]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/swap_state.c
memcgroup: reinstate swapoff mod
[net-next-2.6.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/buffer_head.h>
17#include <linux/backing-dev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
8a9f3ccd 20#include <linux/memcontrol.h>
1da177e4
LT
21
22#include <asm/pgtable.h>
23
24/*
25 * swapper_space is a fiction, retained to simplify the path through
2706a1b8 26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
1da177e4
LT
27 * future use of radix_tree tags in the swap cache.
28 */
f5e54d6e 29static const struct address_space_operations swap_aops = {
1da177e4
LT
30 .writepage = swap_writepage,
31 .sync_page = block_sync_page,
32 .set_page_dirty = __set_page_dirty_nobuffers,
e965f963 33 .migratepage = migrate_page,
1da177e4
LT
34};
35
36static struct backing_dev_info swap_backing_dev_info = {
37 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
38 .unplug_io_fn = swap_unplug_io_fn,
39};
40
41struct address_space swapper_space = {
42 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
e4d91918 43 .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
1da177e4
LT
44 .a_ops = &swap_aops,
45 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
46 .backing_dev_info = &swap_backing_dev_info,
47};
1da177e4
LT
48
49#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
50
51static struct {
52 unsigned long add_total;
53 unsigned long del_total;
54 unsigned long find_success;
55 unsigned long find_total;
1da177e4
LT
56} swap_cache_info;
57
58void show_swap_cache_info(void)
59{
bb63be0a 60 printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 61 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 62 swap_cache_info.find_success, swap_cache_info.find_total);
1da177e4
LT
63 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
65}
66
67/*
f000944d 68 * add_to_swap_cache resembles add_to_page_cache on swapper_space,
1da177e4
LT
69 * but sets SwapCache flag and private instead of mapping and index.
70 */
73b1262f 71int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
1da177e4
LT
72{
73 int error;
74
b55ed816 75 BUG_ON(!PageLocked(page));
1da177e4
LT
76 BUG_ON(PageSwapCache(page));
77 BUG_ON(PagePrivate(page));
78 error = radix_tree_preload(gfp_mask);
79 if (!error) {
8a9f3ccd 80
e1a1cd59 81 error = mem_cgroup_cache_charge(page, current->mm, gfp_mask);
8a9f3ccd
BS
82 if (error)
83 goto out;
84
1da177e4
LT
85 write_lock_irq(&swapper_space.tree_lock);
86 error = radix_tree_insert(&swapper_space.page_tree,
87 entry.val, page);
88 if (!error) {
89 page_cache_get(page);
1da177e4 90 SetPageSwapCache(page);
4c21e2f2 91 set_page_private(page, entry.val);
1da177e4 92 total_swapcache_pages++;
347ce434 93 __inc_zone_page_state(page, NR_FILE_PAGES);
bb63be0a 94 INC_CACHE_INFO(add_total);
8a9f3ccd
BS
95 } else {
96 mem_cgroup_uncharge_page(page);
1da177e4
LT
97 }
98 write_unlock_irq(&swapper_space.tree_lock);
99 radix_tree_preload_end();
100 }
8a9f3ccd 101out:
1da177e4
LT
102 return error;
103}
104
1da177e4
LT
105/*
106 * This must be called only on pages that have
107 * been verified to be in the swap cache.
108 */
109void __delete_from_swap_cache(struct page *page)
110{
111 BUG_ON(!PageLocked(page));
112 BUG_ON(!PageSwapCache(page));
113 BUG_ON(PageWriteback(page));
3279ffd9 114 BUG_ON(PagePrivate(page));
1da177e4 115
8a9f3ccd 116 mem_cgroup_uncharge_page(page);
4c21e2f2
HD
117 radix_tree_delete(&swapper_space.page_tree, page_private(page));
118 set_page_private(page, 0);
1da177e4
LT
119 ClearPageSwapCache(page);
120 total_swapcache_pages--;
347ce434 121 __dec_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
122 INC_CACHE_INFO(del_total);
123}
124
125/**
126 * add_to_swap - allocate swap space for a page
127 * @page: page we want to move to swap
128 *
129 * Allocate swap space for the page and add the page to the
130 * swap cache. Caller needs to hold the page lock.
131 */
1480a540 132int add_to_swap(struct page * page, gfp_t gfp_mask)
1da177e4
LT
133{
134 swp_entry_t entry;
1da177e4
LT
135 int err;
136
e74ca2b4 137 BUG_ON(!PageLocked(page));
0ed361de 138 BUG_ON(!PageUptodate(page));
1da177e4
LT
139
140 for (;;) {
141 entry = get_swap_page();
142 if (!entry.val)
143 return 0;
144
bd53b714
NP
145 /*
146 * Radix-tree node allocations from PF_MEMALLOC contexts could
147 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148 * stops emergency reserves from being allocated.
1da177e4 149 *
bd53b714
NP
150 * TODO: this could cause a theoretical memory reclaim
151 * deadlock in the swap out path.
1da177e4 152 */
1da177e4
LT
153 /*
154 * Add it to the swap cache and mark it dirty
155 */
f000944d 156 err = add_to_swap_cache(page, entry,
1480a540 157 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
1da177e4
LT
158
159 switch (err) {
160 case 0: /* Success */
1da177e4 161 SetPageDirty(page);
1da177e4
LT
162 return 1;
163 case -EEXIST:
164 /* Raced with "speculative" read_swap_cache_async */
1da177e4
LT
165 swap_free(entry);
166 continue;
167 default:
168 /* -ENOMEM radix-tree allocation failure */
169 swap_free(entry);
170 return 0;
171 }
172 }
173}
174
175/*
176 * This must be called only on pages that have
177 * been verified to be in the swap cache and locked.
178 * It will never put the page into the free list,
179 * the caller has a reference on the page.
180 */
181void delete_from_swap_cache(struct page *page)
182{
183 swp_entry_t entry;
184
4c21e2f2 185 entry.val = page_private(page);
1da177e4
LT
186
187 write_lock_irq(&swapper_space.tree_lock);
188 __delete_from_swap_cache(page);
189 write_unlock_irq(&swapper_space.tree_lock);
190
191 swap_free(entry);
192 page_cache_release(page);
193}
194
1da177e4
LT
195/*
196 * If we are the only user, then try to free up the swap cache.
197 *
198 * Its ok to check for PageSwapCache without the page lock
199 * here because we are going to recheck again inside
200 * exclusive_swap_page() _with_ the lock.
201 * - Marcelo
202 */
203static inline void free_swap_cache(struct page *page)
204{
205 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
206 remove_exclusive_swap_page(page);
207 unlock_page(page);
208 }
209}
210
211/*
212 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 213 * this page if it is the last user of the page.
1da177e4
LT
214 */
215void free_page_and_swap_cache(struct page *page)
216{
217 free_swap_cache(page);
218 page_cache_release(page);
219}
220
221/*
222 * Passed an array of pages, drop them all from swapcache and then release
223 * them. They are removed from the LRU and freed if this is their last use.
224 */
225void free_pages_and_swap_cache(struct page **pages, int nr)
226{
1da177e4
LT
227 struct page **pagep = pages;
228
229 lru_add_drain();
230 while (nr) {
c484d410 231 int todo = min(nr, PAGEVEC_SIZE);
1da177e4
LT
232 int i;
233
234 for (i = 0; i < todo; i++)
235 free_swap_cache(pagep[i]);
236 release_pages(pagep, todo, 0);
237 pagep += todo;
238 nr -= todo;
239 }
240}
241
242/*
243 * Lookup a swap entry in the swap cache. A found page will be returned
244 * unlocked and with its refcount incremented - we rely on the kernel
245 * lock getting page table operations atomic even if we drop the page
246 * lock before returning.
247 */
248struct page * lookup_swap_cache(swp_entry_t entry)
249{
250 struct page *page;
251
252 page = find_get_page(&swapper_space, entry.val);
253
254 if (page)
255 INC_CACHE_INFO(find_success);
256
257 INC_CACHE_INFO(find_total);
258 return page;
259}
260
261/*
262 * Locate a page of swap in physical memory, reserving swap cache space
263 * and reading the disk if it is not already cached.
264 * A failure return means that either the page allocation failed or that
265 * the swap entry is no longer in use.
266 */
02098fea 267struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
1da177e4
LT
268 struct vm_area_struct *vma, unsigned long addr)
269{
270 struct page *found_page, *new_page = NULL;
271 int err;
272
273 do {
274 /*
275 * First check the swap cache. Since this is normally
276 * called after lookup_swap_cache() failed, re-calling
277 * that would confuse statistics.
278 */
279 found_page = find_get_page(&swapper_space, entry.val);
280 if (found_page)
281 break;
282
283 /*
284 * Get a new page to read into from swap.
285 */
286 if (!new_page) {
02098fea 287 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
288 if (!new_page)
289 break; /* Out of memory */
290 }
291
f000944d
HD
292 /*
293 * Swap entry may have been freed since our caller observed it.
294 */
295 if (!swap_duplicate(entry))
296 break;
297
1da177e4
LT
298 /*
299 * Associate the page with swap entry in the swap cache.
f000944d
HD
300 * May fail (-EEXIST) if there is already a page associated
301 * with this entry in the swap cache: added by a racing
302 * read_swap_cache_async, or add_to_swap or shmem_writepage
303 * re-using the just freed swap entry for an existing page.
1da177e4
LT
304 * May fail (-ENOMEM) if radix-tree node allocation failed.
305 */
f000944d
HD
306 SetPageLocked(new_page);
307 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
1da177e4
LT
308 if (!err) {
309 /*
310 * Initiate read into locked page and return.
311 */
312 lru_cache_add_active(new_page);
313 swap_readpage(NULL, new_page);
314 return new_page;
315 }
f000944d
HD
316 ClearPageLocked(new_page);
317 swap_free(entry);
318 } while (err != -ENOMEM);
1da177e4
LT
319
320 if (new_page)
321 page_cache_release(new_page);
322 return found_page;
323}
46017e95
HD
324
325/**
326 * swapin_readahead - swap in pages in hope we need them soon
327 * @entry: swap entry of this memory
328 * @vma: user vma this address belongs to
329 * @addr: target address for mempolicy
330 *
331 * Returns the struct page for entry and addr, after queueing swapin.
332 *
333 * Primitive swap readahead code. We simply read an aligned block of
334 * (1 << page_cluster) entries in the swap area. This method is chosen
335 * because it doesn't cost us any seek time. We also make sure to queue
336 * the 'original' request together with the readahead ones...
337 *
338 * This has been extended to use the NUMA policies from the mm triggering
339 * the readahead.
340 *
341 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
342 */
02098fea 343struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
344 struct vm_area_struct *vma, unsigned long addr)
345{
346 int nr_pages;
347 struct page *page;
348 unsigned long offset;
349 unsigned long end_offset;
350
351 /*
352 * Get starting offset for readaround, and number of pages to read.
353 * Adjust starting address by readbehind (for NUMA interleave case)?
354 * No, it's very unlikely that swap layout would follow vma layout,
355 * more likely that neighbouring swap pages came from the same node:
356 * so use the same "addr" to choose the same node for each swap read.
357 */
358 nr_pages = valid_swaphandles(entry, &offset);
359 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
360 /* Ok, do the async read-ahead now */
361 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 362 gfp_mask, vma, addr);
46017e95
HD
363 if (!page)
364 break;
365 page_cache_release(page);
366 }
367 lru_add_drain(); /* Push any new pages onto the LRU now */
02098fea 368 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 369}