]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
Merge commit 'v2.6.31-rc8' into sched/core
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
62160e3f 82#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 83
62160e3f 84/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
62160e3f 87 return cfs_rq->rq;
bf0f6f24
IM
88}
89
62160e3f
IM
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
bf0f6f24 92
8f48894f
PZ
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
b758149c
PZ
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
464b7527
PZ
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
8f48894f
PZ
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
bf0f6f24 198
62160e3f
IM
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
202}
203
204#define entity_is_task(se) 1
205
b758149c
PZ
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
bf0f6f24 208
b758149c 209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 210{
b758149c 211 return &task_rq(p)->cfs;
bf0f6f24
IM
212}
213
b758149c
PZ
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
464b7527
PZ
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
b758149c
PZ
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
bf0f6f24
IM
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
0702e3eb 259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 260{
368059a9
PZ
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
02e0431a
PZ
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
0702e3eb 268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
54fdc581
FC
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
0702e3eb 283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 284{
30cfdcfc 285 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
286}
287
1af5f730
PZ
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
e17036da 300 if (!cfs_rq->curr)
1af5f730
PZ
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
bf0f6f24
IM
309/*
310 * Enqueue an entity into the rb-tree:
311 */
0702e3eb 312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
9014623c 317 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
9014623c 330 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
1af5f730 342 if (leftmost)
57cb499d 343 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
347}
348
0702e3eb 349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 350{
3fe69747
PZ
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
3fe69747
PZ
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
3fe69747 356 }
e9acbff6 357
bf0f6f24 358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
359}
360
bf0f6f24
IM
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
f4b6755f
PZ
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
369}
370
f4b6755f 371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 372{
7eee3e67 373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 374
70eee74b
BS
375 if (!last)
376 return NULL;
7eee3e67
IM
377
378 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
379}
380
bf0f6f24
IM
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
b2be5e96
PZ
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
647e7cac 401
a7be37ac 402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
0a582440 443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 444
0a582440 445 for_each_sched_entity(se) {
6272d68c 446 struct load_weight *load;
3104bf03 447 struct load_weight lw;
6272d68c
LM
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
f9c0b095 451
0a582440 452 if (unlikely(!se->on_rq)) {
3104bf03 453 lw = cfs_rq->load;
0a582440
MG
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
bf0f6f24
IM
461}
462
647e7cac 463/*
ac884dec 464 * We calculate the vruntime slice of a to be inserted task
647e7cac 465 *
f9c0b095 466 * vs = s/w
647e7cac 467 */
f9c0b095 468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 469{
f9c0b095 470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
471}
472
bf0f6f24
IM
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
8ebc91d9
IM
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
bf0f6f24 480{
bbdba7c0 481 unsigned long delta_exec_weighted;
bf0f6f24 482
8179ca23 483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
484
485 curr->sum_exec_runtime += delta_exec;
7a62eabc 486 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 488 curr->vruntime += delta_exec_weighted;
1af5f730 489 update_min_vruntime(cfs_rq);
bf0f6f24
IM
490}
491
b7cc0896 492static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 493{
429d43bc 494 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 495 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
8ebc91d9 506 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
507 if (!delta_exec)
508 return;
bf0f6f24 509
8ebc91d9
IM
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
d842de87
SV
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
f06febc9 517 account_group_exec_runtime(curtask, delta_exec);
d842de87 518 }
bf0f6f24
IM
519}
520
521static inline void
5870db5b 522update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
d281918d 524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
525}
526
bf0f6f24
IM
527/*
528 * Task is being enqueued - update stats:
529 */
d2417e5a 530static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 531{
bf0f6f24
IM
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
429d43bc 536 if (se != cfs_rq->curr)
5870db5b 537 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
538}
539
bf0f6f24 540static void
9ef0a961 541update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
bbdba7c0
IM
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 548 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
549}
550
551static inline void
19b6a2e3 552update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 553{
bf0f6f24
IM
554 /*
555 * Mark the end of the wait period if dequeueing a
556 * waiting task:
557 */
429d43bc 558 if (se != cfs_rq->curr)
9ef0a961 559 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
560}
561
562/*
563 * We are picking a new current task - update its stats:
564 */
565static inline void
79303e9e 566update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
567{
568 /*
569 * We are starting a new run period:
570 */
d281918d 571 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
572}
573
bf0f6f24
IM
574/**************************************************
575 * Scheduling class queueing methods:
576 */
577
c09595f6
PZ
578#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
579static void
580add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
581{
582 cfs_rq->task_weight += weight;
583}
584#else
585static inline void
586add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
587{
588}
589#endif
590
30cfdcfc
DA
591static void
592account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
593{
594 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
595 if (!parent_entity(se))
596 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 597 if (entity_is_task(se)) {
c09595f6 598 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
599 list_add(&se->group_node, &cfs_rq->tasks);
600 }
30cfdcfc
DA
601 cfs_rq->nr_running++;
602 se->on_rq = 1;
603}
604
605static void
606account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
607{
608 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
609 if (!parent_entity(se))
610 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 611 if (entity_is_task(se)) {
c09595f6 612 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
613 list_del_init(&se->group_node);
614 }
30cfdcfc
DA
615 cfs_rq->nr_running--;
616 se->on_rq = 0;
617}
618
2396af69 619static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 620{
bf0f6f24 621#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
622 struct task_struct *tsk = NULL;
623
624 if (entity_is_task(se))
625 tsk = task_of(se);
626
bf0f6f24 627 if (se->sleep_start) {
d281918d 628 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
629
630 if ((s64)delta < 0)
631 delta = 0;
632
633 if (unlikely(delta > se->sleep_max))
634 se->sleep_max = delta;
635
636 se->sleep_start = 0;
637 se->sum_sleep_runtime += delta;
9745512c 638
e414314c
PZ
639 if (tsk)
640 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
641 }
642 if (se->block_start) {
d281918d 643 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
644
645 if ((s64)delta < 0)
646 delta = 0;
647
648 if (unlikely(delta > se->block_max))
649 se->block_max = delta;
650
651 se->block_start = 0;
652 se->sum_sleep_runtime += delta;
30084fbd 653
e414314c
PZ
654 if (tsk) {
655 /*
656 * Blocking time is in units of nanosecs, so shift by
657 * 20 to get a milliseconds-range estimation of the
658 * amount of time that the task spent sleeping:
659 */
660 if (unlikely(prof_on == SLEEP_PROFILING)) {
661 profile_hits(SLEEP_PROFILING,
662 (void *)get_wchan(tsk),
663 delta >> 20);
664 }
665 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 666 }
bf0f6f24
IM
667 }
668#endif
669}
670
ddc97297
PZ
671static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
672{
673#ifdef CONFIG_SCHED_DEBUG
674 s64 d = se->vruntime - cfs_rq->min_vruntime;
675
676 if (d < 0)
677 d = -d;
678
679 if (d > 3*sysctl_sched_latency)
680 schedstat_inc(cfs_rq, nr_spread_over);
681#endif
682}
683
aeb73b04
PZ
684static void
685place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
686{
1af5f730 687 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 688
2cb8600e
PZ
689 /*
690 * The 'current' period is already promised to the current tasks,
691 * however the extra weight of the new task will slow them down a
692 * little, place the new task so that it fits in the slot that
693 * stays open at the end.
694 */
94dfb5e7 695 if (initial && sched_feat(START_DEBIT))
f9c0b095 696 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 697
8465e792 698 if (!initial) {
2cb8600e 699 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
700 if (sched_feat(NEW_FAIR_SLEEPERS)) {
701 unsigned long thresh = sysctl_sched_latency;
702
703 /*
6bc912b7
PZ
704 * Convert the sleeper threshold into virtual time.
705 * SCHED_IDLE is a special sub-class. We care about
706 * fairness only relative to other SCHED_IDLE tasks,
707 * all of which have the same weight.
a7be37ac 708 */
6bc912b7 709 if (sched_feat(NORMALIZED_SLEEPER) &&
d07387b4
PT
710 (!entity_is_task(se) ||
711 task_of(se)->policy != SCHED_IDLE))
a7be37ac
PZ
712 thresh = calc_delta_fair(thresh, se);
713
714 vruntime -= thresh;
715 }
94359f05 716
2cb8600e
PZ
717 /* ensure we never gain time by being placed backwards. */
718 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
719 }
720
67e9fb2a 721 se->vruntime = vruntime;
aeb73b04
PZ
722}
723
bf0f6f24 724static void
83b699ed 725enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
726{
727 /*
a2a2d680 728 * Update run-time statistics of the 'current'.
bf0f6f24 729 */
b7cc0896 730 update_curr(cfs_rq);
a992241d 731 account_entity_enqueue(cfs_rq, se);
bf0f6f24 732
e9acbff6 733 if (wakeup) {
aeb73b04 734 place_entity(cfs_rq, se, 0);
2396af69 735 enqueue_sleeper(cfs_rq, se);
e9acbff6 736 }
bf0f6f24 737
d2417e5a 738 update_stats_enqueue(cfs_rq, se);
ddc97297 739 check_spread(cfs_rq, se);
83b699ed
SV
740 if (se != cfs_rq->curr)
741 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
742}
743
a571bbea 744static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
745{
746 if (cfs_rq->last == se)
747 cfs_rq->last = NULL;
748
749 if (cfs_rq->next == se)
750 cfs_rq->next = NULL;
751}
752
a571bbea
PZ
753static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
754{
755 for_each_sched_entity(se)
756 __clear_buddies(cfs_rq_of(se), se);
757}
758
bf0f6f24 759static void
525c2716 760dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 761{
a2a2d680
DA
762 /*
763 * Update run-time statistics of the 'current'.
764 */
765 update_curr(cfs_rq);
766
19b6a2e3 767 update_stats_dequeue(cfs_rq, se);
db36cc7d 768 if (sleep) {
67e9fb2a 769#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
770 if (entity_is_task(se)) {
771 struct task_struct *tsk = task_of(se);
772
773 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 774 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 775 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 776 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 777 }
db36cc7d 778#endif
67e9fb2a
PZ
779 }
780
2002c695 781 clear_buddies(cfs_rq, se);
4793241b 782
83b699ed 783 if (se != cfs_rq->curr)
30cfdcfc
DA
784 __dequeue_entity(cfs_rq, se);
785 account_entity_dequeue(cfs_rq, se);
1af5f730 786 update_min_vruntime(cfs_rq);
bf0f6f24
IM
787}
788
789/*
790 * Preempt the current task with a newly woken task if needed:
791 */
7c92e54f 792static void
2e09bf55 793check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 794{
11697830
PZ
795 unsigned long ideal_runtime, delta_exec;
796
6d0f0ebd 797 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 798 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 799 if (delta_exec > ideal_runtime) {
bf0f6f24 800 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
801 /*
802 * The current task ran long enough, ensure it doesn't get
803 * re-elected due to buddy favours.
804 */
805 clear_buddies(cfs_rq, curr);
806 }
bf0f6f24
IM
807}
808
83b699ed 809static void
8494f412 810set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 811{
83b699ed
SV
812 /* 'current' is not kept within the tree. */
813 if (se->on_rq) {
814 /*
815 * Any task has to be enqueued before it get to execute on
816 * a CPU. So account for the time it spent waiting on the
817 * runqueue.
818 */
819 update_stats_wait_end(cfs_rq, se);
820 __dequeue_entity(cfs_rq, se);
821 }
822
79303e9e 823 update_stats_curr_start(cfs_rq, se);
429d43bc 824 cfs_rq->curr = se;
eba1ed4b
IM
825#ifdef CONFIG_SCHEDSTATS
826 /*
827 * Track our maximum slice length, if the CPU's load is at
828 * least twice that of our own weight (i.e. dont track it
829 * when there are only lesser-weight tasks around):
830 */
495eca49 831 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
832 se->slice_max = max(se->slice_max,
833 se->sum_exec_runtime - se->prev_sum_exec_runtime);
834 }
835#endif
4a55b450 836 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
837}
838
3f3a4904
PZ
839static int
840wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
841
f4b6755f 842static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 843{
f4b6755f
PZ
844 struct sched_entity *se = __pick_next_entity(cfs_rq);
845
4793241b
PZ
846 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
847 return cfs_rq->next;
aa2ac252 848
4793241b
PZ
849 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
850 return cfs_rq->last;
851
852 return se;
aa2ac252
PZ
853}
854
ab6cde26 855static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
856{
857 /*
858 * If still on the runqueue then deactivate_task()
859 * was not called and update_curr() has to be done:
860 */
861 if (prev->on_rq)
b7cc0896 862 update_curr(cfs_rq);
bf0f6f24 863
ddc97297 864 check_spread(cfs_rq, prev);
30cfdcfc 865 if (prev->on_rq) {
5870db5b 866 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
867 /* Put 'current' back into the tree. */
868 __enqueue_entity(cfs_rq, prev);
869 }
429d43bc 870 cfs_rq->curr = NULL;
bf0f6f24
IM
871}
872
8f4d37ec
PZ
873static void
874entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 875{
bf0f6f24 876 /*
30cfdcfc 877 * Update run-time statistics of the 'current'.
bf0f6f24 878 */
30cfdcfc 879 update_curr(cfs_rq);
bf0f6f24 880
8f4d37ec
PZ
881#ifdef CONFIG_SCHED_HRTICK
882 /*
883 * queued ticks are scheduled to match the slice, so don't bother
884 * validating it and just reschedule.
885 */
983ed7a6
HH
886 if (queued) {
887 resched_task(rq_of(cfs_rq)->curr);
888 return;
889 }
8f4d37ec
PZ
890 /*
891 * don't let the period tick interfere with the hrtick preemption
892 */
893 if (!sched_feat(DOUBLE_TICK) &&
894 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
895 return;
896#endif
897
ce6c1311 898 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 899 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
900}
901
902/**************************************************
903 * CFS operations on tasks:
904 */
905
8f4d37ec
PZ
906#ifdef CONFIG_SCHED_HRTICK
907static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
908{
8f4d37ec
PZ
909 struct sched_entity *se = &p->se;
910 struct cfs_rq *cfs_rq = cfs_rq_of(se);
911
912 WARN_ON(task_rq(p) != rq);
913
914 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
915 u64 slice = sched_slice(cfs_rq, se);
916 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
917 s64 delta = slice - ran;
918
919 if (delta < 0) {
920 if (rq->curr == p)
921 resched_task(p);
922 return;
923 }
924
925 /*
926 * Don't schedule slices shorter than 10000ns, that just
927 * doesn't make sense. Rely on vruntime for fairness.
928 */
31656519 929 if (rq->curr != p)
157124c1 930 delta = max_t(s64, 10000LL, delta);
8f4d37ec 931
31656519 932 hrtick_start(rq, delta);
8f4d37ec
PZ
933 }
934}
a4c2f00f
PZ
935
936/*
937 * called from enqueue/dequeue and updates the hrtick when the
938 * current task is from our class and nr_running is low enough
939 * to matter.
940 */
941static void hrtick_update(struct rq *rq)
942{
943 struct task_struct *curr = rq->curr;
944
945 if (curr->sched_class != &fair_sched_class)
946 return;
947
948 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
949 hrtick_start_fair(rq, curr);
950}
55e12e5e 951#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
952static inline void
953hrtick_start_fair(struct rq *rq, struct task_struct *p)
954{
955}
a4c2f00f
PZ
956
957static inline void hrtick_update(struct rq *rq)
958{
959}
8f4d37ec
PZ
960#endif
961
bf0f6f24
IM
962/*
963 * The enqueue_task method is called before nr_running is
964 * increased. Here we update the fair scheduling stats and
965 * then put the task into the rbtree:
966 */
fd390f6a 967static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
968{
969 struct cfs_rq *cfs_rq;
62fb1851 970 struct sched_entity *se = &p->se;
bf0f6f24
IM
971
972 for_each_sched_entity(se) {
62fb1851 973 if (se->on_rq)
bf0f6f24
IM
974 break;
975 cfs_rq = cfs_rq_of(se);
83b699ed 976 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 977 wakeup = 1;
bf0f6f24 978 }
8f4d37ec 979
a4c2f00f 980 hrtick_update(rq);
bf0f6f24
IM
981}
982
983/*
984 * The dequeue_task method is called before nr_running is
985 * decreased. We remove the task from the rbtree and
986 * update the fair scheduling stats:
987 */
f02231e5 988static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
989{
990 struct cfs_rq *cfs_rq;
62fb1851 991 struct sched_entity *se = &p->se;
bf0f6f24
IM
992
993 for_each_sched_entity(se) {
994 cfs_rq = cfs_rq_of(se);
525c2716 995 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 996 /* Don't dequeue parent if it has other entities besides us */
62fb1851 997 if (cfs_rq->load.weight)
bf0f6f24 998 break;
b9fa3df3 999 sleep = 1;
bf0f6f24 1000 }
8f4d37ec 1001
a4c2f00f 1002 hrtick_update(rq);
bf0f6f24
IM
1003}
1004
1005/*
1799e35d
IM
1006 * sched_yield() support is very simple - we dequeue and enqueue.
1007 *
1008 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1009 */
4530d7ab 1010static void yield_task_fair(struct rq *rq)
bf0f6f24 1011{
db292ca3
IM
1012 struct task_struct *curr = rq->curr;
1013 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1014 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1015
1016 /*
1799e35d
IM
1017 * Are we the only task in the tree?
1018 */
1019 if (unlikely(cfs_rq->nr_running == 1))
1020 return;
1021
2002c695
PZ
1022 clear_buddies(cfs_rq, se);
1023
db292ca3 1024 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1025 update_rq_clock(rq);
1799e35d 1026 /*
a2a2d680 1027 * Update run-time statistics of the 'current'.
1799e35d 1028 */
2b1e315d 1029 update_curr(cfs_rq);
1799e35d
IM
1030
1031 return;
1032 }
1033 /*
1034 * Find the rightmost entry in the rbtree:
bf0f6f24 1035 */
2b1e315d 1036 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1037 /*
1038 * Already in the rightmost position?
1039 */
54fdc581 1040 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1041 return;
1042
1043 /*
1044 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1045 * Upon rescheduling, sched_class::put_prev_task() will place
1046 * 'current' within the tree based on its new key value.
1799e35d 1047 */
30cfdcfc 1048 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1049}
1050
e7693a36
GH
1051/*
1052 * wake_idle() will wake a task on an idle cpu if task->cpu is
1053 * not idle and an idle cpu is available. The span of cpus to
1054 * search starts with cpus closest then further out as needed,
1055 * so we always favor a closer, idle cpu.
e761b772 1056 * Domains may include CPUs that are not usable for migration,
00aec93d 1057 * hence we need to mask them out (rq->rd->online)
e7693a36
GH
1058 *
1059 * Returns the CPU we should wake onto.
1060 */
1061#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
00aec93d
GH
1062
1063#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1064
e7693a36
GH
1065static int wake_idle(int cpu, struct task_struct *p)
1066{
e7693a36
GH
1067 struct sched_domain *sd;
1068 int i;
7eb52dfa
VS
1069 unsigned int chosen_wakeup_cpu;
1070 int this_cpu;
00aec93d 1071 struct rq *task_rq = task_rq(p);
7eb52dfa
VS
1072
1073 /*
1074 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1075 * are idle and this is not a kernel thread and this task's affinity
1076 * allows it to be moved to preferred cpu, then just move!
1077 */
1078
1079 this_cpu = smp_processor_id();
1080 chosen_wakeup_cpu =
1081 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1082
1083 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1084 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1085 p->mm && !(p->flags & PF_KTHREAD) &&
1086 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1087 return chosen_wakeup_cpu;
e7693a36
GH
1088
1089 /*
1090 * If it is idle, then it is the best cpu to run this task.
1091 *
1092 * This cpu is also the best, if it has more than one task already.
1093 * Siblings must be also busy(in most cases) as they didn't already
1094 * pickup the extra load from this cpu and hence we need not check
1095 * sibling runqueue info. This will avoid the checks and cache miss
1096 * penalities associated with that.
1097 */
104f6454 1098 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1099 return cpu;
1100
1101 for_each_domain(cpu, sd) {
1d3504fc
HS
1102 if ((sd->flags & SD_WAKE_IDLE)
1103 || ((sd->flags & SD_WAKE_IDLE_FAR)
00aec93d 1104 && !task_hot(p, task_rq->clock, sd))) {
758b2cdc
RR
1105 for_each_cpu_and(i, sched_domain_span(sd),
1106 &p->cpus_allowed) {
00aec93d 1107 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
e7693a36
GH
1108 if (i != task_cpu(p)) {
1109 schedstat_inc(p,
1110 se.nr_wakeups_idle);
1111 }
1112 return i;
1113 }
1114 }
1115 } else {
1116 break;
1117 }
1118 }
1119 return cpu;
1120}
55e12e5e 1121#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1122static inline int wake_idle(int cpu, struct task_struct *p)
1123{
1124 return cpu;
1125}
1126#endif
1127
1128#ifdef CONFIG_SMP
098fb9db 1129
bb3469ac 1130#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1131/*
1132 * effective_load() calculates the load change as seen from the root_task_group
1133 *
1134 * Adding load to a group doesn't make a group heavier, but can cause movement
1135 * of group shares between cpus. Assuming the shares were perfectly aligned one
1136 * can calculate the shift in shares.
1137 *
1138 * The problem is that perfectly aligning the shares is rather expensive, hence
1139 * we try to avoid doing that too often - see update_shares(), which ratelimits
1140 * this change.
1141 *
1142 * We compensate this by not only taking the current delta into account, but
1143 * also considering the delta between when the shares were last adjusted and
1144 * now.
1145 *
1146 * We still saw a performance dip, some tracing learned us that between
1147 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1148 * significantly. Therefore try to bias the error in direction of failing
1149 * the affine wakeup.
1150 *
1151 */
f1d239f7
PZ
1152static long effective_load(struct task_group *tg, int cpu,
1153 long wl, long wg)
bb3469ac 1154{
4be9daaa 1155 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1156
1157 if (!tg->parent)
1158 return wl;
1159
f5bfb7d9
PZ
1160 /*
1161 * By not taking the decrease of shares on the other cpu into
1162 * account our error leans towards reducing the affine wakeups.
1163 */
1164 if (!wl && sched_feat(ASYM_EFF_LOAD))
1165 return wl;
1166
4be9daaa 1167 for_each_sched_entity(se) {
cb5ef42a 1168 long S, rw, s, a, b;
940959e9
PZ
1169 long more_w;
1170
1171 /*
1172 * Instead of using this increment, also add the difference
1173 * between when the shares were last updated and now.
1174 */
1175 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1176 wl += more_w;
1177 wg += more_w;
4be9daaa
PZ
1178
1179 S = se->my_q->tg->shares;
1180 s = se->my_q->shares;
f1d239f7 1181 rw = se->my_q->rq_weight;
bb3469ac 1182
cb5ef42a
PZ
1183 a = S*(rw + wl);
1184 b = S*rw + s*wg;
4be9daaa 1185
940959e9
PZ
1186 wl = s*(a-b);
1187
1188 if (likely(b))
1189 wl /= b;
1190
83378269
PZ
1191 /*
1192 * Assume the group is already running and will
1193 * thus already be accounted for in the weight.
1194 *
1195 * That is, moving shares between CPUs, does not
1196 * alter the group weight.
1197 */
4be9daaa 1198 wg = 0;
4be9daaa 1199 }
bb3469ac 1200
4be9daaa 1201 return wl;
bb3469ac 1202}
4be9daaa 1203
bb3469ac 1204#else
4be9daaa 1205
83378269
PZ
1206static inline unsigned long effective_load(struct task_group *tg, int cpu,
1207 unsigned long wl, unsigned long wg)
4be9daaa 1208{
83378269 1209 return wl;
bb3469ac 1210}
4be9daaa 1211
bb3469ac
PZ
1212#endif
1213
098fb9db 1214static int
64b9e029 1215wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1216 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1217 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1218 unsigned int imbalance)
1219{
fc631c82
PZ
1220 struct task_struct *curr = this_rq->curr;
1221 struct task_group *tg;
098fb9db
IM
1222 unsigned long tl = this_load;
1223 unsigned long tl_per_task;
83378269 1224 unsigned long weight;
b3137bc8 1225 int balanced;
098fb9db 1226
b3137bc8 1227 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1228 return 0;
1229
fc631c82
PZ
1230 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1231 p->se.avg_overlap > sysctl_sched_migration_cost))
1232 sync = 0;
1233
b3137bc8
MG
1234 /*
1235 * If sync wakeup then subtract the (maximum possible)
1236 * effect of the currently running task from the load
1237 * of the current CPU:
1238 */
83378269
PZ
1239 if (sync) {
1240 tg = task_group(current);
1241 weight = current->se.load.weight;
1242
1243 tl += effective_load(tg, this_cpu, -weight, -weight);
1244 load += effective_load(tg, prev_cpu, 0, -weight);
1245 }
b3137bc8 1246
83378269
PZ
1247 tg = task_group(p);
1248 weight = p->se.load.weight;
b3137bc8 1249
83378269
PZ
1250 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1251 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1252
098fb9db 1253 /*
4ae7d5ce
IM
1254 * If the currently running task will sleep within
1255 * a reasonable amount of time then attract this newly
1256 * woken task:
098fb9db 1257 */
2fb7635c
PZ
1258 if (sync && balanced)
1259 return 1;
098fb9db
IM
1260
1261 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1262 tl_per_task = cpu_avg_load_per_task(this_cpu);
1263
64b9e029
AA
1264 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1265 tl_per_task)) {
098fb9db
IM
1266 /*
1267 * This domain has SD_WAKE_AFFINE and
1268 * p is cache cold in this domain, and
1269 * there is no bad imbalance.
1270 */
1271 schedstat_inc(this_sd, ttwu_move_affine);
1272 schedstat_inc(p, se.nr_wakeups_affine);
1273
1274 return 1;
1275 }
1276 return 0;
1277}
1278
e7693a36
GH
1279static int select_task_rq_fair(struct task_struct *p, int sync)
1280{
e7693a36 1281 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1282 int prev_cpu, this_cpu, new_cpu;
098fb9db 1283 unsigned long load, this_load;
64b9e029 1284 struct rq *this_rq;
098fb9db 1285 unsigned int imbalance;
098fb9db 1286 int idx;
e7693a36 1287
ac192d39 1288 prev_cpu = task_cpu(p);
ac192d39 1289 this_cpu = smp_processor_id();
4ae7d5ce 1290 this_rq = cpu_rq(this_cpu);
ac192d39 1291 new_cpu = prev_cpu;
e7693a36 1292
64b9e029
AA
1293 if (prev_cpu == this_cpu)
1294 goto out;
ac192d39
IM
1295 /*
1296 * 'this_sd' is the first domain that both
1297 * this_cpu and prev_cpu are present in:
1298 */
e7693a36 1299 for_each_domain(this_cpu, sd) {
758b2cdc 1300 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1301 this_sd = sd;
1302 break;
1303 }
1304 }
1305
96f874e2 1306 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1307 goto out;
e7693a36
GH
1308
1309 /*
1310 * Check for affine wakeup and passive balancing possibilities.
1311 */
098fb9db 1312 if (!this_sd)
f4827386 1313 goto out;
e7693a36 1314
098fb9db
IM
1315 idx = this_sd->wake_idx;
1316
1317 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1318
ac192d39 1319 load = source_load(prev_cpu, idx);
098fb9db
IM
1320 this_load = target_load(this_cpu, idx);
1321
64b9e029 1322 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1323 load, this_load, imbalance))
1324 return this_cpu;
1325
098fb9db
IM
1326 /*
1327 * Start passive balancing when half the imbalance_pct
1328 * limit is reached.
1329 */
1330 if (this_sd->flags & SD_WAKE_BALANCE) {
1331 if (imbalance*this_load <= 100*load) {
1332 schedstat_inc(this_sd, ttwu_move_balance);
1333 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1334 return this_cpu;
e7693a36
GH
1335 }
1336 }
1337
f4827386 1338out:
e7693a36
GH
1339 return wake_idle(new_cpu, p);
1340}
1341#endif /* CONFIG_SMP */
1342
e52fb7c0
PZ
1343/*
1344 * Adaptive granularity
1345 *
1346 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1347 * with the limit of wakeup_gran -- when it never does a wakeup.
1348 *
1349 * So the smaller avg_wakeup is the faster we want this task to preempt,
1350 * but we don't want to treat the preemptee unfairly and therefore allow it
1351 * to run for at least the amount of time we'd like to run.
1352 *
1353 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1354 *
1355 * NOTE: we use *nr_running to scale with load, this nicely matches the
1356 * degrading latency on load.
1357 */
1358static unsigned long
1359adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1360{
1361 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1362 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1363 u64 gran = 0;
1364
1365 if (this_run < expected_wakeup)
1366 gran = expected_wakeup - this_run;
1367
1368 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1369}
1370
1371static unsigned long
1372wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1373{
1374 unsigned long gran = sysctl_sched_wakeup_granularity;
1375
e52fb7c0
PZ
1376 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1377 gran = adaptive_gran(curr, se);
1378
0bbd3336 1379 /*
e52fb7c0
PZ
1380 * Since its curr running now, convert the gran from real-time
1381 * to virtual-time in his units.
0bbd3336 1382 */
e52fb7c0
PZ
1383 if (sched_feat(ASYM_GRAN)) {
1384 /*
1385 * By using 'se' instead of 'curr' we penalize light tasks, so
1386 * they get preempted easier. That is, if 'se' < 'curr' then
1387 * the resulting gran will be larger, therefore penalizing the
1388 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1389 * be smaller, again penalizing the lighter task.
1390 *
1391 * This is especially important for buddies when the leftmost
1392 * task is higher priority than the buddy.
1393 */
1394 if (unlikely(se->load.weight != NICE_0_LOAD))
1395 gran = calc_delta_fair(gran, se);
1396 } else {
1397 if (unlikely(curr->load.weight != NICE_0_LOAD))
1398 gran = calc_delta_fair(gran, curr);
1399 }
0bbd3336
PZ
1400
1401 return gran;
1402}
1403
464b7527
PZ
1404/*
1405 * Should 'se' preempt 'curr'.
1406 *
1407 * |s1
1408 * |s2
1409 * |s3
1410 * g
1411 * |<--->|c
1412 *
1413 * w(c, s1) = -1
1414 * w(c, s2) = 0
1415 * w(c, s3) = 1
1416 *
1417 */
1418static int
1419wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1420{
1421 s64 gran, vdiff = curr->vruntime - se->vruntime;
1422
1423 if (vdiff <= 0)
1424 return -1;
1425
e52fb7c0 1426 gran = wakeup_gran(curr, se);
464b7527
PZ
1427 if (vdiff > gran)
1428 return 1;
1429
1430 return 0;
1431}
1432
02479099
PZ
1433static void set_last_buddy(struct sched_entity *se)
1434{
6bc912b7
PZ
1435 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1436 for_each_sched_entity(se)
1437 cfs_rq_of(se)->last = se;
1438 }
02479099
PZ
1439}
1440
1441static void set_next_buddy(struct sched_entity *se)
1442{
6bc912b7
PZ
1443 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1444 for_each_sched_entity(se)
1445 cfs_rq_of(se)->next = se;
1446 }
02479099
PZ
1447}
1448
bf0f6f24
IM
1449/*
1450 * Preempt the current task with a newly woken task if needed:
1451 */
15afe09b 1452static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1453{
1454 struct task_struct *curr = rq->curr;
8651a86c 1455 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1456 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1457
03e89e45 1458 update_curr(cfs_rq);
4793241b 1459
03e89e45 1460 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1461 resched_task(curr);
1462 return;
1463 }
aa2ac252 1464
d95f98d0
PZ
1465 if (unlikely(p->sched_class != &fair_sched_class))
1466 return;
1467
4ae7d5ce
IM
1468 if (unlikely(se == pse))
1469 return;
1470
4793241b
PZ
1471 /*
1472 * Only set the backward buddy when the current task is still on the
1473 * rq. This can happen when a wakeup gets interleaved with schedule on
1474 * the ->pre_schedule() or idle_balance() point, either of which can
1475 * drop the rq lock.
1476 *
1477 * Also, during early boot the idle thread is in the fair class, for
1478 * obvious reasons its a bad idea to schedule back to the idle thread.
1479 */
1480 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1481 set_last_buddy(se);
1482 set_next_buddy(pse);
57fdc26d 1483
aec0a514
BR
1484 /*
1485 * We can come here with TIF_NEED_RESCHED already set from new task
1486 * wake up path.
1487 */
1488 if (test_tsk_need_resched(curr))
1489 return;
1490
91c234b4 1491 /*
6bc912b7 1492 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1493 * the tick):
1494 */
6bc912b7 1495 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1496 return;
bf0f6f24 1497
6bc912b7
PZ
1498 /* Idle tasks are by definition preempted by everybody. */
1499 if (unlikely(curr->policy == SCHED_IDLE)) {
1500 resched_task(curr);
91c234b4 1501 return;
6bc912b7 1502 }
bf0f6f24 1503
77d9cc44
IM
1504 if (!sched_feat(WAKEUP_PREEMPT))
1505 return;
8651a86c 1506
fc631c82
PZ
1507 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1508 (se->avg_overlap < sysctl_sched_migration_cost &&
1509 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1510 resched_task(curr);
1511 return;
1512 }
1513
464b7527
PZ
1514 find_matching_se(&se, &pse);
1515
002f128b 1516 BUG_ON(!pse);
464b7527 1517
002f128b
PT
1518 if (wakeup_preempt_entity(se, pse) == 1)
1519 resched_task(curr);
bf0f6f24
IM
1520}
1521
fb8d4724 1522static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1523{
8f4d37ec 1524 struct task_struct *p;
bf0f6f24
IM
1525 struct cfs_rq *cfs_rq = &rq->cfs;
1526 struct sched_entity *se;
1527
1528 if (unlikely(!cfs_rq->nr_running))
1529 return NULL;
1530
1531 do {
9948f4b2 1532 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1533 /*
1534 * If se was a buddy, clear it so that it will have to earn
1535 * the favour again.
1536 */
a571bbea 1537 __clear_buddies(cfs_rq, se);
f4b6755f 1538 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1539 cfs_rq = group_cfs_rq(se);
1540 } while (cfs_rq);
1541
8f4d37ec
PZ
1542 p = task_of(se);
1543 hrtick_start_fair(rq, p);
1544
1545 return p;
bf0f6f24
IM
1546}
1547
1548/*
1549 * Account for a descheduled task:
1550 */
31ee529c 1551static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1552{
1553 struct sched_entity *se = &prev->se;
1554 struct cfs_rq *cfs_rq;
1555
1556 for_each_sched_entity(se) {
1557 cfs_rq = cfs_rq_of(se);
ab6cde26 1558 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1559 }
1560}
1561
681f3e68 1562#ifdef CONFIG_SMP
bf0f6f24
IM
1563/**************************************************
1564 * Fair scheduling class load-balancing methods:
1565 */
1566
1567/*
1568 * Load-balancing iterator. Note: while the runqueue stays locked
1569 * during the whole iteration, the current task might be
1570 * dequeued so the iterator has to be dequeue-safe. Here we
1571 * achieve that by always pre-iterating before returning
1572 * the current task:
1573 */
a9957449 1574static struct task_struct *
4a55bd5e 1575__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1576{
354d60c2
DG
1577 struct task_struct *p = NULL;
1578 struct sched_entity *se;
bf0f6f24 1579
77ae6513
MG
1580 if (next == &cfs_rq->tasks)
1581 return NULL;
1582
b87f1724
BR
1583 se = list_entry(next, struct sched_entity, group_node);
1584 p = task_of(se);
1585 cfs_rq->balance_iterator = next->next;
77ae6513 1586
bf0f6f24
IM
1587 return p;
1588}
1589
1590static struct task_struct *load_balance_start_fair(void *arg)
1591{
1592 struct cfs_rq *cfs_rq = arg;
1593
4a55bd5e 1594 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1595}
1596
1597static struct task_struct *load_balance_next_fair(void *arg)
1598{
1599 struct cfs_rq *cfs_rq = arg;
1600
4a55bd5e 1601 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1602}
1603
c09595f6
PZ
1604static unsigned long
1605__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1606 unsigned long max_load_move, struct sched_domain *sd,
1607 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1608 struct cfs_rq *cfs_rq)
62fb1851 1609{
c09595f6 1610 struct rq_iterator cfs_rq_iterator;
62fb1851 1611
c09595f6
PZ
1612 cfs_rq_iterator.start = load_balance_start_fair;
1613 cfs_rq_iterator.next = load_balance_next_fair;
1614 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1615
c09595f6
PZ
1616 return balance_tasks(this_rq, this_cpu, busiest,
1617 max_load_move, sd, idle, all_pinned,
1618 this_best_prio, &cfs_rq_iterator);
62fb1851 1619}
62fb1851 1620
c09595f6 1621#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1622static unsigned long
bf0f6f24 1623load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1624 unsigned long max_load_move,
a4ac01c3
PW
1625 struct sched_domain *sd, enum cpu_idle_type idle,
1626 int *all_pinned, int *this_best_prio)
bf0f6f24 1627{
bf0f6f24 1628 long rem_load_move = max_load_move;
c09595f6
PZ
1629 int busiest_cpu = cpu_of(busiest);
1630 struct task_group *tg;
18d95a28 1631
c09595f6 1632 rcu_read_lock();
c8cba857 1633 update_h_load(busiest_cpu);
18d95a28 1634
caea8a03 1635 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1636 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1637 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1638 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1639 u64 rem_load, moved_load;
18d95a28 1640
c09595f6
PZ
1641 /*
1642 * empty group
1643 */
c8cba857 1644 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1645 continue;
1646
243e0e7b
SV
1647 rem_load = (u64)rem_load_move * busiest_weight;
1648 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1649
c09595f6 1650 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1651 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1652 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1653
c09595f6 1654 if (!moved_load)
bf0f6f24
IM
1655 continue;
1656
42a3ac7d 1657 moved_load *= busiest_h_load;
243e0e7b 1658 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1659
c09595f6
PZ
1660 rem_load_move -= moved_load;
1661 if (rem_load_move < 0)
bf0f6f24
IM
1662 break;
1663 }
c09595f6 1664 rcu_read_unlock();
bf0f6f24 1665
43010659 1666 return max_load_move - rem_load_move;
bf0f6f24 1667}
c09595f6
PZ
1668#else
1669static unsigned long
1670load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1671 unsigned long max_load_move,
1672 struct sched_domain *sd, enum cpu_idle_type idle,
1673 int *all_pinned, int *this_best_prio)
1674{
1675 return __load_balance_fair(this_rq, this_cpu, busiest,
1676 max_load_move, sd, idle, all_pinned,
1677 this_best_prio, &busiest->cfs);
1678}
1679#endif
bf0f6f24 1680
e1d1484f
PW
1681static int
1682move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1683 struct sched_domain *sd, enum cpu_idle_type idle)
1684{
1685 struct cfs_rq *busy_cfs_rq;
1686 struct rq_iterator cfs_rq_iterator;
1687
1688 cfs_rq_iterator.start = load_balance_start_fair;
1689 cfs_rq_iterator.next = load_balance_next_fair;
1690
1691 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1692 /*
1693 * pass busy_cfs_rq argument into
1694 * load_balance_[start|next]_fair iterators
1695 */
1696 cfs_rq_iterator.arg = busy_cfs_rq;
1697 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1698 &cfs_rq_iterator))
1699 return 1;
1700 }
1701
1702 return 0;
1703}
55e12e5e 1704#endif /* CONFIG_SMP */
e1d1484f 1705
bf0f6f24
IM
1706/*
1707 * scheduler tick hitting a task of our scheduling class:
1708 */
8f4d37ec 1709static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1710{
1711 struct cfs_rq *cfs_rq;
1712 struct sched_entity *se = &curr->se;
1713
1714 for_each_sched_entity(se) {
1715 cfs_rq = cfs_rq_of(se);
8f4d37ec 1716 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1717 }
1718}
1719
1720/*
1721 * Share the fairness runtime between parent and child, thus the
1722 * total amount of pressure for CPU stays equal - new tasks
1723 * get a chance to run but frequent forkers are not allowed to
1724 * monopolize the CPU. Note: the parent runqueue is locked,
1725 * the child is not running yet.
1726 */
ee0827d8 1727static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1728{
1729 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1730 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1731 int this_cpu = smp_processor_id();
bf0f6f24
IM
1732
1733 sched_info_queued(p);
1734
7109c442 1735 update_curr(cfs_rq);
aeb73b04 1736 place_entity(cfs_rq, se, 1);
4d78e7b6 1737
3c90e6e9 1738 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1739 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1740 curr && entity_before(curr, se)) {
87fefa38 1741 /*
edcb60a3
IM
1742 * Upon rescheduling, sched_class::put_prev_task() will place
1743 * 'current' within the tree based on its new key value.
1744 */
4d78e7b6 1745 swap(curr->vruntime, se->vruntime);
aec0a514 1746 resched_task(rq->curr);
4d78e7b6 1747 }
bf0f6f24 1748
b9dca1e0 1749 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1750}
1751
cb469845
SR
1752/*
1753 * Priority of the task has changed. Check to see if we preempt
1754 * the current task.
1755 */
1756static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1757 int oldprio, int running)
1758{
1759 /*
1760 * Reschedule if we are currently running on this runqueue and
1761 * our priority decreased, or if we are not currently running on
1762 * this runqueue and our priority is higher than the current's
1763 */
1764 if (running) {
1765 if (p->prio > oldprio)
1766 resched_task(rq->curr);
1767 } else
15afe09b 1768 check_preempt_curr(rq, p, 0);
cb469845
SR
1769}
1770
1771/*
1772 * We switched to the sched_fair class.
1773 */
1774static void switched_to_fair(struct rq *rq, struct task_struct *p,
1775 int running)
1776{
1777 /*
1778 * We were most likely switched from sched_rt, so
1779 * kick off the schedule if running, otherwise just see
1780 * if we can still preempt the current task.
1781 */
1782 if (running)
1783 resched_task(rq->curr);
1784 else
15afe09b 1785 check_preempt_curr(rq, p, 0);
cb469845
SR
1786}
1787
83b699ed
SV
1788/* Account for a task changing its policy or group.
1789 *
1790 * This routine is mostly called to set cfs_rq->curr field when a task
1791 * migrates between groups/classes.
1792 */
1793static void set_curr_task_fair(struct rq *rq)
1794{
1795 struct sched_entity *se = &rq->curr->se;
1796
1797 for_each_sched_entity(se)
1798 set_next_entity(cfs_rq_of(se), se);
1799}
1800
810b3817
PZ
1801#ifdef CONFIG_FAIR_GROUP_SCHED
1802static void moved_group_fair(struct task_struct *p)
1803{
1804 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1805
1806 update_curr(cfs_rq);
1807 place_entity(cfs_rq, &p->se, 1);
1808}
1809#endif
1810
bf0f6f24
IM
1811/*
1812 * All the scheduling class methods:
1813 */
5522d5d5
IM
1814static const struct sched_class fair_sched_class = {
1815 .next = &idle_sched_class,
bf0f6f24
IM
1816 .enqueue_task = enqueue_task_fair,
1817 .dequeue_task = dequeue_task_fair,
1818 .yield_task = yield_task_fair,
1819
2e09bf55 1820 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1821
1822 .pick_next_task = pick_next_task_fair,
1823 .put_prev_task = put_prev_task_fair,
1824
681f3e68 1825#ifdef CONFIG_SMP
4ce72a2c
LZ
1826 .select_task_rq = select_task_rq_fair,
1827
bf0f6f24 1828 .load_balance = load_balance_fair,
e1d1484f 1829 .move_one_task = move_one_task_fair,
681f3e68 1830#endif
bf0f6f24 1831
83b699ed 1832 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1833 .task_tick = task_tick_fair,
1834 .task_new = task_new_fair,
cb469845
SR
1835
1836 .prio_changed = prio_changed_fair,
1837 .switched_to = switched_to_fair,
810b3817
PZ
1838
1839#ifdef CONFIG_FAIR_GROUP_SCHED
1840 .moved_group = moved_group_fair,
1841#endif
bf0f6f24
IM
1842};
1843
1844#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1845static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1846{
bf0f6f24
IM
1847 struct cfs_rq *cfs_rq;
1848
5973e5b9 1849 rcu_read_lock();
c3b64f1e 1850 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1851 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1852 rcu_read_unlock();
bf0f6f24
IM
1853}
1854#endif