]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
[PATCH] Drop __get_zone_counts()
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
c3d8c141 53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 54EXPORT_SYMBOL(node_online_map);
c3d8c141 55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 56EXPORT_SYMBOL(node_possible_map);
6c231b7b 57unsigned long totalram_pages __read_mostly;
cb45b0e9 58unsigned long totalreserve_pages __read_mostly;
1da177e4 59long nr_swap_pages;
8ad4b1fb 60int percpu_pagelist_fraction;
1da177e4 61
d98c7a09 62static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 63
1da177e4
LT
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
1da177e4 74 */
2f1b6248
CL
75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 256,
fb0e7942 77#ifdef CONFIG_ZONE_DMA32
2f1b6248 78 256,
fb0e7942 79#endif
e53ef38d 80#ifdef CONFIG_HIGHMEM
2f1b6248 81 32
e53ef38d 82#endif
2f1b6248 83};
1da177e4
LT
84
85EXPORT_SYMBOL(totalram_pages);
1da177e4 86
15ad7cdc 87static char * const zone_names[MAX_NR_ZONES] = {
2f1b6248 88 "DMA",
fb0e7942 89#ifdef CONFIG_ZONE_DMA32
2f1b6248 90 "DMA32",
fb0e7942 91#endif
2f1b6248 92 "Normal",
e53ef38d 93#ifdef CONFIG_HIGHMEM
2f1b6248 94 "HighMem"
e53ef38d 95#endif
2f1b6248
CL
96};
97
1da177e4
LT
98int min_free_kbytes = 1024;
99
86356ab1
YG
100unsigned long __meminitdata nr_kernel_pages;
101unsigned long __meminitdata nr_all_pages;
0e0b864e 102static unsigned long __initdata dma_reserve;
1da177e4 103
c713216d
MG
104#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
105 /*
106 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
107 * ranges of memory (RAM) that may be registered with add_active_range().
108 * Ranges passed to add_active_range() will be merged if possible
109 * so the number of times add_active_range() can be called is
110 * related to the number of nodes and the number of holes
111 */
112 #ifdef CONFIG_MAX_ACTIVE_REGIONS
113 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
114 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
115 #else
116 #if MAX_NUMNODES >= 32
117 /* If there can be many nodes, allow up to 50 holes per node */
118 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
119 #else
120 /* By default, allow up to 256 distinct regions */
121 #define MAX_ACTIVE_REGIONS 256
122 #endif
123 #endif
124
125 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
126 int __initdata nr_nodemap_entries;
127 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
128 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c
MG
129#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
130 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
131 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
132#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
133#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
134
13e7444b 135#ifdef CONFIG_DEBUG_VM
c6a57e19 136static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 137{
bdc8cb98
DH
138 int ret = 0;
139 unsigned seq;
140 unsigned long pfn = page_to_pfn(page);
c6a57e19 141
bdc8cb98
DH
142 do {
143 seq = zone_span_seqbegin(zone);
144 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
145 ret = 1;
146 else if (pfn < zone->zone_start_pfn)
147 ret = 1;
148 } while (zone_span_seqretry(zone, seq));
149
150 return ret;
c6a57e19
DH
151}
152
153static int page_is_consistent(struct zone *zone, struct page *page)
154{
1da177e4
LT
155#ifdef CONFIG_HOLES_IN_ZONE
156 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 157 return 0;
1da177e4
LT
158#endif
159 if (zone != page_zone(page))
c6a57e19
DH
160 return 0;
161
162 return 1;
163}
164/*
165 * Temporary debugging check for pages not lying within a given zone.
166 */
167static int bad_range(struct zone *zone, struct page *page)
168{
169 if (page_outside_zone_boundaries(zone, page))
1da177e4 170 return 1;
c6a57e19
DH
171 if (!page_is_consistent(zone, page))
172 return 1;
173
1da177e4
LT
174 return 0;
175}
13e7444b
NP
176#else
177static inline int bad_range(struct zone *zone, struct page *page)
178{
179 return 0;
180}
181#endif
182
224abf92 183static void bad_page(struct page *page)
1da177e4 184{
224abf92 185 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
186 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
187 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
188 KERN_EMERG "Backtrace:\n",
224abf92
NP
189 current->comm, page, (int)(2*sizeof(unsigned long)),
190 (unsigned long)page->flags, page->mapping,
191 page_mapcount(page), page_count(page));
1da177e4 192 dump_stack();
334795ec
HD
193 page->flags &= ~(1 << PG_lru |
194 1 << PG_private |
1da177e4 195 1 << PG_locked |
1da177e4
LT
196 1 << PG_active |
197 1 << PG_dirty |
334795ec
HD
198 1 << PG_reclaim |
199 1 << PG_slab |
1da177e4 200 1 << PG_swapcache |
676165a8
NP
201 1 << PG_writeback |
202 1 << PG_buddy );
1da177e4
LT
203 set_page_count(page, 0);
204 reset_page_mapcount(page);
205 page->mapping = NULL;
9f158333 206 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
207}
208
1da177e4
LT
209/*
210 * Higher-order pages are called "compound pages". They are structured thusly:
211 *
212 * The first PAGE_SIZE page is called the "head page".
213 *
214 * The remaining PAGE_SIZE pages are called "tail pages".
215 *
216 * All pages have PG_compound set. All pages have their ->private pointing at
217 * the head page (even the head page has this).
218 *
41d78ba5
HD
219 * The first tail page's ->lru.next holds the address of the compound page's
220 * put_page() function. Its ->lru.prev holds the order of allocation.
221 * This usage means that zero-order pages may not be compound.
1da177e4 222 */
d98c7a09
HD
223
224static void free_compound_page(struct page *page)
225{
226 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
227}
228
1da177e4
LT
229static void prep_compound_page(struct page *page, unsigned long order)
230{
231 int i;
232 int nr_pages = 1 << order;
233
33f2ef89 234 set_compound_page_dtor(page, free_compound_page);
41d78ba5 235 page[1].lru.prev = (void *)order;
1da177e4
LT
236 for (i = 0; i < nr_pages; i++) {
237 struct page *p = page + i;
238
5e9dace8 239 __SetPageCompound(p);
4c21e2f2 240 set_page_private(p, (unsigned long)page);
1da177e4
LT
241 }
242}
243
244static void destroy_compound_page(struct page *page, unsigned long order)
245{
246 int i;
247 int nr_pages = 1 << order;
248
41d78ba5 249 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 250 bad_page(page);
1da177e4
LT
251
252 for (i = 0; i < nr_pages; i++) {
253 struct page *p = page + i;
254
224abf92
NP
255 if (unlikely(!PageCompound(p) |
256 (page_private(p) != (unsigned long)page)))
257 bad_page(page);
5e9dace8 258 __ClearPageCompound(p);
1da177e4
LT
259 }
260}
1da177e4 261
17cf4406
NP
262static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
263{
264 int i;
265
725d704e 266 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
267 /*
268 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
269 * and __GFP_HIGHMEM from hard or soft interrupt context.
270 */
725d704e 271 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
272 for (i = 0; i < (1 << order); i++)
273 clear_highpage(page + i);
274}
275
1da177e4
LT
276/*
277 * function for dealing with page's order in buddy system.
278 * zone->lock is already acquired when we use these.
279 * So, we don't need atomic page->flags operations here.
280 */
6aa3001b
AM
281static inline unsigned long page_order(struct page *page)
282{
4c21e2f2 283 return page_private(page);
1da177e4
LT
284}
285
6aa3001b
AM
286static inline void set_page_order(struct page *page, int order)
287{
4c21e2f2 288 set_page_private(page, order);
676165a8 289 __SetPageBuddy(page);
1da177e4
LT
290}
291
292static inline void rmv_page_order(struct page *page)
293{
676165a8 294 __ClearPageBuddy(page);
4c21e2f2 295 set_page_private(page, 0);
1da177e4
LT
296}
297
298/*
299 * Locate the struct page for both the matching buddy in our
300 * pair (buddy1) and the combined O(n+1) page they form (page).
301 *
302 * 1) Any buddy B1 will have an order O twin B2 which satisfies
303 * the following equation:
304 * B2 = B1 ^ (1 << O)
305 * For example, if the starting buddy (buddy2) is #8 its order
306 * 1 buddy is #10:
307 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
308 *
309 * 2) Any buddy B will have an order O+1 parent P which
310 * satisfies the following equation:
311 * P = B & ~(1 << O)
312 *
d6e05edc 313 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
314 */
315static inline struct page *
316__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
317{
318 unsigned long buddy_idx = page_idx ^ (1 << order);
319
320 return page + (buddy_idx - page_idx);
321}
322
323static inline unsigned long
324__find_combined_index(unsigned long page_idx, unsigned int order)
325{
326 return (page_idx & ~(1 << order));
327}
328
329/*
330 * This function checks whether a page is free && is the buddy
331 * we can do coalesce a page and its buddy if
13e7444b 332 * (a) the buddy is not in a hole &&
676165a8 333 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
334 * (c) a page and its buddy have the same order &&
335 * (d) a page and its buddy are in the same zone.
676165a8
NP
336 *
337 * For recording whether a page is in the buddy system, we use PG_buddy.
338 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 339 *
676165a8 340 * For recording page's order, we use page_private(page).
1da177e4 341 */
cb2b95e1
AW
342static inline int page_is_buddy(struct page *page, struct page *buddy,
343 int order)
1da177e4 344{
13e7444b 345#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 346 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
347 return 0;
348#endif
349
cb2b95e1
AW
350 if (page_zone_id(page) != page_zone_id(buddy))
351 return 0;
352
353 if (PageBuddy(buddy) && page_order(buddy) == order) {
354 BUG_ON(page_count(buddy) != 0);
6aa3001b 355 return 1;
676165a8 356 }
6aa3001b 357 return 0;
1da177e4
LT
358}
359
360/*
361 * Freeing function for a buddy system allocator.
362 *
363 * The concept of a buddy system is to maintain direct-mapped table
364 * (containing bit values) for memory blocks of various "orders".
365 * The bottom level table contains the map for the smallest allocatable
366 * units of memory (here, pages), and each level above it describes
367 * pairs of units from the levels below, hence, "buddies".
368 * At a high level, all that happens here is marking the table entry
369 * at the bottom level available, and propagating the changes upward
370 * as necessary, plus some accounting needed to play nicely with other
371 * parts of the VM system.
372 * At each level, we keep a list of pages, which are heads of continuous
676165a8 373 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 374 * order is recorded in page_private(page) field.
1da177e4
LT
375 * So when we are allocating or freeing one, we can derive the state of the
376 * other. That is, if we allocate a small block, and both were
377 * free, the remainder of the region must be split into blocks.
378 * If a block is freed, and its buddy is also free, then this
379 * triggers coalescing into a block of larger size.
380 *
381 * -- wli
382 */
383
48db57f8 384static inline void __free_one_page(struct page *page,
1da177e4
LT
385 struct zone *zone, unsigned int order)
386{
387 unsigned long page_idx;
388 int order_size = 1 << order;
389
224abf92 390 if (unlikely(PageCompound(page)))
1da177e4
LT
391 destroy_compound_page(page, order);
392
393 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
394
725d704e
NP
395 VM_BUG_ON(page_idx & (order_size - 1));
396 VM_BUG_ON(bad_range(zone, page));
1da177e4 397
d23ad423 398 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
399 while (order < MAX_ORDER-1) {
400 unsigned long combined_idx;
401 struct free_area *area;
402 struct page *buddy;
403
1da177e4 404 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 405 if (!page_is_buddy(page, buddy, order))
1da177e4 406 break; /* Move the buddy up one level. */
13e7444b 407
1da177e4
LT
408 list_del(&buddy->lru);
409 area = zone->free_area + order;
410 area->nr_free--;
411 rmv_page_order(buddy);
13e7444b 412 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
413 page = page + (combined_idx - page_idx);
414 page_idx = combined_idx;
415 order++;
416 }
417 set_page_order(page, order);
418 list_add(&page->lru, &zone->free_area[order].free_list);
419 zone->free_area[order].nr_free++;
420}
421
224abf92 422static inline int free_pages_check(struct page *page)
1da177e4 423{
92be2e33
NP
424 if (unlikely(page_mapcount(page) |
425 (page->mapping != NULL) |
426 (page_count(page) != 0) |
1da177e4
LT
427 (page->flags & (
428 1 << PG_lru |
429 1 << PG_private |
430 1 << PG_locked |
431 1 << PG_active |
432 1 << PG_reclaim |
433 1 << PG_slab |
434 1 << PG_swapcache |
b5810039 435 1 << PG_writeback |
676165a8
NP
436 1 << PG_reserved |
437 1 << PG_buddy ))))
224abf92 438 bad_page(page);
1da177e4 439 if (PageDirty(page))
242e5468 440 __ClearPageDirty(page);
689bcebf
HD
441 /*
442 * For now, we report if PG_reserved was found set, but do not
443 * clear it, and do not free the page. But we shall soon need
444 * to do more, for when the ZERO_PAGE count wraps negative.
445 */
446 return PageReserved(page);
1da177e4
LT
447}
448
449/*
450 * Frees a list of pages.
451 * Assumes all pages on list are in same zone, and of same order.
207f36ee 452 * count is the number of pages to free.
1da177e4
LT
453 *
454 * If the zone was previously in an "all pages pinned" state then look to
455 * see if this freeing clears that state.
456 *
457 * And clear the zone's pages_scanned counter, to hold off the "all pages are
458 * pinned" detection logic.
459 */
48db57f8
NP
460static void free_pages_bulk(struct zone *zone, int count,
461 struct list_head *list, int order)
1da177e4 462{
c54ad30c 463 spin_lock(&zone->lock);
1da177e4
LT
464 zone->all_unreclaimable = 0;
465 zone->pages_scanned = 0;
48db57f8
NP
466 while (count--) {
467 struct page *page;
468
725d704e 469 VM_BUG_ON(list_empty(list));
1da177e4 470 page = list_entry(list->prev, struct page, lru);
48db57f8 471 /* have to delete it as __free_one_page list manipulates */
1da177e4 472 list_del(&page->lru);
48db57f8 473 __free_one_page(page, zone, order);
1da177e4 474 }
c54ad30c 475 spin_unlock(&zone->lock);
1da177e4
LT
476}
477
48db57f8 478static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 479{
006d22d9
CL
480 spin_lock(&zone->lock);
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
0798e519 483 __free_one_page(page, zone, order);
006d22d9 484 spin_unlock(&zone->lock);
48db57f8
NP
485}
486
487static void __free_pages_ok(struct page *page, unsigned int order)
488{
489 unsigned long flags;
1da177e4 490 int i;
689bcebf 491 int reserved = 0;
1da177e4 492
1da177e4 493 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 494 reserved += free_pages_check(page + i);
689bcebf
HD
495 if (reserved)
496 return;
497
9858db50
NP
498 if (!PageHighMem(page))
499 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 500 arch_free_page(page, order);
48db57f8 501 kernel_map_pages(page, 1 << order, 0);
dafb1367 502
c54ad30c 503 local_irq_save(flags);
f8891e5e 504 __count_vm_events(PGFREE, 1 << order);
48db57f8 505 free_one_page(page_zone(page), page, order);
c54ad30c 506 local_irq_restore(flags);
1da177e4
LT
507}
508
a226f6c8
DH
509/*
510 * permit the bootmem allocator to evade page validation on high-order frees
511 */
512void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
513{
514 if (order == 0) {
515 __ClearPageReserved(page);
516 set_page_count(page, 0);
7835e98b 517 set_page_refcounted(page);
545b1ea9 518 __free_page(page);
a226f6c8 519 } else {
a226f6c8
DH
520 int loop;
521
545b1ea9 522 prefetchw(page);
a226f6c8
DH
523 for (loop = 0; loop < BITS_PER_LONG; loop++) {
524 struct page *p = &page[loop];
525
545b1ea9
NP
526 if (loop + 1 < BITS_PER_LONG)
527 prefetchw(p + 1);
a226f6c8
DH
528 __ClearPageReserved(p);
529 set_page_count(p, 0);
530 }
531
7835e98b 532 set_page_refcounted(page);
545b1ea9 533 __free_pages(page, order);
a226f6c8
DH
534 }
535}
536
1da177e4
LT
537
538/*
539 * The order of subdivision here is critical for the IO subsystem.
540 * Please do not alter this order without good reasons and regression
541 * testing. Specifically, as large blocks of memory are subdivided,
542 * the order in which smaller blocks are delivered depends on the order
543 * they're subdivided in this function. This is the primary factor
544 * influencing the order in which pages are delivered to the IO
545 * subsystem according to empirical testing, and this is also justified
546 * by considering the behavior of a buddy system containing a single
547 * large block of memory acted on by a series of small allocations.
548 * This behavior is a critical factor in sglist merging's success.
549 *
550 * -- wli
551 */
085cc7d5 552static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
553 int low, int high, struct free_area *area)
554{
555 unsigned long size = 1 << high;
556
557 while (high > low) {
558 area--;
559 high--;
560 size >>= 1;
725d704e 561 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
562 list_add(&page[size].lru, &area->free_list);
563 area->nr_free++;
564 set_page_order(&page[size], high);
565 }
1da177e4
LT
566}
567
1da177e4
LT
568/*
569 * This page is about to be returned from the page allocator
570 */
17cf4406 571static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 572{
92be2e33
NP
573 if (unlikely(page_mapcount(page) |
574 (page->mapping != NULL) |
575 (page_count(page) != 0) |
334795ec
HD
576 (page->flags & (
577 1 << PG_lru |
1da177e4
LT
578 1 << PG_private |
579 1 << PG_locked |
1da177e4
LT
580 1 << PG_active |
581 1 << PG_dirty |
582 1 << PG_reclaim |
334795ec 583 1 << PG_slab |
1da177e4 584 1 << PG_swapcache |
b5810039 585 1 << PG_writeback |
676165a8
NP
586 1 << PG_reserved |
587 1 << PG_buddy ))))
224abf92 588 bad_page(page);
1da177e4 589
689bcebf
HD
590 /*
591 * For now, we report if PG_reserved was found set, but do not
592 * clear it, and do not allocate the page: as a safety net.
593 */
594 if (PageReserved(page))
595 return 1;
596
1da177e4
LT
597 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
598 1 << PG_referenced | 1 << PG_arch_1 |
599 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 600 set_page_private(page, 0);
7835e98b 601 set_page_refcounted(page);
cc102509
NP
602
603 arch_alloc_page(page, order);
1da177e4 604 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
605
606 if (gfp_flags & __GFP_ZERO)
607 prep_zero_page(page, order, gfp_flags);
608
609 if (order && (gfp_flags & __GFP_COMP))
610 prep_compound_page(page, order);
611
689bcebf 612 return 0;
1da177e4
LT
613}
614
615/*
616 * Do the hard work of removing an element from the buddy allocator.
617 * Call me with the zone->lock already held.
618 */
619static struct page *__rmqueue(struct zone *zone, unsigned int order)
620{
621 struct free_area * area;
622 unsigned int current_order;
623 struct page *page;
624
625 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
626 area = zone->free_area + current_order;
627 if (list_empty(&area->free_list))
628 continue;
629
630 page = list_entry(area->free_list.next, struct page, lru);
631 list_del(&page->lru);
632 rmv_page_order(page);
633 area->nr_free--;
d23ad423 634 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
085cc7d5
NP
635 expand(zone, page, order, current_order, area);
636 return page;
1da177e4
LT
637 }
638
639 return NULL;
640}
641
642/*
643 * Obtain a specified number of elements from the buddy allocator, all under
644 * a single hold of the lock, for efficiency. Add them to the supplied list.
645 * Returns the number of new pages which were placed at *list.
646 */
647static int rmqueue_bulk(struct zone *zone, unsigned int order,
648 unsigned long count, struct list_head *list)
649{
1da177e4 650 int i;
1da177e4 651
c54ad30c 652 spin_lock(&zone->lock);
1da177e4 653 for (i = 0; i < count; ++i) {
085cc7d5
NP
654 struct page *page = __rmqueue(zone, order);
655 if (unlikely(page == NULL))
1da177e4 656 break;
1da177e4
LT
657 list_add_tail(&page->lru, list);
658 }
c54ad30c 659 spin_unlock(&zone->lock);
085cc7d5 660 return i;
1da177e4
LT
661}
662
4ae7c039 663#ifdef CONFIG_NUMA
8fce4d8e
CL
664/*
665 * Called from the slab reaper to drain pagesets on a particular node that
39bbcb8f 666 * belongs to the currently executing processor.
879336c3
CL
667 * Note that this function must be called with the thread pinned to
668 * a single processor.
8fce4d8e
CL
669 */
670void drain_node_pages(int nodeid)
4ae7c039 671{
2f6726e5
CL
672 int i;
673 enum zone_type z;
4ae7c039
CL
674 unsigned long flags;
675
8fce4d8e
CL
676 for (z = 0; z < MAX_NR_ZONES; z++) {
677 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
678 struct per_cpu_pageset *pset;
679
39bbcb8f
CL
680 if (!populated_zone(zone))
681 continue;
682
23316bc8 683 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
684 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
685 struct per_cpu_pages *pcp;
686
687 pcp = &pset->pcp[i];
879336c3 688 if (pcp->count) {
bc4ba393
CL
689 int to_drain;
690
879336c3 691 local_irq_save(flags);
bc4ba393
CL
692 if (pcp->count >= pcp->batch)
693 to_drain = pcp->batch;
694 else
695 to_drain = pcp->count;
696 free_pages_bulk(zone, to_drain, &pcp->list, 0);
697 pcp->count -= to_drain;
879336c3
CL
698 local_irq_restore(flags);
699 }
4ae7c039
CL
700 }
701 }
4ae7c039
CL
702}
703#endif
704
1da177e4
LT
705static void __drain_pages(unsigned int cpu)
706{
c54ad30c 707 unsigned long flags;
1da177e4
LT
708 struct zone *zone;
709 int i;
710
711 for_each_zone(zone) {
712 struct per_cpu_pageset *pset;
713
f2e12bb2
CL
714 if (!populated_zone(zone))
715 continue;
716
e7c8d5c9 717 pset = zone_pcp(zone, cpu);
1da177e4
LT
718 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
719 struct per_cpu_pages *pcp;
720
721 pcp = &pset->pcp[i];
c54ad30c 722 local_irq_save(flags);
48db57f8
NP
723 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
724 pcp->count = 0;
c54ad30c 725 local_irq_restore(flags);
1da177e4
LT
726 }
727 }
728}
1da177e4
LT
729
730#ifdef CONFIG_PM
731
732void mark_free_pages(struct zone *zone)
733{
f623f0db
RW
734 unsigned long pfn, max_zone_pfn;
735 unsigned long flags;
1da177e4
LT
736 int order;
737 struct list_head *curr;
738
739 if (!zone->spanned_pages)
740 return;
741
742 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
743
744 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
745 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
746 if (pfn_valid(pfn)) {
747 struct page *page = pfn_to_page(pfn);
748
749 if (!PageNosave(page))
750 ClearPageNosaveFree(page);
751 }
1da177e4
LT
752
753 for (order = MAX_ORDER - 1; order >= 0; --order)
754 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 755 unsigned long i;
1da177e4 756
f623f0db
RW
757 pfn = page_to_pfn(list_entry(curr, struct page, lru));
758 for (i = 0; i < (1UL << order); i++)
759 SetPageNosaveFree(pfn_to_page(pfn + i));
760 }
1da177e4 761
1da177e4
LT
762 spin_unlock_irqrestore(&zone->lock, flags);
763}
764
765/*
766 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
767 */
768void drain_local_pages(void)
769{
770 unsigned long flags;
771
772 local_irq_save(flags);
773 __drain_pages(smp_processor_id());
774 local_irq_restore(flags);
775}
776#endif /* CONFIG_PM */
777
1da177e4
LT
778/*
779 * Free a 0-order page
780 */
1da177e4
LT
781static void fastcall free_hot_cold_page(struct page *page, int cold)
782{
783 struct zone *zone = page_zone(page);
784 struct per_cpu_pages *pcp;
785 unsigned long flags;
786
1da177e4
LT
787 if (PageAnon(page))
788 page->mapping = NULL;
224abf92 789 if (free_pages_check(page))
689bcebf
HD
790 return;
791
9858db50
NP
792 if (!PageHighMem(page))
793 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 794 arch_free_page(page, 0);
689bcebf
HD
795 kernel_map_pages(page, 1, 0);
796
e7c8d5c9 797 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 798 local_irq_save(flags);
f8891e5e 799 __count_vm_event(PGFREE);
1da177e4
LT
800 list_add(&page->lru, &pcp->list);
801 pcp->count++;
48db57f8
NP
802 if (pcp->count >= pcp->high) {
803 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
804 pcp->count -= pcp->batch;
805 }
1da177e4
LT
806 local_irq_restore(flags);
807 put_cpu();
808}
809
810void fastcall free_hot_page(struct page *page)
811{
812 free_hot_cold_page(page, 0);
813}
814
815void fastcall free_cold_page(struct page *page)
816{
817 free_hot_cold_page(page, 1);
818}
819
8dfcc9ba
NP
820/*
821 * split_page takes a non-compound higher-order page, and splits it into
822 * n (1<<order) sub-pages: page[0..n]
823 * Each sub-page must be freed individually.
824 *
825 * Note: this is probably too low level an operation for use in drivers.
826 * Please consult with lkml before using this in your driver.
827 */
828void split_page(struct page *page, unsigned int order)
829{
830 int i;
831
725d704e
NP
832 VM_BUG_ON(PageCompound(page));
833 VM_BUG_ON(!page_count(page));
7835e98b
NP
834 for (i = 1; i < (1 << order); i++)
835 set_page_refcounted(page + i);
8dfcc9ba 836}
8dfcc9ba 837
1da177e4
LT
838/*
839 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
840 * we cheat by calling it from here, in the order > 0 path. Saves a branch
841 * or two.
842 */
a74609fa
NP
843static struct page *buffered_rmqueue(struct zonelist *zonelist,
844 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
845{
846 unsigned long flags;
689bcebf 847 struct page *page;
1da177e4 848 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 849 int cpu;
1da177e4 850
689bcebf 851again:
a74609fa 852 cpu = get_cpu();
48db57f8 853 if (likely(order == 0)) {
1da177e4
LT
854 struct per_cpu_pages *pcp;
855
a74609fa 856 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 857 local_irq_save(flags);
a74609fa 858 if (!pcp->count) {
941c7105 859 pcp->count = rmqueue_bulk(zone, 0,
1da177e4 860 pcp->batch, &pcp->list);
a74609fa
NP
861 if (unlikely(!pcp->count))
862 goto failed;
1da177e4 863 }
a74609fa
NP
864 page = list_entry(pcp->list.next, struct page, lru);
865 list_del(&page->lru);
866 pcp->count--;
7fb1d9fc 867 } else {
1da177e4
LT
868 spin_lock_irqsave(&zone->lock, flags);
869 page = __rmqueue(zone, order);
a74609fa
NP
870 spin_unlock(&zone->lock);
871 if (!page)
872 goto failed;
1da177e4
LT
873 }
874
f8891e5e 875 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 876 zone_statistics(zonelist, zone);
a74609fa
NP
877 local_irq_restore(flags);
878 put_cpu();
1da177e4 879
725d704e 880 VM_BUG_ON(bad_range(zone, page));
17cf4406 881 if (prep_new_page(page, order, gfp_flags))
a74609fa 882 goto again;
1da177e4 883 return page;
a74609fa
NP
884
885failed:
886 local_irq_restore(flags);
887 put_cpu();
888 return NULL;
1da177e4
LT
889}
890
7fb1d9fc 891#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
892#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
893#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
894#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
895#define ALLOC_HARDER 0x10 /* try to alloc harder */
896#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
897#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 898
933e312e
AM
899#ifdef CONFIG_FAIL_PAGE_ALLOC
900
901static struct fail_page_alloc_attr {
902 struct fault_attr attr;
903
904 u32 ignore_gfp_highmem;
905 u32 ignore_gfp_wait;
906
907#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908
909 struct dentry *ignore_gfp_highmem_file;
910 struct dentry *ignore_gfp_wait_file;
911
912#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
913
914} fail_page_alloc = {
915 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
916 .ignore_gfp_wait = 1,
917 .ignore_gfp_highmem = 1,
933e312e
AM
918};
919
920static int __init setup_fail_page_alloc(char *str)
921{
922 return setup_fault_attr(&fail_page_alloc.attr, str);
923}
924__setup("fail_page_alloc=", setup_fail_page_alloc);
925
926static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
927{
928 if (gfp_mask & __GFP_NOFAIL)
929 return 0;
930 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
931 return 0;
932 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
933 return 0;
934
935 return should_fail(&fail_page_alloc.attr, 1 << order);
936}
937
938#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
939
940static int __init fail_page_alloc_debugfs(void)
941{
942 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
943 struct dentry *dir;
944 int err;
945
946 err = init_fault_attr_dentries(&fail_page_alloc.attr,
947 "fail_page_alloc");
948 if (err)
949 return err;
950 dir = fail_page_alloc.attr.dentries.dir;
951
952 fail_page_alloc.ignore_gfp_wait_file =
953 debugfs_create_bool("ignore-gfp-wait", mode, dir,
954 &fail_page_alloc.ignore_gfp_wait);
955
956 fail_page_alloc.ignore_gfp_highmem_file =
957 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
958 &fail_page_alloc.ignore_gfp_highmem);
959
960 if (!fail_page_alloc.ignore_gfp_wait_file ||
961 !fail_page_alloc.ignore_gfp_highmem_file) {
962 err = -ENOMEM;
963 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
964 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
965 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
966 }
967
968 return err;
969}
970
971late_initcall(fail_page_alloc_debugfs);
972
973#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
974
975#else /* CONFIG_FAIL_PAGE_ALLOC */
976
977static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
978{
979 return 0;
980}
981
982#endif /* CONFIG_FAIL_PAGE_ALLOC */
983
1da177e4
LT
984/*
985 * Return 1 if free pages are above 'mark'. This takes into account the order
986 * of the allocation.
987 */
988int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 989 int classzone_idx, int alloc_flags)
1da177e4
LT
990{
991 /* free_pages my go negative - that's OK */
d23ad423
CL
992 long min = mark;
993 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
994 int o;
995
7fb1d9fc 996 if (alloc_flags & ALLOC_HIGH)
1da177e4 997 min -= min / 2;
7fb1d9fc 998 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
999 min -= min / 4;
1000
1001 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1002 return 0;
1003 for (o = 0; o < order; o++) {
1004 /* At the next order, this order's pages become unavailable */
1005 free_pages -= z->free_area[o].nr_free << o;
1006
1007 /* Require fewer higher order pages to be free */
1008 min >>= 1;
1009
1010 if (free_pages <= min)
1011 return 0;
1012 }
1013 return 1;
1014}
1015
9276b1bc
PJ
1016#ifdef CONFIG_NUMA
1017/*
1018 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1019 * skip over zones that are not allowed by the cpuset, or that have
1020 * been recently (in last second) found to be nearly full. See further
1021 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1022 * that have to skip over alot of full or unallowed zones.
1023 *
1024 * If the zonelist cache is present in the passed in zonelist, then
1025 * returns a pointer to the allowed node mask (either the current
1026 * tasks mems_allowed, or node_online_map.)
1027 *
1028 * If the zonelist cache is not available for this zonelist, does
1029 * nothing and returns NULL.
1030 *
1031 * If the fullzones BITMAP in the zonelist cache is stale (more than
1032 * a second since last zap'd) then we zap it out (clear its bits.)
1033 *
1034 * We hold off even calling zlc_setup, until after we've checked the
1035 * first zone in the zonelist, on the theory that most allocations will
1036 * be satisfied from that first zone, so best to examine that zone as
1037 * quickly as we can.
1038 */
1039static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1040{
1041 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1042 nodemask_t *allowednodes; /* zonelist_cache approximation */
1043
1044 zlc = zonelist->zlcache_ptr;
1045 if (!zlc)
1046 return NULL;
1047
1048 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1049 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1050 zlc->last_full_zap = jiffies;
1051 }
1052
1053 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1054 &cpuset_current_mems_allowed :
1055 &node_online_map;
1056 return allowednodes;
1057}
1058
1059/*
1060 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1061 * if it is worth looking at further for free memory:
1062 * 1) Check that the zone isn't thought to be full (doesn't have its
1063 * bit set in the zonelist_cache fullzones BITMAP).
1064 * 2) Check that the zones node (obtained from the zonelist_cache
1065 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1066 * Return true (non-zero) if zone is worth looking at further, or
1067 * else return false (zero) if it is not.
1068 *
1069 * This check -ignores- the distinction between various watermarks,
1070 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1071 * found to be full for any variation of these watermarks, it will
1072 * be considered full for up to one second by all requests, unless
1073 * we are so low on memory on all allowed nodes that we are forced
1074 * into the second scan of the zonelist.
1075 *
1076 * In the second scan we ignore this zonelist cache and exactly
1077 * apply the watermarks to all zones, even it is slower to do so.
1078 * We are low on memory in the second scan, and should leave no stone
1079 * unturned looking for a free page.
1080 */
1081static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1082 nodemask_t *allowednodes)
1083{
1084 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1085 int i; /* index of *z in zonelist zones */
1086 int n; /* node that zone *z is on */
1087
1088 zlc = zonelist->zlcache_ptr;
1089 if (!zlc)
1090 return 1;
1091
1092 i = z - zonelist->zones;
1093 n = zlc->z_to_n[i];
1094
1095 /* This zone is worth trying if it is allowed but not full */
1096 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1097}
1098
1099/*
1100 * Given 'z' scanning a zonelist, set the corresponding bit in
1101 * zlc->fullzones, so that subsequent attempts to allocate a page
1102 * from that zone don't waste time re-examining it.
1103 */
1104static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1105{
1106 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1107 int i; /* index of *z in zonelist zones */
1108
1109 zlc = zonelist->zlcache_ptr;
1110 if (!zlc)
1111 return;
1112
1113 i = z - zonelist->zones;
1114
1115 set_bit(i, zlc->fullzones);
1116}
1117
1118#else /* CONFIG_NUMA */
1119
1120static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1121{
1122 return NULL;
1123}
1124
1125static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1126 nodemask_t *allowednodes)
1127{
1128 return 1;
1129}
1130
1131static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1132{
1133}
1134#endif /* CONFIG_NUMA */
1135
7fb1d9fc 1136/*
0798e519 1137 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1138 * a page.
1139 */
1140static struct page *
1141get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1142 struct zonelist *zonelist, int alloc_flags)
753ee728 1143{
9276b1bc 1144 struct zone **z;
7fb1d9fc 1145 struct page *page = NULL;
9276b1bc 1146 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1147 struct zone *zone;
9276b1bc
PJ
1148 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1149 int zlc_active = 0; /* set if using zonelist_cache */
1150 int did_zlc_setup = 0; /* just call zlc_setup() one time */
7fb1d9fc 1151
9276b1bc 1152zonelist_scan:
7fb1d9fc 1153 /*
9276b1bc 1154 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1155 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1156 */
9276b1bc
PJ
1157 z = zonelist->zones;
1158
7fb1d9fc 1159 do {
9276b1bc
PJ
1160 if (NUMA_BUILD && zlc_active &&
1161 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1162 continue;
1192d526 1163 zone = *z;
08e0f6a9 1164 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1192d526 1165 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 1166 break;
7fb1d9fc 1167 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1168 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1169 goto try_next_zone;
7fb1d9fc
RS
1170
1171 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1172 unsigned long mark;
1173 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1174 mark = zone->pages_min;
3148890b 1175 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1176 mark = zone->pages_low;
3148890b 1177 else
1192d526 1178 mark = zone->pages_high;
0798e519
PJ
1179 if (!zone_watermark_ok(zone, order, mark,
1180 classzone_idx, alloc_flags)) {
9eeff239 1181 if (!zone_reclaim_mode ||
1192d526 1182 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1183 goto this_zone_full;
0798e519 1184 }
7fb1d9fc
RS
1185 }
1186
1192d526 1187 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1188 if (page)
7fb1d9fc 1189 break;
9276b1bc
PJ
1190this_zone_full:
1191 if (NUMA_BUILD)
1192 zlc_mark_zone_full(zonelist, z);
1193try_next_zone:
1194 if (NUMA_BUILD && !did_zlc_setup) {
1195 /* we do zlc_setup after the first zone is tried */
1196 allowednodes = zlc_setup(zonelist, alloc_flags);
1197 zlc_active = 1;
1198 did_zlc_setup = 1;
1199 }
7fb1d9fc 1200 } while (*(++z) != NULL);
9276b1bc
PJ
1201
1202 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1203 /* Disable zlc cache for second zonelist scan */
1204 zlc_active = 0;
1205 goto zonelist_scan;
1206 }
7fb1d9fc 1207 return page;
753ee728
MH
1208}
1209
1da177e4
LT
1210/*
1211 * This is the 'heart' of the zoned buddy allocator.
1212 */
1213struct page * fastcall
dd0fc66f 1214__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1215 struct zonelist *zonelist)
1216{
260b2367 1217 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1218 struct zone **z;
1da177e4
LT
1219 struct page *page;
1220 struct reclaim_state reclaim_state;
1221 struct task_struct *p = current;
1da177e4 1222 int do_retry;
7fb1d9fc 1223 int alloc_flags;
1da177e4
LT
1224 int did_some_progress;
1225
1226 might_sleep_if(wait);
1227
933e312e
AM
1228 if (should_fail_alloc_page(gfp_mask, order))
1229 return NULL;
1230
6b1de916 1231restart:
7fb1d9fc 1232 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1233
7fb1d9fc 1234 if (unlikely(*z == NULL)) {
1da177e4
LT
1235 /* Should this ever happen?? */
1236 return NULL;
1237 }
6b1de916 1238
7fb1d9fc 1239 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1240 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1241 if (page)
1242 goto got_pg;
1da177e4 1243
952f3b51
CL
1244 /*
1245 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1246 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1247 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1248 * using a larger set of nodes after it has established that the
1249 * allowed per node queues are empty and that nodes are
1250 * over allocated.
1251 */
1252 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1253 goto nopage;
1254
0798e519 1255 for (z = zonelist->zones; *z; z++)
43b0bc00 1256 wakeup_kswapd(*z, order);
1da177e4 1257
9bf2229f 1258 /*
7fb1d9fc
RS
1259 * OK, we're below the kswapd watermark and have kicked background
1260 * reclaim. Now things get more complex, so set up alloc_flags according
1261 * to how we want to proceed.
1262 *
1263 * The caller may dip into page reserves a bit more if the caller
1264 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1265 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1266 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1267 */
3148890b 1268 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1269 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1270 alloc_flags |= ALLOC_HARDER;
1271 if (gfp_mask & __GFP_HIGH)
1272 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1273 if (wait)
1274 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1275
1276 /*
1277 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1278 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1279 *
1280 * This is the last chance, in general, before the goto nopage.
1281 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1282 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1283 */
7fb1d9fc
RS
1284 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1285 if (page)
1286 goto got_pg;
1da177e4
LT
1287
1288 /* This allocation should allow future memory freeing. */
b84a35be 1289
b43a57bb 1290rebalance:
b84a35be
NP
1291 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1292 && !in_interrupt()) {
1293 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1294nofail_alloc:
b84a35be 1295 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1296 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1297 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1298 if (page)
1299 goto got_pg;
885036d3 1300 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1301 congestion_wait(WRITE, HZ/50);
885036d3
KK
1302 goto nofail_alloc;
1303 }
1da177e4
LT
1304 }
1305 goto nopage;
1306 }
1307
1308 /* Atomic allocations - we can't balance anything */
1309 if (!wait)
1310 goto nopage;
1311
1da177e4
LT
1312 cond_resched();
1313
1314 /* We now go into synchronous reclaim */
3e0d98b9 1315 cpuset_memory_pressure_bump();
1da177e4
LT
1316 p->flags |= PF_MEMALLOC;
1317 reclaim_state.reclaimed_slab = 0;
1318 p->reclaim_state = &reclaim_state;
1319
7fb1d9fc 1320 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1321
1322 p->reclaim_state = NULL;
1323 p->flags &= ~PF_MEMALLOC;
1324
1325 cond_resched();
1326
1327 if (likely(did_some_progress)) {
7fb1d9fc
RS
1328 page = get_page_from_freelist(gfp_mask, order,
1329 zonelist, alloc_flags);
1330 if (page)
1331 goto got_pg;
1da177e4
LT
1332 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1333 /*
1334 * Go through the zonelist yet one more time, keep
1335 * very high watermark here, this is only to catch
1336 * a parallel oom killing, we must fail if we're still
1337 * under heavy pressure.
1338 */
7fb1d9fc 1339 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1340 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1341 if (page)
1342 goto got_pg;
1da177e4 1343
9b0f8b04 1344 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1345 goto restart;
1346 }
1347
1348 /*
1349 * Don't let big-order allocations loop unless the caller explicitly
1350 * requests that. Wait for some write requests to complete then retry.
1351 *
1352 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1353 * <= 3, but that may not be true in other implementations.
1354 */
1355 do_retry = 0;
1356 if (!(gfp_mask & __GFP_NORETRY)) {
1357 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1358 do_retry = 1;
1359 if (gfp_mask & __GFP_NOFAIL)
1360 do_retry = 1;
1361 }
1362 if (do_retry) {
3fcfab16 1363 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1364 goto rebalance;
1365 }
1366
1367nopage:
1368 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1369 printk(KERN_WARNING "%s: page allocation failure."
1370 " order:%d, mode:0x%x\n",
1371 p->comm, order, gfp_mask);
1372 dump_stack();
578c2fd6 1373 show_mem();
1da177e4 1374 }
1da177e4 1375got_pg:
1da177e4
LT
1376 return page;
1377}
1378
1379EXPORT_SYMBOL(__alloc_pages);
1380
1381/*
1382 * Common helper functions.
1383 */
dd0fc66f 1384fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1385{
1386 struct page * page;
1387 page = alloc_pages(gfp_mask, order);
1388 if (!page)
1389 return 0;
1390 return (unsigned long) page_address(page);
1391}
1392
1393EXPORT_SYMBOL(__get_free_pages);
1394
dd0fc66f 1395fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1396{
1397 struct page * page;
1398
1399 /*
1400 * get_zeroed_page() returns a 32-bit address, which cannot represent
1401 * a highmem page
1402 */
725d704e 1403 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1404
1405 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1406 if (page)
1407 return (unsigned long) page_address(page);
1408 return 0;
1409}
1410
1411EXPORT_SYMBOL(get_zeroed_page);
1412
1413void __pagevec_free(struct pagevec *pvec)
1414{
1415 int i = pagevec_count(pvec);
1416
1417 while (--i >= 0)
1418 free_hot_cold_page(pvec->pages[i], pvec->cold);
1419}
1420
1421fastcall void __free_pages(struct page *page, unsigned int order)
1422{
b5810039 1423 if (put_page_testzero(page)) {
1da177e4
LT
1424 if (order == 0)
1425 free_hot_page(page);
1426 else
1427 __free_pages_ok(page, order);
1428 }
1429}
1430
1431EXPORT_SYMBOL(__free_pages);
1432
1433fastcall void free_pages(unsigned long addr, unsigned int order)
1434{
1435 if (addr != 0) {
725d704e 1436 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1437 __free_pages(virt_to_page((void *)addr), order);
1438 }
1439}
1440
1441EXPORT_SYMBOL(free_pages);
1442
1da177e4
LT
1443static unsigned int nr_free_zone_pages(int offset)
1444{
e310fd43
MB
1445 /* Just pick one node, since fallback list is circular */
1446 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1447 unsigned int sum = 0;
1448
e310fd43
MB
1449 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1450 struct zone **zonep = zonelist->zones;
1451 struct zone *zone;
1da177e4 1452
e310fd43
MB
1453 for (zone = *zonep++; zone; zone = *zonep++) {
1454 unsigned long size = zone->present_pages;
1455 unsigned long high = zone->pages_high;
1456 if (size > high)
1457 sum += size - high;
1da177e4
LT
1458 }
1459
1460 return sum;
1461}
1462
1463/*
1464 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1465 */
1466unsigned int nr_free_buffer_pages(void)
1467{
af4ca457 1468 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1469}
1470
1471/*
1472 * Amount of free RAM allocatable within all zones
1473 */
1474unsigned int nr_free_pagecache_pages(void)
1475{
af4ca457 1476 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1477}
08e0f6a9
CL
1478
1479static inline void show_node(struct zone *zone)
1da177e4 1480{
08e0f6a9 1481 if (NUMA_BUILD)
25ba77c1 1482 printk("Node %d ", zone_to_nid(zone));
1da177e4 1483}
1da177e4 1484
1da177e4
LT
1485void si_meminfo(struct sysinfo *val)
1486{
1487 val->totalram = totalram_pages;
1488 val->sharedram = 0;
d23ad423 1489 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1490 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1491 val->totalhigh = totalhigh_pages;
1492 val->freehigh = nr_free_highpages();
1da177e4
LT
1493 val->mem_unit = PAGE_SIZE;
1494}
1495
1496EXPORT_SYMBOL(si_meminfo);
1497
1498#ifdef CONFIG_NUMA
1499void si_meminfo_node(struct sysinfo *val, int nid)
1500{
1501 pg_data_t *pgdat = NODE_DATA(nid);
1502
1503 val->totalram = pgdat->node_present_pages;
d23ad423 1504 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1505#ifdef CONFIG_HIGHMEM
1da177e4 1506 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1507 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1508 NR_FREE_PAGES);
98d2b0eb
CL
1509#else
1510 val->totalhigh = 0;
1511 val->freehigh = 0;
1512#endif
1da177e4
LT
1513 val->mem_unit = PAGE_SIZE;
1514}
1515#endif
1516
1517#define K(x) ((x) << (PAGE_SHIFT-10))
1518
1519/*
1520 * Show free area list (used inside shift_scroll-lock stuff)
1521 * We also calculate the percentage fragmentation. We do this by counting the
1522 * memory on each free list with the exception of the first item on the list.
1523 */
1524void show_free_areas(void)
1525{
c7241913 1526 int cpu;
1da177e4
LT
1527 unsigned long active;
1528 unsigned long inactive;
1529 unsigned long free;
1530 struct zone *zone;
1531
1532 for_each_zone(zone) {
c7241913 1533 if (!populated_zone(zone))
1da177e4 1534 continue;
c7241913
JS
1535
1536 show_node(zone);
1537 printk("%s per-cpu:\n", zone->name);
1da177e4 1538
6b482c67 1539 for_each_online_cpu(cpu) {
1da177e4
LT
1540 struct per_cpu_pageset *pageset;
1541
e7c8d5c9 1542 pageset = zone_pcp(zone, cpu);
1da177e4 1543
c7241913
JS
1544 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1545 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1546 cpu, pageset->pcp[0].high,
1547 pageset->pcp[0].batch, pageset->pcp[0].count,
1548 pageset->pcp[1].high, pageset->pcp[1].batch,
1549 pageset->pcp[1].count);
1da177e4
LT
1550 }
1551 }
1552
1da177e4
LT
1553 get_zone_counts(&active, &inactive, &free);
1554
a25700a5 1555 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1556 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1da177e4
LT
1557 active,
1558 inactive,
b1e7a8fd 1559 global_page_state(NR_FILE_DIRTY),
ce866b34 1560 global_page_state(NR_WRITEBACK),
fd39fc85 1561 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1562 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1563 global_page_state(NR_SLAB_RECLAIMABLE) +
1564 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1565 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1566 global_page_state(NR_PAGETABLE),
1567 global_page_state(NR_BOUNCE));
1da177e4
LT
1568
1569 for_each_zone(zone) {
1570 int i;
1571
c7241913
JS
1572 if (!populated_zone(zone))
1573 continue;
1574
1da177e4
LT
1575 show_node(zone);
1576 printk("%s"
1577 " free:%lukB"
1578 " min:%lukB"
1579 " low:%lukB"
1580 " high:%lukB"
1581 " active:%lukB"
1582 " inactive:%lukB"
1583 " present:%lukB"
1584 " pages_scanned:%lu"
1585 " all_unreclaimable? %s"
1586 "\n",
1587 zone->name,
d23ad423 1588 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1589 K(zone->pages_min),
1590 K(zone->pages_low),
1591 K(zone->pages_high),
c8785385
CL
1592 K(zone_page_state(zone, NR_ACTIVE)),
1593 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1594 K(zone->present_pages),
1595 zone->pages_scanned,
1596 (zone->all_unreclaimable ? "yes" : "no")
1597 );
1598 printk("lowmem_reserve[]:");
1599 for (i = 0; i < MAX_NR_ZONES; i++)
1600 printk(" %lu", zone->lowmem_reserve[i]);
1601 printk("\n");
1602 }
1603
1604 for_each_zone(zone) {
8f9de51a 1605 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1606
c7241913
JS
1607 if (!populated_zone(zone))
1608 continue;
1609
1da177e4
LT
1610 show_node(zone);
1611 printk("%s: ", zone->name);
1da177e4
LT
1612
1613 spin_lock_irqsave(&zone->lock, flags);
1614 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1615 nr[order] = zone->free_area[order].nr_free;
1616 total += nr[order] << order;
1da177e4
LT
1617 }
1618 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1619 for (order = 0; order < MAX_ORDER; order++)
1620 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1621 printk("= %lukB\n", K(total));
1622 }
1623
1624 show_swap_cache_info();
1625}
1626
1627/*
1628 * Builds allocation fallback zone lists.
1a93205b
CL
1629 *
1630 * Add all populated zones of a node to the zonelist.
1da177e4 1631 */
86356ab1 1632static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1633 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1634{
1a93205b
CL
1635 struct zone *zone;
1636
98d2b0eb 1637 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1638 zone_type++;
02a68a5e
CL
1639
1640 do {
2f6726e5 1641 zone_type--;
070f8032 1642 zone = pgdat->node_zones + zone_type;
1a93205b 1643 if (populated_zone(zone)) {
070f8032
CL
1644 zonelist->zones[nr_zones++] = zone;
1645 check_highest_zone(zone_type);
1da177e4 1646 }
02a68a5e 1647
2f6726e5 1648 } while (zone_type);
070f8032 1649 return nr_zones;
1da177e4
LT
1650}
1651
1652#ifdef CONFIG_NUMA
1653#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1654static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1655/**
4dc3b16b 1656 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1657 * @node: node whose fallback list we're appending
1658 * @used_node_mask: nodemask_t of already used nodes
1659 *
1660 * We use a number of factors to determine which is the next node that should
1661 * appear on a given node's fallback list. The node should not have appeared
1662 * already in @node's fallback list, and it should be the next closest node
1663 * according to the distance array (which contains arbitrary distance values
1664 * from each node to each node in the system), and should also prefer nodes
1665 * with no CPUs, since presumably they'll have very little allocation pressure
1666 * on them otherwise.
1667 * It returns -1 if no node is found.
1668 */
86356ab1 1669static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1670{
4cf808eb 1671 int n, val;
1da177e4
LT
1672 int min_val = INT_MAX;
1673 int best_node = -1;
1674
4cf808eb
LT
1675 /* Use the local node if we haven't already */
1676 if (!node_isset(node, *used_node_mask)) {
1677 node_set(node, *used_node_mask);
1678 return node;
1679 }
1da177e4 1680
4cf808eb
LT
1681 for_each_online_node(n) {
1682 cpumask_t tmp;
1da177e4
LT
1683
1684 /* Don't want a node to appear more than once */
1685 if (node_isset(n, *used_node_mask))
1686 continue;
1687
1da177e4
LT
1688 /* Use the distance array to find the distance */
1689 val = node_distance(node, n);
1690
4cf808eb
LT
1691 /* Penalize nodes under us ("prefer the next node") */
1692 val += (n < node);
1693
1da177e4
LT
1694 /* Give preference to headless and unused nodes */
1695 tmp = node_to_cpumask(n);
1696 if (!cpus_empty(tmp))
1697 val += PENALTY_FOR_NODE_WITH_CPUS;
1698
1699 /* Slight preference for less loaded node */
1700 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1701 val += node_load[n];
1702
1703 if (val < min_val) {
1704 min_val = val;
1705 best_node = n;
1706 }
1707 }
1708
1709 if (best_node >= 0)
1710 node_set(best_node, *used_node_mask);
1711
1712 return best_node;
1713}
1714
86356ab1 1715static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1716{
19655d34
CL
1717 int j, node, local_node;
1718 enum zone_type i;
1da177e4
LT
1719 int prev_node, load;
1720 struct zonelist *zonelist;
1721 nodemask_t used_mask;
1722
1723 /* initialize zonelists */
19655d34 1724 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1725 zonelist = pgdat->node_zonelists + i;
1726 zonelist->zones[0] = NULL;
1727 }
1728
1729 /* NUMA-aware ordering of nodes */
1730 local_node = pgdat->node_id;
1731 load = num_online_nodes();
1732 prev_node = local_node;
1733 nodes_clear(used_mask);
1734 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1735 int distance = node_distance(local_node, node);
1736
1737 /*
1738 * If another node is sufficiently far away then it is better
1739 * to reclaim pages in a zone before going off node.
1740 */
1741 if (distance > RECLAIM_DISTANCE)
1742 zone_reclaim_mode = 1;
1743
1da177e4
LT
1744 /*
1745 * We don't want to pressure a particular node.
1746 * So adding penalty to the first node in same
1747 * distance group to make it round-robin.
1748 */
9eeff239
CL
1749
1750 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1751 node_load[node] += load;
1752 prev_node = node;
1753 load--;
19655d34 1754 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1755 zonelist = pgdat->node_zonelists + i;
1756 for (j = 0; zonelist->zones[j] != NULL; j++);
1757
19655d34 1758 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1759 zonelist->zones[j] = NULL;
1760 }
1761 }
1762}
1763
9276b1bc
PJ
1764/* Construct the zonelist performance cache - see further mmzone.h */
1765static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1766{
1767 int i;
1768
1769 for (i = 0; i < MAX_NR_ZONES; i++) {
1770 struct zonelist *zonelist;
1771 struct zonelist_cache *zlc;
1772 struct zone **z;
1773
1774 zonelist = pgdat->node_zonelists + i;
1775 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1776 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1777 for (z = zonelist->zones; *z; z++)
1778 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1779 }
1780}
1781
1da177e4
LT
1782#else /* CONFIG_NUMA */
1783
86356ab1 1784static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1785{
19655d34
CL
1786 int node, local_node;
1787 enum zone_type i,j;
1da177e4
LT
1788
1789 local_node = pgdat->node_id;
19655d34 1790 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1791 struct zonelist *zonelist;
1792
1793 zonelist = pgdat->node_zonelists + i;
1794
19655d34 1795 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1796 /*
1797 * Now we build the zonelist so that it contains the zones
1798 * of all the other nodes.
1799 * We don't want to pressure a particular node, so when
1800 * building the zones for node N, we make sure that the
1801 * zones coming right after the local ones are those from
1802 * node N+1 (modulo N)
1803 */
1804 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1805 if (!node_online(node))
1806 continue;
19655d34 1807 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1808 }
1809 for (node = 0; node < local_node; node++) {
1810 if (!node_online(node))
1811 continue;
19655d34 1812 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1813 }
1814
1815 zonelist->zones[j] = NULL;
1816 }
1817}
1818
9276b1bc
PJ
1819/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1820static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1821{
1822 int i;
1823
1824 for (i = 0; i < MAX_NR_ZONES; i++)
1825 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1826}
1827
1da177e4
LT
1828#endif /* CONFIG_NUMA */
1829
6811378e
YG
1830/* return values int ....just for stop_machine_run() */
1831static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1832{
6811378e 1833 int nid;
9276b1bc
PJ
1834
1835 for_each_online_node(nid) {
6811378e 1836 build_zonelists(NODE_DATA(nid));
9276b1bc
PJ
1837 build_zonelist_cache(NODE_DATA(nid));
1838 }
6811378e
YG
1839 return 0;
1840}
1841
1842void __meminit build_all_zonelists(void)
1843{
1844 if (system_state == SYSTEM_BOOTING) {
423b41d7 1845 __build_all_zonelists(NULL);
6811378e
YG
1846 cpuset_init_current_mems_allowed();
1847 } else {
1848 /* we have to stop all cpus to guaranntee there is no user
1849 of zonelist */
1850 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1851 /* cpuset refresh routine should be here */
1852 }
bd1e22b8
AM
1853 vm_total_pages = nr_free_pagecache_pages();
1854 printk("Built %i zonelists. Total pages: %ld\n",
1855 num_online_nodes(), vm_total_pages);
1da177e4
LT
1856}
1857
1858/*
1859 * Helper functions to size the waitqueue hash table.
1860 * Essentially these want to choose hash table sizes sufficiently
1861 * large so that collisions trying to wait on pages are rare.
1862 * But in fact, the number of active page waitqueues on typical
1863 * systems is ridiculously low, less than 200. So this is even
1864 * conservative, even though it seems large.
1865 *
1866 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1867 * waitqueues, i.e. the size of the waitq table given the number of pages.
1868 */
1869#define PAGES_PER_WAITQUEUE 256
1870
cca448fe 1871#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1872static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1873{
1874 unsigned long size = 1;
1875
1876 pages /= PAGES_PER_WAITQUEUE;
1877
1878 while (size < pages)
1879 size <<= 1;
1880
1881 /*
1882 * Once we have dozens or even hundreds of threads sleeping
1883 * on IO we've got bigger problems than wait queue collision.
1884 * Limit the size of the wait table to a reasonable size.
1885 */
1886 size = min(size, 4096UL);
1887
1888 return max(size, 4UL);
1889}
cca448fe
YG
1890#else
1891/*
1892 * A zone's size might be changed by hot-add, so it is not possible to determine
1893 * a suitable size for its wait_table. So we use the maximum size now.
1894 *
1895 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1896 *
1897 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1898 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1899 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1900 *
1901 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1902 * or more by the traditional way. (See above). It equals:
1903 *
1904 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1905 * ia64(16K page size) : = ( 8G + 4M)byte.
1906 * powerpc (64K page size) : = (32G +16M)byte.
1907 */
1908static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1909{
1910 return 4096UL;
1911}
1912#endif
1da177e4
LT
1913
1914/*
1915 * This is an integer logarithm so that shifts can be used later
1916 * to extract the more random high bits from the multiplicative
1917 * hash function before the remainder is taken.
1918 */
1919static inline unsigned long wait_table_bits(unsigned long size)
1920{
1921 return ffz(~size);
1922}
1923
1924#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1925
1da177e4
LT
1926/*
1927 * Initially all pages are reserved - free ones are freed
1928 * up by free_all_bootmem() once the early boot process is
1929 * done. Non-atomic initialization, single-pass.
1930 */
c09b4240 1931void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 1932 unsigned long start_pfn, enum memmap_context context)
1da177e4 1933{
1da177e4 1934 struct page *page;
29751f69
AW
1935 unsigned long end_pfn = start_pfn + size;
1936 unsigned long pfn;
1da177e4 1937
cbe8dd4a 1938 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
1939 /*
1940 * There can be holes in boot-time mem_map[]s
1941 * handed to this function. They do not
1942 * exist on hotplugged memory.
1943 */
1944 if (context == MEMMAP_EARLY) {
1945 if (!early_pfn_valid(pfn))
1946 continue;
1947 if (!early_pfn_in_nid(pfn, nid))
1948 continue;
1949 }
d41dee36
AW
1950 page = pfn_to_page(pfn);
1951 set_page_links(page, zone, nid, pfn);
7835e98b 1952 init_page_count(page);
1da177e4
LT
1953 reset_page_mapcount(page);
1954 SetPageReserved(page);
1955 INIT_LIST_HEAD(&page->lru);
1956#ifdef WANT_PAGE_VIRTUAL
1957 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1958 if (!is_highmem_idx(zone))
3212c6be 1959 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1960#endif
1da177e4
LT
1961 }
1962}
1963
1964void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1965 unsigned long size)
1966{
1967 int order;
1968 for (order = 0; order < MAX_ORDER ; order++) {
1969 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1970 zone->free_area[order].nr_free = 0;
1971 }
1972}
1973
1974#ifndef __HAVE_ARCH_MEMMAP_INIT
1975#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 1976 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
1977#endif
1978
6292d9aa 1979static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1980{
1981 int batch;
1982
1983 /*
1984 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1985 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1986 *
1987 * OK, so we don't know how big the cache is. So guess.
1988 */
1989 batch = zone->present_pages / 1024;
ba56e91c
SR
1990 if (batch * PAGE_SIZE > 512 * 1024)
1991 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1992 batch /= 4; /* We effectively *= 4 below */
1993 if (batch < 1)
1994 batch = 1;
1995
1996 /*
0ceaacc9
NP
1997 * Clamp the batch to a 2^n - 1 value. Having a power
1998 * of 2 value was found to be more likely to have
1999 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2000 *
0ceaacc9
NP
2001 * For example if 2 tasks are alternately allocating
2002 * batches of pages, one task can end up with a lot
2003 * of pages of one half of the possible page colors
2004 * and the other with pages of the other colors.
e7c8d5c9 2005 */
0ceaacc9 2006 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2007
e7c8d5c9
CL
2008 return batch;
2009}
2010
2caaad41
CL
2011inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2012{
2013 struct per_cpu_pages *pcp;
2014
1c6fe946
MD
2015 memset(p, 0, sizeof(*p));
2016
2caaad41
CL
2017 pcp = &p->pcp[0]; /* hot */
2018 pcp->count = 0;
2caaad41
CL
2019 pcp->high = 6 * batch;
2020 pcp->batch = max(1UL, 1 * batch);
2021 INIT_LIST_HEAD(&pcp->list);
2022
2023 pcp = &p->pcp[1]; /* cold*/
2024 pcp->count = 0;
2caaad41 2025 pcp->high = 2 * batch;
e46a5e28 2026 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2027 INIT_LIST_HEAD(&pcp->list);
2028}
2029
8ad4b1fb
RS
2030/*
2031 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2032 * to the value high for the pageset p.
2033 */
2034
2035static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2036 unsigned long high)
2037{
2038 struct per_cpu_pages *pcp;
2039
2040 pcp = &p->pcp[0]; /* hot list */
2041 pcp->high = high;
2042 pcp->batch = max(1UL, high/4);
2043 if ((high/4) > (PAGE_SHIFT * 8))
2044 pcp->batch = PAGE_SHIFT * 8;
2045}
2046
2047
e7c8d5c9
CL
2048#ifdef CONFIG_NUMA
2049/*
2caaad41
CL
2050 * Boot pageset table. One per cpu which is going to be used for all
2051 * zones and all nodes. The parameters will be set in such a way
2052 * that an item put on a list will immediately be handed over to
2053 * the buddy list. This is safe since pageset manipulation is done
2054 * with interrupts disabled.
2055 *
2056 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2057 *
2058 * The boot_pagesets must be kept even after bootup is complete for
2059 * unused processors and/or zones. They do play a role for bootstrapping
2060 * hotplugged processors.
2061 *
2062 * zoneinfo_show() and maybe other functions do
2063 * not check if the processor is online before following the pageset pointer.
2064 * Other parts of the kernel may not check if the zone is available.
2caaad41 2065 */
88a2a4ac 2066static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2067
2068/*
2069 * Dynamically allocate memory for the
e7c8d5c9
CL
2070 * per cpu pageset array in struct zone.
2071 */
6292d9aa 2072static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2073{
2074 struct zone *zone, *dzone;
e7c8d5c9
CL
2075
2076 for_each_zone(zone) {
e7c8d5c9 2077
66a55030
CL
2078 if (!populated_zone(zone))
2079 continue;
2080
23316bc8 2081 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 2082 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 2083 if (!zone_pcp(zone, cpu))
e7c8d5c9 2084 goto bad;
e7c8d5c9 2085
23316bc8 2086 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2087
2088 if (percpu_pagelist_fraction)
2089 setup_pagelist_highmark(zone_pcp(zone, cpu),
2090 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2091 }
2092
2093 return 0;
2094bad:
2095 for_each_zone(dzone) {
2096 if (dzone == zone)
2097 break;
23316bc8
NP
2098 kfree(zone_pcp(dzone, cpu));
2099 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2100 }
2101 return -ENOMEM;
2102}
2103
2104static inline void free_zone_pagesets(int cpu)
2105{
e7c8d5c9
CL
2106 struct zone *zone;
2107
2108 for_each_zone(zone) {
2109 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2110
f3ef9ead
DR
2111 /* Free per_cpu_pageset if it is slab allocated */
2112 if (pset != &boot_pageset[cpu])
2113 kfree(pset);
e7c8d5c9 2114 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2115 }
e7c8d5c9
CL
2116}
2117
9c7b216d 2118static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2119 unsigned long action,
2120 void *hcpu)
2121{
2122 int cpu = (long)hcpu;
2123 int ret = NOTIFY_OK;
2124
2125 switch (action) {
ce421c79
AW
2126 case CPU_UP_PREPARE:
2127 if (process_zones(cpu))
2128 ret = NOTIFY_BAD;
2129 break;
2130 case CPU_UP_CANCELED:
2131 case CPU_DEAD:
2132 free_zone_pagesets(cpu);
2133 break;
2134 default:
2135 break;
e7c8d5c9
CL
2136 }
2137 return ret;
2138}
2139
74b85f37 2140static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2141 { &pageset_cpuup_callback, NULL, 0 };
2142
78d9955b 2143void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2144{
2145 int err;
2146
2147 /* Initialize per_cpu_pageset for cpu 0.
2148 * A cpuup callback will do this for every cpu
2149 * as it comes online
2150 */
2151 err = process_zones(smp_processor_id());
2152 BUG_ON(err);
2153 register_cpu_notifier(&pageset_notifier);
2154}
2155
2156#endif
2157
c09b4240 2158static __meminit
cca448fe 2159int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2160{
2161 int i;
2162 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2163 size_t alloc_size;
ed8ece2e
DH
2164
2165 /*
2166 * The per-page waitqueue mechanism uses hashed waitqueues
2167 * per zone.
2168 */
02b694de
YG
2169 zone->wait_table_hash_nr_entries =
2170 wait_table_hash_nr_entries(zone_size_pages);
2171 zone->wait_table_bits =
2172 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2173 alloc_size = zone->wait_table_hash_nr_entries
2174 * sizeof(wait_queue_head_t);
2175
2176 if (system_state == SYSTEM_BOOTING) {
2177 zone->wait_table = (wait_queue_head_t *)
2178 alloc_bootmem_node(pgdat, alloc_size);
2179 } else {
2180 /*
2181 * This case means that a zone whose size was 0 gets new memory
2182 * via memory hot-add.
2183 * But it may be the case that a new node was hot-added. In
2184 * this case vmalloc() will not be able to use this new node's
2185 * memory - this wait_table must be initialized to use this new
2186 * node itself as well.
2187 * To use this new node's memory, further consideration will be
2188 * necessary.
2189 */
2190 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2191 }
2192 if (!zone->wait_table)
2193 return -ENOMEM;
ed8ece2e 2194
02b694de 2195 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2196 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2197
2198 return 0;
ed8ece2e
DH
2199}
2200
c09b4240 2201static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2202{
2203 int cpu;
2204 unsigned long batch = zone_batchsize(zone);
2205
2206 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2207#ifdef CONFIG_NUMA
2208 /* Early boot. Slab allocator not functional yet */
23316bc8 2209 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2210 setup_pageset(&boot_pageset[cpu],0);
2211#else
2212 setup_pageset(zone_pcp(zone,cpu), batch);
2213#endif
2214 }
f5335c0f
AB
2215 if (zone->present_pages)
2216 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2217 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2218}
2219
718127cc
YG
2220__meminit int init_currently_empty_zone(struct zone *zone,
2221 unsigned long zone_start_pfn,
a2f3aa02
DH
2222 unsigned long size,
2223 enum memmap_context context)
ed8ece2e
DH
2224{
2225 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2226 int ret;
2227 ret = zone_wait_table_init(zone, size);
2228 if (ret)
2229 return ret;
ed8ece2e
DH
2230 pgdat->nr_zones = zone_idx(zone) + 1;
2231
ed8ece2e
DH
2232 zone->zone_start_pfn = zone_start_pfn;
2233
2234 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2235
2236 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2237
2238 return 0;
ed8ece2e
DH
2239}
2240
c713216d
MG
2241#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2242/*
2243 * Basic iterator support. Return the first range of PFNs for a node
2244 * Note: nid == MAX_NUMNODES returns first region regardless of node
2245 */
2246static int __init first_active_region_index_in_nid(int nid)
2247{
2248 int i;
2249
2250 for (i = 0; i < nr_nodemap_entries; i++)
2251 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2252 return i;
2253
2254 return -1;
2255}
2256
2257/*
2258 * Basic iterator support. Return the next active range of PFNs for a node
2259 * Note: nid == MAX_NUMNODES returns next region regardles of node
2260 */
2261static int __init next_active_region_index_in_nid(int index, int nid)
2262{
2263 for (index = index + 1; index < nr_nodemap_entries; index++)
2264 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2265 return index;
2266
2267 return -1;
2268}
2269
2270#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2271/*
2272 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2273 * Architectures may implement their own version but if add_active_range()
2274 * was used and there are no special requirements, this is a convenient
2275 * alternative
2276 */
2277int __init early_pfn_to_nid(unsigned long pfn)
2278{
2279 int i;
2280
2281 for (i = 0; i < nr_nodemap_entries; i++) {
2282 unsigned long start_pfn = early_node_map[i].start_pfn;
2283 unsigned long end_pfn = early_node_map[i].end_pfn;
2284
2285 if (start_pfn <= pfn && pfn < end_pfn)
2286 return early_node_map[i].nid;
2287 }
2288
2289 return 0;
2290}
2291#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2292
2293/* Basic iterator support to walk early_node_map[] */
2294#define for_each_active_range_index_in_nid(i, nid) \
2295 for (i = first_active_region_index_in_nid(nid); i != -1; \
2296 i = next_active_region_index_in_nid(i, nid))
2297
2298/**
2299 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2300 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2301 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2302 *
2303 * If an architecture guarantees that all ranges registered with
2304 * add_active_ranges() contain no holes and may be freed, this
2305 * this function may be used instead of calling free_bootmem() manually.
2306 */
2307void __init free_bootmem_with_active_regions(int nid,
2308 unsigned long max_low_pfn)
2309{
2310 int i;
2311
2312 for_each_active_range_index_in_nid(i, nid) {
2313 unsigned long size_pages = 0;
2314 unsigned long end_pfn = early_node_map[i].end_pfn;
2315
2316 if (early_node_map[i].start_pfn >= max_low_pfn)
2317 continue;
2318
2319 if (end_pfn > max_low_pfn)
2320 end_pfn = max_low_pfn;
2321
2322 size_pages = end_pfn - early_node_map[i].start_pfn;
2323 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2324 PFN_PHYS(early_node_map[i].start_pfn),
2325 size_pages << PAGE_SHIFT);
2326 }
2327}
2328
2329/**
2330 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2331 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2332 *
2333 * If an architecture guarantees that all ranges registered with
2334 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2335 * function may be used instead of calling memory_present() manually.
c713216d
MG
2336 */
2337void __init sparse_memory_present_with_active_regions(int nid)
2338{
2339 int i;
2340
2341 for_each_active_range_index_in_nid(i, nid)
2342 memory_present(early_node_map[i].nid,
2343 early_node_map[i].start_pfn,
2344 early_node_map[i].end_pfn);
2345}
2346
fb01439c
MG
2347/**
2348 * push_node_boundaries - Push node boundaries to at least the requested boundary
2349 * @nid: The nid of the node to push the boundary for
2350 * @start_pfn: The start pfn of the node
2351 * @end_pfn: The end pfn of the node
2352 *
2353 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2354 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2355 * be hotplugged even though no physical memory exists. This function allows
2356 * an arch to push out the node boundaries so mem_map is allocated that can
2357 * be used later.
2358 */
2359#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2360void __init push_node_boundaries(unsigned int nid,
2361 unsigned long start_pfn, unsigned long end_pfn)
2362{
2363 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2364 nid, start_pfn, end_pfn);
2365
2366 /* Initialise the boundary for this node if necessary */
2367 if (node_boundary_end_pfn[nid] == 0)
2368 node_boundary_start_pfn[nid] = -1UL;
2369
2370 /* Update the boundaries */
2371 if (node_boundary_start_pfn[nid] > start_pfn)
2372 node_boundary_start_pfn[nid] = start_pfn;
2373 if (node_boundary_end_pfn[nid] < end_pfn)
2374 node_boundary_end_pfn[nid] = end_pfn;
2375}
2376
2377/* If necessary, push the node boundary out for reserve hotadd */
2378static void __init account_node_boundary(unsigned int nid,
2379 unsigned long *start_pfn, unsigned long *end_pfn)
2380{
2381 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2382 nid, *start_pfn, *end_pfn);
2383
2384 /* Return if boundary information has not been provided */
2385 if (node_boundary_end_pfn[nid] == 0)
2386 return;
2387
2388 /* Check the boundaries and update if necessary */
2389 if (node_boundary_start_pfn[nid] < *start_pfn)
2390 *start_pfn = node_boundary_start_pfn[nid];
2391 if (node_boundary_end_pfn[nid] > *end_pfn)
2392 *end_pfn = node_boundary_end_pfn[nid];
2393}
2394#else
2395void __init push_node_boundaries(unsigned int nid,
2396 unsigned long start_pfn, unsigned long end_pfn) {}
2397
2398static void __init account_node_boundary(unsigned int nid,
2399 unsigned long *start_pfn, unsigned long *end_pfn) {}
2400#endif
2401
2402
c713216d
MG
2403/**
2404 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2405 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2406 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2407 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2408 *
2409 * It returns the start and end page frame of a node based on information
2410 * provided by an arch calling add_active_range(). If called for a node
2411 * with no available memory, a warning is printed and the start and end
88ca3b94 2412 * PFNs will be 0.
c713216d
MG
2413 */
2414void __init get_pfn_range_for_nid(unsigned int nid,
2415 unsigned long *start_pfn, unsigned long *end_pfn)
2416{
2417 int i;
2418 *start_pfn = -1UL;
2419 *end_pfn = 0;
2420
2421 for_each_active_range_index_in_nid(i, nid) {
2422 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2423 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2424 }
2425
2426 if (*start_pfn == -1UL) {
2427 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2428 *start_pfn = 0;
2429 }
fb01439c
MG
2430
2431 /* Push the node boundaries out if requested */
2432 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2433}
2434
2435/*
2436 * Return the number of pages a zone spans in a node, including holes
2437 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2438 */
2439unsigned long __init zone_spanned_pages_in_node(int nid,
2440 unsigned long zone_type,
2441 unsigned long *ignored)
2442{
2443 unsigned long node_start_pfn, node_end_pfn;
2444 unsigned long zone_start_pfn, zone_end_pfn;
2445
2446 /* Get the start and end of the node and zone */
2447 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2448 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2449 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2450
2451 /* Check that this node has pages within the zone's required range */
2452 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2453 return 0;
2454
2455 /* Move the zone boundaries inside the node if necessary */
2456 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2457 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2458
2459 /* Return the spanned pages */
2460 return zone_end_pfn - zone_start_pfn;
2461}
2462
2463/*
2464 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2465 * then all holes in the requested range will be accounted for.
c713216d
MG
2466 */
2467unsigned long __init __absent_pages_in_range(int nid,
2468 unsigned long range_start_pfn,
2469 unsigned long range_end_pfn)
2470{
2471 int i = 0;
2472 unsigned long prev_end_pfn = 0, hole_pages = 0;
2473 unsigned long start_pfn;
2474
2475 /* Find the end_pfn of the first active range of pfns in the node */
2476 i = first_active_region_index_in_nid(nid);
2477 if (i == -1)
2478 return 0;
2479
9c7cd687
MG
2480 /* Account for ranges before physical memory on this node */
2481 if (early_node_map[i].start_pfn > range_start_pfn)
2482 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2483
c713216d
MG
2484 prev_end_pfn = early_node_map[i].start_pfn;
2485
2486 /* Find all holes for the zone within the node */
2487 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2488
2489 /* No need to continue if prev_end_pfn is outside the zone */
2490 if (prev_end_pfn >= range_end_pfn)
2491 break;
2492
2493 /* Make sure the end of the zone is not within the hole */
2494 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2495 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2496
2497 /* Update the hole size cound and move on */
2498 if (start_pfn > range_start_pfn) {
2499 BUG_ON(prev_end_pfn > start_pfn);
2500 hole_pages += start_pfn - prev_end_pfn;
2501 }
2502 prev_end_pfn = early_node_map[i].end_pfn;
2503 }
2504
9c7cd687
MG
2505 /* Account for ranges past physical memory on this node */
2506 if (range_end_pfn > prev_end_pfn)
0c6cb974 2507 hole_pages += range_end_pfn -
9c7cd687
MG
2508 max(range_start_pfn, prev_end_pfn);
2509
c713216d
MG
2510 return hole_pages;
2511}
2512
2513/**
2514 * absent_pages_in_range - Return number of page frames in holes within a range
2515 * @start_pfn: The start PFN to start searching for holes
2516 * @end_pfn: The end PFN to stop searching for holes
2517 *
88ca3b94 2518 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
2519 */
2520unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2521 unsigned long end_pfn)
2522{
2523 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2524}
2525
2526/* Return the number of page frames in holes in a zone on a node */
2527unsigned long __init zone_absent_pages_in_node(int nid,
2528 unsigned long zone_type,
2529 unsigned long *ignored)
2530{
9c7cd687
MG
2531 unsigned long node_start_pfn, node_end_pfn;
2532 unsigned long zone_start_pfn, zone_end_pfn;
2533
2534 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2535 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2536 node_start_pfn);
2537 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2538 node_end_pfn);
2539
2540 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 2541}
0e0b864e 2542
c713216d
MG
2543#else
2544static inline unsigned long zone_spanned_pages_in_node(int nid,
2545 unsigned long zone_type,
2546 unsigned long *zones_size)
2547{
2548 return zones_size[zone_type];
2549}
2550
2551static inline unsigned long zone_absent_pages_in_node(int nid,
2552 unsigned long zone_type,
2553 unsigned long *zholes_size)
2554{
2555 if (!zholes_size)
2556 return 0;
2557
2558 return zholes_size[zone_type];
2559}
0e0b864e 2560
c713216d
MG
2561#endif
2562
2563static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2564 unsigned long *zones_size, unsigned long *zholes_size)
2565{
2566 unsigned long realtotalpages, totalpages = 0;
2567 enum zone_type i;
2568
2569 for (i = 0; i < MAX_NR_ZONES; i++)
2570 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2571 zones_size);
2572 pgdat->node_spanned_pages = totalpages;
2573
2574 realtotalpages = totalpages;
2575 for (i = 0; i < MAX_NR_ZONES; i++)
2576 realtotalpages -=
2577 zone_absent_pages_in_node(pgdat->node_id, i,
2578 zholes_size);
2579 pgdat->node_present_pages = realtotalpages;
2580 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2581 realtotalpages);
2582}
2583
1da177e4
LT
2584/*
2585 * Set up the zone data structures:
2586 * - mark all pages reserved
2587 * - mark all memory queues empty
2588 * - clear the memory bitmaps
2589 */
86356ab1 2590static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
2591 unsigned long *zones_size, unsigned long *zholes_size)
2592{
2f1b6248 2593 enum zone_type j;
ed8ece2e 2594 int nid = pgdat->node_id;
1da177e4 2595 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 2596 int ret;
1da177e4 2597
208d54e5 2598 pgdat_resize_init(pgdat);
1da177e4
LT
2599 pgdat->nr_zones = 0;
2600 init_waitqueue_head(&pgdat->kswapd_wait);
2601 pgdat->kswapd_max_order = 0;
2602
2603 for (j = 0; j < MAX_NR_ZONES; j++) {
2604 struct zone *zone = pgdat->node_zones + j;
0e0b864e 2605 unsigned long size, realsize, memmap_pages;
1da177e4 2606
c713216d
MG
2607 size = zone_spanned_pages_in_node(nid, j, zones_size);
2608 realsize = size - zone_absent_pages_in_node(nid, j,
2609 zholes_size);
1da177e4 2610
0e0b864e
MG
2611 /*
2612 * Adjust realsize so that it accounts for how much memory
2613 * is used by this zone for memmap. This affects the watermark
2614 * and per-cpu initialisations
2615 */
2616 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2617 if (realsize >= memmap_pages) {
2618 realsize -= memmap_pages;
2619 printk(KERN_DEBUG
2620 " %s zone: %lu pages used for memmap\n",
2621 zone_names[j], memmap_pages);
2622 } else
2623 printk(KERN_WARNING
2624 " %s zone: %lu pages exceeds realsize %lu\n",
2625 zone_names[j], memmap_pages, realsize);
2626
2627 /* Account for reserved DMA pages */
2628 if (j == ZONE_DMA && realsize > dma_reserve) {
2629 realsize -= dma_reserve;
2630 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
2631 dma_reserve);
2632 }
2633
98d2b0eb 2634 if (!is_highmem_idx(j))
1da177e4
LT
2635 nr_kernel_pages += realsize;
2636 nr_all_pages += realsize;
2637
2638 zone->spanned_pages = size;
2639 zone->present_pages = realsize;
9614634f 2640#ifdef CONFIG_NUMA
d5f541ed 2641 zone->node = nid;
8417bba4 2642 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2643 / 100;
0ff38490 2644 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2645#endif
1da177e4
LT
2646 zone->name = zone_names[j];
2647 spin_lock_init(&zone->lock);
2648 spin_lock_init(&zone->lru_lock);
bdc8cb98 2649 zone_seqlock_init(zone);
1da177e4 2650 zone->zone_pgdat = pgdat;
1da177e4 2651
3bb1a852 2652 zone->prev_priority = DEF_PRIORITY;
1da177e4 2653
ed8ece2e 2654 zone_pcp_init(zone);
1da177e4
LT
2655 INIT_LIST_HEAD(&zone->active_list);
2656 INIT_LIST_HEAD(&zone->inactive_list);
2657 zone->nr_scan_active = 0;
2658 zone->nr_scan_inactive = 0;
2244b95a 2659 zap_zone_vm_stats(zone);
53e9a615 2660 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2661 if (!size)
2662 continue;
2663
a2f3aa02
DH
2664 ret = init_currently_empty_zone(zone, zone_start_pfn,
2665 size, MEMMAP_EARLY);
718127cc 2666 BUG_ON(ret);
1da177e4 2667 zone_start_pfn += size;
1da177e4
LT
2668 }
2669}
2670
2671static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2672{
1da177e4
LT
2673 /* Skip empty nodes */
2674 if (!pgdat->node_spanned_pages)
2675 return;
2676
d41dee36 2677#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2678 /* ia64 gets its own node_mem_map, before this, without bootmem */
2679 if (!pgdat->node_mem_map) {
e984bb43 2680 unsigned long size, start, end;
d41dee36
AW
2681 struct page *map;
2682
e984bb43
BP
2683 /*
2684 * The zone's endpoints aren't required to be MAX_ORDER
2685 * aligned but the node_mem_map endpoints must be in order
2686 * for the buddy allocator to function correctly.
2687 */
2688 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2689 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2690 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2691 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2692 map = alloc_remap(pgdat->node_id, size);
2693 if (!map)
2694 map = alloc_bootmem_node(pgdat, size);
e984bb43 2695 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2696 }
d41dee36 2697#ifdef CONFIG_FLATMEM
1da177e4
LT
2698 /*
2699 * With no DISCONTIG, the global mem_map is just set as node 0's
2700 */
c713216d 2701 if (pgdat == NODE_DATA(0)) {
1da177e4 2702 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
2703#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2704 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2705 mem_map -= pgdat->node_start_pfn;
2706#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2707 }
1da177e4 2708#endif
d41dee36 2709#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2710}
2711
86356ab1 2712void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2713 unsigned long *zones_size, unsigned long node_start_pfn,
2714 unsigned long *zholes_size)
2715{
2716 pgdat->node_id = nid;
2717 pgdat->node_start_pfn = node_start_pfn;
c713216d 2718 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
2719
2720 alloc_node_mem_map(pgdat);
2721
2722 free_area_init_core(pgdat, zones_size, zholes_size);
2723}
2724
c713216d
MG
2725#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2726/**
2727 * add_active_range - Register a range of PFNs backed by physical memory
2728 * @nid: The node ID the range resides on
2729 * @start_pfn: The start PFN of the available physical memory
2730 * @end_pfn: The end PFN of the available physical memory
2731 *
2732 * These ranges are stored in an early_node_map[] and later used by
2733 * free_area_init_nodes() to calculate zone sizes and holes. If the
2734 * range spans a memory hole, it is up to the architecture to ensure
2735 * the memory is not freed by the bootmem allocator. If possible
2736 * the range being registered will be merged with existing ranges.
2737 */
2738void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2739 unsigned long end_pfn)
2740{
2741 int i;
2742
2743 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2744 "%d entries of %d used\n",
2745 nid, start_pfn, end_pfn,
2746 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2747
2748 /* Merge with existing active regions if possible */
2749 for (i = 0; i < nr_nodemap_entries; i++) {
2750 if (early_node_map[i].nid != nid)
2751 continue;
2752
2753 /* Skip if an existing region covers this new one */
2754 if (start_pfn >= early_node_map[i].start_pfn &&
2755 end_pfn <= early_node_map[i].end_pfn)
2756 return;
2757
2758 /* Merge forward if suitable */
2759 if (start_pfn <= early_node_map[i].end_pfn &&
2760 end_pfn > early_node_map[i].end_pfn) {
2761 early_node_map[i].end_pfn = end_pfn;
2762 return;
2763 }
2764
2765 /* Merge backward if suitable */
2766 if (start_pfn < early_node_map[i].end_pfn &&
2767 end_pfn >= early_node_map[i].start_pfn) {
2768 early_node_map[i].start_pfn = start_pfn;
2769 return;
2770 }
2771 }
2772
2773 /* Check that early_node_map is large enough */
2774 if (i >= MAX_ACTIVE_REGIONS) {
2775 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2776 MAX_ACTIVE_REGIONS);
2777 return;
2778 }
2779
2780 early_node_map[i].nid = nid;
2781 early_node_map[i].start_pfn = start_pfn;
2782 early_node_map[i].end_pfn = end_pfn;
2783 nr_nodemap_entries = i + 1;
2784}
2785
2786/**
2787 * shrink_active_range - Shrink an existing registered range of PFNs
2788 * @nid: The node id the range is on that should be shrunk
2789 * @old_end_pfn: The old end PFN of the range
2790 * @new_end_pfn: The new PFN of the range
2791 *
2792 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2793 * The map is kept at the end physical page range that has already been
2794 * registered with add_active_range(). This function allows an arch to shrink
2795 * an existing registered range.
2796 */
2797void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2798 unsigned long new_end_pfn)
2799{
2800 int i;
2801
2802 /* Find the old active region end and shrink */
2803 for_each_active_range_index_in_nid(i, nid)
2804 if (early_node_map[i].end_pfn == old_end_pfn) {
2805 early_node_map[i].end_pfn = new_end_pfn;
2806 break;
2807 }
2808}
2809
2810/**
2811 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 2812 *
c713216d
MG
2813 * During discovery, it may be found that a table like SRAT is invalid
2814 * and an alternative discovery method must be used. This function removes
2815 * all currently registered regions.
2816 */
88ca3b94 2817void __init remove_all_active_ranges(void)
c713216d
MG
2818{
2819 memset(early_node_map, 0, sizeof(early_node_map));
2820 nr_nodemap_entries = 0;
fb01439c
MG
2821#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2822 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2823 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2824#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
2825}
2826
2827/* Compare two active node_active_regions */
2828static int __init cmp_node_active_region(const void *a, const void *b)
2829{
2830 struct node_active_region *arange = (struct node_active_region *)a;
2831 struct node_active_region *brange = (struct node_active_region *)b;
2832
2833 /* Done this way to avoid overflows */
2834 if (arange->start_pfn > brange->start_pfn)
2835 return 1;
2836 if (arange->start_pfn < brange->start_pfn)
2837 return -1;
2838
2839 return 0;
2840}
2841
2842/* sort the node_map by start_pfn */
2843static void __init sort_node_map(void)
2844{
2845 sort(early_node_map, (size_t)nr_nodemap_entries,
2846 sizeof(struct node_active_region),
2847 cmp_node_active_region, NULL);
2848}
2849
a6af2bc3 2850/* Find the lowest pfn for a node */
c713216d
MG
2851unsigned long __init find_min_pfn_for_node(unsigned long nid)
2852{
2853 int i;
a6af2bc3 2854 unsigned long min_pfn = ULONG_MAX;
1abbfb41 2855
c713216d
MG
2856 /* Assuming a sorted map, the first range found has the starting pfn */
2857 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 2858 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 2859
a6af2bc3
MG
2860 if (min_pfn == ULONG_MAX) {
2861 printk(KERN_WARNING
2862 "Could not find start_pfn for node %lu\n", nid);
2863 return 0;
2864 }
2865
2866 return min_pfn;
c713216d
MG
2867}
2868
2869/**
2870 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2871 *
2872 * It returns the minimum PFN based on information provided via
88ca3b94 2873 * add_active_range().
c713216d
MG
2874 */
2875unsigned long __init find_min_pfn_with_active_regions(void)
2876{
2877 return find_min_pfn_for_node(MAX_NUMNODES);
2878}
2879
2880/**
2881 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2882 *
2883 * It returns the maximum PFN based on information provided via
88ca3b94 2884 * add_active_range().
c713216d
MG
2885 */
2886unsigned long __init find_max_pfn_with_active_regions(void)
2887{
2888 int i;
2889 unsigned long max_pfn = 0;
2890
2891 for (i = 0; i < nr_nodemap_entries; i++)
2892 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2893
2894 return max_pfn;
2895}
2896
2897/**
2898 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 2899 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
2900 *
2901 * This will call free_area_init_node() for each active node in the system.
2902 * Using the page ranges provided by add_active_range(), the size of each
2903 * zone in each node and their holes is calculated. If the maximum PFN
2904 * between two adjacent zones match, it is assumed that the zone is empty.
2905 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2906 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2907 * starts where the previous one ended. For example, ZONE_DMA32 starts
2908 * at arch_max_dma_pfn.
2909 */
2910void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2911{
2912 unsigned long nid;
2913 enum zone_type i;
2914
a6af2bc3
MG
2915 /* Sort early_node_map as initialisation assumes it is sorted */
2916 sort_node_map();
2917
c713216d
MG
2918 /* Record where the zone boundaries are */
2919 memset(arch_zone_lowest_possible_pfn, 0,
2920 sizeof(arch_zone_lowest_possible_pfn));
2921 memset(arch_zone_highest_possible_pfn, 0,
2922 sizeof(arch_zone_highest_possible_pfn));
2923 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2924 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2925 for (i = 1; i < MAX_NR_ZONES; i++) {
2926 arch_zone_lowest_possible_pfn[i] =
2927 arch_zone_highest_possible_pfn[i-1];
2928 arch_zone_highest_possible_pfn[i] =
2929 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2930 }
2931
c713216d
MG
2932 /* Print out the zone ranges */
2933 printk("Zone PFN ranges:\n");
2934 for (i = 0; i < MAX_NR_ZONES; i++)
2935 printk(" %-8s %8lu -> %8lu\n",
2936 zone_names[i],
2937 arch_zone_lowest_possible_pfn[i],
2938 arch_zone_highest_possible_pfn[i]);
2939
2940 /* Print out the early_node_map[] */
2941 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2942 for (i = 0; i < nr_nodemap_entries; i++)
2943 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2944 early_node_map[i].start_pfn,
2945 early_node_map[i].end_pfn);
2946
2947 /* Initialise every node */
2948 for_each_online_node(nid) {
2949 pg_data_t *pgdat = NODE_DATA(nid);
2950 free_area_init_node(nid, pgdat, NULL,
2951 find_min_pfn_for_node(nid), NULL);
2952 }
2953}
2954#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2955
0e0b864e 2956/**
88ca3b94
RD
2957 * set_dma_reserve - set the specified number of pages reserved in the first zone
2958 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
2959 *
2960 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2961 * In the DMA zone, a significant percentage may be consumed by kernel image
2962 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
2963 * function may optionally be used to account for unfreeable pages in the
2964 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2965 * smaller per-cpu batchsize.
0e0b864e
MG
2966 */
2967void __init set_dma_reserve(unsigned long new_dma_reserve)
2968{
2969 dma_reserve = new_dma_reserve;
2970}
2971
93b7504e 2972#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2973static bootmem_data_t contig_bootmem_data;
2974struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2975
2976EXPORT_SYMBOL(contig_page_data);
93b7504e 2977#endif
1da177e4
LT
2978
2979void __init free_area_init(unsigned long *zones_size)
2980{
93b7504e 2981 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2982 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2983}
1da177e4 2984
1da177e4
LT
2985static int page_alloc_cpu_notify(struct notifier_block *self,
2986 unsigned long action, void *hcpu)
2987{
2988 int cpu = (unsigned long)hcpu;
1da177e4
LT
2989
2990 if (action == CPU_DEAD) {
1da177e4
LT
2991 local_irq_disable();
2992 __drain_pages(cpu);
f8891e5e 2993 vm_events_fold_cpu(cpu);
1da177e4 2994 local_irq_enable();
2244b95a 2995 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2996 }
2997 return NOTIFY_OK;
2998}
1da177e4
LT
2999
3000void __init page_alloc_init(void)
3001{
3002 hotcpu_notifier(page_alloc_cpu_notify, 0);
3003}
3004
cb45b0e9
HA
3005/*
3006 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3007 * or min_free_kbytes changes.
3008 */
3009static void calculate_totalreserve_pages(void)
3010{
3011 struct pglist_data *pgdat;
3012 unsigned long reserve_pages = 0;
2f6726e5 3013 enum zone_type i, j;
cb45b0e9
HA
3014
3015 for_each_online_pgdat(pgdat) {
3016 for (i = 0; i < MAX_NR_ZONES; i++) {
3017 struct zone *zone = pgdat->node_zones + i;
3018 unsigned long max = 0;
3019
3020 /* Find valid and maximum lowmem_reserve in the zone */
3021 for (j = i; j < MAX_NR_ZONES; j++) {
3022 if (zone->lowmem_reserve[j] > max)
3023 max = zone->lowmem_reserve[j];
3024 }
3025
3026 /* we treat pages_high as reserved pages. */
3027 max += zone->pages_high;
3028
3029 if (max > zone->present_pages)
3030 max = zone->present_pages;
3031 reserve_pages += max;
3032 }
3033 }
3034 totalreserve_pages = reserve_pages;
3035}
3036
1da177e4
LT
3037/*
3038 * setup_per_zone_lowmem_reserve - called whenever
3039 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3040 * has a correct pages reserved value, so an adequate number of
3041 * pages are left in the zone after a successful __alloc_pages().
3042 */
3043static void setup_per_zone_lowmem_reserve(void)
3044{
3045 struct pglist_data *pgdat;
2f6726e5 3046 enum zone_type j, idx;
1da177e4 3047
ec936fc5 3048 for_each_online_pgdat(pgdat) {
1da177e4
LT
3049 for (j = 0; j < MAX_NR_ZONES; j++) {
3050 struct zone *zone = pgdat->node_zones + j;
3051 unsigned long present_pages = zone->present_pages;
3052
3053 zone->lowmem_reserve[j] = 0;
3054
2f6726e5
CL
3055 idx = j;
3056 while (idx) {
1da177e4
LT
3057 struct zone *lower_zone;
3058
2f6726e5
CL
3059 idx--;
3060
1da177e4
LT
3061 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3062 sysctl_lowmem_reserve_ratio[idx] = 1;
3063
3064 lower_zone = pgdat->node_zones + idx;
3065 lower_zone->lowmem_reserve[j] = present_pages /
3066 sysctl_lowmem_reserve_ratio[idx];
3067 present_pages += lower_zone->present_pages;
3068 }
3069 }
3070 }
cb45b0e9
HA
3071
3072 /* update totalreserve_pages */
3073 calculate_totalreserve_pages();
1da177e4
LT
3074}
3075
88ca3b94
RD
3076/**
3077 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3078 *
3079 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3080 * with respect to min_free_kbytes.
1da177e4 3081 */
3947be19 3082void setup_per_zone_pages_min(void)
1da177e4
LT
3083{
3084 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3085 unsigned long lowmem_pages = 0;
3086 struct zone *zone;
3087 unsigned long flags;
3088
3089 /* Calculate total number of !ZONE_HIGHMEM pages */
3090 for_each_zone(zone) {
3091 if (!is_highmem(zone))
3092 lowmem_pages += zone->present_pages;
3093 }
3094
3095 for_each_zone(zone) {
ac924c60
AM
3096 u64 tmp;
3097
1da177e4 3098 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
3099 tmp = (u64)pages_min * zone->present_pages;
3100 do_div(tmp, lowmem_pages);
1da177e4
LT
3101 if (is_highmem(zone)) {
3102 /*
669ed175
NP
3103 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3104 * need highmem pages, so cap pages_min to a small
3105 * value here.
3106 *
3107 * The (pages_high-pages_low) and (pages_low-pages_min)
3108 * deltas controls asynch page reclaim, and so should
3109 * not be capped for highmem.
1da177e4
LT
3110 */
3111 int min_pages;
3112
3113 min_pages = zone->present_pages / 1024;
3114 if (min_pages < SWAP_CLUSTER_MAX)
3115 min_pages = SWAP_CLUSTER_MAX;
3116 if (min_pages > 128)
3117 min_pages = 128;
3118 zone->pages_min = min_pages;
3119 } else {
669ed175
NP
3120 /*
3121 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
3122 * proportionate to the zone's size.
3123 */
669ed175 3124 zone->pages_min = tmp;
1da177e4
LT
3125 }
3126
ac924c60
AM
3127 zone->pages_low = zone->pages_min + (tmp >> 2);
3128 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
3129 spin_unlock_irqrestore(&zone->lru_lock, flags);
3130 }
cb45b0e9
HA
3131
3132 /* update totalreserve_pages */
3133 calculate_totalreserve_pages();
1da177e4
LT
3134}
3135
3136/*
3137 * Initialise min_free_kbytes.
3138 *
3139 * For small machines we want it small (128k min). For large machines
3140 * we want it large (64MB max). But it is not linear, because network
3141 * bandwidth does not increase linearly with machine size. We use
3142 *
3143 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3144 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3145 *
3146 * which yields
3147 *
3148 * 16MB: 512k
3149 * 32MB: 724k
3150 * 64MB: 1024k
3151 * 128MB: 1448k
3152 * 256MB: 2048k
3153 * 512MB: 2896k
3154 * 1024MB: 4096k
3155 * 2048MB: 5792k
3156 * 4096MB: 8192k
3157 * 8192MB: 11584k
3158 * 16384MB: 16384k
3159 */
3160static int __init init_per_zone_pages_min(void)
3161{
3162 unsigned long lowmem_kbytes;
3163
3164 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3165
3166 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3167 if (min_free_kbytes < 128)
3168 min_free_kbytes = 128;
3169 if (min_free_kbytes > 65536)
3170 min_free_kbytes = 65536;
3171 setup_per_zone_pages_min();
3172 setup_per_zone_lowmem_reserve();
3173 return 0;
3174}
3175module_init(init_per_zone_pages_min)
3176
3177/*
3178 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3179 * that we can call two helper functions whenever min_free_kbytes
3180 * changes.
3181 */
3182int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3183 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3184{
3185 proc_dointvec(table, write, file, buffer, length, ppos);
3186 setup_per_zone_pages_min();
3187 return 0;
3188}
3189
9614634f
CL
3190#ifdef CONFIG_NUMA
3191int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3192 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3193{
3194 struct zone *zone;
3195 int rc;
3196
3197 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3198 if (rc)
3199 return rc;
3200
3201 for_each_zone(zone)
8417bba4 3202 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
3203 sysctl_min_unmapped_ratio) / 100;
3204 return 0;
3205}
0ff38490
CL
3206
3207int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3208 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3209{
3210 struct zone *zone;
3211 int rc;
3212
3213 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3214 if (rc)
3215 return rc;
3216
3217 for_each_zone(zone)
3218 zone->min_slab_pages = (zone->present_pages *
3219 sysctl_min_slab_ratio) / 100;
3220 return 0;
3221}
9614634f
CL
3222#endif
3223
1da177e4
LT
3224/*
3225 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3226 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3227 * whenever sysctl_lowmem_reserve_ratio changes.
3228 *
3229 * The reserve ratio obviously has absolutely no relation with the
3230 * pages_min watermarks. The lowmem reserve ratio can only make sense
3231 * if in function of the boot time zone sizes.
3232 */
3233int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3234 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3235{
3236 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3237 setup_per_zone_lowmem_reserve();
3238 return 0;
3239}
3240
8ad4b1fb
RS
3241/*
3242 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3243 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3244 * can have before it gets flushed back to buddy allocator.
3245 */
3246
3247int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3248 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3249{
3250 struct zone *zone;
3251 unsigned int cpu;
3252 int ret;
3253
3254 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3255 if (!write || (ret == -EINVAL))
3256 return ret;
3257 for_each_zone(zone) {
3258 for_each_online_cpu(cpu) {
3259 unsigned long high;
3260 high = zone->present_pages / percpu_pagelist_fraction;
3261 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3262 }
3263 }
3264 return 0;
3265}
3266
f034b5d4 3267int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
3268
3269#ifdef CONFIG_NUMA
3270static int __init set_hashdist(char *str)
3271{
3272 if (!str)
3273 return 0;
3274 hashdist = simple_strtoul(str, &str, 0);
3275 return 1;
3276}
3277__setup("hashdist=", set_hashdist);
3278#endif
3279
3280/*
3281 * allocate a large system hash table from bootmem
3282 * - it is assumed that the hash table must contain an exact power-of-2
3283 * quantity of entries
3284 * - limit is the number of hash buckets, not the total allocation size
3285 */
3286void *__init alloc_large_system_hash(const char *tablename,
3287 unsigned long bucketsize,
3288 unsigned long numentries,
3289 int scale,
3290 int flags,
3291 unsigned int *_hash_shift,
3292 unsigned int *_hash_mask,
3293 unsigned long limit)
3294{
3295 unsigned long long max = limit;
3296 unsigned long log2qty, size;
3297 void *table = NULL;
3298
3299 /* allow the kernel cmdline to have a say */
3300 if (!numentries) {
3301 /* round applicable memory size up to nearest megabyte */
04903664 3302 numentries = nr_kernel_pages;
1da177e4
LT
3303 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3304 numentries >>= 20 - PAGE_SHIFT;
3305 numentries <<= 20 - PAGE_SHIFT;
3306
3307 /* limit to 1 bucket per 2^scale bytes of low memory */
3308 if (scale > PAGE_SHIFT)
3309 numentries >>= (scale - PAGE_SHIFT);
3310 else
3311 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
3312
3313 /* Make sure we've got at least a 0-order allocation.. */
3314 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3315 numentries = PAGE_SIZE / bucketsize;
1da177e4 3316 }
6e692ed3 3317 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
3318
3319 /* limit allocation size to 1/16 total memory by default */
3320 if (max == 0) {
3321 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3322 do_div(max, bucketsize);
3323 }
3324
3325 if (numentries > max)
3326 numentries = max;
3327
f0d1b0b3 3328 log2qty = ilog2(numentries);
1da177e4
LT
3329
3330 do {
3331 size = bucketsize << log2qty;
3332 if (flags & HASH_EARLY)
3333 table = alloc_bootmem(size);
3334 else if (hashdist)
3335 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3336 else {
3337 unsigned long order;
3338 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3339 ;
3340 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3341 }
3342 } while (!table && size > PAGE_SIZE && --log2qty);
3343
3344 if (!table)
3345 panic("Failed to allocate %s hash table\n", tablename);
3346
3347 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3348 tablename,
3349 (1U << log2qty),
f0d1b0b3 3350 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
3351 size);
3352
3353 if (_hash_shift)
3354 *_hash_shift = log2qty;
3355 if (_hash_mask)
3356 *_hash_mask = (1 << log2qty) - 1;
3357
3358 return table;
3359}
a117e66e
KH
3360
3361#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
3362struct page *pfn_to_page(unsigned long pfn)
3363{
67de6482 3364 return __pfn_to_page(pfn);
a117e66e
KH
3365}
3366unsigned long page_to_pfn(struct page *page)
3367{
67de6482 3368 return __page_to_pfn(page);
a117e66e 3369}
a117e66e
KH
3370EXPORT_SYMBOL(pfn_to_page);
3371EXPORT_SYMBOL(page_to_pfn);
3372#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78
AM
3373
3374#if MAX_NUMNODES > 1
3375/*
3376 * Find the highest possible node id.
3377 */
3378int highest_possible_node_id(void)
3379{
3380 unsigned int node;
3381 unsigned int highest = 0;
3382
3383 for_each_node_mask(node, node_possible_map)
3384 highest = node;
3385 return highest;
3386}
3387EXPORT_SYMBOL(highest_possible_node_id);
3388#endif