]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
[PATCH] Have ia64 use add_active_range() and free_area_init_nodes
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
1da177e4
LT
42
43#include <asm/tlbflush.h>
ac924c60 44#include <asm/div64.h>
1da177e4
LT
45#include "internal.h"
46
47/*
48 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
49 * initializer cleaner
50 */
c3d8c141 51nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 52EXPORT_SYMBOL(node_online_map);
c3d8c141 53nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 54EXPORT_SYMBOL(node_possible_map);
6c231b7b 55unsigned long totalram_pages __read_mostly;
cb45b0e9 56unsigned long totalreserve_pages __read_mostly;
1da177e4 57long nr_swap_pages;
8ad4b1fb 58int percpu_pagelist_fraction;
1da177e4 59
d98c7a09 60static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 61
1da177e4
LT
62/*
63 * results with 256, 32 in the lowmem_reserve sysctl:
64 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65 * 1G machine -> (16M dma, 784M normal, 224M high)
66 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
69 *
70 * TBD: should special case ZONE_DMA32 machines here - in those we normally
71 * don't need any ZONE_NORMAL reservation
1da177e4 72 */
2f1b6248
CL
73int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
74 256,
fb0e7942 75#ifdef CONFIG_ZONE_DMA32
2f1b6248 76 256,
fb0e7942 77#endif
e53ef38d 78#ifdef CONFIG_HIGHMEM
2f1b6248 79 32
e53ef38d 80#endif
2f1b6248 81};
1da177e4
LT
82
83EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
84
85/*
86 * Used by page_zone() to look up the address of the struct zone whose
87 * id is encoded in the upper bits of page->flags
88 */
c3d8c141 89struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
90EXPORT_SYMBOL(zone_table);
91
2f1b6248
CL
92static char *zone_names[MAX_NR_ZONES] = {
93 "DMA",
fb0e7942 94#ifdef CONFIG_ZONE_DMA32
2f1b6248 95 "DMA32",
fb0e7942 96#endif
2f1b6248 97 "Normal",
e53ef38d 98#ifdef CONFIG_HIGHMEM
2f1b6248 99 "HighMem"
e53ef38d 100#endif
2f1b6248
CL
101};
102
1da177e4
LT
103int min_free_kbytes = 1024;
104
86356ab1
YG
105unsigned long __meminitdata nr_kernel_pages;
106unsigned long __meminitdata nr_all_pages;
1da177e4 107
c713216d
MG
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109 /*
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
115 */
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
128
129 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
130 int __initdata nr_nodemap_entries;
131 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134
13e7444b 135#ifdef CONFIG_DEBUG_VM
c6a57e19 136static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 137{
bdc8cb98
DH
138 int ret = 0;
139 unsigned seq;
140 unsigned long pfn = page_to_pfn(page);
c6a57e19 141
bdc8cb98
DH
142 do {
143 seq = zone_span_seqbegin(zone);
144 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145 ret = 1;
146 else if (pfn < zone->zone_start_pfn)
147 ret = 1;
148 } while (zone_span_seqretry(zone, seq));
149
150 return ret;
c6a57e19
DH
151}
152
153static int page_is_consistent(struct zone *zone, struct page *page)
154{
1da177e4
LT
155#ifdef CONFIG_HOLES_IN_ZONE
156 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 157 return 0;
1da177e4
LT
158#endif
159 if (zone != page_zone(page))
c6a57e19
DH
160 return 0;
161
162 return 1;
163}
164/*
165 * Temporary debugging check for pages not lying within a given zone.
166 */
167static int bad_range(struct zone *zone, struct page *page)
168{
169 if (page_outside_zone_boundaries(zone, page))
1da177e4 170 return 1;
c6a57e19
DH
171 if (!page_is_consistent(zone, page))
172 return 1;
173
1da177e4
LT
174 return 0;
175}
13e7444b
NP
176#else
177static inline int bad_range(struct zone *zone, struct page *page)
178{
179 return 0;
180}
181#endif
182
224abf92 183static void bad_page(struct page *page)
1da177e4 184{
224abf92 185 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
186 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188 KERN_EMERG "Backtrace:\n",
224abf92
NP
189 current->comm, page, (int)(2*sizeof(unsigned long)),
190 (unsigned long)page->flags, page->mapping,
191 page_mapcount(page), page_count(page));
1da177e4 192 dump_stack();
334795ec
HD
193 page->flags &= ~(1 << PG_lru |
194 1 << PG_private |
1da177e4 195 1 << PG_locked |
1da177e4
LT
196 1 << PG_active |
197 1 << PG_dirty |
334795ec
HD
198 1 << PG_reclaim |
199 1 << PG_slab |
1da177e4 200 1 << PG_swapcache |
676165a8
NP
201 1 << PG_writeback |
202 1 << PG_buddy );
1da177e4
LT
203 set_page_count(page, 0);
204 reset_page_mapcount(page);
205 page->mapping = NULL;
9f158333 206 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
207}
208
1da177e4
LT
209/*
210 * Higher-order pages are called "compound pages". They are structured thusly:
211 *
212 * The first PAGE_SIZE page is called the "head page".
213 *
214 * The remaining PAGE_SIZE pages are called "tail pages".
215 *
216 * All pages have PG_compound set. All pages have their ->private pointing at
217 * the head page (even the head page has this).
218 *
41d78ba5
HD
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function. Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
1da177e4 222 */
d98c7a09
HD
223
224static void free_compound_page(struct page *page)
225{
226 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
227}
228
1da177e4
LT
229static void prep_compound_page(struct page *page, unsigned long order)
230{
231 int i;
232 int nr_pages = 1 << order;
233
d98c7a09 234 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 235 page[1].lru.prev = (void *)order;
1da177e4
LT
236 for (i = 0; i < nr_pages; i++) {
237 struct page *p = page + i;
238
5e9dace8 239 __SetPageCompound(p);
4c21e2f2 240 set_page_private(p, (unsigned long)page);
1da177e4
LT
241 }
242}
243
244static void destroy_compound_page(struct page *page, unsigned long order)
245{
246 int i;
247 int nr_pages = 1 << order;
248
41d78ba5 249 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 250 bad_page(page);
1da177e4
LT
251
252 for (i = 0; i < nr_pages; i++) {
253 struct page *p = page + i;
254
224abf92
NP
255 if (unlikely(!PageCompound(p) |
256 (page_private(p) != (unsigned long)page)))
257 bad_page(page);
5e9dace8 258 __ClearPageCompound(p);
1da177e4
LT
259 }
260}
1da177e4 261
17cf4406
NP
262static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263{
264 int i;
265
725d704e 266 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
267 /*
268 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269 * and __GFP_HIGHMEM from hard or soft interrupt context.
270 */
725d704e 271 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
272 for (i = 0; i < (1 << order); i++)
273 clear_highpage(page + i);
274}
275
1da177e4
LT
276/*
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
280 */
6aa3001b
AM
281static inline unsigned long page_order(struct page *page)
282{
4c21e2f2 283 return page_private(page);
1da177e4
LT
284}
285
6aa3001b
AM
286static inline void set_page_order(struct page *page, int order)
287{
4c21e2f2 288 set_page_private(page, order);
676165a8 289 __SetPageBuddy(page);
1da177e4
LT
290}
291
292static inline void rmv_page_order(struct page *page)
293{
676165a8 294 __ClearPageBuddy(page);
4c21e2f2 295 set_page_private(page, 0);
1da177e4
LT
296}
297
298/*
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
301 *
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
304 * B2 = B1 ^ (1 << O)
305 * For example, if the starting buddy (buddy2) is #8 its order
306 * 1 buddy is #10:
307 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308 *
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
311 * P = B & ~(1 << O)
312 *
d6e05edc 313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
314 */
315static inline struct page *
316__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317{
318 unsigned long buddy_idx = page_idx ^ (1 << order);
319
320 return page + (buddy_idx - page_idx);
321}
322
323static inline unsigned long
324__find_combined_index(unsigned long page_idx, unsigned int order)
325{
326 return (page_idx & ~(1 << order));
327}
328
329/*
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
13e7444b 332 * (a) the buddy is not in a hole &&
676165a8 333 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
676165a8
NP
336 *
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 339 *
676165a8 340 * For recording page's order, we use page_private(page).
1da177e4 341 */
cb2b95e1
AW
342static inline int page_is_buddy(struct page *page, struct page *buddy,
343 int order)
1da177e4 344{
13e7444b 345#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 346 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
347 return 0;
348#endif
349
cb2b95e1
AW
350 if (page_zone_id(page) != page_zone_id(buddy))
351 return 0;
352
353 if (PageBuddy(buddy) && page_order(buddy) == order) {
354 BUG_ON(page_count(buddy) != 0);
6aa3001b 355 return 1;
676165a8 356 }
6aa3001b 357 return 0;
1da177e4
LT
358}
359
360/*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
676165a8 373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 374 * order is recorded in page_private(page) field.
1da177e4
LT
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other. That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
48db57f8 384static inline void __free_one_page(struct page *page,
1da177e4
LT
385 struct zone *zone, unsigned int order)
386{
387 unsigned long page_idx;
388 int order_size = 1 << order;
389
224abf92 390 if (unlikely(PageCompound(page)))
1da177e4
LT
391 destroy_compound_page(page, order);
392
393 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
725d704e
NP
395 VM_BUG_ON(page_idx & (order_size - 1));
396 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
397
398 zone->free_pages += order_size;
399 while (order < MAX_ORDER-1) {
400 unsigned long combined_idx;
401 struct free_area *area;
402 struct page *buddy;
403
1da177e4 404 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 405 if (!page_is_buddy(page, buddy, order))
1da177e4 406 break; /* Move the buddy up one level. */
13e7444b 407
1da177e4
LT
408 list_del(&buddy->lru);
409 area = zone->free_area + order;
410 area->nr_free--;
411 rmv_page_order(buddy);
13e7444b 412 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
413 page = page + (combined_idx - page_idx);
414 page_idx = combined_idx;
415 order++;
416 }
417 set_page_order(page, order);
418 list_add(&page->lru, &zone->free_area[order].free_list);
419 zone->free_area[order].nr_free++;
420}
421
224abf92 422static inline int free_pages_check(struct page *page)
1da177e4 423{
92be2e33
NP
424 if (unlikely(page_mapcount(page) |
425 (page->mapping != NULL) |
426 (page_count(page) != 0) |
1da177e4
LT
427 (page->flags & (
428 1 << PG_lru |
429 1 << PG_private |
430 1 << PG_locked |
431 1 << PG_active |
432 1 << PG_reclaim |
433 1 << PG_slab |
434 1 << PG_swapcache |
b5810039 435 1 << PG_writeback |
676165a8
NP
436 1 << PG_reserved |
437 1 << PG_buddy ))))
224abf92 438 bad_page(page);
1da177e4 439 if (PageDirty(page))
242e5468 440 __ClearPageDirty(page);
689bcebf
HD
441 /*
442 * For now, we report if PG_reserved was found set, but do not
443 * clear it, and do not free the page. But we shall soon need
444 * to do more, for when the ZERO_PAGE count wraps negative.
445 */
446 return PageReserved(page);
1da177e4
LT
447}
448
449/*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
207f36ee 452 * count is the number of pages to free.
1da177e4
LT
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
48db57f8
NP
460static void free_pages_bulk(struct zone *zone, int count,
461 struct list_head *list, int order)
1da177e4 462{
c54ad30c 463 spin_lock(&zone->lock);
1da177e4
LT
464 zone->all_unreclaimable = 0;
465 zone->pages_scanned = 0;
48db57f8
NP
466 while (count--) {
467 struct page *page;
468
725d704e 469 VM_BUG_ON(list_empty(list));
1da177e4 470 page = list_entry(list->prev, struct page, lru);
48db57f8 471 /* have to delete it as __free_one_page list manipulates */
1da177e4 472 list_del(&page->lru);
48db57f8 473 __free_one_page(page, zone, order);
1da177e4 474 }
c54ad30c 475 spin_unlock(&zone->lock);
1da177e4
LT
476}
477
48db57f8 478static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 479{
006d22d9
CL
480 spin_lock(&zone->lock);
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
483 __free_one_page(page, zone ,order);
484 spin_unlock(&zone->lock);
48db57f8
NP
485}
486
487static void __free_pages_ok(struct page *page, unsigned int order)
488{
489 unsigned long flags;
1da177e4 490 int i;
689bcebf 491 int reserved = 0;
1da177e4
LT
492
493 arch_free_page(page, order);
de5097c2 494 if (!PageHighMem(page))
f9b8404c
IM
495 debug_check_no_locks_freed(page_address(page),
496 PAGE_SIZE<<order);
1da177e4 497
1da177e4 498 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 499 reserved += free_pages_check(page + i);
689bcebf
HD
500 if (reserved)
501 return;
502
48db57f8 503 kernel_map_pages(page, 1 << order, 0);
c54ad30c 504 local_irq_save(flags);
f8891e5e 505 __count_vm_events(PGFREE, 1 << order);
48db57f8 506 free_one_page(page_zone(page), page, order);
c54ad30c 507 local_irq_restore(flags);
1da177e4
LT
508}
509
a226f6c8
DH
510/*
511 * permit the bootmem allocator to evade page validation on high-order frees
512 */
513void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
514{
515 if (order == 0) {
516 __ClearPageReserved(page);
517 set_page_count(page, 0);
7835e98b 518 set_page_refcounted(page);
545b1ea9 519 __free_page(page);
a226f6c8 520 } else {
a226f6c8
DH
521 int loop;
522
545b1ea9 523 prefetchw(page);
a226f6c8
DH
524 for (loop = 0; loop < BITS_PER_LONG; loop++) {
525 struct page *p = &page[loop];
526
545b1ea9
NP
527 if (loop + 1 < BITS_PER_LONG)
528 prefetchw(p + 1);
a226f6c8
DH
529 __ClearPageReserved(p);
530 set_page_count(p, 0);
531 }
532
7835e98b 533 set_page_refcounted(page);
545b1ea9 534 __free_pages(page, order);
a226f6c8
DH
535 }
536}
537
1da177e4
LT
538
539/*
540 * The order of subdivision here is critical for the IO subsystem.
541 * Please do not alter this order without good reasons and regression
542 * testing. Specifically, as large blocks of memory are subdivided,
543 * the order in which smaller blocks are delivered depends on the order
544 * they're subdivided in this function. This is the primary factor
545 * influencing the order in which pages are delivered to the IO
546 * subsystem according to empirical testing, and this is also justified
547 * by considering the behavior of a buddy system containing a single
548 * large block of memory acted on by a series of small allocations.
549 * This behavior is a critical factor in sglist merging's success.
550 *
551 * -- wli
552 */
085cc7d5 553static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
554 int low, int high, struct free_area *area)
555{
556 unsigned long size = 1 << high;
557
558 while (high > low) {
559 area--;
560 high--;
561 size >>= 1;
725d704e 562 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
563 list_add(&page[size].lru, &area->free_list);
564 area->nr_free++;
565 set_page_order(&page[size], high);
566 }
1da177e4
LT
567}
568
1da177e4
LT
569/*
570 * This page is about to be returned from the page allocator
571 */
17cf4406 572static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 573{
92be2e33
NP
574 if (unlikely(page_mapcount(page) |
575 (page->mapping != NULL) |
576 (page_count(page) != 0) |
334795ec
HD
577 (page->flags & (
578 1 << PG_lru |
1da177e4
LT
579 1 << PG_private |
580 1 << PG_locked |
1da177e4
LT
581 1 << PG_active |
582 1 << PG_dirty |
583 1 << PG_reclaim |
334795ec 584 1 << PG_slab |
1da177e4 585 1 << PG_swapcache |
b5810039 586 1 << PG_writeback |
676165a8
NP
587 1 << PG_reserved |
588 1 << PG_buddy ))))
224abf92 589 bad_page(page);
1da177e4 590
689bcebf
HD
591 /*
592 * For now, we report if PG_reserved was found set, but do not
593 * clear it, and do not allocate the page: as a safety net.
594 */
595 if (PageReserved(page))
596 return 1;
597
1da177e4
LT
598 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
599 1 << PG_referenced | 1 << PG_arch_1 |
600 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 601 set_page_private(page, 0);
7835e98b 602 set_page_refcounted(page);
1da177e4 603 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
604
605 if (gfp_flags & __GFP_ZERO)
606 prep_zero_page(page, order, gfp_flags);
607
608 if (order && (gfp_flags & __GFP_COMP))
609 prep_compound_page(page, order);
610
689bcebf 611 return 0;
1da177e4
LT
612}
613
614/*
615 * Do the hard work of removing an element from the buddy allocator.
616 * Call me with the zone->lock already held.
617 */
618static struct page *__rmqueue(struct zone *zone, unsigned int order)
619{
620 struct free_area * area;
621 unsigned int current_order;
622 struct page *page;
623
624 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
625 area = zone->free_area + current_order;
626 if (list_empty(&area->free_list))
627 continue;
628
629 page = list_entry(area->free_list.next, struct page, lru);
630 list_del(&page->lru);
631 rmv_page_order(page);
632 area->nr_free--;
633 zone->free_pages -= 1UL << order;
085cc7d5
NP
634 expand(zone, page, order, current_order, area);
635 return page;
1da177e4
LT
636 }
637
638 return NULL;
639}
640
641/*
642 * Obtain a specified number of elements from the buddy allocator, all under
643 * a single hold of the lock, for efficiency. Add them to the supplied list.
644 * Returns the number of new pages which were placed at *list.
645 */
646static int rmqueue_bulk(struct zone *zone, unsigned int order,
647 unsigned long count, struct list_head *list)
648{
1da177e4 649 int i;
1da177e4 650
c54ad30c 651 spin_lock(&zone->lock);
1da177e4 652 for (i = 0; i < count; ++i) {
085cc7d5
NP
653 struct page *page = __rmqueue(zone, order);
654 if (unlikely(page == NULL))
1da177e4 655 break;
1da177e4
LT
656 list_add_tail(&page->lru, list);
657 }
c54ad30c 658 spin_unlock(&zone->lock);
085cc7d5 659 return i;
1da177e4
LT
660}
661
4ae7c039 662#ifdef CONFIG_NUMA
8fce4d8e
CL
663/*
664 * Called from the slab reaper to drain pagesets on a particular node that
39bbcb8f 665 * belongs to the currently executing processor.
879336c3
CL
666 * Note that this function must be called with the thread pinned to
667 * a single processor.
8fce4d8e
CL
668 */
669void drain_node_pages(int nodeid)
4ae7c039 670{
2f6726e5
CL
671 int i;
672 enum zone_type z;
4ae7c039
CL
673 unsigned long flags;
674
8fce4d8e
CL
675 for (z = 0; z < MAX_NR_ZONES; z++) {
676 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
677 struct per_cpu_pageset *pset;
678
39bbcb8f
CL
679 if (!populated_zone(zone))
680 continue;
681
23316bc8 682 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
683 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
684 struct per_cpu_pages *pcp;
685
686 pcp = &pset->pcp[i];
879336c3
CL
687 if (pcp->count) {
688 local_irq_save(flags);
689 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
690 pcp->count = 0;
691 local_irq_restore(flags);
692 }
4ae7c039
CL
693 }
694 }
4ae7c039
CL
695}
696#endif
697
1da177e4
LT
698#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
699static void __drain_pages(unsigned int cpu)
700{
c54ad30c 701 unsigned long flags;
1da177e4
LT
702 struct zone *zone;
703 int i;
704
705 for_each_zone(zone) {
706 struct per_cpu_pageset *pset;
707
e7c8d5c9 708 pset = zone_pcp(zone, cpu);
1da177e4
LT
709 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
710 struct per_cpu_pages *pcp;
711
712 pcp = &pset->pcp[i];
c54ad30c 713 local_irq_save(flags);
48db57f8
NP
714 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
715 pcp->count = 0;
c54ad30c 716 local_irq_restore(flags);
1da177e4
LT
717 }
718 }
719}
720#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
721
722#ifdef CONFIG_PM
723
724void mark_free_pages(struct zone *zone)
725{
f623f0db
RW
726 unsigned long pfn, max_zone_pfn;
727 unsigned long flags;
1da177e4
LT
728 int order;
729 struct list_head *curr;
730
731 if (!zone->spanned_pages)
732 return;
733
734 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
735
736 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
737 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
738 if (pfn_valid(pfn)) {
739 struct page *page = pfn_to_page(pfn);
740
741 if (!PageNosave(page))
742 ClearPageNosaveFree(page);
743 }
1da177e4
LT
744
745 for (order = MAX_ORDER - 1; order >= 0; --order)
746 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 747 unsigned long i;
1da177e4 748
f623f0db
RW
749 pfn = page_to_pfn(list_entry(curr, struct page, lru));
750 for (i = 0; i < (1UL << order); i++)
751 SetPageNosaveFree(pfn_to_page(pfn + i));
752 }
1da177e4 753
1da177e4
LT
754 spin_unlock_irqrestore(&zone->lock, flags);
755}
756
757/*
758 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
759 */
760void drain_local_pages(void)
761{
762 unsigned long flags;
763
764 local_irq_save(flags);
765 __drain_pages(smp_processor_id());
766 local_irq_restore(flags);
767}
768#endif /* CONFIG_PM */
769
1da177e4
LT
770/*
771 * Free a 0-order page
772 */
1da177e4
LT
773static void fastcall free_hot_cold_page(struct page *page, int cold)
774{
775 struct zone *zone = page_zone(page);
776 struct per_cpu_pages *pcp;
777 unsigned long flags;
778
779 arch_free_page(page, 0);
780
1da177e4
LT
781 if (PageAnon(page))
782 page->mapping = NULL;
224abf92 783 if (free_pages_check(page))
689bcebf
HD
784 return;
785
689bcebf
HD
786 kernel_map_pages(page, 1, 0);
787
e7c8d5c9 788 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 789 local_irq_save(flags);
f8891e5e 790 __count_vm_event(PGFREE);
1da177e4
LT
791 list_add(&page->lru, &pcp->list);
792 pcp->count++;
48db57f8
NP
793 if (pcp->count >= pcp->high) {
794 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
795 pcp->count -= pcp->batch;
796 }
1da177e4
LT
797 local_irq_restore(flags);
798 put_cpu();
799}
800
801void fastcall free_hot_page(struct page *page)
802{
803 free_hot_cold_page(page, 0);
804}
805
806void fastcall free_cold_page(struct page *page)
807{
808 free_hot_cold_page(page, 1);
809}
810
8dfcc9ba
NP
811/*
812 * split_page takes a non-compound higher-order page, and splits it into
813 * n (1<<order) sub-pages: page[0..n]
814 * Each sub-page must be freed individually.
815 *
816 * Note: this is probably too low level an operation for use in drivers.
817 * Please consult with lkml before using this in your driver.
818 */
819void split_page(struct page *page, unsigned int order)
820{
821 int i;
822
725d704e
NP
823 VM_BUG_ON(PageCompound(page));
824 VM_BUG_ON(!page_count(page));
7835e98b
NP
825 for (i = 1; i < (1 << order); i++)
826 set_page_refcounted(page + i);
8dfcc9ba 827}
8dfcc9ba 828
1da177e4
LT
829/*
830 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
831 * we cheat by calling it from here, in the order > 0 path. Saves a branch
832 * or two.
833 */
a74609fa
NP
834static struct page *buffered_rmqueue(struct zonelist *zonelist,
835 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
836{
837 unsigned long flags;
689bcebf 838 struct page *page;
1da177e4 839 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 840 int cpu;
1da177e4 841
689bcebf 842again:
a74609fa 843 cpu = get_cpu();
48db57f8 844 if (likely(order == 0)) {
1da177e4
LT
845 struct per_cpu_pages *pcp;
846
a74609fa 847 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 848 local_irq_save(flags);
a74609fa 849 if (!pcp->count) {
1da177e4
LT
850 pcp->count += rmqueue_bulk(zone, 0,
851 pcp->batch, &pcp->list);
a74609fa
NP
852 if (unlikely(!pcp->count))
853 goto failed;
1da177e4 854 }
a74609fa
NP
855 page = list_entry(pcp->list.next, struct page, lru);
856 list_del(&page->lru);
857 pcp->count--;
7fb1d9fc 858 } else {
1da177e4
LT
859 spin_lock_irqsave(&zone->lock, flags);
860 page = __rmqueue(zone, order);
a74609fa
NP
861 spin_unlock(&zone->lock);
862 if (!page)
863 goto failed;
1da177e4
LT
864 }
865
f8891e5e 866 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 867 zone_statistics(zonelist, zone);
a74609fa
NP
868 local_irq_restore(flags);
869 put_cpu();
1da177e4 870
725d704e 871 VM_BUG_ON(bad_range(zone, page));
17cf4406 872 if (prep_new_page(page, order, gfp_flags))
a74609fa 873 goto again;
1da177e4 874 return page;
a74609fa
NP
875
876failed:
877 local_irq_restore(flags);
878 put_cpu();
879 return NULL;
1da177e4
LT
880}
881
7fb1d9fc 882#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
883#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
884#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
885#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
886#define ALLOC_HARDER 0x10 /* try to alloc harder */
887#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
888#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 889
1da177e4
LT
890/*
891 * Return 1 if free pages are above 'mark'. This takes into account the order
892 * of the allocation.
893 */
894int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 895 int classzone_idx, int alloc_flags)
1da177e4
LT
896{
897 /* free_pages my go negative - that's OK */
898 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
899 int o;
900
7fb1d9fc 901 if (alloc_flags & ALLOC_HIGH)
1da177e4 902 min -= min / 2;
7fb1d9fc 903 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
904 min -= min / 4;
905
906 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
907 return 0;
908 for (o = 0; o < order; o++) {
909 /* At the next order, this order's pages become unavailable */
910 free_pages -= z->free_area[o].nr_free << o;
911
912 /* Require fewer higher order pages to be free */
913 min >>= 1;
914
915 if (free_pages <= min)
916 return 0;
917 }
918 return 1;
919}
920
7fb1d9fc
RS
921/*
922 * get_page_from_freeliest goes through the zonelist trying to allocate
923 * a page.
924 */
925static struct page *
926get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
927 struct zonelist *zonelist, int alloc_flags)
753ee728 928{
7fb1d9fc
RS
929 struct zone **z = zonelist->zones;
930 struct page *page = NULL;
931 int classzone_idx = zone_idx(*z);
1192d526 932 struct zone *zone;
7fb1d9fc
RS
933
934 /*
935 * Go through the zonelist once, looking for a zone with enough free.
936 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
937 */
938 do {
1192d526 939 zone = *z;
9b819d20 940 if (unlikely((gfp_mask & __GFP_THISNODE) &&
1192d526 941 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 942 break;
7fb1d9fc 943 if ((alloc_flags & ALLOC_CPUSET) &&
1192d526 944 !cpuset_zone_allowed(zone, gfp_mask))
7fb1d9fc
RS
945 continue;
946
947 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
948 unsigned long mark;
949 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 950 mark = zone->pages_min;
3148890b 951 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 952 mark = zone->pages_low;
3148890b 953 else
1192d526
CL
954 mark = zone->pages_high;
955 if (!zone_watermark_ok(zone , order, mark,
7fb1d9fc 956 classzone_idx, alloc_flags))
9eeff239 957 if (!zone_reclaim_mode ||
1192d526 958 !zone_reclaim(zone, gfp_mask, order))
9eeff239 959 continue;
7fb1d9fc
RS
960 }
961
1192d526 962 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
7fb1d9fc 963 if (page) {
7fb1d9fc
RS
964 break;
965 }
966 } while (*(++z) != NULL);
967 return page;
753ee728
MH
968}
969
1da177e4
LT
970/*
971 * This is the 'heart' of the zoned buddy allocator.
972 */
973struct page * fastcall
dd0fc66f 974__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
975 struct zonelist *zonelist)
976{
260b2367 977 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 978 struct zone **z;
1da177e4
LT
979 struct page *page;
980 struct reclaim_state reclaim_state;
981 struct task_struct *p = current;
1da177e4 982 int do_retry;
7fb1d9fc 983 int alloc_flags;
1da177e4
LT
984 int did_some_progress;
985
986 might_sleep_if(wait);
987
6b1de916 988restart:
7fb1d9fc 989 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 990
7fb1d9fc 991 if (unlikely(*z == NULL)) {
1da177e4
LT
992 /* Should this ever happen?? */
993 return NULL;
994 }
6b1de916 995
7fb1d9fc 996 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 997 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
998 if (page)
999 goto got_pg;
1da177e4 1000
6b1de916 1001 do {
43b0bc00 1002 wakeup_kswapd(*z, order);
6b1de916 1003 } while (*(++z));
1da177e4 1004
9bf2229f 1005 /*
7fb1d9fc
RS
1006 * OK, we're below the kswapd watermark and have kicked background
1007 * reclaim. Now things get more complex, so set up alloc_flags according
1008 * to how we want to proceed.
1009 *
1010 * The caller may dip into page reserves a bit more if the caller
1011 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1012 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1013 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1014 */
3148890b 1015 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1016 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1017 alloc_flags |= ALLOC_HARDER;
1018 if (gfp_mask & __GFP_HIGH)
1019 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1020 if (wait)
1021 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1022
1023 /*
1024 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1025 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1026 *
1027 * This is the last chance, in general, before the goto nopage.
1028 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1029 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1030 */
7fb1d9fc
RS
1031 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1032 if (page)
1033 goto got_pg;
1da177e4
LT
1034
1035 /* This allocation should allow future memory freeing. */
b84a35be
NP
1036
1037 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1038 && !in_interrupt()) {
1039 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1040nofail_alloc:
b84a35be 1041 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1042 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1043 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1044 if (page)
1045 goto got_pg;
885036d3
KK
1046 if (gfp_mask & __GFP_NOFAIL) {
1047 blk_congestion_wait(WRITE, HZ/50);
1048 goto nofail_alloc;
1049 }
1da177e4
LT
1050 }
1051 goto nopage;
1052 }
1053
1054 /* Atomic allocations - we can't balance anything */
1055 if (!wait)
1056 goto nopage;
1057
1058rebalance:
1059 cond_resched();
1060
1061 /* We now go into synchronous reclaim */
3e0d98b9 1062 cpuset_memory_pressure_bump();
1da177e4
LT
1063 p->flags |= PF_MEMALLOC;
1064 reclaim_state.reclaimed_slab = 0;
1065 p->reclaim_state = &reclaim_state;
1066
7fb1d9fc 1067 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1068
1069 p->reclaim_state = NULL;
1070 p->flags &= ~PF_MEMALLOC;
1071
1072 cond_resched();
1073
1074 if (likely(did_some_progress)) {
7fb1d9fc
RS
1075 page = get_page_from_freelist(gfp_mask, order,
1076 zonelist, alloc_flags);
1077 if (page)
1078 goto got_pg;
1da177e4
LT
1079 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1080 /*
1081 * Go through the zonelist yet one more time, keep
1082 * very high watermark here, this is only to catch
1083 * a parallel oom killing, we must fail if we're still
1084 * under heavy pressure.
1085 */
7fb1d9fc 1086 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1087 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1088 if (page)
1089 goto got_pg;
1da177e4 1090
9b0f8b04 1091 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1092 goto restart;
1093 }
1094
1095 /*
1096 * Don't let big-order allocations loop unless the caller explicitly
1097 * requests that. Wait for some write requests to complete then retry.
1098 *
1099 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1100 * <= 3, but that may not be true in other implementations.
1101 */
1102 do_retry = 0;
1103 if (!(gfp_mask & __GFP_NORETRY)) {
1104 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1105 do_retry = 1;
1106 if (gfp_mask & __GFP_NOFAIL)
1107 do_retry = 1;
1108 }
1109 if (do_retry) {
1110 blk_congestion_wait(WRITE, HZ/50);
1111 goto rebalance;
1112 }
1113
1114nopage:
1115 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1116 printk(KERN_WARNING "%s: page allocation failure."
1117 " order:%d, mode:0x%x\n",
1118 p->comm, order, gfp_mask);
1119 dump_stack();
578c2fd6 1120 show_mem();
1da177e4 1121 }
1da177e4 1122got_pg:
1da177e4
LT
1123 return page;
1124}
1125
1126EXPORT_SYMBOL(__alloc_pages);
1127
1128/*
1129 * Common helper functions.
1130 */
dd0fc66f 1131fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1132{
1133 struct page * page;
1134 page = alloc_pages(gfp_mask, order);
1135 if (!page)
1136 return 0;
1137 return (unsigned long) page_address(page);
1138}
1139
1140EXPORT_SYMBOL(__get_free_pages);
1141
dd0fc66f 1142fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1143{
1144 struct page * page;
1145
1146 /*
1147 * get_zeroed_page() returns a 32-bit address, which cannot represent
1148 * a highmem page
1149 */
725d704e 1150 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1151
1152 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1153 if (page)
1154 return (unsigned long) page_address(page);
1155 return 0;
1156}
1157
1158EXPORT_SYMBOL(get_zeroed_page);
1159
1160void __pagevec_free(struct pagevec *pvec)
1161{
1162 int i = pagevec_count(pvec);
1163
1164 while (--i >= 0)
1165 free_hot_cold_page(pvec->pages[i], pvec->cold);
1166}
1167
1168fastcall void __free_pages(struct page *page, unsigned int order)
1169{
b5810039 1170 if (put_page_testzero(page)) {
1da177e4
LT
1171 if (order == 0)
1172 free_hot_page(page);
1173 else
1174 __free_pages_ok(page, order);
1175 }
1176}
1177
1178EXPORT_SYMBOL(__free_pages);
1179
1180fastcall void free_pages(unsigned long addr, unsigned int order)
1181{
1182 if (addr != 0) {
725d704e 1183 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1184 __free_pages(virt_to_page((void *)addr), order);
1185 }
1186}
1187
1188EXPORT_SYMBOL(free_pages);
1189
1190/*
1191 * Total amount of free (allocatable) RAM:
1192 */
1193unsigned int nr_free_pages(void)
1194{
1195 unsigned int sum = 0;
1196 struct zone *zone;
1197
1198 for_each_zone(zone)
1199 sum += zone->free_pages;
1200
1201 return sum;
1202}
1203
1204EXPORT_SYMBOL(nr_free_pages);
1205
1206#ifdef CONFIG_NUMA
1207unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1208{
2f6726e5
CL
1209 unsigned int sum = 0;
1210 enum zone_type i;
1da177e4
LT
1211
1212 for (i = 0; i < MAX_NR_ZONES; i++)
1213 sum += pgdat->node_zones[i].free_pages;
1214
1215 return sum;
1216}
1217#endif
1218
1219static unsigned int nr_free_zone_pages(int offset)
1220{
e310fd43
MB
1221 /* Just pick one node, since fallback list is circular */
1222 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1223 unsigned int sum = 0;
1224
e310fd43
MB
1225 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1226 struct zone **zonep = zonelist->zones;
1227 struct zone *zone;
1da177e4 1228
e310fd43
MB
1229 for (zone = *zonep++; zone; zone = *zonep++) {
1230 unsigned long size = zone->present_pages;
1231 unsigned long high = zone->pages_high;
1232 if (size > high)
1233 sum += size - high;
1da177e4
LT
1234 }
1235
1236 return sum;
1237}
1238
1239/*
1240 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1241 */
1242unsigned int nr_free_buffer_pages(void)
1243{
af4ca457 1244 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1245}
1246
1247/*
1248 * Amount of free RAM allocatable within all zones
1249 */
1250unsigned int nr_free_pagecache_pages(void)
1251{
af4ca457 1252 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1253}
1da177e4
LT
1254#ifdef CONFIG_NUMA
1255static void show_node(struct zone *zone)
1256{
89fa3024 1257 printk("Node %ld ", zone_to_nid(zone));
1da177e4
LT
1258}
1259#else
1260#define show_node(zone) do { } while (0)
1261#endif
1262
1da177e4
LT
1263void si_meminfo(struct sysinfo *val)
1264{
1265 val->totalram = totalram_pages;
1266 val->sharedram = 0;
1267 val->freeram = nr_free_pages();
1268 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1269 val->totalhigh = totalhigh_pages;
1270 val->freehigh = nr_free_highpages();
1da177e4
LT
1271 val->mem_unit = PAGE_SIZE;
1272}
1273
1274EXPORT_SYMBOL(si_meminfo);
1275
1276#ifdef CONFIG_NUMA
1277void si_meminfo_node(struct sysinfo *val, int nid)
1278{
1279 pg_data_t *pgdat = NODE_DATA(nid);
1280
1281 val->totalram = pgdat->node_present_pages;
1282 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1283#ifdef CONFIG_HIGHMEM
1da177e4
LT
1284 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1285 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1286#else
1287 val->totalhigh = 0;
1288 val->freehigh = 0;
1289#endif
1da177e4
LT
1290 val->mem_unit = PAGE_SIZE;
1291}
1292#endif
1293
1294#define K(x) ((x) << (PAGE_SHIFT-10))
1295
1296/*
1297 * Show free area list (used inside shift_scroll-lock stuff)
1298 * We also calculate the percentage fragmentation. We do this by counting the
1299 * memory on each free list with the exception of the first item on the list.
1300 */
1301void show_free_areas(void)
1302{
1da177e4
LT
1303 int cpu, temperature;
1304 unsigned long active;
1305 unsigned long inactive;
1306 unsigned long free;
1307 struct zone *zone;
1308
1309 for_each_zone(zone) {
1310 show_node(zone);
1311 printk("%s per-cpu:", zone->name);
1312
f3fe6512 1313 if (!populated_zone(zone)) {
1da177e4
LT
1314 printk(" empty\n");
1315 continue;
1316 } else
1317 printk("\n");
1318
6b482c67 1319 for_each_online_cpu(cpu) {
1da177e4
LT
1320 struct per_cpu_pageset *pageset;
1321
e7c8d5c9 1322 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1323
1324 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1325 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1326 cpu,
1327 temperature ? "cold" : "hot",
1da177e4 1328 pageset->pcp[temperature].high,
4ae7c039
CL
1329 pageset->pcp[temperature].batch,
1330 pageset->pcp[temperature].count);
1da177e4
LT
1331 }
1332 }
1333
1da177e4
LT
1334 get_zone_counts(&active, &inactive, &free);
1335
1da177e4
LT
1336 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1337 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1338 active,
1339 inactive,
b1e7a8fd 1340 global_page_state(NR_FILE_DIRTY),
ce866b34 1341 global_page_state(NR_WRITEBACK),
fd39fc85 1342 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1343 nr_free_pages(),
972d1a7b
CL
1344 global_page_state(NR_SLAB_RECLAIMABLE) +
1345 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1346 global_page_state(NR_FILE_MAPPED),
df849a15 1347 global_page_state(NR_PAGETABLE));
1da177e4
LT
1348
1349 for_each_zone(zone) {
1350 int i;
1351
1352 show_node(zone);
1353 printk("%s"
1354 " free:%lukB"
1355 " min:%lukB"
1356 " low:%lukB"
1357 " high:%lukB"
1358 " active:%lukB"
1359 " inactive:%lukB"
1360 " present:%lukB"
1361 " pages_scanned:%lu"
1362 " all_unreclaimable? %s"
1363 "\n",
1364 zone->name,
1365 K(zone->free_pages),
1366 K(zone->pages_min),
1367 K(zone->pages_low),
1368 K(zone->pages_high),
1369 K(zone->nr_active),
1370 K(zone->nr_inactive),
1371 K(zone->present_pages),
1372 zone->pages_scanned,
1373 (zone->all_unreclaimable ? "yes" : "no")
1374 );
1375 printk("lowmem_reserve[]:");
1376 for (i = 0; i < MAX_NR_ZONES; i++)
1377 printk(" %lu", zone->lowmem_reserve[i]);
1378 printk("\n");
1379 }
1380
1381 for_each_zone(zone) {
8f9de51a 1382 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1383
1384 show_node(zone);
1385 printk("%s: ", zone->name);
f3fe6512 1386 if (!populated_zone(zone)) {
1da177e4
LT
1387 printk("empty\n");
1388 continue;
1389 }
1390
1391 spin_lock_irqsave(&zone->lock, flags);
1392 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1393 nr[order] = zone->free_area[order].nr_free;
1394 total += nr[order] << order;
1da177e4
LT
1395 }
1396 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1397 for (order = 0; order < MAX_ORDER; order++)
1398 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1399 printk("= %lukB\n", K(total));
1400 }
1401
1402 show_swap_cache_info();
1403}
1404
1405/*
1406 * Builds allocation fallback zone lists.
1a93205b
CL
1407 *
1408 * Add all populated zones of a node to the zonelist.
1da177e4 1409 */
86356ab1 1410static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1411 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1412{
1a93205b
CL
1413 struct zone *zone;
1414
98d2b0eb 1415 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1416 zone_type++;
02a68a5e
CL
1417
1418 do {
2f6726e5 1419 zone_type--;
070f8032 1420 zone = pgdat->node_zones + zone_type;
1a93205b 1421 if (populated_zone(zone)) {
070f8032
CL
1422 zonelist->zones[nr_zones++] = zone;
1423 check_highest_zone(zone_type);
1da177e4 1424 }
02a68a5e 1425
2f6726e5 1426 } while (zone_type);
070f8032 1427 return nr_zones;
1da177e4
LT
1428}
1429
1430#ifdef CONFIG_NUMA
1431#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1432static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1433/**
4dc3b16b 1434 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1435 * @node: node whose fallback list we're appending
1436 * @used_node_mask: nodemask_t of already used nodes
1437 *
1438 * We use a number of factors to determine which is the next node that should
1439 * appear on a given node's fallback list. The node should not have appeared
1440 * already in @node's fallback list, and it should be the next closest node
1441 * according to the distance array (which contains arbitrary distance values
1442 * from each node to each node in the system), and should also prefer nodes
1443 * with no CPUs, since presumably they'll have very little allocation pressure
1444 * on them otherwise.
1445 * It returns -1 if no node is found.
1446 */
86356ab1 1447static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1448{
4cf808eb 1449 int n, val;
1da177e4
LT
1450 int min_val = INT_MAX;
1451 int best_node = -1;
1452
4cf808eb
LT
1453 /* Use the local node if we haven't already */
1454 if (!node_isset(node, *used_node_mask)) {
1455 node_set(node, *used_node_mask);
1456 return node;
1457 }
1da177e4 1458
4cf808eb
LT
1459 for_each_online_node(n) {
1460 cpumask_t tmp;
1da177e4
LT
1461
1462 /* Don't want a node to appear more than once */
1463 if (node_isset(n, *used_node_mask))
1464 continue;
1465
1da177e4
LT
1466 /* Use the distance array to find the distance */
1467 val = node_distance(node, n);
1468
4cf808eb
LT
1469 /* Penalize nodes under us ("prefer the next node") */
1470 val += (n < node);
1471
1da177e4
LT
1472 /* Give preference to headless and unused nodes */
1473 tmp = node_to_cpumask(n);
1474 if (!cpus_empty(tmp))
1475 val += PENALTY_FOR_NODE_WITH_CPUS;
1476
1477 /* Slight preference for less loaded node */
1478 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1479 val += node_load[n];
1480
1481 if (val < min_val) {
1482 min_val = val;
1483 best_node = n;
1484 }
1485 }
1486
1487 if (best_node >= 0)
1488 node_set(best_node, *used_node_mask);
1489
1490 return best_node;
1491}
1492
86356ab1 1493static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1494{
19655d34
CL
1495 int j, node, local_node;
1496 enum zone_type i;
1da177e4
LT
1497 int prev_node, load;
1498 struct zonelist *zonelist;
1499 nodemask_t used_mask;
1500
1501 /* initialize zonelists */
19655d34 1502 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1503 zonelist = pgdat->node_zonelists + i;
1504 zonelist->zones[0] = NULL;
1505 }
1506
1507 /* NUMA-aware ordering of nodes */
1508 local_node = pgdat->node_id;
1509 load = num_online_nodes();
1510 prev_node = local_node;
1511 nodes_clear(used_mask);
1512 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1513 int distance = node_distance(local_node, node);
1514
1515 /*
1516 * If another node is sufficiently far away then it is better
1517 * to reclaim pages in a zone before going off node.
1518 */
1519 if (distance > RECLAIM_DISTANCE)
1520 zone_reclaim_mode = 1;
1521
1da177e4
LT
1522 /*
1523 * We don't want to pressure a particular node.
1524 * So adding penalty to the first node in same
1525 * distance group to make it round-robin.
1526 */
9eeff239
CL
1527
1528 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1529 node_load[node] += load;
1530 prev_node = node;
1531 load--;
19655d34 1532 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1533 zonelist = pgdat->node_zonelists + i;
1534 for (j = 0; zonelist->zones[j] != NULL; j++);
1535
19655d34 1536 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1537 zonelist->zones[j] = NULL;
1538 }
1539 }
1540}
1541
1542#else /* CONFIG_NUMA */
1543
86356ab1 1544static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1545{
19655d34
CL
1546 int node, local_node;
1547 enum zone_type i,j;
1da177e4
LT
1548
1549 local_node = pgdat->node_id;
19655d34 1550 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1551 struct zonelist *zonelist;
1552
1553 zonelist = pgdat->node_zonelists + i;
1554
19655d34 1555 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1556 /*
1557 * Now we build the zonelist so that it contains the zones
1558 * of all the other nodes.
1559 * We don't want to pressure a particular node, so when
1560 * building the zones for node N, we make sure that the
1561 * zones coming right after the local ones are those from
1562 * node N+1 (modulo N)
1563 */
1564 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1565 if (!node_online(node))
1566 continue;
19655d34 1567 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1568 }
1569 for (node = 0; node < local_node; node++) {
1570 if (!node_online(node))
1571 continue;
19655d34 1572 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1573 }
1574
1575 zonelist->zones[j] = NULL;
1576 }
1577}
1578
1579#endif /* CONFIG_NUMA */
1580
6811378e
YG
1581/* return values int ....just for stop_machine_run() */
1582static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1583{
6811378e
YG
1584 int nid;
1585 for_each_online_node(nid)
1586 build_zonelists(NODE_DATA(nid));
1587 return 0;
1588}
1589
1590void __meminit build_all_zonelists(void)
1591{
1592 if (system_state == SYSTEM_BOOTING) {
1593 __build_all_zonelists(0);
1594 cpuset_init_current_mems_allowed();
1595 } else {
1596 /* we have to stop all cpus to guaranntee there is no user
1597 of zonelist */
1598 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1599 /* cpuset refresh routine should be here */
1600 }
bd1e22b8
AM
1601 vm_total_pages = nr_free_pagecache_pages();
1602 printk("Built %i zonelists. Total pages: %ld\n",
1603 num_online_nodes(), vm_total_pages);
1da177e4
LT
1604}
1605
1606/*
1607 * Helper functions to size the waitqueue hash table.
1608 * Essentially these want to choose hash table sizes sufficiently
1609 * large so that collisions trying to wait on pages are rare.
1610 * But in fact, the number of active page waitqueues on typical
1611 * systems is ridiculously low, less than 200. So this is even
1612 * conservative, even though it seems large.
1613 *
1614 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1615 * waitqueues, i.e. the size of the waitq table given the number of pages.
1616 */
1617#define PAGES_PER_WAITQUEUE 256
1618
cca448fe 1619#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1620static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1621{
1622 unsigned long size = 1;
1623
1624 pages /= PAGES_PER_WAITQUEUE;
1625
1626 while (size < pages)
1627 size <<= 1;
1628
1629 /*
1630 * Once we have dozens or even hundreds of threads sleeping
1631 * on IO we've got bigger problems than wait queue collision.
1632 * Limit the size of the wait table to a reasonable size.
1633 */
1634 size = min(size, 4096UL);
1635
1636 return max(size, 4UL);
1637}
cca448fe
YG
1638#else
1639/*
1640 * A zone's size might be changed by hot-add, so it is not possible to determine
1641 * a suitable size for its wait_table. So we use the maximum size now.
1642 *
1643 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1644 *
1645 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1646 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1647 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1648 *
1649 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1650 * or more by the traditional way. (See above). It equals:
1651 *
1652 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1653 * ia64(16K page size) : = ( 8G + 4M)byte.
1654 * powerpc (64K page size) : = (32G +16M)byte.
1655 */
1656static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1657{
1658 return 4096UL;
1659}
1660#endif
1da177e4
LT
1661
1662/*
1663 * This is an integer logarithm so that shifts can be used later
1664 * to extract the more random high bits from the multiplicative
1665 * hash function before the remainder is taken.
1666 */
1667static inline unsigned long wait_table_bits(unsigned long size)
1668{
1669 return ffz(~size);
1670}
1671
1672#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1673
1da177e4
LT
1674/*
1675 * Initially all pages are reserved - free ones are freed
1676 * up by free_all_bootmem() once the early boot process is
1677 * done. Non-atomic initialization, single-pass.
1678 */
c09b4240 1679void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1680 unsigned long start_pfn)
1681{
1da177e4 1682 struct page *page;
29751f69
AW
1683 unsigned long end_pfn = start_pfn + size;
1684 unsigned long pfn;
1da177e4 1685
cbe8dd4a 1686 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1687 if (!early_pfn_valid(pfn))
1688 continue;
1689 page = pfn_to_page(pfn);
1690 set_page_links(page, zone, nid, pfn);
7835e98b 1691 init_page_count(page);
1da177e4
LT
1692 reset_page_mapcount(page);
1693 SetPageReserved(page);
1694 INIT_LIST_HEAD(&page->lru);
1695#ifdef WANT_PAGE_VIRTUAL
1696 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1697 if (!is_highmem_idx(zone))
3212c6be 1698 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1699#endif
1da177e4
LT
1700 }
1701}
1702
1703void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1704 unsigned long size)
1705{
1706 int order;
1707 for (order = 0; order < MAX_ORDER ; order++) {
1708 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1709 zone->free_area[order].nr_free = 0;
1710 }
1711}
1712
d41dee36 1713#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
2f1b6248
CL
1714void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1715 unsigned long pfn, unsigned long size)
d41dee36
AW
1716{
1717 unsigned long snum = pfn_to_section_nr(pfn);
1718 unsigned long end = pfn_to_section_nr(pfn + size);
1719
1720 if (FLAGS_HAS_NODE)
1721 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1722 else
1723 for (; snum <= end; snum++)
1724 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1725}
1726
1da177e4
LT
1727#ifndef __HAVE_ARCH_MEMMAP_INIT
1728#define memmap_init(size, nid, zone, start_pfn) \
1729 memmap_init_zone((size), (nid), (zone), (start_pfn))
1730#endif
1731
6292d9aa 1732static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1733{
1734 int batch;
1735
1736 /*
1737 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1738 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1739 *
1740 * OK, so we don't know how big the cache is. So guess.
1741 */
1742 batch = zone->present_pages / 1024;
ba56e91c
SR
1743 if (batch * PAGE_SIZE > 512 * 1024)
1744 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1745 batch /= 4; /* We effectively *= 4 below */
1746 if (batch < 1)
1747 batch = 1;
1748
1749 /*
0ceaacc9
NP
1750 * Clamp the batch to a 2^n - 1 value. Having a power
1751 * of 2 value was found to be more likely to have
1752 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1753 *
0ceaacc9
NP
1754 * For example if 2 tasks are alternately allocating
1755 * batches of pages, one task can end up with a lot
1756 * of pages of one half of the possible page colors
1757 * and the other with pages of the other colors.
e7c8d5c9 1758 */
0ceaacc9 1759 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1760
e7c8d5c9
CL
1761 return batch;
1762}
1763
2caaad41
CL
1764inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1765{
1766 struct per_cpu_pages *pcp;
1767
1c6fe946
MD
1768 memset(p, 0, sizeof(*p));
1769
2caaad41
CL
1770 pcp = &p->pcp[0]; /* hot */
1771 pcp->count = 0;
2caaad41
CL
1772 pcp->high = 6 * batch;
1773 pcp->batch = max(1UL, 1 * batch);
1774 INIT_LIST_HEAD(&pcp->list);
1775
1776 pcp = &p->pcp[1]; /* cold*/
1777 pcp->count = 0;
2caaad41 1778 pcp->high = 2 * batch;
e46a5e28 1779 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1780 INIT_LIST_HEAD(&pcp->list);
1781}
1782
8ad4b1fb
RS
1783/*
1784 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1785 * to the value high for the pageset p.
1786 */
1787
1788static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1789 unsigned long high)
1790{
1791 struct per_cpu_pages *pcp;
1792
1793 pcp = &p->pcp[0]; /* hot list */
1794 pcp->high = high;
1795 pcp->batch = max(1UL, high/4);
1796 if ((high/4) > (PAGE_SHIFT * 8))
1797 pcp->batch = PAGE_SHIFT * 8;
1798}
1799
1800
e7c8d5c9
CL
1801#ifdef CONFIG_NUMA
1802/*
2caaad41
CL
1803 * Boot pageset table. One per cpu which is going to be used for all
1804 * zones and all nodes. The parameters will be set in such a way
1805 * that an item put on a list will immediately be handed over to
1806 * the buddy list. This is safe since pageset manipulation is done
1807 * with interrupts disabled.
1808 *
1809 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1810 *
1811 * The boot_pagesets must be kept even after bootup is complete for
1812 * unused processors and/or zones. They do play a role for bootstrapping
1813 * hotplugged processors.
1814 *
1815 * zoneinfo_show() and maybe other functions do
1816 * not check if the processor is online before following the pageset pointer.
1817 * Other parts of the kernel may not check if the zone is available.
2caaad41 1818 */
88a2a4ac 1819static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1820
1821/*
1822 * Dynamically allocate memory for the
e7c8d5c9
CL
1823 * per cpu pageset array in struct zone.
1824 */
6292d9aa 1825static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1826{
1827 struct zone *zone, *dzone;
e7c8d5c9
CL
1828
1829 for_each_zone(zone) {
e7c8d5c9 1830
23316bc8 1831 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1832 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1833 if (!zone_pcp(zone, cpu))
e7c8d5c9 1834 goto bad;
e7c8d5c9 1835
23316bc8 1836 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1837
1838 if (percpu_pagelist_fraction)
1839 setup_pagelist_highmark(zone_pcp(zone, cpu),
1840 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1841 }
1842
1843 return 0;
1844bad:
1845 for_each_zone(dzone) {
1846 if (dzone == zone)
1847 break;
23316bc8
NP
1848 kfree(zone_pcp(dzone, cpu));
1849 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1850 }
1851 return -ENOMEM;
1852}
1853
1854static inline void free_zone_pagesets(int cpu)
1855{
e7c8d5c9
CL
1856 struct zone *zone;
1857
1858 for_each_zone(zone) {
1859 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1860
f3ef9ead
DR
1861 /* Free per_cpu_pageset if it is slab allocated */
1862 if (pset != &boot_pageset[cpu])
1863 kfree(pset);
e7c8d5c9 1864 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1865 }
e7c8d5c9
CL
1866}
1867
9c7b216d 1868static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1869 unsigned long action,
1870 void *hcpu)
1871{
1872 int cpu = (long)hcpu;
1873 int ret = NOTIFY_OK;
1874
1875 switch (action) {
1876 case CPU_UP_PREPARE:
1877 if (process_zones(cpu))
1878 ret = NOTIFY_BAD;
1879 break;
b0d41693 1880 case CPU_UP_CANCELED:
e7c8d5c9
CL
1881 case CPU_DEAD:
1882 free_zone_pagesets(cpu);
1883 break;
e7c8d5c9
CL
1884 default:
1885 break;
1886 }
1887 return ret;
1888}
1889
74b85f37 1890static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1891 { &pageset_cpuup_callback, NULL, 0 };
1892
78d9955b 1893void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1894{
1895 int err;
1896
1897 /* Initialize per_cpu_pageset for cpu 0.
1898 * A cpuup callback will do this for every cpu
1899 * as it comes online
1900 */
1901 err = process_zones(smp_processor_id());
1902 BUG_ON(err);
1903 register_cpu_notifier(&pageset_notifier);
1904}
1905
1906#endif
1907
c09b4240 1908static __meminit
cca448fe 1909int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1910{
1911 int i;
1912 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1913 size_t alloc_size;
ed8ece2e
DH
1914
1915 /*
1916 * The per-page waitqueue mechanism uses hashed waitqueues
1917 * per zone.
1918 */
02b694de
YG
1919 zone->wait_table_hash_nr_entries =
1920 wait_table_hash_nr_entries(zone_size_pages);
1921 zone->wait_table_bits =
1922 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1923 alloc_size = zone->wait_table_hash_nr_entries
1924 * sizeof(wait_queue_head_t);
1925
1926 if (system_state == SYSTEM_BOOTING) {
1927 zone->wait_table = (wait_queue_head_t *)
1928 alloc_bootmem_node(pgdat, alloc_size);
1929 } else {
1930 /*
1931 * This case means that a zone whose size was 0 gets new memory
1932 * via memory hot-add.
1933 * But it may be the case that a new node was hot-added. In
1934 * this case vmalloc() will not be able to use this new node's
1935 * memory - this wait_table must be initialized to use this new
1936 * node itself as well.
1937 * To use this new node's memory, further consideration will be
1938 * necessary.
1939 */
1940 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1941 }
1942 if (!zone->wait_table)
1943 return -ENOMEM;
ed8ece2e 1944
02b694de 1945 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1946 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1947
1948 return 0;
ed8ece2e
DH
1949}
1950
c09b4240 1951static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1952{
1953 int cpu;
1954 unsigned long batch = zone_batchsize(zone);
1955
1956 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1957#ifdef CONFIG_NUMA
1958 /* Early boot. Slab allocator not functional yet */
23316bc8 1959 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1960 setup_pageset(&boot_pageset[cpu],0);
1961#else
1962 setup_pageset(zone_pcp(zone,cpu), batch);
1963#endif
1964 }
f5335c0f
AB
1965 if (zone->present_pages)
1966 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1967 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1968}
1969
718127cc
YG
1970__meminit int init_currently_empty_zone(struct zone *zone,
1971 unsigned long zone_start_pfn,
1972 unsigned long size)
ed8ece2e
DH
1973{
1974 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1975 int ret;
1976 ret = zone_wait_table_init(zone, size);
1977 if (ret)
1978 return ret;
ed8ece2e
DH
1979 pgdat->nr_zones = zone_idx(zone) + 1;
1980
ed8ece2e
DH
1981 zone->zone_start_pfn = zone_start_pfn;
1982
1983 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1984
1985 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1986
1987 return 0;
ed8ece2e
DH
1988}
1989
c713216d
MG
1990#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1991/*
1992 * Basic iterator support. Return the first range of PFNs for a node
1993 * Note: nid == MAX_NUMNODES returns first region regardless of node
1994 */
1995static int __init first_active_region_index_in_nid(int nid)
1996{
1997 int i;
1998
1999 for (i = 0; i < nr_nodemap_entries; i++)
2000 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2001 return i;
2002
2003 return -1;
2004}
2005
2006/*
2007 * Basic iterator support. Return the next active range of PFNs for a node
2008 * Note: nid == MAX_NUMNODES returns next region regardles of node
2009 */
2010static int __init next_active_region_index_in_nid(int index, int nid)
2011{
2012 for (index = index + 1; index < nr_nodemap_entries; index++)
2013 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2014 return index;
2015
2016 return -1;
2017}
2018
2019#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2020/*
2021 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2022 * Architectures may implement their own version but if add_active_range()
2023 * was used and there are no special requirements, this is a convenient
2024 * alternative
2025 */
2026int __init early_pfn_to_nid(unsigned long pfn)
2027{
2028 int i;
2029
2030 for (i = 0; i < nr_nodemap_entries; i++) {
2031 unsigned long start_pfn = early_node_map[i].start_pfn;
2032 unsigned long end_pfn = early_node_map[i].end_pfn;
2033
2034 if (start_pfn <= pfn && pfn < end_pfn)
2035 return early_node_map[i].nid;
2036 }
2037
2038 return 0;
2039}
2040#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2041
2042/* Basic iterator support to walk early_node_map[] */
2043#define for_each_active_range_index_in_nid(i, nid) \
2044 for (i = first_active_region_index_in_nid(nid); i != -1; \
2045 i = next_active_region_index_in_nid(i, nid))
2046
2047/**
2048 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2049 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed
2050 * @max_low_pfn: The highest PFN that till be passed to free_bootmem_node
2051 *
2052 * If an architecture guarantees that all ranges registered with
2053 * add_active_ranges() contain no holes and may be freed, this
2054 * this function may be used instead of calling free_bootmem() manually.
2055 */
2056void __init free_bootmem_with_active_regions(int nid,
2057 unsigned long max_low_pfn)
2058{
2059 int i;
2060
2061 for_each_active_range_index_in_nid(i, nid) {
2062 unsigned long size_pages = 0;
2063 unsigned long end_pfn = early_node_map[i].end_pfn;
2064
2065 if (early_node_map[i].start_pfn >= max_low_pfn)
2066 continue;
2067
2068 if (end_pfn > max_low_pfn)
2069 end_pfn = max_low_pfn;
2070
2071 size_pages = end_pfn - early_node_map[i].start_pfn;
2072 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2073 PFN_PHYS(early_node_map[i].start_pfn),
2074 size_pages << PAGE_SHIFT);
2075 }
2076}
2077
2078/**
2079 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2080 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used
2081 *
2082 * If an architecture guarantees that all ranges registered with
2083 * add_active_ranges() contain no holes and may be freed, this
2084 * this function may be used instead of calling memory_present() manually.
2085 */
2086void __init sparse_memory_present_with_active_regions(int nid)
2087{
2088 int i;
2089
2090 for_each_active_range_index_in_nid(i, nid)
2091 memory_present(early_node_map[i].nid,
2092 early_node_map[i].start_pfn,
2093 early_node_map[i].end_pfn);
2094}
2095
2096/**
2097 * get_pfn_range_for_nid - Return the start and end page frames for a node
2098 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned
2099 * @start_pfn: Passed by reference. On return, it will have the node start_pfn
2100 * @end_pfn: Passed by reference. On return, it will have the node end_pfn
2101 *
2102 * It returns the start and end page frame of a node based on information
2103 * provided by an arch calling add_active_range(). If called for a node
2104 * with no available memory, a warning is printed and the start and end
2105 * PFNs will be 0
2106 */
2107void __init get_pfn_range_for_nid(unsigned int nid,
2108 unsigned long *start_pfn, unsigned long *end_pfn)
2109{
2110 int i;
2111 *start_pfn = -1UL;
2112 *end_pfn = 0;
2113
2114 for_each_active_range_index_in_nid(i, nid) {
2115 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2116 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2117 }
2118
2119 if (*start_pfn == -1UL) {
2120 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2121 *start_pfn = 0;
2122 }
2123}
2124
2125/*
2126 * Return the number of pages a zone spans in a node, including holes
2127 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2128 */
2129unsigned long __init zone_spanned_pages_in_node(int nid,
2130 unsigned long zone_type,
2131 unsigned long *ignored)
2132{
2133 unsigned long node_start_pfn, node_end_pfn;
2134 unsigned long zone_start_pfn, zone_end_pfn;
2135
2136 /* Get the start and end of the node and zone */
2137 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2138 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2139 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2140
2141 /* Check that this node has pages within the zone's required range */
2142 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2143 return 0;
2144
2145 /* Move the zone boundaries inside the node if necessary */
2146 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2147 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2148
2149 /* Return the spanned pages */
2150 return zone_end_pfn - zone_start_pfn;
2151}
2152
2153/*
2154 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2155 * then all holes in the requested range will be accounted for
2156 */
2157unsigned long __init __absent_pages_in_range(int nid,
2158 unsigned long range_start_pfn,
2159 unsigned long range_end_pfn)
2160{
2161 int i = 0;
2162 unsigned long prev_end_pfn = 0, hole_pages = 0;
2163 unsigned long start_pfn;
2164
2165 /* Find the end_pfn of the first active range of pfns in the node */
2166 i = first_active_region_index_in_nid(nid);
2167 if (i == -1)
2168 return 0;
2169
2170 prev_end_pfn = early_node_map[i].start_pfn;
2171
2172 /* Find all holes for the zone within the node */
2173 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2174
2175 /* No need to continue if prev_end_pfn is outside the zone */
2176 if (prev_end_pfn >= range_end_pfn)
2177 break;
2178
2179 /* Make sure the end of the zone is not within the hole */
2180 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2181 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2182
2183 /* Update the hole size cound and move on */
2184 if (start_pfn > range_start_pfn) {
2185 BUG_ON(prev_end_pfn > start_pfn);
2186 hole_pages += start_pfn - prev_end_pfn;
2187 }
2188 prev_end_pfn = early_node_map[i].end_pfn;
2189 }
2190
2191 return hole_pages;
2192}
2193
2194/**
2195 * absent_pages_in_range - Return number of page frames in holes within a range
2196 * @start_pfn: The start PFN to start searching for holes
2197 * @end_pfn: The end PFN to stop searching for holes
2198 *
2199 * It returns the number of pages frames in memory holes within a range
2200 */
2201unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2202 unsigned long end_pfn)
2203{
2204 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2205}
2206
2207/* Return the number of page frames in holes in a zone on a node */
2208unsigned long __init zone_absent_pages_in_node(int nid,
2209 unsigned long zone_type,
2210 unsigned long *ignored)
2211{
2212 return __absent_pages_in_range(nid,
2213 arch_zone_lowest_possible_pfn[zone_type],
2214 arch_zone_highest_possible_pfn[zone_type]);
2215}
2216#else
2217static inline unsigned long zone_spanned_pages_in_node(int nid,
2218 unsigned long zone_type,
2219 unsigned long *zones_size)
2220{
2221 return zones_size[zone_type];
2222}
2223
2224static inline unsigned long zone_absent_pages_in_node(int nid,
2225 unsigned long zone_type,
2226 unsigned long *zholes_size)
2227{
2228 if (!zholes_size)
2229 return 0;
2230
2231 return zholes_size[zone_type];
2232}
2233#endif
2234
2235static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2236 unsigned long *zones_size, unsigned long *zholes_size)
2237{
2238 unsigned long realtotalpages, totalpages = 0;
2239 enum zone_type i;
2240
2241 for (i = 0; i < MAX_NR_ZONES; i++)
2242 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2243 zones_size);
2244 pgdat->node_spanned_pages = totalpages;
2245
2246 realtotalpages = totalpages;
2247 for (i = 0; i < MAX_NR_ZONES; i++)
2248 realtotalpages -=
2249 zone_absent_pages_in_node(pgdat->node_id, i,
2250 zholes_size);
2251 pgdat->node_present_pages = realtotalpages;
2252 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2253 realtotalpages);
2254}
2255
1da177e4
LT
2256/*
2257 * Set up the zone data structures:
2258 * - mark all pages reserved
2259 * - mark all memory queues empty
2260 * - clear the memory bitmaps
2261 */
86356ab1 2262static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
2263 unsigned long *zones_size, unsigned long *zholes_size)
2264{
2f1b6248 2265 enum zone_type j;
ed8ece2e 2266 int nid = pgdat->node_id;
1da177e4 2267 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 2268 int ret;
1da177e4 2269
208d54e5 2270 pgdat_resize_init(pgdat);
1da177e4
LT
2271 pgdat->nr_zones = 0;
2272 init_waitqueue_head(&pgdat->kswapd_wait);
2273 pgdat->kswapd_max_order = 0;
2274
2275 for (j = 0; j < MAX_NR_ZONES; j++) {
2276 struct zone *zone = pgdat->node_zones + j;
2277 unsigned long size, realsize;
1da177e4 2278
c713216d
MG
2279 size = zone_spanned_pages_in_node(nid, j, zones_size);
2280 realsize = size - zone_absent_pages_in_node(nid, j,
2281 zholes_size);
1da177e4 2282
98d2b0eb 2283 if (!is_highmem_idx(j))
1da177e4
LT
2284 nr_kernel_pages += realsize;
2285 nr_all_pages += realsize;
2286
2287 zone->spanned_pages = size;
2288 zone->present_pages = realsize;
9614634f 2289#ifdef CONFIG_NUMA
8417bba4 2290 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2291 / 100;
0ff38490 2292 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2293#endif
1da177e4
LT
2294 zone->name = zone_names[j];
2295 spin_lock_init(&zone->lock);
2296 spin_lock_init(&zone->lru_lock);
bdc8cb98 2297 zone_seqlock_init(zone);
1da177e4
LT
2298 zone->zone_pgdat = pgdat;
2299 zone->free_pages = 0;
2300
2301 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2302
ed8ece2e 2303 zone_pcp_init(zone);
1da177e4
LT
2304 INIT_LIST_HEAD(&zone->active_list);
2305 INIT_LIST_HEAD(&zone->inactive_list);
2306 zone->nr_scan_active = 0;
2307 zone->nr_scan_inactive = 0;
2308 zone->nr_active = 0;
2309 zone->nr_inactive = 0;
2244b95a 2310 zap_zone_vm_stats(zone);
53e9a615 2311 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2312 if (!size)
2313 continue;
2314
d41dee36 2315 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2316 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2317 BUG_ON(ret);
1da177e4 2318 zone_start_pfn += size;
1da177e4
LT
2319 }
2320}
2321
2322static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2323{
1da177e4
LT
2324 /* Skip empty nodes */
2325 if (!pgdat->node_spanned_pages)
2326 return;
2327
d41dee36 2328#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2329 /* ia64 gets its own node_mem_map, before this, without bootmem */
2330 if (!pgdat->node_mem_map) {
e984bb43 2331 unsigned long size, start, end;
d41dee36
AW
2332 struct page *map;
2333
e984bb43
BP
2334 /*
2335 * The zone's endpoints aren't required to be MAX_ORDER
2336 * aligned but the node_mem_map endpoints must be in order
2337 * for the buddy allocator to function correctly.
2338 */
2339 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2340 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2341 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2342 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2343 map = alloc_remap(pgdat->node_id, size);
2344 if (!map)
2345 map = alloc_bootmem_node(pgdat, size);
e984bb43 2346 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2347 }
d41dee36 2348#ifdef CONFIG_FLATMEM
1da177e4
LT
2349 /*
2350 * With no DISCONTIG, the global mem_map is just set as node 0's
2351 */
c713216d 2352 if (pgdat == NODE_DATA(0)) {
1da177e4 2353 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
2354#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2355 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2356 mem_map -= pgdat->node_start_pfn;
2357#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2358 }
1da177e4 2359#endif
d41dee36 2360#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2361}
2362
86356ab1 2363void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2364 unsigned long *zones_size, unsigned long node_start_pfn,
2365 unsigned long *zholes_size)
2366{
2367 pgdat->node_id = nid;
2368 pgdat->node_start_pfn = node_start_pfn;
c713216d 2369 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
2370
2371 alloc_node_mem_map(pgdat);
2372
2373 free_area_init_core(pgdat, zones_size, zholes_size);
2374}
2375
c713216d
MG
2376#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2377/**
2378 * add_active_range - Register a range of PFNs backed by physical memory
2379 * @nid: The node ID the range resides on
2380 * @start_pfn: The start PFN of the available physical memory
2381 * @end_pfn: The end PFN of the available physical memory
2382 *
2383 * These ranges are stored in an early_node_map[] and later used by
2384 * free_area_init_nodes() to calculate zone sizes and holes. If the
2385 * range spans a memory hole, it is up to the architecture to ensure
2386 * the memory is not freed by the bootmem allocator. If possible
2387 * the range being registered will be merged with existing ranges.
2388 */
2389void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2390 unsigned long end_pfn)
2391{
2392 int i;
2393
2394 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2395 "%d entries of %d used\n",
2396 nid, start_pfn, end_pfn,
2397 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2398
2399 /* Merge with existing active regions if possible */
2400 for (i = 0; i < nr_nodemap_entries; i++) {
2401 if (early_node_map[i].nid != nid)
2402 continue;
2403
2404 /* Skip if an existing region covers this new one */
2405 if (start_pfn >= early_node_map[i].start_pfn &&
2406 end_pfn <= early_node_map[i].end_pfn)
2407 return;
2408
2409 /* Merge forward if suitable */
2410 if (start_pfn <= early_node_map[i].end_pfn &&
2411 end_pfn > early_node_map[i].end_pfn) {
2412 early_node_map[i].end_pfn = end_pfn;
2413 return;
2414 }
2415
2416 /* Merge backward if suitable */
2417 if (start_pfn < early_node_map[i].end_pfn &&
2418 end_pfn >= early_node_map[i].start_pfn) {
2419 early_node_map[i].start_pfn = start_pfn;
2420 return;
2421 }
2422 }
2423
2424 /* Check that early_node_map is large enough */
2425 if (i >= MAX_ACTIVE_REGIONS) {
2426 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2427 MAX_ACTIVE_REGIONS);
2428 return;
2429 }
2430
2431 early_node_map[i].nid = nid;
2432 early_node_map[i].start_pfn = start_pfn;
2433 early_node_map[i].end_pfn = end_pfn;
2434 nr_nodemap_entries = i + 1;
2435}
2436
2437/**
2438 * shrink_active_range - Shrink an existing registered range of PFNs
2439 * @nid: The node id the range is on that should be shrunk
2440 * @old_end_pfn: The old end PFN of the range
2441 * @new_end_pfn: The new PFN of the range
2442 *
2443 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2444 * The map is kept at the end physical page range that has already been
2445 * registered with add_active_range(). This function allows an arch to shrink
2446 * an existing registered range.
2447 */
2448void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2449 unsigned long new_end_pfn)
2450{
2451 int i;
2452
2453 /* Find the old active region end and shrink */
2454 for_each_active_range_index_in_nid(i, nid)
2455 if (early_node_map[i].end_pfn == old_end_pfn) {
2456 early_node_map[i].end_pfn = new_end_pfn;
2457 break;
2458 }
2459}
2460
2461/**
2462 * remove_all_active_ranges - Remove all currently registered regions
2463 * During discovery, it may be found that a table like SRAT is invalid
2464 * and an alternative discovery method must be used. This function removes
2465 * all currently registered regions.
2466 */
2467void __init remove_all_active_ranges()
2468{
2469 memset(early_node_map, 0, sizeof(early_node_map));
2470 nr_nodemap_entries = 0;
2471}
2472
2473/* Compare two active node_active_regions */
2474static int __init cmp_node_active_region(const void *a, const void *b)
2475{
2476 struct node_active_region *arange = (struct node_active_region *)a;
2477 struct node_active_region *brange = (struct node_active_region *)b;
2478
2479 /* Done this way to avoid overflows */
2480 if (arange->start_pfn > brange->start_pfn)
2481 return 1;
2482 if (arange->start_pfn < brange->start_pfn)
2483 return -1;
2484
2485 return 0;
2486}
2487
2488/* sort the node_map by start_pfn */
2489static void __init sort_node_map(void)
2490{
2491 sort(early_node_map, (size_t)nr_nodemap_entries,
2492 sizeof(struct node_active_region),
2493 cmp_node_active_region, NULL);
2494}
2495
2496/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2497unsigned long __init find_min_pfn_for_node(unsigned long nid)
2498{
2499 int i;
2500
2501 /* Assuming a sorted map, the first range found has the starting pfn */
2502 for_each_active_range_index_in_nid(i, nid)
2503 return early_node_map[i].start_pfn;
2504
2505 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2506 return 0;
2507}
2508
2509/**
2510 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2511 *
2512 * It returns the minimum PFN based on information provided via
2513 * add_active_range()
2514 */
2515unsigned long __init find_min_pfn_with_active_regions(void)
2516{
2517 return find_min_pfn_for_node(MAX_NUMNODES);
2518}
2519
2520/**
2521 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2522 *
2523 * It returns the maximum PFN based on information provided via
2524 * add_active_range()
2525 */
2526unsigned long __init find_max_pfn_with_active_regions(void)
2527{
2528 int i;
2529 unsigned long max_pfn = 0;
2530
2531 for (i = 0; i < nr_nodemap_entries; i++)
2532 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2533
2534 return max_pfn;
2535}
2536
2537/**
2538 * free_area_init_nodes - Initialise all pg_data_t and zone data
2539 * @arch_max_dma_pfn: The maximum PFN usable for ZONE_DMA
2540 * @arch_max_dma32_pfn: The maximum PFN usable for ZONE_DMA32
2541 * @arch_max_low_pfn: The maximum PFN usable for ZONE_NORMAL
2542 * @arch_max_high_pfn: The maximum PFN usable for ZONE_HIGHMEM
2543 *
2544 * This will call free_area_init_node() for each active node in the system.
2545 * Using the page ranges provided by add_active_range(), the size of each
2546 * zone in each node and their holes is calculated. If the maximum PFN
2547 * between two adjacent zones match, it is assumed that the zone is empty.
2548 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2549 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2550 * starts where the previous one ended. For example, ZONE_DMA32 starts
2551 * at arch_max_dma_pfn.
2552 */
2553void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2554{
2555 unsigned long nid;
2556 enum zone_type i;
2557
2558 /* Record where the zone boundaries are */
2559 memset(arch_zone_lowest_possible_pfn, 0,
2560 sizeof(arch_zone_lowest_possible_pfn));
2561 memset(arch_zone_highest_possible_pfn, 0,
2562 sizeof(arch_zone_highest_possible_pfn));
2563 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2564 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2565 for (i = 1; i < MAX_NR_ZONES; i++) {
2566 arch_zone_lowest_possible_pfn[i] =
2567 arch_zone_highest_possible_pfn[i-1];
2568 arch_zone_highest_possible_pfn[i] =
2569 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2570 }
2571
2572 /* Regions in the early_node_map can be in any order */
2573 sort_node_map();
2574
2575 /* Print out the zone ranges */
2576 printk("Zone PFN ranges:\n");
2577 for (i = 0; i < MAX_NR_ZONES; i++)
2578 printk(" %-8s %8lu -> %8lu\n",
2579 zone_names[i],
2580 arch_zone_lowest_possible_pfn[i],
2581 arch_zone_highest_possible_pfn[i]);
2582
2583 /* Print out the early_node_map[] */
2584 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2585 for (i = 0; i < nr_nodemap_entries; i++)
2586 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2587 early_node_map[i].start_pfn,
2588 early_node_map[i].end_pfn);
2589
2590 /* Initialise every node */
2591 for_each_online_node(nid) {
2592 pg_data_t *pgdat = NODE_DATA(nid);
2593 free_area_init_node(nid, pgdat, NULL,
2594 find_min_pfn_for_node(nid), NULL);
2595 }
2596}
2597#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2598
93b7504e 2599#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2600static bootmem_data_t contig_bootmem_data;
2601struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2602
2603EXPORT_SYMBOL(contig_page_data);
93b7504e 2604#endif
1da177e4
LT
2605
2606void __init free_area_init(unsigned long *zones_size)
2607{
93b7504e 2608 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2609 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2610}
1da177e4 2611
1da177e4
LT
2612#ifdef CONFIG_HOTPLUG_CPU
2613static int page_alloc_cpu_notify(struct notifier_block *self,
2614 unsigned long action, void *hcpu)
2615{
2616 int cpu = (unsigned long)hcpu;
1da177e4
LT
2617
2618 if (action == CPU_DEAD) {
1da177e4
LT
2619 local_irq_disable();
2620 __drain_pages(cpu);
f8891e5e 2621 vm_events_fold_cpu(cpu);
1da177e4 2622 local_irq_enable();
2244b95a 2623 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2624 }
2625 return NOTIFY_OK;
2626}
2627#endif /* CONFIG_HOTPLUG_CPU */
2628
2629void __init page_alloc_init(void)
2630{
2631 hotcpu_notifier(page_alloc_cpu_notify, 0);
2632}
2633
cb45b0e9
HA
2634/*
2635 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2636 * or min_free_kbytes changes.
2637 */
2638static void calculate_totalreserve_pages(void)
2639{
2640 struct pglist_data *pgdat;
2641 unsigned long reserve_pages = 0;
2f6726e5 2642 enum zone_type i, j;
cb45b0e9
HA
2643
2644 for_each_online_pgdat(pgdat) {
2645 for (i = 0; i < MAX_NR_ZONES; i++) {
2646 struct zone *zone = pgdat->node_zones + i;
2647 unsigned long max = 0;
2648
2649 /* Find valid and maximum lowmem_reserve in the zone */
2650 for (j = i; j < MAX_NR_ZONES; j++) {
2651 if (zone->lowmem_reserve[j] > max)
2652 max = zone->lowmem_reserve[j];
2653 }
2654
2655 /* we treat pages_high as reserved pages. */
2656 max += zone->pages_high;
2657
2658 if (max > zone->present_pages)
2659 max = zone->present_pages;
2660 reserve_pages += max;
2661 }
2662 }
2663 totalreserve_pages = reserve_pages;
2664}
2665
1da177e4
LT
2666/*
2667 * setup_per_zone_lowmem_reserve - called whenever
2668 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2669 * has a correct pages reserved value, so an adequate number of
2670 * pages are left in the zone after a successful __alloc_pages().
2671 */
2672static void setup_per_zone_lowmem_reserve(void)
2673{
2674 struct pglist_data *pgdat;
2f6726e5 2675 enum zone_type j, idx;
1da177e4 2676
ec936fc5 2677 for_each_online_pgdat(pgdat) {
1da177e4
LT
2678 for (j = 0; j < MAX_NR_ZONES; j++) {
2679 struct zone *zone = pgdat->node_zones + j;
2680 unsigned long present_pages = zone->present_pages;
2681
2682 zone->lowmem_reserve[j] = 0;
2683
2f6726e5
CL
2684 idx = j;
2685 while (idx) {
1da177e4
LT
2686 struct zone *lower_zone;
2687
2f6726e5
CL
2688 idx--;
2689
1da177e4
LT
2690 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2691 sysctl_lowmem_reserve_ratio[idx] = 1;
2692
2693 lower_zone = pgdat->node_zones + idx;
2694 lower_zone->lowmem_reserve[j] = present_pages /
2695 sysctl_lowmem_reserve_ratio[idx];
2696 present_pages += lower_zone->present_pages;
2697 }
2698 }
2699 }
cb45b0e9
HA
2700
2701 /* update totalreserve_pages */
2702 calculate_totalreserve_pages();
1da177e4
LT
2703}
2704
2705/*
2706 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2707 * that the pages_{min,low,high} values for each zone are set correctly
2708 * with respect to min_free_kbytes.
2709 */
3947be19 2710void setup_per_zone_pages_min(void)
1da177e4
LT
2711{
2712 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2713 unsigned long lowmem_pages = 0;
2714 struct zone *zone;
2715 unsigned long flags;
2716
2717 /* Calculate total number of !ZONE_HIGHMEM pages */
2718 for_each_zone(zone) {
2719 if (!is_highmem(zone))
2720 lowmem_pages += zone->present_pages;
2721 }
2722
2723 for_each_zone(zone) {
ac924c60
AM
2724 u64 tmp;
2725
1da177e4 2726 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2727 tmp = (u64)pages_min * zone->present_pages;
2728 do_div(tmp, lowmem_pages);
1da177e4
LT
2729 if (is_highmem(zone)) {
2730 /*
669ed175
NP
2731 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2732 * need highmem pages, so cap pages_min to a small
2733 * value here.
2734 *
2735 * The (pages_high-pages_low) and (pages_low-pages_min)
2736 * deltas controls asynch page reclaim, and so should
2737 * not be capped for highmem.
1da177e4
LT
2738 */
2739 int min_pages;
2740
2741 min_pages = zone->present_pages / 1024;
2742 if (min_pages < SWAP_CLUSTER_MAX)
2743 min_pages = SWAP_CLUSTER_MAX;
2744 if (min_pages > 128)
2745 min_pages = 128;
2746 zone->pages_min = min_pages;
2747 } else {
669ed175
NP
2748 /*
2749 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2750 * proportionate to the zone's size.
2751 */
669ed175 2752 zone->pages_min = tmp;
1da177e4
LT
2753 }
2754
ac924c60
AM
2755 zone->pages_low = zone->pages_min + (tmp >> 2);
2756 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2757 spin_unlock_irqrestore(&zone->lru_lock, flags);
2758 }
cb45b0e9
HA
2759
2760 /* update totalreserve_pages */
2761 calculate_totalreserve_pages();
1da177e4
LT
2762}
2763
2764/*
2765 * Initialise min_free_kbytes.
2766 *
2767 * For small machines we want it small (128k min). For large machines
2768 * we want it large (64MB max). But it is not linear, because network
2769 * bandwidth does not increase linearly with machine size. We use
2770 *
2771 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2772 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2773 *
2774 * which yields
2775 *
2776 * 16MB: 512k
2777 * 32MB: 724k
2778 * 64MB: 1024k
2779 * 128MB: 1448k
2780 * 256MB: 2048k
2781 * 512MB: 2896k
2782 * 1024MB: 4096k
2783 * 2048MB: 5792k
2784 * 4096MB: 8192k
2785 * 8192MB: 11584k
2786 * 16384MB: 16384k
2787 */
2788static int __init init_per_zone_pages_min(void)
2789{
2790 unsigned long lowmem_kbytes;
2791
2792 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2793
2794 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2795 if (min_free_kbytes < 128)
2796 min_free_kbytes = 128;
2797 if (min_free_kbytes > 65536)
2798 min_free_kbytes = 65536;
2799 setup_per_zone_pages_min();
2800 setup_per_zone_lowmem_reserve();
2801 return 0;
2802}
2803module_init(init_per_zone_pages_min)
2804
2805/*
2806 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2807 * that we can call two helper functions whenever min_free_kbytes
2808 * changes.
2809 */
2810int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2811 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2812{
2813 proc_dointvec(table, write, file, buffer, length, ppos);
2814 setup_per_zone_pages_min();
2815 return 0;
2816}
2817
9614634f
CL
2818#ifdef CONFIG_NUMA
2819int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2820 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2821{
2822 struct zone *zone;
2823 int rc;
2824
2825 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2826 if (rc)
2827 return rc;
2828
2829 for_each_zone(zone)
8417bba4 2830 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
2831 sysctl_min_unmapped_ratio) / 100;
2832 return 0;
2833}
0ff38490
CL
2834
2835int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2836 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2837{
2838 struct zone *zone;
2839 int rc;
2840
2841 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2842 if (rc)
2843 return rc;
2844
2845 for_each_zone(zone)
2846 zone->min_slab_pages = (zone->present_pages *
2847 sysctl_min_slab_ratio) / 100;
2848 return 0;
2849}
9614634f
CL
2850#endif
2851
1da177e4
LT
2852/*
2853 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2854 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2855 * whenever sysctl_lowmem_reserve_ratio changes.
2856 *
2857 * The reserve ratio obviously has absolutely no relation with the
2858 * pages_min watermarks. The lowmem reserve ratio can only make sense
2859 * if in function of the boot time zone sizes.
2860 */
2861int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2862 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2863{
2864 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2865 setup_per_zone_lowmem_reserve();
2866 return 0;
2867}
2868
8ad4b1fb
RS
2869/*
2870 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2871 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2872 * can have before it gets flushed back to buddy allocator.
2873 */
2874
2875int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2876 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2877{
2878 struct zone *zone;
2879 unsigned int cpu;
2880 int ret;
2881
2882 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2883 if (!write || (ret == -EINVAL))
2884 return ret;
2885 for_each_zone(zone) {
2886 for_each_online_cpu(cpu) {
2887 unsigned long high;
2888 high = zone->present_pages / percpu_pagelist_fraction;
2889 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2890 }
2891 }
2892 return 0;
2893}
2894
f034b5d4 2895int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2896
2897#ifdef CONFIG_NUMA
2898static int __init set_hashdist(char *str)
2899{
2900 if (!str)
2901 return 0;
2902 hashdist = simple_strtoul(str, &str, 0);
2903 return 1;
2904}
2905__setup("hashdist=", set_hashdist);
2906#endif
2907
2908/*
2909 * allocate a large system hash table from bootmem
2910 * - it is assumed that the hash table must contain an exact power-of-2
2911 * quantity of entries
2912 * - limit is the number of hash buckets, not the total allocation size
2913 */
2914void *__init alloc_large_system_hash(const char *tablename,
2915 unsigned long bucketsize,
2916 unsigned long numentries,
2917 int scale,
2918 int flags,
2919 unsigned int *_hash_shift,
2920 unsigned int *_hash_mask,
2921 unsigned long limit)
2922{
2923 unsigned long long max = limit;
2924 unsigned long log2qty, size;
2925 void *table = NULL;
2926
2927 /* allow the kernel cmdline to have a say */
2928 if (!numentries) {
2929 /* round applicable memory size up to nearest megabyte */
2930 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2931 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2932 numentries >>= 20 - PAGE_SHIFT;
2933 numentries <<= 20 - PAGE_SHIFT;
2934
2935 /* limit to 1 bucket per 2^scale bytes of low memory */
2936 if (scale > PAGE_SHIFT)
2937 numentries >>= (scale - PAGE_SHIFT);
2938 else
2939 numentries <<= (PAGE_SHIFT - scale);
2940 }
6e692ed3 2941 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2942
2943 /* limit allocation size to 1/16 total memory by default */
2944 if (max == 0) {
2945 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2946 do_div(max, bucketsize);
2947 }
2948
2949 if (numentries > max)
2950 numentries = max;
2951
2952 log2qty = long_log2(numentries);
2953
2954 do {
2955 size = bucketsize << log2qty;
2956 if (flags & HASH_EARLY)
2957 table = alloc_bootmem(size);
2958 else if (hashdist)
2959 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2960 else {
2961 unsigned long order;
2962 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2963 ;
2964 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2965 }
2966 } while (!table && size > PAGE_SIZE && --log2qty);
2967
2968 if (!table)
2969 panic("Failed to allocate %s hash table\n", tablename);
2970
2971 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2972 tablename,
2973 (1U << log2qty),
2974 long_log2(size) - PAGE_SHIFT,
2975 size);
2976
2977 if (_hash_shift)
2978 *_hash_shift = log2qty;
2979 if (_hash_mask)
2980 *_hash_mask = (1 << log2qty) - 1;
2981
2982 return table;
2983}
a117e66e
KH
2984
2985#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2986struct page *pfn_to_page(unsigned long pfn)
2987{
67de6482 2988 return __pfn_to_page(pfn);
a117e66e
KH
2989}
2990unsigned long page_to_pfn(struct page *page)
2991{
67de6482 2992 return __page_to_pfn(page);
a117e66e 2993}
a117e66e
KH
2994EXPORT_SYMBOL(pfn_to_page);
2995EXPORT_SYMBOL(page_to_pfn);
2996#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */