]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: fair scheduler should not resched rt tasks
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
62160e3f 146#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 147
62160e3f
IM
148static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
149{
150 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
151}
152
153#define entity_is_task(se) 1
154
b758149c
PZ
155#define for_each_sched_entity(se) \
156 for (; se; se = NULL)
bf0f6f24 157
b758149c 158static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 159{
b758149c 160 return &task_rq(p)->cfs;
bf0f6f24
IM
161}
162
b758149c
PZ
163static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
164{
165 struct task_struct *p = task_of(se);
166 struct rq *rq = task_rq(p);
167
168 return &rq->cfs;
169}
170
171/* runqueue "owned" by this group */
172static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
173{
174 return NULL;
175}
176
177static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
178{
179 return &cpu_rq(this_cpu)->cfs;
180}
181
182#define for_each_leaf_cfs_rq(rq, cfs_rq) \
183 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
184
185static inline int
186is_same_group(struct sched_entity *se, struct sched_entity *pse)
187{
188 return 1;
189}
190
191static inline struct sched_entity *parent_entity(struct sched_entity *se)
192{
193 return NULL;
194}
195
196#endif /* CONFIG_FAIR_GROUP_SCHED */
197
bf0f6f24
IM
198
199/**************************************************************
200 * Scheduling class tree data structure manipulation methods:
201 */
202
0702e3eb 203static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 204{
368059a9
PZ
205 s64 delta = (s64)(vruntime - min_vruntime);
206 if (delta > 0)
02e0431a
PZ
207 min_vruntime = vruntime;
208
209 return min_vruntime;
210}
211
0702e3eb 212static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
213{
214 s64 delta = (s64)(vruntime - min_vruntime);
215 if (delta < 0)
216 min_vruntime = vruntime;
217
218 return min_vruntime;
219}
220
0702e3eb 221static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 222{
30cfdcfc 223 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
224}
225
bf0f6f24
IM
226/*
227 * Enqueue an entity into the rb-tree:
228 */
0702e3eb 229static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
230{
231 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
232 struct rb_node *parent = NULL;
233 struct sched_entity *entry;
9014623c 234 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
235 int leftmost = 1;
236
237 /*
238 * Find the right place in the rbtree:
239 */
240 while (*link) {
241 parent = *link;
242 entry = rb_entry(parent, struct sched_entity, run_node);
243 /*
244 * We dont care about collisions. Nodes with
245 * the same key stay together.
246 */
9014623c 247 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
248 link = &parent->rb_left;
249 } else {
250 link = &parent->rb_right;
251 leftmost = 0;
252 }
253 }
254
255 /*
256 * Maintain a cache of leftmost tree entries (it is frequently
257 * used):
258 */
3fe69747 259 if (leftmost) {
57cb499d 260 cfs_rq->rb_leftmost = &se->run_node;
3fe69747
PZ
261 /*
262 * maintain cfs_rq->min_vruntime to be a monotonic increasing
263 * value tracking the leftmost vruntime in the tree.
264 */
265 cfs_rq->min_vruntime =
266 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
267 }
bf0f6f24
IM
268
269 rb_link_node(&se->run_node, parent, link);
270 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
271}
272
0702e3eb 273static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 274{
3fe69747
PZ
275 if (cfs_rq->rb_leftmost == &se->run_node) {
276 struct rb_node *next_node;
277 struct sched_entity *next;
278
279 next_node = rb_next(&se->run_node);
280 cfs_rq->rb_leftmost = next_node;
281
282 if (next_node) {
283 next = rb_entry(next_node,
284 struct sched_entity, run_node);
285 cfs_rq->min_vruntime =
286 max_vruntime(cfs_rq->min_vruntime,
287 next->vruntime);
288 }
289 }
e9acbff6 290
aa2ac252
PZ
291 if (cfs_rq->next == se)
292 cfs_rq->next = NULL;
293
bf0f6f24 294 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
295}
296
297static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
298{
299 return cfs_rq->rb_leftmost;
300}
301
302static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
303{
304 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
305}
306
aeb73b04
PZ
307static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
308{
7eee3e67 309 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 310
70eee74b
BS
311 if (!last)
312 return NULL;
7eee3e67
IM
313
314 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
315}
316
bf0f6f24
IM
317/**************************************************************
318 * Scheduling class statistics methods:
319 */
320
b2be5e96
PZ
321#ifdef CONFIG_SCHED_DEBUG
322int sched_nr_latency_handler(struct ctl_table *table, int write,
323 struct file *filp, void __user *buffer, size_t *lenp,
324 loff_t *ppos)
325{
326 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
327
328 if (ret || !write)
329 return ret;
330
331 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
332 sysctl_sched_min_granularity);
333
334 return 0;
335}
336#endif
647e7cac 337
a7be37ac
PZ
338/*
339 * delta *= w / rw
340 */
341static inline unsigned long
342calc_delta_weight(unsigned long delta, struct sched_entity *se)
343{
344 for_each_sched_entity(se) {
345 delta = calc_delta_mine(delta,
346 se->load.weight, &cfs_rq_of(se)->load);
347 }
348
349 return delta;
350}
351
352/*
353 * delta *= rw / w
354 */
355static inline unsigned long
356calc_delta_fair(unsigned long delta, struct sched_entity *se)
357{
358 for_each_sched_entity(se) {
359 delta = calc_delta_mine(delta,
360 cfs_rq_of(se)->load.weight, &se->load);
361 }
362
363 return delta;
364}
365
647e7cac
IM
366/*
367 * The idea is to set a period in which each task runs once.
368 *
369 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
370 * this period because otherwise the slices get too small.
371 *
372 * p = (nr <= nl) ? l : l*nr/nl
373 */
4d78e7b6
PZ
374static u64 __sched_period(unsigned long nr_running)
375{
376 u64 period = sysctl_sched_latency;
b2be5e96 377 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
378
379 if (unlikely(nr_running > nr_latency)) {
4bf0b771 380 period = sysctl_sched_min_granularity;
4d78e7b6 381 period *= nr_running;
4d78e7b6
PZ
382 }
383
384 return period;
385}
386
647e7cac
IM
387/*
388 * We calculate the wall-time slice from the period by taking a part
389 * proportional to the weight.
390 *
391 * s = p*w/rw
392 */
6d0f0ebd 393static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 394{
a7be37ac 395 return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
bf0f6f24
IM
396}
397
647e7cac 398/*
ac884dec 399 * We calculate the vruntime slice of a to be inserted task
647e7cac 400 *
a7be37ac 401 * vs = s*rw/w = p
647e7cac 402 */
ac884dec 403static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 404{
ac884dec 405 unsigned long nr_running = cfs_rq->nr_running;
67e9fb2a 406
ac884dec
PZ
407 if (!se->on_rq)
408 nr_running++;
67e9fb2a 409
a7be37ac
PZ
410 return __sched_period(nr_running);
411}
412
bf0f6f24
IM
413/*
414 * Update the current task's runtime statistics. Skip current tasks that
415 * are not in our scheduling class.
416 */
417static inline void
8ebc91d9
IM
418__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
419 unsigned long delta_exec)
bf0f6f24 420{
bbdba7c0 421 unsigned long delta_exec_weighted;
bf0f6f24 422
8179ca23 423 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
424
425 curr->sum_exec_runtime += delta_exec;
7a62eabc 426 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 427 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 428 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
429}
430
b7cc0896 431static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 432{
429d43bc 433 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 434 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
435 unsigned long delta_exec;
436
437 if (unlikely(!curr))
438 return;
439
440 /*
441 * Get the amount of time the current task was running
442 * since the last time we changed load (this cannot
443 * overflow on 32 bits):
444 */
8ebc91d9 445 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 446
8ebc91d9
IM
447 __update_curr(cfs_rq, curr, delta_exec);
448 curr->exec_start = now;
d842de87
SV
449
450 if (entity_is_task(curr)) {
451 struct task_struct *curtask = task_of(curr);
452
453 cpuacct_charge(curtask, delta_exec);
454 }
bf0f6f24
IM
455}
456
457static inline void
5870db5b 458update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 459{
d281918d 460 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
461}
462
bf0f6f24
IM
463/*
464 * Task is being enqueued - update stats:
465 */
d2417e5a 466static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 467{
bf0f6f24
IM
468 /*
469 * Are we enqueueing a waiting task? (for current tasks
470 * a dequeue/enqueue event is a NOP)
471 */
429d43bc 472 if (se != cfs_rq->curr)
5870db5b 473 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
474}
475
bf0f6f24 476static void
9ef0a961 477update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 478{
bbdba7c0
IM
479 schedstat_set(se->wait_max, max(se->wait_max,
480 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
481 schedstat_set(se->wait_count, se->wait_count + 1);
482 schedstat_set(se->wait_sum, se->wait_sum +
483 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 484 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
485}
486
487static inline void
19b6a2e3 488update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 489{
bf0f6f24
IM
490 /*
491 * Mark the end of the wait period if dequeueing a
492 * waiting task:
493 */
429d43bc 494 if (se != cfs_rq->curr)
9ef0a961 495 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
496}
497
498/*
499 * We are picking a new current task - update its stats:
500 */
501static inline void
79303e9e 502update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
503{
504 /*
505 * We are starting a new run period:
506 */
d281918d 507 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
508}
509
bf0f6f24
IM
510/**************************************************
511 * Scheduling class queueing methods:
512 */
513
c09595f6
PZ
514#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
515static void
516add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
517{
518 cfs_rq->task_weight += weight;
519}
520#else
521static inline void
522add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
523{
524}
525#endif
526
30cfdcfc
DA
527static void
528account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
529{
530 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
531 if (!parent_entity(se))
532 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 533 if (entity_is_task(se)) {
c09595f6 534 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
535 list_add(&se->group_node, &cfs_rq->tasks);
536 }
30cfdcfc
DA
537 cfs_rq->nr_running++;
538 se->on_rq = 1;
539}
540
541static void
542account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
543{
544 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
545 if (!parent_entity(se))
546 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 547 if (entity_is_task(se)) {
c09595f6 548 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
549 list_del_init(&se->group_node);
550 }
30cfdcfc
DA
551 cfs_rq->nr_running--;
552 se->on_rq = 0;
553}
554
2396af69 555static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 556{
bf0f6f24
IM
557#ifdef CONFIG_SCHEDSTATS
558 if (se->sleep_start) {
d281918d 559 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 560 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
561
562 if ((s64)delta < 0)
563 delta = 0;
564
565 if (unlikely(delta > se->sleep_max))
566 se->sleep_max = delta;
567
568 se->sleep_start = 0;
569 se->sum_sleep_runtime += delta;
9745512c
AV
570
571 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
572 }
573 if (se->block_start) {
d281918d 574 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 575 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
576
577 if ((s64)delta < 0)
578 delta = 0;
579
580 if (unlikely(delta > se->block_max))
581 se->block_max = delta;
582
583 se->block_start = 0;
584 se->sum_sleep_runtime += delta;
30084fbd
IM
585
586 /*
587 * Blocking time is in units of nanosecs, so shift by 20 to
588 * get a milliseconds-range estimation of the amount of
589 * time that the task spent sleeping:
590 */
591 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 592
30084fbd
IM
593 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
594 delta >> 20);
595 }
9745512c 596 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
597 }
598#endif
599}
600
ddc97297
PZ
601static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
602{
603#ifdef CONFIG_SCHED_DEBUG
604 s64 d = se->vruntime - cfs_rq->min_vruntime;
605
606 if (d < 0)
607 d = -d;
608
609 if (d > 3*sysctl_sched_latency)
610 schedstat_inc(cfs_rq, nr_spread_over);
611#endif
612}
613
aeb73b04
PZ
614static void
615place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
616{
67e9fb2a 617 u64 vruntime;
aeb73b04 618
3fe69747
PZ
619 if (first_fair(cfs_rq)) {
620 vruntime = min_vruntime(cfs_rq->min_vruntime,
621 __pick_next_entity(cfs_rq)->vruntime);
622 } else
623 vruntime = cfs_rq->min_vruntime;
94dfb5e7 624
2cb8600e
PZ
625 /*
626 * The 'current' period is already promised to the current tasks,
627 * however the extra weight of the new task will slow them down a
628 * little, place the new task so that it fits in the slot that
629 * stays open at the end.
630 */
94dfb5e7 631 if (initial && sched_feat(START_DEBIT))
647e7cac 632 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 633
8465e792 634 if (!initial) {
2cb8600e 635 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
636 if (sched_feat(NEW_FAIR_SLEEPERS)) {
637 unsigned long thresh = sysctl_sched_latency;
638
639 /*
640 * convert the sleeper threshold into virtual time
641 */
642 if (sched_feat(NORMALIZED_SLEEPER))
643 thresh = calc_delta_fair(thresh, se);
644
645 vruntime -= thresh;
646 }
94359f05 647
2cb8600e
PZ
648 /* ensure we never gain time by being placed backwards. */
649 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
650 }
651
67e9fb2a 652 se->vruntime = vruntime;
aeb73b04
PZ
653}
654
bf0f6f24 655static void
83b699ed 656enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
657{
658 /*
a2a2d680 659 * Update run-time statistics of the 'current'.
bf0f6f24 660 */
b7cc0896 661 update_curr(cfs_rq);
a992241d 662 account_entity_enqueue(cfs_rq, se);
bf0f6f24 663
e9acbff6 664 if (wakeup) {
aeb73b04 665 place_entity(cfs_rq, se, 0);
2396af69 666 enqueue_sleeper(cfs_rq, se);
e9acbff6 667 }
bf0f6f24 668
d2417e5a 669 update_stats_enqueue(cfs_rq, se);
ddc97297 670 check_spread(cfs_rq, se);
83b699ed
SV
671 if (se != cfs_rq->curr)
672 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
673}
674
675static void
525c2716 676dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 677{
a2a2d680
DA
678 /*
679 * Update run-time statistics of the 'current'.
680 */
681 update_curr(cfs_rq);
682
19b6a2e3 683 update_stats_dequeue(cfs_rq, se);
db36cc7d 684 if (sleep) {
67e9fb2a 685#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
686 if (entity_is_task(se)) {
687 struct task_struct *tsk = task_of(se);
688
689 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 690 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 691 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 692 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 693 }
db36cc7d 694#endif
67e9fb2a
PZ
695 }
696
83b699ed 697 if (se != cfs_rq->curr)
30cfdcfc
DA
698 __dequeue_entity(cfs_rq, se);
699 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
700}
701
702/*
703 * Preempt the current task with a newly woken task if needed:
704 */
7c92e54f 705static void
2e09bf55 706check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 707{
11697830
PZ
708 unsigned long ideal_runtime, delta_exec;
709
6d0f0ebd 710 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 711 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 712 if (delta_exec > ideal_runtime)
bf0f6f24
IM
713 resched_task(rq_of(cfs_rq)->curr);
714}
715
83b699ed 716static void
8494f412 717set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
83b699ed
SV
719 /* 'current' is not kept within the tree. */
720 if (se->on_rq) {
721 /*
722 * Any task has to be enqueued before it get to execute on
723 * a CPU. So account for the time it spent waiting on the
724 * runqueue.
725 */
726 update_stats_wait_end(cfs_rq, se);
727 __dequeue_entity(cfs_rq, se);
728 }
729
79303e9e 730 update_stats_curr_start(cfs_rq, se);
429d43bc 731 cfs_rq->curr = se;
eba1ed4b
IM
732#ifdef CONFIG_SCHEDSTATS
733 /*
734 * Track our maximum slice length, if the CPU's load is at
735 * least twice that of our own weight (i.e. dont track it
736 * when there are only lesser-weight tasks around):
737 */
495eca49 738 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
739 se->slice_max = max(se->slice_max,
740 se->sum_exec_runtime - se->prev_sum_exec_runtime);
741 }
742#endif
4a55b450 743 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
744}
745
aa2ac252
PZ
746static struct sched_entity *
747pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
748{
103638d9
PZ
749 struct rq *rq = rq_of(cfs_rq);
750 u64 pair_slice = rq->clock - cfs_rq->pair_start;
aa2ac252 751
b0aa51b9 752 if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
103638d9 753 cfs_rq->pair_start = rq->clock;
aa2ac252 754 return se;
103638d9 755 }
aa2ac252
PZ
756
757 return cfs_rq->next;
758}
759
9948f4b2 760static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 761{
08ec3df5 762 struct sched_entity *se = NULL;
bf0f6f24 763
08ec3df5
DA
764 if (first_fair(cfs_rq)) {
765 se = __pick_next_entity(cfs_rq);
aa2ac252 766 se = pick_next(cfs_rq, se);
08ec3df5
DA
767 set_next_entity(cfs_rq, se);
768 }
bf0f6f24
IM
769
770 return se;
771}
772
ab6cde26 773static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
774{
775 /*
776 * If still on the runqueue then deactivate_task()
777 * was not called and update_curr() has to be done:
778 */
779 if (prev->on_rq)
b7cc0896 780 update_curr(cfs_rq);
bf0f6f24 781
ddc97297 782 check_spread(cfs_rq, prev);
30cfdcfc 783 if (prev->on_rq) {
5870db5b 784 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
785 /* Put 'current' back into the tree. */
786 __enqueue_entity(cfs_rq, prev);
787 }
429d43bc 788 cfs_rq->curr = NULL;
bf0f6f24
IM
789}
790
8f4d37ec
PZ
791static void
792entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 793{
bf0f6f24 794 /*
30cfdcfc 795 * Update run-time statistics of the 'current'.
bf0f6f24 796 */
30cfdcfc 797 update_curr(cfs_rq);
bf0f6f24 798
8f4d37ec
PZ
799#ifdef CONFIG_SCHED_HRTICK
800 /*
801 * queued ticks are scheduled to match the slice, so don't bother
802 * validating it and just reschedule.
803 */
983ed7a6
HH
804 if (queued) {
805 resched_task(rq_of(cfs_rq)->curr);
806 return;
807 }
8f4d37ec
PZ
808 /*
809 * don't let the period tick interfere with the hrtick preemption
810 */
811 if (!sched_feat(DOUBLE_TICK) &&
812 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
813 return;
814#endif
815
ce6c1311 816 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 817 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
818}
819
820/**************************************************
821 * CFS operations on tasks:
822 */
823
8f4d37ec
PZ
824#ifdef CONFIG_SCHED_HRTICK
825static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
826{
8f4d37ec
PZ
827 struct sched_entity *se = &p->se;
828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
829
830 WARN_ON(task_rq(p) != rq);
831
832 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
833 u64 slice = sched_slice(cfs_rq, se);
834 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
835 s64 delta = slice - ran;
836
837 if (delta < 0) {
838 if (rq->curr == p)
839 resched_task(p);
840 return;
841 }
842
843 /*
844 * Don't schedule slices shorter than 10000ns, that just
845 * doesn't make sense. Rely on vruntime for fairness.
846 */
31656519 847 if (rq->curr != p)
157124c1 848 delta = max_t(s64, 10000LL, delta);
8f4d37ec 849
31656519 850 hrtick_start(rq, delta);
8f4d37ec
PZ
851 }
852}
a4c2f00f
PZ
853
854/*
855 * called from enqueue/dequeue and updates the hrtick when the
856 * current task is from our class and nr_running is low enough
857 * to matter.
858 */
859static void hrtick_update(struct rq *rq)
860{
861 struct task_struct *curr = rq->curr;
862
863 if (curr->sched_class != &fair_sched_class)
864 return;
865
866 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
867 hrtick_start_fair(rq, curr);
868}
55e12e5e 869#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
870static inline void
871hrtick_start_fair(struct rq *rq, struct task_struct *p)
872{
873}
a4c2f00f
PZ
874
875static inline void hrtick_update(struct rq *rq)
876{
877}
8f4d37ec
PZ
878#endif
879
bf0f6f24
IM
880/*
881 * The enqueue_task method is called before nr_running is
882 * increased. Here we update the fair scheduling stats and
883 * then put the task into the rbtree:
884 */
fd390f6a 885static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
886{
887 struct cfs_rq *cfs_rq;
62fb1851 888 struct sched_entity *se = &p->se;
bf0f6f24
IM
889
890 for_each_sched_entity(se) {
62fb1851 891 if (se->on_rq)
bf0f6f24
IM
892 break;
893 cfs_rq = cfs_rq_of(se);
83b699ed 894 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 895 wakeup = 1;
bf0f6f24 896 }
8f4d37ec 897
a4c2f00f 898 hrtick_update(rq);
bf0f6f24
IM
899}
900
901/*
902 * The dequeue_task method is called before nr_running is
903 * decreased. We remove the task from the rbtree and
904 * update the fair scheduling stats:
905 */
f02231e5 906static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
907{
908 struct cfs_rq *cfs_rq;
62fb1851 909 struct sched_entity *se = &p->se;
bf0f6f24
IM
910
911 for_each_sched_entity(se) {
912 cfs_rq = cfs_rq_of(se);
525c2716 913 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 914 /* Don't dequeue parent if it has other entities besides us */
62fb1851 915 if (cfs_rq->load.weight)
bf0f6f24 916 break;
b9fa3df3 917 sleep = 1;
bf0f6f24 918 }
8f4d37ec 919
a4c2f00f 920 hrtick_update(rq);
bf0f6f24
IM
921}
922
923/*
1799e35d
IM
924 * sched_yield() support is very simple - we dequeue and enqueue.
925 *
926 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 927 */
4530d7ab 928static void yield_task_fair(struct rq *rq)
bf0f6f24 929{
db292ca3
IM
930 struct task_struct *curr = rq->curr;
931 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
932 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
933
934 /*
1799e35d
IM
935 * Are we the only task in the tree?
936 */
937 if (unlikely(cfs_rq->nr_running == 1))
938 return;
939
db292ca3 940 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 941 update_rq_clock(rq);
1799e35d 942 /*
a2a2d680 943 * Update run-time statistics of the 'current'.
1799e35d 944 */
2b1e315d 945 update_curr(cfs_rq);
1799e35d
IM
946
947 return;
948 }
949 /*
950 * Find the rightmost entry in the rbtree:
bf0f6f24 951 */
2b1e315d 952 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
953 /*
954 * Already in the rightmost position?
955 */
79b3feff 956 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
957 return;
958
959 /*
960 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
961 * Upon rescheduling, sched_class::put_prev_task() will place
962 * 'current' within the tree based on its new key value.
1799e35d 963 */
30cfdcfc 964 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
965}
966
e7693a36
GH
967/*
968 * wake_idle() will wake a task on an idle cpu if task->cpu is
969 * not idle and an idle cpu is available. The span of cpus to
970 * search starts with cpus closest then further out as needed,
971 * so we always favor a closer, idle cpu.
e761b772
MK
972 * Domains may include CPUs that are not usable for migration,
973 * hence we need to mask them out (cpu_active_map)
e7693a36
GH
974 *
975 * Returns the CPU we should wake onto.
976 */
977#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
978static int wake_idle(int cpu, struct task_struct *p)
979{
980 cpumask_t tmp;
981 struct sched_domain *sd;
982 int i;
983
984 /*
985 * If it is idle, then it is the best cpu to run this task.
986 *
987 * This cpu is also the best, if it has more than one task already.
988 * Siblings must be also busy(in most cases) as they didn't already
989 * pickup the extra load from this cpu and hence we need not check
990 * sibling runqueue info. This will avoid the checks and cache miss
991 * penalities associated with that.
992 */
104f6454 993 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
994 return cpu;
995
996 for_each_domain(cpu, sd) {
1d3504fc
HS
997 if ((sd->flags & SD_WAKE_IDLE)
998 || ((sd->flags & SD_WAKE_IDLE_FAR)
999 && !task_hot(p, task_rq(p)->clock, sd))) {
e7693a36 1000 cpus_and(tmp, sd->span, p->cpus_allowed);
e761b772 1001 cpus_and(tmp, tmp, cpu_active_map);
363ab6f1 1002 for_each_cpu_mask_nr(i, tmp) {
e7693a36
GH
1003 if (idle_cpu(i)) {
1004 if (i != task_cpu(p)) {
1005 schedstat_inc(p,
1006 se.nr_wakeups_idle);
1007 }
1008 return i;
1009 }
1010 }
1011 } else {
1012 break;
1013 }
1014 }
1015 return cpu;
1016}
55e12e5e 1017#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1018static inline int wake_idle(int cpu, struct task_struct *p)
1019{
1020 return cpu;
1021}
1022#endif
1023
1024#ifdef CONFIG_SMP
098fb9db 1025
bb3469ac 1026#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1027/*
1028 * effective_load() calculates the load change as seen from the root_task_group
1029 *
1030 * Adding load to a group doesn't make a group heavier, but can cause movement
1031 * of group shares between cpus. Assuming the shares were perfectly aligned one
1032 * can calculate the shift in shares.
1033 *
1034 * The problem is that perfectly aligning the shares is rather expensive, hence
1035 * we try to avoid doing that too often - see update_shares(), which ratelimits
1036 * this change.
1037 *
1038 * We compensate this by not only taking the current delta into account, but
1039 * also considering the delta between when the shares were last adjusted and
1040 * now.
1041 *
1042 * We still saw a performance dip, some tracing learned us that between
1043 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1044 * significantly. Therefore try to bias the error in direction of failing
1045 * the affine wakeup.
1046 *
1047 */
f1d239f7
PZ
1048static long effective_load(struct task_group *tg, int cpu,
1049 long wl, long wg)
bb3469ac 1050{
4be9daaa 1051 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1052
1053 if (!tg->parent)
1054 return wl;
1055
f5bfb7d9
PZ
1056 /*
1057 * By not taking the decrease of shares on the other cpu into
1058 * account our error leans towards reducing the affine wakeups.
1059 */
1060 if (!wl && sched_feat(ASYM_EFF_LOAD))
1061 return wl;
1062
4be9daaa 1063 for_each_sched_entity(se) {
cb5ef42a 1064 long S, rw, s, a, b;
940959e9
PZ
1065 long more_w;
1066
1067 /*
1068 * Instead of using this increment, also add the difference
1069 * between when the shares were last updated and now.
1070 */
1071 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1072 wl += more_w;
1073 wg += more_w;
4be9daaa
PZ
1074
1075 S = se->my_q->tg->shares;
1076 s = se->my_q->shares;
f1d239f7 1077 rw = se->my_q->rq_weight;
bb3469ac 1078
cb5ef42a
PZ
1079 a = S*(rw + wl);
1080 b = S*rw + s*wg;
4be9daaa 1081
940959e9
PZ
1082 wl = s*(a-b);
1083
1084 if (likely(b))
1085 wl /= b;
1086
83378269
PZ
1087 /*
1088 * Assume the group is already running and will
1089 * thus already be accounted for in the weight.
1090 *
1091 * That is, moving shares between CPUs, does not
1092 * alter the group weight.
1093 */
4be9daaa 1094 wg = 0;
4be9daaa 1095 }
bb3469ac 1096
4be9daaa 1097 return wl;
bb3469ac 1098}
4be9daaa 1099
bb3469ac 1100#else
4be9daaa 1101
83378269
PZ
1102static inline unsigned long effective_load(struct task_group *tg, int cpu,
1103 unsigned long wl, unsigned long wg)
4be9daaa 1104{
83378269 1105 return wl;
bb3469ac 1106}
4be9daaa 1107
bb3469ac
PZ
1108#endif
1109
098fb9db 1110static int
64b9e029 1111wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1112 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1113 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1114 unsigned int imbalance)
1115{
4ae7d5ce 1116 struct task_struct *curr = this_rq->curr;
83378269 1117 struct task_group *tg;
098fb9db
IM
1118 unsigned long tl = this_load;
1119 unsigned long tl_per_task;
83378269 1120 unsigned long weight;
b3137bc8 1121 int balanced;
098fb9db 1122
b3137bc8 1123 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1124 return 0;
1125
2fb7635c
PZ
1126 if (!sync && sched_feat(SYNC_WAKEUPS) &&
1127 curr->se.avg_overlap < sysctl_sched_migration_cost &&
1128 p->se.avg_overlap < sysctl_sched_migration_cost)
1129 sync = 1;
1130
b3137bc8
MG
1131 /*
1132 * If sync wakeup then subtract the (maximum possible)
1133 * effect of the currently running task from the load
1134 * of the current CPU:
1135 */
83378269
PZ
1136 if (sync) {
1137 tg = task_group(current);
1138 weight = current->se.load.weight;
1139
1140 tl += effective_load(tg, this_cpu, -weight, -weight);
1141 load += effective_load(tg, prev_cpu, 0, -weight);
1142 }
b3137bc8 1143
83378269
PZ
1144 tg = task_group(p);
1145 weight = p->se.load.weight;
b3137bc8 1146
83378269
PZ
1147 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1148 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1149
098fb9db 1150 /*
4ae7d5ce
IM
1151 * If the currently running task will sleep within
1152 * a reasonable amount of time then attract this newly
1153 * woken task:
098fb9db 1154 */
2fb7635c
PZ
1155 if (sync && balanced)
1156 return 1;
098fb9db
IM
1157
1158 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1159 tl_per_task = cpu_avg_load_per_task(this_cpu);
1160
64b9e029
AA
1161 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1162 tl_per_task)) {
098fb9db
IM
1163 /*
1164 * This domain has SD_WAKE_AFFINE and
1165 * p is cache cold in this domain, and
1166 * there is no bad imbalance.
1167 */
1168 schedstat_inc(this_sd, ttwu_move_affine);
1169 schedstat_inc(p, se.nr_wakeups_affine);
1170
1171 return 1;
1172 }
1173 return 0;
1174}
1175
e7693a36
GH
1176static int select_task_rq_fair(struct task_struct *p, int sync)
1177{
e7693a36 1178 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1179 int prev_cpu, this_cpu, new_cpu;
098fb9db 1180 unsigned long load, this_load;
64b9e029 1181 struct rq *this_rq;
098fb9db 1182 unsigned int imbalance;
098fb9db 1183 int idx;
e7693a36 1184
ac192d39 1185 prev_cpu = task_cpu(p);
ac192d39 1186 this_cpu = smp_processor_id();
4ae7d5ce 1187 this_rq = cpu_rq(this_cpu);
ac192d39 1188 new_cpu = prev_cpu;
e7693a36 1189
64b9e029
AA
1190 if (prev_cpu == this_cpu)
1191 goto out;
ac192d39
IM
1192 /*
1193 * 'this_sd' is the first domain that both
1194 * this_cpu and prev_cpu are present in:
1195 */
e7693a36 1196 for_each_domain(this_cpu, sd) {
ac192d39 1197 if (cpu_isset(prev_cpu, sd->span)) {
e7693a36
GH
1198 this_sd = sd;
1199 break;
1200 }
1201 }
1202
1203 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
f4827386 1204 goto out;
e7693a36
GH
1205
1206 /*
1207 * Check for affine wakeup and passive balancing possibilities.
1208 */
098fb9db 1209 if (!this_sd)
f4827386 1210 goto out;
e7693a36 1211
098fb9db
IM
1212 idx = this_sd->wake_idx;
1213
1214 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1215
ac192d39 1216 load = source_load(prev_cpu, idx);
098fb9db
IM
1217 this_load = target_load(this_cpu, idx);
1218
64b9e029 1219 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1220 load, this_load, imbalance))
1221 return this_cpu;
1222
098fb9db
IM
1223 /*
1224 * Start passive balancing when half the imbalance_pct
1225 * limit is reached.
1226 */
1227 if (this_sd->flags & SD_WAKE_BALANCE) {
1228 if (imbalance*this_load <= 100*load) {
1229 schedstat_inc(this_sd, ttwu_move_balance);
1230 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1231 return this_cpu;
e7693a36
GH
1232 }
1233 }
1234
f4827386 1235out:
e7693a36
GH
1236 return wake_idle(new_cpu, p);
1237}
1238#endif /* CONFIG_SMP */
1239
0bbd3336
PZ
1240static unsigned long wakeup_gran(struct sched_entity *se)
1241{
1242 unsigned long gran = sysctl_sched_wakeup_granularity;
1243
1244 /*
a7be37ac
PZ
1245 * More easily preempt - nice tasks, while not making it harder for
1246 * + nice tasks.
0bbd3336 1247 */
c9c294a6 1248 if (sched_feat(ASYM_GRAN))
69569850 1249 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
0bbd3336
PZ
1250
1251 return gran;
1252}
1253
bf0f6f24
IM
1254/*
1255 * Preempt the current task with a newly woken task if needed:
1256 */
15afe09b 1257static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1258{
1259 struct task_struct *curr = rq->curr;
fad095a7 1260 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1261 struct sched_entity *se = &curr->se, *pse = &p->se;
69569850 1262 s64 delta_exec;
bf0f6f24
IM
1263
1264 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1265 update_rq_clock(rq);
b7cc0896 1266 update_curr(cfs_rq);
bf0f6f24
IM
1267 resched_task(curr);
1268 return;
1269 }
aa2ac252 1270
4ae7d5ce
IM
1271 if (unlikely(se == pse))
1272 return;
1273
57fdc26d
PZ
1274 cfs_rq_of(pse)->next = pse;
1275
aec0a514
BR
1276 /*
1277 * We can come here with TIF_NEED_RESCHED already set from new task
1278 * wake up path.
1279 */
1280 if (test_tsk_need_resched(curr))
1281 return;
1282
91c234b4
IM
1283 /*
1284 * Batch tasks do not preempt (their preemption is driven by
1285 * the tick):
1286 */
1287 if (unlikely(p->policy == SCHED_BATCH))
1288 return;
bf0f6f24 1289
77d9cc44
IM
1290 if (!sched_feat(WAKEUP_PREEMPT))
1291 return;
8651a86c 1292
2fb7635c
PZ
1293 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1294 (se->avg_overlap < sysctl_sched_migration_cost &&
1295 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1296 resched_task(curr);
1297 return;
1298 }
1299
69569850
PZ
1300 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1301 if (delta_exec > wakeup_gran(pse))
77d9cc44 1302 resched_task(curr);
bf0f6f24
IM
1303}
1304
fb8d4724 1305static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1306{
8f4d37ec 1307 struct task_struct *p;
bf0f6f24
IM
1308 struct cfs_rq *cfs_rq = &rq->cfs;
1309 struct sched_entity *se;
1310
1311 if (unlikely(!cfs_rq->nr_running))
1312 return NULL;
1313
1314 do {
9948f4b2 1315 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1316 cfs_rq = group_cfs_rq(se);
1317 } while (cfs_rq);
1318
8f4d37ec
PZ
1319 p = task_of(se);
1320 hrtick_start_fair(rq, p);
1321
1322 return p;
bf0f6f24
IM
1323}
1324
1325/*
1326 * Account for a descheduled task:
1327 */
31ee529c 1328static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1329{
1330 struct sched_entity *se = &prev->se;
1331 struct cfs_rq *cfs_rq;
1332
1333 for_each_sched_entity(se) {
1334 cfs_rq = cfs_rq_of(se);
ab6cde26 1335 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1336 }
1337}
1338
681f3e68 1339#ifdef CONFIG_SMP
bf0f6f24
IM
1340/**************************************************
1341 * Fair scheduling class load-balancing methods:
1342 */
1343
1344/*
1345 * Load-balancing iterator. Note: while the runqueue stays locked
1346 * during the whole iteration, the current task might be
1347 * dequeued so the iterator has to be dequeue-safe. Here we
1348 * achieve that by always pre-iterating before returning
1349 * the current task:
1350 */
a9957449 1351static struct task_struct *
4a55bd5e 1352__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1353{
354d60c2
DG
1354 struct task_struct *p = NULL;
1355 struct sched_entity *se;
bf0f6f24 1356
77ae6513
MG
1357 if (next == &cfs_rq->tasks)
1358 return NULL;
1359
b87f1724
BR
1360 se = list_entry(next, struct sched_entity, group_node);
1361 p = task_of(se);
1362 cfs_rq->balance_iterator = next->next;
77ae6513 1363
bf0f6f24
IM
1364 return p;
1365}
1366
1367static struct task_struct *load_balance_start_fair(void *arg)
1368{
1369 struct cfs_rq *cfs_rq = arg;
1370
4a55bd5e 1371 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1372}
1373
1374static struct task_struct *load_balance_next_fair(void *arg)
1375{
1376 struct cfs_rq *cfs_rq = arg;
1377
4a55bd5e 1378 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1379}
1380
c09595f6
PZ
1381static unsigned long
1382__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1385 struct cfs_rq *cfs_rq)
62fb1851 1386{
c09595f6 1387 struct rq_iterator cfs_rq_iterator;
62fb1851 1388
c09595f6
PZ
1389 cfs_rq_iterator.start = load_balance_start_fair;
1390 cfs_rq_iterator.next = load_balance_next_fair;
1391 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1392
c09595f6
PZ
1393 return balance_tasks(this_rq, this_cpu, busiest,
1394 max_load_move, sd, idle, all_pinned,
1395 this_best_prio, &cfs_rq_iterator);
62fb1851 1396}
62fb1851 1397
c09595f6 1398#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1399static unsigned long
bf0f6f24 1400load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1401 unsigned long max_load_move,
a4ac01c3
PW
1402 struct sched_domain *sd, enum cpu_idle_type idle,
1403 int *all_pinned, int *this_best_prio)
bf0f6f24 1404{
bf0f6f24 1405 long rem_load_move = max_load_move;
c09595f6
PZ
1406 int busiest_cpu = cpu_of(busiest);
1407 struct task_group *tg;
18d95a28 1408
c09595f6 1409 rcu_read_lock();
c8cba857 1410 update_h_load(busiest_cpu);
18d95a28 1411
caea8a03 1412 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1413 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1414 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1415 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1416 u64 rem_load, moved_load;
18d95a28 1417
c09595f6
PZ
1418 /*
1419 * empty group
1420 */
c8cba857 1421 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1422 continue;
1423
243e0e7b
SV
1424 rem_load = (u64)rem_load_move * busiest_weight;
1425 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1426
c09595f6 1427 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1428 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1429 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1430
c09595f6 1431 if (!moved_load)
bf0f6f24
IM
1432 continue;
1433
42a3ac7d 1434 moved_load *= busiest_h_load;
243e0e7b 1435 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1436
c09595f6
PZ
1437 rem_load_move -= moved_load;
1438 if (rem_load_move < 0)
bf0f6f24
IM
1439 break;
1440 }
c09595f6 1441 rcu_read_unlock();
bf0f6f24 1442
43010659 1443 return max_load_move - rem_load_move;
bf0f6f24 1444}
c09595f6
PZ
1445#else
1446static unsigned long
1447load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1448 unsigned long max_load_move,
1449 struct sched_domain *sd, enum cpu_idle_type idle,
1450 int *all_pinned, int *this_best_prio)
1451{
1452 return __load_balance_fair(this_rq, this_cpu, busiest,
1453 max_load_move, sd, idle, all_pinned,
1454 this_best_prio, &busiest->cfs);
1455}
1456#endif
bf0f6f24 1457
e1d1484f
PW
1458static int
1459move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1460 struct sched_domain *sd, enum cpu_idle_type idle)
1461{
1462 struct cfs_rq *busy_cfs_rq;
1463 struct rq_iterator cfs_rq_iterator;
1464
1465 cfs_rq_iterator.start = load_balance_start_fair;
1466 cfs_rq_iterator.next = load_balance_next_fair;
1467
1468 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1469 /*
1470 * pass busy_cfs_rq argument into
1471 * load_balance_[start|next]_fair iterators
1472 */
1473 cfs_rq_iterator.arg = busy_cfs_rq;
1474 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1475 &cfs_rq_iterator))
1476 return 1;
1477 }
1478
1479 return 0;
1480}
55e12e5e 1481#endif /* CONFIG_SMP */
e1d1484f 1482
bf0f6f24
IM
1483/*
1484 * scheduler tick hitting a task of our scheduling class:
1485 */
8f4d37ec 1486static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1487{
1488 struct cfs_rq *cfs_rq;
1489 struct sched_entity *se = &curr->se;
1490
1491 for_each_sched_entity(se) {
1492 cfs_rq = cfs_rq_of(se);
8f4d37ec 1493 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1494 }
1495}
1496
8eb172d9 1497#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1498
bf0f6f24
IM
1499/*
1500 * Share the fairness runtime between parent and child, thus the
1501 * total amount of pressure for CPU stays equal - new tasks
1502 * get a chance to run but frequent forkers are not allowed to
1503 * monopolize the CPU. Note: the parent runqueue is locked,
1504 * the child is not running yet.
1505 */
ee0827d8 1506static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1507{
1508 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1509 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1510 int this_cpu = smp_processor_id();
bf0f6f24
IM
1511
1512 sched_info_queued(p);
1513
7109c442 1514 update_curr(cfs_rq);
aeb73b04 1515 place_entity(cfs_rq, se, 1);
4d78e7b6 1516
3c90e6e9 1517 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1518 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1519 curr && curr->vruntime < se->vruntime) {
87fefa38 1520 /*
edcb60a3
IM
1521 * Upon rescheduling, sched_class::put_prev_task() will place
1522 * 'current' within the tree based on its new key value.
1523 */
4d78e7b6 1524 swap(curr->vruntime, se->vruntime);
aec0a514 1525 resched_task(rq->curr);
4d78e7b6 1526 }
bf0f6f24 1527
b9dca1e0 1528 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1529}
1530
cb469845
SR
1531/*
1532 * Priority of the task has changed. Check to see if we preempt
1533 * the current task.
1534 */
1535static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1536 int oldprio, int running)
1537{
1538 /*
1539 * Reschedule if we are currently running on this runqueue and
1540 * our priority decreased, or if we are not currently running on
1541 * this runqueue and our priority is higher than the current's
1542 */
1543 if (running) {
1544 if (p->prio > oldprio)
1545 resched_task(rq->curr);
1546 } else
15afe09b 1547 check_preempt_curr(rq, p, 0);
cb469845
SR
1548}
1549
1550/*
1551 * We switched to the sched_fair class.
1552 */
1553static void switched_to_fair(struct rq *rq, struct task_struct *p,
1554 int running)
1555{
1556 /*
1557 * We were most likely switched from sched_rt, so
1558 * kick off the schedule if running, otherwise just see
1559 * if we can still preempt the current task.
1560 */
1561 if (running)
1562 resched_task(rq->curr);
1563 else
15afe09b 1564 check_preempt_curr(rq, p, 0);
cb469845
SR
1565}
1566
83b699ed
SV
1567/* Account for a task changing its policy or group.
1568 *
1569 * This routine is mostly called to set cfs_rq->curr field when a task
1570 * migrates between groups/classes.
1571 */
1572static void set_curr_task_fair(struct rq *rq)
1573{
1574 struct sched_entity *se = &rq->curr->se;
1575
1576 for_each_sched_entity(se)
1577 set_next_entity(cfs_rq_of(se), se);
1578}
1579
810b3817
PZ
1580#ifdef CONFIG_FAIR_GROUP_SCHED
1581static void moved_group_fair(struct task_struct *p)
1582{
1583 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1584
1585 update_curr(cfs_rq);
1586 place_entity(cfs_rq, &p->se, 1);
1587}
1588#endif
1589
bf0f6f24
IM
1590/*
1591 * All the scheduling class methods:
1592 */
5522d5d5
IM
1593static const struct sched_class fair_sched_class = {
1594 .next = &idle_sched_class,
bf0f6f24
IM
1595 .enqueue_task = enqueue_task_fair,
1596 .dequeue_task = dequeue_task_fair,
1597 .yield_task = yield_task_fair,
e7693a36
GH
1598#ifdef CONFIG_SMP
1599 .select_task_rq = select_task_rq_fair,
1600#endif /* CONFIG_SMP */
bf0f6f24 1601
2e09bf55 1602 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1603
1604 .pick_next_task = pick_next_task_fair,
1605 .put_prev_task = put_prev_task_fair,
1606
681f3e68 1607#ifdef CONFIG_SMP
bf0f6f24 1608 .load_balance = load_balance_fair,
e1d1484f 1609 .move_one_task = move_one_task_fair,
681f3e68 1610#endif
bf0f6f24 1611
83b699ed 1612 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1613 .task_tick = task_tick_fair,
1614 .task_new = task_new_fair,
cb469845
SR
1615
1616 .prio_changed = prio_changed_fair,
1617 .switched_to = switched_to_fair,
810b3817
PZ
1618
1619#ifdef CONFIG_FAIR_GROUP_SCHED
1620 .moved_group = moved_group_fair,
1621#endif
bf0f6f24
IM
1622};
1623
1624#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1625static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1626{
bf0f6f24
IM
1627 struct cfs_rq *cfs_rq;
1628
5973e5b9 1629 rcu_read_lock();
c3b64f1e 1630 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1631 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1632 rcu_read_unlock();
bf0f6f24
IM
1633}
1634#endif