]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/buffer.c
Leave superblocks on s_list until the end
[net-next-2.6.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4
LT
56
57static int sync_buffer(void *word)
58{
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69}
70
fc9b52cd 71void __lock_buffer(struct buffer_head *bh)
1da177e4
LT
72{
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75}
76EXPORT_SYMBOL(__lock_buffer);
77
fc9b52cd 78void unlock_buffer(struct buffer_head *bh)
1da177e4 79{
51b07fc3 80 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
1fe72eaa 84EXPORT_SYMBOL(unlock_buffer);
1da177e4
LT
85
86/*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91void __wait_on_buffer(struct buffer_head * bh)
92{
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94}
1fe72eaa 95EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
96
97static void
98__clear_page_buffers(struct page *page)
99{
100 ClearPagePrivate(page);
4c21e2f2 101 set_page_private(page, 0);
1da177e4
LT
102 page_cache_release(page);
103}
104
08bafc03
KM
105
106static int quiet_error(struct buffer_head *bh)
107{
108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 return 0;
110 return 1;
111}
112
113
1da177e4
LT
114static void buffer_io_error(struct buffer_head *bh)
115{
116 char b[BDEVNAME_SIZE];
1da177e4
LT
117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 bdevname(bh->b_bdev, b),
119 (unsigned long long)bh->b_blocknr);
120}
121
122/*
68671f35
DM
123 * End-of-IO handler helper function which does not touch the bh after
124 * unlocking it.
125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126 * a race there is benign: unlock_buffer() only use the bh's address for
127 * hashing after unlocking the buffer, so it doesn't actually touch the bh
128 * itself.
1da177e4 129 */
68671f35 130static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
131{
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 /* This happens, due to failed READA attempts. */
136 clear_buffer_uptodate(bh);
137 }
138 unlock_buffer(bh);
68671f35
DM
139}
140
141/*
142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
143 * unlock the buffer. This is what ll_rw_block uses too.
144 */
145void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146{
147 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
148 put_bh(bh);
149}
1fe72eaa 150EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
151
152void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153{
154 char b[BDEVNAME_SIZE];
155
156 if (uptodate) {
157 set_buffer_uptodate(bh);
158 } else {
08bafc03 159 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
1da177e4
LT
160 buffer_io_error(bh);
161 printk(KERN_WARNING "lost page write due to "
162 "I/O error on %s\n",
163 bdevname(bh->b_bdev, b));
164 }
165 set_buffer_write_io_error(bh);
166 clear_buffer_uptodate(bh);
167 }
168 unlock_buffer(bh);
169 put_bh(bh);
170}
1fe72eaa 171EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 172
1da177e4
LT
173/*
174 * Various filesystems appear to want __find_get_block to be non-blocking.
175 * But it's the page lock which protects the buffers. To get around this,
176 * we get exclusion from try_to_free_buffers with the blockdev mapping's
177 * private_lock.
178 *
179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180 * may be quite high. This code could TryLock the page, and if that
181 * succeeds, there is no need to take private_lock. (But if
182 * private_lock is contended then so is mapping->tree_lock).
183 */
184static struct buffer_head *
385fd4c5 185__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
186{
187 struct inode *bd_inode = bdev->bd_inode;
188 struct address_space *bd_mapping = bd_inode->i_mapping;
189 struct buffer_head *ret = NULL;
190 pgoff_t index;
191 struct buffer_head *bh;
192 struct buffer_head *head;
193 struct page *page;
194 int all_mapped = 1;
195
196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 page = find_get_page(bd_mapping, index);
198 if (!page)
199 goto out;
200
201 spin_lock(&bd_mapping->private_lock);
202 if (!page_has_buffers(page))
203 goto out_unlock;
204 head = page_buffers(page);
205 bh = head;
206 do {
97f76d3d
NK
207 if (!buffer_mapped(bh))
208 all_mapped = 0;
209 else if (bh->b_blocknr == block) {
1da177e4
LT
210 ret = bh;
211 get_bh(bh);
212 goto out_unlock;
213 }
1da177e4
LT
214 bh = bh->b_this_page;
215 } while (bh != head);
216
217 /* we might be here because some of the buffers on this page are
218 * not mapped. This is due to various races between
219 * file io on the block device and getblk. It gets dealt with
220 * elsewhere, don't buffer_error if we had some unmapped buffers
221 */
222 if (all_mapped) {
223 printk("__find_get_block_slow() failed. "
224 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
225 (unsigned long long)block,
226 (unsigned long long)bh->b_blocknr);
227 printk("b_state=0x%08lx, b_size=%zu\n",
228 bh->b_state, bh->b_size);
1da177e4
LT
229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 }
231out_unlock:
232 spin_unlock(&bd_mapping->private_lock);
233 page_cache_release(page);
234out:
235 return ret;
236}
237
238/* If invalidate_buffers() will trash dirty buffers, it means some kind
239 of fs corruption is going on. Trashing dirty data always imply losing
240 information that was supposed to be just stored on the physical layer
241 by the user.
242
243 Thus invalidate_buffers in general usage is not allwowed to trash
244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245 be preserved. These buffers are simply skipped.
246
247 We also skip buffers which are still in use. For example this can
248 happen if a userspace program is reading the block device.
249
250 NOTE: In the case where the user removed a removable-media-disk even if
251 there's still dirty data not synced on disk (due a bug in the device driver
252 or due an error of the user), by not destroying the dirty buffers we could
253 generate corruption also on the next media inserted, thus a parameter is
254 necessary to handle this case in the most safe way possible (trying
255 to not corrupt also the new disk inserted with the data belonging to
256 the old now corrupted disk). Also for the ramdisk the natural thing
257 to do in order to release the ramdisk memory is to destroy dirty buffers.
258
259 These are two special cases. Normal usage imply the device driver
260 to issue a sync on the device (without waiting I/O completion) and
261 then an invalidate_buffers call that doesn't trash dirty buffers.
262
263 For handling cache coherency with the blkdev pagecache the 'update' case
264 is been introduced. It is needed to re-read from disk any pinned
265 buffer. NOTE: re-reading from disk is destructive so we can do it only
266 when we assume nobody is changing the buffercache under our I/O and when
267 we think the disk contains more recent information than the buffercache.
268 The update == 1 pass marks the buffers we need to update, the update == 2
269 pass does the actual I/O. */
f98393a6 270void invalidate_bdev(struct block_device *bdev)
1da177e4 271{
0e1dfc66
AM
272 struct address_space *mapping = bdev->bd_inode->i_mapping;
273
274 if (mapping->nrpages == 0)
275 return;
276
1da177e4 277 invalidate_bh_lrus();
fc0ecff6 278 invalidate_mapping_pages(mapping, 0, -1);
1da177e4 279}
1fe72eaa 280EXPORT_SYMBOL(invalidate_bdev);
1da177e4
LT
281
282/*
5b0830cb 283 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
284 */
285static void free_more_memory(void)
286{
19770b32 287 struct zone *zone;
0e88460d 288 int nid;
1da177e4 289
03ba3782 290 wakeup_flusher_threads(1024);
1da177e4
LT
291 yield();
292
0e88460d 293 for_each_online_node(nid) {
19770b32
MG
294 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
295 gfp_zone(GFP_NOFS), NULL,
296 &zone);
297 if (zone)
54a6eb5c 298 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 299 GFP_NOFS, NULL);
1da177e4
LT
300 }
301}
302
303/*
304 * I/O completion handler for block_read_full_page() - pages
305 * which come unlocked at the end of I/O.
306 */
307static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
308{
1da177e4 309 unsigned long flags;
a3972203 310 struct buffer_head *first;
1da177e4
LT
311 struct buffer_head *tmp;
312 struct page *page;
313 int page_uptodate = 1;
314
315 BUG_ON(!buffer_async_read(bh));
316
317 page = bh->b_page;
318 if (uptodate) {
319 set_buffer_uptodate(bh);
320 } else {
321 clear_buffer_uptodate(bh);
08bafc03 322 if (!quiet_error(bh))
1da177e4
LT
323 buffer_io_error(bh);
324 SetPageError(page);
325 }
326
327 /*
328 * Be _very_ careful from here on. Bad things can happen if
329 * two buffer heads end IO at almost the same time and both
330 * decide that the page is now completely done.
331 */
a3972203
NP
332 first = page_buffers(page);
333 local_irq_save(flags);
334 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
335 clear_buffer_async_read(bh);
336 unlock_buffer(bh);
337 tmp = bh;
338 do {
339 if (!buffer_uptodate(tmp))
340 page_uptodate = 0;
341 if (buffer_async_read(tmp)) {
342 BUG_ON(!buffer_locked(tmp));
343 goto still_busy;
344 }
345 tmp = tmp->b_this_page;
346 } while (tmp != bh);
a3972203
NP
347 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348 local_irq_restore(flags);
1da177e4
LT
349
350 /*
351 * If none of the buffers had errors and they are all
352 * uptodate then we can set the page uptodate.
353 */
354 if (page_uptodate && !PageError(page))
355 SetPageUptodate(page);
356 unlock_page(page);
357 return;
358
359still_busy:
a3972203
NP
360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 local_irq_restore(flags);
1da177e4
LT
362 return;
363}
364
365/*
366 * Completion handler for block_write_full_page() - pages which are unlocked
367 * during I/O, and which have PageWriteback cleared upon I/O completion.
368 */
35c80d5f 369void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
370{
371 char b[BDEVNAME_SIZE];
1da177e4 372 unsigned long flags;
a3972203 373 struct buffer_head *first;
1da177e4
LT
374 struct buffer_head *tmp;
375 struct page *page;
376
377 BUG_ON(!buffer_async_write(bh));
378
379 page = bh->b_page;
380 if (uptodate) {
381 set_buffer_uptodate(bh);
382 } else {
08bafc03 383 if (!quiet_error(bh)) {
1da177e4
LT
384 buffer_io_error(bh);
385 printk(KERN_WARNING "lost page write due to "
386 "I/O error on %s\n",
387 bdevname(bh->b_bdev, b));
388 }
389 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 390 set_buffer_write_io_error(bh);
1da177e4
LT
391 clear_buffer_uptodate(bh);
392 SetPageError(page);
393 }
394
a3972203
NP
395 first = page_buffers(page);
396 local_irq_save(flags);
397 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
398
1da177e4
LT
399 clear_buffer_async_write(bh);
400 unlock_buffer(bh);
401 tmp = bh->b_this_page;
402 while (tmp != bh) {
403 if (buffer_async_write(tmp)) {
404 BUG_ON(!buffer_locked(tmp));
405 goto still_busy;
406 }
407 tmp = tmp->b_this_page;
408 }
a3972203
NP
409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 local_irq_restore(flags);
1da177e4
LT
411 end_page_writeback(page);
412 return;
413
414still_busy:
a3972203
NP
415 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
416 local_irq_restore(flags);
1da177e4
LT
417 return;
418}
1fe72eaa 419EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
420
421/*
422 * If a page's buffers are under async readin (end_buffer_async_read
423 * completion) then there is a possibility that another thread of
424 * control could lock one of the buffers after it has completed
425 * but while some of the other buffers have not completed. This
426 * locked buffer would confuse end_buffer_async_read() into not unlocking
427 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
428 * that this buffer is not under async I/O.
429 *
430 * The page comes unlocked when it has no locked buffer_async buffers
431 * left.
432 *
433 * PageLocked prevents anyone starting new async I/O reads any of
434 * the buffers.
435 *
436 * PageWriteback is used to prevent simultaneous writeout of the same
437 * page.
438 *
439 * PageLocked prevents anyone from starting writeback of a page which is
440 * under read I/O (PageWriteback is only ever set against a locked page).
441 */
442static void mark_buffer_async_read(struct buffer_head *bh)
443{
444 bh->b_end_io = end_buffer_async_read;
445 set_buffer_async_read(bh);
446}
447
1fe72eaa
HS
448static void mark_buffer_async_write_endio(struct buffer_head *bh,
449 bh_end_io_t *handler)
1da177e4 450{
35c80d5f 451 bh->b_end_io = handler;
1da177e4
LT
452 set_buffer_async_write(bh);
453}
35c80d5f
CM
454
455void mark_buffer_async_write(struct buffer_head *bh)
456{
457 mark_buffer_async_write_endio(bh, end_buffer_async_write);
458}
1da177e4
LT
459EXPORT_SYMBOL(mark_buffer_async_write);
460
461
462/*
463 * fs/buffer.c contains helper functions for buffer-backed address space's
464 * fsync functions. A common requirement for buffer-based filesystems is
465 * that certain data from the backing blockdev needs to be written out for
466 * a successful fsync(). For example, ext2 indirect blocks need to be
467 * written back and waited upon before fsync() returns.
468 *
469 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
470 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
471 * management of a list of dependent buffers at ->i_mapping->private_list.
472 *
473 * Locking is a little subtle: try_to_free_buffers() will remove buffers
474 * from their controlling inode's queue when they are being freed. But
475 * try_to_free_buffers() will be operating against the *blockdev* mapping
476 * at the time, not against the S_ISREG file which depends on those buffers.
477 * So the locking for private_list is via the private_lock in the address_space
478 * which backs the buffers. Which is different from the address_space
479 * against which the buffers are listed. So for a particular address_space,
480 * mapping->private_lock does *not* protect mapping->private_list! In fact,
481 * mapping->private_list will always be protected by the backing blockdev's
482 * ->private_lock.
483 *
484 * Which introduces a requirement: all buffers on an address_space's
485 * ->private_list must be from the same address_space: the blockdev's.
486 *
487 * address_spaces which do not place buffers at ->private_list via these
488 * utility functions are free to use private_lock and private_list for
489 * whatever they want. The only requirement is that list_empty(private_list)
490 * be true at clear_inode() time.
491 *
492 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
493 * filesystems should do that. invalidate_inode_buffers() should just go
494 * BUG_ON(!list_empty).
495 *
496 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
497 * take an address_space, not an inode. And it should be called
498 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
499 * queued up.
500 *
501 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
502 * list if it is already on a list. Because if the buffer is on a list,
503 * it *must* already be on the right one. If not, the filesystem is being
504 * silly. This will save a ton of locking. But first we have to ensure
505 * that buffers are taken *off* the old inode's list when they are freed
506 * (presumably in truncate). That requires careful auditing of all
507 * filesystems (do it inside bforget()). It could also be done by bringing
508 * b_inode back.
509 */
510
511/*
512 * The buffer's backing address_space's private_lock must be held
513 */
dbacefc9 514static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
515{
516 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
517 WARN_ON(!bh->b_assoc_map);
518 if (buffer_write_io_error(bh))
519 set_bit(AS_EIO, &bh->b_assoc_map->flags);
520 bh->b_assoc_map = NULL;
1da177e4
LT
521}
522
523int inode_has_buffers(struct inode *inode)
524{
525 return !list_empty(&inode->i_data.private_list);
526}
527
528/*
529 * osync is designed to support O_SYNC io. It waits synchronously for
530 * all already-submitted IO to complete, but does not queue any new
531 * writes to the disk.
532 *
533 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
534 * you dirty the buffers, and then use osync_inode_buffers to wait for
535 * completion. Any other dirty buffers which are not yet queued for
536 * write will not be flushed to disk by the osync.
537 */
538static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
539{
540 struct buffer_head *bh;
541 struct list_head *p;
542 int err = 0;
543
544 spin_lock(lock);
545repeat:
546 list_for_each_prev(p, list) {
547 bh = BH_ENTRY(p);
548 if (buffer_locked(bh)) {
549 get_bh(bh);
550 spin_unlock(lock);
551 wait_on_buffer(bh);
552 if (!buffer_uptodate(bh))
553 err = -EIO;
554 brelse(bh);
555 spin_lock(lock);
556 goto repeat;
557 }
558 }
559 spin_unlock(lock);
560 return err;
561}
562
1fe72eaa 563static void do_thaw_all(struct work_struct *work)
c2d75438
ES
564{
565 struct super_block *sb;
566 char b[BDEVNAME_SIZE];
567
568 spin_lock(&sb_lock);
569restart:
570 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
571 if (list_empty(&sb->s_instances))
572 continue;
c2d75438
ES
573 sb->s_count++;
574 spin_unlock(&sb_lock);
575 down_read(&sb->s_umount);
576 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
577 printk(KERN_WARNING "Emergency Thaw on %s\n",
578 bdevname(sb->s_bdev, b));
579 up_read(&sb->s_umount);
580 spin_lock(&sb_lock);
581 if (__put_super_and_need_restart(sb))
582 goto restart;
583 }
584 spin_unlock(&sb_lock);
053c525f 585 kfree(work);
c2d75438
ES
586 printk(KERN_WARNING "Emergency Thaw complete\n");
587}
588
589/**
590 * emergency_thaw_all -- forcibly thaw every frozen filesystem
591 *
592 * Used for emergency unfreeze of all filesystems via SysRq
593 */
594void emergency_thaw_all(void)
595{
053c525f
JA
596 struct work_struct *work;
597
598 work = kmalloc(sizeof(*work), GFP_ATOMIC);
599 if (work) {
600 INIT_WORK(work, do_thaw_all);
601 schedule_work(work);
602 }
c2d75438
ES
603}
604
1da177e4 605/**
78a4a50a 606 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 607 * @mapping: the mapping which wants those buffers written
1da177e4
LT
608 *
609 * Starts I/O against the buffers at mapping->private_list, and waits upon
610 * that I/O.
611 *
67be2dd1
MW
612 * Basically, this is a convenience function for fsync().
613 * @mapping is a file or directory which needs those buffers to be written for
614 * a successful fsync().
1da177e4
LT
615 */
616int sync_mapping_buffers(struct address_space *mapping)
617{
618 struct address_space *buffer_mapping = mapping->assoc_mapping;
619
620 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
621 return 0;
622
623 return fsync_buffers_list(&buffer_mapping->private_lock,
624 &mapping->private_list);
625}
626EXPORT_SYMBOL(sync_mapping_buffers);
627
628/*
629 * Called when we've recently written block `bblock', and it is known that
630 * `bblock' was for a buffer_boundary() buffer. This means that the block at
631 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
632 * dirty, schedule it for IO. So that indirects merge nicely with their data.
633 */
634void write_boundary_block(struct block_device *bdev,
635 sector_t bblock, unsigned blocksize)
636{
637 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
638 if (bh) {
639 if (buffer_dirty(bh))
640 ll_rw_block(WRITE, 1, &bh);
641 put_bh(bh);
642 }
643}
644
645void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
646{
647 struct address_space *mapping = inode->i_mapping;
648 struct address_space *buffer_mapping = bh->b_page->mapping;
649
650 mark_buffer_dirty(bh);
651 if (!mapping->assoc_mapping) {
652 mapping->assoc_mapping = buffer_mapping;
653 } else {
e827f923 654 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4 655 }
535ee2fb 656 if (!bh->b_assoc_map) {
1da177e4
LT
657 spin_lock(&buffer_mapping->private_lock);
658 list_move_tail(&bh->b_assoc_buffers,
659 &mapping->private_list);
58ff407b 660 bh->b_assoc_map = mapping;
1da177e4
LT
661 spin_unlock(&buffer_mapping->private_lock);
662 }
663}
664EXPORT_SYMBOL(mark_buffer_dirty_inode);
665
787d2214
NP
666/*
667 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
668 * dirty.
669 *
670 * If warn is true, then emit a warning if the page is not uptodate and has
671 * not been truncated.
672 */
a8e7d49a 673static void __set_page_dirty(struct page *page,
787d2214
NP
674 struct address_space *mapping, int warn)
675{
19fd6231 676 spin_lock_irq(&mapping->tree_lock);
787d2214
NP
677 if (page->mapping) { /* Race with truncate? */
678 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 679 account_page_dirtied(page, mapping);
787d2214
NP
680 radix_tree_tag_set(&mapping->page_tree,
681 page_index(page), PAGECACHE_TAG_DIRTY);
682 }
19fd6231 683 spin_unlock_irq(&mapping->tree_lock);
787d2214 684 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
685}
686
1da177e4
LT
687/*
688 * Add a page to the dirty page list.
689 *
690 * It is a sad fact of life that this function is called from several places
691 * deeply under spinlocking. It may not sleep.
692 *
693 * If the page has buffers, the uptodate buffers are set dirty, to preserve
694 * dirty-state coherency between the page and the buffers. It the page does
695 * not have buffers then when they are later attached they will all be set
696 * dirty.
697 *
698 * The buffers are dirtied before the page is dirtied. There's a small race
699 * window in which a writepage caller may see the page cleanness but not the
700 * buffer dirtiness. That's fine. If this code were to set the page dirty
701 * before the buffers, a concurrent writepage caller could clear the page dirty
702 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
703 * page on the dirty page list.
704 *
705 * We use private_lock to lock against try_to_free_buffers while using the
706 * page's buffer list. Also use this to protect against clean buffers being
707 * added to the page after it was set dirty.
708 *
709 * FIXME: may need to call ->reservepage here as well. That's rather up to the
710 * address_space though.
711 */
712int __set_page_dirty_buffers(struct page *page)
713{
a8e7d49a 714 int newly_dirty;
787d2214 715 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
716
717 if (unlikely(!mapping))
718 return !TestSetPageDirty(page);
1da177e4
LT
719
720 spin_lock(&mapping->private_lock);
721 if (page_has_buffers(page)) {
722 struct buffer_head *head = page_buffers(page);
723 struct buffer_head *bh = head;
724
725 do {
726 set_buffer_dirty(bh);
727 bh = bh->b_this_page;
728 } while (bh != head);
729 }
a8e7d49a 730 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
731 spin_unlock(&mapping->private_lock);
732
a8e7d49a
LT
733 if (newly_dirty)
734 __set_page_dirty(page, mapping, 1);
735 return newly_dirty;
1da177e4
LT
736}
737EXPORT_SYMBOL(__set_page_dirty_buffers);
738
739/*
740 * Write out and wait upon a list of buffers.
741 *
742 * We have conflicting pressures: we want to make sure that all
743 * initially dirty buffers get waited on, but that any subsequently
744 * dirtied buffers don't. After all, we don't want fsync to last
745 * forever if somebody is actively writing to the file.
746 *
747 * Do this in two main stages: first we copy dirty buffers to a
748 * temporary inode list, queueing the writes as we go. Then we clean
749 * up, waiting for those writes to complete.
750 *
751 * During this second stage, any subsequent updates to the file may end
752 * up refiling the buffer on the original inode's dirty list again, so
753 * there is a chance we will end up with a buffer queued for write but
754 * not yet completed on that list. So, as a final cleanup we go through
755 * the osync code to catch these locked, dirty buffers without requeuing
756 * any newly dirty buffers for write.
757 */
758static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
759{
760 struct buffer_head *bh;
761 struct list_head tmp;
9cf6b720 762 struct address_space *mapping, *prev_mapping = NULL;
1da177e4
LT
763 int err = 0, err2;
764
765 INIT_LIST_HEAD(&tmp);
766
767 spin_lock(lock);
768 while (!list_empty(list)) {
769 bh = BH_ENTRY(list->next);
535ee2fb 770 mapping = bh->b_assoc_map;
58ff407b 771 __remove_assoc_queue(bh);
535ee2fb
JK
772 /* Avoid race with mark_buffer_dirty_inode() which does
773 * a lockless check and we rely on seeing the dirty bit */
774 smp_mb();
1da177e4
LT
775 if (buffer_dirty(bh) || buffer_locked(bh)) {
776 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 777 bh->b_assoc_map = mapping;
1da177e4
LT
778 if (buffer_dirty(bh)) {
779 get_bh(bh);
780 spin_unlock(lock);
781 /*
782 * Ensure any pending I/O completes so that
783 * ll_rw_block() actually writes the current
784 * contents - it is a noop if I/O is still in
785 * flight on potentially older contents.
786 */
9cf6b720
JA
787 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
788
789 /*
790 * Kick off IO for the previous mapping. Note
791 * that we will not run the very last mapping,
792 * wait_on_buffer() will do that for us
793 * through sync_buffer().
794 */
795 if (prev_mapping && prev_mapping != mapping)
796 blk_run_address_space(prev_mapping);
797 prev_mapping = mapping;
798
1da177e4
LT
799 brelse(bh);
800 spin_lock(lock);
801 }
802 }
803 }
804
805 while (!list_empty(&tmp)) {
806 bh = BH_ENTRY(tmp.prev);
1da177e4 807 get_bh(bh);
535ee2fb
JK
808 mapping = bh->b_assoc_map;
809 __remove_assoc_queue(bh);
810 /* Avoid race with mark_buffer_dirty_inode() which does
811 * a lockless check and we rely on seeing the dirty bit */
812 smp_mb();
813 if (buffer_dirty(bh)) {
814 list_add(&bh->b_assoc_buffers,
e3892296 815 &mapping->private_list);
535ee2fb
JK
816 bh->b_assoc_map = mapping;
817 }
1da177e4
LT
818 spin_unlock(lock);
819 wait_on_buffer(bh);
820 if (!buffer_uptodate(bh))
821 err = -EIO;
822 brelse(bh);
823 spin_lock(lock);
824 }
825
826 spin_unlock(lock);
827 err2 = osync_buffers_list(lock, list);
828 if (err)
829 return err;
830 else
831 return err2;
832}
833
834/*
835 * Invalidate any and all dirty buffers on a given inode. We are
836 * probably unmounting the fs, but that doesn't mean we have already
837 * done a sync(). Just drop the buffers from the inode list.
838 *
839 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
840 * assumes that all the buffers are against the blockdev. Not true
841 * for reiserfs.
842 */
843void invalidate_inode_buffers(struct inode *inode)
844{
845 if (inode_has_buffers(inode)) {
846 struct address_space *mapping = &inode->i_data;
847 struct list_head *list = &mapping->private_list;
848 struct address_space *buffer_mapping = mapping->assoc_mapping;
849
850 spin_lock(&buffer_mapping->private_lock);
851 while (!list_empty(list))
852 __remove_assoc_queue(BH_ENTRY(list->next));
853 spin_unlock(&buffer_mapping->private_lock);
854 }
855}
52b19ac9 856EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
857
858/*
859 * Remove any clean buffers from the inode's buffer list. This is called
860 * when we're trying to free the inode itself. Those buffers can pin it.
861 *
862 * Returns true if all buffers were removed.
863 */
864int remove_inode_buffers(struct inode *inode)
865{
866 int ret = 1;
867
868 if (inode_has_buffers(inode)) {
869 struct address_space *mapping = &inode->i_data;
870 struct list_head *list = &mapping->private_list;
871 struct address_space *buffer_mapping = mapping->assoc_mapping;
872
873 spin_lock(&buffer_mapping->private_lock);
874 while (!list_empty(list)) {
875 struct buffer_head *bh = BH_ENTRY(list->next);
876 if (buffer_dirty(bh)) {
877 ret = 0;
878 break;
879 }
880 __remove_assoc_queue(bh);
881 }
882 spin_unlock(&buffer_mapping->private_lock);
883 }
884 return ret;
885}
886
887/*
888 * Create the appropriate buffers when given a page for data area and
889 * the size of each buffer.. Use the bh->b_this_page linked list to
890 * follow the buffers created. Return NULL if unable to create more
891 * buffers.
892 *
893 * The retry flag is used to differentiate async IO (paging, swapping)
894 * which may not fail from ordinary buffer allocations.
895 */
896struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
897 int retry)
898{
899 struct buffer_head *bh, *head;
900 long offset;
901
902try_again:
903 head = NULL;
904 offset = PAGE_SIZE;
905 while ((offset -= size) >= 0) {
906 bh = alloc_buffer_head(GFP_NOFS);
907 if (!bh)
908 goto no_grow;
909
910 bh->b_bdev = NULL;
911 bh->b_this_page = head;
912 bh->b_blocknr = -1;
913 head = bh;
914
915 bh->b_state = 0;
916 atomic_set(&bh->b_count, 0);
fc5cd582 917 bh->b_private = NULL;
1da177e4
LT
918 bh->b_size = size;
919
920 /* Link the buffer to its page */
921 set_bh_page(bh, page, offset);
922
01ffe339 923 init_buffer(bh, NULL, NULL);
1da177e4
LT
924 }
925 return head;
926/*
927 * In case anything failed, we just free everything we got.
928 */
929no_grow:
930 if (head) {
931 do {
932 bh = head;
933 head = head->b_this_page;
934 free_buffer_head(bh);
935 } while (head);
936 }
937
938 /*
939 * Return failure for non-async IO requests. Async IO requests
940 * are not allowed to fail, so we have to wait until buffer heads
941 * become available. But we don't want tasks sleeping with
942 * partially complete buffers, so all were released above.
943 */
944 if (!retry)
945 return NULL;
946
947 /* We're _really_ low on memory. Now we just
948 * wait for old buffer heads to become free due to
949 * finishing IO. Since this is an async request and
950 * the reserve list is empty, we're sure there are
951 * async buffer heads in use.
952 */
953 free_more_memory();
954 goto try_again;
955}
956EXPORT_SYMBOL_GPL(alloc_page_buffers);
957
958static inline void
959link_dev_buffers(struct page *page, struct buffer_head *head)
960{
961 struct buffer_head *bh, *tail;
962
963 bh = head;
964 do {
965 tail = bh;
966 bh = bh->b_this_page;
967 } while (bh);
968 tail->b_this_page = head;
969 attach_page_buffers(page, head);
970}
971
972/*
973 * Initialise the state of a blockdev page's buffers.
974 */
975static void
976init_page_buffers(struct page *page, struct block_device *bdev,
977 sector_t block, int size)
978{
979 struct buffer_head *head = page_buffers(page);
980 struct buffer_head *bh = head;
981 int uptodate = PageUptodate(page);
982
983 do {
984 if (!buffer_mapped(bh)) {
985 init_buffer(bh, NULL, NULL);
986 bh->b_bdev = bdev;
987 bh->b_blocknr = block;
988 if (uptodate)
989 set_buffer_uptodate(bh);
990 set_buffer_mapped(bh);
991 }
992 block++;
993 bh = bh->b_this_page;
994 } while (bh != head);
995}
996
997/*
998 * Create the page-cache page that contains the requested block.
999 *
1000 * This is user purely for blockdev mappings.
1001 */
1002static struct page *
1003grow_dev_page(struct block_device *bdev, sector_t block,
1004 pgoff_t index, int size)
1005{
1006 struct inode *inode = bdev->bd_inode;
1007 struct page *page;
1008 struct buffer_head *bh;
1009
ea125892 1010 page = find_or_create_page(inode->i_mapping, index,
769848c0 1011 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
1012 if (!page)
1013 return NULL;
1014
e827f923 1015 BUG_ON(!PageLocked(page));
1da177e4
LT
1016
1017 if (page_has_buffers(page)) {
1018 bh = page_buffers(page);
1019 if (bh->b_size == size) {
1020 init_page_buffers(page, bdev, block, size);
1021 return page;
1022 }
1023 if (!try_to_free_buffers(page))
1024 goto failed;
1025 }
1026
1027 /*
1028 * Allocate some buffers for this page
1029 */
1030 bh = alloc_page_buffers(page, size, 0);
1031 if (!bh)
1032 goto failed;
1033
1034 /*
1035 * Link the page to the buffers and initialise them. Take the
1036 * lock to be atomic wrt __find_get_block(), which does not
1037 * run under the page lock.
1038 */
1039 spin_lock(&inode->i_mapping->private_lock);
1040 link_dev_buffers(page, bh);
1041 init_page_buffers(page, bdev, block, size);
1042 spin_unlock(&inode->i_mapping->private_lock);
1043 return page;
1044
1045failed:
1046 BUG();
1047 unlock_page(page);
1048 page_cache_release(page);
1049 return NULL;
1050}
1051
1052/*
1053 * Create buffers for the specified block device block's page. If
1054 * that page was dirty, the buffers are set dirty also.
1da177e4 1055 */
858119e1 1056static int
1da177e4
LT
1057grow_buffers(struct block_device *bdev, sector_t block, int size)
1058{
1059 struct page *page;
1060 pgoff_t index;
1061 int sizebits;
1062
1063 sizebits = -1;
1064 do {
1065 sizebits++;
1066 } while ((size << sizebits) < PAGE_SIZE);
1067
1068 index = block >> sizebits;
1da177e4 1069
e5657933
AM
1070 /*
1071 * Check for a block which wants to lie outside our maximum possible
1072 * pagecache index. (this comparison is done using sector_t types).
1073 */
1074 if (unlikely(index != block >> sizebits)) {
1075 char b[BDEVNAME_SIZE];
1076
1077 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1078 "device %s\n",
8e24eea7 1079 __func__, (unsigned long long)block,
e5657933
AM
1080 bdevname(bdev, b));
1081 return -EIO;
1082 }
1083 block = index << sizebits;
1da177e4
LT
1084 /* Create a page with the proper size buffers.. */
1085 page = grow_dev_page(bdev, block, index, size);
1086 if (!page)
1087 return 0;
1088 unlock_page(page);
1089 page_cache_release(page);
1090 return 1;
1091}
1092
75c96f85 1093static struct buffer_head *
1da177e4
LT
1094__getblk_slow(struct block_device *bdev, sector_t block, int size)
1095{
1096 /* Size must be multiple of hard sectorsize */
e1defc4f 1097 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1098 (size < 512 || size > PAGE_SIZE))) {
1099 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1100 size);
e1defc4f
MP
1101 printk(KERN_ERR "logical block size: %d\n",
1102 bdev_logical_block_size(bdev));
1da177e4
LT
1103
1104 dump_stack();
1105 return NULL;
1106 }
1107
1108 for (;;) {
1109 struct buffer_head * bh;
e5657933 1110 int ret;
1da177e4
LT
1111
1112 bh = __find_get_block(bdev, block, size);
1113 if (bh)
1114 return bh;
1115
e5657933
AM
1116 ret = grow_buffers(bdev, block, size);
1117 if (ret < 0)
1118 return NULL;
1119 if (ret == 0)
1da177e4
LT
1120 free_more_memory();
1121 }
1122}
1123
1124/*
1125 * The relationship between dirty buffers and dirty pages:
1126 *
1127 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128 * the page is tagged dirty in its radix tree.
1129 *
1130 * At all times, the dirtiness of the buffers represents the dirtiness of
1131 * subsections of the page. If the page has buffers, the page dirty bit is
1132 * merely a hint about the true dirty state.
1133 *
1134 * When a page is set dirty in its entirety, all its buffers are marked dirty
1135 * (if the page has buffers).
1136 *
1137 * When a buffer is marked dirty, its page is dirtied, but the page's other
1138 * buffers are not.
1139 *
1140 * Also. When blockdev buffers are explicitly read with bread(), they
1141 * individually become uptodate. But their backing page remains not
1142 * uptodate - even if all of its buffers are uptodate. A subsequent
1143 * block_read_full_page() against that page will discover all the uptodate
1144 * buffers, will set the page uptodate and will perform no I/O.
1145 */
1146
1147/**
1148 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1149 * @bh: the buffer_head to mark dirty
1da177e4
LT
1150 *
1151 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152 * backing page dirty, then tag the page as dirty in its address_space's radix
1153 * tree and then attach the address_space's inode to its superblock's dirty
1154 * inode list.
1155 *
1156 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1157 * mapping->tree_lock and the global inode_lock.
1158 */
fc9b52cd 1159void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1160{
787d2214 1161 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1
LT
1162
1163 /*
1164 * Very *carefully* optimize the it-is-already-dirty case.
1165 *
1166 * Don't let the final "is it dirty" escape to before we
1167 * perhaps modified the buffer.
1168 */
1169 if (buffer_dirty(bh)) {
1170 smp_mb();
1171 if (buffer_dirty(bh))
1172 return;
1173 }
1174
a8e7d49a
LT
1175 if (!test_set_buffer_dirty(bh)) {
1176 struct page *page = bh->b_page;
8e9d78ed
LT
1177 if (!TestSetPageDirty(page)) {
1178 struct address_space *mapping = page_mapping(page);
1179 if (mapping)
1180 __set_page_dirty(page, mapping, 0);
1181 }
a8e7d49a 1182 }
1da177e4 1183}
1fe72eaa 1184EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1185
1186/*
1187 * Decrement a buffer_head's reference count. If all buffers against a page
1188 * have zero reference count, are clean and unlocked, and if the page is clean
1189 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1190 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1191 * a page but it ends up not being freed, and buffers may later be reattached).
1192 */
1193void __brelse(struct buffer_head * buf)
1194{
1195 if (atomic_read(&buf->b_count)) {
1196 put_bh(buf);
1197 return;
1198 }
5c752ad9 1199 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1200}
1fe72eaa 1201EXPORT_SYMBOL(__brelse);
1da177e4
LT
1202
1203/*
1204 * bforget() is like brelse(), except it discards any
1205 * potentially dirty data.
1206 */
1207void __bforget(struct buffer_head *bh)
1208{
1209 clear_buffer_dirty(bh);
535ee2fb 1210 if (bh->b_assoc_map) {
1da177e4
LT
1211 struct address_space *buffer_mapping = bh->b_page->mapping;
1212
1213 spin_lock(&buffer_mapping->private_lock);
1214 list_del_init(&bh->b_assoc_buffers);
58ff407b 1215 bh->b_assoc_map = NULL;
1da177e4
LT
1216 spin_unlock(&buffer_mapping->private_lock);
1217 }
1218 __brelse(bh);
1219}
1fe72eaa 1220EXPORT_SYMBOL(__bforget);
1da177e4
LT
1221
1222static struct buffer_head *__bread_slow(struct buffer_head *bh)
1223{
1224 lock_buffer(bh);
1225 if (buffer_uptodate(bh)) {
1226 unlock_buffer(bh);
1227 return bh;
1228 } else {
1229 get_bh(bh);
1230 bh->b_end_io = end_buffer_read_sync;
1231 submit_bh(READ, bh);
1232 wait_on_buffer(bh);
1233 if (buffer_uptodate(bh))
1234 return bh;
1235 }
1236 brelse(bh);
1237 return NULL;
1238}
1239
1240/*
1241 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1242 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1243 * refcount elevated by one when they're in an LRU. A buffer can only appear
1244 * once in a particular CPU's LRU. A single buffer can be present in multiple
1245 * CPU's LRUs at the same time.
1246 *
1247 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1248 * sb_find_get_block().
1249 *
1250 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1251 * a local interrupt disable for that.
1252 */
1253
1254#define BH_LRU_SIZE 8
1255
1256struct bh_lru {
1257 struct buffer_head *bhs[BH_LRU_SIZE];
1258};
1259
1260static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1261
1262#ifdef CONFIG_SMP
1263#define bh_lru_lock() local_irq_disable()
1264#define bh_lru_unlock() local_irq_enable()
1265#else
1266#define bh_lru_lock() preempt_disable()
1267#define bh_lru_unlock() preempt_enable()
1268#endif
1269
1270static inline void check_irqs_on(void)
1271{
1272#ifdef irqs_disabled
1273 BUG_ON(irqs_disabled());
1274#endif
1275}
1276
1277/*
1278 * The LRU management algorithm is dopey-but-simple. Sorry.
1279 */
1280static void bh_lru_install(struct buffer_head *bh)
1281{
1282 struct buffer_head *evictee = NULL;
1283 struct bh_lru *lru;
1284
1285 check_irqs_on();
1286 bh_lru_lock();
1287 lru = &__get_cpu_var(bh_lrus);
1288 if (lru->bhs[0] != bh) {
1289 struct buffer_head *bhs[BH_LRU_SIZE];
1290 int in;
1291 int out = 0;
1292
1293 get_bh(bh);
1294 bhs[out++] = bh;
1295 for (in = 0; in < BH_LRU_SIZE; in++) {
1296 struct buffer_head *bh2 = lru->bhs[in];
1297
1298 if (bh2 == bh) {
1299 __brelse(bh2);
1300 } else {
1301 if (out >= BH_LRU_SIZE) {
1302 BUG_ON(evictee != NULL);
1303 evictee = bh2;
1304 } else {
1305 bhs[out++] = bh2;
1306 }
1307 }
1308 }
1309 while (out < BH_LRU_SIZE)
1310 bhs[out++] = NULL;
1311 memcpy(lru->bhs, bhs, sizeof(bhs));
1312 }
1313 bh_lru_unlock();
1314
1315 if (evictee)
1316 __brelse(evictee);
1317}
1318
1319/*
1320 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1321 */
858119e1 1322static struct buffer_head *
3991d3bd 1323lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1324{
1325 struct buffer_head *ret = NULL;
1326 struct bh_lru *lru;
3991d3bd 1327 unsigned int i;
1da177e4
LT
1328
1329 check_irqs_on();
1330 bh_lru_lock();
1331 lru = &__get_cpu_var(bh_lrus);
1332 for (i = 0; i < BH_LRU_SIZE; i++) {
1333 struct buffer_head *bh = lru->bhs[i];
1334
1335 if (bh && bh->b_bdev == bdev &&
1336 bh->b_blocknr == block && bh->b_size == size) {
1337 if (i) {
1338 while (i) {
1339 lru->bhs[i] = lru->bhs[i - 1];
1340 i--;
1341 }
1342 lru->bhs[0] = bh;
1343 }
1344 get_bh(bh);
1345 ret = bh;
1346 break;
1347 }
1348 }
1349 bh_lru_unlock();
1350 return ret;
1351}
1352
1353/*
1354 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1355 * it in the LRU and mark it as accessed. If it is not present then return
1356 * NULL
1357 */
1358struct buffer_head *
3991d3bd 1359__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1360{
1361 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362
1363 if (bh == NULL) {
385fd4c5 1364 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1365 if (bh)
1366 bh_lru_install(bh);
1367 }
1368 if (bh)
1369 touch_buffer(bh);
1370 return bh;
1371}
1372EXPORT_SYMBOL(__find_get_block);
1373
1374/*
1375 * __getblk will locate (and, if necessary, create) the buffer_head
1376 * which corresponds to the passed block_device, block and size. The
1377 * returned buffer has its reference count incremented.
1378 *
1379 * __getblk() cannot fail - it just keeps trying. If you pass it an
1380 * illegal block number, __getblk() will happily return a buffer_head
1381 * which represents the non-existent block. Very weird.
1382 *
1383 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1384 * attempt is failing. FIXME, perhaps?
1385 */
1386struct buffer_head *
3991d3bd 1387__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1388{
1389 struct buffer_head *bh = __find_get_block(bdev, block, size);
1390
1391 might_sleep();
1392 if (bh == NULL)
1393 bh = __getblk_slow(bdev, block, size);
1394 return bh;
1395}
1396EXPORT_SYMBOL(__getblk);
1397
1398/*
1399 * Do async read-ahead on a buffer..
1400 */
3991d3bd 1401void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1402{
1403 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1404 if (likely(bh)) {
1405 ll_rw_block(READA, 1, &bh);
1406 brelse(bh);
1407 }
1da177e4
LT
1408}
1409EXPORT_SYMBOL(__breadahead);
1410
1411/**
1412 * __bread() - reads a specified block and returns the bh
67be2dd1 1413 * @bdev: the block_device to read from
1da177e4
LT
1414 * @block: number of block
1415 * @size: size (in bytes) to read
1416 *
1417 * Reads a specified block, and returns buffer head that contains it.
1418 * It returns NULL if the block was unreadable.
1419 */
1420struct buffer_head *
3991d3bd 1421__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1422{
1423 struct buffer_head *bh = __getblk(bdev, block, size);
1424
a3e713b5 1425 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1426 bh = __bread_slow(bh);
1427 return bh;
1428}
1429EXPORT_SYMBOL(__bread);
1430
1431/*
1432 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1433 * This doesn't race because it runs in each cpu either in irq
1434 * or with preempt disabled.
1435 */
1436static void invalidate_bh_lru(void *arg)
1437{
1438 struct bh_lru *b = &get_cpu_var(bh_lrus);
1439 int i;
1440
1441 for (i = 0; i < BH_LRU_SIZE; i++) {
1442 brelse(b->bhs[i]);
1443 b->bhs[i] = NULL;
1444 }
1445 put_cpu_var(bh_lrus);
1446}
1447
f9a14399 1448void invalidate_bh_lrus(void)
1da177e4 1449{
15c8b6c1 1450 on_each_cpu(invalidate_bh_lru, NULL, 1);
1da177e4 1451}
9db5579b 1452EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1453
1454void set_bh_page(struct buffer_head *bh,
1455 struct page *page, unsigned long offset)
1456{
1457 bh->b_page = page;
e827f923 1458 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1459 if (PageHighMem(page))
1460 /*
1461 * This catches illegal uses and preserves the offset:
1462 */
1463 bh->b_data = (char *)(0 + offset);
1464 else
1465 bh->b_data = page_address(page) + offset;
1466}
1467EXPORT_SYMBOL(set_bh_page);
1468
1469/*
1470 * Called when truncating a buffer on a page completely.
1471 */
858119e1 1472static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1473{
1474 lock_buffer(bh);
1475 clear_buffer_dirty(bh);
1476 bh->b_bdev = NULL;
1477 clear_buffer_mapped(bh);
1478 clear_buffer_req(bh);
1479 clear_buffer_new(bh);
1480 clear_buffer_delay(bh);
33a266dd 1481 clear_buffer_unwritten(bh);
1da177e4
LT
1482 unlock_buffer(bh);
1483}
1484
1da177e4
LT
1485/**
1486 * block_invalidatepage - invalidate part of all of a buffer-backed page
1487 *
1488 * @page: the page which is affected
1489 * @offset: the index of the truncation point
1490 *
1491 * block_invalidatepage() is called when all or part of the page has become
1492 * invalidatedby a truncate operation.
1493 *
1494 * block_invalidatepage() does not have to release all buffers, but it must
1495 * ensure that no dirty buffer is left outside @offset and that no I/O
1496 * is underway against any of the blocks which are outside the truncation
1497 * point. Because the caller is about to free (and possibly reuse) those
1498 * blocks on-disk.
1499 */
2ff28e22 1500void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1501{
1502 struct buffer_head *head, *bh, *next;
1503 unsigned int curr_off = 0;
1da177e4
LT
1504
1505 BUG_ON(!PageLocked(page));
1506 if (!page_has_buffers(page))
1507 goto out;
1508
1509 head = page_buffers(page);
1510 bh = head;
1511 do {
1512 unsigned int next_off = curr_off + bh->b_size;
1513 next = bh->b_this_page;
1514
1515 /*
1516 * is this block fully invalidated?
1517 */
1518 if (offset <= curr_off)
1519 discard_buffer(bh);
1520 curr_off = next_off;
1521 bh = next;
1522 } while (bh != head);
1523
1524 /*
1525 * We release buffers only if the entire page is being invalidated.
1526 * The get_block cached value has been unconditionally invalidated,
1527 * so real IO is not possible anymore.
1528 */
1529 if (offset == 0)
2ff28e22 1530 try_to_release_page(page, 0);
1da177e4 1531out:
2ff28e22 1532 return;
1da177e4
LT
1533}
1534EXPORT_SYMBOL(block_invalidatepage);
1535
1536/*
1537 * We attach and possibly dirty the buffers atomically wrt
1538 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1539 * is already excluded via the page lock.
1540 */
1541void create_empty_buffers(struct page *page,
1542 unsigned long blocksize, unsigned long b_state)
1543{
1544 struct buffer_head *bh, *head, *tail;
1545
1546 head = alloc_page_buffers(page, blocksize, 1);
1547 bh = head;
1548 do {
1549 bh->b_state |= b_state;
1550 tail = bh;
1551 bh = bh->b_this_page;
1552 } while (bh);
1553 tail->b_this_page = head;
1554
1555 spin_lock(&page->mapping->private_lock);
1556 if (PageUptodate(page) || PageDirty(page)) {
1557 bh = head;
1558 do {
1559 if (PageDirty(page))
1560 set_buffer_dirty(bh);
1561 if (PageUptodate(page))
1562 set_buffer_uptodate(bh);
1563 bh = bh->b_this_page;
1564 } while (bh != head);
1565 }
1566 attach_page_buffers(page, head);
1567 spin_unlock(&page->mapping->private_lock);
1568}
1569EXPORT_SYMBOL(create_empty_buffers);
1570
1571/*
1572 * We are taking a block for data and we don't want any output from any
1573 * buffer-cache aliases starting from return from that function and
1574 * until the moment when something will explicitly mark the buffer
1575 * dirty (hopefully that will not happen until we will free that block ;-)
1576 * We don't even need to mark it not-uptodate - nobody can expect
1577 * anything from a newly allocated buffer anyway. We used to used
1578 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1579 * don't want to mark the alias unmapped, for example - it would confuse
1580 * anyone who might pick it with bread() afterwards...
1581 *
1582 * Also.. Note that bforget() doesn't lock the buffer. So there can
1583 * be writeout I/O going on against recently-freed buffers. We don't
1584 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1585 * only if we really need to. That happens here.
1586 */
1587void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1588{
1589 struct buffer_head *old_bh;
1590
1591 might_sleep();
1592
385fd4c5 1593 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1594 if (old_bh) {
1595 clear_buffer_dirty(old_bh);
1596 wait_on_buffer(old_bh);
1597 clear_buffer_req(old_bh);
1598 __brelse(old_bh);
1599 }
1600}
1601EXPORT_SYMBOL(unmap_underlying_metadata);
1602
1603/*
1604 * NOTE! All mapped/uptodate combinations are valid:
1605 *
1606 * Mapped Uptodate Meaning
1607 *
1608 * No No "unknown" - must do get_block()
1609 * No Yes "hole" - zero-filled
1610 * Yes No "allocated" - allocated on disk, not read in
1611 * Yes Yes "valid" - allocated and up-to-date in memory.
1612 *
1613 * "Dirty" is valid only with the last case (mapped+uptodate).
1614 */
1615
1616/*
1617 * While block_write_full_page is writing back the dirty buffers under
1618 * the page lock, whoever dirtied the buffers may decide to clean them
1619 * again at any time. We handle that by only looking at the buffer
1620 * state inside lock_buffer().
1621 *
1622 * If block_write_full_page() is called for regular writeback
1623 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1624 * locked buffer. This only can happen if someone has written the buffer
1625 * directly, with submit_bh(). At the address_space level PageWriteback
1626 * prevents this contention from occurring.
6e34eedd
TT
1627 *
1628 * If block_write_full_page() is called with wbc->sync_mode ==
1629 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1630 * causes the writes to be flagged as synchronous writes, but the
1631 * block device queue will NOT be unplugged, since usually many pages
1632 * will be pushed to the out before the higher-level caller actually
1633 * waits for the writes to be completed. The various wait functions,
1634 * such as wait_on_writeback_range() will ultimately call sync_page()
1635 * which will ultimately call blk_run_backing_dev(), which will end up
1636 * unplugging the device queue.
1da177e4
LT
1637 */
1638static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1639 get_block_t *get_block, struct writeback_control *wbc,
1640 bh_end_io_t *handler)
1da177e4
LT
1641{
1642 int err;
1643 sector_t block;
1644 sector_t last_block;
f0fbd5fc 1645 struct buffer_head *bh, *head;
b0cf2321 1646 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4 1647 int nr_underway = 0;
6e34eedd
TT
1648 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1649 WRITE_SYNC_PLUG : WRITE);
1da177e4
LT
1650
1651 BUG_ON(!PageLocked(page));
1652
1653 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1654
1655 if (!page_has_buffers(page)) {
b0cf2321 1656 create_empty_buffers(page, blocksize,
1da177e4
LT
1657 (1 << BH_Dirty)|(1 << BH_Uptodate));
1658 }
1659
1660 /*
1661 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1662 * here, and the (potentially unmapped) buffers may become dirty at
1663 * any time. If a buffer becomes dirty here after we've inspected it
1664 * then we just miss that fact, and the page stays dirty.
1665 *
1666 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1667 * handle that here by just cleaning them.
1668 */
1669
54b21a79 1670 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1671 head = page_buffers(page);
1672 bh = head;
1673
1674 /*
1675 * Get all the dirty buffers mapped to disk addresses and
1676 * handle any aliases from the underlying blockdev's mapping.
1677 */
1678 do {
1679 if (block > last_block) {
1680 /*
1681 * mapped buffers outside i_size will occur, because
1682 * this page can be outside i_size when there is a
1683 * truncate in progress.
1684 */
1685 /*
1686 * The buffer was zeroed by block_write_full_page()
1687 */
1688 clear_buffer_dirty(bh);
1689 set_buffer_uptodate(bh);
29a814d2
AT
1690 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1691 buffer_dirty(bh)) {
b0cf2321 1692 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1693 err = get_block(inode, block, bh, 1);
1694 if (err)
1695 goto recover;
29a814d2 1696 clear_buffer_delay(bh);
1da177e4
LT
1697 if (buffer_new(bh)) {
1698 /* blockdev mappings never come here */
1699 clear_buffer_new(bh);
1700 unmap_underlying_metadata(bh->b_bdev,
1701 bh->b_blocknr);
1702 }
1703 }
1704 bh = bh->b_this_page;
1705 block++;
1706 } while (bh != head);
1707
1708 do {
1da177e4
LT
1709 if (!buffer_mapped(bh))
1710 continue;
1711 /*
1712 * If it's a fully non-blocking write attempt and we cannot
1713 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1714 * potentially cause a busy-wait loop from writeback threads
1715 * and kswapd activity, but those code paths have their own
1716 * higher-level throttling.
1da177e4
LT
1717 */
1718 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1719 lock_buffer(bh);
ca5de404 1720 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1721 redirty_page_for_writepage(wbc, page);
1722 continue;
1723 }
1724 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1725 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1726 } else {
1727 unlock_buffer(bh);
1728 }
1729 } while ((bh = bh->b_this_page) != head);
1730
1731 /*
1732 * The page and its buffers are protected by PageWriteback(), so we can
1733 * drop the bh refcounts early.
1734 */
1735 BUG_ON(PageWriteback(page));
1736 set_page_writeback(page);
1da177e4
LT
1737
1738 do {
1739 struct buffer_head *next = bh->b_this_page;
1740 if (buffer_async_write(bh)) {
a64c8610 1741 submit_bh(write_op, bh);
1da177e4
LT
1742 nr_underway++;
1743 }
1da177e4
LT
1744 bh = next;
1745 } while (bh != head);
05937baa 1746 unlock_page(page);
1da177e4
LT
1747
1748 err = 0;
1749done:
1750 if (nr_underway == 0) {
1751 /*
1752 * The page was marked dirty, but the buffers were
1753 * clean. Someone wrote them back by hand with
1754 * ll_rw_block/submit_bh. A rare case.
1755 */
1da177e4 1756 end_page_writeback(page);
3d67f2d7 1757
1da177e4
LT
1758 /*
1759 * The page and buffer_heads can be released at any time from
1760 * here on.
1761 */
1da177e4
LT
1762 }
1763 return err;
1764
1765recover:
1766 /*
1767 * ENOSPC, or some other error. We may already have added some
1768 * blocks to the file, so we need to write these out to avoid
1769 * exposing stale data.
1770 * The page is currently locked and not marked for writeback
1771 */
1772 bh = head;
1773 /* Recovery: lock and submit the mapped buffers */
1774 do {
29a814d2
AT
1775 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1776 !buffer_delay(bh)) {
1da177e4 1777 lock_buffer(bh);
35c80d5f 1778 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1779 } else {
1780 /*
1781 * The buffer may have been set dirty during
1782 * attachment to a dirty page.
1783 */
1784 clear_buffer_dirty(bh);
1785 }
1786 } while ((bh = bh->b_this_page) != head);
1787 SetPageError(page);
1788 BUG_ON(PageWriteback(page));
7e4c3690 1789 mapping_set_error(page->mapping, err);
1da177e4 1790 set_page_writeback(page);
1da177e4
LT
1791 do {
1792 struct buffer_head *next = bh->b_this_page;
1793 if (buffer_async_write(bh)) {
1794 clear_buffer_dirty(bh);
a64c8610 1795 submit_bh(write_op, bh);
1da177e4
LT
1796 nr_underway++;
1797 }
1da177e4
LT
1798 bh = next;
1799 } while (bh != head);
ffda9d30 1800 unlock_page(page);
1da177e4
LT
1801 goto done;
1802}
1803
afddba49
NP
1804/*
1805 * If a page has any new buffers, zero them out here, and mark them uptodate
1806 * and dirty so they'll be written out (in order to prevent uninitialised
1807 * block data from leaking). And clear the new bit.
1808 */
1809void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1810{
1811 unsigned int block_start, block_end;
1812 struct buffer_head *head, *bh;
1813
1814 BUG_ON(!PageLocked(page));
1815 if (!page_has_buffers(page))
1816 return;
1817
1818 bh = head = page_buffers(page);
1819 block_start = 0;
1820 do {
1821 block_end = block_start + bh->b_size;
1822
1823 if (buffer_new(bh)) {
1824 if (block_end > from && block_start < to) {
1825 if (!PageUptodate(page)) {
1826 unsigned start, size;
1827
1828 start = max(from, block_start);
1829 size = min(to, block_end) - start;
1830
eebd2aa3 1831 zero_user(page, start, size);
afddba49
NP
1832 set_buffer_uptodate(bh);
1833 }
1834
1835 clear_buffer_new(bh);
1836 mark_buffer_dirty(bh);
1837 }
1838 }
1839
1840 block_start = block_end;
1841 bh = bh->b_this_page;
1842 } while (bh != head);
1843}
1844EXPORT_SYMBOL(page_zero_new_buffers);
1845
1da177e4
LT
1846static int __block_prepare_write(struct inode *inode, struct page *page,
1847 unsigned from, unsigned to, get_block_t *get_block)
1848{
1849 unsigned block_start, block_end;
1850 sector_t block;
1851 int err = 0;
1852 unsigned blocksize, bbits;
1853 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1854
1855 BUG_ON(!PageLocked(page));
1856 BUG_ON(from > PAGE_CACHE_SIZE);
1857 BUG_ON(to > PAGE_CACHE_SIZE);
1858 BUG_ON(from > to);
1859
1860 blocksize = 1 << inode->i_blkbits;
1861 if (!page_has_buffers(page))
1862 create_empty_buffers(page, blocksize, 0);
1863 head = page_buffers(page);
1864
1865 bbits = inode->i_blkbits;
1866 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1867
1868 for(bh = head, block_start = 0; bh != head || !block_start;
1869 block++, block_start=block_end, bh = bh->b_this_page) {
1870 block_end = block_start + blocksize;
1871 if (block_end <= from || block_start >= to) {
1872 if (PageUptodate(page)) {
1873 if (!buffer_uptodate(bh))
1874 set_buffer_uptodate(bh);
1875 }
1876 continue;
1877 }
1878 if (buffer_new(bh))
1879 clear_buffer_new(bh);
1880 if (!buffer_mapped(bh)) {
b0cf2321 1881 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1882 err = get_block(inode, block, bh, 1);
1883 if (err)
f3ddbdc6 1884 break;
1da177e4 1885 if (buffer_new(bh)) {
1da177e4
LT
1886 unmap_underlying_metadata(bh->b_bdev,
1887 bh->b_blocknr);
1888 if (PageUptodate(page)) {
637aff46 1889 clear_buffer_new(bh);
1da177e4 1890 set_buffer_uptodate(bh);
637aff46 1891 mark_buffer_dirty(bh);
1da177e4
LT
1892 continue;
1893 }
eebd2aa3
CL
1894 if (block_end > to || block_start < from)
1895 zero_user_segments(page,
1896 to, block_end,
1897 block_start, from);
1da177e4
LT
1898 continue;
1899 }
1900 }
1901 if (PageUptodate(page)) {
1902 if (!buffer_uptodate(bh))
1903 set_buffer_uptodate(bh);
1904 continue;
1905 }
1906 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1907 !buffer_unwritten(bh) &&
1da177e4
LT
1908 (block_start < from || block_end > to)) {
1909 ll_rw_block(READ, 1, &bh);
1910 *wait_bh++=bh;
1911 }
1912 }
1913 /*
1914 * If we issued read requests - let them complete.
1915 */
1916 while(wait_bh > wait) {
1917 wait_on_buffer(*--wait_bh);
1918 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1919 err = -EIO;
1da177e4 1920 }
afddba49
NP
1921 if (unlikely(err))
1922 page_zero_new_buffers(page, from, to);
1da177e4
LT
1923 return err;
1924}
1925
1926static int __block_commit_write(struct inode *inode, struct page *page,
1927 unsigned from, unsigned to)
1928{
1929 unsigned block_start, block_end;
1930 int partial = 0;
1931 unsigned blocksize;
1932 struct buffer_head *bh, *head;
1933
1934 blocksize = 1 << inode->i_blkbits;
1935
1936 for(bh = head = page_buffers(page), block_start = 0;
1937 bh != head || !block_start;
1938 block_start=block_end, bh = bh->b_this_page) {
1939 block_end = block_start + blocksize;
1940 if (block_end <= from || block_start >= to) {
1941 if (!buffer_uptodate(bh))
1942 partial = 1;
1943 } else {
1944 set_buffer_uptodate(bh);
1945 mark_buffer_dirty(bh);
1946 }
afddba49 1947 clear_buffer_new(bh);
1da177e4
LT
1948 }
1949
1950 /*
1951 * If this is a partial write which happened to make all buffers
1952 * uptodate then we can optimize away a bogus readpage() for
1953 * the next read(). Here we 'discover' whether the page went
1954 * uptodate as a result of this (potentially partial) write.
1955 */
1956 if (!partial)
1957 SetPageUptodate(page);
1958 return 0;
1959}
1960
afddba49
NP
1961/*
1962 * block_write_begin takes care of the basic task of block allocation and
1963 * bringing partial write blocks uptodate first.
1964 *
1965 * If *pagep is not NULL, then block_write_begin uses the locked page
1966 * at *pagep rather than allocating its own. In this case, the page will
1967 * not be unlocked or deallocated on failure.
1968 */
1969int block_write_begin(struct file *file, struct address_space *mapping,
1970 loff_t pos, unsigned len, unsigned flags,
1971 struct page **pagep, void **fsdata,
1972 get_block_t *get_block)
1973{
1974 struct inode *inode = mapping->host;
1975 int status = 0;
1976 struct page *page;
1977 pgoff_t index;
1978 unsigned start, end;
1979 int ownpage = 0;
1980
1981 index = pos >> PAGE_CACHE_SHIFT;
1982 start = pos & (PAGE_CACHE_SIZE - 1);
1983 end = start + len;
1984
1985 page = *pagep;
1986 if (page == NULL) {
1987 ownpage = 1;
54566b2c 1988 page = grab_cache_page_write_begin(mapping, index, flags);
afddba49
NP
1989 if (!page) {
1990 status = -ENOMEM;
1991 goto out;
1992 }
1993 *pagep = page;
1994 } else
1995 BUG_ON(!PageLocked(page));
1996
1997 status = __block_prepare_write(inode, page, start, end, get_block);
1998 if (unlikely(status)) {
1999 ClearPageUptodate(page);
2000
2001 if (ownpage) {
2002 unlock_page(page);
2003 page_cache_release(page);
2004 *pagep = NULL;
2005
2006 /*
2007 * prepare_write() may have instantiated a few blocks
2008 * outside i_size. Trim these off again. Don't need
2009 * i_size_read because we hold i_mutex.
2010 */
2011 if (pos + len > inode->i_size)
2012 vmtruncate(inode, inode->i_size);
2013 }
afddba49
NP
2014 }
2015
2016out:
2017 return status;
2018}
2019EXPORT_SYMBOL(block_write_begin);
2020
2021int block_write_end(struct file *file, struct address_space *mapping,
2022 loff_t pos, unsigned len, unsigned copied,
2023 struct page *page, void *fsdata)
2024{
2025 struct inode *inode = mapping->host;
2026 unsigned start;
2027
2028 start = pos & (PAGE_CACHE_SIZE - 1);
2029
2030 if (unlikely(copied < len)) {
2031 /*
2032 * The buffers that were written will now be uptodate, so we
2033 * don't have to worry about a readpage reading them and
2034 * overwriting a partial write. However if we have encountered
2035 * a short write and only partially written into a buffer, it
2036 * will not be marked uptodate, so a readpage might come in and
2037 * destroy our partial write.
2038 *
2039 * Do the simplest thing, and just treat any short write to a
2040 * non uptodate page as a zero-length write, and force the
2041 * caller to redo the whole thing.
2042 */
2043 if (!PageUptodate(page))
2044 copied = 0;
2045
2046 page_zero_new_buffers(page, start+copied, start+len);
2047 }
2048 flush_dcache_page(page);
2049
2050 /* This could be a short (even 0-length) commit */
2051 __block_commit_write(inode, page, start, start+copied);
2052
2053 return copied;
2054}
2055EXPORT_SYMBOL(block_write_end);
2056
2057int generic_write_end(struct file *file, struct address_space *mapping,
2058 loff_t pos, unsigned len, unsigned copied,
2059 struct page *page, void *fsdata)
2060{
2061 struct inode *inode = mapping->host;
c7d206b3 2062 int i_size_changed = 0;
afddba49
NP
2063
2064 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2065
2066 /*
2067 * No need to use i_size_read() here, the i_size
2068 * cannot change under us because we hold i_mutex.
2069 *
2070 * But it's important to update i_size while still holding page lock:
2071 * page writeout could otherwise come in and zero beyond i_size.
2072 */
2073 if (pos+copied > inode->i_size) {
2074 i_size_write(inode, pos+copied);
c7d206b3 2075 i_size_changed = 1;
afddba49
NP
2076 }
2077
2078 unlock_page(page);
2079 page_cache_release(page);
2080
c7d206b3
JK
2081 /*
2082 * Don't mark the inode dirty under page lock. First, it unnecessarily
2083 * makes the holding time of page lock longer. Second, it forces lock
2084 * ordering of page lock and transaction start for journaling
2085 * filesystems.
2086 */
2087 if (i_size_changed)
2088 mark_inode_dirty(inode);
2089
afddba49
NP
2090 return copied;
2091}
2092EXPORT_SYMBOL(generic_write_end);
2093
8ab22b9a
HH
2094/*
2095 * block_is_partially_uptodate checks whether buffers within a page are
2096 * uptodate or not.
2097 *
2098 * Returns true if all buffers which correspond to a file portion
2099 * we want to read are uptodate.
2100 */
2101int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2102 unsigned long from)
2103{
2104 struct inode *inode = page->mapping->host;
2105 unsigned block_start, block_end, blocksize;
2106 unsigned to;
2107 struct buffer_head *bh, *head;
2108 int ret = 1;
2109
2110 if (!page_has_buffers(page))
2111 return 0;
2112
2113 blocksize = 1 << inode->i_blkbits;
2114 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2115 to = from + to;
2116 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2117 return 0;
2118
2119 head = page_buffers(page);
2120 bh = head;
2121 block_start = 0;
2122 do {
2123 block_end = block_start + blocksize;
2124 if (block_end > from && block_start < to) {
2125 if (!buffer_uptodate(bh)) {
2126 ret = 0;
2127 break;
2128 }
2129 if (block_end >= to)
2130 break;
2131 }
2132 block_start = block_end;
2133 bh = bh->b_this_page;
2134 } while (bh != head);
2135
2136 return ret;
2137}
2138EXPORT_SYMBOL(block_is_partially_uptodate);
2139
1da177e4
LT
2140/*
2141 * Generic "read page" function for block devices that have the normal
2142 * get_block functionality. This is most of the block device filesystems.
2143 * Reads the page asynchronously --- the unlock_buffer() and
2144 * set/clear_buffer_uptodate() functions propagate buffer state into the
2145 * page struct once IO has completed.
2146 */
2147int block_read_full_page(struct page *page, get_block_t *get_block)
2148{
2149 struct inode *inode = page->mapping->host;
2150 sector_t iblock, lblock;
2151 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2152 unsigned int blocksize;
2153 int nr, i;
2154 int fully_mapped = 1;
2155
cd7619d6 2156 BUG_ON(!PageLocked(page));
1da177e4
LT
2157 blocksize = 1 << inode->i_blkbits;
2158 if (!page_has_buffers(page))
2159 create_empty_buffers(page, blocksize, 0);
2160 head = page_buffers(page);
2161
2162 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2163 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2164 bh = head;
2165 nr = 0;
2166 i = 0;
2167
2168 do {
2169 if (buffer_uptodate(bh))
2170 continue;
2171
2172 if (!buffer_mapped(bh)) {
c64610ba
AM
2173 int err = 0;
2174
1da177e4
LT
2175 fully_mapped = 0;
2176 if (iblock < lblock) {
b0cf2321 2177 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2178 err = get_block(inode, iblock, bh, 0);
2179 if (err)
1da177e4
LT
2180 SetPageError(page);
2181 }
2182 if (!buffer_mapped(bh)) {
eebd2aa3 2183 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2184 if (!err)
2185 set_buffer_uptodate(bh);
1da177e4
LT
2186 continue;
2187 }
2188 /*
2189 * get_block() might have updated the buffer
2190 * synchronously
2191 */
2192 if (buffer_uptodate(bh))
2193 continue;
2194 }
2195 arr[nr++] = bh;
2196 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2197
2198 if (fully_mapped)
2199 SetPageMappedToDisk(page);
2200
2201 if (!nr) {
2202 /*
2203 * All buffers are uptodate - we can set the page uptodate
2204 * as well. But not if get_block() returned an error.
2205 */
2206 if (!PageError(page))
2207 SetPageUptodate(page);
2208 unlock_page(page);
2209 return 0;
2210 }
2211
2212 /* Stage two: lock the buffers */
2213 for (i = 0; i < nr; i++) {
2214 bh = arr[i];
2215 lock_buffer(bh);
2216 mark_buffer_async_read(bh);
2217 }
2218
2219 /*
2220 * Stage 3: start the IO. Check for uptodateness
2221 * inside the buffer lock in case another process reading
2222 * the underlying blockdev brought it uptodate (the sct fix).
2223 */
2224 for (i = 0; i < nr; i++) {
2225 bh = arr[i];
2226 if (buffer_uptodate(bh))
2227 end_buffer_async_read(bh, 1);
2228 else
2229 submit_bh(READ, bh);
2230 }
2231 return 0;
2232}
1fe72eaa 2233EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2234
2235/* utility function for filesystems that need to do work on expanding
89e10787 2236 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2237 * deal with the hole.
2238 */
89e10787 2239int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2240{
2241 struct address_space *mapping = inode->i_mapping;
2242 struct page *page;
89e10787 2243 void *fsdata;
1da177e4
LT
2244 int err;
2245
c08d3b0e 2246 err = inode_newsize_ok(inode, size);
2247 if (err)
1da177e4
LT
2248 goto out;
2249
89e10787
NP
2250 err = pagecache_write_begin(NULL, mapping, size, 0,
2251 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2252 &page, &fsdata);
2253 if (err)
05eb0b51 2254 goto out;
05eb0b51 2255
89e10787
NP
2256 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2257 BUG_ON(err > 0);
05eb0b51 2258
1da177e4
LT
2259out:
2260 return err;
2261}
1fe72eaa 2262EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2263
f1e3af72
AB
2264static int cont_expand_zero(struct file *file, struct address_space *mapping,
2265 loff_t pos, loff_t *bytes)
1da177e4 2266{
1da177e4 2267 struct inode *inode = mapping->host;
1da177e4 2268 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2269 struct page *page;
2270 void *fsdata;
2271 pgoff_t index, curidx;
2272 loff_t curpos;
2273 unsigned zerofrom, offset, len;
2274 int err = 0;
1da177e4 2275
89e10787
NP
2276 index = pos >> PAGE_CACHE_SHIFT;
2277 offset = pos & ~PAGE_CACHE_MASK;
2278
2279 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2280 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2281 if (zerofrom & (blocksize-1)) {
2282 *bytes |= (blocksize-1);
2283 (*bytes)++;
2284 }
89e10787 2285 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2286
89e10787
NP
2287 err = pagecache_write_begin(file, mapping, curpos, len,
2288 AOP_FLAG_UNINTERRUPTIBLE,
2289 &page, &fsdata);
2290 if (err)
2291 goto out;
eebd2aa3 2292 zero_user(page, zerofrom, len);
89e10787
NP
2293 err = pagecache_write_end(file, mapping, curpos, len, len,
2294 page, fsdata);
2295 if (err < 0)
2296 goto out;
2297 BUG_ON(err != len);
2298 err = 0;
061e9746
OH
2299
2300 balance_dirty_pages_ratelimited(mapping);
89e10787 2301 }
1da177e4 2302
89e10787
NP
2303 /* page covers the boundary, find the boundary offset */
2304 if (index == curidx) {
2305 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2306 /* if we will expand the thing last block will be filled */
89e10787
NP
2307 if (offset <= zerofrom) {
2308 goto out;
2309 }
2310 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2311 *bytes |= (blocksize-1);
2312 (*bytes)++;
2313 }
89e10787 2314 len = offset - zerofrom;
1da177e4 2315
89e10787
NP
2316 err = pagecache_write_begin(file, mapping, curpos, len,
2317 AOP_FLAG_UNINTERRUPTIBLE,
2318 &page, &fsdata);
2319 if (err)
2320 goto out;
eebd2aa3 2321 zero_user(page, zerofrom, len);
89e10787
NP
2322 err = pagecache_write_end(file, mapping, curpos, len, len,
2323 page, fsdata);
2324 if (err < 0)
2325 goto out;
2326 BUG_ON(err != len);
2327 err = 0;
1da177e4 2328 }
89e10787
NP
2329out:
2330 return err;
2331}
2332
2333/*
2334 * For moronic filesystems that do not allow holes in file.
2335 * We may have to extend the file.
2336 */
2337int cont_write_begin(struct file *file, struct address_space *mapping,
2338 loff_t pos, unsigned len, unsigned flags,
2339 struct page **pagep, void **fsdata,
2340 get_block_t *get_block, loff_t *bytes)
2341{
2342 struct inode *inode = mapping->host;
2343 unsigned blocksize = 1 << inode->i_blkbits;
2344 unsigned zerofrom;
2345 int err;
2346
2347 err = cont_expand_zero(file, mapping, pos, bytes);
2348 if (err)
2349 goto out;
2350
2351 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2352 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2353 *bytes |= (blocksize-1);
2354 (*bytes)++;
1da177e4 2355 }
1da177e4 2356
89e10787
NP
2357 *pagep = NULL;
2358 err = block_write_begin(file, mapping, pos, len,
2359 flags, pagep, fsdata, get_block);
1da177e4 2360out:
89e10787 2361 return err;
1da177e4 2362}
1fe72eaa 2363EXPORT_SYMBOL(cont_write_begin);
1da177e4
LT
2364
2365int block_prepare_write(struct page *page, unsigned from, unsigned to,
2366 get_block_t *get_block)
2367{
2368 struct inode *inode = page->mapping->host;
2369 int err = __block_prepare_write(inode, page, from, to, get_block);
2370 if (err)
2371 ClearPageUptodate(page);
2372 return err;
2373}
1fe72eaa 2374EXPORT_SYMBOL(block_prepare_write);
1da177e4
LT
2375
2376int block_commit_write(struct page *page, unsigned from, unsigned to)
2377{
2378 struct inode *inode = page->mapping->host;
2379 __block_commit_write(inode,page,from,to);
2380 return 0;
2381}
1fe72eaa 2382EXPORT_SYMBOL(block_commit_write);
1da177e4 2383
54171690
DC
2384/*
2385 * block_page_mkwrite() is not allowed to change the file size as it gets
2386 * called from a page fault handler when a page is first dirtied. Hence we must
2387 * be careful to check for EOF conditions here. We set the page up correctly
2388 * for a written page which means we get ENOSPC checking when writing into
2389 * holes and correct delalloc and unwritten extent mapping on filesystems that
2390 * support these features.
2391 *
2392 * We are not allowed to take the i_mutex here so we have to play games to
2393 * protect against truncate races as the page could now be beyond EOF. Because
2394 * vmtruncate() writes the inode size before removing pages, once we have the
2395 * page lock we can determine safely if the page is beyond EOF. If it is not
2396 * beyond EOF, then the page is guaranteed safe against truncation until we
2397 * unlock the page.
2398 */
2399int
c2ec175c 2400block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
54171690
DC
2401 get_block_t get_block)
2402{
c2ec175c 2403 struct page *page = vmf->page;
54171690
DC
2404 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2405 unsigned long end;
2406 loff_t size;
56a76f82 2407 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
54171690
DC
2408
2409 lock_page(page);
2410 size = i_size_read(inode);
2411 if ((page->mapping != inode->i_mapping) ||
18336338 2412 (page_offset(page) > size)) {
54171690 2413 /* page got truncated out from underneath us */
b827e496
NP
2414 unlock_page(page);
2415 goto out;
54171690
DC
2416 }
2417
2418 /* page is wholly or partially inside EOF */
2419 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2420 end = size & ~PAGE_CACHE_MASK;
2421 else
2422 end = PAGE_CACHE_SIZE;
2423
2424 ret = block_prepare_write(page, 0, end, get_block);
2425 if (!ret)
2426 ret = block_commit_write(page, 0, end);
2427
56a76f82 2428 if (unlikely(ret)) {
b827e496 2429 unlock_page(page);
56a76f82
NP
2430 if (ret == -ENOMEM)
2431 ret = VM_FAULT_OOM;
2432 else /* -ENOSPC, -EIO, etc */
2433 ret = VM_FAULT_SIGBUS;
b827e496
NP
2434 } else
2435 ret = VM_FAULT_LOCKED;
c2ec175c 2436
b827e496 2437out:
54171690
DC
2438 return ret;
2439}
1fe72eaa 2440EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2441
2442/*
03158cd7 2443 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2444 * immediately, while under the page lock. So it needs a special end_io
2445 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2446 */
2447static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2448{
68671f35 2449 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2450}
2451
03158cd7
NP
2452/*
2453 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2454 * the page (converting it to circular linked list and taking care of page
2455 * dirty races).
2456 */
2457static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2458{
2459 struct buffer_head *bh;
2460
2461 BUG_ON(!PageLocked(page));
2462
2463 spin_lock(&page->mapping->private_lock);
2464 bh = head;
2465 do {
2466 if (PageDirty(page))
2467 set_buffer_dirty(bh);
2468 if (!bh->b_this_page)
2469 bh->b_this_page = head;
2470 bh = bh->b_this_page;
2471 } while (bh != head);
2472 attach_page_buffers(page, head);
2473 spin_unlock(&page->mapping->private_lock);
2474}
2475
1da177e4
LT
2476/*
2477 * On entry, the page is fully not uptodate.
2478 * On exit the page is fully uptodate in the areas outside (from,to)
2479 */
03158cd7
NP
2480int nobh_write_begin(struct file *file, struct address_space *mapping,
2481 loff_t pos, unsigned len, unsigned flags,
2482 struct page **pagep, void **fsdata,
1da177e4
LT
2483 get_block_t *get_block)
2484{
03158cd7 2485 struct inode *inode = mapping->host;
1da177e4
LT
2486 const unsigned blkbits = inode->i_blkbits;
2487 const unsigned blocksize = 1 << blkbits;
a4b0672d 2488 struct buffer_head *head, *bh;
03158cd7
NP
2489 struct page *page;
2490 pgoff_t index;
2491 unsigned from, to;
1da177e4 2492 unsigned block_in_page;
a4b0672d 2493 unsigned block_start, block_end;
1da177e4 2494 sector_t block_in_file;
1da177e4 2495 int nr_reads = 0;
1da177e4
LT
2496 int ret = 0;
2497 int is_mapped_to_disk = 1;
1da177e4 2498
03158cd7
NP
2499 index = pos >> PAGE_CACHE_SHIFT;
2500 from = pos & (PAGE_CACHE_SIZE - 1);
2501 to = from + len;
2502
54566b2c 2503 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2504 if (!page)
2505 return -ENOMEM;
2506 *pagep = page;
2507 *fsdata = NULL;
2508
2509 if (page_has_buffers(page)) {
2510 unlock_page(page);
2511 page_cache_release(page);
2512 *pagep = NULL;
2513 return block_write_begin(file, mapping, pos, len, flags, pagep,
2514 fsdata, get_block);
2515 }
a4b0672d 2516
1da177e4
LT
2517 if (PageMappedToDisk(page))
2518 return 0;
2519
a4b0672d
NP
2520 /*
2521 * Allocate buffers so that we can keep track of state, and potentially
2522 * attach them to the page if an error occurs. In the common case of
2523 * no error, they will just be freed again without ever being attached
2524 * to the page (which is all OK, because we're under the page lock).
2525 *
2526 * Be careful: the buffer linked list is a NULL terminated one, rather
2527 * than the circular one we're used to.
2528 */
2529 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2530 if (!head) {
2531 ret = -ENOMEM;
2532 goto out_release;
2533 }
a4b0672d 2534
1da177e4 2535 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2536
2537 /*
2538 * We loop across all blocks in the page, whether or not they are
2539 * part of the affected region. This is so we can discover if the
2540 * page is fully mapped-to-disk.
2541 */
a4b0672d 2542 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2543 block_start < PAGE_CACHE_SIZE;
a4b0672d 2544 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2545 int create;
2546
a4b0672d
NP
2547 block_end = block_start + blocksize;
2548 bh->b_state = 0;
1da177e4
LT
2549 create = 1;
2550 if (block_start >= to)
2551 create = 0;
2552 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2553 bh, create);
1da177e4
LT
2554 if (ret)
2555 goto failed;
a4b0672d 2556 if (!buffer_mapped(bh))
1da177e4 2557 is_mapped_to_disk = 0;
a4b0672d
NP
2558 if (buffer_new(bh))
2559 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2560 if (PageUptodate(page)) {
2561 set_buffer_uptodate(bh);
1da177e4 2562 continue;
a4b0672d
NP
2563 }
2564 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2565 zero_user_segments(page, block_start, from,
2566 to, block_end);
1da177e4
LT
2567 continue;
2568 }
a4b0672d 2569 if (buffer_uptodate(bh))
1da177e4
LT
2570 continue; /* reiserfs does this */
2571 if (block_start < from || block_end > to) {
a4b0672d
NP
2572 lock_buffer(bh);
2573 bh->b_end_io = end_buffer_read_nobh;
2574 submit_bh(READ, bh);
2575 nr_reads++;
1da177e4
LT
2576 }
2577 }
2578
2579 if (nr_reads) {
1da177e4
LT
2580 /*
2581 * The page is locked, so these buffers are protected from
2582 * any VM or truncate activity. Hence we don't need to care
2583 * for the buffer_head refcounts.
2584 */
a4b0672d 2585 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2586 wait_on_buffer(bh);
2587 if (!buffer_uptodate(bh))
2588 ret = -EIO;
1da177e4
LT
2589 }
2590 if (ret)
2591 goto failed;
2592 }
2593
2594 if (is_mapped_to_disk)
2595 SetPageMappedToDisk(page);
1da177e4 2596
03158cd7 2597 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2598
1da177e4
LT
2599 return 0;
2600
2601failed:
03158cd7 2602 BUG_ON(!ret);
1da177e4 2603 /*
a4b0672d
NP
2604 * Error recovery is a bit difficult. We need to zero out blocks that
2605 * were newly allocated, and dirty them to ensure they get written out.
2606 * Buffers need to be attached to the page at this point, otherwise
2607 * the handling of potential IO errors during writeout would be hard
2608 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2609 */
03158cd7
NP
2610 attach_nobh_buffers(page, head);
2611 page_zero_new_buffers(page, from, to);
a4b0672d 2612
03158cd7
NP
2613out_release:
2614 unlock_page(page);
2615 page_cache_release(page);
2616 *pagep = NULL;
a4b0672d 2617
03158cd7
NP
2618 if (pos + len > inode->i_size)
2619 vmtruncate(inode, inode->i_size);
a4b0672d 2620
1da177e4
LT
2621 return ret;
2622}
03158cd7 2623EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2624
03158cd7
NP
2625int nobh_write_end(struct file *file, struct address_space *mapping,
2626 loff_t pos, unsigned len, unsigned copied,
2627 struct page *page, void *fsdata)
1da177e4
LT
2628{
2629 struct inode *inode = page->mapping->host;
efdc3131 2630 struct buffer_head *head = fsdata;
03158cd7 2631 struct buffer_head *bh;
5b41e74a 2632 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2633
d4cf109f 2634 if (unlikely(copied < len) && head)
5b41e74a
DM
2635 attach_nobh_buffers(page, head);
2636 if (page_has_buffers(page))
2637 return generic_write_end(file, mapping, pos, len,
2638 copied, page, fsdata);
a4b0672d 2639
22c8ca78 2640 SetPageUptodate(page);
1da177e4 2641 set_page_dirty(page);
03158cd7
NP
2642 if (pos+copied > inode->i_size) {
2643 i_size_write(inode, pos+copied);
1da177e4
LT
2644 mark_inode_dirty(inode);
2645 }
03158cd7
NP
2646
2647 unlock_page(page);
2648 page_cache_release(page);
2649
03158cd7
NP
2650 while (head) {
2651 bh = head;
2652 head = head->b_this_page;
2653 free_buffer_head(bh);
2654 }
2655
2656 return copied;
1da177e4 2657}
03158cd7 2658EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2659
2660/*
2661 * nobh_writepage() - based on block_full_write_page() except
2662 * that it tries to operate without attaching bufferheads to
2663 * the page.
2664 */
2665int nobh_writepage(struct page *page, get_block_t *get_block,
2666 struct writeback_control *wbc)
2667{
2668 struct inode * const inode = page->mapping->host;
2669 loff_t i_size = i_size_read(inode);
2670 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2671 unsigned offset;
1da177e4
LT
2672 int ret;
2673
2674 /* Is the page fully inside i_size? */
2675 if (page->index < end_index)
2676 goto out;
2677
2678 /* Is the page fully outside i_size? (truncate in progress) */
2679 offset = i_size & (PAGE_CACHE_SIZE-1);
2680 if (page->index >= end_index+1 || !offset) {
2681 /*
2682 * The page may have dirty, unmapped buffers. For example,
2683 * they may have been added in ext3_writepage(). Make them
2684 * freeable here, so the page does not leak.
2685 */
2686#if 0
2687 /* Not really sure about this - do we need this ? */
2688 if (page->mapping->a_ops->invalidatepage)
2689 page->mapping->a_ops->invalidatepage(page, offset);
2690#endif
2691 unlock_page(page);
2692 return 0; /* don't care */
2693 }
2694
2695 /*
2696 * The page straddles i_size. It must be zeroed out on each and every
2697 * writepage invocation because it may be mmapped. "A file is mapped
2698 * in multiples of the page size. For a file that is not a multiple of
2699 * the page size, the remaining memory is zeroed when mapped, and
2700 * writes to that region are not written out to the file."
2701 */
eebd2aa3 2702 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2703out:
2704 ret = mpage_writepage(page, get_block, wbc);
2705 if (ret == -EAGAIN)
35c80d5f
CM
2706 ret = __block_write_full_page(inode, page, get_block, wbc,
2707 end_buffer_async_write);
1da177e4
LT
2708 return ret;
2709}
2710EXPORT_SYMBOL(nobh_writepage);
2711
03158cd7
NP
2712int nobh_truncate_page(struct address_space *mapping,
2713 loff_t from, get_block_t *get_block)
1da177e4 2714{
1da177e4
LT
2715 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2716 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2717 unsigned blocksize;
2718 sector_t iblock;
2719 unsigned length, pos;
2720 struct inode *inode = mapping->host;
1da177e4 2721 struct page *page;
03158cd7
NP
2722 struct buffer_head map_bh;
2723 int err;
1da177e4 2724
03158cd7
NP
2725 blocksize = 1 << inode->i_blkbits;
2726 length = offset & (blocksize - 1);
2727
2728 /* Block boundary? Nothing to do */
2729 if (!length)
2730 return 0;
2731
2732 length = blocksize - length;
2733 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2734
1da177e4 2735 page = grab_cache_page(mapping, index);
03158cd7 2736 err = -ENOMEM;
1da177e4
LT
2737 if (!page)
2738 goto out;
2739
03158cd7
NP
2740 if (page_has_buffers(page)) {
2741has_buffers:
2742 unlock_page(page);
2743 page_cache_release(page);
2744 return block_truncate_page(mapping, from, get_block);
2745 }
2746
2747 /* Find the buffer that contains "offset" */
2748 pos = blocksize;
2749 while (offset >= pos) {
2750 iblock++;
2751 pos += blocksize;
2752 }
2753
460bcf57
TT
2754 map_bh.b_size = blocksize;
2755 map_bh.b_state = 0;
03158cd7
NP
2756 err = get_block(inode, iblock, &map_bh, 0);
2757 if (err)
2758 goto unlock;
2759 /* unmapped? It's a hole - nothing to do */
2760 if (!buffer_mapped(&map_bh))
2761 goto unlock;
2762
2763 /* Ok, it's mapped. Make sure it's up-to-date */
2764 if (!PageUptodate(page)) {
2765 err = mapping->a_ops->readpage(NULL, page);
2766 if (err) {
2767 page_cache_release(page);
2768 goto out;
2769 }
2770 lock_page(page);
2771 if (!PageUptodate(page)) {
2772 err = -EIO;
2773 goto unlock;
2774 }
2775 if (page_has_buffers(page))
2776 goto has_buffers;
1da177e4 2777 }
eebd2aa3 2778 zero_user(page, offset, length);
03158cd7
NP
2779 set_page_dirty(page);
2780 err = 0;
2781
2782unlock:
1da177e4
LT
2783 unlock_page(page);
2784 page_cache_release(page);
2785out:
03158cd7 2786 return err;
1da177e4
LT
2787}
2788EXPORT_SYMBOL(nobh_truncate_page);
2789
2790int block_truncate_page(struct address_space *mapping,
2791 loff_t from, get_block_t *get_block)
2792{
2793 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2794 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2795 unsigned blocksize;
54b21a79 2796 sector_t iblock;
1da177e4
LT
2797 unsigned length, pos;
2798 struct inode *inode = mapping->host;
2799 struct page *page;
2800 struct buffer_head *bh;
1da177e4
LT
2801 int err;
2802
2803 blocksize = 1 << inode->i_blkbits;
2804 length = offset & (blocksize - 1);
2805
2806 /* Block boundary? Nothing to do */
2807 if (!length)
2808 return 0;
2809
2810 length = blocksize - length;
54b21a79 2811 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2812
2813 page = grab_cache_page(mapping, index);
2814 err = -ENOMEM;
2815 if (!page)
2816 goto out;
2817
2818 if (!page_has_buffers(page))
2819 create_empty_buffers(page, blocksize, 0);
2820
2821 /* Find the buffer that contains "offset" */
2822 bh = page_buffers(page);
2823 pos = blocksize;
2824 while (offset >= pos) {
2825 bh = bh->b_this_page;
2826 iblock++;
2827 pos += blocksize;
2828 }
2829
2830 err = 0;
2831 if (!buffer_mapped(bh)) {
b0cf2321 2832 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2833 err = get_block(inode, iblock, bh, 0);
2834 if (err)
2835 goto unlock;
2836 /* unmapped? It's a hole - nothing to do */
2837 if (!buffer_mapped(bh))
2838 goto unlock;
2839 }
2840
2841 /* Ok, it's mapped. Make sure it's up-to-date */
2842 if (PageUptodate(page))
2843 set_buffer_uptodate(bh);
2844
33a266dd 2845 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2846 err = -EIO;
2847 ll_rw_block(READ, 1, &bh);
2848 wait_on_buffer(bh);
2849 /* Uhhuh. Read error. Complain and punt. */
2850 if (!buffer_uptodate(bh))
2851 goto unlock;
2852 }
2853
eebd2aa3 2854 zero_user(page, offset, length);
1da177e4
LT
2855 mark_buffer_dirty(bh);
2856 err = 0;
2857
2858unlock:
2859 unlock_page(page);
2860 page_cache_release(page);
2861out:
2862 return err;
2863}
1fe72eaa 2864EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2865
2866/*
2867 * The generic ->writepage function for buffer-backed address_spaces
35c80d5f 2868 * this form passes in the end_io handler used to finish the IO.
1da177e4 2869 */
35c80d5f
CM
2870int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2871 struct writeback_control *wbc, bh_end_io_t *handler)
1da177e4
LT
2872{
2873 struct inode * const inode = page->mapping->host;
2874 loff_t i_size = i_size_read(inode);
2875 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2876 unsigned offset;
1da177e4
LT
2877
2878 /* Is the page fully inside i_size? */
2879 if (page->index < end_index)
35c80d5f
CM
2880 return __block_write_full_page(inode, page, get_block, wbc,
2881 handler);
1da177e4
LT
2882
2883 /* Is the page fully outside i_size? (truncate in progress) */
2884 offset = i_size & (PAGE_CACHE_SIZE-1);
2885 if (page->index >= end_index+1 || !offset) {
2886 /*
2887 * The page may have dirty, unmapped buffers. For example,
2888 * they may have been added in ext3_writepage(). Make them
2889 * freeable here, so the page does not leak.
2890 */
aaa4059b 2891 do_invalidatepage(page, 0);
1da177e4
LT
2892 unlock_page(page);
2893 return 0; /* don't care */
2894 }
2895
2896 /*
2897 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2898 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2899 * in multiples of the page size. For a file that is not a multiple of
2900 * the page size, the remaining memory is zeroed when mapped, and
2901 * writes to that region are not written out to the file."
2902 */
eebd2aa3 2903 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
35c80d5f 2904 return __block_write_full_page(inode, page, get_block, wbc, handler);
1da177e4 2905}
1fe72eaa 2906EXPORT_SYMBOL(block_write_full_page_endio);
1da177e4 2907
35c80d5f
CM
2908/*
2909 * The generic ->writepage function for buffer-backed address_spaces
2910 */
2911int block_write_full_page(struct page *page, get_block_t *get_block,
2912 struct writeback_control *wbc)
2913{
2914 return block_write_full_page_endio(page, get_block, wbc,
2915 end_buffer_async_write);
2916}
1fe72eaa 2917EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2918
1da177e4
LT
2919sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2920 get_block_t *get_block)
2921{
2922 struct buffer_head tmp;
2923 struct inode *inode = mapping->host;
2924 tmp.b_state = 0;
2925 tmp.b_blocknr = 0;
b0cf2321 2926 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2927 get_block(inode, block, &tmp, 0);
2928 return tmp.b_blocknr;
2929}
1fe72eaa 2930EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2931
6712ecf8 2932static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2933{
2934 struct buffer_head *bh = bio->bi_private;
2935
1da177e4
LT
2936 if (err == -EOPNOTSUPP) {
2937 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2938 set_bit(BH_Eopnotsupp, &bh->b_state);
2939 }
2940
08bafc03
KM
2941 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2942 set_bit(BH_Quiet, &bh->b_state);
2943
1da177e4
LT
2944 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2945 bio_put(bio);
1da177e4
LT
2946}
2947
2948int submit_bh(int rw, struct buffer_head * bh)
2949{
2950 struct bio *bio;
2951 int ret = 0;
2952
2953 BUG_ON(!buffer_locked(bh));
2954 BUG_ON(!buffer_mapped(bh));
2955 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2956 BUG_ON(buffer_delay(bh));
2957 BUG_ON(buffer_unwritten(bh));
1da177e4 2958
48fd4f93
JA
2959 /*
2960 * Mask in barrier bit for a write (could be either a WRITE or a
2961 * WRITE_SYNC
2962 */
2963 if (buffer_ordered(bh) && (rw & WRITE))
2964 rw |= WRITE_BARRIER;
1da177e4
LT
2965
2966 /*
48fd4f93 2967 * Only clear out a write error when rewriting
1da177e4 2968 */
48fd4f93 2969 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2970 clear_buffer_write_io_error(bh);
2971
2972 /*
2973 * from here on down, it's all bio -- do the initial mapping,
2974 * submit_bio -> generic_make_request may further map this bio around
2975 */
2976 bio = bio_alloc(GFP_NOIO, 1);
2977
2978 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2979 bio->bi_bdev = bh->b_bdev;
2980 bio->bi_io_vec[0].bv_page = bh->b_page;
2981 bio->bi_io_vec[0].bv_len = bh->b_size;
2982 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2983
2984 bio->bi_vcnt = 1;
2985 bio->bi_idx = 0;
2986 bio->bi_size = bh->b_size;
2987
2988 bio->bi_end_io = end_bio_bh_io_sync;
2989 bio->bi_private = bh;
2990
2991 bio_get(bio);
2992 submit_bio(rw, bio);
2993
2994 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2995 ret = -EOPNOTSUPP;
2996
2997 bio_put(bio);
2998 return ret;
2999}
1fe72eaa 3000EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3001
3002/**
3003 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 3004 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
3005 * @nr: number of &struct buffer_heads in the array
3006 * @bhs: array of pointers to &struct buffer_head
3007 *
a7662236
JK
3008 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3009 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3010 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3011 * are sent to disk. The fourth %READA option is described in the documentation
3012 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
3013 *
3014 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
3015 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3016 * clean when doing a write request, and any buffer that appears to be
3017 * up-to-date when doing read request. Further it marks as clean buffers that
3018 * are processed for writing (the buffer cache won't assume that they are
3019 * actually clean until the buffer gets unlocked).
1da177e4
LT
3020 *
3021 * ll_rw_block sets b_end_io to simple completion handler that marks
3022 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3023 * any waiters.
3024 *
3025 * All of the buffers must be for the same device, and must also be a
3026 * multiple of the current approved size for the device.
3027 */
3028void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3029{
3030 int i;
3031
3032 for (i = 0; i < nr; i++) {
3033 struct buffer_head *bh = bhs[i];
3034
9cf6b720 3035 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
a7662236 3036 lock_buffer(bh);
ca5de404 3037 else if (!trylock_buffer(bh))
1da177e4
LT
3038 continue;
3039
9cf6b720
JA
3040 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3041 rw == SWRITE_SYNC_PLUG) {
1da177e4 3042 if (test_clear_buffer_dirty(bh)) {
76c3073a 3043 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3044 get_bh(bh);
18ce3751
JA
3045 if (rw == SWRITE_SYNC)
3046 submit_bh(WRITE_SYNC, bh);
3047 else
3048 submit_bh(WRITE, bh);
1da177e4
LT
3049 continue;
3050 }
3051 } else {
1da177e4 3052 if (!buffer_uptodate(bh)) {
76c3073a 3053 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3054 get_bh(bh);
1da177e4
LT
3055 submit_bh(rw, bh);
3056 continue;
3057 }
3058 }
3059 unlock_buffer(bh);
1da177e4
LT
3060 }
3061}
1fe72eaa 3062EXPORT_SYMBOL(ll_rw_block);
1da177e4
LT
3063
3064/*
3065 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3066 * and then start new I/O and then wait upon it. The caller must have a ref on
3067 * the buffer_head.
3068 */
3069int sync_dirty_buffer(struct buffer_head *bh)
3070{
3071 int ret = 0;
3072
3073 WARN_ON(atomic_read(&bh->b_count) < 1);
3074 lock_buffer(bh);
3075 if (test_clear_buffer_dirty(bh)) {
3076 get_bh(bh);
3077 bh->b_end_io = end_buffer_write_sync;
1aa2a7cc 3078 ret = submit_bh(WRITE_SYNC, bh);
1da177e4
LT
3079 wait_on_buffer(bh);
3080 if (buffer_eopnotsupp(bh)) {
3081 clear_buffer_eopnotsupp(bh);
3082 ret = -EOPNOTSUPP;
3083 }
3084 if (!ret && !buffer_uptodate(bh))
3085 ret = -EIO;
3086 } else {
3087 unlock_buffer(bh);
3088 }
3089 return ret;
3090}
1fe72eaa 3091EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3092
3093/*
3094 * try_to_free_buffers() checks if all the buffers on this particular page
3095 * are unused, and releases them if so.
3096 *
3097 * Exclusion against try_to_free_buffers may be obtained by either
3098 * locking the page or by holding its mapping's private_lock.
3099 *
3100 * If the page is dirty but all the buffers are clean then we need to
3101 * be sure to mark the page clean as well. This is because the page
3102 * may be against a block device, and a later reattachment of buffers
3103 * to a dirty page will set *all* buffers dirty. Which would corrupt
3104 * filesystem data on the same device.
3105 *
3106 * The same applies to regular filesystem pages: if all the buffers are
3107 * clean then we set the page clean and proceed. To do that, we require
3108 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3109 * private_lock.
3110 *
3111 * try_to_free_buffers() is non-blocking.
3112 */
3113static inline int buffer_busy(struct buffer_head *bh)
3114{
3115 return atomic_read(&bh->b_count) |
3116 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3117}
3118
3119static int
3120drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3121{
3122 struct buffer_head *head = page_buffers(page);
3123 struct buffer_head *bh;
3124
3125 bh = head;
3126 do {
de7d5a3b 3127 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3128 set_bit(AS_EIO, &page->mapping->flags);
3129 if (buffer_busy(bh))
3130 goto failed;
3131 bh = bh->b_this_page;
3132 } while (bh != head);
3133
3134 do {
3135 struct buffer_head *next = bh->b_this_page;
3136
535ee2fb 3137 if (bh->b_assoc_map)
1da177e4
LT
3138 __remove_assoc_queue(bh);
3139 bh = next;
3140 } while (bh != head);
3141 *buffers_to_free = head;
3142 __clear_page_buffers(page);
3143 return 1;
3144failed:
3145 return 0;
3146}
3147
3148int try_to_free_buffers(struct page *page)
3149{
3150 struct address_space * const mapping = page->mapping;
3151 struct buffer_head *buffers_to_free = NULL;
3152 int ret = 0;
3153
3154 BUG_ON(!PageLocked(page));
ecdfc978 3155 if (PageWriteback(page))
1da177e4
LT
3156 return 0;
3157
3158 if (mapping == NULL) { /* can this still happen? */
3159 ret = drop_buffers(page, &buffers_to_free);
3160 goto out;
3161 }
3162
3163 spin_lock(&mapping->private_lock);
3164 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3165
3166 /*
3167 * If the filesystem writes its buffers by hand (eg ext3)
3168 * then we can have clean buffers against a dirty page. We
3169 * clean the page here; otherwise the VM will never notice
3170 * that the filesystem did any IO at all.
3171 *
3172 * Also, during truncate, discard_buffer will have marked all
3173 * the page's buffers clean. We discover that here and clean
3174 * the page also.
87df7241
NP
3175 *
3176 * private_lock must be held over this entire operation in order
3177 * to synchronise against __set_page_dirty_buffers and prevent the
3178 * dirty bit from being lost.
ecdfc978
LT
3179 */
3180 if (ret)
3181 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3182 spin_unlock(&mapping->private_lock);
1da177e4
LT
3183out:
3184 if (buffers_to_free) {
3185 struct buffer_head *bh = buffers_to_free;
3186
3187 do {
3188 struct buffer_head *next = bh->b_this_page;
3189 free_buffer_head(bh);
3190 bh = next;
3191 } while (bh != buffers_to_free);
3192 }
3193 return ret;
3194}
3195EXPORT_SYMBOL(try_to_free_buffers);
3196
3978d717 3197void block_sync_page(struct page *page)
1da177e4
LT
3198{
3199 struct address_space *mapping;
3200
3201 smp_mb();
3202 mapping = page_mapping(page);
3203 if (mapping)
3204 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4 3205}
1fe72eaa 3206EXPORT_SYMBOL(block_sync_page);
1da177e4
LT
3207
3208/*
3209 * There are no bdflush tunables left. But distributions are
3210 * still running obsolete flush daemons, so we terminate them here.
3211 *
3212 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3213 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3214 */
bdc480e3 3215SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3216{
3217 static int msg_count;
3218
3219 if (!capable(CAP_SYS_ADMIN))
3220 return -EPERM;
3221
3222 if (msg_count < 5) {
3223 msg_count++;
3224 printk(KERN_INFO
3225 "warning: process `%s' used the obsolete bdflush"
3226 " system call\n", current->comm);
3227 printk(KERN_INFO "Fix your initscripts?\n");
3228 }
3229
3230 if (func == 1)
3231 do_exit(0);
3232 return 0;
3233}
3234
3235/*
3236 * Buffer-head allocation
3237 */
e18b890b 3238static struct kmem_cache *bh_cachep;
1da177e4
LT
3239
3240/*
3241 * Once the number of bh's in the machine exceeds this level, we start
3242 * stripping them in writeback.
3243 */
3244static int max_buffer_heads;
3245
3246int buffer_heads_over_limit;
3247
3248struct bh_accounting {
3249 int nr; /* Number of live bh's */
3250 int ratelimit; /* Limit cacheline bouncing */
3251};
3252
3253static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3254
3255static void recalc_bh_state(void)
3256{
3257 int i;
3258 int tot = 0;
3259
3260 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3261 return;
3262 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3263 for_each_online_cpu(i)
1da177e4
LT
3264 tot += per_cpu(bh_accounting, i).nr;
3265 buffer_heads_over_limit = (tot > max_buffer_heads);
3266}
3267
dd0fc66f 3268struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3269{
019b4d12 3270 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3271 if (ret) {
a35afb83 3272 INIT_LIST_HEAD(&ret->b_assoc_buffers);
736c7b80 3273 get_cpu_var(bh_accounting).nr++;
1da177e4 3274 recalc_bh_state();
736c7b80 3275 put_cpu_var(bh_accounting);
1da177e4
LT
3276 }
3277 return ret;
3278}
3279EXPORT_SYMBOL(alloc_buffer_head);
3280
3281void free_buffer_head(struct buffer_head *bh)
3282{
3283 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3284 kmem_cache_free(bh_cachep, bh);
736c7b80 3285 get_cpu_var(bh_accounting).nr--;
1da177e4 3286 recalc_bh_state();
736c7b80 3287 put_cpu_var(bh_accounting);
1da177e4
LT
3288}
3289EXPORT_SYMBOL(free_buffer_head);
3290
1da177e4
LT
3291static void buffer_exit_cpu(int cpu)
3292{
3293 int i;
3294 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3295
3296 for (i = 0; i < BH_LRU_SIZE; i++) {
3297 brelse(b->bhs[i]);
3298 b->bhs[i] = NULL;
3299 }
8a143426
ED
3300 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3301 per_cpu(bh_accounting, cpu).nr = 0;
3302 put_cpu_var(bh_accounting);
1da177e4
LT
3303}
3304
3305static int buffer_cpu_notify(struct notifier_block *self,
3306 unsigned long action, void *hcpu)
3307{
8bb78442 3308 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3309 buffer_exit_cpu((unsigned long)hcpu);
3310 return NOTIFY_OK;
3311}
1da177e4 3312
389d1b08 3313/**
a6b91919 3314 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3315 * @bh: struct buffer_head
3316 *
3317 * Return true if the buffer is up-to-date and false,
3318 * with the buffer locked, if not.
3319 */
3320int bh_uptodate_or_lock(struct buffer_head *bh)
3321{
3322 if (!buffer_uptodate(bh)) {
3323 lock_buffer(bh);
3324 if (!buffer_uptodate(bh))
3325 return 0;
3326 unlock_buffer(bh);
3327 }
3328 return 1;
3329}
3330EXPORT_SYMBOL(bh_uptodate_or_lock);
3331
3332/**
a6b91919 3333 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3334 * @bh: struct buffer_head
3335 *
3336 * Returns zero on success and -EIO on error.
3337 */
3338int bh_submit_read(struct buffer_head *bh)
3339{
3340 BUG_ON(!buffer_locked(bh));
3341
3342 if (buffer_uptodate(bh)) {
3343 unlock_buffer(bh);
3344 return 0;
3345 }
3346
3347 get_bh(bh);
3348 bh->b_end_io = end_buffer_read_sync;
3349 submit_bh(READ, bh);
3350 wait_on_buffer(bh);
3351 if (buffer_uptodate(bh))
3352 return 0;
3353 return -EIO;
3354}
3355EXPORT_SYMBOL(bh_submit_read);
3356
1da177e4
LT
3357void __init buffer_init(void)
3358{
3359 int nrpages;
3360
b98938c3
CL
3361 bh_cachep = kmem_cache_create("buffer_head",
3362 sizeof(struct buffer_head), 0,
3363 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3364 SLAB_MEM_SPREAD),
019b4d12 3365 NULL);
1da177e4
LT
3366
3367 /*
3368 * Limit the bh occupancy to 10% of ZONE_NORMAL
3369 */
3370 nrpages = (nr_free_buffer_pages() * 10) / 100;
3371 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3372 hotcpu_notifier(buffer_cpu_notify, 0);
3373}