]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: Fix potential NULL derference of doms_cur
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
172e082a 27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
172e082a 37unsigned int sysctl_sched_latency = 5000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
172e082a 41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
172e082a 43unsigned int sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
2bba22c5 51 * After fork, child runs first. If set to 0 (default) then
b2be5e96 52 * parent will (try to) run first.
21805085 53 */
2bba22c5 54unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
172e082a 66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
172e082a 72unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
62160e3f 82#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 83
62160e3f 84/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
62160e3f 87 return cfs_rq->rq;
bf0f6f24
IM
88}
89
62160e3f
IM
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
bf0f6f24 92
8f48894f
PZ
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
b758149c
PZ
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
464b7527
PZ
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
8f48894f
PZ
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
bf0f6f24 198
62160e3f
IM
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
202}
203
204#define entity_is_task(se) 1
205
b758149c
PZ
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
bf0f6f24 208
b758149c 209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 210{
b758149c 211 return &task_rq(p)->cfs;
bf0f6f24
IM
212}
213
b758149c
PZ
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
464b7527
PZ
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
b758149c
PZ
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
bf0f6f24
IM
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
0702e3eb 259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 260{
368059a9
PZ
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
02e0431a
PZ
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
0702e3eb 268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
54fdc581
FC
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
0702e3eb 283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 284{
30cfdcfc 285 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
286}
287
1af5f730
PZ
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
e17036da 300 if (!cfs_rq->curr)
1af5f730
PZ
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
bf0f6f24
IM
309/*
310 * Enqueue an entity into the rb-tree:
311 */
0702e3eb 312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
9014623c 317 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
9014623c 330 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
1af5f730 342 if (leftmost)
57cb499d 343 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
347}
348
0702e3eb 349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 350{
3fe69747
PZ
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
3fe69747
PZ
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
3fe69747 356 }
e9acbff6 357
bf0f6f24 358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
359}
360
bf0f6f24
IM
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
f4b6755f
PZ
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
369}
370
f4b6755f 371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 372{
7eee3e67 373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 374
70eee74b
BS
375 if (!last)
376 return NULL;
7eee3e67
IM
377
378 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
379}
380
bf0f6f24
IM
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
b2be5e96
PZ
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
647e7cac 401
a7be37ac 402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
0a582440 443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 444
0a582440 445 for_each_sched_entity(se) {
6272d68c 446 struct load_weight *load;
3104bf03 447 struct load_weight lw;
6272d68c
LM
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
f9c0b095 451
0a582440 452 if (unlikely(!se->on_rq)) {
3104bf03 453 lw = cfs_rq->load;
0a582440
MG
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
bf0f6f24
IM
461}
462
647e7cac 463/*
ac884dec 464 * We calculate the vruntime slice of a to be inserted task
647e7cac 465 *
f9c0b095 466 * vs = s/w
647e7cac 467 */
f9c0b095 468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 469{
f9c0b095 470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
471}
472
bf0f6f24
IM
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
8ebc91d9
IM
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
bf0f6f24 480{
bbdba7c0 481 unsigned long delta_exec_weighted;
bf0f6f24 482
8179ca23 483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
484
485 curr->sum_exec_runtime += delta_exec;
7a62eabc 486 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 488 curr->vruntime += delta_exec_weighted;
1af5f730 489 update_min_vruntime(cfs_rq);
bf0f6f24
IM
490}
491
b7cc0896 492static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 493{
429d43bc 494 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 495 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
8ebc91d9 506 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
507 if (!delta_exec)
508 return;
bf0f6f24 509
8ebc91d9
IM
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
d842de87
SV
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
f06febc9 517 account_group_exec_runtime(curtask, delta_exec);
d842de87 518 }
bf0f6f24
IM
519}
520
521static inline void
5870db5b 522update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
d281918d 524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
525}
526
bf0f6f24
IM
527/*
528 * Task is being enqueued - update stats:
529 */
d2417e5a 530static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 531{
bf0f6f24
IM
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
429d43bc 536 if (se != cfs_rq->curr)
5870db5b 537 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
538}
539
bf0f6f24 540static void
9ef0a961 541update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
bbdba7c0
IM
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
548#ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
552 }
553#endif
e1f84508 554 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
555}
556
557static inline void
19b6a2e3 558update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 559{
bf0f6f24
IM
560 /*
561 * Mark the end of the wait period if dequeueing a
562 * waiting task:
563 */
429d43bc 564 if (se != cfs_rq->curr)
9ef0a961 565 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
566}
567
568/*
569 * We are picking a new current task - update its stats:
570 */
571static inline void
79303e9e 572update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
573{
574 /*
575 * We are starting a new run period:
576 */
d281918d 577 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
578}
579
bf0f6f24
IM
580/**************************************************
581 * Scheduling class queueing methods:
582 */
583
c09595f6
PZ
584#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
585static void
586add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
587{
588 cfs_rq->task_weight += weight;
589}
590#else
591static inline void
592add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
593{
594}
595#endif
596
30cfdcfc
DA
597static void
598account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599{
600 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
601 if (!parent_entity(se))
602 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 603 if (entity_is_task(se)) {
c09595f6 604 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
605 list_add(&se->group_node, &cfs_rq->tasks);
606 }
30cfdcfc
DA
607 cfs_rq->nr_running++;
608 se->on_rq = 1;
609}
610
611static void
612account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613{
614 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
615 if (!parent_entity(se))
616 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 617 if (entity_is_task(se)) {
c09595f6 618 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
619 list_del_init(&se->group_node);
620 }
30cfdcfc
DA
621 cfs_rq->nr_running--;
622 se->on_rq = 0;
623}
624
2396af69 625static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 626{
bf0f6f24 627#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
628 struct task_struct *tsk = NULL;
629
630 if (entity_is_task(se))
631 tsk = task_of(se);
632
bf0f6f24 633 if (se->sleep_start) {
d281918d 634 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
635
636 if ((s64)delta < 0)
637 delta = 0;
638
639 if (unlikely(delta > se->sleep_max))
640 se->sleep_max = delta;
641
642 se->sleep_start = 0;
643 se->sum_sleep_runtime += delta;
9745512c 644
768d0c27 645 if (tsk) {
e414314c 646 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
647 trace_sched_stat_sleep(tsk, delta);
648 }
bf0f6f24
IM
649 }
650 if (se->block_start) {
d281918d 651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
652
653 if ((s64)delta < 0)
654 delta = 0;
655
656 if (unlikely(delta > se->block_max))
657 se->block_max = delta;
658
659 se->block_start = 0;
660 se->sum_sleep_runtime += delta;
30084fbd 661
e414314c 662 if (tsk) {
8f0dfc34
AV
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
768d0c27 666 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
667 }
668
e414314c
PZ
669 /*
670 * Blocking time is in units of nanosecs, so shift by
671 * 20 to get a milliseconds-range estimation of the
672 * amount of time that the task spent sleeping:
673 */
674 if (unlikely(prof_on == SLEEP_PROFILING)) {
675 profile_hits(SLEEP_PROFILING,
676 (void *)get_wchan(tsk),
677 delta >> 20);
678 }
679 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 680 }
bf0f6f24
IM
681 }
682#endif
683}
684
ddc97297
PZ
685static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
686{
687#ifdef CONFIG_SCHED_DEBUG
688 s64 d = se->vruntime - cfs_rq->min_vruntime;
689
690 if (d < 0)
691 d = -d;
692
693 if (d > 3*sysctl_sched_latency)
694 schedstat_inc(cfs_rq, nr_spread_over);
695#endif
696}
697
aeb73b04
PZ
698static void
699place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
700{
1af5f730 701 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 702
2cb8600e
PZ
703 /*
704 * The 'current' period is already promised to the current tasks,
705 * however the extra weight of the new task will slow them down a
706 * little, place the new task so that it fits in the slot that
707 * stays open at the end.
708 */
94dfb5e7 709 if (initial && sched_feat(START_DEBIT))
f9c0b095 710 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 711
a2e7a7eb
MG
712 /* sleeps up to a single latency don't count. */
713 if (!initial && sched_feat(FAIR_SLEEPERS)) {
714 unsigned long thresh = sysctl_sched_latency;
a7be37ac 715
a2e7a7eb
MG
716 /*
717 * Convert the sleeper threshold into virtual time.
718 * SCHED_IDLE is a special sub-class. We care about
719 * fairness only relative to other SCHED_IDLE tasks,
720 * all of which have the same weight.
721 */
722 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
723 task_of(se)->policy != SCHED_IDLE))
724 thresh = calc_delta_fair(thresh, se);
a7be37ac 725
a2e7a7eb
MG
726 /*
727 * Halve their sleep time's effect, to allow
728 * for a gentler effect of sleepers:
729 */
730 if (sched_feat(GENTLE_FAIR_SLEEPERS))
731 thresh >>= 1;
51e0304c 732
a2e7a7eb 733 vruntime -= thresh;
aeb73b04
PZ
734 }
735
b5d9d734
MG
736 /* ensure we never gain time by being placed backwards. */
737 vruntime = max_vruntime(se->vruntime, vruntime);
738
67e9fb2a 739 se->vruntime = vruntime;
aeb73b04
PZ
740}
741
bf0f6f24 742static void
83b699ed 743enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
744{
745 /*
a2a2d680 746 * Update run-time statistics of the 'current'.
bf0f6f24 747 */
b7cc0896 748 update_curr(cfs_rq);
a992241d 749 account_entity_enqueue(cfs_rq, se);
bf0f6f24 750
e9acbff6 751 if (wakeup) {
aeb73b04 752 place_entity(cfs_rq, se, 0);
2396af69 753 enqueue_sleeper(cfs_rq, se);
e9acbff6 754 }
bf0f6f24 755
d2417e5a 756 update_stats_enqueue(cfs_rq, se);
ddc97297 757 check_spread(cfs_rq, se);
83b699ed
SV
758 if (se != cfs_rq->curr)
759 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
760}
761
a571bbea 762static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 763{
de69a80b 764 if (!se || cfs_rq->last == se)
2002c695
PZ
765 cfs_rq->last = NULL;
766
de69a80b 767 if (!se || cfs_rq->next == se)
2002c695
PZ
768 cfs_rq->next = NULL;
769}
770
a571bbea
PZ
771static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
772{
773 for_each_sched_entity(se)
774 __clear_buddies(cfs_rq_of(se), se);
775}
776
bf0f6f24 777static void
525c2716 778dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 779{
a2a2d680
DA
780 /*
781 * Update run-time statistics of the 'current'.
782 */
783 update_curr(cfs_rq);
784
19b6a2e3 785 update_stats_dequeue(cfs_rq, se);
db36cc7d 786 if (sleep) {
67e9fb2a 787#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
788 if (entity_is_task(se)) {
789 struct task_struct *tsk = task_of(se);
790
791 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 792 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 793 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 794 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 795 }
db36cc7d 796#endif
67e9fb2a
PZ
797 }
798
2002c695 799 clear_buddies(cfs_rq, se);
4793241b 800
83b699ed 801 if (se != cfs_rq->curr)
30cfdcfc
DA
802 __dequeue_entity(cfs_rq, se);
803 account_entity_dequeue(cfs_rq, se);
1af5f730 804 update_min_vruntime(cfs_rq);
bf0f6f24
IM
805}
806
807/*
808 * Preempt the current task with a newly woken task if needed:
809 */
7c92e54f 810static void
2e09bf55 811check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 812{
11697830
PZ
813 unsigned long ideal_runtime, delta_exec;
814
6d0f0ebd 815 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 816 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 817 if (delta_exec > ideal_runtime) {
bf0f6f24 818 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
819 /*
820 * The current task ran long enough, ensure it doesn't get
821 * re-elected due to buddy favours.
822 */
823 clear_buddies(cfs_rq, curr);
824 }
bf0f6f24
IM
825}
826
83b699ed 827static void
8494f412 828set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 829{
83b699ed
SV
830 /* 'current' is not kept within the tree. */
831 if (se->on_rq) {
832 /*
833 * Any task has to be enqueued before it get to execute on
834 * a CPU. So account for the time it spent waiting on the
835 * runqueue.
836 */
837 update_stats_wait_end(cfs_rq, se);
838 __dequeue_entity(cfs_rq, se);
839 }
840
79303e9e 841 update_stats_curr_start(cfs_rq, se);
429d43bc 842 cfs_rq->curr = se;
eba1ed4b
IM
843#ifdef CONFIG_SCHEDSTATS
844 /*
845 * Track our maximum slice length, if the CPU's load is at
846 * least twice that of our own weight (i.e. dont track it
847 * when there are only lesser-weight tasks around):
848 */
495eca49 849 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
850 se->slice_max = max(se->slice_max,
851 se->sum_exec_runtime - se->prev_sum_exec_runtime);
852 }
853#endif
4a55b450 854 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
855}
856
3f3a4904
PZ
857static int
858wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
859
f4b6755f 860static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 861{
f4b6755f
PZ
862 struct sched_entity *se = __pick_next_entity(cfs_rq);
863
4793241b
PZ
864 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
865 return cfs_rq->next;
aa2ac252 866
4793241b
PZ
867 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
868 return cfs_rq->last;
869
870 return se;
aa2ac252
PZ
871}
872
ab6cde26 873static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
874{
875 /*
876 * If still on the runqueue then deactivate_task()
877 * was not called and update_curr() has to be done:
878 */
879 if (prev->on_rq)
b7cc0896 880 update_curr(cfs_rq);
bf0f6f24 881
ddc97297 882 check_spread(cfs_rq, prev);
30cfdcfc 883 if (prev->on_rq) {
5870db5b 884 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
885 /* Put 'current' back into the tree. */
886 __enqueue_entity(cfs_rq, prev);
887 }
429d43bc 888 cfs_rq->curr = NULL;
bf0f6f24
IM
889}
890
8f4d37ec
PZ
891static void
892entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 893{
bf0f6f24 894 /*
30cfdcfc 895 * Update run-time statistics of the 'current'.
bf0f6f24 896 */
30cfdcfc 897 update_curr(cfs_rq);
bf0f6f24 898
8f4d37ec
PZ
899#ifdef CONFIG_SCHED_HRTICK
900 /*
901 * queued ticks are scheduled to match the slice, so don't bother
902 * validating it and just reschedule.
903 */
983ed7a6
HH
904 if (queued) {
905 resched_task(rq_of(cfs_rq)->curr);
906 return;
907 }
8f4d37ec
PZ
908 /*
909 * don't let the period tick interfere with the hrtick preemption
910 */
911 if (!sched_feat(DOUBLE_TICK) &&
912 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
913 return;
914#endif
915
ce6c1311 916 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 917 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
918}
919
920/**************************************************
921 * CFS operations on tasks:
922 */
923
8f4d37ec
PZ
924#ifdef CONFIG_SCHED_HRTICK
925static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
926{
8f4d37ec
PZ
927 struct sched_entity *se = &p->se;
928 struct cfs_rq *cfs_rq = cfs_rq_of(se);
929
930 WARN_ON(task_rq(p) != rq);
931
932 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
933 u64 slice = sched_slice(cfs_rq, se);
934 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
935 s64 delta = slice - ran;
936
937 if (delta < 0) {
938 if (rq->curr == p)
939 resched_task(p);
940 return;
941 }
942
943 /*
944 * Don't schedule slices shorter than 10000ns, that just
945 * doesn't make sense. Rely on vruntime for fairness.
946 */
31656519 947 if (rq->curr != p)
157124c1 948 delta = max_t(s64, 10000LL, delta);
8f4d37ec 949
31656519 950 hrtick_start(rq, delta);
8f4d37ec
PZ
951 }
952}
a4c2f00f
PZ
953
954/*
955 * called from enqueue/dequeue and updates the hrtick when the
956 * current task is from our class and nr_running is low enough
957 * to matter.
958 */
959static void hrtick_update(struct rq *rq)
960{
961 struct task_struct *curr = rq->curr;
962
963 if (curr->sched_class != &fair_sched_class)
964 return;
965
966 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
967 hrtick_start_fair(rq, curr);
968}
55e12e5e 969#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
970static inline void
971hrtick_start_fair(struct rq *rq, struct task_struct *p)
972{
973}
a4c2f00f
PZ
974
975static inline void hrtick_update(struct rq *rq)
976{
977}
8f4d37ec
PZ
978#endif
979
bf0f6f24
IM
980/*
981 * The enqueue_task method is called before nr_running is
982 * increased. Here we update the fair scheduling stats and
983 * then put the task into the rbtree:
984 */
fd390f6a 985static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
986{
987 struct cfs_rq *cfs_rq;
62fb1851 988 struct sched_entity *se = &p->se;
bf0f6f24
IM
989
990 for_each_sched_entity(se) {
62fb1851 991 if (se->on_rq)
bf0f6f24
IM
992 break;
993 cfs_rq = cfs_rq_of(se);
83b699ed 994 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 995 wakeup = 1;
bf0f6f24 996 }
8f4d37ec 997
a4c2f00f 998 hrtick_update(rq);
bf0f6f24
IM
999}
1000
1001/*
1002 * The dequeue_task method is called before nr_running is
1003 * decreased. We remove the task from the rbtree and
1004 * update the fair scheduling stats:
1005 */
f02231e5 1006static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1007{
1008 struct cfs_rq *cfs_rq;
62fb1851 1009 struct sched_entity *se = &p->se;
bf0f6f24
IM
1010
1011 for_each_sched_entity(se) {
1012 cfs_rq = cfs_rq_of(se);
525c2716 1013 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1014 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1015 if (cfs_rq->load.weight)
bf0f6f24 1016 break;
b9fa3df3 1017 sleep = 1;
bf0f6f24 1018 }
8f4d37ec 1019
a4c2f00f 1020 hrtick_update(rq);
bf0f6f24
IM
1021}
1022
1023/*
1799e35d
IM
1024 * sched_yield() support is very simple - we dequeue and enqueue.
1025 *
1026 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1027 */
4530d7ab 1028static void yield_task_fair(struct rq *rq)
bf0f6f24 1029{
db292ca3
IM
1030 struct task_struct *curr = rq->curr;
1031 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1032 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1033
1034 /*
1799e35d
IM
1035 * Are we the only task in the tree?
1036 */
1037 if (unlikely(cfs_rq->nr_running == 1))
1038 return;
1039
2002c695
PZ
1040 clear_buddies(cfs_rq, se);
1041
db292ca3 1042 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1043 update_rq_clock(rq);
1799e35d 1044 /*
a2a2d680 1045 * Update run-time statistics of the 'current'.
1799e35d 1046 */
2b1e315d 1047 update_curr(cfs_rq);
1799e35d
IM
1048
1049 return;
1050 }
1051 /*
1052 * Find the rightmost entry in the rbtree:
bf0f6f24 1053 */
2b1e315d 1054 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1055 /*
1056 * Already in the rightmost position?
1057 */
54fdc581 1058 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1059 return;
1060
1061 /*
1062 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1063 * Upon rescheduling, sched_class::put_prev_task() will place
1064 * 'current' within the tree based on its new key value.
1799e35d 1065 */
30cfdcfc 1066 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1067}
1068
e7693a36 1069#ifdef CONFIG_SMP
098fb9db 1070
bb3469ac 1071#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1072/*
1073 * effective_load() calculates the load change as seen from the root_task_group
1074 *
1075 * Adding load to a group doesn't make a group heavier, but can cause movement
1076 * of group shares between cpus. Assuming the shares were perfectly aligned one
1077 * can calculate the shift in shares.
1078 *
1079 * The problem is that perfectly aligning the shares is rather expensive, hence
1080 * we try to avoid doing that too often - see update_shares(), which ratelimits
1081 * this change.
1082 *
1083 * We compensate this by not only taking the current delta into account, but
1084 * also considering the delta between when the shares were last adjusted and
1085 * now.
1086 *
1087 * We still saw a performance dip, some tracing learned us that between
1088 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1089 * significantly. Therefore try to bias the error in direction of failing
1090 * the affine wakeup.
1091 *
1092 */
f1d239f7
PZ
1093static long effective_load(struct task_group *tg, int cpu,
1094 long wl, long wg)
bb3469ac 1095{
4be9daaa 1096 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1097
1098 if (!tg->parent)
1099 return wl;
1100
f5bfb7d9
PZ
1101 /*
1102 * By not taking the decrease of shares on the other cpu into
1103 * account our error leans towards reducing the affine wakeups.
1104 */
1105 if (!wl && sched_feat(ASYM_EFF_LOAD))
1106 return wl;
1107
4be9daaa 1108 for_each_sched_entity(se) {
cb5ef42a 1109 long S, rw, s, a, b;
940959e9
PZ
1110 long more_w;
1111
1112 /*
1113 * Instead of using this increment, also add the difference
1114 * between when the shares were last updated and now.
1115 */
1116 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1117 wl += more_w;
1118 wg += more_w;
4be9daaa
PZ
1119
1120 S = se->my_q->tg->shares;
1121 s = se->my_q->shares;
f1d239f7 1122 rw = se->my_q->rq_weight;
bb3469ac 1123
cb5ef42a
PZ
1124 a = S*(rw + wl);
1125 b = S*rw + s*wg;
4be9daaa 1126
940959e9
PZ
1127 wl = s*(a-b);
1128
1129 if (likely(b))
1130 wl /= b;
1131
83378269
PZ
1132 /*
1133 * Assume the group is already running and will
1134 * thus already be accounted for in the weight.
1135 *
1136 * That is, moving shares between CPUs, does not
1137 * alter the group weight.
1138 */
4be9daaa 1139 wg = 0;
4be9daaa 1140 }
bb3469ac 1141
4be9daaa 1142 return wl;
bb3469ac 1143}
4be9daaa 1144
bb3469ac 1145#else
4be9daaa 1146
83378269
PZ
1147static inline unsigned long effective_load(struct task_group *tg, int cpu,
1148 unsigned long wl, unsigned long wg)
4be9daaa 1149{
83378269 1150 return wl;
bb3469ac 1151}
4be9daaa 1152
bb3469ac
PZ
1153#endif
1154
c88d5910 1155static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1156{
c88d5910
PZ
1157 struct task_struct *curr = current;
1158 unsigned long this_load, load;
1159 int idx, this_cpu, prev_cpu;
098fb9db 1160 unsigned long tl_per_task;
c88d5910
PZ
1161 unsigned int imbalance;
1162 struct task_group *tg;
83378269 1163 unsigned long weight;
b3137bc8 1164 int balanced;
098fb9db 1165
c88d5910
PZ
1166 idx = sd->wake_idx;
1167 this_cpu = smp_processor_id();
1168 prev_cpu = task_cpu(p);
1169 load = source_load(prev_cpu, idx);
1170 this_load = target_load(this_cpu, idx);
098fb9db 1171
e69b0f1b
PZ
1172 if (sync) {
1173 if (sched_feat(SYNC_LESS) &&
1174 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1175 p->se.avg_overlap > sysctl_sched_migration_cost))
1176 sync = 0;
1177 } else {
1178 if (sched_feat(SYNC_MORE) &&
1179 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1180 p->se.avg_overlap < sysctl_sched_migration_cost))
1181 sync = 1;
1182 }
fc631c82 1183
b3137bc8
MG
1184 /*
1185 * If sync wakeup then subtract the (maximum possible)
1186 * effect of the currently running task from the load
1187 * of the current CPU:
1188 */
83378269
PZ
1189 if (sync) {
1190 tg = task_group(current);
1191 weight = current->se.load.weight;
1192
c88d5910 1193 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1194 load += effective_load(tg, prev_cpu, 0, -weight);
1195 }
b3137bc8 1196
83378269
PZ
1197 tg = task_group(p);
1198 weight = p->se.load.weight;
b3137bc8 1199
c88d5910
PZ
1200 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1201
71a29aa7
PZ
1202 /*
1203 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1204 * due to the sync cause above having dropped this_load to 0, we'll
1205 * always have an imbalance, but there's really nothing you can do
1206 * about that, so that's good too.
71a29aa7
PZ
1207 *
1208 * Otherwise check if either cpus are near enough in load to allow this
1209 * task to be woken on this_cpu.
1210 */
c88d5910
PZ
1211 balanced = !this_load ||
1212 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1213 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1214
098fb9db 1215 /*
4ae7d5ce
IM
1216 * If the currently running task will sleep within
1217 * a reasonable amount of time then attract this newly
1218 * woken task:
098fb9db 1219 */
2fb7635c
PZ
1220 if (sync && balanced)
1221 return 1;
098fb9db
IM
1222
1223 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1224 tl_per_task = cpu_avg_load_per_task(this_cpu);
1225
c88d5910
PZ
1226 if (balanced ||
1227 (this_load <= load &&
1228 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1229 /*
1230 * This domain has SD_WAKE_AFFINE and
1231 * p is cache cold in this domain, and
1232 * there is no bad imbalance.
1233 */
c88d5910 1234 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1235 schedstat_inc(p, se.nr_wakeups_affine);
1236
1237 return 1;
1238 }
1239 return 0;
1240}
1241
aaee1203
PZ
1242/*
1243 * find_idlest_group finds and returns the least busy CPU group within the
1244 * domain.
1245 */
1246static struct sched_group *
78e7ed53 1247find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1248 int this_cpu, int load_idx)
aaee1203
PZ
1249{
1250 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1251 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203
PZ
1252 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1253
1254 do {
1255 unsigned long load, avg_load;
1256 int local_group;
1257 int i;
1258
1259 /* Skip over this group if it has no CPUs allowed */
1260 if (!cpumask_intersects(sched_group_cpus(group),
1261 &p->cpus_allowed))
1262 continue;
1263
1264 local_group = cpumask_test_cpu(this_cpu,
1265 sched_group_cpus(group));
1266
1267 /* Tally up the load of all CPUs in the group */
1268 avg_load = 0;
1269
1270 for_each_cpu(i, sched_group_cpus(group)) {
1271 /* Bias balancing toward cpus of our domain */
1272 if (local_group)
1273 load = source_load(i, load_idx);
1274 else
1275 load = target_load(i, load_idx);
1276
1277 avg_load += load;
1278 }
1279
1280 /* Adjust by relative CPU power of the group */
1281 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1282
1283 if (local_group) {
1284 this_load = avg_load;
1285 this = group;
1286 } else if (avg_load < min_load) {
1287 min_load = avg_load;
1288 idlest = group;
1289 }
1290 } while (group = group->next, group != sd->groups);
1291
1292 if (!idlest || 100*this_load < imbalance*min_load)
1293 return NULL;
1294 return idlest;
1295}
1296
1297/*
1298 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1299 */
1300static int
1301find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1302{
1303 unsigned long load, min_load = ULONG_MAX;
1304 int idlest = -1;
1305 int i;
1306
1307 /* Traverse only the allowed CPUs */
1308 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1309 load = weighted_cpuload(i);
1310
1311 if (load < min_load || (load == min_load && i == this_cpu)) {
1312 min_load = load;
1313 idlest = i;
1314 }
1315 }
1316
1317 return idlest;
1318}
1319
1320/*
1321 * sched_balance_self: balance the current task (running on cpu) in domains
1322 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1323 * SD_BALANCE_EXEC.
1324 *
1325 * Balance, ie. select the least loaded group.
1326 *
1327 * Returns the target CPU number, or the same CPU if no balancing is needed.
1328 *
1329 * preempt must be disabled.
1330 */
5158f4e4 1331static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1332{
29cd8bae 1333 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1334 int cpu = smp_processor_id();
1335 int prev_cpu = task_cpu(p);
1336 int new_cpu = cpu;
1337 int want_affine = 0;
29cd8bae 1338 int want_sd = 1;
5158f4e4 1339 int sync = wake_flags & WF_SYNC;
c88d5910 1340
0763a660 1341 if (sd_flag & SD_BALANCE_WAKE) {
3f04e8cd
MG
1342 if (sched_feat(AFFINE_WAKEUPS) &&
1343 cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1344 want_affine = 1;
1345 new_cpu = prev_cpu;
1346 }
aaee1203 1347
83f54960 1348 rcu_read_lock();
aaee1203
PZ
1349 for_each_domain(cpu, tmp) {
1350 /*
ae154be1
PZ
1351 * If power savings logic is enabled for a domain, see if we
1352 * are not overloaded, if so, don't balance wider.
aaee1203 1353 */
59abf026 1354 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1355 unsigned long power = 0;
1356 unsigned long nr_running = 0;
1357 unsigned long capacity;
1358 int i;
1359
1360 for_each_cpu(i, sched_domain_span(tmp)) {
1361 power += power_of(i);
1362 nr_running += cpu_rq(i)->cfs.nr_running;
1363 }
1364
1365 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1366
59abf026
PZ
1367 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1368 nr_running /= 2;
1369
1370 if (nr_running < capacity)
29cd8bae 1371 want_sd = 0;
ae154be1 1372 }
aaee1203 1373
c88d5910
PZ
1374 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1375 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1376
29cd8bae 1377 affine_sd = tmp;
c88d5910
PZ
1378 want_affine = 0;
1379 }
1380
29cd8bae
PZ
1381 if (!want_sd && !want_affine)
1382 break;
1383
0763a660 1384 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1385 continue;
1386
29cd8bae
PZ
1387 if (want_sd)
1388 sd = tmp;
1389 }
1390
1391 if (sched_feat(LB_SHARES_UPDATE)) {
1392 /*
1393 * Pick the largest domain to update shares over
1394 */
1395 tmp = sd;
1396 if (affine_sd && (!tmp ||
1397 cpumask_weight(sched_domain_span(affine_sd)) >
1398 cpumask_weight(sched_domain_span(sd))))
1399 tmp = affine_sd;
1400
1401 if (tmp)
1402 update_shares(tmp);
c88d5910 1403 }
aaee1203 1404
29cd8bae
PZ
1405 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1406 new_cpu = cpu;
1407 goto out;
1408 }
3b640894 1409
aaee1203 1410 while (sd) {
5158f4e4 1411 int load_idx = sd->forkexec_idx;
aaee1203 1412 struct sched_group *group;
c88d5910 1413 int weight;
aaee1203 1414
0763a660 1415 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1416 sd = sd->child;
1417 continue;
1418 }
1419
5158f4e4
PZ
1420 if (sd_flag & SD_BALANCE_WAKE)
1421 load_idx = sd->wake_idx;
1422
1423 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1424 if (!group) {
1425 sd = sd->child;
1426 continue;
1427 }
1428
d7c33c49 1429 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1430 if (new_cpu == -1 || new_cpu == cpu) {
1431 /* Now try balancing at a lower domain level of cpu */
1432 sd = sd->child;
1433 continue;
1434 }
1435
1436 /* Now try balancing at a lower domain level of new_cpu */
1437 cpu = new_cpu;
1438 weight = cpumask_weight(sched_domain_span(sd));
1439 sd = NULL;
1440 for_each_domain(cpu, tmp) {
1441 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1442 break;
0763a660 1443 if (tmp->flags & sd_flag)
aaee1203
PZ
1444 sd = tmp;
1445 }
1446 /* while loop will break here if sd == NULL */
1447 }
1448
83f54960
PZ
1449out:
1450 rcu_read_unlock();
c88d5910 1451 return new_cpu;
aaee1203 1452}
e7693a36
GH
1453#endif /* CONFIG_SMP */
1454
e52fb7c0
PZ
1455/*
1456 * Adaptive granularity
1457 *
1458 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1459 * with the limit of wakeup_gran -- when it never does a wakeup.
1460 *
1461 * So the smaller avg_wakeup is the faster we want this task to preempt,
1462 * but we don't want to treat the preemptee unfairly and therefore allow it
1463 * to run for at least the amount of time we'd like to run.
1464 *
1465 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1466 *
1467 * NOTE: we use *nr_running to scale with load, this nicely matches the
1468 * degrading latency on load.
1469 */
1470static unsigned long
1471adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1472{
1473 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1474 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1475 u64 gran = 0;
1476
1477 if (this_run < expected_wakeup)
1478 gran = expected_wakeup - this_run;
1479
1480 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1481}
1482
1483static unsigned long
1484wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1485{
1486 unsigned long gran = sysctl_sched_wakeup_granularity;
1487
e52fb7c0
PZ
1488 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1489 gran = adaptive_gran(curr, se);
1490
0bbd3336 1491 /*
e52fb7c0
PZ
1492 * Since its curr running now, convert the gran from real-time
1493 * to virtual-time in his units.
0bbd3336 1494 */
e52fb7c0
PZ
1495 if (sched_feat(ASYM_GRAN)) {
1496 /*
1497 * By using 'se' instead of 'curr' we penalize light tasks, so
1498 * they get preempted easier. That is, if 'se' < 'curr' then
1499 * the resulting gran will be larger, therefore penalizing the
1500 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1501 * be smaller, again penalizing the lighter task.
1502 *
1503 * This is especially important for buddies when the leftmost
1504 * task is higher priority than the buddy.
1505 */
1506 if (unlikely(se->load.weight != NICE_0_LOAD))
1507 gran = calc_delta_fair(gran, se);
1508 } else {
1509 if (unlikely(curr->load.weight != NICE_0_LOAD))
1510 gran = calc_delta_fair(gran, curr);
1511 }
0bbd3336
PZ
1512
1513 return gran;
1514}
1515
464b7527
PZ
1516/*
1517 * Should 'se' preempt 'curr'.
1518 *
1519 * |s1
1520 * |s2
1521 * |s3
1522 * g
1523 * |<--->|c
1524 *
1525 * w(c, s1) = -1
1526 * w(c, s2) = 0
1527 * w(c, s3) = 1
1528 *
1529 */
1530static int
1531wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1532{
1533 s64 gran, vdiff = curr->vruntime - se->vruntime;
1534
1535 if (vdiff <= 0)
1536 return -1;
1537
e52fb7c0 1538 gran = wakeup_gran(curr, se);
464b7527
PZ
1539 if (vdiff > gran)
1540 return 1;
1541
1542 return 0;
1543}
1544
02479099
PZ
1545static void set_last_buddy(struct sched_entity *se)
1546{
6bc912b7
PZ
1547 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1548 for_each_sched_entity(se)
1549 cfs_rq_of(se)->last = se;
1550 }
02479099
PZ
1551}
1552
1553static void set_next_buddy(struct sched_entity *se)
1554{
6bc912b7
PZ
1555 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1556 for_each_sched_entity(se)
1557 cfs_rq_of(se)->next = se;
1558 }
02479099
PZ
1559}
1560
bf0f6f24
IM
1561/*
1562 * Preempt the current task with a newly woken task if needed:
1563 */
5a9b86f6 1564static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1565{
1566 struct task_struct *curr = rq->curr;
8651a86c 1567 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1568 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5a9b86f6 1569 int sync = wake_flags & WF_SYNC;
bf0f6f24 1570
03e89e45 1571 update_curr(cfs_rq);
4793241b 1572
03e89e45 1573 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1574 resched_task(curr);
1575 return;
1576 }
aa2ac252 1577
d95f98d0
PZ
1578 if (unlikely(p->sched_class != &fair_sched_class))
1579 return;
1580
4ae7d5ce
IM
1581 if (unlikely(se == pse))
1582 return;
1583
4793241b
PZ
1584 /*
1585 * Only set the backward buddy when the current task is still on the
1586 * rq. This can happen when a wakeup gets interleaved with schedule on
1587 * the ->pre_schedule() or idle_balance() point, either of which can
1588 * drop the rq lock.
1589 *
1590 * Also, during early boot the idle thread is in the fair class, for
1591 * obvious reasons its a bad idea to schedule back to the idle thread.
1592 */
1593 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099 1594 set_last_buddy(se);
5a9b86f6 1595 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
3cb63d52 1596 set_next_buddy(pse);
57fdc26d 1597
aec0a514
BR
1598 /*
1599 * We can come here with TIF_NEED_RESCHED already set from new task
1600 * wake up path.
1601 */
1602 if (test_tsk_need_resched(curr))
1603 return;
1604
91c234b4 1605 /*
6bc912b7 1606 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1607 * the tick):
1608 */
6bc912b7 1609 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1610 return;
bf0f6f24 1611
6bc912b7
PZ
1612 /* Idle tasks are by definition preempted by everybody. */
1613 if (unlikely(curr->policy == SCHED_IDLE)) {
1614 resched_task(curr);
91c234b4 1615 return;
6bc912b7 1616 }
bf0f6f24 1617
e6b1b2c9
PZ
1618 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1619 (sched_feat(WAKEUP_OVERLAP) &&
1620 (se->avg_overlap < sysctl_sched_migration_cost &&
1621 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1622 resched_task(curr);
1623 return;
1624 }
1625
ad4b78bb
PZ
1626 if (sched_feat(WAKEUP_RUNNING)) {
1627 if (pse->avg_running < se->avg_running) {
1628 set_next_buddy(pse);
1629 resched_task(curr);
1630 return;
1631 }
1632 }
1633
1634 if (!sched_feat(WAKEUP_PREEMPT))
1635 return;
1636
464b7527
PZ
1637 find_matching_se(&se, &pse);
1638
002f128b 1639 BUG_ON(!pse);
464b7527 1640
002f128b
PT
1641 if (wakeup_preempt_entity(se, pse) == 1)
1642 resched_task(curr);
bf0f6f24
IM
1643}
1644
fb8d4724 1645static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1646{
8f4d37ec 1647 struct task_struct *p;
bf0f6f24
IM
1648 struct cfs_rq *cfs_rq = &rq->cfs;
1649 struct sched_entity *se;
1650
1651 if (unlikely(!cfs_rq->nr_running))
1652 return NULL;
1653
1654 do {
9948f4b2 1655 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1656 /*
1657 * If se was a buddy, clear it so that it will have to earn
1658 * the favour again.
de69a80b
PZ
1659 *
1660 * If se was not a buddy, clear the buddies because neither
1661 * was elegible to run, let them earn it again.
1662 *
1663 * IOW. unconditionally clear buddies.
a9f3e2b5 1664 */
de69a80b 1665 __clear_buddies(cfs_rq, NULL);
f4b6755f 1666 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1667 cfs_rq = group_cfs_rq(se);
1668 } while (cfs_rq);
1669
8f4d37ec
PZ
1670 p = task_of(se);
1671 hrtick_start_fair(rq, p);
1672
1673 return p;
bf0f6f24
IM
1674}
1675
1676/*
1677 * Account for a descheduled task:
1678 */
31ee529c 1679static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1680{
1681 struct sched_entity *se = &prev->se;
1682 struct cfs_rq *cfs_rq;
1683
1684 for_each_sched_entity(se) {
1685 cfs_rq = cfs_rq_of(se);
ab6cde26 1686 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1687 }
1688}
1689
681f3e68 1690#ifdef CONFIG_SMP
bf0f6f24
IM
1691/**************************************************
1692 * Fair scheduling class load-balancing methods:
1693 */
1694
1695/*
1696 * Load-balancing iterator. Note: while the runqueue stays locked
1697 * during the whole iteration, the current task might be
1698 * dequeued so the iterator has to be dequeue-safe. Here we
1699 * achieve that by always pre-iterating before returning
1700 * the current task:
1701 */
a9957449 1702static struct task_struct *
4a55bd5e 1703__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1704{
354d60c2
DG
1705 struct task_struct *p = NULL;
1706 struct sched_entity *se;
bf0f6f24 1707
77ae6513
MG
1708 if (next == &cfs_rq->tasks)
1709 return NULL;
1710
b87f1724
BR
1711 se = list_entry(next, struct sched_entity, group_node);
1712 p = task_of(se);
1713 cfs_rq->balance_iterator = next->next;
77ae6513 1714
bf0f6f24
IM
1715 return p;
1716}
1717
1718static struct task_struct *load_balance_start_fair(void *arg)
1719{
1720 struct cfs_rq *cfs_rq = arg;
1721
4a55bd5e 1722 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1723}
1724
1725static struct task_struct *load_balance_next_fair(void *arg)
1726{
1727 struct cfs_rq *cfs_rq = arg;
1728
4a55bd5e 1729 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1730}
1731
c09595f6
PZ
1732static unsigned long
1733__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1734 unsigned long max_load_move, struct sched_domain *sd,
1735 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1736 struct cfs_rq *cfs_rq)
62fb1851 1737{
c09595f6 1738 struct rq_iterator cfs_rq_iterator;
62fb1851 1739
c09595f6
PZ
1740 cfs_rq_iterator.start = load_balance_start_fair;
1741 cfs_rq_iterator.next = load_balance_next_fair;
1742 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1743
c09595f6
PZ
1744 return balance_tasks(this_rq, this_cpu, busiest,
1745 max_load_move, sd, idle, all_pinned,
1746 this_best_prio, &cfs_rq_iterator);
62fb1851 1747}
62fb1851 1748
c09595f6 1749#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1750static unsigned long
bf0f6f24 1751load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1752 unsigned long max_load_move,
a4ac01c3
PW
1753 struct sched_domain *sd, enum cpu_idle_type idle,
1754 int *all_pinned, int *this_best_prio)
bf0f6f24 1755{
bf0f6f24 1756 long rem_load_move = max_load_move;
c09595f6
PZ
1757 int busiest_cpu = cpu_of(busiest);
1758 struct task_group *tg;
18d95a28 1759
c09595f6 1760 rcu_read_lock();
c8cba857 1761 update_h_load(busiest_cpu);
18d95a28 1762
caea8a03 1763 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1764 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1765 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1766 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1767 u64 rem_load, moved_load;
18d95a28 1768
c09595f6
PZ
1769 /*
1770 * empty group
1771 */
c8cba857 1772 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1773 continue;
1774
243e0e7b
SV
1775 rem_load = (u64)rem_load_move * busiest_weight;
1776 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1777
c09595f6 1778 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1779 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1780 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1781
c09595f6 1782 if (!moved_load)
bf0f6f24
IM
1783 continue;
1784
42a3ac7d 1785 moved_load *= busiest_h_load;
243e0e7b 1786 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1787
c09595f6
PZ
1788 rem_load_move -= moved_load;
1789 if (rem_load_move < 0)
bf0f6f24
IM
1790 break;
1791 }
c09595f6 1792 rcu_read_unlock();
bf0f6f24 1793
43010659 1794 return max_load_move - rem_load_move;
bf0f6f24 1795}
c09595f6
PZ
1796#else
1797static unsigned long
1798load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1799 unsigned long max_load_move,
1800 struct sched_domain *sd, enum cpu_idle_type idle,
1801 int *all_pinned, int *this_best_prio)
1802{
1803 return __load_balance_fair(this_rq, this_cpu, busiest,
1804 max_load_move, sd, idle, all_pinned,
1805 this_best_prio, &busiest->cfs);
1806}
1807#endif
bf0f6f24 1808
e1d1484f
PW
1809static int
1810move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1811 struct sched_domain *sd, enum cpu_idle_type idle)
1812{
1813 struct cfs_rq *busy_cfs_rq;
1814 struct rq_iterator cfs_rq_iterator;
1815
1816 cfs_rq_iterator.start = load_balance_start_fair;
1817 cfs_rq_iterator.next = load_balance_next_fair;
1818
1819 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1820 /*
1821 * pass busy_cfs_rq argument into
1822 * load_balance_[start|next]_fair iterators
1823 */
1824 cfs_rq_iterator.arg = busy_cfs_rq;
1825 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1826 &cfs_rq_iterator))
1827 return 1;
1828 }
1829
1830 return 0;
1831}
55e12e5e 1832#endif /* CONFIG_SMP */
e1d1484f 1833
bf0f6f24
IM
1834/*
1835 * scheduler tick hitting a task of our scheduling class:
1836 */
8f4d37ec 1837static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1838{
1839 struct cfs_rq *cfs_rq;
1840 struct sched_entity *se = &curr->se;
1841
1842 for_each_sched_entity(se) {
1843 cfs_rq = cfs_rq_of(se);
8f4d37ec 1844 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1845 }
1846}
1847
1848/*
1849 * Share the fairness runtime between parent and child, thus the
1850 * total amount of pressure for CPU stays equal - new tasks
1851 * get a chance to run but frequent forkers are not allowed to
1852 * monopolize the CPU. Note: the parent runqueue is locked,
1853 * the child is not running yet.
1854 */
ee0827d8 1855static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1856{
1857 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1858 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1859 int this_cpu = smp_processor_id();
bf0f6f24
IM
1860
1861 sched_info_queued(p);
1862
7109c442 1863 update_curr(cfs_rq);
b5d9d734
MG
1864 if (curr)
1865 se->vruntime = curr->vruntime;
aeb73b04 1866 place_entity(cfs_rq, se, 1);
4d78e7b6 1867
3c90e6e9 1868 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1869 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1870 curr && entity_before(curr, se)) {
87fefa38 1871 /*
edcb60a3
IM
1872 * Upon rescheduling, sched_class::put_prev_task() will place
1873 * 'current' within the tree based on its new key value.
1874 */
4d78e7b6 1875 swap(curr->vruntime, se->vruntime);
aec0a514 1876 resched_task(rq->curr);
4d78e7b6 1877 }
bf0f6f24 1878
b9dca1e0 1879 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1880}
1881
cb469845
SR
1882/*
1883 * Priority of the task has changed. Check to see if we preempt
1884 * the current task.
1885 */
1886static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1887 int oldprio, int running)
1888{
1889 /*
1890 * Reschedule if we are currently running on this runqueue and
1891 * our priority decreased, or if we are not currently running on
1892 * this runqueue and our priority is higher than the current's
1893 */
1894 if (running) {
1895 if (p->prio > oldprio)
1896 resched_task(rq->curr);
1897 } else
15afe09b 1898 check_preempt_curr(rq, p, 0);
cb469845
SR
1899}
1900
1901/*
1902 * We switched to the sched_fair class.
1903 */
1904static void switched_to_fair(struct rq *rq, struct task_struct *p,
1905 int running)
1906{
1907 /*
1908 * We were most likely switched from sched_rt, so
1909 * kick off the schedule if running, otherwise just see
1910 * if we can still preempt the current task.
1911 */
1912 if (running)
1913 resched_task(rq->curr);
1914 else
15afe09b 1915 check_preempt_curr(rq, p, 0);
cb469845
SR
1916}
1917
83b699ed
SV
1918/* Account for a task changing its policy or group.
1919 *
1920 * This routine is mostly called to set cfs_rq->curr field when a task
1921 * migrates between groups/classes.
1922 */
1923static void set_curr_task_fair(struct rq *rq)
1924{
1925 struct sched_entity *se = &rq->curr->se;
1926
1927 for_each_sched_entity(se)
1928 set_next_entity(cfs_rq_of(se), se);
1929}
1930
810b3817
PZ
1931#ifdef CONFIG_FAIR_GROUP_SCHED
1932static void moved_group_fair(struct task_struct *p)
1933{
1934 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1935
1936 update_curr(cfs_rq);
1937 place_entity(cfs_rq, &p->se, 1);
1938}
1939#endif
1940
bf0f6f24
IM
1941/*
1942 * All the scheduling class methods:
1943 */
5522d5d5
IM
1944static const struct sched_class fair_sched_class = {
1945 .next = &idle_sched_class,
bf0f6f24
IM
1946 .enqueue_task = enqueue_task_fair,
1947 .dequeue_task = dequeue_task_fair,
1948 .yield_task = yield_task_fair,
1949
2e09bf55 1950 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1951
1952 .pick_next_task = pick_next_task_fair,
1953 .put_prev_task = put_prev_task_fair,
1954
681f3e68 1955#ifdef CONFIG_SMP
4ce72a2c
LZ
1956 .select_task_rq = select_task_rq_fair,
1957
bf0f6f24 1958 .load_balance = load_balance_fair,
e1d1484f 1959 .move_one_task = move_one_task_fair,
681f3e68 1960#endif
bf0f6f24 1961
83b699ed 1962 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1963 .task_tick = task_tick_fair,
1964 .task_new = task_new_fair,
cb469845
SR
1965
1966 .prio_changed = prio_changed_fair,
1967 .switched_to = switched_to_fair,
810b3817
PZ
1968
1969#ifdef CONFIG_FAIR_GROUP_SCHED
1970 .moved_group = moved_group_fair,
1971#endif
bf0f6f24
IM
1972};
1973
1974#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1975static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1976{
bf0f6f24
IM
1977 struct cfs_rq *cfs_rq;
1978
5973e5b9 1979 rcu_read_lock();
c3b64f1e 1980 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1981 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1982 rcu_read_unlock();
bf0f6f24
IM
1983}
1984#endif