]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
IPv6: Delete redundant counter of IPSTATS_MIB_REASMFAILS
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
172e082a 28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
172e082a 38unsigned int sysctl_sched_latency = 5000000ULL;
0bcdcf28 39unsigned int normalized_sysctl_sched_latency = 5000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
172e082a 55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
172e082a 57unsigned int sysctl_sched_min_granularity = 1000000ULL;
0bcdcf28 58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
722aab0c 63static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
464b7527
PZ
165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
8f48894f
PZ
208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
bf0f6f24 214
62160e3f
IM
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
218}
219
220#define entity_is_task(se) 1
221
b758149c
PZ
222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
bf0f6f24 224
b758149c 225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 226{
b758149c 227 return &task_rq(p)->cfs;
bf0f6f24
IM
228}
229
b758149c
PZ
230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
464b7527
PZ
263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
b758149c
PZ
268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
bf0f6f24
IM
270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
0702e3eb 275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 276{
368059a9
PZ
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
02e0431a
PZ
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
0702e3eb 284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
54fdc581
FC
293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
0702e3eb 299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 300{
30cfdcfc 301 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
302}
303
1af5f730
PZ
304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
e17036da 316 if (!cfs_rq->curr)
1af5f730
PZ
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
bf0f6f24
IM
325/*
326 * Enqueue an entity into the rb-tree:
327 */
0702e3eb 328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
9014623c 333 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
9014623c 346 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
1af5f730 358 if (leftmost)
57cb499d 359 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
363}
364
0702e3eb 365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
3fe69747
PZ
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
3fe69747
PZ
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
3fe69747 372 }
e9acbff6 373
bf0f6f24 374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
375}
376
bf0f6f24
IM
377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
f4b6755f
PZ
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
385}
386
f4b6755f 387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 388{
7eee3e67 389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 390
70eee74b
BS
391 if (!last)
392 return NULL;
7eee3e67
IM
393
394 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
395}
396
bf0f6f24
IM
397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
b2be5e96 401#ifdef CONFIG_SCHED_DEBUG
acb4a848 402int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
b2be5e96
PZ
404 loff_t *ppos)
405{
8d65af78 406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 407 int factor = get_update_sysctl_factor();
b2be5e96
PZ
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
acb4a848
CE
415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
b2be5e96
PZ
423 return 0;
424}
425#endif
647e7cac 426
a7be37ac 427/*
f9c0b095 428 * delta /= w
a7be37ac
PZ
429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
f9c0b095
PZ
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
435
436 return delta;
437}
438
647e7cac
IM
439/*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
4d78e7b6
PZ
447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
b2be5e96 450 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
451
452 if (unlikely(nr_running > nr_latency)) {
4bf0b771 453 period = sysctl_sched_min_granularity;
4d78e7b6 454 period *= nr_running;
4d78e7b6
PZ
455 }
456
457 return period;
458}
459
647e7cac
IM
460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
f9c0b095 464 * s = p*P[w/rw]
647e7cac 465 */
6d0f0ebd 466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 467{
0a582440 468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 469
0a582440 470 for_each_sched_entity(se) {
6272d68c 471 struct load_weight *load;
3104bf03 472 struct load_weight lw;
6272d68c
LM
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
f9c0b095 476
0a582440 477 if (unlikely(!se->on_rq)) {
3104bf03 478 lw = cfs_rq->load;
0a582440
MG
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
bf0f6f24
IM
486}
487
647e7cac 488/*
ac884dec 489 * We calculate the vruntime slice of a to be inserted task
647e7cac 490 *
f9c0b095 491 * vs = s/w
647e7cac 492 */
f9c0b095 493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 494{
f9c0b095 495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
496}
497
bf0f6f24
IM
498/*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
8ebc91d9
IM
503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
bf0f6f24 505{
bbdba7c0 506 unsigned long delta_exec_weighted;
bf0f6f24 507
8179ca23 508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
509
510 curr->sum_exec_runtime += delta_exec;
7a62eabc 511 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 513
e9acbff6 514 curr->vruntime += delta_exec_weighted;
1af5f730 515 update_min_vruntime(cfs_rq);
bf0f6f24
IM
516}
517
b7cc0896 518static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 519{
429d43bc 520 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 521 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
522 unsigned long delta_exec;
523
524 if (unlikely(!curr))
525 return;
526
527 /*
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
531 */
8ebc91d9 532 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
533 if (!delta_exec)
534 return;
bf0f6f24 535
8ebc91d9
IM
536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
d842de87
SV
538
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
541
f977bb49 542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 543 cpuacct_charge(curtask, delta_exec);
f06febc9 544 account_group_exec_runtime(curtask, delta_exec);
d842de87 545 }
bf0f6f24
IM
546}
547
548static inline void
5870db5b 549update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 550{
d281918d 551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
552}
553
bf0f6f24
IM
554/*
555 * Task is being enqueued - update stats:
556 */
d2417e5a 557static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 558{
bf0f6f24
IM
559 /*
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
562 */
429d43bc 563 if (se != cfs_rq->curr)
5870db5b 564 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
565}
566
bf0f6f24 567static void
9ef0a961 568update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 569{
bbdba7c0
IM
570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
575#ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
579 }
580#endif
e1f84508 581 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
582}
583
584static inline void
19b6a2e3 585update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 586{
bf0f6f24
IM
587 /*
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
590 */
429d43bc 591 if (se != cfs_rq->curr)
9ef0a961 592 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
593}
594
595/*
596 * We are picking a new current task - update its stats:
597 */
598static inline void
79303e9e 599update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
600{
601 /*
602 * We are starting a new run period:
603 */
d281918d 604 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
605}
606
bf0f6f24
IM
607/**************************************************
608 * Scheduling class queueing methods:
609 */
610
c09595f6
PZ
611#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612static void
613add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
614{
615 cfs_rq->task_weight += weight;
616}
617#else
618static inline void
619add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
620{
621}
622#endif
623
30cfdcfc
DA
624static void
625account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
626{
627 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 630 if (entity_is_task(se)) {
c09595f6 631 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
632 list_add(&se->group_node, &cfs_rq->tasks);
633 }
30cfdcfc
DA
634 cfs_rq->nr_running++;
635 se->on_rq = 1;
636}
637
638static void
639account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640{
641 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 644 if (entity_is_task(se)) {
c09595f6 645 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
646 list_del_init(&se->group_node);
647 }
30cfdcfc
DA
648 cfs_rq->nr_running--;
649 se->on_rq = 0;
650}
651
2396af69 652static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 653{
bf0f6f24 654#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
655 struct task_struct *tsk = NULL;
656
657 if (entity_is_task(se))
658 tsk = task_of(se);
659
bf0f6f24 660 if (se->sleep_start) {
d281918d 661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
662
663 if ((s64)delta < 0)
664 delta = 0;
665
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
668
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
9745512c 671
768d0c27 672 if (tsk) {
e414314c 673 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
674 trace_sched_stat_sleep(tsk, delta);
675 }
bf0f6f24
IM
676 }
677 if (se->block_start) {
d281918d 678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
679
680 if ((s64)delta < 0)
681 delta = 0;
682
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
685
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
30084fbd 688
e414314c 689 if (tsk) {
8f0dfc34
AV
690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
768d0c27 693 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
694 }
695
e414314c
PZ
696 /*
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
700 */
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
705 }
706 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 707 }
bf0f6f24
IM
708 }
709#endif
710}
711
ddc97297
PZ
712static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
713{
714#ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
716
717 if (d < 0)
718 d = -d;
719
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722#endif
723}
724
aeb73b04
PZ
725static void
726place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
727{
1af5f730 728 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 729
2cb8600e
PZ
730 /*
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
735 */
94dfb5e7 736 if (initial && sched_feat(START_DEBIT))
f9c0b095 737 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 738
a2e7a7eb
MG
739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
a7be37ac 742
a2e7a7eb
MG
743 /*
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
748 */
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
a7be37ac 752
a2e7a7eb
MG
753 /*
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
756 */
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
51e0304c 759
a2e7a7eb 760 vruntime -= thresh;
aeb73b04
PZ
761 }
762
b5d9d734
MG
763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
765
67e9fb2a 766 se->vruntime = vruntime;
aeb73b04
PZ
767}
768
88ec22d3
PZ
769#define ENQUEUE_WAKEUP 1
770#define ENQUEUE_MIGRATE 2
771
bf0f6f24 772static void
88ec22d3 773enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 774{
88ec22d3
PZ
775 /*
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
778 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
781
bf0f6f24 782 /*
a2a2d680 783 * Update run-time statistics of the 'current'.
bf0f6f24 784 */
b7cc0896 785 update_curr(cfs_rq);
a992241d 786 account_entity_enqueue(cfs_rq, se);
bf0f6f24 787
88ec22d3 788 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 789 place_entity(cfs_rq, se, 0);
2396af69 790 enqueue_sleeper(cfs_rq, se);
e9acbff6 791 }
bf0f6f24 792
d2417e5a 793 update_stats_enqueue(cfs_rq, se);
ddc97297 794 check_spread(cfs_rq, se);
83b699ed
SV
795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
797}
798
a571bbea 799static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 800{
de69a80b 801 if (!se || cfs_rq->last == se)
2002c695
PZ
802 cfs_rq->last = NULL;
803
de69a80b 804 if (!se || cfs_rq->next == se)
2002c695
PZ
805 cfs_rq->next = NULL;
806}
807
a571bbea
PZ
808static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
809{
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
812}
813
bf0f6f24 814static void
525c2716 815dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 816{
a2a2d680
DA
817 /*
818 * Update run-time statistics of the 'current'.
819 */
820 update_curr(cfs_rq);
821
19b6a2e3 822 update_stats_dequeue(cfs_rq, se);
db36cc7d 823 if (sleep) {
67e9fb2a 824#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
827
828 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 829 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 830 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 831 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 832 }
db36cc7d 833#endif
67e9fb2a
PZ
834 }
835
2002c695 836 clear_buddies(cfs_rq, se);
4793241b 837
83b699ed 838 if (se != cfs_rq->curr)
30cfdcfc
DA
839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
1af5f730 841 update_min_vruntime(cfs_rq);
88ec22d3
PZ
842
843 /*
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
847 */
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
850}
851
852/*
853 * Preempt the current task with a newly woken task if needed:
854 */
7c92e54f 855static void
2e09bf55 856check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 857{
11697830
PZ
858 unsigned long ideal_runtime, delta_exec;
859
6d0f0ebd 860 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 862 if (delta_exec > ideal_runtime) {
bf0f6f24 863 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
864 /*
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
867 */
868 clear_buddies(cfs_rq, curr);
f685ceac
MG
869 return;
870 }
871
872 /*
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
876 */
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
879
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
882
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
886
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 889 }
bf0f6f24
IM
890}
891
83b699ed 892static void
8494f412 893set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 894{
83b699ed
SV
895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
897 /*
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
901 */
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
904 }
905
79303e9e 906 update_stats_curr_start(cfs_rq, se);
429d43bc 907 cfs_rq->curr = se;
eba1ed4b
IM
908#ifdef CONFIG_SCHEDSTATS
909 /*
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
913 */
495eca49 914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
917 }
918#endif
4a55b450 919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
920}
921
3f3a4904
PZ
922static int
923wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
924
f4b6755f 925static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 926{
f4b6755f 927 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 928 struct sched_entity *left = se;
f4b6755f 929
f685ceac
MG
930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
aa2ac252 932
f685ceac
MG
933 /*
934 * Prefer last buddy, try to return the CPU to a preempted task.
935 */
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
938
939 clear_buddies(cfs_rq, se);
4793241b
PZ
940
941 return se;
aa2ac252
PZ
942}
943
ab6cde26 944static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
945{
946 /*
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
949 */
950 if (prev->on_rq)
b7cc0896 951 update_curr(cfs_rq);
bf0f6f24 952
ddc97297 953 check_spread(cfs_rq, prev);
30cfdcfc 954 if (prev->on_rq) {
5870db5b 955 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
958 }
429d43bc 959 cfs_rq->curr = NULL;
bf0f6f24
IM
960}
961
8f4d37ec
PZ
962static void
963entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 964{
bf0f6f24 965 /*
30cfdcfc 966 * Update run-time statistics of the 'current'.
bf0f6f24 967 */
30cfdcfc 968 update_curr(cfs_rq);
bf0f6f24 969
8f4d37ec
PZ
970#ifdef CONFIG_SCHED_HRTICK
971 /*
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
974 */
983ed7a6
HH
975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
978 }
8f4d37ec
PZ
979 /*
980 * don't let the period tick interfere with the hrtick preemption
981 */
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985#endif
986
ce6c1311 987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 988 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
989}
990
991/**************************************************
992 * CFS operations on tasks:
993 */
994
8f4d37ec
PZ
995#ifdef CONFIG_SCHED_HRTICK
996static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
997{
8f4d37ec
PZ
998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1000
1001 WARN_ON(task_rq(p) != rq);
1002
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1007
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1012 }
1013
1014 /*
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1017 */
31656519 1018 if (rq->curr != p)
157124c1 1019 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1020
31656519 1021 hrtick_start(rq, delta);
8f4d37ec
PZ
1022 }
1023}
a4c2f00f
PZ
1024
1025/*
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1029 */
1030static void hrtick_update(struct rq *rq)
1031{
1032 struct task_struct *curr = rq->curr;
1033
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1036
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1039}
55e12e5e 1040#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1041static inline void
1042hrtick_start_fair(struct rq *rq, struct task_struct *p)
1043{
1044}
a4c2f00f
PZ
1045
1046static inline void hrtick_update(struct rq *rq)
1047{
1048}
8f4d37ec
PZ
1049#endif
1050
bf0f6f24
IM
1051/*
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1055 */
fd390f6a 1056static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
1057{
1058 struct cfs_rq *cfs_rq;
62fb1851 1059 struct sched_entity *se = &p->se;
88ec22d3
PZ
1060 int flags = 0;
1061
1062 if (wakeup)
1063 flags |= ENQUEUE_WAKEUP;
1064 if (p->state == TASK_WAKING)
1065 flags |= ENQUEUE_MIGRATE;
bf0f6f24
IM
1066
1067 for_each_sched_entity(se) {
62fb1851 1068 if (se->on_rq)
bf0f6f24
IM
1069 break;
1070 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1071 enqueue_entity(cfs_rq, se, flags);
1072 flags = ENQUEUE_WAKEUP;
bf0f6f24 1073 }
8f4d37ec 1074
a4c2f00f 1075 hrtick_update(rq);
bf0f6f24
IM
1076}
1077
1078/*
1079 * The dequeue_task method is called before nr_running is
1080 * decreased. We remove the task from the rbtree and
1081 * update the fair scheduling stats:
1082 */
f02231e5 1083static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1084{
1085 struct cfs_rq *cfs_rq;
62fb1851 1086 struct sched_entity *se = &p->se;
bf0f6f24
IM
1087
1088 for_each_sched_entity(se) {
1089 cfs_rq = cfs_rq_of(se);
525c2716 1090 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1091 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1092 if (cfs_rq->load.weight)
bf0f6f24 1093 break;
b9fa3df3 1094 sleep = 1;
bf0f6f24 1095 }
8f4d37ec 1096
a4c2f00f 1097 hrtick_update(rq);
bf0f6f24
IM
1098}
1099
1100/*
1799e35d
IM
1101 * sched_yield() support is very simple - we dequeue and enqueue.
1102 *
1103 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1104 */
4530d7ab 1105static void yield_task_fair(struct rq *rq)
bf0f6f24 1106{
db292ca3
IM
1107 struct task_struct *curr = rq->curr;
1108 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1109 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1110
1111 /*
1799e35d
IM
1112 * Are we the only task in the tree?
1113 */
1114 if (unlikely(cfs_rq->nr_running == 1))
1115 return;
1116
2002c695
PZ
1117 clear_buddies(cfs_rq, se);
1118
db292ca3 1119 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1120 update_rq_clock(rq);
1799e35d 1121 /*
a2a2d680 1122 * Update run-time statistics of the 'current'.
1799e35d 1123 */
2b1e315d 1124 update_curr(cfs_rq);
1799e35d
IM
1125
1126 return;
1127 }
1128 /*
1129 * Find the rightmost entry in the rbtree:
bf0f6f24 1130 */
2b1e315d 1131 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1132 /*
1133 * Already in the rightmost position?
1134 */
54fdc581 1135 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1136 return;
1137
1138 /*
1139 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1140 * Upon rescheduling, sched_class::put_prev_task() will place
1141 * 'current' within the tree based on its new key value.
1799e35d 1142 */
30cfdcfc 1143 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1144}
1145
e7693a36 1146#ifdef CONFIG_SMP
098fb9db 1147
88ec22d3
PZ
1148static void task_waking_fair(struct rq *rq, struct task_struct *p)
1149{
1150 struct sched_entity *se = &p->se;
1151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1152
1153 se->vruntime -= cfs_rq->min_vruntime;
1154}
1155
bb3469ac 1156#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1157/*
1158 * effective_load() calculates the load change as seen from the root_task_group
1159 *
1160 * Adding load to a group doesn't make a group heavier, but can cause movement
1161 * of group shares between cpus. Assuming the shares were perfectly aligned one
1162 * can calculate the shift in shares.
1163 *
1164 * The problem is that perfectly aligning the shares is rather expensive, hence
1165 * we try to avoid doing that too often - see update_shares(), which ratelimits
1166 * this change.
1167 *
1168 * We compensate this by not only taking the current delta into account, but
1169 * also considering the delta between when the shares were last adjusted and
1170 * now.
1171 *
1172 * We still saw a performance dip, some tracing learned us that between
1173 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1174 * significantly. Therefore try to bias the error in direction of failing
1175 * the affine wakeup.
1176 *
1177 */
f1d239f7
PZ
1178static long effective_load(struct task_group *tg, int cpu,
1179 long wl, long wg)
bb3469ac 1180{
4be9daaa 1181 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1182
1183 if (!tg->parent)
1184 return wl;
1185
f5bfb7d9
PZ
1186 /*
1187 * By not taking the decrease of shares on the other cpu into
1188 * account our error leans towards reducing the affine wakeups.
1189 */
1190 if (!wl && sched_feat(ASYM_EFF_LOAD))
1191 return wl;
1192
4be9daaa 1193 for_each_sched_entity(se) {
cb5ef42a 1194 long S, rw, s, a, b;
940959e9
PZ
1195 long more_w;
1196
1197 /*
1198 * Instead of using this increment, also add the difference
1199 * between when the shares were last updated and now.
1200 */
1201 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1202 wl += more_w;
1203 wg += more_w;
4be9daaa
PZ
1204
1205 S = se->my_q->tg->shares;
1206 s = se->my_q->shares;
f1d239f7 1207 rw = se->my_q->rq_weight;
bb3469ac 1208
cb5ef42a
PZ
1209 a = S*(rw + wl);
1210 b = S*rw + s*wg;
4be9daaa 1211
940959e9
PZ
1212 wl = s*(a-b);
1213
1214 if (likely(b))
1215 wl /= b;
1216
83378269
PZ
1217 /*
1218 * Assume the group is already running and will
1219 * thus already be accounted for in the weight.
1220 *
1221 * That is, moving shares between CPUs, does not
1222 * alter the group weight.
1223 */
4be9daaa 1224 wg = 0;
4be9daaa 1225 }
bb3469ac 1226
4be9daaa 1227 return wl;
bb3469ac 1228}
4be9daaa 1229
bb3469ac 1230#else
4be9daaa 1231
83378269
PZ
1232static inline unsigned long effective_load(struct task_group *tg, int cpu,
1233 unsigned long wl, unsigned long wg)
4be9daaa 1234{
83378269 1235 return wl;
bb3469ac 1236}
4be9daaa 1237
bb3469ac
PZ
1238#endif
1239
c88d5910 1240static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1241{
c88d5910
PZ
1242 struct task_struct *curr = current;
1243 unsigned long this_load, load;
1244 int idx, this_cpu, prev_cpu;
098fb9db 1245 unsigned long tl_per_task;
c88d5910
PZ
1246 unsigned int imbalance;
1247 struct task_group *tg;
83378269 1248 unsigned long weight;
b3137bc8 1249 int balanced;
098fb9db 1250
c88d5910
PZ
1251 idx = sd->wake_idx;
1252 this_cpu = smp_processor_id();
1253 prev_cpu = task_cpu(p);
1254 load = source_load(prev_cpu, idx);
1255 this_load = target_load(this_cpu, idx);
098fb9db 1256
e69b0f1b
PZ
1257 if (sync) {
1258 if (sched_feat(SYNC_LESS) &&
1259 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1260 p->se.avg_overlap > sysctl_sched_migration_cost))
1261 sync = 0;
1262 } else {
1263 if (sched_feat(SYNC_MORE) &&
1264 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1265 p->se.avg_overlap < sysctl_sched_migration_cost))
1266 sync = 1;
1267 }
fc631c82 1268
b3137bc8
MG
1269 /*
1270 * If sync wakeup then subtract the (maximum possible)
1271 * effect of the currently running task from the load
1272 * of the current CPU:
1273 */
83378269
PZ
1274 if (sync) {
1275 tg = task_group(current);
1276 weight = current->se.load.weight;
1277
c88d5910 1278 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1279 load += effective_load(tg, prev_cpu, 0, -weight);
1280 }
b3137bc8 1281
83378269
PZ
1282 tg = task_group(p);
1283 weight = p->se.load.weight;
b3137bc8 1284
c88d5910
PZ
1285 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1286
71a29aa7
PZ
1287 /*
1288 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1289 * due to the sync cause above having dropped this_load to 0, we'll
1290 * always have an imbalance, but there's really nothing you can do
1291 * about that, so that's good too.
71a29aa7
PZ
1292 *
1293 * Otherwise check if either cpus are near enough in load to allow this
1294 * task to be woken on this_cpu.
1295 */
c88d5910
PZ
1296 balanced = !this_load ||
1297 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1298 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1299
098fb9db 1300 /*
4ae7d5ce
IM
1301 * If the currently running task will sleep within
1302 * a reasonable amount of time then attract this newly
1303 * woken task:
098fb9db 1304 */
2fb7635c
PZ
1305 if (sync && balanced)
1306 return 1;
098fb9db
IM
1307
1308 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1309 tl_per_task = cpu_avg_load_per_task(this_cpu);
1310
c88d5910
PZ
1311 if (balanced ||
1312 (this_load <= load &&
1313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1314 /*
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1318 */
c88d5910 1319 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1320 schedstat_inc(p, se.nr_wakeups_affine);
1321
1322 return 1;
1323 }
1324 return 0;
1325}
1326
aaee1203
PZ
1327/*
1328 * find_idlest_group finds and returns the least busy CPU group within the
1329 * domain.
1330 */
1331static struct sched_group *
78e7ed53 1332find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1333 int this_cpu, int load_idx)
e7693a36 1334{
aaee1203
PZ
1335 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1336 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1337 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1338
aaee1203
PZ
1339 do {
1340 unsigned long load, avg_load;
1341 int local_group;
1342 int i;
e7693a36 1343
aaee1203
PZ
1344 /* Skip over this group if it has no CPUs allowed */
1345 if (!cpumask_intersects(sched_group_cpus(group),
1346 &p->cpus_allowed))
1347 continue;
1348
1349 local_group = cpumask_test_cpu(this_cpu,
1350 sched_group_cpus(group));
1351
1352 /* Tally up the load of all CPUs in the group */
1353 avg_load = 0;
1354
1355 for_each_cpu(i, sched_group_cpus(group)) {
1356 /* Bias balancing toward cpus of our domain */
1357 if (local_group)
1358 load = source_load(i, load_idx);
1359 else
1360 load = target_load(i, load_idx);
1361
1362 avg_load += load;
1363 }
1364
1365 /* Adjust by relative CPU power of the group */
1366 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1367
1368 if (local_group) {
1369 this_load = avg_load;
1370 this = group;
1371 } else if (avg_load < min_load) {
1372 min_load = avg_load;
1373 idlest = group;
1374 }
1375 } while (group = group->next, group != sd->groups);
1376
1377 if (!idlest || 100*this_load < imbalance*min_load)
1378 return NULL;
1379 return idlest;
1380}
1381
1382/*
1383 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1384 */
1385static int
1386find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1387{
1388 unsigned long load, min_load = ULONG_MAX;
1389 int idlest = -1;
1390 int i;
1391
1392 /* Traverse only the allowed CPUs */
1393 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1394 load = weighted_cpuload(i);
1395
1396 if (load < min_load || (load == min_load && i == this_cpu)) {
1397 min_load = load;
1398 idlest = i;
e7693a36
GH
1399 }
1400 }
1401
aaee1203
PZ
1402 return idlest;
1403}
e7693a36 1404
a50bde51
PZ
1405/*
1406 * Try and locate an idle CPU in the sched_domain.
1407 */
1408static int
1409select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1410{
1411 int cpu = smp_processor_id();
1412 int prev_cpu = task_cpu(p);
1413 int i;
1414
1415 /*
1416 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1417 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1418 * always a better target than the current cpu.
1419 */
fe3bcfe1
PZ
1420 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1421 return prev_cpu;
a50bde51
PZ
1422
1423 /*
1424 * Otherwise, iterate the domain and find an elegible idle cpu.
1425 */
fe3bcfe1
PZ
1426 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1427 if (!cpu_rq(i)->cfs.nr_running) {
1428 target = i;
1429 break;
a50bde51
PZ
1430 }
1431 }
1432
1433 return target;
1434}
1435
aaee1203
PZ
1436/*
1437 * sched_balance_self: balance the current task (running on cpu) in domains
1438 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * SD_BALANCE_EXEC.
1440 *
1441 * Balance, ie. select the least loaded group.
1442 *
1443 * Returns the target CPU number, or the same CPU if no balancing is needed.
1444 *
1445 * preempt must be disabled.
1446 */
5158f4e4 1447static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1448{
29cd8bae 1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
29cd8bae 1454 int want_sd = 1;
5158f4e4 1455 int sync = wake_flags & WF_SYNC;
c88d5910 1456
0763a660 1457 if (sd_flag & SD_BALANCE_WAKE) {
3f04e8cd
MG
1458 if (sched_feat(AFFINE_WAKEUPS) &&
1459 cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1460 want_affine = 1;
1461 new_cpu = prev_cpu;
1462 }
aaee1203
PZ
1463
1464 for_each_domain(cpu, tmp) {
e4f42888
PZ
1465 if (!(tmp->flags & SD_LOAD_BALANCE))
1466 continue;
1467
aaee1203 1468 /*
ae154be1
PZ
1469 * If power savings logic is enabled for a domain, see if we
1470 * are not overloaded, if so, don't balance wider.
aaee1203 1471 */
59abf026 1472 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1473 unsigned long power = 0;
1474 unsigned long nr_running = 0;
1475 unsigned long capacity;
1476 int i;
1477
1478 for_each_cpu(i, sched_domain_span(tmp)) {
1479 power += power_of(i);
1480 nr_running += cpu_rq(i)->cfs.nr_running;
1481 }
1482
1483 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1484
59abf026
PZ
1485 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1486 nr_running /= 2;
1487
1488 if (nr_running < capacity)
29cd8bae 1489 want_sd = 0;
ae154be1 1490 }
aaee1203 1491
fe3bcfe1
PZ
1492 /*
1493 * While iterating the domains looking for a spanning
1494 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1495 * in cache sharing domains along the way.
1496 */
1497 if (want_affine) {
a50bde51 1498 int target = -1;
c88d5910 1499
a50bde51
PZ
1500 /*
1501 * If both cpu and prev_cpu are part of this domain,
1502 * cpu is a valid SD_WAKE_AFFINE target.
1503 */
a1f84a3a 1504 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
a50bde51 1505 target = cpu;
a1f84a3a
MG
1506
1507 /*
a50bde51
PZ
1508 * If there's an idle sibling in this domain, make that
1509 * the wake_affine target instead of the current cpu.
a1f84a3a 1510 */
50b926e4 1511 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
a50bde51 1512 target = select_idle_sibling(p, tmp, target);
a1f84a3a 1513
a50bde51 1514 if (target >= 0) {
fe3bcfe1
PZ
1515 if (tmp->flags & SD_WAKE_AFFINE) {
1516 affine_sd = tmp;
1517 want_affine = 0;
1518 }
a50bde51 1519 cpu = target;
a1f84a3a 1520 }
c88d5910
PZ
1521 }
1522
29cd8bae
PZ
1523 if (!want_sd && !want_affine)
1524 break;
1525
0763a660 1526 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1527 continue;
1528
29cd8bae
PZ
1529 if (want_sd)
1530 sd = tmp;
1531 }
1532
1533 if (sched_feat(LB_SHARES_UPDATE)) {
1534 /*
1535 * Pick the largest domain to update shares over
1536 */
1537 tmp = sd;
1538 if (affine_sd && (!tmp ||
1539 cpumask_weight(sched_domain_span(affine_sd)) >
1540 cpumask_weight(sched_domain_span(sd))))
1541 tmp = affine_sd;
1542
1543 if (tmp)
1544 update_shares(tmp);
c88d5910 1545 }
aaee1203 1546
fb58bac5
PZ
1547 if (affine_sd && wake_affine(affine_sd, p, sync))
1548 return cpu;
e7693a36 1549
aaee1203 1550 while (sd) {
5158f4e4 1551 int load_idx = sd->forkexec_idx;
aaee1203 1552 struct sched_group *group;
c88d5910 1553 int weight;
098fb9db 1554
0763a660 1555 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1556 sd = sd->child;
1557 continue;
1558 }
098fb9db 1559
5158f4e4
PZ
1560 if (sd_flag & SD_BALANCE_WAKE)
1561 load_idx = sd->wake_idx;
098fb9db 1562
5158f4e4 1563 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1564 if (!group) {
1565 sd = sd->child;
1566 continue;
1567 }
4ae7d5ce 1568
d7c33c49 1569 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1570 if (new_cpu == -1 || new_cpu == cpu) {
1571 /* Now try balancing at a lower domain level of cpu */
1572 sd = sd->child;
1573 continue;
e7693a36 1574 }
aaee1203
PZ
1575
1576 /* Now try balancing at a lower domain level of new_cpu */
1577 cpu = new_cpu;
1578 weight = cpumask_weight(sched_domain_span(sd));
1579 sd = NULL;
1580 for_each_domain(cpu, tmp) {
1581 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1582 break;
0763a660 1583 if (tmp->flags & sd_flag)
aaee1203
PZ
1584 sd = tmp;
1585 }
1586 /* while loop will break here if sd == NULL */
e7693a36
GH
1587 }
1588
c88d5910 1589 return new_cpu;
e7693a36
GH
1590}
1591#endif /* CONFIG_SMP */
1592
e52fb7c0
PZ
1593/*
1594 * Adaptive granularity
1595 *
1596 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1597 * with the limit of wakeup_gran -- when it never does a wakeup.
1598 *
1599 * So the smaller avg_wakeup is the faster we want this task to preempt,
1600 * but we don't want to treat the preemptee unfairly and therefore allow it
1601 * to run for at least the amount of time we'd like to run.
1602 *
1603 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1604 *
1605 * NOTE: we use *nr_running to scale with load, this nicely matches the
1606 * degrading latency on load.
1607 */
1608static unsigned long
1609adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1610{
1611 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1612 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1613 u64 gran = 0;
1614
1615 if (this_run < expected_wakeup)
1616 gran = expected_wakeup - this_run;
1617
1618 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1619}
1620
1621static unsigned long
1622wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1623{
1624 unsigned long gran = sysctl_sched_wakeup_granularity;
1625
e52fb7c0
PZ
1626 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1627 gran = adaptive_gran(curr, se);
1628
0bbd3336 1629 /*
e52fb7c0
PZ
1630 * Since its curr running now, convert the gran from real-time
1631 * to virtual-time in his units.
0bbd3336 1632 */
e52fb7c0
PZ
1633 if (sched_feat(ASYM_GRAN)) {
1634 /*
1635 * By using 'se' instead of 'curr' we penalize light tasks, so
1636 * they get preempted easier. That is, if 'se' < 'curr' then
1637 * the resulting gran will be larger, therefore penalizing the
1638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1639 * be smaller, again penalizing the lighter task.
1640 *
1641 * This is especially important for buddies when the leftmost
1642 * task is higher priority than the buddy.
1643 */
1644 if (unlikely(se->load.weight != NICE_0_LOAD))
1645 gran = calc_delta_fair(gran, se);
1646 } else {
1647 if (unlikely(curr->load.weight != NICE_0_LOAD))
1648 gran = calc_delta_fair(gran, curr);
1649 }
0bbd3336
PZ
1650
1651 return gran;
1652}
1653
464b7527
PZ
1654/*
1655 * Should 'se' preempt 'curr'.
1656 *
1657 * |s1
1658 * |s2
1659 * |s3
1660 * g
1661 * |<--->|c
1662 *
1663 * w(c, s1) = -1
1664 * w(c, s2) = 0
1665 * w(c, s3) = 1
1666 *
1667 */
1668static int
1669wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1670{
1671 s64 gran, vdiff = curr->vruntime - se->vruntime;
1672
1673 if (vdiff <= 0)
1674 return -1;
1675
e52fb7c0 1676 gran = wakeup_gran(curr, se);
464b7527
PZ
1677 if (vdiff > gran)
1678 return 1;
1679
1680 return 0;
1681}
1682
02479099
PZ
1683static void set_last_buddy(struct sched_entity *se)
1684{
6bc912b7
PZ
1685 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1686 for_each_sched_entity(se)
1687 cfs_rq_of(se)->last = se;
1688 }
02479099
PZ
1689}
1690
1691static void set_next_buddy(struct sched_entity *se)
1692{
6bc912b7
PZ
1693 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1694 for_each_sched_entity(se)
1695 cfs_rq_of(se)->next = se;
1696 }
02479099
PZ
1697}
1698
bf0f6f24
IM
1699/*
1700 * Preempt the current task with a newly woken task if needed:
1701 */
5a9b86f6 1702static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1703{
1704 struct task_struct *curr = rq->curr;
8651a86c 1705 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1706 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5a9b86f6 1707 int sync = wake_flags & WF_SYNC;
f685ceac 1708 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1709
3a7e73a2
PZ
1710 if (unlikely(rt_prio(p->prio)))
1711 goto preempt;
aa2ac252 1712
d95f98d0
PZ
1713 if (unlikely(p->sched_class != &fair_sched_class))
1714 return;
1715
4ae7d5ce
IM
1716 if (unlikely(se == pse))
1717 return;
1718
f685ceac 1719 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1720 set_next_buddy(pse);
57fdc26d 1721
aec0a514
BR
1722 /*
1723 * We can come here with TIF_NEED_RESCHED already set from new task
1724 * wake up path.
1725 */
1726 if (test_tsk_need_resched(curr))
1727 return;
1728
91c234b4 1729 /*
6bc912b7 1730 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1731 * the tick):
1732 */
6bc912b7 1733 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1734 return;
bf0f6f24 1735
6bc912b7 1736 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1737 if (unlikely(curr->policy == SCHED_IDLE))
1738 goto preempt;
bf0f6f24 1739
3a7e73a2
PZ
1740 if (sched_feat(WAKEUP_SYNC) && sync)
1741 goto preempt;
15afe09b 1742
3a7e73a2
PZ
1743 if (sched_feat(WAKEUP_OVERLAP) &&
1744 se->avg_overlap < sysctl_sched_migration_cost &&
1745 pse->avg_overlap < sysctl_sched_migration_cost)
1746 goto preempt;
1747
ad4b78bb
PZ
1748 if (!sched_feat(WAKEUP_PREEMPT))
1749 return;
1750
3a7e73a2 1751 update_curr(cfs_rq);
464b7527 1752 find_matching_se(&se, &pse);
002f128b 1753 BUG_ON(!pse);
3a7e73a2
PZ
1754 if (wakeup_preempt_entity(se, pse) == 1)
1755 goto preempt;
464b7527 1756
3a7e73a2 1757 return;
a65ac745 1758
3a7e73a2
PZ
1759preempt:
1760 resched_task(curr);
1761 /*
1762 * Only set the backward buddy when the current task is still
1763 * on the rq. This can happen when a wakeup gets interleaved
1764 * with schedule on the ->pre_schedule() or idle_balance()
1765 * point, either of which can * drop the rq lock.
1766 *
1767 * Also, during early boot the idle thread is in the fair class,
1768 * for obvious reasons its a bad idea to schedule back to it.
1769 */
1770 if (unlikely(!se->on_rq || curr == rq->idle))
1771 return;
1772
1773 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1774 set_last_buddy(se);
bf0f6f24
IM
1775}
1776
fb8d4724 1777static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1778{
8f4d37ec 1779 struct task_struct *p;
bf0f6f24
IM
1780 struct cfs_rq *cfs_rq = &rq->cfs;
1781 struct sched_entity *se;
1782
36ace27e 1783 if (!cfs_rq->nr_running)
bf0f6f24
IM
1784 return NULL;
1785
1786 do {
9948f4b2 1787 se = pick_next_entity(cfs_rq);
f4b6755f 1788 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1789 cfs_rq = group_cfs_rq(se);
1790 } while (cfs_rq);
1791
8f4d37ec
PZ
1792 p = task_of(se);
1793 hrtick_start_fair(rq, p);
1794
1795 return p;
bf0f6f24
IM
1796}
1797
1798/*
1799 * Account for a descheduled task:
1800 */
31ee529c 1801static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1802{
1803 struct sched_entity *se = &prev->se;
1804 struct cfs_rq *cfs_rq;
1805
1806 for_each_sched_entity(se) {
1807 cfs_rq = cfs_rq_of(se);
ab6cde26 1808 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1809 }
1810}
1811
681f3e68 1812#ifdef CONFIG_SMP
bf0f6f24
IM
1813/**************************************************
1814 * Fair scheduling class load-balancing methods:
1815 */
1816
1817/*
1818 * Load-balancing iterator. Note: while the runqueue stays locked
1819 * during the whole iteration, the current task might be
1820 * dequeued so the iterator has to be dequeue-safe. Here we
1821 * achieve that by always pre-iterating before returning
1822 * the current task:
1823 */
a9957449 1824static struct task_struct *
4a55bd5e 1825__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1826{
354d60c2
DG
1827 struct task_struct *p = NULL;
1828 struct sched_entity *se;
bf0f6f24 1829
77ae6513
MG
1830 if (next == &cfs_rq->tasks)
1831 return NULL;
1832
b87f1724
BR
1833 se = list_entry(next, struct sched_entity, group_node);
1834 p = task_of(se);
1835 cfs_rq->balance_iterator = next->next;
77ae6513 1836
bf0f6f24
IM
1837 return p;
1838}
1839
1840static struct task_struct *load_balance_start_fair(void *arg)
1841{
1842 struct cfs_rq *cfs_rq = arg;
1843
4a55bd5e 1844 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1845}
1846
1847static struct task_struct *load_balance_next_fair(void *arg)
1848{
1849 struct cfs_rq *cfs_rq = arg;
1850
4a55bd5e 1851 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1852}
1853
c09595f6
PZ
1854static unsigned long
1855__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1856 unsigned long max_load_move, struct sched_domain *sd,
1857 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1858 struct cfs_rq *cfs_rq)
62fb1851 1859{
c09595f6 1860 struct rq_iterator cfs_rq_iterator;
62fb1851 1861
c09595f6
PZ
1862 cfs_rq_iterator.start = load_balance_start_fair;
1863 cfs_rq_iterator.next = load_balance_next_fair;
1864 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1865
c09595f6
PZ
1866 return balance_tasks(this_rq, this_cpu, busiest,
1867 max_load_move, sd, idle, all_pinned,
1868 this_best_prio, &cfs_rq_iterator);
62fb1851 1869}
62fb1851 1870
c09595f6 1871#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1872static unsigned long
bf0f6f24 1873load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1874 unsigned long max_load_move,
a4ac01c3
PW
1875 struct sched_domain *sd, enum cpu_idle_type idle,
1876 int *all_pinned, int *this_best_prio)
bf0f6f24 1877{
bf0f6f24 1878 long rem_load_move = max_load_move;
c09595f6
PZ
1879 int busiest_cpu = cpu_of(busiest);
1880 struct task_group *tg;
18d95a28 1881
c09595f6 1882 rcu_read_lock();
c8cba857 1883 update_h_load(busiest_cpu);
18d95a28 1884
caea8a03 1885 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1886 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1887 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1888 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1889 u64 rem_load, moved_load;
18d95a28 1890
c09595f6
PZ
1891 /*
1892 * empty group
1893 */
c8cba857 1894 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1895 continue;
1896
243e0e7b
SV
1897 rem_load = (u64)rem_load_move * busiest_weight;
1898 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1899
c09595f6 1900 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1901 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1902 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1903
c09595f6 1904 if (!moved_load)
bf0f6f24
IM
1905 continue;
1906
42a3ac7d 1907 moved_load *= busiest_h_load;
243e0e7b 1908 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1909
c09595f6
PZ
1910 rem_load_move -= moved_load;
1911 if (rem_load_move < 0)
bf0f6f24
IM
1912 break;
1913 }
c09595f6 1914 rcu_read_unlock();
bf0f6f24 1915
43010659 1916 return max_load_move - rem_load_move;
bf0f6f24 1917}
c09595f6
PZ
1918#else
1919static unsigned long
1920load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1921 unsigned long max_load_move,
1922 struct sched_domain *sd, enum cpu_idle_type idle,
1923 int *all_pinned, int *this_best_prio)
1924{
1925 return __load_balance_fair(this_rq, this_cpu, busiest,
1926 max_load_move, sd, idle, all_pinned,
1927 this_best_prio, &busiest->cfs);
1928}
1929#endif
bf0f6f24 1930
e1d1484f
PW
1931static int
1932move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1933 struct sched_domain *sd, enum cpu_idle_type idle)
1934{
1935 struct cfs_rq *busy_cfs_rq;
1936 struct rq_iterator cfs_rq_iterator;
1937
1938 cfs_rq_iterator.start = load_balance_start_fair;
1939 cfs_rq_iterator.next = load_balance_next_fair;
1940
1941 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1942 /*
1943 * pass busy_cfs_rq argument into
1944 * load_balance_[start|next]_fair iterators
1945 */
1946 cfs_rq_iterator.arg = busy_cfs_rq;
1947 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1948 &cfs_rq_iterator))
1949 return 1;
1950 }
1951
1952 return 0;
1953}
0bcdcf28
CE
1954
1955static void rq_online_fair(struct rq *rq)
1956{
1957 update_sysctl();
1958}
1959
1960static void rq_offline_fair(struct rq *rq)
1961{
1962 update_sysctl();
1963}
1964
55e12e5e 1965#endif /* CONFIG_SMP */
e1d1484f 1966
bf0f6f24
IM
1967/*
1968 * scheduler tick hitting a task of our scheduling class:
1969 */
8f4d37ec 1970static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1971{
1972 struct cfs_rq *cfs_rq;
1973 struct sched_entity *se = &curr->se;
1974
1975 for_each_sched_entity(se) {
1976 cfs_rq = cfs_rq_of(se);
8f4d37ec 1977 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1978 }
1979}
1980
1981/*
cd29fe6f
PZ
1982 * called on fork with the child task as argument from the parent's context
1983 * - child not yet on the tasklist
1984 * - preemption disabled
bf0f6f24 1985 */
cd29fe6f 1986static void task_fork_fair(struct task_struct *p)
bf0f6f24 1987{
cd29fe6f 1988 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 1989 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1990 int this_cpu = smp_processor_id();
cd29fe6f
PZ
1991 struct rq *rq = this_rq();
1992 unsigned long flags;
1993
05fa785c 1994 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 1995
cd29fe6f
PZ
1996 if (unlikely(task_cpu(p) != this_cpu))
1997 __set_task_cpu(p, this_cpu);
bf0f6f24 1998
7109c442 1999 update_curr(cfs_rq);
cd29fe6f 2000
b5d9d734
MG
2001 if (curr)
2002 se->vruntime = curr->vruntime;
aeb73b04 2003 place_entity(cfs_rq, se, 1);
4d78e7b6 2004
cd29fe6f 2005 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 2006 /*
edcb60a3
IM
2007 * Upon rescheduling, sched_class::put_prev_task() will place
2008 * 'current' within the tree based on its new key value.
2009 */
4d78e7b6 2010 swap(curr->vruntime, se->vruntime);
aec0a514 2011 resched_task(rq->curr);
4d78e7b6 2012 }
bf0f6f24 2013
88ec22d3
PZ
2014 se->vruntime -= cfs_rq->min_vruntime;
2015
05fa785c 2016 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
2017}
2018
cb469845
SR
2019/*
2020 * Priority of the task has changed. Check to see if we preempt
2021 * the current task.
2022 */
2023static void prio_changed_fair(struct rq *rq, struct task_struct *p,
2024 int oldprio, int running)
2025{
2026 /*
2027 * Reschedule if we are currently running on this runqueue and
2028 * our priority decreased, or if we are not currently running on
2029 * this runqueue and our priority is higher than the current's
2030 */
2031 if (running) {
2032 if (p->prio > oldprio)
2033 resched_task(rq->curr);
2034 } else
15afe09b 2035 check_preempt_curr(rq, p, 0);
cb469845
SR
2036}
2037
2038/*
2039 * We switched to the sched_fair class.
2040 */
2041static void switched_to_fair(struct rq *rq, struct task_struct *p,
2042 int running)
2043{
2044 /*
2045 * We were most likely switched from sched_rt, so
2046 * kick off the schedule if running, otherwise just see
2047 * if we can still preempt the current task.
2048 */
2049 if (running)
2050 resched_task(rq->curr);
2051 else
15afe09b 2052 check_preempt_curr(rq, p, 0);
cb469845
SR
2053}
2054
83b699ed
SV
2055/* Account for a task changing its policy or group.
2056 *
2057 * This routine is mostly called to set cfs_rq->curr field when a task
2058 * migrates between groups/classes.
2059 */
2060static void set_curr_task_fair(struct rq *rq)
2061{
2062 struct sched_entity *se = &rq->curr->se;
2063
2064 for_each_sched_entity(se)
2065 set_next_entity(cfs_rq_of(se), se);
2066}
2067
810b3817 2068#ifdef CONFIG_FAIR_GROUP_SCHED
88ec22d3 2069static void moved_group_fair(struct task_struct *p, int on_rq)
810b3817
PZ
2070{
2071 struct cfs_rq *cfs_rq = task_cfs_rq(p);
2072
2073 update_curr(cfs_rq);
88ec22d3
PZ
2074 if (!on_rq)
2075 place_entity(cfs_rq, &p->se, 1);
810b3817
PZ
2076}
2077#endif
2078
dba091b9 2079unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
2080{
2081 struct sched_entity *se = &task->se;
0d721cea
PW
2082 unsigned int rr_interval = 0;
2083
2084 /*
2085 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2086 * idle runqueue:
2087 */
0d721cea
PW
2088 if (rq->cfs.load.weight)
2089 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
2090
2091 return rr_interval;
2092}
2093
bf0f6f24
IM
2094/*
2095 * All the scheduling class methods:
2096 */
5522d5d5
IM
2097static const struct sched_class fair_sched_class = {
2098 .next = &idle_sched_class,
bf0f6f24
IM
2099 .enqueue_task = enqueue_task_fair,
2100 .dequeue_task = dequeue_task_fair,
2101 .yield_task = yield_task_fair,
2102
2e09bf55 2103 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
2104
2105 .pick_next_task = pick_next_task_fair,
2106 .put_prev_task = put_prev_task_fair,
2107
681f3e68 2108#ifdef CONFIG_SMP
4ce72a2c
LZ
2109 .select_task_rq = select_task_rq_fair,
2110
bf0f6f24 2111 .load_balance = load_balance_fair,
e1d1484f 2112 .move_one_task = move_one_task_fair,
0bcdcf28
CE
2113 .rq_online = rq_online_fair,
2114 .rq_offline = rq_offline_fair,
88ec22d3
PZ
2115
2116 .task_waking = task_waking_fair,
681f3e68 2117#endif
bf0f6f24 2118
83b699ed 2119 .set_curr_task = set_curr_task_fair,
bf0f6f24 2120 .task_tick = task_tick_fair,
cd29fe6f 2121 .task_fork = task_fork_fair,
cb469845
SR
2122
2123 .prio_changed = prio_changed_fair,
2124 .switched_to = switched_to_fair,
810b3817 2125
0d721cea
PW
2126 .get_rr_interval = get_rr_interval_fair,
2127
810b3817
PZ
2128#ifdef CONFIG_FAIR_GROUP_SCHED
2129 .moved_group = moved_group_fair,
2130#endif
bf0f6f24
IM
2131};
2132
2133#ifdef CONFIG_SCHED_DEBUG
5cef9eca 2134static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 2135{
bf0f6f24
IM
2136 struct cfs_rq *cfs_rq;
2137
5973e5b9 2138 rcu_read_lock();
c3b64f1e 2139 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 2140 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 2141 rcu_read_unlock();
bf0f6f24
IM
2142}
2143#endif