]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: x86: allow single-depth wchan output
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
bf0f6f24
IM
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
62160e3f 98#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 99
62160e3f
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
103}
104
105#define entity_is_task(se) 1
106
bf0f6f24
IM
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
e9acbff6
IM
119static inline void
120set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121{
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
9014623c
PZ
127 if ((se->vruntime > cfs_rq->min_vruntime) ||
128 (cfs_rq->min_vruntime > (1ULL << 61) &&
129 se->vruntime < (1ULL << 50)))
130 cfs_rq->min_vruntime = se->vruntime;
e9acbff6
IM
131 }
132}
133
9014623c
PZ
134s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
135{
136 return se->fair_key - cfs_rq->min_vruntime;
137}
138
bf0f6f24
IM
139/*
140 * Enqueue an entity into the rb-tree:
141 */
19ccd97a 142static void
bf0f6f24
IM
143__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
144{
145 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
146 struct rb_node *parent = NULL;
147 struct sched_entity *entry;
9014623c 148 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
149 int leftmost = 1;
150
151 /*
152 * Find the right place in the rbtree:
153 */
154 while (*link) {
155 parent = *link;
156 entry = rb_entry(parent, struct sched_entity, run_node);
157 /*
158 * We dont care about collisions. Nodes with
159 * the same key stay together.
160 */
9014623c 161 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
162 link = &parent->rb_left;
163 } else {
164 link = &parent->rb_right;
165 leftmost = 0;
166 }
167 }
168
169 /*
170 * Maintain a cache of leftmost tree entries (it is frequently
171 * used):
172 */
173 if (leftmost)
e9acbff6 174 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
175
176 rb_link_node(&se->run_node, parent, link);
177 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
178 update_load_add(&cfs_rq->load, se->load.weight);
179 cfs_rq->nr_running++;
180 se->on_rq = 1;
181}
182
19ccd97a 183static void
bf0f6f24
IM
184__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
185{
186 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
187 set_leftmost(cfs_rq, rb_next(&se->run_node));
188
bf0f6f24
IM
189 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
190 update_load_sub(&cfs_rq->load, se->load.weight);
191 cfs_rq->nr_running--;
192 se->on_rq = 0;
193}
194
195static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
196{
197 return cfs_rq->rb_leftmost;
198}
199
200static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
201{
202 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203}
204
aeb73b04
PZ
205static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
206{
207 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
208 struct sched_entity *se = NULL;
209 struct rb_node *parent;
210
211 while (*link) {
212 parent = *link;
213 se = rb_entry(parent, struct sched_entity, run_node);
214 link = &parent->rb_right;
215 }
216
217 return se;
218}
219
bf0f6f24
IM
220/**************************************************************
221 * Scheduling class statistics methods:
222 */
223
4d78e7b6
PZ
224static u64 __sched_period(unsigned long nr_running)
225{
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency =
228 sysctl_sched_latency / sysctl_sched_min_granularity;
229
230 if (unlikely(nr_running > nr_latency)) {
231 period *= nr_running;
232 do_div(period, nr_latency);
233 }
234
235 return period;
236}
237
6d0f0ebd 238static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 239{
6d0f0ebd 240 u64 period = __sched_period(cfs_rq->nr_running);
21805085 241
6d0f0ebd
PZ
242 period *= se->load.weight;
243 do_div(period, cfs_rq->load.weight);
21805085 244
6d0f0ebd 245 return period;
bf0f6f24
IM
246}
247
bf0f6f24
IM
248/*
249 * Update the current task's runtime statistics. Skip current tasks that
250 * are not in our scheduling class.
251 */
252static inline void
8ebc91d9
IM
253__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
254 unsigned long delta_exec)
bf0f6f24 255{
bbdba7c0 256 unsigned long delta_exec_weighted;
bf0f6f24 257
8179ca23 258 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
259
260 curr->sum_exec_runtime += delta_exec;
7a62eabc 261 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
262 delta_exec_weighted = delta_exec;
263 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
264 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
265 &curr->load);
266 }
267 curr->vruntime += delta_exec_weighted;
bf0f6f24
IM
268}
269
b7cc0896 270static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 271{
429d43bc 272 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 273 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
274 unsigned long delta_exec;
275
276 if (unlikely(!curr))
277 return;
278
279 /*
280 * Get the amount of time the current task was running
281 * since the last time we changed load (this cannot
282 * overflow on 32 bits):
283 */
8ebc91d9 284 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 285
8ebc91d9
IM
286 __update_curr(cfs_rq, curr, delta_exec);
287 curr->exec_start = now;
bf0f6f24
IM
288}
289
290static inline void
5870db5b 291update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 292{
d281918d 293 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
294}
295
bf0f6f24 296static inline unsigned long
08e2388a 297calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 298{
08e2388a 299 unsigned long weight = se->load.weight;
bf0f6f24 300
08e2388a
IM
301 if (unlikely(weight != NICE_0_LOAD))
302 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
303 else
304 return delta;
bf0f6f24 305}
bf0f6f24
IM
306
307/*
308 * Task is being enqueued - update stats:
309 */
d2417e5a 310static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 311{
bf0f6f24
IM
312 /*
313 * Are we enqueueing a waiting task? (for current tasks
314 * a dequeue/enqueue event is a NOP)
315 */
429d43bc 316 if (se != cfs_rq->curr)
5870db5b 317 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
318 /*
319 * Update the key:
320 */
e9acbff6 321 se->fair_key = se->vruntime;
bf0f6f24
IM
322}
323
bf0f6f24 324static void
9ef0a961 325update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 326{
bbdba7c0
IM
327 schedstat_set(se->wait_max, max(se->wait_max,
328 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 329 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
330}
331
332static inline void
19b6a2e3 333update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 334{
b7cc0896 335 update_curr(cfs_rq);
bf0f6f24
IM
336 /*
337 * Mark the end of the wait period if dequeueing a
338 * waiting task:
339 */
429d43bc 340 if (se != cfs_rq->curr)
9ef0a961 341 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
342}
343
344/*
345 * We are picking a new current task - update its stats:
346 */
347static inline void
79303e9e 348update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
349{
350 /*
351 * We are starting a new run period:
352 */
d281918d 353 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
354}
355
356/*
357 * We are descheduling a task - update its stats:
358 */
359static inline void
c7e9b5b2 360update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
361{
362 se->exec_start = 0;
363}
364
365/**************************************************
366 * Scheduling class queueing methods:
367 */
368
2396af69 369static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 370{
bf0f6f24
IM
371#ifdef CONFIG_SCHEDSTATS
372 if (se->sleep_start) {
d281918d 373 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
374
375 if ((s64)delta < 0)
376 delta = 0;
377
378 if (unlikely(delta > se->sleep_max))
379 se->sleep_max = delta;
380
381 se->sleep_start = 0;
382 se->sum_sleep_runtime += delta;
383 }
384 if (se->block_start) {
d281918d 385 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
386
387 if ((s64)delta < 0)
388 delta = 0;
389
390 if (unlikely(delta > se->block_max))
391 se->block_max = delta;
392
393 se->block_start = 0;
394 se->sum_sleep_runtime += delta;
30084fbd
IM
395
396 /*
397 * Blocking time is in units of nanosecs, so shift by 20 to
398 * get a milliseconds-range estimation of the amount of
399 * time that the task spent sleeping:
400 */
401 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
402 struct task_struct *tsk = task_of(se);
403
30084fbd
IM
404 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
405 delta >> 20);
406 }
bf0f6f24
IM
407 }
408#endif
409}
410
aeb73b04
PZ
411static void
412place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
413{
aeb73b04
PZ
414 u64 min_runtime, latency;
415
416 min_runtime = cfs_rq->min_vruntime;
94dfb5e7
PZ
417
418 if (sched_feat(USE_TREE_AVG)) {
419 struct sched_entity *last = __pick_last_entity(cfs_rq);
420 if (last) {
421 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
422 min_runtime += last->vruntime;
423 min_runtime >>= 1;
424 }
425 } else if (sched_feat(APPROX_AVG))
426 min_runtime += sysctl_sched_latency/2;
427
428 if (initial && sched_feat(START_DEBIT))
429 min_runtime += sched_slice(cfs_rq, se);
aeb73b04
PZ
430
431 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
432 latency = sysctl_sched_latency;
433 if (min_runtime > latency)
434 min_runtime -= latency;
435 else
436 min_runtime = 0;
437 }
438
439 se->vruntime = max(se->vruntime, min_runtime);
440}
441
bf0f6f24 442static void
668031ca 443enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
444{
445 /*
446 * Update the fair clock.
447 */
b7cc0896 448 update_curr(cfs_rq);
bf0f6f24 449
e9acbff6 450 if (wakeup) {
aeb73b04 451 place_entity(cfs_rq, se, 0);
2396af69 452 enqueue_sleeper(cfs_rq, se);
e9acbff6 453 }
bf0f6f24 454
d2417e5a 455 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
456 __enqueue_entity(cfs_rq, se);
457}
458
459static void
525c2716 460dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 461{
19b6a2e3 462 update_stats_dequeue(cfs_rq, se);
bf0f6f24 463#ifdef CONFIG_SCHEDSTATS
db36cc7d 464 if (sleep) {
bf0f6f24
IM
465 if (entity_is_task(se)) {
466 struct task_struct *tsk = task_of(se);
467
468 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 469 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 470 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 471 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 472 }
bf0f6f24 473 }
db36cc7d 474#endif
bf0f6f24
IM
475 __dequeue_entity(cfs_rq, se);
476}
477
478/*
479 * Preempt the current task with a newly woken task if needed:
480 */
7c92e54f 481static void
2e09bf55 482check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 483{
11697830
PZ
484 unsigned long ideal_runtime, delta_exec;
485
6d0f0ebd 486 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
487 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
488 if (delta_exec > ideal_runtime)
bf0f6f24
IM
489 resched_task(rq_of(cfs_rq)->curr);
490}
491
492static inline void
8494f412 493set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
494{
495 /*
496 * Any task has to be enqueued before it get to execute on
497 * a CPU. So account for the time it spent waiting on the
bbdba7c0 498 * runqueue.
bf0f6f24 499 */
9ef0a961 500 update_stats_wait_end(cfs_rq, se);
79303e9e 501 update_stats_curr_start(cfs_rq, se);
429d43bc 502 cfs_rq->curr = se;
eba1ed4b
IM
503#ifdef CONFIG_SCHEDSTATS
504 /*
505 * Track our maximum slice length, if the CPU's load is at
506 * least twice that of our own weight (i.e. dont track it
507 * when there are only lesser-weight tasks around):
508 */
495eca49 509 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
510 se->slice_max = max(se->slice_max,
511 se->sum_exec_runtime - se->prev_sum_exec_runtime);
512 }
513#endif
4a55b450 514 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
515}
516
9948f4b2 517static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
518{
519 struct sched_entity *se = __pick_next_entity(cfs_rq);
520
8494f412 521 set_next_entity(cfs_rq, se);
bf0f6f24
IM
522
523 return se;
524}
525
ab6cde26 526static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
527{
528 /*
529 * If still on the runqueue then deactivate_task()
530 * was not called and update_curr() has to be done:
531 */
532 if (prev->on_rq)
b7cc0896 533 update_curr(cfs_rq);
bf0f6f24 534
c7e9b5b2 535 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
536
537 if (prev->on_rq)
5870db5b 538 update_stats_wait_start(cfs_rq, prev);
429d43bc 539 cfs_rq->curr = NULL;
bf0f6f24
IM
540}
541
542static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
543{
bf0f6f24
IM
544 /*
545 * Dequeue and enqueue the task to update its
546 * position within the tree:
547 */
525c2716 548 dequeue_entity(cfs_rq, curr, 0);
668031ca 549 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24 550
2e09bf55
IM
551 if (cfs_rq->nr_running > 1)
552 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
553}
554
555/**************************************************
556 * CFS operations on tasks:
557 */
558
559#ifdef CONFIG_FAIR_GROUP_SCHED
560
561/* Walk up scheduling entities hierarchy */
562#define for_each_sched_entity(se) \
563 for (; se; se = se->parent)
564
565static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
566{
567 return p->se.cfs_rq;
568}
569
570/* runqueue on which this entity is (to be) queued */
571static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
572{
573 return se->cfs_rq;
574}
575
576/* runqueue "owned" by this group */
577static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
578{
579 return grp->my_q;
580}
581
582/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
583 * another cpu ('this_cpu')
584 */
585static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
586{
587 /* A later patch will take group into account */
588 return &cpu_rq(this_cpu)->cfs;
589}
590
591/* Iterate thr' all leaf cfs_rq's on a runqueue */
592#define for_each_leaf_cfs_rq(rq, cfs_rq) \
593 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
594
595/* Do the two (enqueued) tasks belong to the same group ? */
596static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
597{
598 if (curr->se.cfs_rq == p->se.cfs_rq)
599 return 1;
600
601 return 0;
602}
603
604#else /* CONFIG_FAIR_GROUP_SCHED */
605
606#define for_each_sched_entity(se) \
607 for (; se; se = NULL)
608
609static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
610{
611 return &task_rq(p)->cfs;
612}
613
614static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
615{
616 struct task_struct *p = task_of(se);
617 struct rq *rq = task_rq(p);
618
619 return &rq->cfs;
620}
621
622/* runqueue "owned" by this group */
623static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
624{
625 return NULL;
626}
627
628static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
629{
630 return &cpu_rq(this_cpu)->cfs;
631}
632
633#define for_each_leaf_cfs_rq(rq, cfs_rq) \
634 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
635
636static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
637{
638 return 1;
639}
640
641#endif /* CONFIG_FAIR_GROUP_SCHED */
642
643/*
644 * The enqueue_task method is called before nr_running is
645 * increased. Here we update the fair scheduling stats and
646 * then put the task into the rbtree:
647 */
fd390f6a 648static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
649{
650 struct cfs_rq *cfs_rq;
651 struct sched_entity *se = &p->se;
652
653 for_each_sched_entity(se) {
654 if (se->on_rq)
655 break;
656 cfs_rq = cfs_rq_of(se);
668031ca 657 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
658 }
659}
660
661/*
662 * The dequeue_task method is called before nr_running is
663 * decreased. We remove the task from the rbtree and
664 * update the fair scheduling stats:
665 */
f02231e5 666static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
667{
668 struct cfs_rq *cfs_rq;
669 struct sched_entity *se = &p->se;
670
671 for_each_sched_entity(se) {
672 cfs_rq = cfs_rq_of(se);
525c2716 673 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
674 /* Don't dequeue parent if it has other entities besides us */
675 if (cfs_rq->load.weight)
676 break;
677 }
678}
679
680/*
1799e35d
IM
681 * sched_yield() support is very simple - we dequeue and enqueue.
682 *
683 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
684 */
685static void yield_task_fair(struct rq *rq, struct task_struct *p)
686{
687 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
688 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
689 struct sched_entity *rightmost, *se = &p->se;
690 struct rb_node *parent;
bf0f6f24
IM
691
692 /*
1799e35d
IM
693 * Are we the only task in the tree?
694 */
695 if (unlikely(cfs_rq->nr_running == 1))
696 return;
697
698 if (likely(!sysctl_sched_compat_yield)) {
699 __update_rq_clock(rq);
700 /*
701 * Dequeue and enqueue the task to update its
702 * position within the tree:
703 */
704 dequeue_entity(cfs_rq, &p->se, 0);
705 enqueue_entity(cfs_rq, &p->se, 0);
706
707 return;
708 }
709 /*
710 * Find the rightmost entry in the rbtree:
bf0f6f24 711 */
1799e35d
IM
712 do {
713 parent = *link;
714 link = &parent->rb_right;
715 } while (*link);
716
717 rightmost = rb_entry(parent, struct sched_entity, run_node);
718 /*
719 * Already in the rightmost position?
720 */
721 if (unlikely(rightmost == se))
722 return;
723
724 /*
725 * Minimally necessary key value to be last in the tree:
726 */
727 se->fair_key = rightmost->fair_key + 1;
728
729 if (cfs_rq->rb_leftmost == &se->run_node)
730 cfs_rq->rb_leftmost = rb_next(&se->run_node);
731 /*
732 * Relink the task to the rightmost position:
733 */
734 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
735 rb_link_node(&se->run_node, parent, link);
736 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
737}
738
739/*
740 * Preempt the current task with a newly woken task if needed:
741 */
2e09bf55 742static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
743{
744 struct task_struct *curr = rq->curr;
745 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24
IM
746
747 if (unlikely(rt_prio(p->prio))) {
a8e504d2 748 update_rq_clock(rq);
b7cc0896 749 update_curr(cfs_rq);
bf0f6f24
IM
750 resched_task(curr);
751 return;
752 }
2e09bf55
IM
753 if (is_same_group(curr, p)) {
754 s64 delta = curr->se.vruntime - p->se.vruntime;
bf0f6f24 755
2e09bf55
IM
756 if (delta > (s64)sysctl_sched_wakeup_granularity)
757 resched_task(curr);
758 }
bf0f6f24
IM
759}
760
fb8d4724 761static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
762{
763 struct cfs_rq *cfs_rq = &rq->cfs;
764 struct sched_entity *se;
765
766 if (unlikely(!cfs_rq->nr_running))
767 return NULL;
768
769 do {
9948f4b2 770 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
771 cfs_rq = group_cfs_rq(se);
772 } while (cfs_rq);
773
774 return task_of(se);
775}
776
777/*
778 * Account for a descheduled task:
779 */
31ee529c 780static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
781{
782 struct sched_entity *se = &prev->se;
783 struct cfs_rq *cfs_rq;
784
785 for_each_sched_entity(se) {
786 cfs_rq = cfs_rq_of(se);
ab6cde26 787 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
788 }
789}
790
791/**************************************************
792 * Fair scheduling class load-balancing methods:
793 */
794
795/*
796 * Load-balancing iterator. Note: while the runqueue stays locked
797 * during the whole iteration, the current task might be
798 * dequeued so the iterator has to be dequeue-safe. Here we
799 * achieve that by always pre-iterating before returning
800 * the current task:
801 */
802static inline struct task_struct *
803__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
804{
805 struct task_struct *p;
806
807 if (!curr)
808 return NULL;
809
810 p = rb_entry(curr, struct task_struct, se.run_node);
811 cfs_rq->rb_load_balance_curr = rb_next(curr);
812
813 return p;
814}
815
816static struct task_struct *load_balance_start_fair(void *arg)
817{
818 struct cfs_rq *cfs_rq = arg;
819
820 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
821}
822
823static struct task_struct *load_balance_next_fair(void *arg)
824{
825 struct cfs_rq *cfs_rq = arg;
826
827 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
828}
829
a4ac01c3 830#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
831static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
832{
833 struct sched_entity *curr;
834 struct task_struct *p;
835
836 if (!cfs_rq->nr_running)
837 return MAX_PRIO;
838
839 curr = __pick_next_entity(cfs_rq);
840 p = task_of(curr);
841
842 return p->prio;
843}
a4ac01c3 844#endif
bf0f6f24 845
43010659 846static unsigned long
bf0f6f24 847load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
848 unsigned long max_nr_move, unsigned long max_load_move,
849 struct sched_domain *sd, enum cpu_idle_type idle,
850 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
851{
852 struct cfs_rq *busy_cfs_rq;
853 unsigned long load_moved, total_nr_moved = 0, nr_moved;
854 long rem_load_move = max_load_move;
855 struct rq_iterator cfs_rq_iterator;
856
857 cfs_rq_iterator.start = load_balance_start_fair;
858 cfs_rq_iterator.next = load_balance_next_fair;
859
860 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 861#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 862 struct cfs_rq *this_cfs_rq;
e56f31aa 863 long imbalance;
bf0f6f24 864 unsigned long maxload;
bf0f6f24
IM
865
866 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
867
e56f31aa 868 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
869 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
870 if (imbalance <= 0)
871 continue;
872
873 /* Don't pull more than imbalance/2 */
874 imbalance /= 2;
875 maxload = min(rem_load_move, imbalance);
876
a4ac01c3
PW
877 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
878#else
e56f31aa 879# define maxload rem_load_move
a4ac01c3 880#endif
bf0f6f24
IM
881 /* pass busy_cfs_rq argument into
882 * load_balance_[start|next]_fair iterators
883 */
884 cfs_rq_iterator.arg = busy_cfs_rq;
885 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
886 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 887 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
888
889 total_nr_moved += nr_moved;
890 max_nr_move -= nr_moved;
891 rem_load_move -= load_moved;
892
893 if (max_nr_move <= 0 || rem_load_move <= 0)
894 break;
895 }
896
43010659 897 return max_load_move - rem_load_move;
bf0f6f24
IM
898}
899
900/*
901 * scheduler tick hitting a task of our scheduling class:
902 */
903static void task_tick_fair(struct rq *rq, struct task_struct *curr)
904{
905 struct cfs_rq *cfs_rq;
906 struct sched_entity *se = &curr->se;
907
908 for_each_sched_entity(se) {
909 cfs_rq = cfs_rq_of(se);
910 entity_tick(cfs_rq, se);
911 }
912}
913
4d78e7b6
PZ
914#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
915
bf0f6f24
IM
916/*
917 * Share the fairness runtime between parent and child, thus the
918 * total amount of pressure for CPU stays equal - new tasks
919 * get a chance to run but frequent forkers are not allowed to
920 * monopolize the CPU. Note: the parent runqueue is locked,
921 * the child is not running yet.
922 */
ee0827d8 923static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
924{
925 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 926 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
927
928 sched_info_queued(p);
929
7109c442 930 update_curr(cfs_rq);
aeb73b04 931 place_entity(cfs_rq, se, 1);
4d78e7b6 932
4d78e7b6
PZ
933 if (sysctl_sched_child_runs_first &&
934 curr->vruntime < se->vruntime) {
935
936 dequeue_entity(cfs_rq, curr, 0);
937 swap(curr->vruntime, se->vruntime);
938 enqueue_entity(cfs_rq, curr, 0);
939 }
bf0f6f24 940
e9acbff6 941 update_stats_enqueue(cfs_rq, se);
bf0f6f24 942 __enqueue_entity(cfs_rq, se);
bb61c210 943 resched_task(rq->curr);
bf0f6f24
IM
944}
945
946#ifdef CONFIG_FAIR_GROUP_SCHED
947/* Account for a task changing its policy or group.
948 *
949 * This routine is mostly called to set cfs_rq->curr field when a task
950 * migrates between groups/classes.
951 */
952static void set_curr_task_fair(struct rq *rq)
953{
7c6c16f3 954 struct sched_entity *se = &rq->curr->se;
a8e504d2 955
c3b64f1e
IM
956 for_each_sched_entity(se)
957 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
958}
959#else
960static void set_curr_task_fair(struct rq *rq)
961{
962}
963#endif
964
965/*
966 * All the scheduling class methods:
967 */
968struct sched_class fair_sched_class __read_mostly = {
969 .enqueue_task = enqueue_task_fair,
970 .dequeue_task = dequeue_task_fair,
971 .yield_task = yield_task_fair,
972
2e09bf55 973 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
974
975 .pick_next_task = pick_next_task_fair,
976 .put_prev_task = put_prev_task_fair,
977
978 .load_balance = load_balance_fair,
979
980 .set_curr_task = set_curr_task_fair,
981 .task_tick = task_tick_fair,
982 .task_new = task_new_fair,
983};
984
985#ifdef CONFIG_SCHED_DEBUG
5cef9eca 986static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 987{
bf0f6f24
IM
988 struct cfs_rq *cfs_rq;
989
c3b64f1e 990 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 991 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
992}
993#endif