]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
sched: Optimize cgroup vs wakeup a bit
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
172e082a 27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
172e082a 37unsigned int sysctl_sched_latency = 5000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
172e082a 41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
172e082a 43unsigned int sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
2bba22c5 51 * After fork, child runs first. If set to 0 (default) then
b2be5e96 52 * parent will (try to) run first.
21805085 53 */
2bba22c5 54unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
172e082a 66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
172e082a 72unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
62160e3f 82#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 83
62160e3f 84/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
62160e3f 87 return cfs_rq->rq;
bf0f6f24
IM
88}
89
62160e3f
IM
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
bf0f6f24 92
8f48894f
PZ
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
b758149c
PZ
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
464b7527
PZ
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
8f48894f
PZ
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
bf0f6f24 198
62160e3f
IM
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
202}
203
204#define entity_is_task(se) 1
205
b758149c
PZ
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
bf0f6f24 208
b758149c 209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 210{
b758149c 211 return &task_rq(p)->cfs;
bf0f6f24
IM
212}
213
b758149c
PZ
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
464b7527
PZ
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
b758149c
PZ
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
bf0f6f24
IM
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
0702e3eb 259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 260{
368059a9
PZ
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
02e0431a
PZ
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
0702e3eb 268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
54fdc581
FC
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
0702e3eb 283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 284{
30cfdcfc 285 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
286}
287
1af5f730
PZ
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
e17036da 300 if (!cfs_rq->curr)
1af5f730
PZ
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
bf0f6f24
IM
309/*
310 * Enqueue an entity into the rb-tree:
311 */
0702e3eb 312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
9014623c 317 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
9014623c 330 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
1af5f730 342 if (leftmost)
57cb499d 343 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
347}
348
0702e3eb 349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 350{
3fe69747
PZ
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
3fe69747
PZ
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
3fe69747 356 }
e9acbff6 357
bf0f6f24 358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
359}
360
bf0f6f24
IM
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
f4b6755f
PZ
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
369}
370
f4b6755f 371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 372{
7eee3e67 373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 374
70eee74b
BS
375 if (!last)
376 return NULL;
7eee3e67
IM
377
378 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
379}
380
bf0f6f24
IM
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
b2be5e96
PZ
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
647e7cac 401
a7be37ac 402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
0a582440 443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 444
0a582440 445 for_each_sched_entity(se) {
6272d68c 446 struct load_weight *load;
3104bf03 447 struct load_weight lw;
6272d68c
LM
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
f9c0b095 451
0a582440 452 if (unlikely(!se->on_rq)) {
3104bf03 453 lw = cfs_rq->load;
0a582440
MG
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
bf0f6f24
IM
461}
462
647e7cac 463/*
ac884dec 464 * We calculate the vruntime slice of a to be inserted task
647e7cac 465 *
f9c0b095 466 * vs = s/w
647e7cac 467 */
f9c0b095 468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 469{
f9c0b095 470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
471}
472
bf0f6f24
IM
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
8ebc91d9
IM
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
bf0f6f24 480{
bbdba7c0 481 unsigned long delta_exec_weighted;
bf0f6f24 482
8179ca23 483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
484
485 curr->sum_exec_runtime += delta_exec;
7a62eabc 486 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 488 curr->vruntime += delta_exec_weighted;
1af5f730 489 update_min_vruntime(cfs_rq);
bf0f6f24
IM
490}
491
b7cc0896 492static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 493{
429d43bc 494 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 495 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
8ebc91d9 506 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
507 if (!delta_exec)
508 return;
bf0f6f24 509
8ebc91d9
IM
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
d842de87
SV
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
f06febc9 517 account_group_exec_runtime(curtask, delta_exec);
d842de87 518 }
bf0f6f24
IM
519}
520
521static inline void
5870db5b 522update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
d281918d 524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
525}
526
bf0f6f24
IM
527/*
528 * Task is being enqueued - update stats:
529 */
d2417e5a 530static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 531{
bf0f6f24
IM
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
429d43bc 536 if (se != cfs_rq->curr)
5870db5b 537 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
538}
539
bf0f6f24 540static void
9ef0a961 541update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
bbdba7c0
IM
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
548#ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
552 }
553#endif
e1f84508 554 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
555}
556
557static inline void
19b6a2e3 558update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 559{
bf0f6f24
IM
560 /*
561 * Mark the end of the wait period if dequeueing a
562 * waiting task:
563 */
429d43bc 564 if (se != cfs_rq->curr)
9ef0a961 565 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
566}
567
568/*
569 * We are picking a new current task - update its stats:
570 */
571static inline void
79303e9e 572update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
573{
574 /*
575 * We are starting a new run period:
576 */
d281918d 577 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
578}
579
bf0f6f24
IM
580/**************************************************
581 * Scheduling class queueing methods:
582 */
583
c09595f6
PZ
584#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
585static void
586add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
587{
588 cfs_rq->task_weight += weight;
589}
590#else
591static inline void
592add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
593{
594}
595#endif
596
30cfdcfc
DA
597static void
598account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599{
600 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
601 if (!parent_entity(se))
602 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 603 if (entity_is_task(se)) {
c09595f6 604 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
605 list_add(&se->group_node, &cfs_rq->tasks);
606 }
30cfdcfc
DA
607 cfs_rq->nr_running++;
608 se->on_rq = 1;
609}
610
611static void
612account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613{
614 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
615 if (!parent_entity(se))
616 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 617 if (entity_is_task(se)) {
c09595f6 618 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
619 list_del_init(&se->group_node);
620 }
30cfdcfc
DA
621 cfs_rq->nr_running--;
622 se->on_rq = 0;
623}
624
2396af69 625static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 626{
bf0f6f24 627#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
628 struct task_struct *tsk = NULL;
629
630 if (entity_is_task(se))
631 tsk = task_of(se);
632
bf0f6f24 633 if (se->sleep_start) {
d281918d 634 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
635
636 if ((s64)delta < 0)
637 delta = 0;
638
639 if (unlikely(delta > se->sleep_max))
640 se->sleep_max = delta;
641
642 se->sleep_start = 0;
643 se->sum_sleep_runtime += delta;
9745512c 644
768d0c27 645 if (tsk) {
e414314c 646 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
647 trace_sched_stat_sleep(tsk, delta);
648 }
bf0f6f24
IM
649 }
650 if (se->block_start) {
d281918d 651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
652
653 if ((s64)delta < 0)
654 delta = 0;
655
656 if (unlikely(delta > se->block_max))
657 se->block_max = delta;
658
659 se->block_start = 0;
660 se->sum_sleep_runtime += delta;
30084fbd 661
e414314c 662 if (tsk) {
8f0dfc34
AV
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
768d0c27 666 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
667 }
668
e414314c
PZ
669 /*
670 * Blocking time is in units of nanosecs, so shift by
671 * 20 to get a milliseconds-range estimation of the
672 * amount of time that the task spent sleeping:
673 */
674 if (unlikely(prof_on == SLEEP_PROFILING)) {
675 profile_hits(SLEEP_PROFILING,
676 (void *)get_wchan(tsk),
677 delta >> 20);
678 }
679 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 680 }
bf0f6f24
IM
681 }
682#endif
683}
684
ddc97297
PZ
685static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
686{
687#ifdef CONFIG_SCHED_DEBUG
688 s64 d = se->vruntime - cfs_rq->min_vruntime;
689
690 if (d < 0)
691 d = -d;
692
693 if (d > 3*sysctl_sched_latency)
694 schedstat_inc(cfs_rq, nr_spread_over);
695#endif
696}
697
aeb73b04
PZ
698static void
699place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
700{
1af5f730 701 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 702
2cb8600e
PZ
703 /*
704 * The 'current' period is already promised to the current tasks,
705 * however the extra weight of the new task will slow them down a
706 * little, place the new task so that it fits in the slot that
707 * stays open at the end.
708 */
94dfb5e7 709 if (initial && sched_feat(START_DEBIT))
f9c0b095 710 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 711
8465e792 712 if (!initial) {
2cb8600e 713 /* sleeps upto a single latency don't count. */
51e0304c 714 if (sched_feat(FAIR_SLEEPERS)) {
a7be37ac
PZ
715 unsigned long thresh = sysctl_sched_latency;
716
717 /*
6bc912b7
PZ
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
a7be37ac 722 */
6bc912b7 723 if (sched_feat(NORMALIZED_SLEEPER) &&
d07387b4
PT
724 (!entity_is_task(se) ||
725 task_of(se)->policy != SCHED_IDLE))
a7be37ac
PZ
726 thresh = calc_delta_fair(thresh, se);
727
51e0304c
IM
728 /*
729 * Halve their sleep time's effect, to allow
730 * for a gentler effect of sleepers:
731 */
732 if (sched_feat(GENTLE_FAIR_SLEEPERS))
733 thresh >>= 1;
734
a7be37ac
PZ
735 vruntime -= thresh;
736 }
aeb73b04
PZ
737 }
738
b5d9d734
MG
739 /* ensure we never gain time by being placed backwards. */
740 vruntime = max_vruntime(se->vruntime, vruntime);
741
67e9fb2a 742 se->vruntime = vruntime;
aeb73b04
PZ
743}
744
bf0f6f24 745static void
83b699ed 746enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
747{
748 /*
a2a2d680 749 * Update run-time statistics of the 'current'.
bf0f6f24 750 */
b7cc0896 751 update_curr(cfs_rq);
a992241d 752 account_entity_enqueue(cfs_rq, se);
bf0f6f24 753
e9acbff6 754 if (wakeup) {
aeb73b04 755 place_entity(cfs_rq, se, 0);
2396af69 756 enqueue_sleeper(cfs_rq, se);
e9acbff6 757 }
bf0f6f24 758
d2417e5a 759 update_stats_enqueue(cfs_rq, se);
ddc97297 760 check_spread(cfs_rq, se);
83b699ed
SV
761 if (se != cfs_rq->curr)
762 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
763}
764
a571bbea 765static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
766{
767 if (cfs_rq->last == se)
768 cfs_rq->last = NULL;
769
770 if (cfs_rq->next == se)
771 cfs_rq->next = NULL;
772}
773
a571bbea
PZ
774static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
775{
776 for_each_sched_entity(se)
777 __clear_buddies(cfs_rq_of(se), se);
778}
779
bf0f6f24 780static void
525c2716 781dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 782{
a2a2d680
DA
783 /*
784 * Update run-time statistics of the 'current'.
785 */
786 update_curr(cfs_rq);
787
19b6a2e3 788 update_stats_dequeue(cfs_rq, se);
db36cc7d 789 if (sleep) {
67e9fb2a 790#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
791 if (entity_is_task(se)) {
792 struct task_struct *tsk = task_of(se);
793
794 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 795 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 796 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 797 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 798 }
db36cc7d 799#endif
67e9fb2a
PZ
800 }
801
2002c695 802 clear_buddies(cfs_rq, se);
4793241b 803
83b699ed 804 if (se != cfs_rq->curr)
30cfdcfc
DA
805 __dequeue_entity(cfs_rq, se);
806 account_entity_dequeue(cfs_rq, se);
1af5f730 807 update_min_vruntime(cfs_rq);
bf0f6f24
IM
808}
809
810/*
811 * Preempt the current task with a newly woken task if needed:
812 */
7c92e54f 813static void
2e09bf55 814check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 815{
11697830
PZ
816 unsigned long ideal_runtime, delta_exec;
817
6d0f0ebd 818 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 819 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 820 if (delta_exec > ideal_runtime) {
bf0f6f24 821 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
822 /*
823 * The current task ran long enough, ensure it doesn't get
824 * re-elected due to buddy favours.
825 */
826 clear_buddies(cfs_rq, curr);
827 }
bf0f6f24
IM
828}
829
83b699ed 830static void
8494f412 831set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 832{
83b699ed
SV
833 /* 'current' is not kept within the tree. */
834 if (se->on_rq) {
835 /*
836 * Any task has to be enqueued before it get to execute on
837 * a CPU. So account for the time it spent waiting on the
838 * runqueue.
839 */
840 update_stats_wait_end(cfs_rq, se);
841 __dequeue_entity(cfs_rq, se);
842 }
843
79303e9e 844 update_stats_curr_start(cfs_rq, se);
429d43bc 845 cfs_rq->curr = se;
eba1ed4b
IM
846#ifdef CONFIG_SCHEDSTATS
847 /*
848 * Track our maximum slice length, if the CPU's load is at
849 * least twice that of our own weight (i.e. dont track it
850 * when there are only lesser-weight tasks around):
851 */
495eca49 852 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
853 se->slice_max = max(se->slice_max,
854 se->sum_exec_runtime - se->prev_sum_exec_runtime);
855 }
856#endif
4a55b450 857 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
858}
859
3f3a4904
PZ
860static int
861wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
862
f4b6755f 863static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 864{
f4b6755f
PZ
865 struct sched_entity *se = __pick_next_entity(cfs_rq);
866
4793241b
PZ
867 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
868 return cfs_rq->next;
aa2ac252 869
4793241b
PZ
870 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
871 return cfs_rq->last;
872
873 return se;
aa2ac252
PZ
874}
875
ab6cde26 876static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
877{
878 /*
879 * If still on the runqueue then deactivate_task()
880 * was not called and update_curr() has to be done:
881 */
882 if (prev->on_rq)
b7cc0896 883 update_curr(cfs_rq);
bf0f6f24 884
ddc97297 885 check_spread(cfs_rq, prev);
30cfdcfc 886 if (prev->on_rq) {
5870db5b 887 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
888 /* Put 'current' back into the tree. */
889 __enqueue_entity(cfs_rq, prev);
890 }
429d43bc 891 cfs_rq->curr = NULL;
bf0f6f24
IM
892}
893
8f4d37ec
PZ
894static void
895entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 896{
bf0f6f24 897 /*
30cfdcfc 898 * Update run-time statistics of the 'current'.
bf0f6f24 899 */
30cfdcfc 900 update_curr(cfs_rq);
bf0f6f24 901
8f4d37ec
PZ
902#ifdef CONFIG_SCHED_HRTICK
903 /*
904 * queued ticks are scheduled to match the slice, so don't bother
905 * validating it and just reschedule.
906 */
983ed7a6
HH
907 if (queued) {
908 resched_task(rq_of(cfs_rq)->curr);
909 return;
910 }
8f4d37ec
PZ
911 /*
912 * don't let the period tick interfere with the hrtick preemption
913 */
914 if (!sched_feat(DOUBLE_TICK) &&
915 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
916 return;
917#endif
918
ce6c1311 919 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 920 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
921}
922
923/**************************************************
924 * CFS operations on tasks:
925 */
926
8f4d37ec
PZ
927#ifdef CONFIG_SCHED_HRTICK
928static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
929{
8f4d37ec
PZ
930 struct sched_entity *se = &p->se;
931 struct cfs_rq *cfs_rq = cfs_rq_of(se);
932
933 WARN_ON(task_rq(p) != rq);
934
935 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
936 u64 slice = sched_slice(cfs_rq, se);
937 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
938 s64 delta = slice - ran;
939
940 if (delta < 0) {
941 if (rq->curr == p)
942 resched_task(p);
943 return;
944 }
945
946 /*
947 * Don't schedule slices shorter than 10000ns, that just
948 * doesn't make sense. Rely on vruntime for fairness.
949 */
31656519 950 if (rq->curr != p)
157124c1 951 delta = max_t(s64, 10000LL, delta);
8f4d37ec 952
31656519 953 hrtick_start(rq, delta);
8f4d37ec
PZ
954 }
955}
a4c2f00f
PZ
956
957/*
958 * called from enqueue/dequeue and updates the hrtick when the
959 * current task is from our class and nr_running is low enough
960 * to matter.
961 */
962static void hrtick_update(struct rq *rq)
963{
964 struct task_struct *curr = rq->curr;
965
966 if (curr->sched_class != &fair_sched_class)
967 return;
968
969 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
970 hrtick_start_fair(rq, curr);
971}
55e12e5e 972#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
973static inline void
974hrtick_start_fair(struct rq *rq, struct task_struct *p)
975{
976}
a4c2f00f
PZ
977
978static inline void hrtick_update(struct rq *rq)
979{
980}
8f4d37ec
PZ
981#endif
982
bf0f6f24
IM
983/*
984 * The enqueue_task method is called before nr_running is
985 * increased. Here we update the fair scheduling stats and
986 * then put the task into the rbtree:
987 */
fd390f6a 988static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
989{
990 struct cfs_rq *cfs_rq;
62fb1851 991 struct sched_entity *se = &p->se;
bf0f6f24
IM
992
993 for_each_sched_entity(se) {
62fb1851 994 if (se->on_rq)
bf0f6f24
IM
995 break;
996 cfs_rq = cfs_rq_of(se);
83b699ed 997 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 998 wakeup = 1;
bf0f6f24 999 }
8f4d37ec 1000
a4c2f00f 1001 hrtick_update(rq);
bf0f6f24
IM
1002}
1003
1004/*
1005 * The dequeue_task method is called before nr_running is
1006 * decreased. We remove the task from the rbtree and
1007 * update the fair scheduling stats:
1008 */
f02231e5 1009static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1010{
1011 struct cfs_rq *cfs_rq;
62fb1851 1012 struct sched_entity *se = &p->se;
bf0f6f24
IM
1013
1014 for_each_sched_entity(se) {
1015 cfs_rq = cfs_rq_of(se);
525c2716 1016 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1017 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1018 if (cfs_rq->load.weight)
bf0f6f24 1019 break;
b9fa3df3 1020 sleep = 1;
bf0f6f24 1021 }
8f4d37ec 1022
a4c2f00f 1023 hrtick_update(rq);
bf0f6f24
IM
1024}
1025
1026/*
1799e35d
IM
1027 * sched_yield() support is very simple - we dequeue and enqueue.
1028 *
1029 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1030 */
4530d7ab 1031static void yield_task_fair(struct rq *rq)
bf0f6f24 1032{
db292ca3
IM
1033 struct task_struct *curr = rq->curr;
1034 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1035 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1036
1037 /*
1799e35d
IM
1038 * Are we the only task in the tree?
1039 */
1040 if (unlikely(cfs_rq->nr_running == 1))
1041 return;
1042
2002c695
PZ
1043 clear_buddies(cfs_rq, se);
1044
db292ca3 1045 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1046 update_rq_clock(rq);
1799e35d 1047 /*
a2a2d680 1048 * Update run-time statistics of the 'current'.
1799e35d 1049 */
2b1e315d 1050 update_curr(cfs_rq);
1799e35d
IM
1051
1052 return;
1053 }
1054 /*
1055 * Find the rightmost entry in the rbtree:
bf0f6f24 1056 */
2b1e315d 1057 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1058 /*
1059 * Already in the rightmost position?
1060 */
54fdc581 1061 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1062 return;
1063
1064 /*
1065 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1066 * Upon rescheduling, sched_class::put_prev_task() will place
1067 * 'current' within the tree based on its new key value.
1799e35d 1068 */
30cfdcfc 1069 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1070}
1071
e7693a36 1072#ifdef CONFIG_SMP
098fb9db 1073
bb3469ac 1074#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1075/*
1076 * effective_load() calculates the load change as seen from the root_task_group
1077 *
1078 * Adding load to a group doesn't make a group heavier, but can cause movement
1079 * of group shares between cpus. Assuming the shares were perfectly aligned one
1080 * can calculate the shift in shares.
1081 *
1082 * The problem is that perfectly aligning the shares is rather expensive, hence
1083 * we try to avoid doing that too often - see update_shares(), which ratelimits
1084 * this change.
1085 *
1086 * We compensate this by not only taking the current delta into account, but
1087 * also considering the delta between when the shares were last adjusted and
1088 * now.
1089 *
1090 * We still saw a performance dip, some tracing learned us that between
1091 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1092 * significantly. Therefore try to bias the error in direction of failing
1093 * the affine wakeup.
1094 *
1095 */
f1d239f7
PZ
1096static long effective_load(struct task_group *tg, int cpu,
1097 long wl, long wg)
bb3469ac 1098{
4be9daaa 1099 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1100
1101 if (!tg->parent)
1102 return wl;
1103
f5bfb7d9
PZ
1104 /*
1105 * By not taking the decrease of shares on the other cpu into
1106 * account our error leans towards reducing the affine wakeups.
1107 */
1108 if (!wl && sched_feat(ASYM_EFF_LOAD))
1109 return wl;
1110
4be9daaa 1111 for_each_sched_entity(se) {
cb5ef42a 1112 long S, rw, s, a, b;
940959e9
PZ
1113 long more_w;
1114
1115 /*
1116 * Instead of using this increment, also add the difference
1117 * between when the shares were last updated and now.
1118 */
1119 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1120 wl += more_w;
1121 wg += more_w;
4be9daaa
PZ
1122
1123 S = se->my_q->tg->shares;
1124 s = se->my_q->shares;
f1d239f7 1125 rw = se->my_q->rq_weight;
bb3469ac 1126
cb5ef42a
PZ
1127 a = S*(rw + wl);
1128 b = S*rw + s*wg;
4be9daaa 1129
940959e9
PZ
1130 wl = s*(a-b);
1131
1132 if (likely(b))
1133 wl /= b;
1134
83378269
PZ
1135 /*
1136 * Assume the group is already running and will
1137 * thus already be accounted for in the weight.
1138 *
1139 * That is, moving shares between CPUs, does not
1140 * alter the group weight.
1141 */
4be9daaa 1142 wg = 0;
4be9daaa 1143 }
bb3469ac 1144
4be9daaa 1145 return wl;
bb3469ac 1146}
4be9daaa 1147
bb3469ac 1148#else
4be9daaa 1149
83378269
PZ
1150static inline unsigned long effective_load(struct task_group *tg, int cpu,
1151 unsigned long wl, unsigned long wg)
4be9daaa 1152{
83378269 1153 return wl;
bb3469ac 1154}
4be9daaa 1155
bb3469ac
PZ
1156#endif
1157
c88d5910 1158static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1159{
c88d5910
PZ
1160 struct task_struct *curr = current;
1161 unsigned long this_load, load;
1162 int idx, this_cpu, prev_cpu;
098fb9db 1163 unsigned long tl_per_task;
c88d5910
PZ
1164 unsigned int imbalance;
1165 struct task_group *tg;
83378269 1166 unsigned long weight;
b3137bc8 1167 int balanced;
098fb9db 1168
c88d5910
PZ
1169 idx = sd->wake_idx;
1170 this_cpu = smp_processor_id();
1171 prev_cpu = task_cpu(p);
1172 load = source_load(prev_cpu, idx);
1173 this_load = target_load(this_cpu, idx);
098fb9db 1174
e69b0f1b
PZ
1175 if (sync) {
1176 if (sched_feat(SYNC_LESS) &&
1177 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1178 p->se.avg_overlap > sysctl_sched_migration_cost))
1179 sync = 0;
1180 } else {
1181 if (sched_feat(SYNC_MORE) &&
1182 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1183 p->se.avg_overlap < sysctl_sched_migration_cost))
1184 sync = 1;
1185 }
fc631c82 1186
b3137bc8
MG
1187 /*
1188 * If sync wakeup then subtract the (maximum possible)
1189 * effect of the currently running task from the load
1190 * of the current CPU:
1191 */
83378269
PZ
1192 if (sync) {
1193 tg = task_group(current);
1194 weight = current->se.load.weight;
1195
c88d5910 1196 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1197 load += effective_load(tg, prev_cpu, 0, -weight);
1198 }
b3137bc8 1199
83378269
PZ
1200 tg = task_group(p);
1201 weight = p->se.load.weight;
b3137bc8 1202
c88d5910
PZ
1203 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1204
71a29aa7
PZ
1205 /*
1206 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1207 * due to the sync cause above having dropped this_load to 0, we'll
1208 * always have an imbalance, but there's really nothing you can do
1209 * about that, so that's good too.
71a29aa7
PZ
1210 *
1211 * Otherwise check if either cpus are near enough in load to allow this
1212 * task to be woken on this_cpu.
1213 */
c88d5910
PZ
1214 balanced = !this_load ||
1215 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1216 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1217
098fb9db 1218 /*
4ae7d5ce
IM
1219 * If the currently running task will sleep within
1220 * a reasonable amount of time then attract this newly
1221 * woken task:
098fb9db 1222 */
2fb7635c
PZ
1223 if (sync && balanced)
1224 return 1;
098fb9db
IM
1225
1226 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1227 tl_per_task = cpu_avg_load_per_task(this_cpu);
1228
c88d5910
PZ
1229 if (balanced ||
1230 (this_load <= load &&
1231 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1232 /*
1233 * This domain has SD_WAKE_AFFINE and
1234 * p is cache cold in this domain, and
1235 * there is no bad imbalance.
1236 */
c88d5910 1237 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1238 schedstat_inc(p, se.nr_wakeups_affine);
1239
1240 return 1;
1241 }
1242 return 0;
1243}
1244
aaee1203
PZ
1245/*
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1248 */
1249static struct sched_group *
78e7ed53
PZ
1250find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1251 int this_cpu, int flag)
aaee1203
PZ
1252{
1253 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1254 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
78e7ed53
PZ
1256 int load_idx = 0;
1257
1258 switch (flag) {
1259 case SD_BALANCE_FORK:
1260 case SD_BALANCE_EXEC:
1261 load_idx = sd->forkexec_idx;
1262 break;
1263
1264 case SD_BALANCE_WAKE:
1265 load_idx = sd->wake_idx;
1266 break;
1267
1268 default:
1269 break;
1270 }
aaee1203
PZ
1271
1272 do {
1273 unsigned long load, avg_load;
1274 int local_group;
1275 int i;
1276
1277 /* Skip over this group if it has no CPUs allowed */
1278 if (!cpumask_intersects(sched_group_cpus(group),
1279 &p->cpus_allowed))
1280 continue;
1281
1282 local_group = cpumask_test_cpu(this_cpu,
1283 sched_group_cpus(group));
1284
1285 /* Tally up the load of all CPUs in the group */
1286 avg_load = 0;
1287
1288 for_each_cpu(i, sched_group_cpus(group)) {
1289 /* Bias balancing toward cpus of our domain */
1290 if (local_group)
1291 load = source_load(i, load_idx);
1292 else
1293 load = target_load(i, load_idx);
1294
1295 avg_load += load;
1296 }
1297
1298 /* Adjust by relative CPU power of the group */
1299 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1300
1301 if (local_group) {
1302 this_load = avg_load;
1303 this = group;
1304 } else if (avg_load < min_load) {
1305 min_load = avg_load;
1306 idlest = group;
1307 }
1308 } while (group = group->next, group != sd->groups);
1309
1310 if (!idlest || 100*this_load < imbalance*min_load)
1311 return NULL;
1312 return idlest;
1313}
1314
1315/*
1316 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1317 */
1318static int
1319find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1320{
1321 unsigned long load, min_load = ULONG_MAX;
1322 int idlest = -1;
1323 int i;
1324
1325 /* Traverse only the allowed CPUs */
1326 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1327 load = weighted_cpuload(i);
1328
1329 if (load < min_load || (load == min_load && i == this_cpu)) {
1330 min_load = load;
1331 idlest = i;
1332 }
1333 }
1334
1335 return idlest;
1336}
1337
1338/*
1339 * sched_balance_self: balance the current task (running on cpu) in domains
1340 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1341 * SD_BALANCE_EXEC.
1342 *
1343 * Balance, ie. select the least loaded group.
1344 *
1345 * Returns the target CPU number, or the same CPU if no balancing is needed.
1346 *
1347 * preempt must be disabled.
1348 */
7d478721 1349static int select_task_rq_fair(struct task_struct *p, int sd_flag, int flags)
aaee1203 1350{
3b640894 1351 struct sched_domain *tmp, *shares = NULL, *sd = NULL;
c88d5910
PZ
1352 int cpu = smp_processor_id();
1353 int prev_cpu = task_cpu(p);
1354 int new_cpu = cpu;
1355 int want_affine = 0;
7d478721 1356 int sync = flags & WF_SYNC;
c88d5910 1357
0763a660 1358 if (sd_flag & SD_BALANCE_WAKE) {
c88d5910
PZ
1359 if (sched_feat(AFFINE_WAKEUPS))
1360 want_affine = 1;
1361 new_cpu = prev_cpu;
1362 }
aaee1203 1363
83f54960 1364 rcu_read_lock();
aaee1203
PZ
1365 for_each_domain(cpu, tmp) {
1366 /*
ae154be1
PZ
1367 * If power savings logic is enabled for a domain, see if we
1368 * are not overloaded, if so, don't balance wider.
aaee1203 1369 */
59abf026 1370 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1371 unsigned long power = 0;
1372 unsigned long nr_running = 0;
1373 unsigned long capacity;
1374 int i;
1375
1376 for_each_cpu(i, sched_domain_span(tmp)) {
1377 power += power_of(i);
1378 nr_running += cpu_rq(i)->cfs.nr_running;
1379 }
1380
1381 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1382
59abf026
PZ
1383 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1384 nr_running /= 2;
1385
1386 if (nr_running < capacity)
ae154be1
PZ
1387 break;
1388 }
aaee1203 1389
c88d5910
PZ
1390 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1391 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1392
3b640894
PZ
1393 if (sched_feat(LB_SHARES_UPDATE)) {
1394 update_shares(tmp);
1395 shares = tmp;
1396 }
1397
83f54960
PZ
1398 if (wake_affine(tmp, p, sync)) {
1399 new_cpu = cpu;
1400 goto out;
1401 }
c88d5910
PZ
1402
1403 want_affine = 0;
1404 }
1405
0763a660 1406 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1407 continue;
1408
1409 sd = tmp;
1410 }
aaee1203 1411
3b640894
PZ
1412 if (sd && sd != shares && sched_feat(LB_SHARES_UPDATE))
1413 update_shares(sd);
1414
aaee1203
PZ
1415 while (sd) {
1416 struct sched_group *group;
c88d5910 1417 int weight;
aaee1203 1418
0763a660 1419 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1420 sd = sd->child;
1421 continue;
1422 }
1423
0763a660 1424 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
1425 if (!group) {
1426 sd = sd->child;
1427 continue;
1428 }
1429
d7c33c49 1430 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1431 if (new_cpu == -1 || new_cpu == cpu) {
1432 /* Now try balancing at a lower domain level of cpu */
1433 sd = sd->child;
1434 continue;
1435 }
1436
1437 /* Now try balancing at a lower domain level of new_cpu */
1438 cpu = new_cpu;
1439 weight = cpumask_weight(sched_domain_span(sd));
1440 sd = NULL;
1441 for_each_domain(cpu, tmp) {
1442 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1443 break;
0763a660 1444 if (tmp->flags & sd_flag)
aaee1203
PZ
1445 sd = tmp;
1446 }
1447 /* while loop will break here if sd == NULL */
1448 }
1449
83f54960
PZ
1450out:
1451 rcu_read_unlock();
c88d5910 1452 return new_cpu;
aaee1203 1453}
e7693a36
GH
1454#endif /* CONFIG_SMP */
1455
e52fb7c0
PZ
1456/*
1457 * Adaptive granularity
1458 *
1459 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1460 * with the limit of wakeup_gran -- when it never does a wakeup.
1461 *
1462 * So the smaller avg_wakeup is the faster we want this task to preempt,
1463 * but we don't want to treat the preemptee unfairly and therefore allow it
1464 * to run for at least the amount of time we'd like to run.
1465 *
1466 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1467 *
1468 * NOTE: we use *nr_running to scale with load, this nicely matches the
1469 * degrading latency on load.
1470 */
1471static unsigned long
1472adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1473{
1474 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1475 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1476 u64 gran = 0;
1477
1478 if (this_run < expected_wakeup)
1479 gran = expected_wakeup - this_run;
1480
1481 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1482}
1483
1484static unsigned long
1485wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1486{
1487 unsigned long gran = sysctl_sched_wakeup_granularity;
1488
e52fb7c0
PZ
1489 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1490 gran = adaptive_gran(curr, se);
1491
0bbd3336 1492 /*
e52fb7c0
PZ
1493 * Since its curr running now, convert the gran from real-time
1494 * to virtual-time in his units.
0bbd3336 1495 */
e52fb7c0
PZ
1496 if (sched_feat(ASYM_GRAN)) {
1497 /*
1498 * By using 'se' instead of 'curr' we penalize light tasks, so
1499 * they get preempted easier. That is, if 'se' < 'curr' then
1500 * the resulting gran will be larger, therefore penalizing the
1501 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1502 * be smaller, again penalizing the lighter task.
1503 *
1504 * This is especially important for buddies when the leftmost
1505 * task is higher priority than the buddy.
1506 */
1507 if (unlikely(se->load.weight != NICE_0_LOAD))
1508 gran = calc_delta_fair(gran, se);
1509 } else {
1510 if (unlikely(curr->load.weight != NICE_0_LOAD))
1511 gran = calc_delta_fair(gran, curr);
1512 }
0bbd3336
PZ
1513
1514 return gran;
1515}
1516
464b7527
PZ
1517/*
1518 * Should 'se' preempt 'curr'.
1519 *
1520 * |s1
1521 * |s2
1522 * |s3
1523 * g
1524 * |<--->|c
1525 *
1526 * w(c, s1) = -1
1527 * w(c, s2) = 0
1528 * w(c, s3) = 1
1529 *
1530 */
1531static int
1532wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1533{
1534 s64 gran, vdiff = curr->vruntime - se->vruntime;
1535
1536 if (vdiff <= 0)
1537 return -1;
1538
e52fb7c0 1539 gran = wakeup_gran(curr, se);
464b7527
PZ
1540 if (vdiff > gran)
1541 return 1;
1542
1543 return 0;
1544}
1545
02479099
PZ
1546static void set_last_buddy(struct sched_entity *se)
1547{
6bc912b7
PZ
1548 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1549 for_each_sched_entity(se)
1550 cfs_rq_of(se)->last = se;
1551 }
02479099
PZ
1552}
1553
1554static void set_next_buddy(struct sched_entity *se)
1555{
6bc912b7
PZ
1556 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1557 for_each_sched_entity(se)
1558 cfs_rq_of(se)->next = se;
1559 }
02479099
PZ
1560}
1561
bf0f6f24
IM
1562/*
1563 * Preempt the current task with a newly woken task if needed:
1564 */
7d478721 1565static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1566{
1567 struct task_struct *curr = rq->curr;
8651a86c 1568 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1569 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7d478721 1570 int sync = flags & WF_SYNC;
bf0f6f24 1571
03e89e45 1572 update_curr(cfs_rq);
4793241b 1573
03e89e45 1574 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1575 resched_task(curr);
1576 return;
1577 }
aa2ac252 1578
d95f98d0
PZ
1579 if (unlikely(p->sched_class != &fair_sched_class))
1580 return;
1581
4ae7d5ce
IM
1582 if (unlikely(se == pse))
1583 return;
1584
4793241b
PZ
1585 /*
1586 * Only set the backward buddy when the current task is still on the
1587 * rq. This can happen when a wakeup gets interleaved with schedule on
1588 * the ->pre_schedule() or idle_balance() point, either of which can
1589 * drop the rq lock.
1590 *
1591 * Also, during early boot the idle thread is in the fair class, for
1592 * obvious reasons its a bad idea to schedule back to the idle thread.
1593 */
1594 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099 1595 set_last_buddy(se);
a7558e01 1596 if (sched_feat(NEXT_BUDDY) && !(flags & WF_FORK))
3cb63d52 1597 set_next_buddy(pse);
57fdc26d 1598
aec0a514
BR
1599 /*
1600 * We can come here with TIF_NEED_RESCHED already set from new task
1601 * wake up path.
1602 */
1603 if (test_tsk_need_resched(curr))
1604 return;
1605
91c234b4 1606 /*
6bc912b7 1607 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1608 * the tick):
1609 */
6bc912b7 1610 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1611 return;
bf0f6f24 1612
6bc912b7
PZ
1613 /* Idle tasks are by definition preempted by everybody. */
1614 if (unlikely(curr->policy == SCHED_IDLE)) {
1615 resched_task(curr);
91c234b4 1616 return;
6bc912b7 1617 }
bf0f6f24 1618
77d9cc44
IM
1619 if (!sched_feat(WAKEUP_PREEMPT))
1620 return;
8651a86c 1621
e6b1b2c9
PZ
1622 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1623 (sched_feat(WAKEUP_OVERLAP) &&
1624 (se->avg_overlap < sysctl_sched_migration_cost &&
1625 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1626 resched_task(curr);
1627 return;
1628 }
1629
464b7527
PZ
1630 find_matching_se(&se, &pse);
1631
002f128b 1632 BUG_ON(!pse);
464b7527 1633
002f128b
PT
1634 if (wakeup_preempt_entity(se, pse) == 1)
1635 resched_task(curr);
bf0f6f24
IM
1636}
1637
fb8d4724 1638static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1639{
8f4d37ec 1640 struct task_struct *p;
bf0f6f24
IM
1641 struct cfs_rq *cfs_rq = &rq->cfs;
1642 struct sched_entity *se;
1643
1644 if (unlikely(!cfs_rq->nr_running))
1645 return NULL;
1646
1647 do {
9948f4b2 1648 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1649 /*
1650 * If se was a buddy, clear it so that it will have to earn
1651 * the favour again.
1652 */
a571bbea 1653 __clear_buddies(cfs_rq, se);
f4b6755f 1654 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1655 cfs_rq = group_cfs_rq(se);
1656 } while (cfs_rq);
1657
8f4d37ec
PZ
1658 p = task_of(se);
1659 hrtick_start_fair(rq, p);
1660
1661 return p;
bf0f6f24
IM
1662}
1663
1664/*
1665 * Account for a descheduled task:
1666 */
31ee529c 1667static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1668{
1669 struct sched_entity *se = &prev->se;
1670 struct cfs_rq *cfs_rq;
1671
1672 for_each_sched_entity(se) {
1673 cfs_rq = cfs_rq_of(se);
ab6cde26 1674 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1675 }
1676}
1677
681f3e68 1678#ifdef CONFIG_SMP
bf0f6f24
IM
1679/**************************************************
1680 * Fair scheduling class load-balancing methods:
1681 */
1682
1683/*
1684 * Load-balancing iterator. Note: while the runqueue stays locked
1685 * during the whole iteration, the current task might be
1686 * dequeued so the iterator has to be dequeue-safe. Here we
1687 * achieve that by always pre-iterating before returning
1688 * the current task:
1689 */
a9957449 1690static struct task_struct *
4a55bd5e 1691__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1692{
354d60c2
DG
1693 struct task_struct *p = NULL;
1694 struct sched_entity *se;
bf0f6f24 1695
77ae6513
MG
1696 if (next == &cfs_rq->tasks)
1697 return NULL;
1698
b87f1724
BR
1699 se = list_entry(next, struct sched_entity, group_node);
1700 p = task_of(se);
1701 cfs_rq->balance_iterator = next->next;
77ae6513 1702
bf0f6f24
IM
1703 return p;
1704}
1705
1706static struct task_struct *load_balance_start_fair(void *arg)
1707{
1708 struct cfs_rq *cfs_rq = arg;
1709
4a55bd5e 1710 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1711}
1712
1713static struct task_struct *load_balance_next_fair(void *arg)
1714{
1715 struct cfs_rq *cfs_rq = arg;
1716
4a55bd5e 1717 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1718}
1719
c09595f6
PZ
1720static unsigned long
1721__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1722 unsigned long max_load_move, struct sched_domain *sd,
1723 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1724 struct cfs_rq *cfs_rq)
62fb1851 1725{
c09595f6 1726 struct rq_iterator cfs_rq_iterator;
62fb1851 1727
c09595f6
PZ
1728 cfs_rq_iterator.start = load_balance_start_fair;
1729 cfs_rq_iterator.next = load_balance_next_fair;
1730 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1731
c09595f6
PZ
1732 return balance_tasks(this_rq, this_cpu, busiest,
1733 max_load_move, sd, idle, all_pinned,
1734 this_best_prio, &cfs_rq_iterator);
62fb1851 1735}
62fb1851 1736
c09595f6 1737#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1738static unsigned long
bf0f6f24 1739load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1740 unsigned long max_load_move,
a4ac01c3
PW
1741 struct sched_domain *sd, enum cpu_idle_type idle,
1742 int *all_pinned, int *this_best_prio)
bf0f6f24 1743{
bf0f6f24 1744 long rem_load_move = max_load_move;
c09595f6
PZ
1745 int busiest_cpu = cpu_of(busiest);
1746 struct task_group *tg;
18d95a28 1747
c09595f6 1748 rcu_read_lock();
c8cba857 1749 update_h_load(busiest_cpu);
18d95a28 1750
caea8a03 1751 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1752 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1753 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1754 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1755 u64 rem_load, moved_load;
18d95a28 1756
c09595f6
PZ
1757 /*
1758 * empty group
1759 */
c8cba857 1760 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1761 continue;
1762
243e0e7b
SV
1763 rem_load = (u64)rem_load_move * busiest_weight;
1764 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1765
c09595f6 1766 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1767 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1768 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1769
c09595f6 1770 if (!moved_load)
bf0f6f24
IM
1771 continue;
1772
42a3ac7d 1773 moved_load *= busiest_h_load;
243e0e7b 1774 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1775
c09595f6
PZ
1776 rem_load_move -= moved_load;
1777 if (rem_load_move < 0)
bf0f6f24
IM
1778 break;
1779 }
c09595f6 1780 rcu_read_unlock();
bf0f6f24 1781
43010659 1782 return max_load_move - rem_load_move;
bf0f6f24 1783}
c09595f6
PZ
1784#else
1785static unsigned long
1786load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1787 unsigned long max_load_move,
1788 struct sched_domain *sd, enum cpu_idle_type idle,
1789 int *all_pinned, int *this_best_prio)
1790{
1791 return __load_balance_fair(this_rq, this_cpu, busiest,
1792 max_load_move, sd, idle, all_pinned,
1793 this_best_prio, &busiest->cfs);
1794}
1795#endif
bf0f6f24 1796
e1d1484f
PW
1797static int
1798move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1799 struct sched_domain *sd, enum cpu_idle_type idle)
1800{
1801 struct cfs_rq *busy_cfs_rq;
1802 struct rq_iterator cfs_rq_iterator;
1803
1804 cfs_rq_iterator.start = load_balance_start_fair;
1805 cfs_rq_iterator.next = load_balance_next_fair;
1806
1807 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1808 /*
1809 * pass busy_cfs_rq argument into
1810 * load_balance_[start|next]_fair iterators
1811 */
1812 cfs_rq_iterator.arg = busy_cfs_rq;
1813 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1814 &cfs_rq_iterator))
1815 return 1;
1816 }
1817
1818 return 0;
1819}
55e12e5e 1820#endif /* CONFIG_SMP */
e1d1484f 1821
bf0f6f24
IM
1822/*
1823 * scheduler tick hitting a task of our scheduling class:
1824 */
8f4d37ec 1825static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1826{
1827 struct cfs_rq *cfs_rq;
1828 struct sched_entity *se = &curr->se;
1829
1830 for_each_sched_entity(se) {
1831 cfs_rq = cfs_rq_of(se);
8f4d37ec 1832 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1833 }
1834}
1835
1836/*
1837 * Share the fairness runtime between parent and child, thus the
1838 * total amount of pressure for CPU stays equal - new tasks
1839 * get a chance to run but frequent forkers are not allowed to
1840 * monopolize the CPU. Note: the parent runqueue is locked,
1841 * the child is not running yet.
1842 */
ee0827d8 1843static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1844{
1845 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1846 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1847 int this_cpu = smp_processor_id();
bf0f6f24
IM
1848
1849 sched_info_queued(p);
1850
7109c442 1851 update_curr(cfs_rq);
b5d9d734
MG
1852 if (curr)
1853 se->vruntime = curr->vruntime;
aeb73b04 1854 place_entity(cfs_rq, se, 1);
4d78e7b6 1855
3c90e6e9 1856 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1857 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1858 curr && entity_before(curr, se)) {
87fefa38 1859 /*
edcb60a3
IM
1860 * Upon rescheduling, sched_class::put_prev_task() will place
1861 * 'current' within the tree based on its new key value.
1862 */
4d78e7b6 1863 swap(curr->vruntime, se->vruntime);
aec0a514 1864 resched_task(rq->curr);
4d78e7b6 1865 }
bf0f6f24 1866
b9dca1e0 1867 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1868}
1869
cb469845
SR
1870/*
1871 * Priority of the task has changed. Check to see if we preempt
1872 * the current task.
1873 */
1874static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1875 int oldprio, int running)
1876{
1877 /*
1878 * Reschedule if we are currently running on this runqueue and
1879 * our priority decreased, or if we are not currently running on
1880 * this runqueue and our priority is higher than the current's
1881 */
1882 if (running) {
1883 if (p->prio > oldprio)
1884 resched_task(rq->curr);
1885 } else
15afe09b 1886 check_preempt_curr(rq, p, 0);
cb469845
SR
1887}
1888
1889/*
1890 * We switched to the sched_fair class.
1891 */
1892static void switched_to_fair(struct rq *rq, struct task_struct *p,
1893 int running)
1894{
1895 /*
1896 * We were most likely switched from sched_rt, so
1897 * kick off the schedule if running, otherwise just see
1898 * if we can still preempt the current task.
1899 */
1900 if (running)
1901 resched_task(rq->curr);
1902 else
15afe09b 1903 check_preempt_curr(rq, p, 0);
cb469845
SR
1904}
1905
83b699ed
SV
1906/* Account for a task changing its policy or group.
1907 *
1908 * This routine is mostly called to set cfs_rq->curr field when a task
1909 * migrates between groups/classes.
1910 */
1911static void set_curr_task_fair(struct rq *rq)
1912{
1913 struct sched_entity *se = &rq->curr->se;
1914
1915 for_each_sched_entity(se)
1916 set_next_entity(cfs_rq_of(se), se);
1917}
1918
810b3817
PZ
1919#ifdef CONFIG_FAIR_GROUP_SCHED
1920static void moved_group_fair(struct task_struct *p)
1921{
1922 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1923
1924 update_curr(cfs_rq);
1925 place_entity(cfs_rq, &p->se, 1);
1926}
1927#endif
1928
bf0f6f24
IM
1929/*
1930 * All the scheduling class methods:
1931 */
5522d5d5
IM
1932static const struct sched_class fair_sched_class = {
1933 .next = &idle_sched_class,
bf0f6f24
IM
1934 .enqueue_task = enqueue_task_fair,
1935 .dequeue_task = dequeue_task_fair,
1936 .yield_task = yield_task_fair,
1937
2e09bf55 1938 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1939
1940 .pick_next_task = pick_next_task_fair,
1941 .put_prev_task = put_prev_task_fair,
1942
681f3e68 1943#ifdef CONFIG_SMP
4ce72a2c
LZ
1944 .select_task_rq = select_task_rq_fair,
1945
bf0f6f24 1946 .load_balance = load_balance_fair,
e1d1484f 1947 .move_one_task = move_one_task_fair,
681f3e68 1948#endif
bf0f6f24 1949
83b699ed 1950 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1951 .task_tick = task_tick_fair,
1952 .task_new = task_new_fair,
cb469845
SR
1953
1954 .prio_changed = prio_changed_fair,
1955 .switched_to = switched_to_fair,
810b3817
PZ
1956
1957#ifdef CONFIG_FAIR_GROUP_SCHED
1958 .moved_group = moved_group_fair,
1959#endif
bf0f6f24
IM
1960};
1961
1962#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1963static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1964{
bf0f6f24
IM
1965 struct cfs_rq *cfs_rq;
1966
5973e5b9 1967 rcu_read_lock();
c3b64f1e 1968 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1969 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1970 rcu_read_unlock();
bf0f6f24
IM
1971}
1972#endif