]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/swap_state.c
mm: add_to_swap_cache() must not sleep
[net-next-2.6.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/buffer_head.h>
17#include <linux/backing-dev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
8c7c6e34 20#include <linux/page_cgroup.h>
1da177e4
LT
21
22#include <asm/pgtable.h>
23
24/*
25 * swapper_space is a fiction, retained to simplify the path through
2706a1b8 26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
1da177e4
LT
27 * future use of radix_tree tags in the swap cache.
28 */
f5e54d6e 29static const struct address_space_operations swap_aops = {
1da177e4
LT
30 .writepage = swap_writepage,
31 .sync_page = block_sync_page,
32 .set_page_dirty = __set_page_dirty_nobuffers,
e965f963 33 .migratepage = migrate_page,
1da177e4
LT
34};
35
36static struct backing_dev_info swap_backing_dev_info = {
d993831f 37 .name = "swap",
4f98a2fe 38 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
39 .unplug_io_fn = swap_unplug_io_fn,
40};
41
42struct address_space swapper_space = {
43 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
19fd6231 44 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
1da177e4
LT
45 .a_ops = &swap_aops,
46 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
47 .backing_dev_info = &swap_backing_dev_info,
48};
1da177e4
LT
49
50#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
51
52static struct {
53 unsigned long add_total;
54 unsigned long del_total;
55 unsigned long find_success;
56 unsigned long find_total;
1da177e4
LT
57} swap_cache_info;
58
59void show_swap_cache_info(void)
60{
2c97b7fc
JW
61 printk("%lu pages in swap cache\n", total_swapcache_pages);
62 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 63 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 64 swap_cache_info.find_success, swap_cache_info.find_total);
07279cdf 65 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
1da177e4
LT
66 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
67}
68
69/*
31a56396 70 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
71 * but sets SwapCache flag and private instead of mapping and index.
72 */
31a56396 73static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4
LT
74{
75 int error;
76
51726b12
HD
77 VM_BUG_ON(!PageLocked(page));
78 VM_BUG_ON(PageSwapCache(page));
79 VM_BUG_ON(!PageSwapBacked(page));
80
31a56396
DN
81 page_cache_get(page);
82 SetPageSwapCache(page);
83 set_page_private(page, entry.val);
84
85 spin_lock_irq(&swapper_space.tree_lock);
86 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
87 if (likely(!error)) {
88 total_swapcache_pages++;
89 __inc_zone_page_state(page, NR_FILE_PAGES);
90 INC_CACHE_INFO(add_total);
91 }
92 spin_unlock_irq(&swapper_space.tree_lock);
93
94 if (unlikely(error)) {
95 set_page_private(page, 0UL);
96 ClearPageSwapCache(page);
97 page_cache_release(page);
98 }
99
100 return error;
101}
102
103
104int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
105{
106 int error;
107
35c754d7
BS
108 error = radix_tree_preload(gfp_mask);
109 if (!error) {
31a56396 110 error = __add_to_swap_cache(page, entry);
1da177e4 111 radix_tree_preload_end();
fa1de900 112 }
1da177e4
LT
113 return error;
114}
115
1da177e4
LT
116/*
117 * This must be called only on pages that have
118 * been verified to be in the swap cache.
119 */
120void __delete_from_swap_cache(struct page *page)
121{
51726b12
HD
122 VM_BUG_ON(!PageLocked(page));
123 VM_BUG_ON(!PageSwapCache(page));
124 VM_BUG_ON(PageWriteback(page));
1da177e4 125
4c21e2f2
HD
126 radix_tree_delete(&swapper_space.page_tree, page_private(page));
127 set_page_private(page, 0);
1da177e4
LT
128 ClearPageSwapCache(page);
129 total_swapcache_pages--;
347ce434 130 __dec_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
131 INC_CACHE_INFO(del_total);
132}
133
134/**
135 * add_to_swap - allocate swap space for a page
136 * @page: page we want to move to swap
137 *
138 * Allocate swap space for the page and add the page to the
139 * swap cache. Caller needs to hold the page lock.
140 */
ac47b003 141int add_to_swap(struct page *page)
1da177e4
LT
142{
143 swp_entry_t entry;
1da177e4
LT
144 int err;
145
51726b12
HD
146 VM_BUG_ON(!PageLocked(page));
147 VM_BUG_ON(!PageUptodate(page));
1da177e4
LT
148
149 for (;;) {
150 entry = get_swap_page();
151 if (!entry.val)
152 return 0;
153
bd53b714
NP
154 /*
155 * Radix-tree node allocations from PF_MEMALLOC contexts could
156 * completely exhaust the page allocator. __GFP_NOMEMALLOC
157 * stops emergency reserves from being allocated.
1da177e4 158 *
bd53b714
NP
159 * TODO: this could cause a theoretical memory reclaim
160 * deadlock in the swap out path.
1da177e4 161 */
1da177e4
LT
162 /*
163 * Add it to the swap cache and mark it dirty
164 */
f000944d 165 err = add_to_swap_cache(page, entry,
ac47b003 166 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
1da177e4
LT
167
168 switch (err) {
169 case 0: /* Success */
1da177e4 170 SetPageDirty(page);
1da177e4
LT
171 return 1;
172 case -EEXIST:
173 /* Raced with "speculative" read_swap_cache_async */
cb4b86ba 174 swapcache_free(entry, NULL);
1da177e4
LT
175 continue;
176 default:
177 /* -ENOMEM radix-tree allocation failure */
cb4b86ba 178 swapcache_free(entry, NULL);
1da177e4
LT
179 return 0;
180 }
181 }
182}
183
184/*
185 * This must be called only on pages that have
186 * been verified to be in the swap cache and locked.
187 * It will never put the page into the free list,
188 * the caller has a reference on the page.
189 */
190void delete_from_swap_cache(struct page *page)
191{
192 swp_entry_t entry;
193
4c21e2f2 194 entry.val = page_private(page);
1da177e4 195
19fd6231 196 spin_lock_irq(&swapper_space.tree_lock);
1da177e4 197 __delete_from_swap_cache(page);
19fd6231 198 spin_unlock_irq(&swapper_space.tree_lock);
1da177e4 199
cb4b86ba 200 swapcache_free(entry, page);
1da177e4
LT
201 page_cache_release(page);
202}
203
1da177e4
LT
204/*
205 * If we are the only user, then try to free up the swap cache.
206 *
207 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
208 * here because we are going to recheck again inside
209 * try_to_free_swap() _with_ the lock.
1da177e4
LT
210 * - Marcelo
211 */
212static inline void free_swap_cache(struct page *page)
213{
a2c43eed
HD
214 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
215 try_to_free_swap(page);
1da177e4
LT
216 unlock_page(page);
217 }
218}
219
220/*
221 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 222 * this page if it is the last user of the page.
1da177e4
LT
223 */
224void free_page_and_swap_cache(struct page *page)
225{
226 free_swap_cache(page);
227 page_cache_release(page);
228}
229
230/*
231 * Passed an array of pages, drop them all from swapcache and then release
232 * them. They are removed from the LRU and freed if this is their last use.
233 */
234void free_pages_and_swap_cache(struct page **pages, int nr)
235{
1da177e4
LT
236 struct page **pagep = pages;
237
238 lru_add_drain();
239 while (nr) {
c484d410 240 int todo = min(nr, PAGEVEC_SIZE);
1da177e4
LT
241 int i;
242
243 for (i = 0; i < todo; i++)
244 free_swap_cache(pagep[i]);
245 release_pages(pagep, todo, 0);
246 pagep += todo;
247 nr -= todo;
248 }
249}
250
251/*
252 * Lookup a swap entry in the swap cache. A found page will be returned
253 * unlocked and with its refcount incremented - we rely on the kernel
254 * lock getting page table operations atomic even if we drop the page
255 * lock before returning.
256 */
257struct page * lookup_swap_cache(swp_entry_t entry)
258{
259 struct page *page;
260
261 page = find_get_page(&swapper_space, entry.val);
262
263 if (page)
264 INC_CACHE_INFO(find_success);
265
266 INC_CACHE_INFO(find_total);
267 return page;
268}
269
270/*
271 * Locate a page of swap in physical memory, reserving swap cache space
272 * and reading the disk if it is not already cached.
273 * A failure return means that either the page allocation failed or that
274 * the swap entry is no longer in use.
275 */
02098fea 276struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
1da177e4
LT
277 struct vm_area_struct *vma, unsigned long addr)
278{
279 struct page *found_page, *new_page = NULL;
280 int err;
281
282 do {
283 /*
284 * First check the swap cache. Since this is normally
285 * called after lookup_swap_cache() failed, re-calling
286 * that would confuse statistics.
287 */
288 found_page = find_get_page(&swapper_space, entry.val);
289 if (found_page)
290 break;
291
292 /*
293 * Get a new page to read into from swap.
294 */
295 if (!new_page) {
02098fea 296 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
297 if (!new_page)
298 break; /* Out of memory */
299 }
300
31a56396
DN
301 /*
302 * call radix_tree_preload() while we can wait.
303 */
304 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
305 if (err)
306 break;
307
f000944d
HD
308 /*
309 * Swap entry may have been freed since our caller observed it.
310 */
355cfa73 311 err = swapcache_prepare(entry);
31a56396
DN
312 if (err == -EEXIST) { /* seems racy */
313 radix_tree_preload_end();
355cfa73 314 continue;
31a56396
DN
315 }
316 if (err) { /* swp entry is obsolete ? */
317 radix_tree_preload_end();
f000944d 318 break;
31a56396 319 }
f000944d 320
1da177e4
LT
321 /*
322 * Associate the page with swap entry in the swap cache.
f000944d
HD
323 * May fail (-EEXIST) if there is already a page associated
324 * with this entry in the swap cache: added by a racing
325 * read_swap_cache_async, or add_to_swap or shmem_writepage
326 * re-using the just freed swap entry for an existing page.
1da177e4
LT
327 * May fail (-ENOMEM) if radix-tree node allocation failed.
328 */
f45840b5 329 __set_page_locked(new_page);
b2e18538 330 SetPageSwapBacked(new_page);
31a56396 331 err = __add_to_swap_cache(new_page, entry);
529ae9aa 332 if (likely(!err)) {
31a56396 333 radix_tree_preload_end();
1da177e4
LT
334 /*
335 * Initiate read into locked page and return.
336 */
c5fdae46 337 lru_cache_add_anon(new_page);
aca8bf32 338 swap_readpage(new_page);
1da177e4
LT
339 return new_page;
340 }
31a56396 341 radix_tree_preload_end();
b2e18538 342 ClearPageSwapBacked(new_page);
f45840b5 343 __clear_page_locked(new_page);
cb4b86ba 344 swapcache_free(entry, NULL);
f000944d 345 } while (err != -ENOMEM);
1da177e4
LT
346
347 if (new_page)
348 page_cache_release(new_page);
349 return found_page;
350}
46017e95
HD
351
352/**
353 * swapin_readahead - swap in pages in hope we need them soon
354 * @entry: swap entry of this memory
7682486b 355 * @gfp_mask: memory allocation flags
46017e95
HD
356 * @vma: user vma this address belongs to
357 * @addr: target address for mempolicy
358 *
359 * Returns the struct page for entry and addr, after queueing swapin.
360 *
361 * Primitive swap readahead code. We simply read an aligned block of
362 * (1 << page_cluster) entries in the swap area. This method is chosen
363 * because it doesn't cost us any seek time. We also make sure to queue
364 * the 'original' request together with the readahead ones...
365 *
366 * This has been extended to use the NUMA policies from the mm triggering
367 * the readahead.
368 *
369 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
370 */
02098fea 371struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
372 struct vm_area_struct *vma, unsigned long addr)
373{
374 int nr_pages;
375 struct page *page;
376 unsigned long offset;
377 unsigned long end_offset;
378
379 /*
380 * Get starting offset for readaround, and number of pages to read.
381 * Adjust starting address by readbehind (for NUMA interleave case)?
382 * No, it's very unlikely that swap layout would follow vma layout,
383 * more likely that neighbouring swap pages came from the same node:
384 * so use the same "addr" to choose the same node for each swap read.
385 */
386 nr_pages = valid_swaphandles(entry, &offset);
387 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
388 /* Ok, do the async read-ahead now */
389 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 390 gfp_mask, vma, addr);
46017e95
HD
391 if (!page)
392 break;
393 page_cache_release(page);
394 }
395 lru_add_drain(); /* Push any new pages onto the LRU now */
02098fea 396 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 397}