]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
au1100fb: move au1100fb_fb_blank() beforce au1100fb_setmode()
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
c3d8c141 53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 54EXPORT_SYMBOL(node_online_map);
c3d8c141 55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 56EXPORT_SYMBOL(node_possible_map);
6c231b7b 57unsigned long totalram_pages __read_mostly;
cb45b0e9 58unsigned long totalreserve_pages __read_mostly;
1da177e4 59long nr_swap_pages;
8ad4b1fb 60int percpu_pagelist_fraction;
1da177e4 61
d98c7a09 62static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 63
1da177e4
LT
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
1da177e4 74 */
2f1b6248 75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 76#ifdef CONFIG_ZONE_DMA
2f1b6248 77 256,
4b51d669 78#endif
fb0e7942 79#ifdef CONFIG_ZONE_DMA32
2f1b6248 80 256,
fb0e7942 81#endif
e53ef38d 82#ifdef CONFIG_HIGHMEM
2a1e274a 83 32,
e53ef38d 84#endif
2a1e274a 85 32,
2f1b6248 86};
1da177e4
LT
87
88EXPORT_SYMBOL(totalram_pages);
1da177e4 89
15ad7cdc 90static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 91#ifdef CONFIG_ZONE_DMA
2f1b6248 92 "DMA",
4b51d669 93#endif
fb0e7942 94#ifdef CONFIG_ZONE_DMA32
2f1b6248 95 "DMA32",
fb0e7942 96#endif
2f1b6248 97 "Normal",
e53ef38d 98#ifdef CONFIG_HIGHMEM
2a1e274a 99 "HighMem",
e53ef38d 100#endif
2a1e274a 101 "Movable",
2f1b6248
CL
102};
103
1da177e4
LT
104int min_free_kbytes = 1024;
105
86356ab1
YG
106unsigned long __meminitdata nr_kernel_pages;
107unsigned long __meminitdata nr_all_pages;
a3142c8e 108static unsigned long __meminitdata dma_reserve;
1da177e4 109
c713216d
MG
110#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111 /*
112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113 * ranges of memory (RAM) that may be registered with add_active_range().
114 * Ranges passed to add_active_range() will be merged if possible
115 * so the number of times add_active_range() can be called is
116 * related to the number of nodes and the number of holes
117 */
118 #ifdef CONFIG_MAX_ACTIVE_REGIONS
119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121 #else
122 #if MAX_NUMNODES >= 32
123 /* If there can be many nodes, allow up to 50 holes per node */
124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125 #else
126 /* By default, allow up to 256 distinct regions */
127 #define MAX_ACTIVE_REGIONS 256
128 #endif
129 #endif
130
98011f56
JB
131 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132 static int __meminitdata nr_nodemap_entries;
133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 135#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
136 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 138#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 139 unsigned long __initdata required_kernelcore;
7e63efef 140 unsigned long __initdata required_movablecore;
e228929b 141 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
142
143 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
144 int movable_zone;
145 EXPORT_SYMBOL(movable_zone);
c713216d
MG
146#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
147
418508c1
MS
148#if MAX_NUMNODES > 1
149int nr_node_ids __read_mostly = MAX_NUMNODES;
150EXPORT_SYMBOL(nr_node_ids);
151#endif
152
13e7444b 153#ifdef CONFIG_DEBUG_VM
c6a57e19 154static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 155{
bdc8cb98
DH
156 int ret = 0;
157 unsigned seq;
158 unsigned long pfn = page_to_pfn(page);
c6a57e19 159
bdc8cb98
DH
160 do {
161 seq = zone_span_seqbegin(zone);
162 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
163 ret = 1;
164 else if (pfn < zone->zone_start_pfn)
165 ret = 1;
166 } while (zone_span_seqretry(zone, seq));
167
168 return ret;
c6a57e19
DH
169}
170
171static int page_is_consistent(struct zone *zone, struct page *page)
172{
14e07298 173 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 174 return 0;
1da177e4 175 if (zone != page_zone(page))
c6a57e19
DH
176 return 0;
177
178 return 1;
179}
180/*
181 * Temporary debugging check for pages not lying within a given zone.
182 */
183static int bad_range(struct zone *zone, struct page *page)
184{
185 if (page_outside_zone_boundaries(zone, page))
1da177e4 186 return 1;
c6a57e19
DH
187 if (!page_is_consistent(zone, page))
188 return 1;
189
1da177e4
LT
190 return 0;
191}
13e7444b
NP
192#else
193static inline int bad_range(struct zone *zone, struct page *page)
194{
195 return 0;
196}
197#endif
198
224abf92 199static void bad_page(struct page *page)
1da177e4 200{
224abf92 201 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
202 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204 KERN_EMERG "Backtrace:\n",
224abf92
NP
205 current->comm, page, (int)(2*sizeof(unsigned long)),
206 (unsigned long)page->flags, page->mapping,
207 page_mapcount(page), page_count(page));
1da177e4 208 dump_stack();
334795ec
HD
209 page->flags &= ~(1 << PG_lru |
210 1 << PG_private |
1da177e4 211 1 << PG_locked |
1da177e4
LT
212 1 << PG_active |
213 1 << PG_dirty |
334795ec
HD
214 1 << PG_reclaim |
215 1 << PG_slab |
1da177e4 216 1 << PG_swapcache |
676165a8
NP
217 1 << PG_writeback |
218 1 << PG_buddy );
1da177e4
LT
219 set_page_count(page, 0);
220 reset_page_mapcount(page);
221 page->mapping = NULL;
9f158333 222 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
223}
224
1da177e4
LT
225/*
226 * Higher-order pages are called "compound pages". They are structured thusly:
227 *
228 * The first PAGE_SIZE page is called the "head page".
229 *
230 * The remaining PAGE_SIZE pages are called "tail pages".
231 *
232 * All pages have PG_compound set. All pages have their ->private pointing at
233 * the head page (even the head page has this).
234 *
41d78ba5
HD
235 * The first tail page's ->lru.next holds the address of the compound page's
236 * put_page() function. Its ->lru.prev holds the order of allocation.
237 * This usage means that zero-order pages may not be compound.
1da177e4 238 */
d98c7a09
HD
239
240static void free_compound_page(struct page *page)
241{
d85f3385 242 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
243}
244
1da177e4
LT
245static void prep_compound_page(struct page *page, unsigned long order)
246{
247 int i;
248 int nr_pages = 1 << order;
249
33f2ef89 250 set_compound_page_dtor(page, free_compound_page);
d85f3385 251 set_compound_order(page, order);
6d777953 252 __SetPageHead(page);
d85f3385 253 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
254 struct page *p = page + i;
255
d85f3385 256 __SetPageTail(p);
d85f3385 257 p->first_page = page;
1da177e4
LT
258 }
259}
260
261static void destroy_compound_page(struct page *page, unsigned long order)
262{
263 int i;
264 int nr_pages = 1 << order;
265
d85f3385 266 if (unlikely(compound_order(page) != order))
224abf92 267 bad_page(page);
1da177e4 268
6d777953 269 if (unlikely(!PageHead(page)))
d85f3385 270 bad_page(page);
6d777953 271 __ClearPageHead(page);
d85f3385 272 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
273 struct page *p = page + i;
274
6d777953 275 if (unlikely(!PageTail(p) |
d85f3385 276 (p->first_page != page)))
224abf92 277 bad_page(page);
d85f3385 278 __ClearPageTail(p);
1da177e4
LT
279 }
280}
1da177e4 281
17cf4406
NP
282static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
283{
284 int i;
285
725d704e 286 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
287 /*
288 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 * and __GFP_HIGHMEM from hard or soft interrupt context.
290 */
725d704e 291 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
292 for (i = 0; i < (1 << order); i++)
293 clear_highpage(page + i);
294}
295
1da177e4
LT
296/*
297 * function for dealing with page's order in buddy system.
298 * zone->lock is already acquired when we use these.
299 * So, we don't need atomic page->flags operations here.
300 */
6aa3001b
AM
301static inline unsigned long page_order(struct page *page)
302{
4c21e2f2 303 return page_private(page);
1da177e4
LT
304}
305
6aa3001b
AM
306static inline void set_page_order(struct page *page, int order)
307{
4c21e2f2 308 set_page_private(page, order);
676165a8 309 __SetPageBuddy(page);
1da177e4
LT
310}
311
312static inline void rmv_page_order(struct page *page)
313{
676165a8 314 __ClearPageBuddy(page);
4c21e2f2 315 set_page_private(page, 0);
1da177e4
LT
316}
317
318/*
319 * Locate the struct page for both the matching buddy in our
320 * pair (buddy1) and the combined O(n+1) page they form (page).
321 *
322 * 1) Any buddy B1 will have an order O twin B2 which satisfies
323 * the following equation:
324 * B2 = B1 ^ (1 << O)
325 * For example, if the starting buddy (buddy2) is #8 its order
326 * 1 buddy is #10:
327 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
328 *
329 * 2) Any buddy B will have an order O+1 parent P which
330 * satisfies the following equation:
331 * P = B & ~(1 << O)
332 *
d6e05edc 333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
334 */
335static inline struct page *
336__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
337{
338 unsigned long buddy_idx = page_idx ^ (1 << order);
339
340 return page + (buddy_idx - page_idx);
341}
342
343static inline unsigned long
344__find_combined_index(unsigned long page_idx, unsigned int order)
345{
346 return (page_idx & ~(1 << order));
347}
348
349/*
350 * This function checks whether a page is free && is the buddy
351 * we can do coalesce a page and its buddy if
13e7444b 352 * (a) the buddy is not in a hole &&
676165a8 353 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
354 * (c) a page and its buddy have the same order &&
355 * (d) a page and its buddy are in the same zone.
676165a8
NP
356 *
357 * For recording whether a page is in the buddy system, we use PG_buddy.
358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 359 *
676165a8 360 * For recording page's order, we use page_private(page).
1da177e4 361 */
cb2b95e1
AW
362static inline int page_is_buddy(struct page *page, struct page *buddy,
363 int order)
1da177e4 364{
14e07298 365 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 366 return 0;
13e7444b 367
cb2b95e1
AW
368 if (page_zone_id(page) != page_zone_id(buddy))
369 return 0;
370
371 if (PageBuddy(buddy) && page_order(buddy) == order) {
372 BUG_ON(page_count(buddy) != 0);
6aa3001b 373 return 1;
676165a8 374 }
6aa3001b 375 return 0;
1da177e4
LT
376}
377
378/*
379 * Freeing function for a buddy system allocator.
380 *
381 * The concept of a buddy system is to maintain direct-mapped table
382 * (containing bit values) for memory blocks of various "orders".
383 * The bottom level table contains the map for the smallest allocatable
384 * units of memory (here, pages), and each level above it describes
385 * pairs of units from the levels below, hence, "buddies".
386 * At a high level, all that happens here is marking the table entry
387 * at the bottom level available, and propagating the changes upward
388 * as necessary, plus some accounting needed to play nicely with other
389 * parts of the VM system.
390 * At each level, we keep a list of pages, which are heads of continuous
676165a8 391 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 392 * order is recorded in page_private(page) field.
1da177e4
LT
393 * So when we are allocating or freeing one, we can derive the state of the
394 * other. That is, if we allocate a small block, and both were
395 * free, the remainder of the region must be split into blocks.
396 * If a block is freed, and its buddy is also free, then this
397 * triggers coalescing into a block of larger size.
398 *
399 * -- wli
400 */
401
48db57f8 402static inline void __free_one_page(struct page *page,
1da177e4
LT
403 struct zone *zone, unsigned int order)
404{
405 unsigned long page_idx;
406 int order_size = 1 << order;
407
224abf92 408 if (unlikely(PageCompound(page)))
1da177e4
LT
409 destroy_compound_page(page, order);
410
411 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
412
725d704e
NP
413 VM_BUG_ON(page_idx & (order_size - 1));
414 VM_BUG_ON(bad_range(zone, page));
1da177e4 415
d23ad423 416 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
417 while (order < MAX_ORDER-1) {
418 unsigned long combined_idx;
419 struct free_area *area;
420 struct page *buddy;
421
1da177e4 422 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 423 if (!page_is_buddy(page, buddy, order))
1da177e4 424 break; /* Move the buddy up one level. */
13e7444b 425
1da177e4
LT
426 list_del(&buddy->lru);
427 area = zone->free_area + order;
428 area->nr_free--;
429 rmv_page_order(buddy);
13e7444b 430 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
431 page = page + (combined_idx - page_idx);
432 page_idx = combined_idx;
433 order++;
434 }
435 set_page_order(page, order);
436 list_add(&page->lru, &zone->free_area[order].free_list);
437 zone->free_area[order].nr_free++;
438}
439
224abf92 440static inline int free_pages_check(struct page *page)
1da177e4 441{
92be2e33
NP
442 if (unlikely(page_mapcount(page) |
443 (page->mapping != NULL) |
444 (page_count(page) != 0) |
1da177e4
LT
445 (page->flags & (
446 1 << PG_lru |
447 1 << PG_private |
448 1 << PG_locked |
449 1 << PG_active |
1da177e4
LT
450 1 << PG_slab |
451 1 << PG_swapcache |
b5810039 452 1 << PG_writeback |
676165a8
NP
453 1 << PG_reserved |
454 1 << PG_buddy ))))
224abf92 455 bad_page(page);
1da177e4 456 if (PageDirty(page))
242e5468 457 __ClearPageDirty(page);
689bcebf
HD
458 /*
459 * For now, we report if PG_reserved was found set, but do not
460 * clear it, and do not free the page. But we shall soon need
461 * to do more, for when the ZERO_PAGE count wraps negative.
462 */
463 return PageReserved(page);
1da177e4
LT
464}
465
466/*
467 * Frees a list of pages.
468 * Assumes all pages on list are in same zone, and of same order.
207f36ee 469 * count is the number of pages to free.
1da177e4
LT
470 *
471 * If the zone was previously in an "all pages pinned" state then look to
472 * see if this freeing clears that state.
473 *
474 * And clear the zone's pages_scanned counter, to hold off the "all pages are
475 * pinned" detection logic.
476 */
48db57f8
NP
477static void free_pages_bulk(struct zone *zone, int count,
478 struct list_head *list, int order)
1da177e4 479{
c54ad30c 480 spin_lock(&zone->lock);
1da177e4
LT
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
48db57f8
NP
483 while (count--) {
484 struct page *page;
485
725d704e 486 VM_BUG_ON(list_empty(list));
1da177e4 487 page = list_entry(list->prev, struct page, lru);
48db57f8 488 /* have to delete it as __free_one_page list manipulates */
1da177e4 489 list_del(&page->lru);
48db57f8 490 __free_one_page(page, zone, order);
1da177e4 491 }
c54ad30c 492 spin_unlock(&zone->lock);
1da177e4
LT
493}
494
48db57f8 495static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 496{
006d22d9
CL
497 spin_lock(&zone->lock);
498 zone->all_unreclaimable = 0;
499 zone->pages_scanned = 0;
0798e519 500 __free_one_page(page, zone, order);
006d22d9 501 spin_unlock(&zone->lock);
48db57f8
NP
502}
503
504static void __free_pages_ok(struct page *page, unsigned int order)
505{
506 unsigned long flags;
1da177e4 507 int i;
689bcebf 508 int reserved = 0;
1da177e4 509
1da177e4 510 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 511 reserved += free_pages_check(page + i);
689bcebf
HD
512 if (reserved)
513 return;
514
9858db50
NP
515 if (!PageHighMem(page))
516 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 517 arch_free_page(page, order);
48db57f8 518 kernel_map_pages(page, 1 << order, 0);
dafb1367 519
c54ad30c 520 local_irq_save(flags);
f8891e5e 521 __count_vm_events(PGFREE, 1 << order);
48db57f8 522 free_one_page(page_zone(page), page, order);
c54ad30c 523 local_irq_restore(flags);
1da177e4
LT
524}
525
a226f6c8
DH
526/*
527 * permit the bootmem allocator to evade page validation on high-order frees
528 */
529void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
530{
531 if (order == 0) {
532 __ClearPageReserved(page);
533 set_page_count(page, 0);
7835e98b 534 set_page_refcounted(page);
545b1ea9 535 __free_page(page);
a226f6c8 536 } else {
a226f6c8
DH
537 int loop;
538
545b1ea9 539 prefetchw(page);
a226f6c8
DH
540 for (loop = 0; loop < BITS_PER_LONG; loop++) {
541 struct page *p = &page[loop];
542
545b1ea9
NP
543 if (loop + 1 < BITS_PER_LONG)
544 prefetchw(p + 1);
a226f6c8
DH
545 __ClearPageReserved(p);
546 set_page_count(p, 0);
547 }
548
7835e98b 549 set_page_refcounted(page);
545b1ea9 550 __free_pages(page, order);
a226f6c8
DH
551 }
552}
553
1da177e4
LT
554
555/*
556 * The order of subdivision here is critical for the IO subsystem.
557 * Please do not alter this order without good reasons and regression
558 * testing. Specifically, as large blocks of memory are subdivided,
559 * the order in which smaller blocks are delivered depends on the order
560 * they're subdivided in this function. This is the primary factor
561 * influencing the order in which pages are delivered to the IO
562 * subsystem according to empirical testing, and this is also justified
563 * by considering the behavior of a buddy system containing a single
564 * large block of memory acted on by a series of small allocations.
565 * This behavior is a critical factor in sglist merging's success.
566 *
567 * -- wli
568 */
085cc7d5 569static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
570 int low, int high, struct free_area *area)
571{
572 unsigned long size = 1 << high;
573
574 while (high > low) {
575 area--;
576 high--;
577 size >>= 1;
725d704e 578 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
579 list_add(&page[size].lru, &area->free_list);
580 area->nr_free++;
581 set_page_order(&page[size], high);
582 }
1da177e4
LT
583}
584
1da177e4
LT
585/*
586 * This page is about to be returned from the page allocator
587 */
17cf4406 588static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 589{
92be2e33
NP
590 if (unlikely(page_mapcount(page) |
591 (page->mapping != NULL) |
592 (page_count(page) != 0) |
334795ec
HD
593 (page->flags & (
594 1 << PG_lru |
1da177e4
LT
595 1 << PG_private |
596 1 << PG_locked |
1da177e4
LT
597 1 << PG_active |
598 1 << PG_dirty |
334795ec 599 1 << PG_slab |
1da177e4 600 1 << PG_swapcache |
b5810039 601 1 << PG_writeback |
676165a8
NP
602 1 << PG_reserved |
603 1 << PG_buddy ))))
224abf92 604 bad_page(page);
1da177e4 605
689bcebf
HD
606 /*
607 * For now, we report if PG_reserved was found set, but do not
608 * clear it, and do not allocate the page: as a safety net.
609 */
610 if (PageReserved(page))
611 return 1;
612
d77c2d7c 613 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 614 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 615 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 616 set_page_private(page, 0);
7835e98b 617 set_page_refcounted(page);
cc102509
NP
618
619 arch_alloc_page(page, order);
1da177e4 620 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
621
622 if (gfp_flags & __GFP_ZERO)
623 prep_zero_page(page, order, gfp_flags);
624
625 if (order && (gfp_flags & __GFP_COMP))
626 prep_compound_page(page, order);
627
689bcebf 628 return 0;
1da177e4
LT
629}
630
631/*
632 * Do the hard work of removing an element from the buddy allocator.
633 * Call me with the zone->lock already held.
634 */
635static struct page *__rmqueue(struct zone *zone, unsigned int order)
636{
637 struct free_area * area;
638 unsigned int current_order;
639 struct page *page;
640
641 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
642 area = zone->free_area + current_order;
643 if (list_empty(&area->free_list))
644 continue;
645
646 page = list_entry(area->free_list.next, struct page, lru);
647 list_del(&page->lru);
648 rmv_page_order(page);
649 area->nr_free--;
d23ad423 650 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
085cc7d5
NP
651 expand(zone, page, order, current_order, area);
652 return page;
1da177e4
LT
653 }
654
655 return NULL;
656}
657
658/*
659 * Obtain a specified number of elements from the buddy allocator, all under
660 * a single hold of the lock, for efficiency. Add them to the supplied list.
661 * Returns the number of new pages which were placed at *list.
662 */
663static int rmqueue_bulk(struct zone *zone, unsigned int order,
664 unsigned long count, struct list_head *list)
665{
1da177e4 666 int i;
1da177e4 667
c54ad30c 668 spin_lock(&zone->lock);
1da177e4 669 for (i = 0; i < count; ++i) {
085cc7d5
NP
670 struct page *page = __rmqueue(zone, order);
671 if (unlikely(page == NULL))
1da177e4 672 break;
1da177e4
LT
673 list_add_tail(&page->lru, list);
674 }
c54ad30c 675 spin_unlock(&zone->lock);
085cc7d5 676 return i;
1da177e4
LT
677}
678
4ae7c039 679#ifdef CONFIG_NUMA
8fce4d8e 680/*
4037d452
CL
681 * Called from the vmstat counter updater to drain pagesets of this
682 * currently executing processor on remote nodes after they have
683 * expired.
684 *
879336c3
CL
685 * Note that this function must be called with the thread pinned to
686 * a single processor.
8fce4d8e 687 */
4037d452 688void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 689{
4ae7c039 690 unsigned long flags;
4037d452 691 int to_drain;
4ae7c039 692
4037d452
CL
693 local_irq_save(flags);
694 if (pcp->count >= pcp->batch)
695 to_drain = pcp->batch;
696 else
697 to_drain = pcp->count;
698 free_pages_bulk(zone, to_drain, &pcp->list, 0);
699 pcp->count -= to_drain;
700 local_irq_restore(flags);
4ae7c039
CL
701}
702#endif
703
1da177e4
LT
704static void __drain_pages(unsigned int cpu)
705{
c54ad30c 706 unsigned long flags;
1da177e4
LT
707 struct zone *zone;
708 int i;
709
710 for_each_zone(zone) {
711 struct per_cpu_pageset *pset;
712
f2e12bb2
CL
713 if (!populated_zone(zone))
714 continue;
715
e7c8d5c9 716 pset = zone_pcp(zone, cpu);
1da177e4
LT
717 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
718 struct per_cpu_pages *pcp;
719
720 pcp = &pset->pcp[i];
c54ad30c 721 local_irq_save(flags);
48db57f8
NP
722 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
723 pcp->count = 0;
c54ad30c 724 local_irq_restore(flags);
1da177e4
LT
725 }
726 }
727}
1da177e4 728
296699de 729#ifdef CONFIG_HIBERNATION
1da177e4
LT
730
731void mark_free_pages(struct zone *zone)
732{
f623f0db
RW
733 unsigned long pfn, max_zone_pfn;
734 unsigned long flags;
1da177e4
LT
735 int order;
736 struct list_head *curr;
737
738 if (!zone->spanned_pages)
739 return;
740
741 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
742
743 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
744 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
745 if (pfn_valid(pfn)) {
746 struct page *page = pfn_to_page(pfn);
747
7be98234
RW
748 if (!swsusp_page_is_forbidden(page))
749 swsusp_unset_page_free(page);
f623f0db 750 }
1da177e4
LT
751
752 for (order = MAX_ORDER - 1; order >= 0; --order)
753 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 754 unsigned long i;
1da177e4 755
f623f0db
RW
756 pfn = page_to_pfn(list_entry(curr, struct page, lru));
757 for (i = 0; i < (1UL << order); i++)
7be98234 758 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 759 }
1da177e4 760
1da177e4
LT
761 spin_unlock_irqrestore(&zone->lock, flags);
762}
763
764/*
765 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
766 */
767void drain_local_pages(void)
768{
769 unsigned long flags;
770
771 local_irq_save(flags);
772 __drain_pages(smp_processor_id());
773 local_irq_restore(flags);
774}
296699de 775#endif /* CONFIG_HIBERNATION */
1da177e4 776
1da177e4
LT
777/*
778 * Free a 0-order page
779 */
1da177e4
LT
780static void fastcall free_hot_cold_page(struct page *page, int cold)
781{
782 struct zone *zone = page_zone(page);
783 struct per_cpu_pages *pcp;
784 unsigned long flags;
785
1da177e4
LT
786 if (PageAnon(page))
787 page->mapping = NULL;
224abf92 788 if (free_pages_check(page))
689bcebf
HD
789 return;
790
9858db50
NP
791 if (!PageHighMem(page))
792 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 793 arch_free_page(page, 0);
689bcebf
HD
794 kernel_map_pages(page, 1, 0);
795
e7c8d5c9 796 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 797 local_irq_save(flags);
f8891e5e 798 __count_vm_event(PGFREE);
1da177e4
LT
799 list_add(&page->lru, &pcp->list);
800 pcp->count++;
48db57f8
NP
801 if (pcp->count >= pcp->high) {
802 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
803 pcp->count -= pcp->batch;
804 }
1da177e4
LT
805 local_irq_restore(flags);
806 put_cpu();
807}
808
809void fastcall free_hot_page(struct page *page)
810{
811 free_hot_cold_page(page, 0);
812}
813
814void fastcall free_cold_page(struct page *page)
815{
816 free_hot_cold_page(page, 1);
817}
818
8dfcc9ba
NP
819/*
820 * split_page takes a non-compound higher-order page, and splits it into
821 * n (1<<order) sub-pages: page[0..n]
822 * Each sub-page must be freed individually.
823 *
824 * Note: this is probably too low level an operation for use in drivers.
825 * Please consult with lkml before using this in your driver.
826 */
827void split_page(struct page *page, unsigned int order)
828{
829 int i;
830
725d704e
NP
831 VM_BUG_ON(PageCompound(page));
832 VM_BUG_ON(!page_count(page));
7835e98b
NP
833 for (i = 1; i < (1 << order); i++)
834 set_page_refcounted(page + i);
8dfcc9ba 835}
8dfcc9ba 836
1da177e4
LT
837/*
838 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
839 * we cheat by calling it from here, in the order > 0 path. Saves a branch
840 * or two.
841 */
a74609fa
NP
842static struct page *buffered_rmqueue(struct zonelist *zonelist,
843 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
844{
845 unsigned long flags;
689bcebf 846 struct page *page;
1da177e4 847 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 848 int cpu;
1da177e4 849
689bcebf 850again:
a74609fa 851 cpu = get_cpu();
48db57f8 852 if (likely(order == 0)) {
1da177e4
LT
853 struct per_cpu_pages *pcp;
854
a74609fa 855 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 856 local_irq_save(flags);
a74609fa 857 if (!pcp->count) {
941c7105 858 pcp->count = rmqueue_bulk(zone, 0,
1da177e4 859 pcp->batch, &pcp->list);
a74609fa
NP
860 if (unlikely(!pcp->count))
861 goto failed;
1da177e4 862 }
a74609fa
NP
863 page = list_entry(pcp->list.next, struct page, lru);
864 list_del(&page->lru);
865 pcp->count--;
7fb1d9fc 866 } else {
1da177e4
LT
867 spin_lock_irqsave(&zone->lock, flags);
868 page = __rmqueue(zone, order);
a74609fa
NP
869 spin_unlock(&zone->lock);
870 if (!page)
871 goto failed;
1da177e4
LT
872 }
873
f8891e5e 874 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 875 zone_statistics(zonelist, zone);
a74609fa
NP
876 local_irq_restore(flags);
877 put_cpu();
1da177e4 878
725d704e 879 VM_BUG_ON(bad_range(zone, page));
17cf4406 880 if (prep_new_page(page, order, gfp_flags))
a74609fa 881 goto again;
1da177e4 882 return page;
a74609fa
NP
883
884failed:
885 local_irq_restore(flags);
886 put_cpu();
887 return NULL;
1da177e4
LT
888}
889
7fb1d9fc 890#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
891#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
892#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
893#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
894#define ALLOC_HARDER 0x10 /* try to alloc harder */
895#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
896#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 897
933e312e
AM
898#ifdef CONFIG_FAIL_PAGE_ALLOC
899
900static struct fail_page_alloc_attr {
901 struct fault_attr attr;
902
903 u32 ignore_gfp_highmem;
904 u32 ignore_gfp_wait;
54114994 905 u32 min_order;
933e312e
AM
906
907#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908
909 struct dentry *ignore_gfp_highmem_file;
910 struct dentry *ignore_gfp_wait_file;
54114994 911 struct dentry *min_order_file;
933e312e
AM
912
913#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
914
915} fail_page_alloc = {
916 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
917 .ignore_gfp_wait = 1,
918 .ignore_gfp_highmem = 1,
54114994 919 .min_order = 1,
933e312e
AM
920};
921
922static int __init setup_fail_page_alloc(char *str)
923{
924 return setup_fault_attr(&fail_page_alloc.attr, str);
925}
926__setup("fail_page_alloc=", setup_fail_page_alloc);
927
928static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
929{
54114994
AM
930 if (order < fail_page_alloc.min_order)
931 return 0;
933e312e
AM
932 if (gfp_mask & __GFP_NOFAIL)
933 return 0;
934 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
935 return 0;
936 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
937 return 0;
938
939 return should_fail(&fail_page_alloc.attr, 1 << order);
940}
941
942#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
943
944static int __init fail_page_alloc_debugfs(void)
945{
946 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
947 struct dentry *dir;
948 int err;
949
950 err = init_fault_attr_dentries(&fail_page_alloc.attr,
951 "fail_page_alloc");
952 if (err)
953 return err;
954 dir = fail_page_alloc.attr.dentries.dir;
955
956 fail_page_alloc.ignore_gfp_wait_file =
957 debugfs_create_bool("ignore-gfp-wait", mode, dir,
958 &fail_page_alloc.ignore_gfp_wait);
959
960 fail_page_alloc.ignore_gfp_highmem_file =
961 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
962 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
963 fail_page_alloc.min_order_file =
964 debugfs_create_u32("min-order", mode, dir,
965 &fail_page_alloc.min_order);
933e312e
AM
966
967 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
968 !fail_page_alloc.ignore_gfp_highmem_file ||
969 !fail_page_alloc.min_order_file) {
933e312e
AM
970 err = -ENOMEM;
971 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
972 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 973 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
974 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
975 }
976
977 return err;
978}
979
980late_initcall(fail_page_alloc_debugfs);
981
982#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
983
984#else /* CONFIG_FAIL_PAGE_ALLOC */
985
986static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
987{
988 return 0;
989}
990
991#endif /* CONFIG_FAIL_PAGE_ALLOC */
992
1da177e4
LT
993/*
994 * Return 1 if free pages are above 'mark'. This takes into account the order
995 * of the allocation.
996 */
997int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 998 int classzone_idx, int alloc_flags)
1da177e4
LT
999{
1000 /* free_pages my go negative - that's OK */
d23ad423
CL
1001 long min = mark;
1002 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1003 int o;
1004
7fb1d9fc 1005 if (alloc_flags & ALLOC_HIGH)
1da177e4 1006 min -= min / 2;
7fb1d9fc 1007 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1008 min -= min / 4;
1009
1010 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1011 return 0;
1012 for (o = 0; o < order; o++) {
1013 /* At the next order, this order's pages become unavailable */
1014 free_pages -= z->free_area[o].nr_free << o;
1015
1016 /* Require fewer higher order pages to be free */
1017 min >>= 1;
1018
1019 if (free_pages <= min)
1020 return 0;
1021 }
1022 return 1;
1023}
1024
9276b1bc
PJ
1025#ifdef CONFIG_NUMA
1026/*
1027 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1028 * skip over zones that are not allowed by the cpuset, or that have
1029 * been recently (in last second) found to be nearly full. See further
1030 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1031 * that have to skip over alot of full or unallowed zones.
1032 *
1033 * If the zonelist cache is present in the passed in zonelist, then
1034 * returns a pointer to the allowed node mask (either the current
1035 * tasks mems_allowed, or node_online_map.)
1036 *
1037 * If the zonelist cache is not available for this zonelist, does
1038 * nothing and returns NULL.
1039 *
1040 * If the fullzones BITMAP in the zonelist cache is stale (more than
1041 * a second since last zap'd) then we zap it out (clear its bits.)
1042 *
1043 * We hold off even calling zlc_setup, until after we've checked the
1044 * first zone in the zonelist, on the theory that most allocations will
1045 * be satisfied from that first zone, so best to examine that zone as
1046 * quickly as we can.
1047 */
1048static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1049{
1050 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1051 nodemask_t *allowednodes; /* zonelist_cache approximation */
1052
1053 zlc = zonelist->zlcache_ptr;
1054 if (!zlc)
1055 return NULL;
1056
1057 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1058 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1059 zlc->last_full_zap = jiffies;
1060 }
1061
1062 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1063 &cpuset_current_mems_allowed :
1064 &node_online_map;
1065 return allowednodes;
1066}
1067
1068/*
1069 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1070 * if it is worth looking at further for free memory:
1071 * 1) Check that the zone isn't thought to be full (doesn't have its
1072 * bit set in the zonelist_cache fullzones BITMAP).
1073 * 2) Check that the zones node (obtained from the zonelist_cache
1074 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1075 * Return true (non-zero) if zone is worth looking at further, or
1076 * else return false (zero) if it is not.
1077 *
1078 * This check -ignores- the distinction between various watermarks,
1079 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1080 * found to be full for any variation of these watermarks, it will
1081 * be considered full for up to one second by all requests, unless
1082 * we are so low on memory on all allowed nodes that we are forced
1083 * into the second scan of the zonelist.
1084 *
1085 * In the second scan we ignore this zonelist cache and exactly
1086 * apply the watermarks to all zones, even it is slower to do so.
1087 * We are low on memory in the second scan, and should leave no stone
1088 * unturned looking for a free page.
1089 */
1090static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1091 nodemask_t *allowednodes)
1092{
1093 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1094 int i; /* index of *z in zonelist zones */
1095 int n; /* node that zone *z is on */
1096
1097 zlc = zonelist->zlcache_ptr;
1098 if (!zlc)
1099 return 1;
1100
1101 i = z - zonelist->zones;
1102 n = zlc->z_to_n[i];
1103
1104 /* This zone is worth trying if it is allowed but not full */
1105 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1106}
1107
1108/*
1109 * Given 'z' scanning a zonelist, set the corresponding bit in
1110 * zlc->fullzones, so that subsequent attempts to allocate a page
1111 * from that zone don't waste time re-examining it.
1112 */
1113static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1114{
1115 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1116 int i; /* index of *z in zonelist zones */
1117
1118 zlc = zonelist->zlcache_ptr;
1119 if (!zlc)
1120 return;
1121
1122 i = z - zonelist->zones;
1123
1124 set_bit(i, zlc->fullzones);
1125}
1126
1127#else /* CONFIG_NUMA */
1128
1129static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1130{
1131 return NULL;
1132}
1133
1134static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1135 nodemask_t *allowednodes)
1136{
1137 return 1;
1138}
1139
1140static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1141{
1142}
1143#endif /* CONFIG_NUMA */
1144
7fb1d9fc 1145/*
0798e519 1146 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1147 * a page.
1148 */
1149static struct page *
1150get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1151 struct zonelist *zonelist, int alloc_flags)
753ee728 1152{
9276b1bc 1153 struct zone **z;
7fb1d9fc 1154 struct page *page = NULL;
9276b1bc 1155 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1156 struct zone *zone;
9276b1bc
PJ
1157 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1158 int zlc_active = 0; /* set if using zonelist_cache */
1159 int did_zlc_setup = 0; /* just call zlc_setup() one time */
7fb1d9fc 1160
9276b1bc 1161zonelist_scan:
7fb1d9fc 1162 /*
9276b1bc 1163 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1164 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1165 */
9276b1bc
PJ
1166 z = zonelist->zones;
1167
7fb1d9fc 1168 do {
9276b1bc
PJ
1169 if (NUMA_BUILD && zlc_active &&
1170 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1171 continue;
1192d526 1172 zone = *z;
08e0f6a9 1173 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1192d526 1174 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 1175 break;
7fb1d9fc 1176 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1177 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1178 goto try_next_zone;
7fb1d9fc
RS
1179
1180 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1181 unsigned long mark;
1182 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1183 mark = zone->pages_min;
3148890b 1184 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1185 mark = zone->pages_low;
3148890b 1186 else
1192d526 1187 mark = zone->pages_high;
0798e519
PJ
1188 if (!zone_watermark_ok(zone, order, mark,
1189 classzone_idx, alloc_flags)) {
9eeff239 1190 if (!zone_reclaim_mode ||
1192d526 1191 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1192 goto this_zone_full;
0798e519 1193 }
7fb1d9fc
RS
1194 }
1195
1192d526 1196 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1197 if (page)
7fb1d9fc 1198 break;
9276b1bc
PJ
1199this_zone_full:
1200 if (NUMA_BUILD)
1201 zlc_mark_zone_full(zonelist, z);
1202try_next_zone:
1203 if (NUMA_BUILD && !did_zlc_setup) {
1204 /* we do zlc_setup after the first zone is tried */
1205 allowednodes = zlc_setup(zonelist, alloc_flags);
1206 zlc_active = 1;
1207 did_zlc_setup = 1;
1208 }
7fb1d9fc 1209 } while (*(++z) != NULL);
9276b1bc
PJ
1210
1211 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1212 /* Disable zlc cache for second zonelist scan */
1213 zlc_active = 0;
1214 goto zonelist_scan;
1215 }
7fb1d9fc 1216 return page;
753ee728
MH
1217}
1218
1da177e4
LT
1219/*
1220 * This is the 'heart' of the zoned buddy allocator.
1221 */
1222struct page * fastcall
dd0fc66f 1223__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1224 struct zonelist *zonelist)
1225{
260b2367 1226 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1227 struct zone **z;
1da177e4
LT
1228 struct page *page;
1229 struct reclaim_state reclaim_state;
1230 struct task_struct *p = current;
1da177e4 1231 int do_retry;
7fb1d9fc 1232 int alloc_flags;
1da177e4
LT
1233 int did_some_progress;
1234
1235 might_sleep_if(wait);
1236
933e312e
AM
1237 if (should_fail_alloc_page(gfp_mask, order))
1238 return NULL;
1239
6b1de916 1240restart:
7fb1d9fc 1241 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1242
7fb1d9fc 1243 if (unlikely(*z == NULL)) {
1da177e4
LT
1244 /* Should this ever happen?? */
1245 return NULL;
1246 }
6b1de916 1247
7fb1d9fc 1248 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1249 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1250 if (page)
1251 goto got_pg;
1da177e4 1252
952f3b51
CL
1253 /*
1254 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1255 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1256 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1257 * using a larger set of nodes after it has established that the
1258 * allowed per node queues are empty and that nodes are
1259 * over allocated.
1260 */
1261 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1262 goto nopage;
1263
0798e519 1264 for (z = zonelist->zones; *z; z++)
43b0bc00 1265 wakeup_kswapd(*z, order);
1da177e4 1266
9bf2229f 1267 /*
7fb1d9fc
RS
1268 * OK, we're below the kswapd watermark and have kicked background
1269 * reclaim. Now things get more complex, so set up alloc_flags according
1270 * to how we want to proceed.
1271 *
1272 * The caller may dip into page reserves a bit more if the caller
1273 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1274 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1275 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1276 */
3148890b 1277 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1278 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1279 alloc_flags |= ALLOC_HARDER;
1280 if (gfp_mask & __GFP_HIGH)
1281 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1282 if (wait)
1283 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1284
1285 /*
1286 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1287 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1288 *
1289 * This is the last chance, in general, before the goto nopage.
1290 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1291 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1292 */
7fb1d9fc
RS
1293 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1294 if (page)
1295 goto got_pg;
1da177e4
LT
1296
1297 /* This allocation should allow future memory freeing. */
b84a35be 1298
b43a57bb 1299rebalance:
b84a35be
NP
1300 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1301 && !in_interrupt()) {
1302 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1303nofail_alloc:
b84a35be 1304 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1305 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1306 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1307 if (page)
1308 goto got_pg;
885036d3 1309 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1310 congestion_wait(WRITE, HZ/50);
885036d3
KK
1311 goto nofail_alloc;
1312 }
1da177e4
LT
1313 }
1314 goto nopage;
1315 }
1316
1317 /* Atomic allocations - we can't balance anything */
1318 if (!wait)
1319 goto nopage;
1320
1da177e4
LT
1321 cond_resched();
1322
1323 /* We now go into synchronous reclaim */
3e0d98b9 1324 cpuset_memory_pressure_bump();
1da177e4
LT
1325 p->flags |= PF_MEMALLOC;
1326 reclaim_state.reclaimed_slab = 0;
1327 p->reclaim_state = &reclaim_state;
1328
5ad333eb 1329 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1da177e4
LT
1330
1331 p->reclaim_state = NULL;
1332 p->flags &= ~PF_MEMALLOC;
1333
1334 cond_resched();
1335
1336 if (likely(did_some_progress)) {
7fb1d9fc
RS
1337 page = get_page_from_freelist(gfp_mask, order,
1338 zonelist, alloc_flags);
1339 if (page)
1340 goto got_pg;
1da177e4
LT
1341 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1342 /*
1343 * Go through the zonelist yet one more time, keep
1344 * very high watermark here, this is only to catch
1345 * a parallel oom killing, we must fail if we're still
1346 * under heavy pressure.
1347 */
7fb1d9fc 1348 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1349 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1350 if (page)
1351 goto got_pg;
1da177e4 1352
a8bbf72a
MG
1353 /* The OOM killer will not help higher order allocs so fail */
1354 if (order > PAGE_ALLOC_COSTLY_ORDER)
1355 goto nopage;
1356
9b0f8b04 1357 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1358 goto restart;
1359 }
1360
1361 /*
1362 * Don't let big-order allocations loop unless the caller explicitly
1363 * requests that. Wait for some write requests to complete then retry.
1364 *
1365 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1366 * <= 3, but that may not be true in other implementations.
1367 */
1368 do_retry = 0;
1369 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1370 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1371 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1372 do_retry = 1;
1373 if (gfp_mask & __GFP_NOFAIL)
1374 do_retry = 1;
1375 }
1376 if (do_retry) {
3fcfab16 1377 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1378 goto rebalance;
1379 }
1380
1381nopage:
1382 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1383 printk(KERN_WARNING "%s: page allocation failure."
1384 " order:%d, mode:0x%x\n",
1385 p->comm, order, gfp_mask);
1386 dump_stack();
578c2fd6 1387 show_mem();
1da177e4 1388 }
1da177e4 1389got_pg:
1da177e4
LT
1390 return page;
1391}
1392
1393EXPORT_SYMBOL(__alloc_pages);
1394
1395/*
1396 * Common helper functions.
1397 */
dd0fc66f 1398fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1399{
1400 struct page * page;
1401 page = alloc_pages(gfp_mask, order);
1402 if (!page)
1403 return 0;
1404 return (unsigned long) page_address(page);
1405}
1406
1407EXPORT_SYMBOL(__get_free_pages);
1408
dd0fc66f 1409fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1410{
1411 struct page * page;
1412
1413 /*
1414 * get_zeroed_page() returns a 32-bit address, which cannot represent
1415 * a highmem page
1416 */
725d704e 1417 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1418
1419 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1420 if (page)
1421 return (unsigned long) page_address(page);
1422 return 0;
1423}
1424
1425EXPORT_SYMBOL(get_zeroed_page);
1426
1427void __pagevec_free(struct pagevec *pvec)
1428{
1429 int i = pagevec_count(pvec);
1430
1431 while (--i >= 0)
1432 free_hot_cold_page(pvec->pages[i], pvec->cold);
1433}
1434
1435fastcall void __free_pages(struct page *page, unsigned int order)
1436{
b5810039 1437 if (put_page_testzero(page)) {
1da177e4
LT
1438 if (order == 0)
1439 free_hot_page(page);
1440 else
1441 __free_pages_ok(page, order);
1442 }
1443}
1444
1445EXPORT_SYMBOL(__free_pages);
1446
1447fastcall void free_pages(unsigned long addr, unsigned int order)
1448{
1449 if (addr != 0) {
725d704e 1450 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1451 __free_pages(virt_to_page((void *)addr), order);
1452 }
1453}
1454
1455EXPORT_SYMBOL(free_pages);
1456
1da177e4
LT
1457static unsigned int nr_free_zone_pages(int offset)
1458{
e310fd43
MB
1459 /* Just pick one node, since fallback list is circular */
1460 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1461 unsigned int sum = 0;
1462
e310fd43
MB
1463 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1464 struct zone **zonep = zonelist->zones;
1465 struct zone *zone;
1da177e4 1466
e310fd43
MB
1467 for (zone = *zonep++; zone; zone = *zonep++) {
1468 unsigned long size = zone->present_pages;
1469 unsigned long high = zone->pages_high;
1470 if (size > high)
1471 sum += size - high;
1da177e4
LT
1472 }
1473
1474 return sum;
1475}
1476
1477/*
1478 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1479 */
1480unsigned int nr_free_buffer_pages(void)
1481{
af4ca457 1482 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1483}
c2f1a551 1484EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1485
1486/*
1487 * Amount of free RAM allocatable within all zones
1488 */
1489unsigned int nr_free_pagecache_pages(void)
1490{
2a1e274a 1491 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1492}
08e0f6a9
CL
1493
1494static inline void show_node(struct zone *zone)
1da177e4 1495{
08e0f6a9 1496 if (NUMA_BUILD)
25ba77c1 1497 printk("Node %d ", zone_to_nid(zone));
1da177e4 1498}
1da177e4 1499
1da177e4
LT
1500void si_meminfo(struct sysinfo *val)
1501{
1502 val->totalram = totalram_pages;
1503 val->sharedram = 0;
d23ad423 1504 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1505 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1506 val->totalhigh = totalhigh_pages;
1507 val->freehigh = nr_free_highpages();
1da177e4
LT
1508 val->mem_unit = PAGE_SIZE;
1509}
1510
1511EXPORT_SYMBOL(si_meminfo);
1512
1513#ifdef CONFIG_NUMA
1514void si_meminfo_node(struct sysinfo *val, int nid)
1515{
1516 pg_data_t *pgdat = NODE_DATA(nid);
1517
1518 val->totalram = pgdat->node_present_pages;
d23ad423 1519 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1520#ifdef CONFIG_HIGHMEM
1da177e4 1521 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1522 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1523 NR_FREE_PAGES);
98d2b0eb
CL
1524#else
1525 val->totalhigh = 0;
1526 val->freehigh = 0;
1527#endif
1da177e4
LT
1528 val->mem_unit = PAGE_SIZE;
1529}
1530#endif
1531
1532#define K(x) ((x) << (PAGE_SHIFT-10))
1533
1534/*
1535 * Show free area list (used inside shift_scroll-lock stuff)
1536 * We also calculate the percentage fragmentation. We do this by counting the
1537 * memory on each free list with the exception of the first item on the list.
1538 */
1539void show_free_areas(void)
1540{
c7241913 1541 int cpu;
1da177e4
LT
1542 struct zone *zone;
1543
1544 for_each_zone(zone) {
c7241913 1545 if (!populated_zone(zone))
1da177e4 1546 continue;
c7241913
JS
1547
1548 show_node(zone);
1549 printk("%s per-cpu:\n", zone->name);
1da177e4 1550
6b482c67 1551 for_each_online_cpu(cpu) {
1da177e4
LT
1552 struct per_cpu_pageset *pageset;
1553
e7c8d5c9 1554 pageset = zone_pcp(zone, cpu);
1da177e4 1555
c7241913
JS
1556 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1557 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1558 cpu, pageset->pcp[0].high,
1559 pageset->pcp[0].batch, pageset->pcp[0].count,
1560 pageset->pcp[1].high, pageset->pcp[1].batch,
1561 pageset->pcp[1].count);
1da177e4
LT
1562 }
1563 }
1564
a25700a5 1565 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1566 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1567 global_page_state(NR_ACTIVE),
1568 global_page_state(NR_INACTIVE),
b1e7a8fd 1569 global_page_state(NR_FILE_DIRTY),
ce866b34 1570 global_page_state(NR_WRITEBACK),
fd39fc85 1571 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1572 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1573 global_page_state(NR_SLAB_RECLAIMABLE) +
1574 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1575 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1576 global_page_state(NR_PAGETABLE),
1577 global_page_state(NR_BOUNCE));
1da177e4
LT
1578
1579 for_each_zone(zone) {
1580 int i;
1581
c7241913
JS
1582 if (!populated_zone(zone))
1583 continue;
1584
1da177e4
LT
1585 show_node(zone);
1586 printk("%s"
1587 " free:%lukB"
1588 " min:%lukB"
1589 " low:%lukB"
1590 " high:%lukB"
1591 " active:%lukB"
1592 " inactive:%lukB"
1593 " present:%lukB"
1594 " pages_scanned:%lu"
1595 " all_unreclaimable? %s"
1596 "\n",
1597 zone->name,
d23ad423 1598 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1599 K(zone->pages_min),
1600 K(zone->pages_low),
1601 K(zone->pages_high),
c8785385
CL
1602 K(zone_page_state(zone, NR_ACTIVE)),
1603 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1604 K(zone->present_pages),
1605 zone->pages_scanned,
1606 (zone->all_unreclaimable ? "yes" : "no")
1607 );
1608 printk("lowmem_reserve[]:");
1609 for (i = 0; i < MAX_NR_ZONES; i++)
1610 printk(" %lu", zone->lowmem_reserve[i]);
1611 printk("\n");
1612 }
1613
1614 for_each_zone(zone) {
8f9de51a 1615 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1616
c7241913
JS
1617 if (!populated_zone(zone))
1618 continue;
1619
1da177e4
LT
1620 show_node(zone);
1621 printk("%s: ", zone->name);
1da177e4
LT
1622
1623 spin_lock_irqsave(&zone->lock, flags);
1624 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1625 nr[order] = zone->free_area[order].nr_free;
1626 total += nr[order] << order;
1da177e4
LT
1627 }
1628 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1629 for (order = 0; order < MAX_ORDER; order++)
1630 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1631 printk("= %lukB\n", K(total));
1632 }
1633
1634 show_swap_cache_info();
1635}
1636
1637/*
1638 * Builds allocation fallback zone lists.
1a93205b
CL
1639 *
1640 * Add all populated zones of a node to the zonelist.
1da177e4 1641 */
f0c0b2b8
KH
1642static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1643 int nr_zones, enum zone_type zone_type)
1da177e4 1644{
1a93205b
CL
1645 struct zone *zone;
1646
98d2b0eb 1647 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1648 zone_type++;
02a68a5e
CL
1649
1650 do {
2f6726e5 1651 zone_type--;
070f8032 1652 zone = pgdat->node_zones + zone_type;
1a93205b 1653 if (populated_zone(zone)) {
070f8032
CL
1654 zonelist->zones[nr_zones++] = zone;
1655 check_highest_zone(zone_type);
1da177e4 1656 }
02a68a5e 1657
2f6726e5 1658 } while (zone_type);
070f8032 1659 return nr_zones;
1da177e4
LT
1660}
1661
f0c0b2b8
KH
1662
1663/*
1664 * zonelist_order:
1665 * 0 = automatic detection of better ordering.
1666 * 1 = order by ([node] distance, -zonetype)
1667 * 2 = order by (-zonetype, [node] distance)
1668 *
1669 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1670 * the same zonelist. So only NUMA can configure this param.
1671 */
1672#define ZONELIST_ORDER_DEFAULT 0
1673#define ZONELIST_ORDER_NODE 1
1674#define ZONELIST_ORDER_ZONE 2
1675
1676/* zonelist order in the kernel.
1677 * set_zonelist_order() will set this to NODE or ZONE.
1678 */
1679static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1680static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1681
1682
1da177e4 1683#ifdef CONFIG_NUMA
f0c0b2b8
KH
1684/* The value user specified ....changed by config */
1685static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1686/* string for sysctl */
1687#define NUMA_ZONELIST_ORDER_LEN 16
1688char numa_zonelist_order[16] = "default";
1689
1690/*
1691 * interface for configure zonelist ordering.
1692 * command line option "numa_zonelist_order"
1693 * = "[dD]efault - default, automatic configuration.
1694 * = "[nN]ode - order by node locality, then by zone within node
1695 * = "[zZ]one - order by zone, then by locality within zone
1696 */
1697
1698static int __parse_numa_zonelist_order(char *s)
1699{
1700 if (*s == 'd' || *s == 'D') {
1701 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1702 } else if (*s == 'n' || *s == 'N') {
1703 user_zonelist_order = ZONELIST_ORDER_NODE;
1704 } else if (*s == 'z' || *s == 'Z') {
1705 user_zonelist_order = ZONELIST_ORDER_ZONE;
1706 } else {
1707 printk(KERN_WARNING
1708 "Ignoring invalid numa_zonelist_order value: "
1709 "%s\n", s);
1710 return -EINVAL;
1711 }
1712 return 0;
1713}
1714
1715static __init int setup_numa_zonelist_order(char *s)
1716{
1717 if (s)
1718 return __parse_numa_zonelist_order(s);
1719 return 0;
1720}
1721early_param("numa_zonelist_order", setup_numa_zonelist_order);
1722
1723/*
1724 * sysctl handler for numa_zonelist_order
1725 */
1726int numa_zonelist_order_handler(ctl_table *table, int write,
1727 struct file *file, void __user *buffer, size_t *length,
1728 loff_t *ppos)
1729{
1730 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1731 int ret;
1732
1733 if (write)
1734 strncpy(saved_string, (char*)table->data,
1735 NUMA_ZONELIST_ORDER_LEN);
1736 ret = proc_dostring(table, write, file, buffer, length, ppos);
1737 if (ret)
1738 return ret;
1739 if (write) {
1740 int oldval = user_zonelist_order;
1741 if (__parse_numa_zonelist_order((char*)table->data)) {
1742 /*
1743 * bogus value. restore saved string
1744 */
1745 strncpy((char*)table->data, saved_string,
1746 NUMA_ZONELIST_ORDER_LEN);
1747 user_zonelist_order = oldval;
1748 } else if (oldval != user_zonelist_order)
1749 build_all_zonelists();
1750 }
1751 return 0;
1752}
1753
1754
1da177e4 1755#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
1756static int node_load[MAX_NUMNODES];
1757
1da177e4 1758/**
4dc3b16b 1759 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1760 * @node: node whose fallback list we're appending
1761 * @used_node_mask: nodemask_t of already used nodes
1762 *
1763 * We use a number of factors to determine which is the next node that should
1764 * appear on a given node's fallback list. The node should not have appeared
1765 * already in @node's fallback list, and it should be the next closest node
1766 * according to the distance array (which contains arbitrary distance values
1767 * from each node to each node in the system), and should also prefer nodes
1768 * with no CPUs, since presumably they'll have very little allocation pressure
1769 * on them otherwise.
1770 * It returns -1 if no node is found.
1771 */
f0c0b2b8 1772static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1773{
4cf808eb 1774 int n, val;
1da177e4
LT
1775 int min_val = INT_MAX;
1776 int best_node = -1;
1777
4cf808eb
LT
1778 /* Use the local node if we haven't already */
1779 if (!node_isset(node, *used_node_mask)) {
1780 node_set(node, *used_node_mask);
1781 return node;
1782 }
1da177e4 1783
4cf808eb
LT
1784 for_each_online_node(n) {
1785 cpumask_t tmp;
1da177e4
LT
1786
1787 /* Don't want a node to appear more than once */
1788 if (node_isset(n, *used_node_mask))
1789 continue;
1790
1da177e4
LT
1791 /* Use the distance array to find the distance */
1792 val = node_distance(node, n);
1793
4cf808eb
LT
1794 /* Penalize nodes under us ("prefer the next node") */
1795 val += (n < node);
1796
1da177e4
LT
1797 /* Give preference to headless and unused nodes */
1798 tmp = node_to_cpumask(n);
1799 if (!cpus_empty(tmp))
1800 val += PENALTY_FOR_NODE_WITH_CPUS;
1801
1802 /* Slight preference for less loaded node */
1803 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1804 val += node_load[n];
1805
1806 if (val < min_val) {
1807 min_val = val;
1808 best_node = n;
1809 }
1810 }
1811
1812 if (best_node >= 0)
1813 node_set(best_node, *used_node_mask);
1814
1815 return best_node;
1816}
1817
f0c0b2b8
KH
1818
1819/*
1820 * Build zonelists ordered by node and zones within node.
1821 * This results in maximum locality--normal zone overflows into local
1822 * DMA zone, if any--but risks exhausting DMA zone.
1823 */
1824static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 1825{
19655d34 1826 enum zone_type i;
f0c0b2b8 1827 int j;
1da177e4 1828 struct zonelist *zonelist;
f0c0b2b8
KH
1829
1830 for (i = 0; i < MAX_NR_ZONES; i++) {
1831 zonelist = pgdat->node_zonelists + i;
1832 for (j = 0; zonelist->zones[j] != NULL; j++)
1833 ;
1834 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1835 zonelist->zones[j] = NULL;
1836 }
1837}
1838
1839/*
1840 * Build zonelists ordered by zone and nodes within zones.
1841 * This results in conserving DMA zone[s] until all Normal memory is
1842 * exhausted, but results in overflowing to remote node while memory
1843 * may still exist in local DMA zone.
1844 */
1845static int node_order[MAX_NUMNODES];
1846
1847static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1848{
1849 enum zone_type i;
1850 int pos, j, node;
1851 int zone_type; /* needs to be signed */
1852 struct zone *z;
1853 struct zonelist *zonelist;
1854
1855 for (i = 0; i < MAX_NR_ZONES; i++) {
1856 zonelist = pgdat->node_zonelists + i;
1857 pos = 0;
1858 for (zone_type = i; zone_type >= 0; zone_type--) {
1859 for (j = 0; j < nr_nodes; j++) {
1860 node = node_order[j];
1861 z = &NODE_DATA(node)->node_zones[zone_type];
1862 if (populated_zone(z)) {
1863 zonelist->zones[pos++] = z;
1864 check_highest_zone(zone_type);
1865 }
1866 }
1867 }
1868 zonelist->zones[pos] = NULL;
1869 }
1870}
1871
1872static int default_zonelist_order(void)
1873{
1874 int nid, zone_type;
1875 unsigned long low_kmem_size,total_size;
1876 struct zone *z;
1877 int average_size;
1878 /*
1879 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1880 * If they are really small and used heavily, the system can fall
1881 * into OOM very easily.
1882 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1883 */
1884 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1885 low_kmem_size = 0;
1886 total_size = 0;
1887 for_each_online_node(nid) {
1888 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1889 z = &NODE_DATA(nid)->node_zones[zone_type];
1890 if (populated_zone(z)) {
1891 if (zone_type < ZONE_NORMAL)
1892 low_kmem_size += z->present_pages;
1893 total_size += z->present_pages;
1894 }
1895 }
1896 }
1897 if (!low_kmem_size || /* there are no DMA area. */
1898 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1899 return ZONELIST_ORDER_NODE;
1900 /*
1901 * look into each node's config.
1902 * If there is a node whose DMA/DMA32 memory is very big area on
1903 * local memory, NODE_ORDER may be suitable.
1904 */
1905 average_size = total_size / (num_online_nodes() + 1);
1906 for_each_online_node(nid) {
1907 low_kmem_size = 0;
1908 total_size = 0;
1909 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1910 z = &NODE_DATA(nid)->node_zones[zone_type];
1911 if (populated_zone(z)) {
1912 if (zone_type < ZONE_NORMAL)
1913 low_kmem_size += z->present_pages;
1914 total_size += z->present_pages;
1915 }
1916 }
1917 if (low_kmem_size &&
1918 total_size > average_size && /* ignore small node */
1919 low_kmem_size > total_size * 70/100)
1920 return ZONELIST_ORDER_NODE;
1921 }
1922 return ZONELIST_ORDER_ZONE;
1923}
1924
1925static void set_zonelist_order(void)
1926{
1927 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1928 current_zonelist_order = default_zonelist_order();
1929 else
1930 current_zonelist_order = user_zonelist_order;
1931}
1932
1933static void build_zonelists(pg_data_t *pgdat)
1934{
1935 int j, node, load;
1936 enum zone_type i;
1da177e4 1937 nodemask_t used_mask;
f0c0b2b8
KH
1938 int local_node, prev_node;
1939 struct zonelist *zonelist;
1940 int order = current_zonelist_order;
1da177e4
LT
1941
1942 /* initialize zonelists */
19655d34 1943 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1944 zonelist = pgdat->node_zonelists + i;
1945 zonelist->zones[0] = NULL;
1946 }
1947
1948 /* NUMA-aware ordering of nodes */
1949 local_node = pgdat->node_id;
1950 load = num_online_nodes();
1951 prev_node = local_node;
1952 nodes_clear(used_mask);
f0c0b2b8
KH
1953
1954 memset(node_load, 0, sizeof(node_load));
1955 memset(node_order, 0, sizeof(node_order));
1956 j = 0;
1957
1da177e4 1958 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1959 int distance = node_distance(local_node, node);
1960
1961 /*
1962 * If another node is sufficiently far away then it is better
1963 * to reclaim pages in a zone before going off node.
1964 */
1965 if (distance > RECLAIM_DISTANCE)
1966 zone_reclaim_mode = 1;
1967
1da177e4
LT
1968 /*
1969 * We don't want to pressure a particular node.
1970 * So adding penalty to the first node in same
1971 * distance group to make it round-robin.
1972 */
9eeff239 1973 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
1974 node_load[node] = load;
1975
1da177e4
LT
1976 prev_node = node;
1977 load--;
f0c0b2b8
KH
1978 if (order == ZONELIST_ORDER_NODE)
1979 build_zonelists_in_node_order(pgdat, node);
1980 else
1981 node_order[j++] = node; /* remember order */
1982 }
1da177e4 1983
f0c0b2b8
KH
1984 if (order == ZONELIST_ORDER_ZONE) {
1985 /* calculate node order -- i.e., DMA last! */
1986 build_zonelists_in_zone_order(pgdat, j);
1da177e4
LT
1987 }
1988}
1989
9276b1bc 1990/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 1991static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
1992{
1993 int i;
1994
1995 for (i = 0; i < MAX_NR_ZONES; i++) {
1996 struct zonelist *zonelist;
1997 struct zonelist_cache *zlc;
1998 struct zone **z;
1999
2000 zonelist = pgdat->node_zonelists + i;
2001 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2002 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2003 for (z = zonelist->zones; *z; z++)
2004 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2005 }
2006}
2007
f0c0b2b8 2008
1da177e4
LT
2009#else /* CONFIG_NUMA */
2010
f0c0b2b8
KH
2011static void set_zonelist_order(void)
2012{
2013 current_zonelist_order = ZONELIST_ORDER_ZONE;
2014}
2015
2016static void build_zonelists(pg_data_t *pgdat)
1da177e4 2017{
19655d34
CL
2018 int node, local_node;
2019 enum zone_type i,j;
1da177e4
LT
2020
2021 local_node = pgdat->node_id;
19655d34 2022 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
2023 struct zonelist *zonelist;
2024
2025 zonelist = pgdat->node_zonelists + i;
2026
19655d34 2027 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
2028 /*
2029 * Now we build the zonelist so that it contains the zones
2030 * of all the other nodes.
2031 * We don't want to pressure a particular node, so when
2032 * building the zones for node N, we make sure that the
2033 * zones coming right after the local ones are those from
2034 * node N+1 (modulo N)
2035 */
2036 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2037 if (!node_online(node))
2038 continue;
19655d34 2039 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2040 }
2041 for (node = 0; node < local_node; node++) {
2042 if (!node_online(node))
2043 continue;
19655d34 2044 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2045 }
2046
2047 zonelist->zones[j] = NULL;
2048 }
2049}
2050
9276b1bc 2051/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2052static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2053{
2054 int i;
2055
2056 for (i = 0; i < MAX_NR_ZONES; i++)
2057 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2058}
2059
1da177e4
LT
2060#endif /* CONFIG_NUMA */
2061
6811378e 2062/* return values int ....just for stop_machine_run() */
f0c0b2b8 2063static int __build_all_zonelists(void *dummy)
1da177e4 2064{
6811378e 2065 int nid;
9276b1bc
PJ
2066
2067 for_each_online_node(nid) {
6811378e 2068 build_zonelists(NODE_DATA(nid));
9276b1bc
PJ
2069 build_zonelist_cache(NODE_DATA(nid));
2070 }
6811378e
YG
2071 return 0;
2072}
2073
f0c0b2b8 2074void build_all_zonelists(void)
6811378e 2075{
f0c0b2b8
KH
2076 set_zonelist_order();
2077
6811378e 2078 if (system_state == SYSTEM_BOOTING) {
423b41d7 2079 __build_all_zonelists(NULL);
6811378e
YG
2080 cpuset_init_current_mems_allowed();
2081 } else {
2082 /* we have to stop all cpus to guaranntee there is no user
2083 of zonelist */
2084 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2085 /* cpuset refresh routine should be here */
2086 }
bd1e22b8 2087 vm_total_pages = nr_free_pagecache_pages();
f0c0b2b8
KH
2088 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2089 num_online_nodes(),
2090 zonelist_order_name[current_zonelist_order],
2091 vm_total_pages);
2092#ifdef CONFIG_NUMA
2093 printk("Policy zone: %s\n", zone_names[policy_zone]);
2094#endif
1da177e4
LT
2095}
2096
2097/*
2098 * Helper functions to size the waitqueue hash table.
2099 * Essentially these want to choose hash table sizes sufficiently
2100 * large so that collisions trying to wait on pages are rare.
2101 * But in fact, the number of active page waitqueues on typical
2102 * systems is ridiculously low, less than 200. So this is even
2103 * conservative, even though it seems large.
2104 *
2105 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2106 * waitqueues, i.e. the size of the waitq table given the number of pages.
2107 */
2108#define PAGES_PER_WAITQUEUE 256
2109
cca448fe 2110#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2111static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2112{
2113 unsigned long size = 1;
2114
2115 pages /= PAGES_PER_WAITQUEUE;
2116
2117 while (size < pages)
2118 size <<= 1;
2119
2120 /*
2121 * Once we have dozens or even hundreds of threads sleeping
2122 * on IO we've got bigger problems than wait queue collision.
2123 * Limit the size of the wait table to a reasonable size.
2124 */
2125 size = min(size, 4096UL);
2126
2127 return max(size, 4UL);
2128}
cca448fe
YG
2129#else
2130/*
2131 * A zone's size might be changed by hot-add, so it is not possible to determine
2132 * a suitable size for its wait_table. So we use the maximum size now.
2133 *
2134 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2135 *
2136 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2137 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2138 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2139 *
2140 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2141 * or more by the traditional way. (See above). It equals:
2142 *
2143 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2144 * ia64(16K page size) : = ( 8G + 4M)byte.
2145 * powerpc (64K page size) : = (32G +16M)byte.
2146 */
2147static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2148{
2149 return 4096UL;
2150}
2151#endif
1da177e4
LT
2152
2153/*
2154 * This is an integer logarithm so that shifts can be used later
2155 * to extract the more random high bits from the multiplicative
2156 * hash function before the remainder is taken.
2157 */
2158static inline unsigned long wait_table_bits(unsigned long size)
2159{
2160 return ffz(~size);
2161}
2162
2163#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2164
1da177e4
LT
2165/*
2166 * Initially all pages are reserved - free ones are freed
2167 * up by free_all_bootmem() once the early boot process is
2168 * done. Non-atomic initialization, single-pass.
2169 */
c09b4240 2170void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2171 unsigned long start_pfn, enum memmap_context context)
1da177e4 2172{
1da177e4 2173 struct page *page;
29751f69
AW
2174 unsigned long end_pfn = start_pfn + size;
2175 unsigned long pfn;
1da177e4 2176
cbe8dd4a 2177 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2178 /*
2179 * There can be holes in boot-time mem_map[]s
2180 * handed to this function. They do not
2181 * exist on hotplugged memory.
2182 */
2183 if (context == MEMMAP_EARLY) {
2184 if (!early_pfn_valid(pfn))
2185 continue;
2186 if (!early_pfn_in_nid(pfn, nid))
2187 continue;
2188 }
d41dee36
AW
2189 page = pfn_to_page(pfn);
2190 set_page_links(page, zone, nid, pfn);
7835e98b 2191 init_page_count(page);
1da177e4
LT
2192 reset_page_mapcount(page);
2193 SetPageReserved(page);
2194 INIT_LIST_HEAD(&page->lru);
2195#ifdef WANT_PAGE_VIRTUAL
2196 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2197 if (!is_highmem_idx(zone))
3212c6be 2198 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2199#endif
1da177e4
LT
2200 }
2201}
2202
6ea6e688
PM
2203static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2204 struct zone *zone, unsigned long size)
1da177e4
LT
2205{
2206 int order;
2207 for (order = 0; order < MAX_ORDER ; order++) {
2208 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2209 zone->free_area[order].nr_free = 0;
2210 }
2211}
2212
2213#ifndef __HAVE_ARCH_MEMMAP_INIT
2214#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2215 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2216#endif
2217
d09c6b80 2218static int __devinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2219{
2220 int batch;
2221
2222 /*
2223 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2224 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2225 *
2226 * OK, so we don't know how big the cache is. So guess.
2227 */
2228 batch = zone->present_pages / 1024;
ba56e91c
SR
2229 if (batch * PAGE_SIZE > 512 * 1024)
2230 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2231 batch /= 4; /* We effectively *= 4 below */
2232 if (batch < 1)
2233 batch = 1;
2234
2235 /*
0ceaacc9
NP
2236 * Clamp the batch to a 2^n - 1 value. Having a power
2237 * of 2 value was found to be more likely to have
2238 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2239 *
0ceaacc9
NP
2240 * For example if 2 tasks are alternately allocating
2241 * batches of pages, one task can end up with a lot
2242 * of pages of one half of the possible page colors
2243 * and the other with pages of the other colors.
e7c8d5c9 2244 */
0ceaacc9 2245 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2246
e7c8d5c9
CL
2247 return batch;
2248}
2249
2caaad41
CL
2250inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2251{
2252 struct per_cpu_pages *pcp;
2253
1c6fe946
MD
2254 memset(p, 0, sizeof(*p));
2255
2caaad41
CL
2256 pcp = &p->pcp[0]; /* hot */
2257 pcp->count = 0;
2caaad41
CL
2258 pcp->high = 6 * batch;
2259 pcp->batch = max(1UL, 1 * batch);
2260 INIT_LIST_HEAD(&pcp->list);
2261
2262 pcp = &p->pcp[1]; /* cold*/
2263 pcp->count = 0;
2caaad41 2264 pcp->high = 2 * batch;
e46a5e28 2265 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2266 INIT_LIST_HEAD(&pcp->list);
2267}
2268
8ad4b1fb
RS
2269/*
2270 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2271 * to the value high for the pageset p.
2272 */
2273
2274static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2275 unsigned long high)
2276{
2277 struct per_cpu_pages *pcp;
2278
2279 pcp = &p->pcp[0]; /* hot list */
2280 pcp->high = high;
2281 pcp->batch = max(1UL, high/4);
2282 if ((high/4) > (PAGE_SHIFT * 8))
2283 pcp->batch = PAGE_SHIFT * 8;
2284}
2285
2286
e7c8d5c9
CL
2287#ifdef CONFIG_NUMA
2288/*
2caaad41
CL
2289 * Boot pageset table. One per cpu which is going to be used for all
2290 * zones and all nodes. The parameters will be set in such a way
2291 * that an item put on a list will immediately be handed over to
2292 * the buddy list. This is safe since pageset manipulation is done
2293 * with interrupts disabled.
2294 *
2295 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2296 *
2297 * The boot_pagesets must be kept even after bootup is complete for
2298 * unused processors and/or zones. They do play a role for bootstrapping
2299 * hotplugged processors.
2300 *
2301 * zoneinfo_show() and maybe other functions do
2302 * not check if the processor is online before following the pageset pointer.
2303 * Other parts of the kernel may not check if the zone is available.
2caaad41 2304 */
88a2a4ac 2305static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2306
2307/*
2308 * Dynamically allocate memory for the
e7c8d5c9
CL
2309 * per cpu pageset array in struct zone.
2310 */
6292d9aa 2311static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2312{
2313 struct zone *zone, *dzone;
e7c8d5c9
CL
2314
2315 for_each_zone(zone) {
e7c8d5c9 2316
66a55030
CL
2317 if (!populated_zone(zone))
2318 continue;
2319
23316bc8 2320 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 2321 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 2322 if (!zone_pcp(zone, cpu))
e7c8d5c9 2323 goto bad;
e7c8d5c9 2324
23316bc8 2325 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2326
2327 if (percpu_pagelist_fraction)
2328 setup_pagelist_highmark(zone_pcp(zone, cpu),
2329 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2330 }
2331
2332 return 0;
2333bad:
2334 for_each_zone(dzone) {
2335 if (dzone == zone)
2336 break;
23316bc8
NP
2337 kfree(zone_pcp(dzone, cpu));
2338 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2339 }
2340 return -ENOMEM;
2341}
2342
2343static inline void free_zone_pagesets(int cpu)
2344{
e7c8d5c9
CL
2345 struct zone *zone;
2346
2347 for_each_zone(zone) {
2348 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2349
f3ef9ead
DR
2350 /* Free per_cpu_pageset if it is slab allocated */
2351 if (pset != &boot_pageset[cpu])
2352 kfree(pset);
e7c8d5c9 2353 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2354 }
e7c8d5c9
CL
2355}
2356
9c7b216d 2357static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2358 unsigned long action,
2359 void *hcpu)
2360{
2361 int cpu = (long)hcpu;
2362 int ret = NOTIFY_OK;
2363
2364 switch (action) {
ce421c79 2365 case CPU_UP_PREPARE:
8bb78442 2366 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2367 if (process_zones(cpu))
2368 ret = NOTIFY_BAD;
2369 break;
2370 case CPU_UP_CANCELED:
8bb78442 2371 case CPU_UP_CANCELED_FROZEN:
ce421c79 2372 case CPU_DEAD:
8bb78442 2373 case CPU_DEAD_FROZEN:
ce421c79
AW
2374 free_zone_pagesets(cpu);
2375 break;
2376 default:
2377 break;
e7c8d5c9
CL
2378 }
2379 return ret;
2380}
2381
74b85f37 2382static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2383 { &pageset_cpuup_callback, NULL, 0 };
2384
78d9955b 2385void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2386{
2387 int err;
2388
2389 /* Initialize per_cpu_pageset for cpu 0.
2390 * A cpuup callback will do this for every cpu
2391 * as it comes online
2392 */
2393 err = process_zones(smp_processor_id());
2394 BUG_ON(err);
2395 register_cpu_notifier(&pageset_notifier);
2396}
2397
2398#endif
2399
577a32f6 2400static noinline __init_refok
cca448fe 2401int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2402{
2403 int i;
2404 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2405 size_t alloc_size;
ed8ece2e
DH
2406
2407 /*
2408 * The per-page waitqueue mechanism uses hashed waitqueues
2409 * per zone.
2410 */
02b694de
YG
2411 zone->wait_table_hash_nr_entries =
2412 wait_table_hash_nr_entries(zone_size_pages);
2413 zone->wait_table_bits =
2414 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2415 alloc_size = zone->wait_table_hash_nr_entries
2416 * sizeof(wait_queue_head_t);
2417
2418 if (system_state == SYSTEM_BOOTING) {
2419 zone->wait_table = (wait_queue_head_t *)
2420 alloc_bootmem_node(pgdat, alloc_size);
2421 } else {
2422 /*
2423 * This case means that a zone whose size was 0 gets new memory
2424 * via memory hot-add.
2425 * But it may be the case that a new node was hot-added. In
2426 * this case vmalloc() will not be able to use this new node's
2427 * memory - this wait_table must be initialized to use this new
2428 * node itself as well.
2429 * To use this new node's memory, further consideration will be
2430 * necessary.
2431 */
2432 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2433 }
2434 if (!zone->wait_table)
2435 return -ENOMEM;
ed8ece2e 2436
02b694de 2437 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2438 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2439
2440 return 0;
ed8ece2e
DH
2441}
2442
c09b4240 2443static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2444{
2445 int cpu;
2446 unsigned long batch = zone_batchsize(zone);
2447
2448 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2449#ifdef CONFIG_NUMA
2450 /* Early boot. Slab allocator not functional yet */
23316bc8 2451 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2452 setup_pageset(&boot_pageset[cpu],0);
2453#else
2454 setup_pageset(zone_pcp(zone,cpu), batch);
2455#endif
2456 }
f5335c0f
AB
2457 if (zone->present_pages)
2458 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2459 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2460}
2461
718127cc
YG
2462__meminit int init_currently_empty_zone(struct zone *zone,
2463 unsigned long zone_start_pfn,
a2f3aa02
DH
2464 unsigned long size,
2465 enum memmap_context context)
ed8ece2e
DH
2466{
2467 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2468 int ret;
2469 ret = zone_wait_table_init(zone, size);
2470 if (ret)
2471 return ret;
ed8ece2e
DH
2472 pgdat->nr_zones = zone_idx(zone) + 1;
2473
ed8ece2e
DH
2474 zone->zone_start_pfn = zone_start_pfn;
2475
2476 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2477
2478 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2479
2480 return 0;
ed8ece2e
DH
2481}
2482
c713216d
MG
2483#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2484/*
2485 * Basic iterator support. Return the first range of PFNs for a node
2486 * Note: nid == MAX_NUMNODES returns first region regardless of node
2487 */
a3142c8e 2488static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2489{
2490 int i;
2491
2492 for (i = 0; i < nr_nodemap_entries; i++)
2493 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2494 return i;
2495
2496 return -1;
2497}
2498
2499/*
2500 * Basic iterator support. Return the next active range of PFNs for a node
2501 * Note: nid == MAX_NUMNODES returns next region regardles of node
2502 */
a3142c8e 2503static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2504{
2505 for (index = index + 1; index < nr_nodemap_entries; index++)
2506 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2507 return index;
2508
2509 return -1;
2510}
2511
2512#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2513/*
2514 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2515 * Architectures may implement their own version but if add_active_range()
2516 * was used and there are no special requirements, this is a convenient
2517 * alternative
2518 */
6f076f5d 2519int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2520{
2521 int i;
2522
2523 for (i = 0; i < nr_nodemap_entries; i++) {
2524 unsigned long start_pfn = early_node_map[i].start_pfn;
2525 unsigned long end_pfn = early_node_map[i].end_pfn;
2526
2527 if (start_pfn <= pfn && pfn < end_pfn)
2528 return early_node_map[i].nid;
2529 }
2530
2531 return 0;
2532}
2533#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2534
2535/* Basic iterator support to walk early_node_map[] */
2536#define for_each_active_range_index_in_nid(i, nid) \
2537 for (i = first_active_region_index_in_nid(nid); i != -1; \
2538 i = next_active_region_index_in_nid(i, nid))
2539
2540/**
2541 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2542 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2543 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2544 *
2545 * If an architecture guarantees that all ranges registered with
2546 * add_active_ranges() contain no holes and may be freed, this
2547 * this function may be used instead of calling free_bootmem() manually.
2548 */
2549void __init free_bootmem_with_active_regions(int nid,
2550 unsigned long max_low_pfn)
2551{
2552 int i;
2553
2554 for_each_active_range_index_in_nid(i, nid) {
2555 unsigned long size_pages = 0;
2556 unsigned long end_pfn = early_node_map[i].end_pfn;
2557
2558 if (early_node_map[i].start_pfn >= max_low_pfn)
2559 continue;
2560
2561 if (end_pfn > max_low_pfn)
2562 end_pfn = max_low_pfn;
2563
2564 size_pages = end_pfn - early_node_map[i].start_pfn;
2565 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2566 PFN_PHYS(early_node_map[i].start_pfn),
2567 size_pages << PAGE_SHIFT);
2568 }
2569}
2570
2571/**
2572 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2573 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2574 *
2575 * If an architecture guarantees that all ranges registered with
2576 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2577 * function may be used instead of calling memory_present() manually.
c713216d
MG
2578 */
2579void __init sparse_memory_present_with_active_regions(int nid)
2580{
2581 int i;
2582
2583 for_each_active_range_index_in_nid(i, nid)
2584 memory_present(early_node_map[i].nid,
2585 early_node_map[i].start_pfn,
2586 early_node_map[i].end_pfn);
2587}
2588
fb01439c
MG
2589/**
2590 * push_node_boundaries - Push node boundaries to at least the requested boundary
2591 * @nid: The nid of the node to push the boundary for
2592 * @start_pfn: The start pfn of the node
2593 * @end_pfn: The end pfn of the node
2594 *
2595 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2596 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2597 * be hotplugged even though no physical memory exists. This function allows
2598 * an arch to push out the node boundaries so mem_map is allocated that can
2599 * be used later.
2600 */
2601#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2602void __init push_node_boundaries(unsigned int nid,
2603 unsigned long start_pfn, unsigned long end_pfn)
2604{
2605 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2606 nid, start_pfn, end_pfn);
2607
2608 /* Initialise the boundary for this node if necessary */
2609 if (node_boundary_end_pfn[nid] == 0)
2610 node_boundary_start_pfn[nid] = -1UL;
2611
2612 /* Update the boundaries */
2613 if (node_boundary_start_pfn[nid] > start_pfn)
2614 node_boundary_start_pfn[nid] = start_pfn;
2615 if (node_boundary_end_pfn[nid] < end_pfn)
2616 node_boundary_end_pfn[nid] = end_pfn;
2617}
2618
2619/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2620static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2621 unsigned long *start_pfn, unsigned long *end_pfn)
2622{
2623 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2624 nid, *start_pfn, *end_pfn);
2625
2626 /* Return if boundary information has not been provided */
2627 if (node_boundary_end_pfn[nid] == 0)
2628 return;
2629
2630 /* Check the boundaries and update if necessary */
2631 if (node_boundary_start_pfn[nid] < *start_pfn)
2632 *start_pfn = node_boundary_start_pfn[nid];
2633 if (node_boundary_end_pfn[nid] > *end_pfn)
2634 *end_pfn = node_boundary_end_pfn[nid];
2635}
2636#else
2637void __init push_node_boundaries(unsigned int nid,
2638 unsigned long start_pfn, unsigned long end_pfn) {}
2639
98011f56 2640static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2641 unsigned long *start_pfn, unsigned long *end_pfn) {}
2642#endif
2643
2644
c713216d
MG
2645/**
2646 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2647 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2648 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2649 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2650 *
2651 * It returns the start and end page frame of a node based on information
2652 * provided by an arch calling add_active_range(). If called for a node
2653 * with no available memory, a warning is printed and the start and end
88ca3b94 2654 * PFNs will be 0.
c713216d 2655 */
a3142c8e 2656void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
2657 unsigned long *start_pfn, unsigned long *end_pfn)
2658{
2659 int i;
2660 *start_pfn = -1UL;
2661 *end_pfn = 0;
2662
2663 for_each_active_range_index_in_nid(i, nid) {
2664 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2665 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2666 }
2667
2668 if (*start_pfn == -1UL) {
2669 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2670 *start_pfn = 0;
2671 }
fb01439c
MG
2672
2673 /* Push the node boundaries out if requested */
2674 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2675}
2676
2a1e274a
MG
2677/*
2678 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2679 * assumption is made that zones within a node are ordered in monotonic
2680 * increasing memory addresses so that the "highest" populated zone is used
2681 */
2682void __init find_usable_zone_for_movable(void)
2683{
2684 int zone_index;
2685 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2686 if (zone_index == ZONE_MOVABLE)
2687 continue;
2688
2689 if (arch_zone_highest_possible_pfn[zone_index] >
2690 arch_zone_lowest_possible_pfn[zone_index])
2691 break;
2692 }
2693
2694 VM_BUG_ON(zone_index == -1);
2695 movable_zone = zone_index;
2696}
2697
2698/*
2699 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2700 * because it is sized independant of architecture. Unlike the other zones,
2701 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2702 * in each node depending on the size of each node and how evenly kernelcore
2703 * is distributed. This helper function adjusts the zone ranges
2704 * provided by the architecture for a given node by using the end of the
2705 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2706 * zones within a node are in order of monotonic increases memory addresses
2707 */
2708void __meminit adjust_zone_range_for_zone_movable(int nid,
2709 unsigned long zone_type,
2710 unsigned long node_start_pfn,
2711 unsigned long node_end_pfn,
2712 unsigned long *zone_start_pfn,
2713 unsigned long *zone_end_pfn)
2714{
2715 /* Only adjust if ZONE_MOVABLE is on this node */
2716 if (zone_movable_pfn[nid]) {
2717 /* Size ZONE_MOVABLE */
2718 if (zone_type == ZONE_MOVABLE) {
2719 *zone_start_pfn = zone_movable_pfn[nid];
2720 *zone_end_pfn = min(node_end_pfn,
2721 arch_zone_highest_possible_pfn[movable_zone]);
2722
2723 /* Adjust for ZONE_MOVABLE starting within this range */
2724 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2725 *zone_end_pfn > zone_movable_pfn[nid]) {
2726 *zone_end_pfn = zone_movable_pfn[nid];
2727
2728 /* Check if this whole range is within ZONE_MOVABLE */
2729 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2730 *zone_start_pfn = *zone_end_pfn;
2731 }
2732}
2733
c713216d
MG
2734/*
2735 * Return the number of pages a zone spans in a node, including holes
2736 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2737 */
6ea6e688 2738static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
2739 unsigned long zone_type,
2740 unsigned long *ignored)
2741{
2742 unsigned long node_start_pfn, node_end_pfn;
2743 unsigned long zone_start_pfn, zone_end_pfn;
2744
2745 /* Get the start and end of the node and zone */
2746 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2747 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2748 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
2749 adjust_zone_range_for_zone_movable(nid, zone_type,
2750 node_start_pfn, node_end_pfn,
2751 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
2752
2753 /* Check that this node has pages within the zone's required range */
2754 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2755 return 0;
2756
2757 /* Move the zone boundaries inside the node if necessary */
2758 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2759 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2760
2761 /* Return the spanned pages */
2762 return zone_end_pfn - zone_start_pfn;
2763}
2764
2765/*
2766 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2767 * then all holes in the requested range will be accounted for.
c713216d 2768 */
a3142c8e 2769unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
2770 unsigned long range_start_pfn,
2771 unsigned long range_end_pfn)
2772{
2773 int i = 0;
2774 unsigned long prev_end_pfn = 0, hole_pages = 0;
2775 unsigned long start_pfn;
2776
2777 /* Find the end_pfn of the first active range of pfns in the node */
2778 i = first_active_region_index_in_nid(nid);
2779 if (i == -1)
2780 return 0;
2781
b5445f95
MG
2782 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2783
9c7cd687
MG
2784 /* Account for ranges before physical memory on this node */
2785 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 2786 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
2787
2788 /* Find all holes for the zone within the node */
2789 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2790
2791 /* No need to continue if prev_end_pfn is outside the zone */
2792 if (prev_end_pfn >= range_end_pfn)
2793 break;
2794
2795 /* Make sure the end of the zone is not within the hole */
2796 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2797 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2798
2799 /* Update the hole size cound and move on */
2800 if (start_pfn > range_start_pfn) {
2801 BUG_ON(prev_end_pfn > start_pfn);
2802 hole_pages += start_pfn - prev_end_pfn;
2803 }
2804 prev_end_pfn = early_node_map[i].end_pfn;
2805 }
2806
9c7cd687
MG
2807 /* Account for ranges past physical memory on this node */
2808 if (range_end_pfn > prev_end_pfn)
0c6cb974 2809 hole_pages += range_end_pfn -
9c7cd687
MG
2810 max(range_start_pfn, prev_end_pfn);
2811
c713216d
MG
2812 return hole_pages;
2813}
2814
2815/**
2816 * absent_pages_in_range - Return number of page frames in holes within a range
2817 * @start_pfn: The start PFN to start searching for holes
2818 * @end_pfn: The end PFN to stop searching for holes
2819 *
88ca3b94 2820 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
2821 */
2822unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2823 unsigned long end_pfn)
2824{
2825 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2826}
2827
2828/* Return the number of page frames in holes in a zone on a node */
6ea6e688 2829static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
2830 unsigned long zone_type,
2831 unsigned long *ignored)
2832{
9c7cd687
MG
2833 unsigned long node_start_pfn, node_end_pfn;
2834 unsigned long zone_start_pfn, zone_end_pfn;
2835
2836 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2837 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2838 node_start_pfn);
2839 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2840 node_end_pfn);
2841
2a1e274a
MG
2842 adjust_zone_range_for_zone_movable(nid, zone_type,
2843 node_start_pfn, node_end_pfn,
2844 &zone_start_pfn, &zone_end_pfn);
9c7cd687 2845 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 2846}
0e0b864e 2847
c713216d 2848#else
6ea6e688 2849static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
2850 unsigned long zone_type,
2851 unsigned long *zones_size)
2852{
2853 return zones_size[zone_type];
2854}
2855
6ea6e688 2856static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
2857 unsigned long zone_type,
2858 unsigned long *zholes_size)
2859{
2860 if (!zholes_size)
2861 return 0;
2862
2863 return zholes_size[zone_type];
2864}
0e0b864e 2865
c713216d
MG
2866#endif
2867
a3142c8e 2868static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
2869 unsigned long *zones_size, unsigned long *zholes_size)
2870{
2871 unsigned long realtotalpages, totalpages = 0;
2872 enum zone_type i;
2873
2874 for (i = 0; i < MAX_NR_ZONES; i++)
2875 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2876 zones_size);
2877 pgdat->node_spanned_pages = totalpages;
2878
2879 realtotalpages = totalpages;
2880 for (i = 0; i < MAX_NR_ZONES; i++)
2881 realtotalpages -=
2882 zone_absent_pages_in_node(pgdat->node_id, i,
2883 zholes_size);
2884 pgdat->node_present_pages = realtotalpages;
2885 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2886 realtotalpages);
2887}
2888
1da177e4
LT
2889/*
2890 * Set up the zone data structures:
2891 * - mark all pages reserved
2892 * - mark all memory queues empty
2893 * - clear the memory bitmaps
2894 */
86356ab1 2895static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
2896 unsigned long *zones_size, unsigned long *zholes_size)
2897{
2f1b6248 2898 enum zone_type j;
ed8ece2e 2899 int nid = pgdat->node_id;
1da177e4 2900 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 2901 int ret;
1da177e4 2902
208d54e5 2903 pgdat_resize_init(pgdat);
1da177e4
LT
2904 pgdat->nr_zones = 0;
2905 init_waitqueue_head(&pgdat->kswapd_wait);
2906 pgdat->kswapd_max_order = 0;
2907
2908 for (j = 0; j < MAX_NR_ZONES; j++) {
2909 struct zone *zone = pgdat->node_zones + j;
0e0b864e 2910 unsigned long size, realsize, memmap_pages;
1da177e4 2911
c713216d
MG
2912 size = zone_spanned_pages_in_node(nid, j, zones_size);
2913 realsize = size - zone_absent_pages_in_node(nid, j,
2914 zholes_size);
1da177e4 2915
0e0b864e
MG
2916 /*
2917 * Adjust realsize so that it accounts for how much memory
2918 * is used by this zone for memmap. This affects the watermark
2919 * and per-cpu initialisations
2920 */
2921 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2922 if (realsize >= memmap_pages) {
2923 realsize -= memmap_pages;
2924 printk(KERN_DEBUG
2925 " %s zone: %lu pages used for memmap\n",
2926 zone_names[j], memmap_pages);
2927 } else
2928 printk(KERN_WARNING
2929 " %s zone: %lu pages exceeds realsize %lu\n",
2930 zone_names[j], memmap_pages, realsize);
2931
6267276f
CL
2932 /* Account for reserved pages */
2933 if (j == 0 && realsize > dma_reserve) {
0e0b864e 2934 realsize -= dma_reserve;
6267276f
CL
2935 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2936 zone_names[0], dma_reserve);
0e0b864e
MG
2937 }
2938
98d2b0eb 2939 if (!is_highmem_idx(j))
1da177e4
LT
2940 nr_kernel_pages += realsize;
2941 nr_all_pages += realsize;
2942
2943 zone->spanned_pages = size;
2944 zone->present_pages = realsize;
9614634f 2945#ifdef CONFIG_NUMA
d5f541ed 2946 zone->node = nid;
8417bba4 2947 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2948 / 100;
0ff38490 2949 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2950#endif
1da177e4
LT
2951 zone->name = zone_names[j];
2952 spin_lock_init(&zone->lock);
2953 spin_lock_init(&zone->lru_lock);
bdc8cb98 2954 zone_seqlock_init(zone);
1da177e4 2955 zone->zone_pgdat = pgdat;
1da177e4 2956
3bb1a852 2957 zone->prev_priority = DEF_PRIORITY;
1da177e4 2958
ed8ece2e 2959 zone_pcp_init(zone);
1da177e4
LT
2960 INIT_LIST_HEAD(&zone->active_list);
2961 INIT_LIST_HEAD(&zone->inactive_list);
2962 zone->nr_scan_active = 0;
2963 zone->nr_scan_inactive = 0;
2244b95a 2964 zap_zone_vm_stats(zone);
53e9a615 2965 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2966 if (!size)
2967 continue;
2968
a2f3aa02
DH
2969 ret = init_currently_empty_zone(zone, zone_start_pfn,
2970 size, MEMMAP_EARLY);
718127cc 2971 BUG_ON(ret);
1da177e4 2972 zone_start_pfn += size;
1da177e4
LT
2973 }
2974}
2975
577a32f6 2976static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 2977{
1da177e4
LT
2978 /* Skip empty nodes */
2979 if (!pgdat->node_spanned_pages)
2980 return;
2981
d41dee36 2982#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2983 /* ia64 gets its own node_mem_map, before this, without bootmem */
2984 if (!pgdat->node_mem_map) {
e984bb43 2985 unsigned long size, start, end;
d41dee36
AW
2986 struct page *map;
2987
e984bb43
BP
2988 /*
2989 * The zone's endpoints aren't required to be MAX_ORDER
2990 * aligned but the node_mem_map endpoints must be in order
2991 * for the buddy allocator to function correctly.
2992 */
2993 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2994 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2995 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2996 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2997 map = alloc_remap(pgdat->node_id, size);
2998 if (!map)
2999 map = alloc_bootmem_node(pgdat, size);
e984bb43 3000 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3001 }
12d810c1 3002#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3003 /*
3004 * With no DISCONTIG, the global mem_map is just set as node 0's
3005 */
c713216d 3006 if (pgdat == NODE_DATA(0)) {
1da177e4 3007 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3008#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3009 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3010 mem_map -= pgdat->node_start_pfn;
3011#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3012 }
1da177e4 3013#endif
d41dee36 3014#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3015}
3016
86356ab1 3017void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3018 unsigned long *zones_size, unsigned long node_start_pfn,
3019 unsigned long *zholes_size)
3020{
3021 pgdat->node_id = nid;
3022 pgdat->node_start_pfn = node_start_pfn;
c713216d 3023 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3024
3025 alloc_node_mem_map(pgdat);
3026
3027 free_area_init_core(pgdat, zones_size, zholes_size);
3028}
3029
c713216d 3030#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3031
3032#if MAX_NUMNODES > 1
3033/*
3034 * Figure out the number of possible node ids.
3035 */
3036static void __init setup_nr_node_ids(void)
3037{
3038 unsigned int node;
3039 unsigned int highest = 0;
3040
3041 for_each_node_mask(node, node_possible_map)
3042 highest = node;
3043 nr_node_ids = highest + 1;
3044}
3045#else
3046static inline void setup_nr_node_ids(void)
3047{
3048}
3049#endif
3050
c713216d
MG
3051/**
3052 * add_active_range - Register a range of PFNs backed by physical memory
3053 * @nid: The node ID the range resides on
3054 * @start_pfn: The start PFN of the available physical memory
3055 * @end_pfn: The end PFN of the available physical memory
3056 *
3057 * These ranges are stored in an early_node_map[] and later used by
3058 * free_area_init_nodes() to calculate zone sizes and holes. If the
3059 * range spans a memory hole, it is up to the architecture to ensure
3060 * the memory is not freed by the bootmem allocator. If possible
3061 * the range being registered will be merged with existing ranges.
3062 */
3063void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3064 unsigned long end_pfn)
3065{
3066 int i;
3067
3068 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3069 "%d entries of %d used\n",
3070 nid, start_pfn, end_pfn,
3071 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3072
3073 /* Merge with existing active regions if possible */
3074 for (i = 0; i < nr_nodemap_entries; i++) {
3075 if (early_node_map[i].nid != nid)
3076 continue;
3077
3078 /* Skip if an existing region covers this new one */
3079 if (start_pfn >= early_node_map[i].start_pfn &&
3080 end_pfn <= early_node_map[i].end_pfn)
3081 return;
3082
3083 /* Merge forward if suitable */
3084 if (start_pfn <= early_node_map[i].end_pfn &&
3085 end_pfn > early_node_map[i].end_pfn) {
3086 early_node_map[i].end_pfn = end_pfn;
3087 return;
3088 }
3089
3090 /* Merge backward if suitable */
3091 if (start_pfn < early_node_map[i].end_pfn &&
3092 end_pfn >= early_node_map[i].start_pfn) {
3093 early_node_map[i].start_pfn = start_pfn;
3094 return;
3095 }
3096 }
3097
3098 /* Check that early_node_map is large enough */
3099 if (i >= MAX_ACTIVE_REGIONS) {
3100 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3101 MAX_ACTIVE_REGIONS);
3102 return;
3103 }
3104
3105 early_node_map[i].nid = nid;
3106 early_node_map[i].start_pfn = start_pfn;
3107 early_node_map[i].end_pfn = end_pfn;
3108 nr_nodemap_entries = i + 1;
3109}
3110
3111/**
3112 * shrink_active_range - Shrink an existing registered range of PFNs
3113 * @nid: The node id the range is on that should be shrunk
3114 * @old_end_pfn: The old end PFN of the range
3115 * @new_end_pfn: The new PFN of the range
3116 *
3117 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3118 * The map is kept at the end physical page range that has already been
3119 * registered with add_active_range(). This function allows an arch to shrink
3120 * an existing registered range.
3121 */
3122void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3123 unsigned long new_end_pfn)
3124{
3125 int i;
3126
3127 /* Find the old active region end and shrink */
3128 for_each_active_range_index_in_nid(i, nid)
3129 if (early_node_map[i].end_pfn == old_end_pfn) {
3130 early_node_map[i].end_pfn = new_end_pfn;
3131 break;
3132 }
3133}
3134
3135/**
3136 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3137 *
c713216d
MG
3138 * During discovery, it may be found that a table like SRAT is invalid
3139 * and an alternative discovery method must be used. This function removes
3140 * all currently registered regions.
3141 */
88ca3b94 3142void __init remove_all_active_ranges(void)
c713216d
MG
3143{
3144 memset(early_node_map, 0, sizeof(early_node_map));
3145 nr_nodemap_entries = 0;
fb01439c
MG
3146#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3147 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3148 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3149#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3150}
3151
3152/* Compare two active node_active_regions */
3153static int __init cmp_node_active_region(const void *a, const void *b)
3154{
3155 struct node_active_region *arange = (struct node_active_region *)a;
3156 struct node_active_region *brange = (struct node_active_region *)b;
3157
3158 /* Done this way to avoid overflows */
3159 if (arange->start_pfn > brange->start_pfn)
3160 return 1;
3161 if (arange->start_pfn < brange->start_pfn)
3162 return -1;
3163
3164 return 0;
3165}
3166
3167/* sort the node_map by start_pfn */
3168static void __init sort_node_map(void)
3169{
3170 sort(early_node_map, (size_t)nr_nodemap_entries,
3171 sizeof(struct node_active_region),
3172 cmp_node_active_region, NULL);
3173}
3174
a6af2bc3 3175/* Find the lowest pfn for a node */
c713216d
MG
3176unsigned long __init find_min_pfn_for_node(unsigned long nid)
3177{
3178 int i;
a6af2bc3 3179 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3180
c713216d
MG
3181 /* Assuming a sorted map, the first range found has the starting pfn */
3182 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3183 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3184
a6af2bc3
MG
3185 if (min_pfn == ULONG_MAX) {
3186 printk(KERN_WARNING
3187 "Could not find start_pfn for node %lu\n", nid);
3188 return 0;
3189 }
3190
3191 return min_pfn;
c713216d
MG
3192}
3193
3194/**
3195 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3196 *
3197 * It returns the minimum PFN based on information provided via
88ca3b94 3198 * add_active_range().
c713216d
MG
3199 */
3200unsigned long __init find_min_pfn_with_active_regions(void)
3201{
3202 return find_min_pfn_for_node(MAX_NUMNODES);
3203}
3204
3205/**
3206 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3207 *
3208 * It returns the maximum PFN based on information provided via
88ca3b94 3209 * add_active_range().
c713216d
MG
3210 */
3211unsigned long __init find_max_pfn_with_active_regions(void)
3212{
3213 int i;
3214 unsigned long max_pfn = 0;
3215
3216 for (i = 0; i < nr_nodemap_entries; i++)
3217 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3218
3219 return max_pfn;
3220}
3221
7e63efef
MG
3222unsigned long __init early_calculate_totalpages(void)
3223{
3224 int i;
3225 unsigned long totalpages = 0;
3226
3227 for (i = 0; i < nr_nodemap_entries; i++)
3228 totalpages += early_node_map[i].end_pfn -
3229 early_node_map[i].start_pfn;
3230
3231 return totalpages;
3232}
3233
2a1e274a
MG
3234/*
3235 * Find the PFN the Movable zone begins in each node. Kernel memory
3236 * is spread evenly between nodes as long as the nodes have enough
3237 * memory. When they don't, some nodes will have more kernelcore than
3238 * others
3239 */
3240void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3241{
3242 int i, nid;
3243 unsigned long usable_startpfn;
3244 unsigned long kernelcore_node, kernelcore_remaining;
3245 int usable_nodes = num_online_nodes();
3246
7e63efef
MG
3247 /*
3248 * If movablecore was specified, calculate what size of
3249 * kernelcore that corresponds so that memory usable for
3250 * any allocation type is evenly spread. If both kernelcore
3251 * and movablecore are specified, then the value of kernelcore
3252 * will be used for required_kernelcore if it's greater than
3253 * what movablecore would have allowed.
3254 */
3255 if (required_movablecore) {
3256 unsigned long totalpages = early_calculate_totalpages();
3257 unsigned long corepages;
3258
3259 /*
3260 * Round-up so that ZONE_MOVABLE is at least as large as what
3261 * was requested by the user
3262 */
3263 required_movablecore =
3264 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3265 corepages = totalpages - required_movablecore;
3266
3267 required_kernelcore = max(required_kernelcore, corepages);
3268 }
3269
2a1e274a
MG
3270 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3271 if (!required_kernelcore)
3272 return;
3273
3274 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3275 find_usable_zone_for_movable();
3276 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3277
3278restart:
3279 /* Spread kernelcore memory as evenly as possible throughout nodes */
3280 kernelcore_node = required_kernelcore / usable_nodes;
3281 for_each_online_node(nid) {
3282 /*
3283 * Recalculate kernelcore_node if the division per node
3284 * now exceeds what is necessary to satisfy the requested
3285 * amount of memory for the kernel
3286 */
3287 if (required_kernelcore < kernelcore_node)
3288 kernelcore_node = required_kernelcore / usable_nodes;
3289
3290 /*
3291 * As the map is walked, we track how much memory is usable
3292 * by the kernel using kernelcore_remaining. When it is
3293 * 0, the rest of the node is usable by ZONE_MOVABLE
3294 */
3295 kernelcore_remaining = kernelcore_node;
3296
3297 /* Go through each range of PFNs within this node */
3298 for_each_active_range_index_in_nid(i, nid) {
3299 unsigned long start_pfn, end_pfn;
3300 unsigned long size_pages;
3301
3302 start_pfn = max(early_node_map[i].start_pfn,
3303 zone_movable_pfn[nid]);
3304 end_pfn = early_node_map[i].end_pfn;
3305 if (start_pfn >= end_pfn)
3306 continue;
3307
3308 /* Account for what is only usable for kernelcore */
3309 if (start_pfn < usable_startpfn) {
3310 unsigned long kernel_pages;
3311 kernel_pages = min(end_pfn, usable_startpfn)
3312 - start_pfn;
3313
3314 kernelcore_remaining -= min(kernel_pages,
3315 kernelcore_remaining);
3316 required_kernelcore -= min(kernel_pages,
3317 required_kernelcore);
3318
3319 /* Continue if range is now fully accounted */
3320 if (end_pfn <= usable_startpfn) {
3321
3322 /*
3323 * Push zone_movable_pfn to the end so
3324 * that if we have to rebalance
3325 * kernelcore across nodes, we will
3326 * not double account here
3327 */
3328 zone_movable_pfn[nid] = end_pfn;
3329 continue;
3330 }
3331 start_pfn = usable_startpfn;
3332 }
3333
3334 /*
3335 * The usable PFN range for ZONE_MOVABLE is from
3336 * start_pfn->end_pfn. Calculate size_pages as the
3337 * number of pages used as kernelcore
3338 */
3339 size_pages = end_pfn - start_pfn;
3340 if (size_pages > kernelcore_remaining)
3341 size_pages = kernelcore_remaining;
3342 zone_movable_pfn[nid] = start_pfn + size_pages;
3343
3344 /*
3345 * Some kernelcore has been met, update counts and
3346 * break if the kernelcore for this node has been
3347 * satisified
3348 */
3349 required_kernelcore -= min(required_kernelcore,
3350 size_pages);
3351 kernelcore_remaining -= size_pages;
3352 if (!kernelcore_remaining)
3353 break;
3354 }
3355 }
3356
3357 /*
3358 * If there is still required_kernelcore, we do another pass with one
3359 * less node in the count. This will push zone_movable_pfn[nid] further
3360 * along on the nodes that still have memory until kernelcore is
3361 * satisified
3362 */
3363 usable_nodes--;
3364 if (usable_nodes && required_kernelcore > usable_nodes)
3365 goto restart;
3366
3367 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3368 for (nid = 0; nid < MAX_NUMNODES; nid++)
3369 zone_movable_pfn[nid] =
3370 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3371}
3372
c713216d
MG
3373/**
3374 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3375 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3376 *
3377 * This will call free_area_init_node() for each active node in the system.
3378 * Using the page ranges provided by add_active_range(), the size of each
3379 * zone in each node and their holes is calculated. If the maximum PFN
3380 * between two adjacent zones match, it is assumed that the zone is empty.
3381 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3382 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3383 * starts where the previous one ended. For example, ZONE_DMA32 starts
3384 * at arch_max_dma_pfn.
3385 */
3386void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3387{
3388 unsigned long nid;
3389 enum zone_type i;
3390
a6af2bc3
MG
3391 /* Sort early_node_map as initialisation assumes it is sorted */
3392 sort_node_map();
3393
c713216d
MG
3394 /* Record where the zone boundaries are */
3395 memset(arch_zone_lowest_possible_pfn, 0,
3396 sizeof(arch_zone_lowest_possible_pfn));
3397 memset(arch_zone_highest_possible_pfn, 0,
3398 sizeof(arch_zone_highest_possible_pfn));
3399 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3400 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3401 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3402 if (i == ZONE_MOVABLE)
3403 continue;
c713216d
MG
3404 arch_zone_lowest_possible_pfn[i] =
3405 arch_zone_highest_possible_pfn[i-1];
3406 arch_zone_highest_possible_pfn[i] =
3407 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3408 }
2a1e274a
MG
3409 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3410 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3411
3412 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3413 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3414 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3415
c713216d
MG
3416 /* Print out the zone ranges */
3417 printk("Zone PFN ranges:\n");
2a1e274a
MG
3418 for (i = 0; i < MAX_NR_ZONES; i++) {
3419 if (i == ZONE_MOVABLE)
3420 continue;
c713216d
MG
3421 printk(" %-8s %8lu -> %8lu\n",
3422 zone_names[i],
3423 arch_zone_lowest_possible_pfn[i],
3424 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3425 }
3426
3427 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3428 printk("Movable zone start PFN for each node\n");
3429 for (i = 0; i < MAX_NUMNODES; i++) {
3430 if (zone_movable_pfn[i])
3431 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3432 }
c713216d
MG
3433
3434 /* Print out the early_node_map[] */
3435 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3436 for (i = 0; i < nr_nodemap_entries; i++)
3437 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3438 early_node_map[i].start_pfn,
3439 early_node_map[i].end_pfn);
3440
3441 /* Initialise every node */
8ef82866 3442 setup_nr_node_ids();
c713216d
MG
3443 for_each_online_node(nid) {
3444 pg_data_t *pgdat = NODE_DATA(nid);
3445 free_area_init_node(nid, pgdat, NULL,
3446 find_min_pfn_for_node(nid), NULL);
3447 }
3448}
2a1e274a 3449
7e63efef 3450static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3451{
3452 unsigned long long coremem;
3453 if (!p)
3454 return -EINVAL;
3455
3456 coremem = memparse(p, &p);
7e63efef 3457 *core = coremem >> PAGE_SHIFT;
2a1e274a 3458
7e63efef 3459 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3460 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3461
3462 return 0;
3463}
ed7ed365 3464
7e63efef
MG
3465/*
3466 * kernelcore=size sets the amount of memory for use for allocations that
3467 * cannot be reclaimed or migrated.
3468 */
3469static int __init cmdline_parse_kernelcore(char *p)
3470{
3471 return cmdline_parse_core(p, &required_kernelcore);
3472}
3473
3474/*
3475 * movablecore=size sets the amount of memory for use for allocations that
3476 * can be reclaimed or migrated.
3477 */
3478static int __init cmdline_parse_movablecore(char *p)
3479{
3480 return cmdline_parse_core(p, &required_movablecore);
3481}
3482
ed7ed365 3483early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3484early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3485
c713216d
MG
3486#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3487
0e0b864e 3488/**
88ca3b94
RD
3489 * set_dma_reserve - set the specified number of pages reserved in the first zone
3490 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3491 *
3492 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3493 * In the DMA zone, a significant percentage may be consumed by kernel image
3494 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3495 * function may optionally be used to account for unfreeable pages in the
3496 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3497 * smaller per-cpu batchsize.
0e0b864e
MG
3498 */
3499void __init set_dma_reserve(unsigned long new_dma_reserve)
3500{
3501 dma_reserve = new_dma_reserve;
3502}
3503
93b7504e 3504#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3505static bootmem_data_t contig_bootmem_data;
3506struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3507
3508EXPORT_SYMBOL(contig_page_data);
93b7504e 3509#endif
1da177e4
LT
3510
3511void __init free_area_init(unsigned long *zones_size)
3512{
93b7504e 3513 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3514 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3515}
1da177e4 3516
1da177e4
LT
3517static int page_alloc_cpu_notify(struct notifier_block *self,
3518 unsigned long action, void *hcpu)
3519{
3520 int cpu = (unsigned long)hcpu;
1da177e4 3521
8bb78442 3522 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1da177e4
LT
3523 local_irq_disable();
3524 __drain_pages(cpu);
f8891e5e 3525 vm_events_fold_cpu(cpu);
1da177e4 3526 local_irq_enable();
2244b95a 3527 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3528 }
3529 return NOTIFY_OK;
3530}
1da177e4
LT
3531
3532void __init page_alloc_init(void)
3533{
3534 hotcpu_notifier(page_alloc_cpu_notify, 0);
3535}
3536
cb45b0e9
HA
3537/*
3538 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3539 * or min_free_kbytes changes.
3540 */
3541static void calculate_totalreserve_pages(void)
3542{
3543 struct pglist_data *pgdat;
3544 unsigned long reserve_pages = 0;
2f6726e5 3545 enum zone_type i, j;
cb45b0e9
HA
3546
3547 for_each_online_pgdat(pgdat) {
3548 for (i = 0; i < MAX_NR_ZONES; i++) {
3549 struct zone *zone = pgdat->node_zones + i;
3550 unsigned long max = 0;
3551
3552 /* Find valid and maximum lowmem_reserve in the zone */
3553 for (j = i; j < MAX_NR_ZONES; j++) {
3554 if (zone->lowmem_reserve[j] > max)
3555 max = zone->lowmem_reserve[j];
3556 }
3557
3558 /* we treat pages_high as reserved pages. */
3559 max += zone->pages_high;
3560
3561 if (max > zone->present_pages)
3562 max = zone->present_pages;
3563 reserve_pages += max;
3564 }
3565 }
3566 totalreserve_pages = reserve_pages;
3567}
3568
1da177e4
LT
3569/*
3570 * setup_per_zone_lowmem_reserve - called whenever
3571 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3572 * has a correct pages reserved value, so an adequate number of
3573 * pages are left in the zone after a successful __alloc_pages().
3574 */
3575static void setup_per_zone_lowmem_reserve(void)
3576{
3577 struct pglist_data *pgdat;
2f6726e5 3578 enum zone_type j, idx;
1da177e4 3579
ec936fc5 3580 for_each_online_pgdat(pgdat) {
1da177e4
LT
3581 for (j = 0; j < MAX_NR_ZONES; j++) {
3582 struct zone *zone = pgdat->node_zones + j;
3583 unsigned long present_pages = zone->present_pages;
3584
3585 zone->lowmem_reserve[j] = 0;
3586
2f6726e5
CL
3587 idx = j;
3588 while (idx) {
1da177e4
LT
3589 struct zone *lower_zone;
3590
2f6726e5
CL
3591 idx--;
3592
1da177e4
LT
3593 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3594 sysctl_lowmem_reserve_ratio[idx] = 1;
3595
3596 lower_zone = pgdat->node_zones + idx;
3597 lower_zone->lowmem_reserve[j] = present_pages /
3598 sysctl_lowmem_reserve_ratio[idx];
3599 present_pages += lower_zone->present_pages;
3600 }
3601 }
3602 }
cb45b0e9
HA
3603
3604 /* update totalreserve_pages */
3605 calculate_totalreserve_pages();
1da177e4
LT
3606}
3607
88ca3b94
RD
3608/**
3609 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3610 *
3611 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3612 * with respect to min_free_kbytes.
1da177e4 3613 */
3947be19 3614void setup_per_zone_pages_min(void)
1da177e4
LT
3615{
3616 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3617 unsigned long lowmem_pages = 0;
3618 struct zone *zone;
3619 unsigned long flags;
3620
3621 /* Calculate total number of !ZONE_HIGHMEM pages */
3622 for_each_zone(zone) {
3623 if (!is_highmem(zone))
3624 lowmem_pages += zone->present_pages;
3625 }
3626
3627 for_each_zone(zone) {
ac924c60
AM
3628 u64 tmp;
3629
1da177e4 3630 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
3631 tmp = (u64)pages_min * zone->present_pages;
3632 do_div(tmp, lowmem_pages);
1da177e4
LT
3633 if (is_highmem(zone)) {
3634 /*
669ed175
NP
3635 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3636 * need highmem pages, so cap pages_min to a small
3637 * value here.
3638 *
3639 * The (pages_high-pages_low) and (pages_low-pages_min)
3640 * deltas controls asynch page reclaim, and so should
3641 * not be capped for highmem.
1da177e4
LT
3642 */
3643 int min_pages;
3644
3645 min_pages = zone->present_pages / 1024;
3646 if (min_pages < SWAP_CLUSTER_MAX)
3647 min_pages = SWAP_CLUSTER_MAX;
3648 if (min_pages > 128)
3649 min_pages = 128;
3650 zone->pages_min = min_pages;
3651 } else {
669ed175
NP
3652 /*
3653 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
3654 * proportionate to the zone's size.
3655 */
669ed175 3656 zone->pages_min = tmp;
1da177e4
LT
3657 }
3658
ac924c60
AM
3659 zone->pages_low = zone->pages_min + (tmp >> 2);
3660 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
3661 spin_unlock_irqrestore(&zone->lru_lock, flags);
3662 }
cb45b0e9
HA
3663
3664 /* update totalreserve_pages */
3665 calculate_totalreserve_pages();
1da177e4
LT
3666}
3667
3668/*
3669 * Initialise min_free_kbytes.
3670 *
3671 * For small machines we want it small (128k min). For large machines
3672 * we want it large (64MB max). But it is not linear, because network
3673 * bandwidth does not increase linearly with machine size. We use
3674 *
3675 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3676 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3677 *
3678 * which yields
3679 *
3680 * 16MB: 512k
3681 * 32MB: 724k
3682 * 64MB: 1024k
3683 * 128MB: 1448k
3684 * 256MB: 2048k
3685 * 512MB: 2896k
3686 * 1024MB: 4096k
3687 * 2048MB: 5792k
3688 * 4096MB: 8192k
3689 * 8192MB: 11584k
3690 * 16384MB: 16384k
3691 */
3692static int __init init_per_zone_pages_min(void)
3693{
3694 unsigned long lowmem_kbytes;
3695
3696 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3697
3698 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3699 if (min_free_kbytes < 128)
3700 min_free_kbytes = 128;
3701 if (min_free_kbytes > 65536)
3702 min_free_kbytes = 65536;
3703 setup_per_zone_pages_min();
3704 setup_per_zone_lowmem_reserve();
3705 return 0;
3706}
3707module_init(init_per_zone_pages_min)
3708
3709/*
3710 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3711 * that we can call two helper functions whenever min_free_kbytes
3712 * changes.
3713 */
3714int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3715 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3716{
3717 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
3718 if (write)
3719 setup_per_zone_pages_min();
1da177e4
LT
3720 return 0;
3721}
3722
9614634f
CL
3723#ifdef CONFIG_NUMA
3724int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3725 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3726{
3727 struct zone *zone;
3728 int rc;
3729
3730 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3731 if (rc)
3732 return rc;
3733
3734 for_each_zone(zone)
8417bba4 3735 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
3736 sysctl_min_unmapped_ratio) / 100;
3737 return 0;
3738}
0ff38490
CL
3739
3740int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3741 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3742{
3743 struct zone *zone;
3744 int rc;
3745
3746 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3747 if (rc)
3748 return rc;
3749
3750 for_each_zone(zone)
3751 zone->min_slab_pages = (zone->present_pages *
3752 sysctl_min_slab_ratio) / 100;
3753 return 0;
3754}
9614634f
CL
3755#endif
3756
1da177e4
LT
3757/*
3758 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3759 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3760 * whenever sysctl_lowmem_reserve_ratio changes.
3761 *
3762 * The reserve ratio obviously has absolutely no relation with the
3763 * pages_min watermarks. The lowmem reserve ratio can only make sense
3764 * if in function of the boot time zone sizes.
3765 */
3766int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3767 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3768{
3769 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3770 setup_per_zone_lowmem_reserve();
3771 return 0;
3772}
3773
8ad4b1fb
RS
3774/*
3775 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3776 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3777 * can have before it gets flushed back to buddy allocator.
3778 */
3779
3780int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3781 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3782{
3783 struct zone *zone;
3784 unsigned int cpu;
3785 int ret;
3786
3787 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3788 if (!write || (ret == -EINVAL))
3789 return ret;
3790 for_each_zone(zone) {
3791 for_each_online_cpu(cpu) {
3792 unsigned long high;
3793 high = zone->present_pages / percpu_pagelist_fraction;
3794 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3795 }
3796 }
3797 return 0;
3798}
3799
f034b5d4 3800int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
3801
3802#ifdef CONFIG_NUMA
3803static int __init set_hashdist(char *str)
3804{
3805 if (!str)
3806 return 0;
3807 hashdist = simple_strtoul(str, &str, 0);
3808 return 1;
3809}
3810__setup("hashdist=", set_hashdist);
3811#endif
3812
3813/*
3814 * allocate a large system hash table from bootmem
3815 * - it is assumed that the hash table must contain an exact power-of-2
3816 * quantity of entries
3817 * - limit is the number of hash buckets, not the total allocation size
3818 */
3819void *__init alloc_large_system_hash(const char *tablename,
3820 unsigned long bucketsize,
3821 unsigned long numentries,
3822 int scale,
3823 int flags,
3824 unsigned int *_hash_shift,
3825 unsigned int *_hash_mask,
3826 unsigned long limit)
3827{
3828 unsigned long long max = limit;
3829 unsigned long log2qty, size;
3830 void *table = NULL;
3831
3832 /* allow the kernel cmdline to have a say */
3833 if (!numentries) {
3834 /* round applicable memory size up to nearest megabyte */
04903664 3835 numentries = nr_kernel_pages;
1da177e4
LT
3836 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3837 numentries >>= 20 - PAGE_SHIFT;
3838 numentries <<= 20 - PAGE_SHIFT;
3839
3840 /* limit to 1 bucket per 2^scale bytes of low memory */
3841 if (scale > PAGE_SHIFT)
3842 numentries >>= (scale - PAGE_SHIFT);
3843 else
3844 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
3845
3846 /* Make sure we've got at least a 0-order allocation.. */
3847 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3848 numentries = PAGE_SIZE / bucketsize;
1da177e4 3849 }
6e692ed3 3850 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
3851
3852 /* limit allocation size to 1/16 total memory by default */
3853 if (max == 0) {
3854 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3855 do_div(max, bucketsize);
3856 }
3857
3858 if (numentries > max)
3859 numentries = max;
3860
f0d1b0b3 3861 log2qty = ilog2(numentries);
1da177e4
LT
3862
3863 do {
3864 size = bucketsize << log2qty;
3865 if (flags & HASH_EARLY)
3866 table = alloc_bootmem(size);
3867 else if (hashdist)
3868 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3869 else {
3870 unsigned long order;
3871 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3872 ;
3873 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
3874 /*
3875 * If bucketsize is not a power-of-two, we may free
3876 * some pages at the end of hash table.
3877 */
3878 if (table) {
3879 unsigned long alloc_end = (unsigned long)table +
3880 (PAGE_SIZE << order);
3881 unsigned long used = (unsigned long)table +
3882 PAGE_ALIGN(size);
3883 split_page(virt_to_page(table), order);
3884 while (used < alloc_end) {
3885 free_page(used);
3886 used += PAGE_SIZE;
3887 }
3888 }
1da177e4
LT
3889 }
3890 } while (!table && size > PAGE_SIZE && --log2qty);
3891
3892 if (!table)
3893 panic("Failed to allocate %s hash table\n", tablename);
3894
b49ad484 3895 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
3896 tablename,
3897 (1U << log2qty),
f0d1b0b3 3898 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
3899 size);
3900
3901 if (_hash_shift)
3902 *_hash_shift = log2qty;
3903 if (_hash_mask)
3904 *_hash_mask = (1 << log2qty) - 1;
3905
3906 return table;
3907}
a117e66e
KH
3908
3909#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
3910struct page *pfn_to_page(unsigned long pfn)
3911{
67de6482 3912 return __pfn_to_page(pfn);
a117e66e
KH
3913}
3914unsigned long page_to_pfn(struct page *page)
3915{
67de6482 3916 return __page_to_pfn(page);
a117e66e 3917}
a117e66e
KH
3918EXPORT_SYMBOL(pfn_to_page);
3919EXPORT_SYMBOL(page_to_pfn);
3920#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 3921
6220ec78 3922