5958 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5959 do {
4dcf6aff
IM
5960 if (!group) {
5961 printk("\n");
5962 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5963 break;
5964 }
5965
4dcf6aff
IM
5966 if (!group->__cpu_power) {
5967 printk(KERN_CONT "\n");
5968 printk(KERN_ERR "ERROR: domain->cpu_power not "
5969 "set\n");
5970 break;
5971 }
1da177e4 5972
4dcf6aff
IM
5973 if (!cpus_weight(group->cpumask)) {
5974 printk(KERN_CONT "\n");
5975 printk(KERN_ERR "ERROR: empty group\n");
5976 break;
5977 }
1da177e4 5978
4dcf6aff
IM
5979 if (cpus_intersects(groupmask, group->cpumask)) {
5980 printk(KERN_CONT "\n");
5981 printk(KERN_ERR "ERROR: repeated CPUs\n");
5982 break;
5983 }
1da177e4 5984
4dcf6aff 5985 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5986
4dcf6aff
IM
5987 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5988 printk(KERN_CONT " %s", str);
1da177e4 5989
4dcf6aff
IM
5990 group = group->next;
5991 } while (group != sd->groups);
5992 printk(KERN_CONT "\n");
1da177e4 5993
4dcf6aff
IM
5994 if (!cpus_equal(sd->span, groupmask))
5995 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5996
4dcf6aff
IM
5997 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5998 printk(KERN_ERR "ERROR: parent span is not a superset "
5999 "of domain->span\n");
6000 return 0;
6001}
1da177e4 6002
4dcf6aff
IM
6003static void sched_domain_debug(struct sched_domain *sd, int cpu)
6004{
6005 int level = 0;
1da177e4 6006
4dcf6aff
IM
6007 if (!sd) {
6008 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6009 return;
6010 }
1da177e4 6011
4dcf6aff
IM
6012 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6013
6014 for (;;) {
6015 if (sched_domain_debug_one(sd, cpu, level))
6016 break;
1da177e4
LT
6017 level++;
6018 sd = sd->parent;
33859f7f 6019 if (!sd)
4dcf6aff
IM
6020 break;
6021 }
1da177e4
LT
6022}
6023#else
48f24c4d 6024# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6025#endif
6026
1a20ff27 6027static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6028{
6029 if (cpus_weight(sd->span) == 1)
6030 return 1;
6031
6032 /* Following flags need at least 2 groups */
6033 if (sd->flags & (SD_LOAD_BALANCE |
6034 SD_BALANCE_NEWIDLE |
6035 SD_BALANCE_FORK |
89c4710e
SS
6036 SD_BALANCE_EXEC |
6037 SD_SHARE_CPUPOWER |
6038 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6039 if (sd->groups != sd->groups->next)
6040 return 0;
6041 }
6042
6043 /* Following flags don't use groups */
6044 if (sd->flags & (SD_WAKE_IDLE |
6045 SD_WAKE_AFFINE |
6046 SD_WAKE_BALANCE))
6047 return 0;
6048
6049 return 1;
6050}
6051
48f24c4d
IM
6052static int
6053sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6054{
6055 unsigned long cflags = sd->flags, pflags = parent->flags;
6056
6057 if (sd_degenerate(parent))
6058 return 1;
6059
6060 if (!cpus_equal(sd->span, parent->span))
6061 return 0;
6062
6063 /* Does parent contain flags not in child? */
6064 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6065 if (cflags & SD_WAKE_AFFINE)
6066 pflags &= ~SD_WAKE_BALANCE;
6067 /* Flags needing groups don't count if only 1 group in parent */
6068 if (parent->groups == parent->groups->next) {
6069 pflags &= ~(SD_LOAD_BALANCE |
6070 SD_BALANCE_NEWIDLE |
6071 SD_BALANCE_FORK |
89c4710e
SS
6072 SD_BALANCE_EXEC |
6073 SD_SHARE_CPUPOWER |
6074 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6075 }
6076 if (~cflags & pflags)
6077 return 0;
6078
6079 return 1;
6080}
6081
57d885fe
GH
6082static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6083{
6084 unsigned long flags;
6085 const struct sched_class *class;
6086
6087 spin_lock_irqsave(&rq->lock, flags);
6088
6089 if (rq->rd) {
6090 struct root_domain *old_rd = rq->rd;
6091
0eab9146 6092 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6093 if (class->leave_domain)
6094 class->leave_domain(rq);
0eab9146 6095 }
57d885fe 6096
dc938520
GH
6097 cpu_clear(rq->cpu, old_rd->span);
6098 cpu_clear(rq->cpu, old_rd->online);
6099
57d885fe
GH
6100 if (atomic_dec_and_test(&old_rd->refcount))
6101 kfree(old_rd);
6102 }
6103
6104 atomic_inc(&rd->refcount);
6105 rq->rd = rd;
6106
dc938520 6107 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6108 if (cpu_isset(rq->cpu, cpu_online_map))
6109 cpu_set(rq->cpu, rd->online);
dc938520 6110
0eab9146 6111 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6112 if (class->join_domain)
6113 class->join_domain(rq);
0eab9146 6114 }
57d885fe
GH
6115
6116 spin_unlock_irqrestore(&rq->lock, flags);
6117}
6118
dc938520 6119static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6120{
6121 memset(rd, 0, sizeof(*rd));
6122
dc938520
GH
6123 cpus_clear(rd->span);
6124 cpus_clear(rd->online);
57d885fe
GH
6125}
6126
6127static void init_defrootdomain(void)
6128{
dc938520 6129 init_rootdomain(&def_root_domain);
57d885fe
GH
6130 atomic_set(&def_root_domain.refcount, 1);
6131}
6132
dc938520 6133static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6134{
6135 struct root_domain *rd;
6136
6137 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6138 if (!rd)
6139 return NULL;
6140
dc938520 6141 init_rootdomain(rd);
57d885fe
GH
6142
6143 return rd;
6144}
6145
1da177e4 6146/*
0eab9146 6147 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6148 * hold the hotplug lock.
6149 */
0eab9146
IM
6150static void
6151cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6152{
70b97a7f 6153 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6154 struct sched_domain *tmp;
6155
6156 /* Remove the sched domains which do not contribute to scheduling. */
6157 for (tmp = sd; tmp; tmp = tmp->parent) {
6158 struct sched_domain *parent = tmp->parent;
6159 if (!parent)
6160 break;
1a848870 6161 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6162 tmp->parent = parent->parent;
1a848870
SS
6163 if (parent->parent)
6164 parent->parent->child = tmp;
6165 }
245af2c7
SS
6166 }
6167
1a848870 6168 if (sd && sd_degenerate(sd)) {
245af2c7 6169 sd = sd->parent;
1a848870
SS
6170 if (sd)
6171 sd->child = NULL;
6172 }
1da177e4
LT
6173
6174 sched_domain_debug(sd, cpu);
6175
57d885fe 6176 rq_attach_root(rq, rd);
674311d5 6177 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6178}
6179
6180/* cpus with isolated domains */
67af63a6 6181static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6182
6183/* Setup the mask of cpus configured for isolated domains */
6184static int __init isolated_cpu_setup(char *str)
6185{
6186 int ints[NR_CPUS], i;
6187
6188 str = get_options(str, ARRAY_SIZE(ints), ints);
6189 cpus_clear(cpu_isolated_map);
6190 for (i = 1; i <= ints[0]; i++)
6191 if (ints[i] < NR_CPUS)
6192 cpu_set(ints[i], cpu_isolated_map);
6193 return 1;
6194}
6195
8927f494 6196__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6197
6198/*
6711cab4
SS
6199 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6200 * to a function which identifies what group(along with sched group) a CPU
6201 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6202 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6203 *
6204 * init_sched_build_groups will build a circular linked list of the groups
6205 * covered by the given span, and will set each group's ->cpumask correctly,
6206 * and ->cpu_power to 0.
6207 */
a616058b 6208static void
6711cab4
SS
6209init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6210 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6211 struct sched_group **sg))
1da177e4
LT
6212{
6213 struct sched_group *first = NULL, *last = NULL;
6214 cpumask_t covered = CPU_MASK_NONE;
6215 int i;
6216
6217 for_each_cpu_mask(i, span) {
6711cab4
SS
6218 struct sched_group *sg;
6219 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
6220 int j;
6221
6222 if (cpu_isset(i, covered))
6223 continue;
6224
6225 sg->cpumask = CPU_MASK_NONE;
5517d86b 6226 sg->__cpu_power = 0;
1da177e4
LT
6227
6228 for_each_cpu_mask(j, span) {
6711cab4 6229 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
6230 continue;
6231
6232 cpu_set(j, covered);
6233 cpu_set(j, sg->cpumask);
6234 }
6235 if (!first)
6236 first = sg;
6237 if (last)
6238 last->next = sg;
6239 last = sg;
6240 }
6241 last->next = first;
6242}
6243
9c1cfda2 6244#define SD_NODES_PER_DOMAIN 16
1da177e4 6245
9c1cfda2 6246#ifdef CONFIG_NUMA
198e2f18 6247
9c1cfda2
JH
6248/**
6249 * find_next_best_node - find the next node to include in a sched_domain
6250 * @node: node whose sched_domain we're building
6251 * @used_nodes: nodes already in the sched_domain
6252 *
41a2d6cf 6253 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6254 * finds the closest node not already in the @used_nodes map.
6255 *
6256 * Should use nodemask_t.
6257 */
6258static int find_next_best_node(int node, unsigned long *used_nodes)
6259{
6260 int i, n, val, min_val, best_node = 0;
6261
6262 min_val = INT_MAX;
6263
6264 for (i = 0; i < MAX_NUMNODES; i++) {
6265 /* Start at @node */
6266 n = (node + i) % MAX_NUMNODES;
6267
6268 if (!nr_cpus_node(n))
6269 continue;
6270
6271 /* Skip already used nodes */
6272 if (test_bit(n, used_nodes))
6273 continue;
6274
6275 /* Simple min distance search */
6276 val = node_distance(node, n);
6277
6278 if (val < min_val) {
6279 min_val = val;
6280 best_node = n;
6281 }
6282 }
6283
6284 set_bit(best_node, used_nodes);
6285 return best_node;
6286}
6287
6288/**
6289 * sched_domain_node_span - get a cpumask for a node's sched_domain
6290 * @node: node whose cpumask we're constructing
6291 * @size: number of nodes to include in this span
6292 *
41a2d6cf 6293 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6294 * should be one that prevents unnecessary balancing, but also spreads tasks
6295 * out optimally.
6296 */
6297static cpumask_t sched_domain_node_span(int node)
6298{
9c1cfda2 6299 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6300 cpumask_t span, nodemask;
6301 int i;
9c1cfda2
JH
6302
6303 cpus_clear(span);
6304 bitmap_zero(used_nodes, MAX_NUMNODES);
6305
6306 nodemask = node_to_cpumask(node);
6307 cpus_or(span, span, nodemask);
6308 set_bit(node, used_nodes);
6309
6310 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6311 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6312
9c1cfda2
JH
6313 nodemask = node_to_cpumask(next_node);
6314 cpus_or(span, span, nodemask);
6315 }
6316
6317 return span;
6318}
6319#endif
6320
5c45bf27 6321int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6322
9c1cfda2 6323/*
48f24c4d 6324 * SMT sched-domains:
9c1cfda2 6325 */
1da177e4
LT
6326#ifdef CONFIG_SCHED_SMT
6327static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6328static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6329
41a2d6cf
IM
6330static int
6331cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6332{
6711cab4
SS
6333 if (sg)
6334 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6335 return cpu;
6336}
6337#endif
6338
48f24c4d
IM
6339/*
6340 * multi-core sched-domains:
6341 */
1e9f28fa
SS
6342#ifdef CONFIG_SCHED_MC
6343static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6344static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6345#endif
6346
6347#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6348static int
6349cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6350{
6711cab4 6351 int group;
d5a7430d 6352 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6353 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6354 group = first_cpu(mask);
6355 if (sg)
6356 *sg = &per_cpu(sched_group_core, group);
6357 return group;
1e9f28fa
SS
6358}
6359#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6360static int
6361cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6362{
6711cab4
SS
6363 if (sg)
6364 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6365 return cpu;
6366}
6367#endif
6368
1da177e4 6369static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6370static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6371
41a2d6cf
IM
6372static int
6373cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6374{
6711cab4 6375 int group;
48f24c4d 6376#ifdef CONFIG_SCHED_MC
1e9f28fa 6377 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6378 cpus_and(mask, mask, *cpu_map);
6711cab4 6379 group = first_cpu(mask);
1e9f28fa 6380#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6381 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6382 cpus_and(mask, mask, *cpu_map);
6711cab4 6383 group = first_cpu(mask);
1da177e4 6384#else
6711cab4 6385 group = cpu;
1da177e4 6386#endif
6711cab4
SS
6387 if (sg)
6388 *sg = &per_cpu(sched_group_phys, group);
6389 return group;
1da177e4
LT
6390}
6391
6392#ifdef CONFIG_NUMA
1da177e4 6393/*
9c1cfda2
JH
6394 * The init_sched_build_groups can't handle what we want to do with node
6395 * groups, so roll our own. Now each node has its own list of groups which
6396 * gets dynamically allocated.
1da177e4 6397 */
9c1cfda2 6398static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6399static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6400
9c1cfda2 6401static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6402static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6403
6711cab4
SS
6404static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6405 struct sched_group **sg)
9c1cfda2 6406{
6711cab4
SS
6407 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6408 int group;
6409
6410 cpus_and(nodemask, nodemask, *cpu_map);
6411 group = first_cpu(nodemask);
6412
6413 if (sg)
6414 *sg = &per_cpu(sched_group_allnodes, group);
6415 return group;
1da177e4 6416}
6711cab4 6417
08069033
SS
6418static void init_numa_sched_groups_power(struct sched_group *group_head)
6419{
6420 struct sched_group *sg = group_head;
6421 int j;
6422
6423 if (!sg)
6424 return;
3a5c359a
AK
6425 do {
6426 for_each_cpu_mask(j, sg->cpumask) {
6427 struct sched_domain *sd;
08069033 6428
3a5c359a
AK
6429 sd = &per_cpu(phys_domains, j);
6430 if (j != first_cpu(sd->groups->cpumask)) {
6431 /*
6432 * Only add "power" once for each
6433 * physical package.
6434 */
6435 continue;
6436 }
08069033 6437
3a5c359a
AK
6438 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6439 }
6440 sg = sg->next;
6441 } while (sg != group_head);
08069033 6442}
1da177e4
LT
6443#endif
6444
a616058b 6445#ifdef CONFIG_NUMA
51888ca2
SV
6446/* Free memory allocated for various sched_group structures */
6447static void free_sched_groups(const cpumask_t *cpu_map)
6448{
a616058b 6449 int cpu, i;
51888ca2
SV
6450
6451 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6452 struct sched_group **sched_group_nodes
6453 = sched_group_nodes_bycpu[cpu];
6454
51888ca2
SV
6455 if (!sched_group_nodes)
6456 continue;
6457
6458 for (i = 0; i < MAX_NUMNODES; i++) {
6459 cpumask_t nodemask = node_to_cpumask(i);
6460 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6461
6462 cpus_and(nodemask, nodemask, *cpu_map);
6463 if (cpus_empty(nodemask))
6464 continue;
6465
6466 if (sg == NULL)
6467 continue;
6468 sg = sg->next;
6469next_sg:
6470 oldsg = sg;
6471 sg = sg->next;
6472 kfree(oldsg);
6473 if (oldsg != sched_group_nodes[i])
6474 goto next_sg;
6475 }
6476 kfree(sched_group_nodes);
6477 sched_group_nodes_bycpu[cpu] = NULL;
6478 }
51888ca2 6479}
a616058b
SS
6480#else
6481static void free_sched_groups(const cpumask_t *cpu_map)
6482{
6483}
6484#endif
51888ca2 6485
89c4710e
SS
6486/*
6487 * Initialize sched groups cpu_power.
6488 *
6489 * cpu_power indicates the capacity of sched group, which is used while
6490 * distributing the load between different sched groups in a sched domain.
6491 * Typically cpu_power for all the groups in a sched domain will be same unless
6492 * there are asymmetries in the topology. If there are asymmetries, group
6493 * having more cpu_power will pickup more load compared to the group having
6494 * less cpu_power.
6495 *
6496 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6497 * the maximum number of tasks a group can handle in the presence of other idle
6498 * or lightly loaded groups in the same sched domain.
6499 */
6500static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6501{
6502 struct sched_domain *child;
6503 struct sched_group *group;
6504
6505 WARN_ON(!sd || !sd->groups);
6506
6507 if (cpu != first_cpu(sd->groups->cpumask))
6508 return;
6509
6510 child = sd->child;
6511
5517d86b
ED
6512 sd->groups->__cpu_power = 0;
6513
89c4710e
SS
6514 /*
6515 * For perf policy, if the groups in child domain share resources
6516 * (for example cores sharing some portions of the cache hierarchy
6517 * or SMT), then set this domain groups cpu_power such that each group
6518 * can handle only one task, when there are other idle groups in the
6519 * same sched domain.
6520 */
6521 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6522 (child->flags &
6523 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6524 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6525 return;
6526 }
6527
89c4710e
SS
6528 /*
6529 * add cpu_power of each child group to this groups cpu_power
6530 */
6531 group = child->groups;
6532 do {
5517d86b 6533 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6534 group = group->next;
6535 } while (group != child->groups);
6536}
6537
1da177e4 6538/*
1a20ff27
DG
6539 * Build sched domains for a given set of cpus and attach the sched domains
6540 * to the individual cpus
1da177e4 6541 */
51888ca2 6542static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6543{
6544 int i;
57d885fe 6545 struct root_domain *rd;
d1b55138
JH
6546#ifdef CONFIG_NUMA
6547 struct sched_group **sched_group_nodes = NULL;
6711cab4 6548 int sd_allnodes = 0;
d1b55138
JH
6549
6550 /*
6551 * Allocate the per-node list of sched groups
6552 */
5cf9f062 6553 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6554 GFP_KERNEL);
d1b55138
JH
6555 if (!sched_group_nodes) {
6556 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6557 return -ENOMEM;
d1b55138
JH
6558 }
6559 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6560#endif
1da177e4 6561
dc938520 6562 rd = alloc_rootdomain();
57d885fe
GH
6563 if (!rd) {
6564 printk(KERN_WARNING "Cannot alloc root domain\n");
6565 return -ENOMEM;
6566 }
6567
1da177e4 6568 /*
1a20ff27 6569 * Set up domains for cpus specified by the cpu_map.
1da177e4 6570 */
1a20ff27 6571 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6572 struct sched_domain *sd = NULL, *p;
6573 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6574
1a20ff27 6575 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6576
6577#ifdef CONFIG_NUMA
dd41f596
IM
6578 if (cpus_weight(*cpu_map) >
6579 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6580 sd = &per_cpu(allnodes_domains, i);
6581 *sd = SD_ALLNODES_INIT;
6582 sd->span = *cpu_map;
6711cab4 6583 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6584 p = sd;
6711cab4 6585 sd_allnodes = 1;
9c1cfda2
JH
6586 } else
6587 p = NULL;
6588
1da177e4 6589 sd = &per_cpu(node_domains, i);
1da177e4 6590 *sd = SD_NODE_INIT;
9c1cfda2
JH
6591 sd->span = sched_domain_node_span(cpu_to_node(i));
6592 sd->parent = p;
1a848870
SS
6593 if (p)
6594 p->child = sd;
9c1cfda2 6595 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6596#endif
6597
6598 p = sd;
6599 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6600 *sd = SD_CPU_INIT;
6601 sd->span = nodemask;
6602 sd->parent = p;
1a848870
SS
6603 if (p)
6604 p->child = sd;
6711cab4 6605 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6606
1e9f28fa
SS
6607#ifdef CONFIG_SCHED_MC
6608 p = sd;
6609 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6610 *sd = SD_MC_INIT;
6611 sd->span = cpu_coregroup_map(i);
6612 cpus_and(sd->span, sd->span, *cpu_map);
6613 sd->parent = p;
1a848870 6614 p->child = sd;
6711cab4 6615 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6616#endif
6617
1da177e4
LT
6618#ifdef CONFIG_SCHED_SMT
6619 p = sd;
6620 sd = &per_cpu(cpu_domains, i);
1da177e4 6621 *sd = SD_SIBLING_INIT;
d5a7430d 6622 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6623 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6624 sd->parent = p;
1a848870 6625 p->child = sd;
6711cab4 6626 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6627#endif
6628 }
6629
6630#ifdef CONFIG_SCHED_SMT
6631 /* Set up CPU (sibling) groups */
9c1cfda2 6632 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6633 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6634 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6635 if (i != first_cpu(this_sibling_map))
6636 continue;
6637
dd41f596
IM
6638 init_sched_build_groups(this_sibling_map, cpu_map,
6639 &cpu_to_cpu_group);
1da177e4
LT
6640 }
6641#endif
6642
1e9f28fa
SS
6643#ifdef CONFIG_SCHED_MC
6644 /* Set up multi-core groups */
6645 for_each_cpu_mask(i, *cpu_map) {
6646 cpumask_t this_core_map = cpu_coregroup_map(i);
6647 cpus_and(this_core_map, this_core_map, *cpu_map);
6648 if (i != first_cpu(this_core_map))
6649 continue;
dd41f596
IM
6650 init_sched_build_groups(this_core_map, cpu_map,
6651 &cpu_to_core_group);
1e9f28fa
SS
6652 }
6653#endif
6654
1da177e4
LT
6655 /* Set up physical groups */
6656 for (i = 0; i < MAX_NUMNODES; i++) {
6657 cpumask_t nodemask = node_to_cpumask(i);
6658
1a20ff27 6659 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6660 if (cpus_empty(nodemask))
6661 continue;
6662
6711cab4 6663 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6664 }
6665
6666#ifdef CONFIG_NUMA
6667 /* Set up node groups */
6711cab4 6668 if (sd_allnodes)
dd41f596
IM
6669 init_sched_build_groups(*cpu_map, cpu_map,
6670 &cpu_to_allnodes_group);
9c1cfda2
JH
6671
6672 for (i = 0; i < MAX_NUMNODES; i++) {
6673 /* Set up node groups */
6674 struct sched_group *sg, *prev;
6675 cpumask_t nodemask = node_to_cpumask(i);
6676 cpumask_t domainspan;
6677 cpumask_t covered = CPU_MASK_NONE;
6678 int j;
6679
6680 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6681 if (cpus_empty(nodemask)) {
6682 sched_group_nodes[i] = NULL;
9c1cfda2 6683 continue;
d1b55138 6684 }
9c1cfda2
JH
6685
6686 domainspan = sched_domain_node_span(i);
6687 cpus_and(domainspan, domainspan, *cpu_map);
6688
15f0b676 6689 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6690 if (!sg) {
6691 printk(KERN_WARNING "Can not alloc domain group for "
6692 "node %d\n", i);
6693 goto error;
6694 }
9c1cfda2
JH
6695 sched_group_nodes[i] = sg;
6696 for_each_cpu_mask(j, nodemask) {
6697 struct sched_domain *sd;
9761eea8 6698
9c1cfda2
JH
6699 sd = &per_cpu(node_domains, j);
6700 sd->groups = sg;
9c1cfda2 6701 }
5517d86b 6702 sg->__cpu_power = 0;
9c1cfda2 6703 sg->cpumask = nodemask;
51888ca2 6704 sg->next = sg;
9c1cfda2
JH
6705 cpus_or(covered, covered, nodemask);
6706 prev = sg;
6707
6708 for (j = 0; j < MAX_NUMNODES; j++) {
6709 cpumask_t tmp, notcovered;
6710 int n = (i + j) % MAX_NUMNODES;
6711
6712 cpus_complement(notcovered, covered);
6713 cpus_and(tmp, notcovered, *cpu_map);
6714 cpus_and(tmp, tmp, domainspan);
6715 if (cpus_empty(tmp))
6716 break;
6717
6718 nodemask = node_to_cpumask(n);
6719 cpus_and(tmp, tmp, nodemask);
6720 if (cpus_empty(tmp))
6721 continue;
6722
15f0b676
SV
6723 sg = kmalloc_node(sizeof(struct sched_group),
6724 GFP_KERNEL, i);
9c1cfda2
JH
6725 if (!sg) {
6726 printk(KERN_WARNING
6727 "Can not alloc domain group for node %d\n", j);
51888ca2 6728 goto error;
9c1cfda2 6729 }
5517d86b 6730 sg->__cpu_power = 0;
9c1cfda2 6731 sg->cpumask = tmp;
51888ca2 6732 sg->next = prev->next;
9c1cfda2
JH
6733 cpus_or(covered, covered, tmp);
6734 prev->next = sg;
6735 prev = sg;
6736 }
9c1cfda2 6737 }
1da177e4
LT
6738#endif
6739
6740 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6741#ifdef CONFIG_SCHED_SMT
1a20ff27 6742 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6743 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6744
89c4710e 6745 init_sched_groups_power(i, sd);
5c45bf27 6746 }
1da177e4 6747#endif
1e9f28fa 6748#ifdef CONFIG_SCHED_MC
5c45bf27 6749 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6750 struct sched_domain *sd = &per_cpu(core_domains, i);
6751
89c4710e 6752 init_sched_groups_power(i, sd);
5c45bf27
SS
6753 }
6754#endif
1e9f28fa 6755
5c45bf27 6756 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6757 struct sched_domain *sd = &per_cpu(phys_domains, i);
6758
89c4710e 6759 init_sched_groups_power(i, sd);
1da177e4
LT
6760 }
6761
9c1cfda2 6762#ifdef CONFIG_NUMA
08069033
SS
6763 for (i = 0; i < MAX_NUMNODES; i++)
6764 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6765
6711cab4
SS
6766 if (sd_allnodes) {
6767 struct sched_group *sg;
f712c0c7 6768
6711cab4 6769 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6770 init_numa_sched_groups_power(sg);
6771 }
9c1cfda2
JH
6772#endif
6773
1da177e4 6774 /* Attach the domains */
1a20ff27 6775 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6776 struct sched_domain *sd;
6777#ifdef CONFIG_SCHED_SMT
6778 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6779#elif defined(CONFIG_SCHED_MC)
6780 sd = &per_cpu(core_domains, i);
1da177e4
LT
6781#else
6782 sd = &per_cpu(phys_domains, i);
6783#endif
57d885fe 6784 cpu_attach_domain(sd, rd, i);
1da177e4 6785 }
51888ca2
SV
6786
6787 return 0;
6788
a616058b 6789#ifdef CONFIG_NUMA
51888ca2
SV
6790error:
6791 free_sched_groups(cpu_map);
6792 return -ENOMEM;
a616058b 6793#endif
1da177e4 6794}
029190c5
PJ
6795
6796static cpumask_t *doms_cur; /* current sched domains */
6797static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6798
6799/*
6800 * Special case: If a kmalloc of a doms_cur partition (array of
6801 * cpumask_t) fails, then fallback to a single sched domain,
6802 * as determined by the single cpumask_t fallback_doms.
6803 */
6804static cpumask_t fallback_doms;
6805
1a20ff27 6806/*
41a2d6cf 6807 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6808 * For now this just excludes isolated cpus, but could be used to
6809 * exclude other special cases in the future.
1a20ff27 6810 */
51888ca2 6811static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6812{
7378547f
MM
6813 int err;
6814
029190c5
PJ
6815 ndoms_cur = 1;
6816 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6817 if (!doms_cur)
6818 doms_cur = &fallback_doms;
6819 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6820 err = build_sched_domains(doms_cur);
6382bc90 6821 register_sched_domain_sysctl();
7378547f
MM
6822
6823 return err;
1a20ff27
DG
6824}
6825
6826static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6827{
51888ca2 6828 free_sched_groups(cpu_map);
9c1cfda2 6829}
1da177e4 6830
1a20ff27
DG
6831/*
6832 * Detach sched domains from a group of cpus specified in cpu_map
6833 * These cpus will now be attached to the NULL domain
6834 */
858119e1 6835static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6836{
6837 int i;
6838
6382bc90
MM
6839 unregister_sched_domain_sysctl();
6840
1a20ff27 6841 for_each_cpu_mask(i, *cpu_map)
57d885fe 6842 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6843 synchronize_sched();
6844 arch_destroy_sched_domains(cpu_map);
6845}
6846
029190c5
PJ
6847/*
6848 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6849 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6850 * doms_new[] to the current sched domain partitioning, doms_cur[].
6851 * It destroys each deleted domain and builds each new domain.
6852 *
6853 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6854 * The masks don't intersect (don't overlap.) We should setup one
6855 * sched domain for each mask. CPUs not in any of the cpumasks will
6856 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6857 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6858 * it as it is.
6859 *
41a2d6cf
IM
6860 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6861 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6862 * failed the kmalloc call, then it can pass in doms_new == NULL,
6863 * and partition_sched_domains() will fallback to the single partition
6864 * 'fallback_doms'.
6865 *
6866 * Call with hotplug lock held
6867 */
6868void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6869{
6870 int i, j;
6871
a1835615
SV
6872 lock_doms_cur();
6873
7378547f
MM
6874 /* always unregister in case we don't destroy any domains */
6875 unregister_sched_domain_sysctl();
6876
029190c5
PJ
6877 if (doms_new == NULL) {
6878 ndoms_new = 1;
6879 doms_new = &fallback_doms;
6880 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6881 }
6882
6883 /* Destroy deleted domains */
6884 for (i = 0; i < ndoms_cur; i++) {
6885 for (j = 0; j < ndoms_new; j++) {
6886 if (cpus_equal(doms_cur[i], doms_new[j]))
6887 goto match1;
6888 }
6889 /* no match - a current sched domain not in new doms_new[] */
6890 detach_destroy_domains(doms_cur + i);
6891match1:
6892 ;
6893 }
6894
6895 /* Build new domains */
6896 for (i = 0; i < ndoms_new; i++) {
6897 for (j = 0; j < ndoms_cur; j++) {
6898 if (cpus_equal(doms_new[i], doms_cur[j]))
6899 goto match2;
6900 }
6901 /* no match - add a new doms_new */
6902 build_sched_domains(doms_new + i);
6903match2:
6904 ;
6905 }
6906
6907 /* Remember the new sched domains */
6908 if (doms_cur != &fallback_doms)
6909 kfree(doms_cur);
6910 doms_cur = doms_new;
6911 ndoms_cur = ndoms_new;
7378547f
MM
6912
6913 register_sched_domain_sysctl();
a1835615
SV
6914
6915 unlock_doms_cur();
029190c5
PJ
6916}
6917
5c45bf27 6918#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6919static int arch_reinit_sched_domains(void)
5c45bf27
SS
6920{
6921 int err;
6922
95402b38 6923 get_online_cpus();
5c45bf27
SS
6924 detach_destroy_domains(&cpu_online_map);
6925 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6926 put_online_cpus();
5c45bf27
SS
6927
6928 return err;
6929}
6930
6931static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6932{
6933 int ret;
6934
6935 if (buf[0] != '0' && buf[0] != '1')
6936 return -EINVAL;
6937
6938 if (smt)
6939 sched_smt_power_savings = (buf[0] == '1');
6940 else
6941 sched_mc_power_savings = (buf[0] == '1');
6942
6943 ret = arch_reinit_sched_domains();
6944
6945 return ret ? ret : count;
6946}
6947
5c45bf27
SS
6948#ifdef CONFIG_SCHED_MC
6949static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6950{
6951 return sprintf(page, "%u\n", sched_mc_power_savings);
6952}
48f24c4d
IM
6953static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6954 const char *buf, size_t count)
5c45bf27
SS
6955{
6956 return sched_power_savings_store(buf, count, 0);
6957}
6707de00
AB
6958static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6959 sched_mc_power_savings_store);
5c45bf27
SS
6960#endif
6961
6962#ifdef CONFIG_SCHED_SMT
6963static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6964{
6965 return sprintf(page, "%u\n", sched_smt_power_savings);
6966}
48f24c4d
IM
6967static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6968 const char *buf, size_t count)
5c45bf27
SS
6969{
6970 return sched_power_savings_store(buf, count, 1);
6971}
6707de00
AB
6972static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6973 sched_smt_power_savings_store);
6974#endif
6975
6976int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6977{
6978 int err = 0;
6979
6980#ifdef CONFIG_SCHED_SMT
6981 if (smt_capable())
6982 err = sysfs_create_file(&cls->kset.kobj,
6983 &attr_sched_smt_power_savings.attr);
6984#endif
6985#ifdef CONFIG_SCHED_MC
6986 if (!err && mc_capable())
6987 err = sysfs_create_file(&cls->kset.kobj,
6988 &attr_sched_mc_power_savings.attr);
6989#endif
6990 return err;
6991}
5c45bf27
SS
6992#endif
6993
1da177e4 6994/*
41a2d6cf 6995 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6996 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6997 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6998 * which will prevent rebalancing while the sched domains are recalculated.
6999 */
7000static int update_sched_domains(struct notifier_block *nfb,
7001 unsigned long action, void *hcpu)
7002{
1da177e4
LT
7003 switch (action) {
7004 case CPU_UP_PREPARE:
8bb78442 7005 case CPU_UP_PREPARE_FROZEN:
1da177e4 7006 case CPU_DOWN_PREPARE:
8bb78442 7007 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7008 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7009 return NOTIFY_OK;
7010
7011 case CPU_UP_CANCELED:
8bb78442 7012 case CPU_UP_CANCELED_FROZEN:
1da177e4 7013 case CPU_DOWN_FAILED:
8bb78442 7014 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7015 case CPU_ONLINE:
8bb78442 7016 case CPU_ONLINE_FROZEN:
1da177e4 7017 case CPU_DEAD:
8bb78442 7018 case CPU_DEAD_FROZEN:
1da177e4
LT
7019 /*
7020 * Fall through and re-initialise the domains.
7021 */
7022 break;
7023 default:
7024 return NOTIFY_DONE;
7025 }
7026
7027 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7028 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7029
7030 return NOTIFY_OK;
7031}
1da177e4
LT
7032
7033void __init sched_init_smp(void)
7034{
5c1e1767
NP
7035 cpumask_t non_isolated_cpus;
7036
95402b38 7037 get_online_cpus();
1a20ff27 7038 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7039 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7040 if (cpus_empty(non_isolated_cpus))
7041 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7042 put_online_cpus();
1da177e4
LT
7043 /* XXX: Theoretical race here - CPU may be hotplugged now */
7044 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7045
7046 /* Move init over to a non-isolated CPU */
7047 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7048 BUG();
19978ca6 7049 sched_init_granularity();
1da177e4
LT
7050}
7051#else
7052void __init sched_init_smp(void)
7053{
19978ca6 7054 sched_init_granularity();
1da177e4
LT
7055}
7056#endif /* CONFIG_SMP */
7057
7058int in_sched_functions(unsigned long addr)
7059{
1da177e4
LT
7060 return in_lock_functions(addr) ||
7061 (addr >= (unsigned long)__sched_text_start
7062 && addr < (unsigned long)__sched_text_end);
7063}
7064
a9957449 7065static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7066{
7067 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7068#ifdef CONFIG_FAIR_GROUP_SCHED
7069 cfs_rq->rq = rq;
7070#endif
67e9fb2a 7071 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7072}
7073
fa85ae24
PZ
7074static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7075{
7076 struct rt_prio_array *array;
7077 int i;
7078
7079 array = &rt_rq->active;
7080 for (i = 0; i < MAX_RT_PRIO; i++) {
7081 INIT_LIST_HEAD(array->queue + i);
7082 __clear_bit(i, array->bitmap);
7083 }
7084 /* delimiter for bitsearch: */
7085 __set_bit(MAX_RT_PRIO, array->bitmap);
7086
052f1dc7 7087#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7088 rt_rq->highest_prio = MAX_RT_PRIO;
7089#endif
fa85ae24
PZ
7090#ifdef CONFIG_SMP
7091 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7092 rt_rq->overloaded = 0;
7093#endif
7094
7095 rt_rq->rt_time = 0;
7096 rt_rq->rt_throttled = 0;
6f505b16 7097
052f1dc7 7098#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7099 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7100 rt_rq->rq = rq;
7101#endif
fa85ae24
PZ
7102}
7103
6f505b16
PZ
7104#ifdef CONFIG_FAIR_GROUP_SCHED
7105static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7106 struct cfs_rq *cfs_rq, struct sched_entity *se,
7107 int cpu, int add)
7108{
7109 tg->cfs_rq[cpu] = cfs_rq;
7110 init_cfs_rq(cfs_rq, rq);
7111 cfs_rq->tg = tg;
7112 if (add)
7113 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7114
7115 tg->se[cpu] = se;
7116 se->cfs_rq = &rq->cfs;
7117 se->my_q = cfs_rq;
7118 se->load.weight = tg->shares;
7119 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7120 se->parent = NULL;
7121}
052f1dc7 7122#endif
6f505b16 7123
052f1dc7 7124#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
7125static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7126 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7127 int cpu, int add)
7128{
7129 tg->rt_rq[cpu] = rt_rq;
7130 init_rt_rq(rt_rq, rq);
7131 rt_rq->tg = tg;
7132 rt_rq->rt_se = rt_se;
7133 if (add)
7134 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7135
7136 tg->rt_se[cpu] = rt_se;
7137 rt_se->rt_rq = &rq->rt;
7138 rt_se->my_q = rt_rq;
7139 rt_se->parent = NULL;
7140 INIT_LIST_HEAD(&rt_se->run_list);
7141}
7142#endif
7143
1da177e4
LT
7144void __init sched_init(void)
7145{
476f3534 7146 int highest_cpu = 0;
dd41f596
IM
7147 int i, j;
7148
57d885fe
GH
7149#ifdef CONFIG_SMP
7150 init_defrootdomain();
7151#endif
7152
052f1dc7 7153#ifdef CONFIG_GROUP_SCHED
6f505b16
PZ
7154 list_add(&init_task_group.list, &task_groups);
7155#endif
7156
0a945022 7157 for_each_possible_cpu(i) {
70b97a7f 7158 struct rq *rq;
1da177e4
LT
7159
7160 rq = cpu_rq(i);
7161 spin_lock_init(&rq->lock);
fcb99371 7162 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7163 rq->nr_running = 0;
dd41f596
IM
7164 rq->clock = 1;
7165 init_cfs_rq(&rq->cfs, rq);
6f505b16 7166 init_rt_rq(&rq->rt, rq);
dd41f596 7167#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7168 init_task_group.shares = init_task_group_load;
6f505b16
PZ
7169 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7170 init_tg_cfs_entry(rq, &init_task_group,
7171 &per_cpu(init_cfs_rq, i),
7172 &per_cpu(init_sched_entity, i), i, 1);
7173
052f1dc7
PZ
7174#endif
7175#ifdef CONFIG_RT_GROUP_SCHED
9f0c1e56
PZ
7176 init_task_group.rt_runtime =
7177 sysctl_sched_rt_runtime * NSEC_PER_USEC;
6f505b16
PZ
7178 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7179 init_tg_rt_entry(rq, &init_task_group,
7180 &per_cpu(init_rt_rq, i),
7181 &per_cpu(init_sched_rt_entity, i), i, 1);
dd41f596 7182#endif
fa85ae24 7183 rq->rt_period_expire = 0;
48d5e258 7184 rq->rt_throttled = 0;
1da177e4 7185
dd41f596
IM
7186 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7187 rq->cpu_load[j] = 0;
1da177e4 7188#ifdef CONFIG_SMP
41c7ce9a 7189 rq->sd = NULL;
57d885fe 7190 rq->rd = NULL;
1da177e4 7191 rq->active_balance = 0;
dd41f596 7192 rq->next_balance = jiffies;
1da177e4 7193 rq->push_cpu = 0;
0a2966b4 7194 rq->cpu = i;
1da177e4
LT
7195 rq->migration_thread = NULL;
7196 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7197 rq_attach_root(rq, &def_root_domain);
1da177e4 7198#endif
8f4d37ec 7199 init_rq_hrtick(rq);
1da177e4 7200 atomic_set(&rq->nr_iowait, 0);
476f3534 7201 highest_cpu = i;
1da177e4
LT
7202 }
7203
2dd73a4f 7204 set_load_weight(&init_task);
b50f60ce 7205
e107be36
AK
7206#ifdef CONFIG_PREEMPT_NOTIFIERS
7207 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7208#endif
7209
c9819f45 7210#ifdef CONFIG_SMP
476f3534 7211 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
7212 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7213#endif
7214
b50f60ce
HC
7215#ifdef CONFIG_RT_MUTEXES
7216 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7217#endif
7218
1da177e4
LT
7219 /*
7220 * The boot idle thread does lazy MMU switching as well:
7221 */
7222 atomic_inc(&init_mm.mm_count);
7223 enter_lazy_tlb(&init_mm, current);
7224
7225 /*
7226 * Make us the idle thread. Technically, schedule() should not be
7227 * called from this thread, however somewhere below it might be,
7228 * but because we are the idle thread, we just pick up running again
7229 * when this runqueue becomes "idle".
7230 */
7231 init_idle(current, smp_processor_id());
dd41f596
IM
7232 /*
7233 * During early bootup we pretend to be a normal task:
7234 */
7235 current->sched_class = &fair_sched_class;
6892b75e
IM
7236
7237 scheduler_running = 1;
1da177e4
LT
7238}
7239
7240#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7241void __might_sleep(char *file, int line)
7242{
48f24c4d 7243#ifdef in_atomic
1da177e4
LT
7244 static unsigned long prev_jiffy; /* ratelimiting */
7245
7246 if ((in_atomic() || irqs_disabled()) &&
7247 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7248 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7249 return;
7250 prev_jiffy = jiffies;
91368d73 7251 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7252 " context at %s:%d\n", file, line);
7253 printk("in_atomic():%d, irqs_disabled():%d\n",
7254 in_atomic(), irqs_disabled());
a4c410f0 7255 debug_show_held_locks(current);
3117df04
IM
7256 if (irqs_disabled())
7257 print_irqtrace_events(current);
1da177e4
LT
7258 dump_stack();
7259 }
7260#endif
7261}
7262EXPORT_SYMBOL(__might_sleep);
7263#endif
7264
7265#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7266static void normalize_task(struct rq *rq, struct task_struct *p)
7267{
7268 int on_rq;
7269 update_rq_clock(rq);
7270 on_rq = p->se.on_rq;
7271 if (on_rq)
7272 deactivate_task(rq, p, 0);
7273 __setscheduler(rq, p, SCHED_NORMAL, 0);
7274 if (on_rq) {
7275 activate_task(rq, p, 0);
7276 resched_task(rq->curr);
7277 }
7278}
7279
1da177e4
LT
7280void normalize_rt_tasks(void)
7281{
a0f98a1c 7282 struct task_struct *g, *p;
1da177e4 7283 unsigned long flags;
70b97a7f 7284 struct rq *rq;
1da177e4 7285
4cf5d77a 7286 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7287 do_each_thread(g, p) {
178be793
IM
7288 /*
7289 * Only normalize user tasks:
7290 */
7291 if (!p->mm)
7292 continue;
7293
6cfb0d5d 7294 p->se.exec_start = 0;
6cfb0d5d 7295#ifdef CONFIG_SCHEDSTATS
dd41f596 7296 p->se.wait_start = 0;
dd41f596 7297 p->se.sleep_start = 0;
dd41f596 7298 p->se.block_start = 0;
6cfb0d5d 7299#endif
dd41f596
IM
7300 task_rq(p)->clock = 0;
7301
7302 if (!rt_task(p)) {
7303 /*
7304 * Renice negative nice level userspace
7305 * tasks back to 0:
7306 */
7307 if (TASK_NICE(p) < 0 && p->mm)
7308 set_user_nice(p, 0);
1da177e4 7309 continue;
dd41f596 7310 }
1da177e4 7311
4cf5d77a 7312 spin_lock(&p->pi_lock);
b29739f9 7313 rq = __task_rq_lock(p);
1da177e4 7314
178be793 7315 normalize_task(rq, p);
3a5e4dc1 7316
b29739f9 7317 __task_rq_unlock(rq);
4cf5d77a 7318 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7319 } while_each_thread(g, p);
7320
4cf5d77a 7321 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7322}
7323
7324#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7325
7326#ifdef CONFIG_IA64
7327/*
7328 * These functions are only useful for the IA64 MCA handling.
7329 *
7330 * They can only be called when the whole system has been
7331 * stopped - every CPU needs to be quiescent, and no scheduling
7332 * activity can take place. Using them for anything else would
7333 * be a serious bug, and as a result, they aren't even visible
7334 * under any other configuration.
7335 */
7336
7337/**
7338 * curr_task - return the current task for a given cpu.
7339 * @cpu: the processor in question.
7340 *
7341 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7342 */
36c8b586 7343struct task_struct *curr_task(int cpu)
1df5c10a
LT
7344{
7345 return cpu_curr(cpu);
7346}
7347
7348/**
7349 * set_curr_task - set the current task for a given cpu.
7350 * @cpu: the processor in question.
7351 * @p: the task pointer to set.
7352 *
7353 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7354 * are serviced on a separate stack. It allows the architecture to switch the
7355 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7356 * must be called with all CPU's synchronized, and interrupts disabled, the
7357 * and caller must save the original value of the current task (see
7358 * curr_task() above) and restore that value before reenabling interrupts and
7359 * re-starting the system.
7360 *
7361 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7362 */
36c8b586 7363void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7364{
7365 cpu_curr(cpu) = p;
7366}
7367
7368#endif
29f59db3 7369
052f1dc7 7370#ifdef CONFIG_GROUP_SCHED
29f59db3 7371
bccbe08a
PZ
7372#ifdef CONFIG_FAIR_GROUP_SCHED
7373static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7374{
7375 int i;
7376
7377 for_each_possible_cpu(i) {
7378 if (tg->cfs_rq)
7379 kfree(tg->cfs_rq[i]);
7380 if (tg->se)
7381 kfree(tg->se[i]);
6f505b16
PZ
7382 }
7383
7384 kfree(tg->cfs_rq);
7385 kfree(tg->se);
6f505b16
PZ
7386}
7387
bccbe08a 7388static int alloc_fair_sched_group(struct task_group *tg)
29f59db3 7389{
29f59db3
SV
7390 struct cfs_rq *cfs_rq;
7391 struct sched_entity *se;
9b5b7751 7392 struct rq *rq;
29f59db3
SV
7393 int i;
7394
9b5b7751 7395 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7396 if (!tg->cfs_rq)
7397 goto err;
9b5b7751 7398 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7399 if (!tg->se)
7400 goto err;
052f1dc7
PZ
7401
7402 tg->shares = NICE_0_LOAD;
29f59db3
SV
7403
7404 for_each_possible_cpu(i) {
9b5b7751 7405 rq = cpu_rq(i);
29f59db3 7406
6f505b16
PZ
7407 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7408 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7409 if (!cfs_rq)
7410 goto err;
7411
6f505b16
PZ
7412 se = kmalloc_node(sizeof(struct sched_entity),
7413 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7414 if (!se)
7415 goto err;
7416
052f1dc7 7417 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
bccbe08a
PZ
7418 }
7419
7420 return 1;
7421
7422 err:
7423 return 0;
7424}
7425
7426static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7427{
7428 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7429 &cpu_rq(cpu)->leaf_cfs_rq_list);
7430}
7431
7432static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7433{
7434 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7435}
7436#else
7437static inline void free_fair_sched_group(struct task_group *tg)
7438{
7439}
7440
7441static inline int alloc_fair_sched_group(struct task_group *tg)
7442{
7443 return 1;
7444}
7445
7446static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7447{
7448}
7449
7450static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7451{
7452}
052f1dc7
PZ
7453#endif
7454
7455#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7456static void free_rt_sched_group(struct task_group *tg)
7457{
7458 int i;
7459
7460 for_each_possible_cpu(i) {
7461 if (tg->rt_rq)
7462 kfree(tg->rt_rq[i]);
7463 if (tg->rt_se)
7464 kfree(tg->rt_se[i]);
7465 }
7466
7467 kfree(tg->rt_rq);
7468 kfree(tg->rt_se);
7469}
7470
7471static int alloc_rt_sched_group(struct task_group *tg)
7472{
7473 struct rt_rq *rt_rq;
7474 struct sched_rt_entity *rt_se;
7475 struct rq *rq;
7476 int i;
7477
7478 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7479 if (!tg->rt_rq)
7480 goto err;
7481 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7482 if (!tg->rt_se)
7483 goto err;
7484
7485 tg->rt_runtime = 0;
7486
7487 for_each_possible_cpu(i) {
7488 rq = cpu_rq(i);
7489
6f505b16
PZ
7490 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7491 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7492 if (!rt_rq)
7493 goto err;
29f59db3 7494
6f505b16
PZ
7495 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7496 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7497 if (!rt_se)
7498 goto err;
29f59db3 7499
6f505b16 7500 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
29f59db3
SV
7501 }
7502
bccbe08a
PZ
7503 return 1;
7504
7505 err:
7506 return 0;
7507}
7508
7509static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7510{
7511 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7512 &cpu_rq(cpu)->leaf_rt_rq_list);
7513}
7514
7515static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7516{
7517 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7518}
7519#else
7520static inline void free_rt_sched_group(struct task_group *tg)
7521{
7522}
7523
7524static inline int alloc_rt_sched_group(struct task_group *tg)
7525{
7526 return 1;
7527}
7528
7529static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7530{
7531}
7532
7533static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7534{
7535}
7536#endif
7537
7538static void free_sched_group(struct task_group *tg)
7539{
7540 free_fair_sched_group(tg);
7541 free_rt_sched_group(tg);
7542 kfree(tg);
7543}
7544
7545/* allocate runqueue etc for a new task group */
7546struct task_group *sched_create_group(void)
7547{
7548 struct task_group *tg;
7549 unsigned long flags;
7550 int i;
7551
7552 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7553 if (!tg)
7554 return ERR_PTR(-ENOMEM);
7555
7556 if (!alloc_fair_sched_group(tg))
7557 goto err;
7558
7559 if (!alloc_rt_sched_group(tg))
7560 goto err;
7561
8ed36996 7562 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7563 for_each_possible_cpu(i) {
bccbe08a
PZ
7564 register_fair_sched_group(tg, i);
7565 register_rt_sched_group(tg, i);
9b5b7751 7566 }
6f505b16 7567 list_add_rcu(&tg->list, &task_groups);
8ed36996 7568 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7569
9b5b7751 7570 return tg;
29f59db3
SV
7571
7572err:
6f505b16 7573 free_sched_group(tg);
29f59db3
SV
7574 return ERR_PTR(-ENOMEM);
7575}
7576
9b5b7751 7577/* rcu callback to free various structures associated with a task group */
6f505b16 7578static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7579{
29f59db3 7580 /* now it should be safe to free those cfs_rqs */
6f505b16 7581 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7582}
7583
9b5b7751 7584/* Destroy runqueue etc associated with a task group */
4cf86d77 7585void sched_destroy_group(struct task_group *tg)
29f59db3 7586{
8ed36996 7587 unsigned long flags;
9b5b7751 7588 int i;
29f59db3 7589
8ed36996 7590 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 7591 for_each_possible_cpu(i) {
bccbe08a
PZ
7592 unregister_fair_sched_group(tg, i);
7593 unregister_rt_sched_group(tg, i);
9b5b7751 7594 }
6f505b16 7595 list_del_rcu(&tg->list);
8ed36996 7596 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7597
9b5b7751 7598 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7599 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7600}
7601
9b5b7751 7602/* change task's runqueue when it moves between groups.
3a252015
IM
7603 * The caller of this function should have put the task in its new group
7604 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7605 * reflect its new group.
9b5b7751
SV
7606 */
7607void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7608{
7609 int on_rq, running;
7610 unsigned long flags;
7611 struct rq *rq;
7612
7613 rq = task_rq_lock(tsk, &flags);
7614
29f59db3
SV
7615 update_rq_clock(rq);
7616
051a1d1a 7617 running = task_current(rq, tsk);
29f59db3
SV
7618 on_rq = tsk->se.on_rq;
7619
83b699ed 7620 if (on_rq) {
29f59db3 7621 dequeue_task(rq, tsk, 0);
83b699ed
SV
7622 if (unlikely(running))
7623 tsk->sched_class->put_prev_task(rq, tsk);
7624 }
29f59db3 7625
6f505b16 7626 set_task_rq(tsk, task_cpu(tsk));
29f59db3 7627
810b3817
PZ
7628#ifdef CONFIG_FAIR_GROUP_SCHED
7629 if (tsk->sched_class->moved_group)
7630 tsk->sched_class->moved_group(tsk);
7631#endif
7632
83b699ed
SV
7633 if (on_rq) {
7634 if (unlikely(running))
7635 tsk->sched_class->set_curr_task(rq);
7074badb 7636 enqueue_task(rq, tsk, 0);
83b699ed 7637 }
29f59db3 7638
29f59db3
SV
7639 task_rq_unlock(rq, &flags);
7640}
7641
052f1dc7 7642#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
7643static void set_se_shares(struct sched_entity *se, unsigned long shares)
7644{
7645 struct cfs_rq *cfs_rq = se->cfs_rq;
7646 struct rq *rq = cfs_rq->rq;
7647 int on_rq;
7648
62fb1851 7649 spin_lock_irq(&rq->lock);
29f59db3
SV
7650
7651 on_rq = se->on_rq;
62fb1851 7652 if (on_rq)
29f59db3
SV
7653 dequeue_entity(cfs_rq, se, 0);
7654
7655 se->load.weight = shares;
7656 se->load.inv_weight = div64_64((1ULL<<32), shares);
7657
62fb1851 7658 if (on_rq)
29f59db3 7659 enqueue_entity(cfs_rq, se, 0);
62fb1851
PZ
7660
7661 spin_unlock_irq(&rq->lock);
29f59db3
SV
7662}
7663
8ed36996
PZ
7664static DEFINE_MUTEX(shares_mutex);
7665
4cf86d77 7666int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7667{
7668 int i;
8ed36996 7669 unsigned long flags;
c61935fd 7670
62fb1851
PZ
7671 /*
7672 * A weight of 0 or 1 can cause arithmetics problems.
7673 * (The default weight is 1024 - so there's no practical
7674 * limitation from this.)
7675 */
7676 if (shares < 2)
7677 shares = 2;
7678
8ed36996 7679 mutex_lock(&shares_mutex);
9b5b7751 7680 if (tg->shares == shares)
5cb350ba 7681 goto done;
29f59db3 7682
8ed36996 7683 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7684 for_each_possible_cpu(i)
7685 unregister_fair_sched_group(tg, i);
8ed36996 7686 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
7687
7688 /* wait for any ongoing reference to this group to finish */
7689 synchronize_sched();
7690
7691 /*
7692 * Now we are free to modify the group's share on each cpu
7693 * w/o tripping rebalance_share or load_balance_fair.
7694 */
9b5b7751 7695 tg->shares = shares;
62fb1851 7696 for_each_possible_cpu(i)
9b5b7751 7697 set_se_shares(tg->se[i], shares);
29f59db3 7698
6b2d7700
SV
7699 /*
7700 * Enable load balance activity on this group, by inserting it back on
7701 * each cpu's rq->leaf_cfs_rq_list.
7702 */
8ed36996 7703 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
7704 for_each_possible_cpu(i)
7705 register_fair_sched_group(tg, i);
8ed36996 7706 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 7707done:
8ed36996 7708 mutex_unlock(&shares_mutex);
9b5b7751 7709 return 0;
29f59db3
SV
7710}
7711
5cb350ba
DG
7712unsigned long sched_group_shares(struct task_group *tg)
7713{
7714 return tg->shares;
7715}
052f1dc7 7716#endif
5cb350ba 7717
052f1dc7 7718#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7719/*
9f0c1e56 7720 * Ensure that the real time constraints are schedulable.
6f505b16 7721 */
9f0c1e56
PZ
7722static DEFINE_MUTEX(rt_constraints_mutex);
7723
7724static unsigned long to_ratio(u64 period, u64 runtime)
7725{
7726 if (runtime == RUNTIME_INF)
7727 return 1ULL << 16;
7728
2692a240 7729 return div64_64(runtime << 16, period);
9f0c1e56
PZ
7730}
7731
7732static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
7733{
7734 struct task_group *tgi;
7735 unsigned long total = 0;
9f0c1e56
PZ
7736 unsigned long global_ratio =
7737 to_ratio(sysctl_sched_rt_period,
7738 sysctl_sched_rt_runtime < 0 ?
7739 RUNTIME_INF : sysctl_sched_rt_runtime);
6f505b16
PZ
7740
7741 rcu_read_lock();
9f0c1e56
PZ
7742 list_for_each_entry_rcu(tgi, &task_groups, list) {
7743 if (tgi == tg)
7744 continue;
6f505b16 7745
9f0c1e56
PZ
7746 total += to_ratio(period, tgi->rt_runtime);
7747 }
7748 rcu_read_unlock();
6f505b16 7749
9f0c1e56 7750 return total + to_ratio(period, runtime) < global_ratio;
6f505b16
PZ
7751}
7752
521f1a24
DG
7753/* Must be called with tasklist_lock held */
7754static inline int tg_has_rt_tasks(struct task_group *tg)
7755{
7756 struct task_struct *g, *p;
7757 do_each_thread(g, p) {
7758 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7759 return 1;
7760 } while_each_thread(g, p);
7761 return 0;
7762}
7763
9f0c1e56 7764int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6f505b16 7765{
9f0c1e56
PZ
7766 u64 rt_runtime, rt_period;
7767 int err = 0;
7768
2692a240 7769 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
9f0c1e56
PZ
7770 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7771 if (rt_runtime_us == -1)
2692a240 7772 rt_runtime = RUNTIME_INF;
9f0c1e56
PZ
7773
7774 mutex_lock(&rt_constraints_mutex);
521f1a24
DG
7775 read_lock(&tasklist_lock);
7776 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7777 err = -EBUSY;
7778 goto unlock;
7779 }
9f0c1e56
PZ
7780 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7781 err = -EINVAL;
7782 goto unlock;
7783 }
9f0c1e56
PZ
7784 tg->rt_runtime = rt_runtime;
7785 unlock:
521f1a24 7786 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7787 mutex_unlock(&rt_constraints_mutex);
7788
7789 return err;
6f505b16
PZ
7790}
7791
9f0c1e56
PZ
7792long sched_group_rt_runtime(struct task_group *tg)
7793{
7794 u64 rt_runtime_us;
7795
7796 if (tg->rt_runtime == RUNTIME_INF)
7797 return -1;
7798
7799 rt_runtime_us = tg->rt_runtime;
7800 do_div(rt_runtime_us, NSEC_PER_USEC);
7801 return rt_runtime_us;
7802}
052f1dc7
PZ
7803#endif
7804#endif /* CONFIG_GROUP_SCHED */
68318b8e 7805
052f1dc7 7806#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7807
7808/* return corresponding task_group object of a cgroup */
2b01dfe3 7809static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7810{
2b01dfe3
PM
7811 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7812 struct task_group, css);
68318b8e
SV
7813}
7814
7815static struct cgroup_subsys_state *
2b01dfe3 7816cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7817{
7818 struct task_group *tg;
7819
2b01dfe3 7820 if (!cgrp->parent) {
68318b8e 7821 /* This is early initialization for the top cgroup */
2b01dfe3 7822 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7823 return &init_task_group.css;
7824 }
7825
7826 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7827 if (cgrp->parent->parent)
68318b8e
SV
7828 return ERR_PTR(-EINVAL);
7829
7830 tg = sched_create_group();
7831 if (IS_ERR(tg))
7832 return ERR_PTR(-ENOMEM);
7833
7834 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7835 tg->css.cgroup = cgrp;
68318b8e
SV
7836
7837 return &tg->css;
7838}
7839
41a2d6cf
IM
7840static void
7841cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7842{
2b01dfe3 7843 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7844
7845 sched_destroy_group(tg);
7846}
7847
41a2d6cf
IM
7848static int
7849cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7850 struct task_struct *tsk)
68318b8e 7851{
b68aa230
PZ
7852#ifdef CONFIG_RT_GROUP_SCHED
7853 /* Don't accept realtime tasks when there is no way for them to run */
7854 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7855 return -EINVAL;
7856#else
68318b8e
SV
7857 /* We don't support RT-tasks being in separate groups */
7858 if (tsk->sched_class != &fair_sched_class)
7859 return -EINVAL;
b68aa230 7860#endif
68318b8e
SV
7861
7862 return 0;
7863}
7864
7865static void
2b01dfe3 7866cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7867 struct cgroup *old_cont, struct task_struct *tsk)
7868{
7869 sched_move_task(tsk);
7870}
7871
052f1dc7 7872#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
7873static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7874 u64 shareval)
68318b8e 7875{
2b01dfe3 7876 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7877}
7878
2b01dfe3 7879static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7880{
2b01dfe3 7881 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7882
7883 return (u64) tg->shares;
7884}
052f1dc7 7885#endif
68318b8e 7886
052f1dc7 7887#ifdef CONFIG_RT_GROUP_SCHED
9f0c1e56
PZ
7888static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7889 struct file *file,
7890 const char __user *userbuf,
7891 size_t nbytes, loff_t *unused_ppos)
6f505b16 7892{
9f0c1e56
PZ
7893 char buffer[64];
7894 int retval = 0;
7895 s64 val;
7896 char *end;
7897
7898 if (!nbytes)
7899 return -EINVAL;
7900 if (nbytes >= sizeof(buffer))
7901 return -E2BIG;
7902 if (copy_from_user(buffer, userbuf, nbytes))
7903 return -EFAULT;
7904
7905 buffer[nbytes] = 0; /* nul-terminate */
7906
7907 /* strip newline if necessary */
7908 if (nbytes && (buffer[nbytes-1] == '\n'))
7909 buffer[nbytes-1] = 0;
7910 val = simple_strtoll(buffer, &end, 0);
7911 if (*end)
7912 return -EINVAL;
7913
7914 /* Pass to subsystem */
7915 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7916 if (!retval)
7917 retval = nbytes;
7918 return retval;
6f505b16
PZ
7919}
7920
9f0c1e56
PZ
7921static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7922 struct file *file,
7923 char __user *buf, size_t nbytes,
7924 loff_t *ppos)
6f505b16 7925{
9f0c1e56
PZ
7926 char tmp[64];
7927 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7928 int len = sprintf(tmp, "%ld\n", val);
6f505b16 7929
9f0c1e56 7930 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 7931}
052f1dc7 7932#endif
6f505b16 7933
fe5c7cc2 7934static struct cftype cpu_files[] = {
052f1dc7 7935#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7936 {
7937 .name = "shares",
7938 .read_uint = cpu_shares_read_uint,
7939 .write_uint = cpu_shares_write_uint,
7940 },
052f1dc7
PZ
7941#endif
7942#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7943 {
9f0c1e56
PZ
7944 .name = "rt_runtime_us",
7945 .read = cpu_rt_runtime_read,
7946 .write = cpu_rt_runtime_write,
6f505b16 7947 },
052f1dc7 7948#endif
68318b8e
SV
7949};
7950
7951static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7952{
fe5c7cc2 7953 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7954}
7955
7956struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7957 .name = "cpu",
7958 .create = cpu_cgroup_create,
7959 .destroy = cpu_cgroup_destroy,
7960 .can_attach = cpu_cgroup_can_attach,
7961 .attach = cpu_cgroup_attach,
7962 .populate = cpu_cgroup_populate,
7963 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7964 .early_init = 1,
7965};
7966
052f1dc7 7967#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7968
7969#ifdef CONFIG_CGROUP_CPUACCT
7970
7971/*
7972 * CPU accounting code for task groups.
7973 *
7974 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7975 * (balbir@in.ibm.com).
7976 */
7977
7978/* track cpu usage of a group of tasks */
7979struct cpuacct {
7980 struct cgroup_subsys_state css;
7981 /* cpuusage holds pointer to a u64-type object on every cpu */
7982 u64 *cpuusage;
7983};
7984
7985struct cgroup_subsys cpuacct_subsys;
7986
7987/* return cpu accounting group corresponding to this container */
7988static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7989{
7990 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7991 struct cpuacct, css);
7992}
7993
7994/* return cpu accounting group to which this task belongs */
7995static inline struct cpuacct *task_ca(struct task_struct *tsk)
7996{
7997 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7998 struct cpuacct, css);
7999}
8000
8001/* create a new cpu accounting group */
8002static struct cgroup_subsys_state *cpuacct_create(
8003 struct cgroup_subsys *ss, struct cgroup *cont)
8004{
8005 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8006
8007 if (!ca)
8008 return ERR_PTR(-ENOMEM);
8009
8010 ca->cpuusage = alloc_percpu(u64);
8011 if (!ca->cpuusage) {
8012 kfree(ca);
8013 return ERR_PTR(-ENOMEM);
8014 }
8015
8016 return &ca->css;
8017}
8018
8019/* destroy an existing cpu accounting group */
41a2d6cf
IM
8020static void
8021cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
8022{
8023 struct cpuacct *ca = cgroup_ca(cont);
8024
8025 free_percpu(ca->cpuusage);
8026 kfree(ca);
8027}
8028
8029/* return total cpu usage (in nanoseconds) of a group */
8030static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8031{
8032 struct cpuacct *ca = cgroup_ca(cont);
8033 u64 totalcpuusage = 0;
8034 int i;
8035
8036 for_each_possible_cpu(i) {
8037 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8038
8039 /*
8040 * Take rq->lock to make 64-bit addition safe on 32-bit
8041 * platforms.
8042 */
8043 spin_lock_irq(&cpu_rq(i)->lock);
8044 totalcpuusage += *cpuusage;
8045 spin_unlock_irq(&cpu_rq(i)->lock);
8046 }
8047
8048 return totalcpuusage;
8049}
8050
8051static struct cftype files[] = {
8052 {
8053 .name = "usage",
8054 .read_uint = cpuusage_read,
8055 },
8056};
8057
8058static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8059{
8060 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8061}
8062
8063/*
8064 * charge this task's execution time to its accounting group.
8065 *
8066 * called with rq->lock held.
8067 */
8068static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8069{
8070 struct cpuacct *ca;
8071
8072 if (!cpuacct_subsys.active)
8073 return;
8074
8075 ca = task_ca(tsk);
8076 if (ca) {
8077 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8078
8079 *cpuusage += cputime;
8080 }
8081}
8082
8083struct cgroup_subsys cpuacct_subsys = {
8084 .name = "cpuacct",
8085 .create = cpuacct_create,
8086 .destroy = cpuacct_destroy,
8087 .populate = cpuacct_populate,
8088 .subsys_id = cpuacct_subsys_id,
8089};
8090#endif /* CONFIG_CGROUP_CPUACCT */