]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
slub: Fix signedness warnings
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
af537b0a
CL
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
5577bd8a 114#ifdef CONFIG_SLUB_DEBUG
af537b0a 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 116#else
af537b0a 117 return 0;
5577bd8a 118#endif
af537b0a 119}
5577bd8a 120
81819f0f
CL
121/*
122 * Issues still to be resolved:
123 *
81819f0f
CL
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
81819f0f
CL
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
2086d26a
CL
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
76be8950 136#define MIN_PARTIAL 5
e95eed57 137
2086d26a
CL
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
81819f0f
CL
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
672bba3a 147
fa5ec8a1 148/*
3de47213
DR
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
fa5ec8a1 152 */
3de47213 153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 154
81819f0f
CL
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
81819f0f
CL
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 163 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 164
210b5c06
CG
165#define OO_SHIFT 16
166#define OO_MASK ((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
81819f0f 169/* Internal SLUB flags */
f90ec390 170#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179 DOWN, /* No slab functionality available */
51df1142 180 PARTIAL, /* Kmem_cache_node works */
672bba3a 181 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
182 SYSFS /* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
5af328a5 187static LIST_HEAD(slab_caches);
81819f0f 188
02cbc874
CL
189/*
190 * Tracking user of a slab.
191 */
192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
f6acb635 201#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
151c602f
CL
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
84c1cf62 212 kfree(s->name);
151c602f
CL
213 kfree(s);
214}
8ff12cfc 215
81819f0f
CL
216#endif
217
84e554e6 218static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
219{
220#ifdef CONFIG_SLUB_STATS
84e554e6 221 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
222#endif
223}
224
81819f0f
CL
225/********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
228
229int slab_is_available(void)
230{
231 return slab_state >= UP;
232}
233
234static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235{
81819f0f 236 return s->node[node];
81819f0f
CL
237}
238
6446faa2 239/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
240static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
242{
243 void *base;
244
a973e9dd 245 if (!object)
02cbc874
CL
246 return 1;
247
a973e9dd 248 base = page_address(page);
39b26464 249 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
250 (object - base) % s->size) {
251 return 0;
252 }
253
254 return 1;
255}
256
7656c72b
CL
257static inline void *get_freepointer(struct kmem_cache *s, void *object)
258{
259 return *(void **)(object + s->offset);
260}
261
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264 *(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
224a88be
CL
268#define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
270 __p += (__s)->size)
271
272/* Scan freelist */
273#define for_each_free_object(__p, __s, __free) \
a973e9dd 274 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
275
276/* Determine object index from a given position */
277static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278{
279 return (p - addr) / s->size;
280}
281
834f3d11
CL
282static inline struct kmem_cache_order_objects oo_make(int order,
283 unsigned long size)
284{
285 struct kmem_cache_order_objects x = {
210b5c06 286 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
287 };
288
289 return x;
290}
291
292static inline int oo_order(struct kmem_cache_order_objects x)
293{
210b5c06 294 return x.x >> OO_SHIFT;
834f3d11
CL
295}
296
297static inline int oo_objects(struct kmem_cache_order_objects x)
298{
210b5c06 299 return x.x & OO_MASK;
834f3d11
CL
300}
301
41ecc55b
CL
302#ifdef CONFIG_SLUB_DEBUG
303/*
304 * Debug settings:
305 */
f0630fff
CL
306#ifdef CONFIG_SLUB_DEBUG_ON
307static int slub_debug = DEBUG_DEFAULT_FLAGS;
308#else
41ecc55b 309static int slub_debug;
f0630fff 310#endif
41ecc55b
CL
311
312static char *slub_debug_slabs;
fa5ec8a1 313static int disable_higher_order_debug;
41ecc55b 314
81819f0f
CL
315/*
316 * Object debugging
317 */
318static void print_section(char *text, u8 *addr, unsigned int length)
319{
320 int i, offset;
321 int newline = 1;
322 char ascii[17];
323
324 ascii[16] = 0;
325
326 for (i = 0; i < length; i++) {
327 if (newline) {
24922684 328 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
329 newline = 0;
330 }
06428780 331 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
332 offset = i % 16;
333 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 if (offset == 15) {
06428780 335 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
336 newline = 1;
337 }
338 }
339 if (!newline) {
340 i %= 16;
341 while (i < 16) {
06428780 342 printk(KERN_CONT " ");
81819f0f
CL
343 ascii[i] = ' ';
344 i++;
345 }
06428780 346 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
347 }
348}
349
81819f0f
CL
350static struct track *get_track(struct kmem_cache *s, void *object,
351 enum track_item alloc)
352{
353 struct track *p;
354
355 if (s->offset)
356 p = object + s->offset + sizeof(void *);
357 else
358 p = object + s->inuse;
359
360 return p + alloc;
361}
362
363static void set_track(struct kmem_cache *s, void *object,
ce71e27c 364 enum track_item alloc, unsigned long addr)
81819f0f 365{
1a00df4a 366 struct track *p = get_track(s, object, alloc);
81819f0f 367
81819f0f
CL
368 if (addr) {
369 p->addr = addr;
370 p->cpu = smp_processor_id();
88e4ccf2 371 p->pid = current->pid;
81819f0f
CL
372 p->when = jiffies;
373 } else
374 memset(p, 0, sizeof(struct track));
375}
376
81819f0f
CL
377static void init_tracking(struct kmem_cache *s, void *object)
378{
24922684
CL
379 if (!(s->flags & SLAB_STORE_USER))
380 return;
381
ce71e27c
EGM
382 set_track(s, object, TRACK_FREE, 0UL);
383 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
384}
385
386static void print_track(const char *s, struct track *t)
387{
388 if (!t->addr)
389 return;
390
7daf705f 391 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 392 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
393}
394
395static void print_tracking(struct kmem_cache *s, void *object)
396{
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
399
400 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 print_track("Freed", get_track(s, object, TRACK_FREE));
402}
403
404static void print_page_info(struct page *page)
405{
39b26464
CL
406 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
408
409}
410
411static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412{
413 va_list args;
414 char buf[100];
415
416 va_start(args, fmt);
417 vsnprintf(buf, sizeof(buf), fmt, args);
418 va_end(args);
419 printk(KERN_ERR "========================================"
420 "=====================================\n");
421 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 printk(KERN_ERR "----------------------------------------"
423 "-------------------------------------\n\n");
81819f0f
CL
424}
425
24922684
CL
426static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427{
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435}
436
437static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
438{
439 unsigned int off; /* Offset of last byte */
a973e9dd 440 u8 *addr = page_address(page);
24922684
CL
441
442 print_tracking(s, p);
443
444 print_page_info(page);
445
446 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 p, p - addr, get_freepointer(s, p));
448
449 if (p > addr + 16)
450 print_section("Bytes b4", p - 16, 16);
451
0ebd652b 452 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
453
454 if (s->flags & SLAB_RED_ZONE)
455 print_section("Redzone", p + s->objsize,
456 s->inuse - s->objsize);
457
81819f0f
CL
458 if (s->offset)
459 off = s->offset + sizeof(void *);
460 else
461 off = s->inuse;
462
24922684 463 if (s->flags & SLAB_STORE_USER)
81819f0f 464 off += 2 * sizeof(struct track);
81819f0f
CL
465
466 if (off != s->size)
467 /* Beginning of the filler is the free pointer */
24922684
CL
468 print_section("Padding", p + off, s->size - off);
469
470 dump_stack();
81819f0f
CL
471}
472
473static void object_err(struct kmem_cache *s, struct page *page,
474 u8 *object, char *reason)
475{
3dc50637 476 slab_bug(s, "%s", reason);
24922684 477 print_trailer(s, page, object);
81819f0f
CL
478}
479
24922684 480static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
481{
482 va_list args;
483 char buf[100];
484
24922684
CL
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 487 va_end(args);
3dc50637 488 slab_bug(s, "%s", buf);
24922684 489 print_page_info(page);
81819f0f
CL
490 dump_stack();
491}
492
f7cb1933 493static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
494{
495 u8 *p = object;
496
497 if (s->flags & __OBJECT_POISON) {
498 memset(p, POISON_FREE, s->objsize - 1);
06428780 499 p[s->objsize - 1] = POISON_END;
81819f0f
CL
500 }
501
502 if (s->flags & SLAB_RED_ZONE)
f7cb1933 503 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
504}
505
24922684 506static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
507{
508 while (bytes) {
509 if (*start != (u8)value)
24922684 510 return start;
81819f0f
CL
511 start++;
512 bytes--;
513 }
24922684
CL
514 return NULL;
515}
516
517static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 void *from, void *to)
519{
520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 memset(from, data, to - from);
522}
523
524static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 u8 *object, char *what,
06428780 526 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
527{
528 u8 *fault;
529 u8 *end;
530
531 fault = check_bytes(start, value, bytes);
532 if (!fault)
533 return 1;
534
535 end = start + bytes;
536 while (end > fault && end[-1] == value)
537 end--;
538
539 slab_bug(s, "%s overwritten", what);
540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 fault, end - 1, fault[0], value);
542 print_trailer(s, page, object);
543
544 restore_bytes(s, what, value, fault, end);
545 return 0;
81819f0f
CL
546}
547
81819f0f
CL
548/*
549 * Object layout:
550 *
551 * object address
552 * Bytes of the object to be managed.
553 * If the freepointer may overlay the object then the free
554 * pointer is the first word of the object.
672bba3a 555 *
81819f0f
CL
556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 0xa5 (POISON_END)
558 *
559 * object + s->objsize
560 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
561 * Padding is extended by another word if Redzoning is enabled and
562 * objsize == inuse.
563 *
81819f0f
CL
564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 0xcc (RED_ACTIVE) for objects in use.
566 *
567 * object + s->inuse
672bba3a
CL
568 * Meta data starts here.
569 *
81819f0f
CL
570 * A. Free pointer (if we cannot overwrite object on free)
571 * B. Tracking data for SLAB_STORE_USER
672bba3a 572 * C. Padding to reach required alignment boundary or at mininum
6446faa2 573 * one word if debugging is on to be able to detect writes
672bba3a
CL
574 * before the word boundary.
575 *
576 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
577 *
578 * object + s->size
672bba3a 579 * Nothing is used beyond s->size.
81819f0f 580 *
672bba3a
CL
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
583 * may be used with merged slabcaches.
584 */
585
81819f0f
CL
586static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587{
588 unsigned long off = s->inuse; /* The end of info */
589
590 if (s->offset)
591 /* Freepointer is placed after the object. */
592 off += sizeof(void *);
593
594 if (s->flags & SLAB_STORE_USER)
595 /* We also have user information there */
596 off += 2 * sizeof(struct track);
597
598 if (s->size == off)
599 return 1;
600
24922684
CL
601 return check_bytes_and_report(s, page, p, "Object padding",
602 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
603}
604
39b26464 605/* Check the pad bytes at the end of a slab page */
81819f0f
CL
606static int slab_pad_check(struct kmem_cache *s, struct page *page)
607{
24922684
CL
608 u8 *start;
609 u8 *fault;
610 u8 *end;
611 int length;
612 int remainder;
81819f0f
CL
613
614 if (!(s->flags & SLAB_POISON))
615 return 1;
616
a973e9dd 617 start = page_address(page);
834f3d11 618 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
619 end = start + length;
620 remainder = length % s->size;
81819f0f
CL
621 if (!remainder)
622 return 1;
623
39b26464 624 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
625 if (!fault)
626 return 1;
627 while (end > fault && end[-1] == POISON_INUSE)
628 end--;
629
630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 631 print_section("Padding", end - remainder, remainder);
24922684 632
8a3d271d 633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 634 return 0;
81819f0f
CL
635}
636
637static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 638 void *object, u8 val)
81819f0f
CL
639{
640 u8 *p = object;
641 u8 *endobject = object + s->objsize;
642
643 if (s->flags & SLAB_RED_ZONE) {
24922684 644 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 645 endobject, val, s->inuse - s->objsize))
81819f0f 646 return 0;
81819f0f 647 } else {
3adbefee
IM
648 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649 check_bytes_and_report(s, page, p, "Alignment padding",
650 endobject, POISON_INUSE, s->inuse - s->objsize);
651 }
81819f0f
CL
652 }
653
654 if (s->flags & SLAB_POISON) {
f7cb1933 655 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
656 (!check_bytes_and_report(s, page, p, "Poison", p,
657 POISON_FREE, s->objsize - 1) ||
658 !check_bytes_and_report(s, page, p, "Poison",
06428780 659 p + s->objsize - 1, POISON_END, 1)))
81819f0f 660 return 0;
81819f0f
CL
661 /*
662 * check_pad_bytes cleans up on its own.
663 */
664 check_pad_bytes(s, page, p);
665 }
666
f7cb1933 667 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
668 /*
669 * Object and freepointer overlap. Cannot check
670 * freepointer while object is allocated.
671 */
672 return 1;
673
674 /* Check free pointer validity */
675 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676 object_err(s, page, p, "Freepointer corrupt");
677 /*
9f6c708e 678 * No choice but to zap it and thus lose the remainder
81819f0f 679 * of the free objects in this slab. May cause
672bba3a 680 * another error because the object count is now wrong.
81819f0f 681 */
a973e9dd 682 set_freepointer(s, p, NULL);
81819f0f
CL
683 return 0;
684 }
685 return 1;
686}
687
688static int check_slab(struct kmem_cache *s, struct page *page)
689{
39b26464
CL
690 int maxobj;
691
81819f0f
CL
692 VM_BUG_ON(!irqs_disabled());
693
694 if (!PageSlab(page)) {
24922684 695 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
696 return 0;
697 }
39b26464
CL
698
699 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700 if (page->objects > maxobj) {
701 slab_err(s, page, "objects %u > max %u",
702 s->name, page->objects, maxobj);
703 return 0;
704 }
705 if (page->inuse > page->objects) {
24922684 706 slab_err(s, page, "inuse %u > max %u",
39b26464 707 s->name, page->inuse, page->objects);
81819f0f
CL
708 return 0;
709 }
710 /* Slab_pad_check fixes things up after itself */
711 slab_pad_check(s, page);
712 return 1;
713}
714
715/*
672bba3a
CL
716 * Determine if a certain object on a page is on the freelist. Must hold the
717 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
718 */
719static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
720{
721 int nr = 0;
722 void *fp = page->freelist;
723 void *object = NULL;
224a88be 724 unsigned long max_objects;
81819f0f 725
39b26464 726 while (fp && nr <= page->objects) {
81819f0f
CL
727 if (fp == search)
728 return 1;
729 if (!check_valid_pointer(s, page, fp)) {
730 if (object) {
731 object_err(s, page, object,
732 "Freechain corrupt");
a973e9dd 733 set_freepointer(s, object, NULL);
81819f0f
CL
734 break;
735 } else {
24922684 736 slab_err(s, page, "Freepointer corrupt");
a973e9dd 737 page->freelist = NULL;
39b26464 738 page->inuse = page->objects;
24922684 739 slab_fix(s, "Freelist cleared");
81819f0f
CL
740 return 0;
741 }
742 break;
743 }
744 object = fp;
745 fp = get_freepointer(s, object);
746 nr++;
747 }
748
224a88be 749 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
750 if (max_objects > MAX_OBJS_PER_PAGE)
751 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
752
753 if (page->objects != max_objects) {
754 slab_err(s, page, "Wrong number of objects. Found %d but "
755 "should be %d", page->objects, max_objects);
756 page->objects = max_objects;
757 slab_fix(s, "Number of objects adjusted.");
758 }
39b26464 759 if (page->inuse != page->objects - nr) {
70d71228 760 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
761 "counted were %d", page->inuse, page->objects - nr);
762 page->inuse = page->objects - nr;
24922684 763 slab_fix(s, "Object count adjusted.");
81819f0f
CL
764 }
765 return search == NULL;
766}
767
0121c619
CL
768static void trace(struct kmem_cache *s, struct page *page, void *object,
769 int alloc)
3ec09742
CL
770{
771 if (s->flags & SLAB_TRACE) {
772 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773 s->name,
774 alloc ? "alloc" : "free",
775 object, page->inuse,
776 page->freelist);
777
778 if (!alloc)
779 print_section("Object", (void *)object, s->objsize);
780
781 dump_stack();
782 }
783}
784
c016b0bd
CL
785/*
786 * Hooks for other subsystems that check memory allocations. In a typical
787 * production configuration these hooks all should produce no code at all.
788 */
789static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
790{
c1d50836 791 flags &= gfp_allowed_mask;
c016b0bd
CL
792 lockdep_trace_alloc(flags);
793 might_sleep_if(flags & __GFP_WAIT);
794
795 return should_failslab(s->objsize, flags, s->flags);
796}
797
798static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
799{
c1d50836 800 flags &= gfp_allowed_mask;
c016b0bd
CL
801 kmemcheck_slab_alloc(s, flags, object, s->objsize);
802 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
803}
804
805static inline void slab_free_hook(struct kmem_cache *s, void *x)
806{
807 kmemleak_free_recursive(x, s->flags);
808}
809
810static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
811{
812 kmemcheck_slab_free(s, object, s->objsize);
813 debug_check_no_locks_freed(object, s->objsize);
814 if (!(s->flags & SLAB_DEBUG_OBJECTS))
815 debug_check_no_obj_freed(object, s->objsize);
816}
817
643b1138 818/*
672bba3a 819 * Tracking of fully allocated slabs for debugging purposes.
643b1138 820 */
e95eed57 821static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 822{
643b1138
CL
823 spin_lock(&n->list_lock);
824 list_add(&page->lru, &n->full);
825 spin_unlock(&n->list_lock);
826}
827
828static void remove_full(struct kmem_cache *s, struct page *page)
829{
830 struct kmem_cache_node *n;
831
832 if (!(s->flags & SLAB_STORE_USER))
833 return;
834
835 n = get_node(s, page_to_nid(page));
836
837 spin_lock(&n->list_lock);
838 list_del(&page->lru);
839 spin_unlock(&n->list_lock);
840}
841
0f389ec6
CL
842/* Tracking of the number of slabs for debugging purposes */
843static inline unsigned long slabs_node(struct kmem_cache *s, int node)
844{
845 struct kmem_cache_node *n = get_node(s, node);
846
847 return atomic_long_read(&n->nr_slabs);
848}
849
26c02cf0
AB
850static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
851{
852 return atomic_long_read(&n->nr_slabs);
853}
854
205ab99d 855static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
856{
857 struct kmem_cache_node *n = get_node(s, node);
858
859 /*
860 * May be called early in order to allocate a slab for the
861 * kmem_cache_node structure. Solve the chicken-egg
862 * dilemma by deferring the increment of the count during
863 * bootstrap (see early_kmem_cache_node_alloc).
864 */
7340cc84 865 if (n) {
0f389ec6 866 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
867 atomic_long_add(objects, &n->total_objects);
868 }
0f389ec6 869}
205ab99d 870static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
871{
872 struct kmem_cache_node *n = get_node(s, node);
873
874 atomic_long_dec(&n->nr_slabs);
205ab99d 875 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
876}
877
878/* Object debug checks for alloc/free paths */
3ec09742
CL
879static void setup_object_debug(struct kmem_cache *s, struct page *page,
880 void *object)
881{
882 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883 return;
884
f7cb1933 885 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
886 init_tracking(s, object);
887}
888
1537066c 889static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 890 void *object, unsigned long addr)
81819f0f
CL
891{
892 if (!check_slab(s, page))
893 goto bad;
894
d692ef6d 895 if (!on_freelist(s, page, object)) {
24922684 896 object_err(s, page, object, "Object already allocated");
70d71228 897 goto bad;
81819f0f
CL
898 }
899
900 if (!check_valid_pointer(s, page, object)) {
901 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 902 goto bad;
81819f0f
CL
903 }
904
f7cb1933 905 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 906 goto bad;
81819f0f 907
3ec09742
CL
908 /* Success perform special debug activities for allocs */
909 if (s->flags & SLAB_STORE_USER)
910 set_track(s, object, TRACK_ALLOC, addr);
911 trace(s, page, object, 1);
f7cb1933 912 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 913 return 1;
3ec09742 914
81819f0f
CL
915bad:
916 if (PageSlab(page)) {
917 /*
918 * If this is a slab page then lets do the best we can
919 * to avoid issues in the future. Marking all objects
672bba3a 920 * as used avoids touching the remaining objects.
81819f0f 921 */
24922684 922 slab_fix(s, "Marking all objects used");
39b26464 923 page->inuse = page->objects;
a973e9dd 924 page->freelist = NULL;
81819f0f
CL
925 }
926 return 0;
927}
928
1537066c
CL
929static noinline int free_debug_processing(struct kmem_cache *s,
930 struct page *page, void *object, unsigned long addr)
81819f0f
CL
931{
932 if (!check_slab(s, page))
933 goto fail;
934
935 if (!check_valid_pointer(s, page, object)) {
70d71228 936 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
937 goto fail;
938 }
939
940 if (on_freelist(s, page, object)) {
24922684 941 object_err(s, page, object, "Object already free");
81819f0f
CL
942 goto fail;
943 }
944
f7cb1933 945 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
946 return 0;
947
948 if (unlikely(s != page->slab)) {
3adbefee 949 if (!PageSlab(page)) {
70d71228
CL
950 slab_err(s, page, "Attempt to free object(0x%p) "
951 "outside of slab", object);
3adbefee 952 } else if (!page->slab) {
81819f0f 953 printk(KERN_ERR
70d71228 954 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 955 object);
70d71228 956 dump_stack();
06428780 957 } else
24922684
CL
958 object_err(s, page, object,
959 "page slab pointer corrupt.");
81819f0f
CL
960 goto fail;
961 }
3ec09742
CL
962
963 /* Special debug activities for freeing objects */
8a38082d 964 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
965 remove_full(s, page);
966 if (s->flags & SLAB_STORE_USER)
967 set_track(s, object, TRACK_FREE, addr);
968 trace(s, page, object, 0);
f7cb1933 969 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 970 return 1;
3ec09742 971
81819f0f 972fail:
24922684 973 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
974 return 0;
975}
976
41ecc55b
CL
977static int __init setup_slub_debug(char *str)
978{
f0630fff
CL
979 slub_debug = DEBUG_DEFAULT_FLAGS;
980 if (*str++ != '=' || !*str)
981 /*
982 * No options specified. Switch on full debugging.
983 */
984 goto out;
985
986 if (*str == ',')
987 /*
988 * No options but restriction on slabs. This means full
989 * debugging for slabs matching a pattern.
990 */
991 goto check_slabs;
992
fa5ec8a1
DR
993 if (tolower(*str) == 'o') {
994 /*
995 * Avoid enabling debugging on caches if its minimum order
996 * would increase as a result.
997 */
998 disable_higher_order_debug = 1;
999 goto out;
1000 }
1001
f0630fff
CL
1002 slub_debug = 0;
1003 if (*str == '-')
1004 /*
1005 * Switch off all debugging measures.
1006 */
1007 goto out;
1008
1009 /*
1010 * Determine which debug features should be switched on
1011 */
06428780 1012 for (; *str && *str != ','; str++) {
f0630fff
CL
1013 switch (tolower(*str)) {
1014 case 'f':
1015 slub_debug |= SLAB_DEBUG_FREE;
1016 break;
1017 case 'z':
1018 slub_debug |= SLAB_RED_ZONE;
1019 break;
1020 case 'p':
1021 slub_debug |= SLAB_POISON;
1022 break;
1023 case 'u':
1024 slub_debug |= SLAB_STORE_USER;
1025 break;
1026 case 't':
1027 slub_debug |= SLAB_TRACE;
1028 break;
4c13dd3b
DM
1029 case 'a':
1030 slub_debug |= SLAB_FAILSLAB;
1031 break;
f0630fff
CL
1032 default:
1033 printk(KERN_ERR "slub_debug option '%c' "
06428780 1034 "unknown. skipped\n", *str);
f0630fff 1035 }
41ecc55b
CL
1036 }
1037
f0630fff 1038check_slabs:
41ecc55b
CL
1039 if (*str == ',')
1040 slub_debug_slabs = str + 1;
f0630fff 1041out:
41ecc55b
CL
1042 return 1;
1043}
1044
1045__setup("slub_debug", setup_slub_debug);
1046
ba0268a8
CL
1047static unsigned long kmem_cache_flags(unsigned long objsize,
1048 unsigned long flags, const char *name,
51cc5068 1049 void (*ctor)(void *))
41ecc55b
CL
1050{
1051 /*
e153362a 1052 * Enable debugging if selected on the kernel commandline.
41ecc55b 1053 */
e153362a 1054 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1055 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056 flags |= slub_debug;
ba0268a8
CL
1057
1058 return flags;
41ecc55b
CL
1059}
1060#else
3ec09742
CL
1061static inline void setup_object_debug(struct kmem_cache *s,
1062 struct page *page, void *object) {}
41ecc55b 1063
3ec09742 1064static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1065 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1066
3ec09742 1067static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1068 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1069
41ecc55b
CL
1070static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071 { return 1; }
1072static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1073 void *object, u8 val) { return 1; }
3ec09742 1074static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1075static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076 unsigned long flags, const char *name,
51cc5068 1077 void (*ctor)(void *))
ba0268a8
CL
1078{
1079 return flags;
1080}
41ecc55b 1081#define slub_debug 0
0f389ec6 1082
fdaa45e9
IM
1083#define disable_higher_order_debug 0
1084
0f389ec6
CL
1085static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086 { return 0; }
26c02cf0
AB
1087static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 { return 0; }
205ab99d
CL
1089static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090 int objects) {}
1091static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092 int objects) {}
7d550c56
CL
1093
1094static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095 { return 0; }
1096
1097static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098 void *object) {}
1099
1100static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1101
1102static inline void slab_free_hook_irq(struct kmem_cache *s,
1103 void *object) {}
1104
41ecc55b 1105#endif
205ab99d 1106
81819f0f
CL
1107/*
1108 * Slab allocation and freeing
1109 */
65c3376a
CL
1110static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111 struct kmem_cache_order_objects oo)
1112{
1113 int order = oo_order(oo);
1114
b1eeab67
VN
1115 flags |= __GFP_NOTRACK;
1116
2154a336 1117 if (node == NUMA_NO_NODE)
65c3376a
CL
1118 return alloc_pages(flags, order);
1119 else
6b65aaf3 1120 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1121}
1122
81819f0f
CL
1123static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1124{
06428780 1125 struct page *page;
834f3d11 1126 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1127 gfp_t alloc_gfp;
81819f0f 1128
b7a49f0d 1129 flags |= s->allocflags;
e12ba74d 1130
ba52270d
PE
1131 /*
1132 * Let the initial higher-order allocation fail under memory pressure
1133 * so we fall-back to the minimum order allocation.
1134 */
1135 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1136
1137 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1138 if (unlikely(!page)) {
1139 oo = s->min;
1140 /*
1141 * Allocation may have failed due to fragmentation.
1142 * Try a lower order alloc if possible
1143 */
1144 page = alloc_slab_page(flags, node, oo);
1145 if (!page)
1146 return NULL;
81819f0f 1147
84e554e6 1148 stat(s, ORDER_FALLBACK);
65c3376a 1149 }
5a896d9e
VN
1150
1151 if (kmemcheck_enabled
5086c389 1152 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1153 int pages = 1 << oo_order(oo);
1154
1155 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1156
1157 /*
1158 * Objects from caches that have a constructor don't get
1159 * cleared when they're allocated, so we need to do it here.
1160 */
1161 if (s->ctor)
1162 kmemcheck_mark_uninitialized_pages(page, pages);
1163 else
1164 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1165 }
1166
834f3d11 1167 page->objects = oo_objects(oo);
81819f0f
CL
1168 mod_zone_page_state(page_zone(page),
1169 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1171 1 << oo_order(oo));
81819f0f
CL
1172
1173 return page;
1174}
1175
1176static void setup_object(struct kmem_cache *s, struct page *page,
1177 void *object)
1178{
3ec09742 1179 setup_object_debug(s, page, object);
4f104934 1180 if (unlikely(s->ctor))
51cc5068 1181 s->ctor(object);
81819f0f
CL
1182}
1183
1184static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1185{
1186 struct page *page;
81819f0f 1187 void *start;
81819f0f
CL
1188 void *last;
1189 void *p;
1190
6cb06229 1191 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1192
6cb06229
CL
1193 page = allocate_slab(s,
1194 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1195 if (!page)
1196 goto out;
1197
205ab99d 1198 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1199 page->slab = s;
1200 page->flags |= 1 << PG_slab;
81819f0f
CL
1201
1202 start = page_address(page);
81819f0f
CL
1203
1204 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1205 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1206
1207 last = start;
224a88be 1208 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1209 setup_object(s, page, last);
1210 set_freepointer(s, last, p);
1211 last = p;
1212 }
1213 setup_object(s, page, last);
a973e9dd 1214 set_freepointer(s, last, NULL);
81819f0f
CL
1215
1216 page->freelist = start;
1217 page->inuse = 0;
1218out:
81819f0f
CL
1219 return page;
1220}
1221
1222static void __free_slab(struct kmem_cache *s, struct page *page)
1223{
834f3d11
CL
1224 int order = compound_order(page);
1225 int pages = 1 << order;
81819f0f 1226
af537b0a 1227 if (kmem_cache_debug(s)) {
81819f0f
CL
1228 void *p;
1229
1230 slab_pad_check(s, page);
224a88be
CL
1231 for_each_object(p, s, page_address(page),
1232 page->objects)
f7cb1933 1233 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1234 }
1235
b1eeab67 1236 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1237
81819f0f
CL
1238 mod_zone_page_state(page_zone(page),
1239 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1241 -pages);
81819f0f 1242
49bd5221
CL
1243 __ClearPageSlab(page);
1244 reset_page_mapcount(page);
1eb5ac64
NP
1245 if (current->reclaim_state)
1246 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1247 __free_pages(page, order);
81819f0f
CL
1248}
1249
1250static void rcu_free_slab(struct rcu_head *h)
1251{
1252 struct page *page;
1253
1254 page = container_of((struct list_head *)h, struct page, lru);
1255 __free_slab(page->slab, page);
1256}
1257
1258static void free_slab(struct kmem_cache *s, struct page *page)
1259{
1260 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1261 /*
1262 * RCU free overloads the RCU head over the LRU
1263 */
1264 struct rcu_head *head = (void *)&page->lru;
1265
1266 call_rcu(head, rcu_free_slab);
1267 } else
1268 __free_slab(s, page);
1269}
1270
1271static void discard_slab(struct kmem_cache *s, struct page *page)
1272{
205ab99d 1273 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1274 free_slab(s, page);
1275}
1276
1277/*
1278 * Per slab locking using the pagelock
1279 */
1280static __always_inline void slab_lock(struct page *page)
1281{
1282 bit_spin_lock(PG_locked, &page->flags);
1283}
1284
1285static __always_inline void slab_unlock(struct page *page)
1286{
a76d3546 1287 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1288}
1289
1290static __always_inline int slab_trylock(struct page *page)
1291{
1292 int rc = 1;
1293
1294 rc = bit_spin_trylock(PG_locked, &page->flags);
1295 return rc;
1296}
1297
1298/*
1299 * Management of partially allocated slabs
1300 */
7c2e132c
CL
1301static void add_partial(struct kmem_cache_node *n,
1302 struct page *page, int tail)
81819f0f 1303{
e95eed57
CL
1304 spin_lock(&n->list_lock);
1305 n->nr_partial++;
7c2e132c
CL
1306 if (tail)
1307 list_add_tail(&page->lru, &n->partial);
1308 else
1309 list_add(&page->lru, &n->partial);
81819f0f
CL
1310 spin_unlock(&n->list_lock);
1311}
1312
62e346a8
CL
1313static inline void __remove_partial(struct kmem_cache_node *n,
1314 struct page *page)
1315{
1316 list_del(&page->lru);
1317 n->nr_partial--;
1318}
1319
0121c619 1320static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1321{
1322 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1323
1324 spin_lock(&n->list_lock);
62e346a8 1325 __remove_partial(n, page);
81819f0f
CL
1326 spin_unlock(&n->list_lock);
1327}
1328
1329/*
672bba3a 1330 * Lock slab and remove from the partial list.
81819f0f 1331 *
672bba3a 1332 * Must hold list_lock.
81819f0f 1333 */
0121c619
CL
1334static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1335 struct page *page)
81819f0f
CL
1336{
1337 if (slab_trylock(page)) {
62e346a8 1338 __remove_partial(n, page);
8a38082d 1339 __SetPageSlubFrozen(page);
81819f0f
CL
1340 return 1;
1341 }
1342 return 0;
1343}
1344
1345/*
672bba3a 1346 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1347 */
1348static struct page *get_partial_node(struct kmem_cache_node *n)
1349{
1350 struct page *page;
1351
1352 /*
1353 * Racy check. If we mistakenly see no partial slabs then we
1354 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1355 * partial slab and there is none available then get_partials()
1356 * will return NULL.
81819f0f
CL
1357 */
1358 if (!n || !n->nr_partial)
1359 return NULL;
1360
1361 spin_lock(&n->list_lock);
1362 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1363 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1364 goto out;
1365 page = NULL;
1366out:
1367 spin_unlock(&n->list_lock);
1368 return page;
1369}
1370
1371/*
672bba3a 1372 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1373 */
1374static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1375{
1376#ifdef CONFIG_NUMA
1377 struct zonelist *zonelist;
dd1a239f 1378 struct zoneref *z;
54a6eb5c
MG
1379 struct zone *zone;
1380 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1381 struct page *page;
1382
1383 /*
672bba3a
CL
1384 * The defrag ratio allows a configuration of the tradeoffs between
1385 * inter node defragmentation and node local allocations. A lower
1386 * defrag_ratio increases the tendency to do local allocations
1387 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1388 *
672bba3a
CL
1389 * If the defrag_ratio is set to 0 then kmalloc() always
1390 * returns node local objects. If the ratio is higher then kmalloc()
1391 * may return off node objects because partial slabs are obtained
1392 * from other nodes and filled up.
81819f0f 1393 *
6446faa2 1394 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1395 * defrag_ratio = 1000) then every (well almost) allocation will
1396 * first attempt to defrag slab caches on other nodes. This means
1397 * scanning over all nodes to look for partial slabs which may be
1398 * expensive if we do it every time we are trying to find a slab
1399 * with available objects.
81819f0f 1400 */
9824601e
CL
1401 if (!s->remote_node_defrag_ratio ||
1402 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1403 return NULL;
1404
c0ff7453 1405 get_mems_allowed();
0e88460d 1406 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1408 struct kmem_cache_node *n;
1409
54a6eb5c 1410 n = get_node(s, zone_to_nid(zone));
81819f0f 1411
54a6eb5c 1412 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1413 n->nr_partial > s->min_partial) {
81819f0f 1414 page = get_partial_node(n);
c0ff7453
MX
1415 if (page) {
1416 put_mems_allowed();
81819f0f 1417 return page;
c0ff7453 1418 }
81819f0f
CL
1419 }
1420 }
c0ff7453 1421 put_mems_allowed();
81819f0f
CL
1422#endif
1423 return NULL;
1424}
1425
1426/*
1427 * Get a partial page, lock it and return it.
1428 */
1429static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1430{
1431 struct page *page;
2154a336 1432 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1433
1434 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1435 if (page || node != -1)
81819f0f
CL
1436 return page;
1437
1438 return get_any_partial(s, flags);
1439}
1440
1441/*
1442 * Move a page back to the lists.
1443 *
1444 * Must be called with the slab lock held.
1445 *
1446 * On exit the slab lock will have been dropped.
1447 */
7c2e132c 1448static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1449{
e95eed57
CL
1450 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1451
8a38082d 1452 __ClearPageSlubFrozen(page);
81819f0f 1453 if (page->inuse) {
e95eed57 1454
a973e9dd 1455 if (page->freelist) {
7c2e132c 1456 add_partial(n, page, tail);
84e554e6 1457 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1458 } else {
84e554e6 1459 stat(s, DEACTIVATE_FULL);
af537b0a 1460 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1461 add_full(n, page);
1462 }
81819f0f
CL
1463 slab_unlock(page);
1464 } else {
84e554e6 1465 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1466 if (n->nr_partial < s->min_partial) {
e95eed57 1467 /*
672bba3a
CL
1468 * Adding an empty slab to the partial slabs in order
1469 * to avoid page allocator overhead. This slab needs
1470 * to come after the other slabs with objects in
6446faa2
CL
1471 * so that the others get filled first. That way the
1472 * size of the partial list stays small.
1473 *
0121c619
CL
1474 * kmem_cache_shrink can reclaim any empty slabs from
1475 * the partial list.
e95eed57 1476 */
7c2e132c 1477 add_partial(n, page, 1);
e95eed57
CL
1478 slab_unlock(page);
1479 } else {
1480 slab_unlock(page);
84e554e6 1481 stat(s, FREE_SLAB);
e95eed57
CL
1482 discard_slab(s, page);
1483 }
81819f0f
CL
1484 }
1485}
1486
1487/*
1488 * Remove the cpu slab
1489 */
dfb4f096 1490static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1491{
dfb4f096 1492 struct page *page = c->page;
7c2e132c 1493 int tail = 1;
8ff12cfc 1494
b773ad73 1495 if (page->freelist)
84e554e6 1496 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1497 /*
6446faa2 1498 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1499 * because both freelists are empty. So this is unlikely
1500 * to occur.
1501 */
a973e9dd 1502 while (unlikely(c->freelist)) {
894b8788
CL
1503 void **object;
1504
7c2e132c
CL
1505 tail = 0; /* Hot objects. Put the slab first */
1506
894b8788 1507 /* Retrieve object from cpu_freelist */
dfb4f096 1508 object = c->freelist;
ff12059e 1509 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1510
1511 /* And put onto the regular freelist */
ff12059e 1512 set_freepointer(s, object, page->freelist);
894b8788
CL
1513 page->freelist = object;
1514 page->inuse--;
1515 }
dfb4f096 1516 c->page = NULL;
7c2e132c 1517 unfreeze_slab(s, page, tail);
81819f0f
CL
1518}
1519
dfb4f096 1520static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1521{
84e554e6 1522 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1523 slab_lock(c->page);
1524 deactivate_slab(s, c);
81819f0f
CL
1525}
1526
1527/*
1528 * Flush cpu slab.
6446faa2 1529 *
81819f0f
CL
1530 * Called from IPI handler with interrupts disabled.
1531 */
0c710013 1532static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1533{
9dfc6e68 1534 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1535
dfb4f096
CL
1536 if (likely(c && c->page))
1537 flush_slab(s, c);
81819f0f
CL
1538}
1539
1540static void flush_cpu_slab(void *d)
1541{
1542 struct kmem_cache *s = d;
81819f0f 1543
dfb4f096 1544 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1545}
1546
1547static void flush_all(struct kmem_cache *s)
1548{
15c8b6c1 1549 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1550}
1551
dfb4f096
CL
1552/*
1553 * Check if the objects in a per cpu structure fit numa
1554 * locality expectations.
1555 */
1556static inline int node_match(struct kmem_cache_cpu *c, int node)
1557{
1558#ifdef CONFIG_NUMA
2154a336 1559 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1560 return 0;
1561#endif
1562 return 1;
1563}
1564
781b2ba6
PE
1565static int count_free(struct page *page)
1566{
1567 return page->objects - page->inuse;
1568}
1569
1570static unsigned long count_partial(struct kmem_cache_node *n,
1571 int (*get_count)(struct page *))
1572{
1573 unsigned long flags;
1574 unsigned long x = 0;
1575 struct page *page;
1576
1577 spin_lock_irqsave(&n->list_lock, flags);
1578 list_for_each_entry(page, &n->partial, lru)
1579 x += get_count(page);
1580 spin_unlock_irqrestore(&n->list_lock, flags);
1581 return x;
1582}
1583
26c02cf0
AB
1584static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1585{
1586#ifdef CONFIG_SLUB_DEBUG
1587 return atomic_long_read(&n->total_objects);
1588#else
1589 return 0;
1590#endif
1591}
1592
781b2ba6
PE
1593static noinline void
1594slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1595{
1596 int node;
1597
1598 printk(KERN_WARNING
1599 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1600 nid, gfpflags);
1601 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1602 "default order: %d, min order: %d\n", s->name, s->objsize,
1603 s->size, oo_order(s->oo), oo_order(s->min));
1604
fa5ec8a1
DR
1605 if (oo_order(s->min) > get_order(s->objsize))
1606 printk(KERN_WARNING " %s debugging increased min order, use "
1607 "slub_debug=O to disable.\n", s->name);
1608
781b2ba6
PE
1609 for_each_online_node(node) {
1610 struct kmem_cache_node *n = get_node(s, node);
1611 unsigned long nr_slabs;
1612 unsigned long nr_objs;
1613 unsigned long nr_free;
1614
1615 if (!n)
1616 continue;
1617
26c02cf0
AB
1618 nr_free = count_partial(n, count_free);
1619 nr_slabs = node_nr_slabs(n);
1620 nr_objs = node_nr_objs(n);
781b2ba6
PE
1621
1622 printk(KERN_WARNING
1623 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1624 node, nr_slabs, nr_objs, nr_free);
1625 }
1626}
1627
81819f0f 1628/*
894b8788
CL
1629 * Slow path. The lockless freelist is empty or we need to perform
1630 * debugging duties.
1631 *
1632 * Interrupts are disabled.
81819f0f 1633 *
894b8788
CL
1634 * Processing is still very fast if new objects have been freed to the
1635 * regular freelist. In that case we simply take over the regular freelist
1636 * as the lockless freelist and zap the regular freelist.
81819f0f 1637 *
894b8788
CL
1638 * If that is not working then we fall back to the partial lists. We take the
1639 * first element of the freelist as the object to allocate now and move the
1640 * rest of the freelist to the lockless freelist.
81819f0f 1641 *
894b8788 1642 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1643 * we need to allocate a new slab. This is the slowest path since it involves
1644 * a call to the page allocator and the setup of a new slab.
81819f0f 1645 */
ce71e27c
EGM
1646static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1647 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1648{
81819f0f 1649 void **object;
dfb4f096 1650 struct page *new;
81819f0f 1651
e72e9c23
LT
1652 /* We handle __GFP_ZERO in the caller */
1653 gfpflags &= ~__GFP_ZERO;
1654
dfb4f096 1655 if (!c->page)
81819f0f
CL
1656 goto new_slab;
1657
dfb4f096
CL
1658 slab_lock(c->page);
1659 if (unlikely(!node_match(c, node)))
81819f0f 1660 goto another_slab;
6446faa2 1661
84e554e6 1662 stat(s, ALLOC_REFILL);
6446faa2 1663
894b8788 1664load_freelist:
dfb4f096 1665 object = c->page->freelist;
a973e9dd 1666 if (unlikely(!object))
81819f0f 1667 goto another_slab;
af537b0a 1668 if (kmem_cache_debug(s))
81819f0f
CL
1669 goto debug;
1670
ff12059e 1671 c->freelist = get_freepointer(s, object);
39b26464 1672 c->page->inuse = c->page->objects;
a973e9dd 1673 c->page->freelist = NULL;
dfb4f096 1674 c->node = page_to_nid(c->page);
1f84260c 1675unlock_out:
dfb4f096 1676 slab_unlock(c->page);
84e554e6 1677 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1678 return object;
1679
1680another_slab:
dfb4f096 1681 deactivate_slab(s, c);
81819f0f
CL
1682
1683new_slab:
dfb4f096
CL
1684 new = get_partial(s, gfpflags, node);
1685 if (new) {
1686 c->page = new;
84e554e6 1687 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1688 goto load_freelist;
81819f0f
CL
1689 }
1690
c1d50836 1691 gfpflags &= gfp_allowed_mask;
b811c202
CL
1692 if (gfpflags & __GFP_WAIT)
1693 local_irq_enable();
1694
dfb4f096 1695 new = new_slab(s, gfpflags, node);
b811c202
CL
1696
1697 if (gfpflags & __GFP_WAIT)
1698 local_irq_disable();
1699
dfb4f096 1700 if (new) {
9dfc6e68 1701 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1702 stat(s, ALLOC_SLAB);
05aa3450 1703 if (c->page)
dfb4f096 1704 flush_slab(s, c);
dfb4f096 1705 slab_lock(new);
8a38082d 1706 __SetPageSlubFrozen(new);
dfb4f096 1707 c->page = new;
4b6f0750 1708 goto load_freelist;
81819f0f 1709 }
95f85989
PE
1710 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1711 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1712 return NULL;
81819f0f 1713debug:
dfb4f096 1714 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1715 goto another_slab;
894b8788 1716
dfb4f096 1717 c->page->inuse++;
ff12059e 1718 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1719 c->node = -1;
1f84260c 1720 goto unlock_out;
894b8788
CL
1721}
1722
1723/*
1724 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1725 * have the fastpath folded into their functions. So no function call
1726 * overhead for requests that can be satisfied on the fastpath.
1727 *
1728 * The fastpath works by first checking if the lockless freelist can be used.
1729 * If not then __slab_alloc is called for slow processing.
1730 *
1731 * Otherwise we can simply pick the next object from the lockless free list.
1732 */
06428780 1733static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1734 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1735{
894b8788 1736 void **object;
dfb4f096 1737 struct kmem_cache_cpu *c;
1f84260c
CL
1738 unsigned long flags;
1739
c016b0bd 1740 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1741 return NULL;
1f84260c 1742
894b8788 1743 local_irq_save(flags);
9dfc6e68
CL
1744 c = __this_cpu_ptr(s->cpu_slab);
1745 object = c->freelist;
9dfc6e68 1746 if (unlikely(!object || !node_match(c, node)))
894b8788 1747
dfb4f096 1748 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1749
1750 else {
ff12059e 1751 c->freelist = get_freepointer(s, object);
84e554e6 1752 stat(s, ALLOC_FASTPATH);
894b8788
CL
1753 }
1754 local_irq_restore(flags);
d07dbea4 1755
74e2134f 1756 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1757 memset(object, 0, s->objsize);
d07dbea4 1758
c016b0bd 1759 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1760
894b8788 1761 return object;
81819f0f
CL
1762}
1763
1764void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1765{
2154a336 1766 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1767
ca2b84cb 1768 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1769
1770 return ret;
81819f0f
CL
1771}
1772EXPORT_SYMBOL(kmem_cache_alloc);
1773
0f24f128 1774#ifdef CONFIG_TRACING
5b882be4
EGM
1775void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1776{
2154a336 1777 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1778}
1779EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1780#endif
1781
81819f0f
CL
1782#ifdef CONFIG_NUMA
1783void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1784{
5b882be4
EGM
1785 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1786
ca2b84cb
EGM
1787 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1788 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1789
1790 return ret;
81819f0f
CL
1791}
1792EXPORT_SYMBOL(kmem_cache_alloc_node);
1793#endif
1794
0f24f128 1795#ifdef CONFIG_TRACING
5b882be4
EGM
1796void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1797 gfp_t gfpflags,
1798 int node)
1799{
1800 return slab_alloc(s, gfpflags, node, _RET_IP_);
1801}
1802EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1803#endif
1804
81819f0f 1805/*
894b8788
CL
1806 * Slow patch handling. This may still be called frequently since objects
1807 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1808 *
894b8788
CL
1809 * So we still attempt to reduce cache line usage. Just take the slab
1810 * lock and free the item. If there is no additional partial page
1811 * handling required then we can return immediately.
81819f0f 1812 */
894b8788 1813static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1814 void *x, unsigned long addr)
81819f0f
CL
1815{
1816 void *prior;
1817 void **object = (void *)x;
81819f0f 1818
84e554e6 1819 stat(s, FREE_SLOWPATH);
81819f0f
CL
1820 slab_lock(page);
1821
af537b0a 1822 if (kmem_cache_debug(s))
81819f0f 1823 goto debug;
6446faa2 1824
81819f0f 1825checks_ok:
ff12059e
CL
1826 prior = page->freelist;
1827 set_freepointer(s, object, prior);
81819f0f
CL
1828 page->freelist = object;
1829 page->inuse--;
1830
8a38082d 1831 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1832 stat(s, FREE_FROZEN);
81819f0f 1833 goto out_unlock;
8ff12cfc 1834 }
81819f0f
CL
1835
1836 if (unlikely(!page->inuse))
1837 goto slab_empty;
1838
1839 /*
6446faa2 1840 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1841 * then add it.
1842 */
a973e9dd 1843 if (unlikely(!prior)) {
7c2e132c 1844 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1845 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1846 }
81819f0f
CL
1847
1848out_unlock:
1849 slab_unlock(page);
81819f0f
CL
1850 return;
1851
1852slab_empty:
a973e9dd 1853 if (prior) {
81819f0f 1854 /*
672bba3a 1855 * Slab still on the partial list.
81819f0f
CL
1856 */
1857 remove_partial(s, page);
84e554e6 1858 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1859 }
81819f0f 1860 slab_unlock(page);
84e554e6 1861 stat(s, FREE_SLAB);
81819f0f 1862 discard_slab(s, page);
81819f0f
CL
1863 return;
1864
1865debug:
3ec09742 1866 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1867 goto out_unlock;
77c5e2d0 1868 goto checks_ok;
81819f0f
CL
1869}
1870
894b8788
CL
1871/*
1872 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1873 * can perform fastpath freeing without additional function calls.
1874 *
1875 * The fastpath is only possible if we are freeing to the current cpu slab
1876 * of this processor. This typically the case if we have just allocated
1877 * the item before.
1878 *
1879 * If fastpath is not possible then fall back to __slab_free where we deal
1880 * with all sorts of special processing.
1881 */
06428780 1882static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1883 struct page *page, void *x, unsigned long addr)
894b8788
CL
1884{
1885 void **object = (void *)x;
dfb4f096 1886 struct kmem_cache_cpu *c;
1f84260c
CL
1887 unsigned long flags;
1888
c016b0bd
CL
1889 slab_free_hook(s, x);
1890
894b8788 1891 local_irq_save(flags);
9dfc6e68 1892 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1893
1894 slab_free_hook_irq(s, x);
1895
ee3c72a1 1896 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1897 set_freepointer(s, object, c->freelist);
dfb4f096 1898 c->freelist = object;
84e554e6 1899 stat(s, FREE_FASTPATH);
894b8788 1900 } else
ff12059e 1901 __slab_free(s, page, x, addr);
894b8788
CL
1902
1903 local_irq_restore(flags);
1904}
1905
81819f0f
CL
1906void kmem_cache_free(struct kmem_cache *s, void *x)
1907{
77c5e2d0 1908 struct page *page;
81819f0f 1909
b49af68f 1910 page = virt_to_head_page(x);
81819f0f 1911
ce71e27c 1912 slab_free(s, page, x, _RET_IP_);
5b882be4 1913
ca2b84cb 1914 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1915}
1916EXPORT_SYMBOL(kmem_cache_free);
1917
e9beef18 1918/* Figure out on which slab page the object resides */
81819f0f
CL
1919static struct page *get_object_page(const void *x)
1920{
b49af68f 1921 struct page *page = virt_to_head_page(x);
81819f0f
CL
1922
1923 if (!PageSlab(page))
1924 return NULL;
1925
1926 return page;
1927}
1928
1929/*
672bba3a
CL
1930 * Object placement in a slab is made very easy because we always start at
1931 * offset 0. If we tune the size of the object to the alignment then we can
1932 * get the required alignment by putting one properly sized object after
1933 * another.
81819f0f
CL
1934 *
1935 * Notice that the allocation order determines the sizes of the per cpu
1936 * caches. Each processor has always one slab available for allocations.
1937 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1938 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1939 * locking overhead.
81819f0f
CL
1940 */
1941
1942/*
1943 * Mininum / Maximum order of slab pages. This influences locking overhead
1944 * and slab fragmentation. A higher order reduces the number of partial slabs
1945 * and increases the number of allocations possible without having to
1946 * take the list_lock.
1947 */
1948static int slub_min_order;
114e9e89 1949static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1950static int slub_min_objects;
81819f0f
CL
1951
1952/*
1953 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1954 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1955 */
1956static int slub_nomerge;
1957
81819f0f
CL
1958/*
1959 * Calculate the order of allocation given an slab object size.
1960 *
672bba3a
CL
1961 * The order of allocation has significant impact on performance and other
1962 * system components. Generally order 0 allocations should be preferred since
1963 * order 0 does not cause fragmentation in the page allocator. Larger objects
1964 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1965 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1966 * would be wasted.
1967 *
1968 * In order to reach satisfactory performance we must ensure that a minimum
1969 * number of objects is in one slab. Otherwise we may generate too much
1970 * activity on the partial lists which requires taking the list_lock. This is
1971 * less a concern for large slabs though which are rarely used.
81819f0f 1972 *
672bba3a
CL
1973 * slub_max_order specifies the order where we begin to stop considering the
1974 * number of objects in a slab as critical. If we reach slub_max_order then
1975 * we try to keep the page order as low as possible. So we accept more waste
1976 * of space in favor of a small page order.
81819f0f 1977 *
672bba3a
CL
1978 * Higher order allocations also allow the placement of more objects in a
1979 * slab and thereby reduce object handling overhead. If the user has
1980 * requested a higher mininum order then we start with that one instead of
1981 * the smallest order which will fit the object.
81819f0f 1982 */
5e6d444e
CL
1983static inline int slab_order(int size, int min_objects,
1984 int max_order, int fract_leftover)
81819f0f
CL
1985{
1986 int order;
1987 int rem;
6300ea75 1988 int min_order = slub_min_order;
81819f0f 1989
210b5c06
CG
1990 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1991 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1992
6300ea75 1993 for (order = max(min_order,
5e6d444e
CL
1994 fls(min_objects * size - 1) - PAGE_SHIFT);
1995 order <= max_order; order++) {
81819f0f 1996
5e6d444e 1997 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1998
5e6d444e 1999 if (slab_size < min_objects * size)
81819f0f
CL
2000 continue;
2001
2002 rem = slab_size % size;
2003
5e6d444e 2004 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2005 break;
2006
2007 }
672bba3a 2008
81819f0f
CL
2009 return order;
2010}
2011
5e6d444e
CL
2012static inline int calculate_order(int size)
2013{
2014 int order;
2015 int min_objects;
2016 int fraction;
e8120ff1 2017 int max_objects;
5e6d444e
CL
2018
2019 /*
2020 * Attempt to find best configuration for a slab. This
2021 * works by first attempting to generate a layout with
2022 * the best configuration and backing off gradually.
2023 *
2024 * First we reduce the acceptable waste in a slab. Then
2025 * we reduce the minimum objects required in a slab.
2026 */
2027 min_objects = slub_min_objects;
9b2cd506
CL
2028 if (!min_objects)
2029 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2030 max_objects = (PAGE_SIZE << slub_max_order)/size;
2031 min_objects = min(min_objects, max_objects);
2032
5e6d444e 2033 while (min_objects > 1) {
c124f5b5 2034 fraction = 16;
5e6d444e
CL
2035 while (fraction >= 4) {
2036 order = slab_order(size, min_objects,
2037 slub_max_order, fraction);
2038 if (order <= slub_max_order)
2039 return order;
2040 fraction /= 2;
2041 }
5086c389 2042 min_objects--;
5e6d444e
CL
2043 }
2044
2045 /*
2046 * We were unable to place multiple objects in a slab. Now
2047 * lets see if we can place a single object there.
2048 */
2049 order = slab_order(size, 1, slub_max_order, 1);
2050 if (order <= slub_max_order)
2051 return order;
2052
2053 /*
2054 * Doh this slab cannot be placed using slub_max_order.
2055 */
2056 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2057 if (order < MAX_ORDER)
5e6d444e
CL
2058 return order;
2059 return -ENOSYS;
2060}
2061
81819f0f 2062/*
672bba3a 2063 * Figure out what the alignment of the objects will be.
81819f0f
CL
2064 */
2065static unsigned long calculate_alignment(unsigned long flags,
2066 unsigned long align, unsigned long size)
2067{
2068 /*
6446faa2
CL
2069 * If the user wants hardware cache aligned objects then follow that
2070 * suggestion if the object is sufficiently large.
81819f0f 2071 *
6446faa2
CL
2072 * The hardware cache alignment cannot override the specified
2073 * alignment though. If that is greater then use it.
81819f0f 2074 */
b6210386
NP
2075 if (flags & SLAB_HWCACHE_ALIGN) {
2076 unsigned long ralign = cache_line_size();
2077 while (size <= ralign / 2)
2078 ralign /= 2;
2079 align = max(align, ralign);
2080 }
81819f0f
CL
2081
2082 if (align < ARCH_SLAB_MINALIGN)
b6210386 2083 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2084
2085 return ALIGN(align, sizeof(void *));
2086}
2087
5595cffc
PE
2088static void
2089init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2090{
2091 n->nr_partial = 0;
81819f0f
CL
2092 spin_lock_init(&n->list_lock);
2093 INIT_LIST_HEAD(&n->partial);
8ab1372f 2094#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2095 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2096 atomic_long_set(&n->total_objects, 0);
643b1138 2097 INIT_LIST_HEAD(&n->full);
8ab1372f 2098#endif
81819f0f
CL
2099}
2100
55136592 2101static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2102{
6c182dc0
CL
2103 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2104 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2105
6c182dc0 2106 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2107
6c182dc0 2108 return s->cpu_slab != NULL;
4c93c355 2109}
4c93c355 2110
51df1142
CL
2111static struct kmem_cache *kmem_cache_node;
2112
81819f0f
CL
2113/*
2114 * No kmalloc_node yet so do it by hand. We know that this is the first
2115 * slab on the node for this slabcache. There are no concurrent accesses
2116 * possible.
2117 *
2118 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2119 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2120 * memory on a fresh node that has no slab structures yet.
81819f0f 2121 */
55136592 2122static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2123{
2124 struct page *page;
2125 struct kmem_cache_node *n;
ba84c73c 2126 unsigned long flags;
81819f0f 2127
51df1142 2128 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2129
51df1142 2130 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2131
2132 BUG_ON(!page);
a2f92ee7
CL
2133 if (page_to_nid(page) != node) {
2134 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2135 "node %d\n", node);
2136 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2137 "in order to be able to continue\n");
2138 }
2139
81819f0f
CL
2140 n = page->freelist;
2141 BUG_ON(!n);
51df1142 2142 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2143 page->inuse++;
51df1142 2144 kmem_cache_node->node[node] = n;
8ab1372f 2145#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2146 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2147 init_tracking(kmem_cache_node, n);
8ab1372f 2148#endif
51df1142
CL
2149 init_kmem_cache_node(n, kmem_cache_node);
2150 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2151
ba84c73c 2152 /*
2153 * lockdep requires consistent irq usage for each lock
2154 * so even though there cannot be a race this early in
2155 * the boot sequence, we still disable irqs.
2156 */
2157 local_irq_save(flags);
7c2e132c 2158 add_partial(n, page, 0);
ba84c73c 2159 local_irq_restore(flags);
81819f0f
CL
2160}
2161
2162static void free_kmem_cache_nodes(struct kmem_cache *s)
2163{
2164 int node;
2165
f64dc58c 2166 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2167 struct kmem_cache_node *n = s->node[node];
51df1142 2168
73367bd8 2169 if (n)
51df1142
CL
2170 kmem_cache_free(kmem_cache_node, n);
2171
81819f0f
CL
2172 s->node[node] = NULL;
2173 }
2174}
2175
55136592 2176static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2177{
2178 int node;
81819f0f 2179
f64dc58c 2180 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2181 struct kmem_cache_node *n;
2182
73367bd8 2183 if (slab_state == DOWN) {
55136592 2184 early_kmem_cache_node_alloc(node);
73367bd8
AD
2185 continue;
2186 }
51df1142 2187 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2188 GFP_KERNEL, node);
81819f0f 2189
73367bd8
AD
2190 if (!n) {
2191 free_kmem_cache_nodes(s);
2192 return 0;
81819f0f 2193 }
73367bd8 2194
81819f0f 2195 s->node[node] = n;
5595cffc 2196 init_kmem_cache_node(n, s);
81819f0f
CL
2197 }
2198 return 1;
2199}
81819f0f 2200
c0bdb232 2201static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2202{
2203 if (min < MIN_PARTIAL)
2204 min = MIN_PARTIAL;
2205 else if (min > MAX_PARTIAL)
2206 min = MAX_PARTIAL;
2207 s->min_partial = min;
2208}
2209
81819f0f
CL
2210/*
2211 * calculate_sizes() determines the order and the distribution of data within
2212 * a slab object.
2213 */
06b285dc 2214static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2215{
2216 unsigned long flags = s->flags;
2217 unsigned long size = s->objsize;
2218 unsigned long align = s->align;
834f3d11 2219 int order;
81819f0f 2220
d8b42bf5
CL
2221 /*
2222 * Round up object size to the next word boundary. We can only
2223 * place the free pointer at word boundaries and this determines
2224 * the possible location of the free pointer.
2225 */
2226 size = ALIGN(size, sizeof(void *));
2227
2228#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2229 /*
2230 * Determine if we can poison the object itself. If the user of
2231 * the slab may touch the object after free or before allocation
2232 * then we should never poison the object itself.
2233 */
2234 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2235 !s->ctor)
81819f0f
CL
2236 s->flags |= __OBJECT_POISON;
2237 else
2238 s->flags &= ~__OBJECT_POISON;
2239
81819f0f
CL
2240
2241 /*
672bba3a 2242 * If we are Redzoning then check if there is some space between the
81819f0f 2243 * end of the object and the free pointer. If not then add an
672bba3a 2244 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2245 */
2246 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2247 size += sizeof(void *);
41ecc55b 2248#endif
81819f0f
CL
2249
2250 /*
672bba3a
CL
2251 * With that we have determined the number of bytes in actual use
2252 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2253 */
2254 s->inuse = size;
2255
2256 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2257 s->ctor)) {
81819f0f
CL
2258 /*
2259 * Relocate free pointer after the object if it is not
2260 * permitted to overwrite the first word of the object on
2261 * kmem_cache_free.
2262 *
2263 * This is the case if we do RCU, have a constructor or
2264 * destructor or are poisoning the objects.
2265 */
2266 s->offset = size;
2267 size += sizeof(void *);
2268 }
2269
c12b3c62 2270#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2271 if (flags & SLAB_STORE_USER)
2272 /*
2273 * Need to store information about allocs and frees after
2274 * the object.
2275 */
2276 size += 2 * sizeof(struct track);
2277
be7b3fbc 2278 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2279 /*
2280 * Add some empty padding so that we can catch
2281 * overwrites from earlier objects rather than let
2282 * tracking information or the free pointer be
0211a9c8 2283 * corrupted if a user writes before the start
81819f0f
CL
2284 * of the object.
2285 */
2286 size += sizeof(void *);
41ecc55b 2287#endif
672bba3a 2288
81819f0f
CL
2289 /*
2290 * Determine the alignment based on various parameters that the
65c02d4c
CL
2291 * user specified and the dynamic determination of cache line size
2292 * on bootup.
81819f0f
CL
2293 */
2294 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2295 s->align = align;
81819f0f
CL
2296
2297 /*
2298 * SLUB stores one object immediately after another beginning from
2299 * offset 0. In order to align the objects we have to simply size
2300 * each object to conform to the alignment.
2301 */
2302 size = ALIGN(size, align);
2303 s->size = size;
06b285dc
CL
2304 if (forced_order >= 0)
2305 order = forced_order;
2306 else
2307 order = calculate_order(size);
81819f0f 2308
834f3d11 2309 if (order < 0)
81819f0f
CL
2310 return 0;
2311
b7a49f0d 2312 s->allocflags = 0;
834f3d11 2313 if (order)
b7a49f0d
CL
2314 s->allocflags |= __GFP_COMP;
2315
2316 if (s->flags & SLAB_CACHE_DMA)
2317 s->allocflags |= SLUB_DMA;
2318
2319 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2320 s->allocflags |= __GFP_RECLAIMABLE;
2321
81819f0f
CL
2322 /*
2323 * Determine the number of objects per slab
2324 */
834f3d11 2325 s->oo = oo_make(order, size);
65c3376a 2326 s->min = oo_make(get_order(size), size);
205ab99d
CL
2327 if (oo_objects(s->oo) > oo_objects(s->max))
2328 s->max = s->oo;
81819f0f 2329
834f3d11 2330 return !!oo_objects(s->oo);
81819f0f
CL
2331
2332}
2333
55136592 2334static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2335 const char *name, size_t size,
2336 size_t align, unsigned long flags,
51cc5068 2337 void (*ctor)(void *))
81819f0f
CL
2338{
2339 memset(s, 0, kmem_size);
2340 s->name = name;
2341 s->ctor = ctor;
81819f0f 2342 s->objsize = size;
81819f0f 2343 s->align = align;
ba0268a8 2344 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2345
06b285dc 2346 if (!calculate_sizes(s, -1))
81819f0f 2347 goto error;
3de47213
DR
2348 if (disable_higher_order_debug) {
2349 /*
2350 * Disable debugging flags that store metadata if the min slab
2351 * order increased.
2352 */
2353 if (get_order(s->size) > get_order(s->objsize)) {
2354 s->flags &= ~DEBUG_METADATA_FLAGS;
2355 s->offset = 0;
2356 if (!calculate_sizes(s, -1))
2357 goto error;
2358 }
2359 }
81819f0f 2360
3b89d7d8
DR
2361 /*
2362 * The larger the object size is, the more pages we want on the partial
2363 * list to avoid pounding the page allocator excessively.
2364 */
c0bdb232 2365 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2366 s->refcount = 1;
2367#ifdef CONFIG_NUMA
e2cb96b7 2368 s->remote_node_defrag_ratio = 1000;
81819f0f 2369#endif
55136592 2370 if (!init_kmem_cache_nodes(s))
dfb4f096 2371 goto error;
81819f0f 2372
55136592 2373 if (alloc_kmem_cache_cpus(s))
81819f0f 2374 return 1;
ff12059e 2375
4c93c355 2376 free_kmem_cache_nodes(s);
81819f0f
CL
2377error:
2378 if (flags & SLAB_PANIC)
2379 panic("Cannot create slab %s size=%lu realsize=%u "
2380 "order=%u offset=%u flags=%lx\n",
834f3d11 2381 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2382 s->offset, flags);
2383 return 0;
2384}
81819f0f
CL
2385
2386/*
2387 * Check if a given pointer is valid
2388 */
2389int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2390{
06428780 2391 struct page *page;
81819f0f 2392
d3e06e2b
PE
2393 if (!kern_ptr_validate(object, s->size))
2394 return 0;
2395
81819f0f
CL
2396 page = get_object_page(object);
2397
2398 if (!page || s != page->slab)
2399 /* No slab or wrong slab */
2400 return 0;
2401
abcd08a6 2402 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2403 return 0;
2404
2405 /*
2406 * We could also check if the object is on the slabs freelist.
2407 * But this would be too expensive and it seems that the main
6446faa2 2408 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2409 * to a certain slab.
2410 */
2411 return 1;
2412}
2413EXPORT_SYMBOL(kmem_ptr_validate);
2414
2415/*
2416 * Determine the size of a slab object
2417 */
2418unsigned int kmem_cache_size(struct kmem_cache *s)
2419{
2420 return s->objsize;
2421}
2422EXPORT_SYMBOL(kmem_cache_size);
2423
2424const char *kmem_cache_name(struct kmem_cache *s)
2425{
2426 return s->name;
2427}
2428EXPORT_SYMBOL(kmem_cache_name);
2429
33b12c38
CL
2430static void list_slab_objects(struct kmem_cache *s, struct page *page,
2431 const char *text)
2432{
2433#ifdef CONFIG_SLUB_DEBUG
2434 void *addr = page_address(page);
2435 void *p;
a5dd5c11
NK
2436 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2437 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2438 if (!map)
2439 return;
33b12c38
CL
2440 slab_err(s, page, "%s", text);
2441 slab_lock(page);
2442 for_each_free_object(p, s, page->freelist)
2443 set_bit(slab_index(p, s, addr), map);
2444
2445 for_each_object(p, s, addr, page->objects) {
2446
2447 if (!test_bit(slab_index(p, s, addr), map)) {
2448 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2449 p, p - addr);
2450 print_tracking(s, p);
2451 }
2452 }
2453 slab_unlock(page);
bbd7d57b 2454 kfree(map);
33b12c38
CL
2455#endif
2456}
2457
81819f0f 2458/*
599870b1 2459 * Attempt to free all partial slabs on a node.
81819f0f 2460 */
599870b1 2461static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2462{
81819f0f
CL
2463 unsigned long flags;
2464 struct page *page, *h;
2465
2466 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2467 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2468 if (!page->inuse) {
62e346a8 2469 __remove_partial(n, page);
81819f0f 2470 discard_slab(s, page);
33b12c38
CL
2471 } else {
2472 list_slab_objects(s, page,
2473 "Objects remaining on kmem_cache_close()");
599870b1 2474 }
33b12c38 2475 }
81819f0f 2476 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2477}
2478
2479/*
672bba3a 2480 * Release all resources used by a slab cache.
81819f0f 2481 */
0c710013 2482static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2483{
2484 int node;
2485
2486 flush_all(s);
9dfc6e68 2487 free_percpu(s->cpu_slab);
81819f0f 2488 /* Attempt to free all objects */
f64dc58c 2489 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2490 struct kmem_cache_node *n = get_node(s, node);
2491
599870b1
CL
2492 free_partial(s, n);
2493 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2494 return 1;
2495 }
2496 free_kmem_cache_nodes(s);
2497 return 0;
2498}
2499
2500/*
2501 * Close a cache and release the kmem_cache structure
2502 * (must be used for caches created using kmem_cache_create)
2503 */
2504void kmem_cache_destroy(struct kmem_cache *s)
2505{
2506 down_write(&slub_lock);
2507 s->refcount--;
2508 if (!s->refcount) {
2509 list_del(&s->list);
d629d819
PE
2510 if (kmem_cache_close(s)) {
2511 printk(KERN_ERR "SLUB %s: %s called for cache that "
2512 "still has objects.\n", s->name, __func__);
2513 dump_stack();
2514 }
d76b1590
ED
2515 if (s->flags & SLAB_DESTROY_BY_RCU)
2516 rcu_barrier();
81819f0f 2517 sysfs_slab_remove(s);
2bce6485
CL
2518 }
2519 up_write(&slub_lock);
81819f0f
CL
2520}
2521EXPORT_SYMBOL(kmem_cache_destroy);
2522
2523/********************************************************************
2524 * Kmalloc subsystem
2525 *******************************************************************/
2526
51df1142 2527struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2528EXPORT_SYMBOL(kmalloc_caches);
2529
51df1142
CL
2530static struct kmem_cache *kmem_cache;
2531
55136592 2532#ifdef CONFIG_ZONE_DMA
51df1142 2533static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2534#endif
2535
81819f0f
CL
2536static int __init setup_slub_min_order(char *str)
2537{
06428780 2538 get_option(&str, &slub_min_order);
81819f0f
CL
2539
2540 return 1;
2541}
2542
2543__setup("slub_min_order=", setup_slub_min_order);
2544
2545static int __init setup_slub_max_order(char *str)
2546{
06428780 2547 get_option(&str, &slub_max_order);
818cf590 2548 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2549
2550 return 1;
2551}
2552
2553__setup("slub_max_order=", setup_slub_max_order);
2554
2555static int __init setup_slub_min_objects(char *str)
2556{
06428780 2557 get_option(&str, &slub_min_objects);
81819f0f
CL
2558
2559 return 1;
2560}
2561
2562__setup("slub_min_objects=", setup_slub_min_objects);
2563
2564static int __init setup_slub_nomerge(char *str)
2565{
2566 slub_nomerge = 1;
2567 return 1;
2568}
2569
2570__setup("slub_nomerge", setup_slub_nomerge);
2571
51df1142
CL
2572static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2573 int size, unsigned int flags)
81819f0f 2574{
51df1142
CL
2575 struct kmem_cache *s;
2576
2577 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2578
83b519e8
PE
2579 /*
2580 * This function is called with IRQs disabled during early-boot on
2581 * single CPU so there's no need to take slub_lock here.
2582 */
55136592 2583 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2584 flags, NULL))
81819f0f
CL
2585 goto panic;
2586
2587 list_add(&s->list, &slab_caches);
51df1142 2588 return s;
81819f0f
CL
2589
2590panic:
2591 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2592 return NULL;
81819f0f
CL
2593}
2594
f1b26339
CL
2595/*
2596 * Conversion table for small slabs sizes / 8 to the index in the
2597 * kmalloc array. This is necessary for slabs < 192 since we have non power
2598 * of two cache sizes there. The size of larger slabs can be determined using
2599 * fls.
2600 */
2601static s8 size_index[24] = {
2602 3, /* 8 */
2603 4, /* 16 */
2604 5, /* 24 */
2605 5, /* 32 */
2606 6, /* 40 */
2607 6, /* 48 */
2608 6, /* 56 */
2609 6, /* 64 */
2610 1, /* 72 */
2611 1, /* 80 */
2612 1, /* 88 */
2613 1, /* 96 */
2614 7, /* 104 */
2615 7, /* 112 */
2616 7, /* 120 */
2617 7, /* 128 */
2618 2, /* 136 */
2619 2, /* 144 */
2620 2, /* 152 */
2621 2, /* 160 */
2622 2, /* 168 */
2623 2, /* 176 */
2624 2, /* 184 */
2625 2 /* 192 */
2626};
2627
acdfcd04
AK
2628static inline int size_index_elem(size_t bytes)
2629{
2630 return (bytes - 1) / 8;
2631}
2632
81819f0f
CL
2633static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2634{
f1b26339 2635 int index;
81819f0f 2636
f1b26339
CL
2637 if (size <= 192) {
2638 if (!size)
2639 return ZERO_SIZE_PTR;
81819f0f 2640
acdfcd04 2641 index = size_index[size_index_elem(size)];
aadb4bc4 2642 } else
f1b26339 2643 index = fls(size - 1);
81819f0f
CL
2644
2645#ifdef CONFIG_ZONE_DMA
f1b26339 2646 if (unlikely((flags & SLUB_DMA)))
51df1142 2647 return kmalloc_dma_caches[index];
f1b26339 2648
81819f0f 2649#endif
51df1142 2650 return kmalloc_caches[index];
81819f0f
CL
2651}
2652
2653void *__kmalloc(size_t size, gfp_t flags)
2654{
aadb4bc4 2655 struct kmem_cache *s;
5b882be4 2656 void *ret;
81819f0f 2657
ffadd4d0 2658 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2659 return kmalloc_large(size, flags);
aadb4bc4
CL
2660
2661 s = get_slab(size, flags);
2662
2663 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2664 return s;
2665
2154a336 2666 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2667
ca2b84cb 2668 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2669
2670 return ret;
81819f0f
CL
2671}
2672EXPORT_SYMBOL(__kmalloc);
2673
f619cfe1
CL
2674static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2675{
b1eeab67 2676 struct page *page;
e4f7c0b4 2677 void *ptr = NULL;
f619cfe1 2678
b1eeab67
VN
2679 flags |= __GFP_COMP | __GFP_NOTRACK;
2680 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2681 if (page)
e4f7c0b4
CM
2682 ptr = page_address(page);
2683
2684 kmemleak_alloc(ptr, size, 1, flags);
2685 return ptr;
f619cfe1
CL
2686}
2687
81819f0f
CL
2688#ifdef CONFIG_NUMA
2689void *__kmalloc_node(size_t size, gfp_t flags, int node)
2690{
aadb4bc4 2691 struct kmem_cache *s;
5b882be4 2692 void *ret;
81819f0f 2693
057685cf 2694 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2695 ret = kmalloc_large_node(size, flags, node);
2696
ca2b84cb
EGM
2697 trace_kmalloc_node(_RET_IP_, ret,
2698 size, PAGE_SIZE << get_order(size),
2699 flags, node);
5b882be4
EGM
2700
2701 return ret;
2702 }
aadb4bc4
CL
2703
2704 s = get_slab(size, flags);
2705
2706 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2707 return s;
2708
5b882be4
EGM
2709 ret = slab_alloc(s, flags, node, _RET_IP_);
2710
ca2b84cb 2711 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2712
2713 return ret;
81819f0f
CL
2714}
2715EXPORT_SYMBOL(__kmalloc_node);
2716#endif
2717
2718size_t ksize(const void *object)
2719{
272c1d21 2720 struct page *page;
81819f0f
CL
2721 struct kmem_cache *s;
2722
ef8b4520 2723 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2724 return 0;
2725
294a80a8 2726 page = virt_to_head_page(object);
294a80a8 2727
76994412
PE
2728 if (unlikely(!PageSlab(page))) {
2729 WARN_ON(!PageCompound(page));
294a80a8 2730 return PAGE_SIZE << compound_order(page);
76994412 2731 }
81819f0f 2732 s = page->slab;
81819f0f 2733
ae20bfda 2734#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2735 /*
2736 * Debugging requires use of the padding between object
2737 * and whatever may come after it.
2738 */
2739 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2740 return s->objsize;
2741
ae20bfda 2742#endif
81819f0f
CL
2743 /*
2744 * If we have the need to store the freelist pointer
2745 * back there or track user information then we can
2746 * only use the space before that information.
2747 */
2748 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2749 return s->inuse;
81819f0f
CL
2750 /*
2751 * Else we can use all the padding etc for the allocation
2752 */
2753 return s->size;
2754}
b1aabecd 2755EXPORT_SYMBOL(ksize);
81819f0f
CL
2756
2757void kfree(const void *x)
2758{
81819f0f 2759 struct page *page;
5bb983b0 2760 void *object = (void *)x;
81819f0f 2761
2121db74
PE
2762 trace_kfree(_RET_IP_, x);
2763
2408c550 2764 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2765 return;
2766
b49af68f 2767 page = virt_to_head_page(x);
aadb4bc4 2768 if (unlikely(!PageSlab(page))) {
0937502a 2769 BUG_ON(!PageCompound(page));
e4f7c0b4 2770 kmemleak_free(x);
aadb4bc4
CL
2771 put_page(page);
2772 return;
2773 }
ce71e27c 2774 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2775}
2776EXPORT_SYMBOL(kfree);
2777
2086d26a 2778/*
672bba3a
CL
2779 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2780 * the remaining slabs by the number of items in use. The slabs with the
2781 * most items in use come first. New allocations will then fill those up
2782 * and thus they can be removed from the partial lists.
2783 *
2784 * The slabs with the least items are placed last. This results in them
2785 * being allocated from last increasing the chance that the last objects
2786 * are freed in them.
2086d26a
CL
2787 */
2788int kmem_cache_shrink(struct kmem_cache *s)
2789{
2790 int node;
2791 int i;
2792 struct kmem_cache_node *n;
2793 struct page *page;
2794 struct page *t;
205ab99d 2795 int objects = oo_objects(s->max);
2086d26a 2796 struct list_head *slabs_by_inuse =
834f3d11 2797 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2798 unsigned long flags;
2799
2800 if (!slabs_by_inuse)
2801 return -ENOMEM;
2802
2803 flush_all(s);
f64dc58c 2804 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2805 n = get_node(s, node);
2806
2807 if (!n->nr_partial)
2808 continue;
2809
834f3d11 2810 for (i = 0; i < objects; i++)
2086d26a
CL
2811 INIT_LIST_HEAD(slabs_by_inuse + i);
2812
2813 spin_lock_irqsave(&n->list_lock, flags);
2814
2815 /*
672bba3a 2816 * Build lists indexed by the items in use in each slab.
2086d26a 2817 *
672bba3a
CL
2818 * Note that concurrent frees may occur while we hold the
2819 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2820 */
2821 list_for_each_entry_safe(page, t, &n->partial, lru) {
2822 if (!page->inuse && slab_trylock(page)) {
2823 /*
2824 * Must hold slab lock here because slab_free
2825 * may have freed the last object and be
2826 * waiting to release the slab.
2827 */
62e346a8 2828 __remove_partial(n, page);
2086d26a
CL
2829 slab_unlock(page);
2830 discard_slab(s, page);
2831 } else {
fcda3d89
CL
2832 list_move(&page->lru,
2833 slabs_by_inuse + page->inuse);
2086d26a
CL
2834 }
2835 }
2836
2086d26a 2837 /*
672bba3a
CL
2838 * Rebuild the partial list with the slabs filled up most
2839 * first and the least used slabs at the end.
2086d26a 2840 */
834f3d11 2841 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2842 list_splice(slabs_by_inuse + i, n->partial.prev);
2843
2086d26a
CL
2844 spin_unlock_irqrestore(&n->list_lock, flags);
2845 }
2846
2847 kfree(slabs_by_inuse);
2848 return 0;
2849}
2850EXPORT_SYMBOL(kmem_cache_shrink);
2851
b9049e23
YG
2852#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2853static int slab_mem_going_offline_callback(void *arg)
2854{
2855 struct kmem_cache *s;
2856
2857 down_read(&slub_lock);
2858 list_for_each_entry(s, &slab_caches, list)
2859 kmem_cache_shrink(s);
2860 up_read(&slub_lock);
2861
2862 return 0;
2863}
2864
2865static void slab_mem_offline_callback(void *arg)
2866{
2867 struct kmem_cache_node *n;
2868 struct kmem_cache *s;
2869 struct memory_notify *marg = arg;
2870 int offline_node;
2871
2872 offline_node = marg->status_change_nid;
2873
2874 /*
2875 * If the node still has available memory. we need kmem_cache_node
2876 * for it yet.
2877 */
2878 if (offline_node < 0)
2879 return;
2880
2881 down_read(&slub_lock);
2882 list_for_each_entry(s, &slab_caches, list) {
2883 n = get_node(s, offline_node);
2884 if (n) {
2885 /*
2886 * if n->nr_slabs > 0, slabs still exist on the node
2887 * that is going down. We were unable to free them,
c9404c9c 2888 * and offline_pages() function shouldn't call this
b9049e23
YG
2889 * callback. So, we must fail.
2890 */
0f389ec6 2891 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2892
2893 s->node[offline_node] = NULL;
8de66a0c 2894 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
2895 }
2896 }
2897 up_read(&slub_lock);
2898}
2899
2900static int slab_mem_going_online_callback(void *arg)
2901{
2902 struct kmem_cache_node *n;
2903 struct kmem_cache *s;
2904 struct memory_notify *marg = arg;
2905 int nid = marg->status_change_nid;
2906 int ret = 0;
2907
2908 /*
2909 * If the node's memory is already available, then kmem_cache_node is
2910 * already created. Nothing to do.
2911 */
2912 if (nid < 0)
2913 return 0;
2914
2915 /*
0121c619 2916 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2917 * allocate a kmem_cache_node structure in order to bring the node
2918 * online.
2919 */
2920 down_read(&slub_lock);
2921 list_for_each_entry(s, &slab_caches, list) {
2922 /*
2923 * XXX: kmem_cache_alloc_node will fallback to other nodes
2924 * since memory is not yet available from the node that
2925 * is brought up.
2926 */
8de66a0c 2927 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
2928 if (!n) {
2929 ret = -ENOMEM;
2930 goto out;
2931 }
5595cffc 2932 init_kmem_cache_node(n, s);
b9049e23
YG
2933 s->node[nid] = n;
2934 }
2935out:
2936 up_read(&slub_lock);
2937 return ret;
2938}
2939
2940static int slab_memory_callback(struct notifier_block *self,
2941 unsigned long action, void *arg)
2942{
2943 int ret = 0;
2944
2945 switch (action) {
2946 case MEM_GOING_ONLINE:
2947 ret = slab_mem_going_online_callback(arg);
2948 break;
2949 case MEM_GOING_OFFLINE:
2950 ret = slab_mem_going_offline_callback(arg);
2951 break;
2952 case MEM_OFFLINE:
2953 case MEM_CANCEL_ONLINE:
2954 slab_mem_offline_callback(arg);
2955 break;
2956 case MEM_ONLINE:
2957 case MEM_CANCEL_OFFLINE:
2958 break;
2959 }
dc19f9db
KH
2960 if (ret)
2961 ret = notifier_from_errno(ret);
2962 else
2963 ret = NOTIFY_OK;
b9049e23
YG
2964 return ret;
2965}
2966
2967#endif /* CONFIG_MEMORY_HOTPLUG */
2968
81819f0f
CL
2969/********************************************************************
2970 * Basic setup of slabs
2971 *******************************************************************/
2972
51df1142
CL
2973/*
2974 * Used for early kmem_cache structures that were allocated using
2975 * the page allocator
2976 */
2977
2978static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2979{
2980 int node;
2981
2982 list_add(&s->list, &slab_caches);
2983 s->refcount = -1;
2984
2985 for_each_node_state(node, N_NORMAL_MEMORY) {
2986 struct kmem_cache_node *n = get_node(s, node);
2987 struct page *p;
2988
2989 if (n) {
2990 list_for_each_entry(p, &n->partial, lru)
2991 p->slab = s;
2992
2993#ifdef CONFIG_SLAB_DEBUG
2994 list_for_each_entry(p, &n->full, lru)
2995 p->slab = s;
2996#endif
2997 }
2998 }
2999}
3000
81819f0f
CL
3001void __init kmem_cache_init(void)
3002{
3003 int i;
4b356be0 3004 int caches = 0;
51df1142
CL
3005 struct kmem_cache *temp_kmem_cache;
3006 int order;
51df1142
CL
3007 struct kmem_cache *temp_kmem_cache_node;
3008 unsigned long kmalloc_size;
3009
3010 kmem_size = offsetof(struct kmem_cache, node) +
3011 nr_node_ids * sizeof(struct kmem_cache_node *);
3012
3013 /* Allocate two kmem_caches from the page allocator */
3014 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3015 order = get_order(2 * kmalloc_size);
3016 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3017
81819f0f
CL
3018 /*
3019 * Must first have the slab cache available for the allocations of the
672bba3a 3020 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3021 * kmem_cache_open for slab_state == DOWN.
3022 */
51df1142
CL
3023 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3024
3025 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3026 sizeof(struct kmem_cache_node),
3027 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3028
0c40ba4f 3029 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3030
3031 /* Able to allocate the per node structures */
3032 slab_state = PARTIAL;
3033
51df1142
CL
3034 temp_kmem_cache = kmem_cache;
3035 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3036 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3037 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3038 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3039
51df1142
CL
3040 /*
3041 * Allocate kmem_cache_node properly from the kmem_cache slab.
3042 * kmem_cache_node is separately allocated so no need to
3043 * update any list pointers.
3044 */
3045 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3046
51df1142
CL
3047 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3048 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3049
3050 kmem_cache_bootstrap_fixup(kmem_cache_node);
3051
3052 caches++;
51df1142
CL
3053 kmem_cache_bootstrap_fixup(kmem_cache);
3054 caches++;
3055 /* Free temporary boot structure */
3056 free_pages((unsigned long)temp_kmem_cache, order);
3057
3058 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3059
3060 /*
3061 * Patch up the size_index table if we have strange large alignment
3062 * requirements for the kmalloc array. This is only the case for
6446faa2 3063 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3064 *
3065 * Largest permitted alignment is 256 bytes due to the way we
3066 * handle the index determination for the smaller caches.
3067 *
3068 * Make sure that nothing crazy happens if someone starts tinkering
3069 * around with ARCH_KMALLOC_MINALIGN
3070 */
3071 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3072 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3073
acdfcd04
AK
3074 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3075 int elem = size_index_elem(i);
3076 if (elem >= ARRAY_SIZE(size_index))
3077 break;
3078 size_index[elem] = KMALLOC_SHIFT_LOW;
3079 }
f1b26339 3080
acdfcd04
AK
3081 if (KMALLOC_MIN_SIZE == 64) {
3082 /*
3083 * The 96 byte size cache is not used if the alignment
3084 * is 64 byte.
3085 */
3086 for (i = 64 + 8; i <= 96; i += 8)
3087 size_index[size_index_elem(i)] = 7;
3088 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3089 /*
3090 * The 192 byte sized cache is not used if the alignment
3091 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3092 * instead.
3093 */
3094 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3095 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3096 }
3097
51df1142
CL
3098 /* Caches that are not of the two-to-the-power-of size */
3099 if (KMALLOC_MIN_SIZE <= 32) {
3100 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3101 caches++;
3102 }
3103
3104 if (KMALLOC_MIN_SIZE <= 64) {
3105 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3106 caches++;
3107 }
3108
3109 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3110 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3111 caches++;
3112 }
3113
81819f0f
CL
3114 slab_state = UP;
3115
3116 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3117 if (KMALLOC_MIN_SIZE <= 32) {
3118 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3119 BUG_ON(!kmalloc_caches[1]->name);
3120 }
3121
3122 if (KMALLOC_MIN_SIZE <= 64) {
3123 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3124 BUG_ON(!kmalloc_caches[2]->name);
3125 }
3126
d7278bd7
CL
3127 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3128 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3129
3130 BUG_ON(!s);
51df1142 3131 kmalloc_caches[i]->name = s;
d7278bd7 3132 }
81819f0f
CL
3133
3134#ifdef CONFIG_SMP
3135 register_cpu_notifier(&slab_notifier);
9dfc6e68 3136#endif
81819f0f 3137
55136592 3138#ifdef CONFIG_ZONE_DMA
51df1142
CL
3139 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3140 struct kmem_cache *s = kmalloc_caches[i];
55136592 3141
51df1142 3142 if (s && s->size) {
55136592
CL
3143 char *name = kasprintf(GFP_NOWAIT,
3144 "dma-kmalloc-%d", s->objsize);
3145
3146 BUG_ON(!name);
51df1142
CL
3147 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3148 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3149 }
3150 }
3151#endif
3adbefee
IM
3152 printk(KERN_INFO
3153 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3154 " CPUs=%d, Nodes=%d\n",
3155 caches, cache_line_size(),
81819f0f
CL
3156 slub_min_order, slub_max_order, slub_min_objects,
3157 nr_cpu_ids, nr_node_ids);
3158}
3159
7e85ee0c
PE
3160void __init kmem_cache_init_late(void)
3161{
7e85ee0c
PE
3162}
3163
81819f0f
CL
3164/*
3165 * Find a mergeable slab cache
3166 */
3167static int slab_unmergeable(struct kmem_cache *s)
3168{
3169 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3170 return 1;
3171
c59def9f 3172 if (s->ctor)
81819f0f
CL
3173 return 1;
3174
8ffa6875
CL
3175 /*
3176 * We may have set a slab to be unmergeable during bootstrap.
3177 */
3178 if (s->refcount < 0)
3179 return 1;
3180
81819f0f
CL
3181 return 0;
3182}
3183
3184static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3185 size_t align, unsigned long flags, const char *name,
51cc5068 3186 void (*ctor)(void *))
81819f0f 3187{
5b95a4ac 3188 struct kmem_cache *s;
81819f0f
CL
3189
3190 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3191 return NULL;
3192
c59def9f 3193 if (ctor)
81819f0f
CL
3194 return NULL;
3195
3196 size = ALIGN(size, sizeof(void *));
3197 align = calculate_alignment(flags, align, size);
3198 size = ALIGN(size, align);
ba0268a8 3199 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3200
5b95a4ac 3201 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3202 if (slab_unmergeable(s))
3203 continue;
3204
3205 if (size > s->size)
3206 continue;
3207
ba0268a8 3208 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3209 continue;
3210 /*
3211 * Check if alignment is compatible.
3212 * Courtesy of Adrian Drzewiecki
3213 */
06428780 3214 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3215 continue;
3216
3217 if (s->size - size >= sizeof(void *))
3218 continue;
3219
3220 return s;
3221 }
3222 return NULL;
3223}
3224
3225struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3226 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3227{
3228 struct kmem_cache *s;
84c1cf62 3229 char *n;
81819f0f 3230
fe1ff49d
BH
3231 if (WARN_ON(!name))
3232 return NULL;
3233
81819f0f 3234 down_write(&slub_lock);
ba0268a8 3235 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3236 if (s) {
3237 s->refcount++;
3238 /*
3239 * Adjust the object sizes so that we clear
3240 * the complete object on kzalloc.
3241 */
3242 s->objsize = max(s->objsize, (int)size);
3243 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3244
7b8f3b66 3245 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3246 s->refcount--;
81819f0f 3247 goto err;
7b8f3b66 3248 }
2bce6485 3249 up_write(&slub_lock);
a0e1d1be
CL
3250 return s;
3251 }
6446faa2 3252
84c1cf62
PE
3253 n = kstrdup(name, GFP_KERNEL);
3254 if (!n)
3255 goto err;
3256
a0e1d1be
CL
3257 s = kmalloc(kmem_size, GFP_KERNEL);
3258 if (s) {
84c1cf62 3259 if (kmem_cache_open(s, n,
c59def9f 3260 size, align, flags, ctor)) {
81819f0f 3261 list_add(&s->list, &slab_caches);
7b8f3b66 3262 if (sysfs_slab_add(s)) {
7b8f3b66 3263 list_del(&s->list);
84c1cf62 3264 kfree(n);
7b8f3b66 3265 kfree(s);
a0e1d1be 3266 goto err;
7b8f3b66 3267 }
2bce6485 3268 up_write(&slub_lock);
a0e1d1be
CL
3269 return s;
3270 }
84c1cf62 3271 kfree(n);
a0e1d1be 3272 kfree(s);
81819f0f
CL
3273 }
3274 up_write(&slub_lock);
81819f0f
CL
3275
3276err:
81819f0f
CL
3277 if (flags & SLAB_PANIC)
3278 panic("Cannot create slabcache %s\n", name);
3279 else
3280 s = NULL;
3281 return s;
3282}
3283EXPORT_SYMBOL(kmem_cache_create);
3284
81819f0f 3285#ifdef CONFIG_SMP
81819f0f 3286/*
672bba3a
CL
3287 * Use the cpu notifier to insure that the cpu slabs are flushed when
3288 * necessary.
81819f0f
CL
3289 */
3290static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3291 unsigned long action, void *hcpu)
3292{
3293 long cpu = (long)hcpu;
5b95a4ac
CL
3294 struct kmem_cache *s;
3295 unsigned long flags;
81819f0f
CL
3296
3297 switch (action) {
3298 case CPU_UP_CANCELED:
8bb78442 3299 case CPU_UP_CANCELED_FROZEN:
81819f0f 3300 case CPU_DEAD:
8bb78442 3301 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3302 down_read(&slub_lock);
3303 list_for_each_entry(s, &slab_caches, list) {
3304 local_irq_save(flags);
3305 __flush_cpu_slab(s, cpu);
3306 local_irq_restore(flags);
3307 }
3308 up_read(&slub_lock);
81819f0f
CL
3309 break;
3310 default:
3311 break;
3312 }
3313 return NOTIFY_OK;
3314}
3315
06428780 3316static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3317 .notifier_call = slab_cpuup_callback
06428780 3318};
81819f0f
CL
3319
3320#endif
3321
ce71e27c 3322void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3323{
aadb4bc4 3324 struct kmem_cache *s;
94b528d0 3325 void *ret;
aadb4bc4 3326
ffadd4d0 3327 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3328 return kmalloc_large(size, gfpflags);
3329
aadb4bc4 3330 s = get_slab(size, gfpflags);
81819f0f 3331
2408c550 3332 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3333 return s;
81819f0f 3334
2154a336 3335 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3336
3337 /* Honor the call site pointer we recieved. */
ca2b84cb 3338 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3339
3340 return ret;
81819f0f
CL
3341}
3342
3343void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3344 int node, unsigned long caller)
81819f0f 3345{
aadb4bc4 3346 struct kmem_cache *s;
94b528d0 3347 void *ret;
aadb4bc4 3348
d3e14aa3
XF
3349 if (unlikely(size > SLUB_MAX_SIZE)) {
3350 ret = kmalloc_large_node(size, gfpflags, node);
3351
3352 trace_kmalloc_node(caller, ret,
3353 size, PAGE_SIZE << get_order(size),
3354 gfpflags, node);
3355
3356 return ret;
3357 }
eada35ef 3358
aadb4bc4 3359 s = get_slab(size, gfpflags);
81819f0f 3360
2408c550 3361 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3362 return s;
81819f0f 3363
94b528d0
EGM
3364 ret = slab_alloc(s, gfpflags, node, caller);
3365
3366 /* Honor the call site pointer we recieved. */
ca2b84cb 3367 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3368
3369 return ret;
81819f0f
CL
3370}
3371
f6acb635 3372#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3373static int count_inuse(struct page *page)
3374{
3375 return page->inuse;
3376}
3377
3378static int count_total(struct page *page)
3379{
3380 return page->objects;
3381}
3382
434e245d
CL
3383static int validate_slab(struct kmem_cache *s, struct page *page,
3384 unsigned long *map)
53e15af0
CL
3385{
3386 void *p;
a973e9dd 3387 void *addr = page_address(page);
53e15af0
CL
3388
3389 if (!check_slab(s, page) ||
3390 !on_freelist(s, page, NULL))
3391 return 0;
3392
3393 /* Now we know that a valid freelist exists */
39b26464 3394 bitmap_zero(map, page->objects);
53e15af0 3395
7656c72b
CL
3396 for_each_free_object(p, s, page->freelist) {
3397 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3398 if (!check_object(s, page, p, 0))
3399 return 0;
3400 }
3401
224a88be 3402 for_each_object(p, s, addr, page->objects)
7656c72b 3403 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3404 if (!check_object(s, page, p, 1))
3405 return 0;
3406 return 1;
3407}
3408
434e245d
CL
3409static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3410 unsigned long *map)
53e15af0
CL
3411{
3412 if (slab_trylock(page)) {
434e245d 3413 validate_slab(s, page, map);
53e15af0
CL
3414 slab_unlock(page);
3415 } else
3416 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3417 s->name, page);
53e15af0
CL
3418}
3419
434e245d
CL
3420static int validate_slab_node(struct kmem_cache *s,
3421 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3422{
3423 unsigned long count = 0;
3424 struct page *page;
3425 unsigned long flags;
3426
3427 spin_lock_irqsave(&n->list_lock, flags);
3428
3429 list_for_each_entry(page, &n->partial, lru) {
434e245d 3430 validate_slab_slab(s, page, map);
53e15af0
CL
3431 count++;
3432 }
3433 if (count != n->nr_partial)
3434 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3435 "counter=%ld\n", s->name, count, n->nr_partial);
3436
3437 if (!(s->flags & SLAB_STORE_USER))
3438 goto out;
3439
3440 list_for_each_entry(page, &n->full, lru) {
434e245d 3441 validate_slab_slab(s, page, map);
53e15af0
CL
3442 count++;
3443 }
3444 if (count != atomic_long_read(&n->nr_slabs))
3445 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3446 "counter=%ld\n", s->name, count,
3447 atomic_long_read(&n->nr_slabs));
3448
3449out:
3450 spin_unlock_irqrestore(&n->list_lock, flags);
3451 return count;
3452}
3453
434e245d 3454static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3455{
3456 int node;
3457 unsigned long count = 0;
205ab99d 3458 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3459 sizeof(unsigned long), GFP_KERNEL);
3460
3461 if (!map)
3462 return -ENOMEM;
53e15af0
CL
3463
3464 flush_all(s);
f64dc58c 3465 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3466 struct kmem_cache_node *n = get_node(s, node);
3467
434e245d 3468 count += validate_slab_node(s, n, map);
53e15af0 3469 }
434e245d 3470 kfree(map);
53e15af0
CL
3471 return count;
3472}
3473
b3459709
CL
3474#ifdef SLUB_RESILIENCY_TEST
3475static void resiliency_test(void)
3476{
3477 u8 *p;
3478
a016471a
DR
3479 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3480
b3459709
CL
3481 printk(KERN_ERR "SLUB resiliency testing\n");
3482 printk(KERN_ERR "-----------------------\n");
3483 printk(KERN_ERR "A. Corruption after allocation\n");
3484
3485 p = kzalloc(16, GFP_KERNEL);
3486 p[16] = 0x12;
3487 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3488 " 0x12->0x%p\n\n", p + 16);
3489
a016471a 3490 validate_slab_cache(kmalloc_caches[4]);
b3459709
CL
3491
3492 /* Hmmm... The next two are dangerous */
3493 p = kzalloc(32, GFP_KERNEL);
3494 p[32 + sizeof(void *)] = 0x34;
3495 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3496 " 0x34 -> -0x%p\n", p);
3497 printk(KERN_ERR
3498 "If allocated object is overwritten then not detectable\n\n");
b3459709 3499
a016471a 3500 validate_slab_cache(kmalloc_caches[5]);
b3459709
CL
3501 p = kzalloc(64, GFP_KERNEL);
3502 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3503 *p = 0x56;
3504 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3505 p);
3adbefee
IM
3506 printk(KERN_ERR
3507 "If allocated object is overwritten then not detectable\n\n");
a016471a 3508 validate_slab_cache(kmalloc_caches[6]);
b3459709
CL
3509
3510 printk(KERN_ERR "\nB. Corruption after free\n");
3511 p = kzalloc(128, GFP_KERNEL);
3512 kfree(p);
3513 *p = 0x78;
3514 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a016471a 3515 validate_slab_cache(kmalloc_caches[7]);
b3459709
CL
3516
3517 p = kzalloc(256, GFP_KERNEL);
3518 kfree(p);
3519 p[50] = 0x9a;
3adbefee
IM
3520 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3521 p);
a016471a 3522 validate_slab_cache(kmalloc_caches[8]);
b3459709
CL
3523
3524 p = kzalloc(512, GFP_KERNEL);
3525 kfree(p);
3526 p[512] = 0xab;
3527 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a016471a 3528 validate_slab_cache(kmalloc_caches[9]);
b3459709
CL
3529}
3530#else
3531static void resiliency_test(void) {};
3532#endif
3533
88a420e4 3534/*
672bba3a 3535 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3536 * and freed.
3537 */
3538
3539struct location {
3540 unsigned long count;
ce71e27c 3541 unsigned long addr;
45edfa58
CL
3542 long long sum_time;
3543 long min_time;
3544 long max_time;
3545 long min_pid;
3546 long max_pid;
174596a0 3547 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3548 nodemask_t nodes;
88a420e4
CL
3549};
3550
3551struct loc_track {
3552 unsigned long max;
3553 unsigned long count;
3554 struct location *loc;
3555};
3556
3557static void free_loc_track(struct loc_track *t)
3558{
3559 if (t->max)
3560 free_pages((unsigned long)t->loc,
3561 get_order(sizeof(struct location) * t->max));
3562}
3563
68dff6a9 3564static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3565{
3566 struct location *l;
3567 int order;
3568
88a420e4
CL
3569 order = get_order(sizeof(struct location) * max);
3570
68dff6a9 3571 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3572 if (!l)
3573 return 0;
3574
3575 if (t->count) {
3576 memcpy(l, t->loc, sizeof(struct location) * t->count);
3577 free_loc_track(t);
3578 }
3579 t->max = max;
3580 t->loc = l;
3581 return 1;
3582}
3583
3584static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3585 const struct track *track)
88a420e4
CL
3586{
3587 long start, end, pos;
3588 struct location *l;
ce71e27c 3589 unsigned long caddr;
45edfa58 3590 unsigned long age = jiffies - track->when;
88a420e4
CL
3591
3592 start = -1;
3593 end = t->count;
3594
3595 for ( ; ; ) {
3596 pos = start + (end - start + 1) / 2;
3597
3598 /*
3599 * There is nothing at "end". If we end up there
3600 * we need to add something to before end.
3601 */
3602 if (pos == end)
3603 break;
3604
3605 caddr = t->loc[pos].addr;
45edfa58
CL
3606 if (track->addr == caddr) {
3607
3608 l = &t->loc[pos];
3609 l->count++;
3610 if (track->when) {
3611 l->sum_time += age;
3612 if (age < l->min_time)
3613 l->min_time = age;
3614 if (age > l->max_time)
3615 l->max_time = age;
3616
3617 if (track->pid < l->min_pid)
3618 l->min_pid = track->pid;
3619 if (track->pid > l->max_pid)
3620 l->max_pid = track->pid;
3621
174596a0
RR
3622 cpumask_set_cpu(track->cpu,
3623 to_cpumask(l->cpus));
45edfa58
CL
3624 }
3625 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3626 return 1;
3627 }
3628
45edfa58 3629 if (track->addr < caddr)
88a420e4
CL
3630 end = pos;
3631 else
3632 start = pos;
3633 }
3634
3635 /*
672bba3a 3636 * Not found. Insert new tracking element.
88a420e4 3637 */
68dff6a9 3638 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3639 return 0;
3640
3641 l = t->loc + pos;
3642 if (pos < t->count)
3643 memmove(l + 1, l,
3644 (t->count - pos) * sizeof(struct location));
3645 t->count++;
3646 l->count = 1;
45edfa58
CL
3647 l->addr = track->addr;
3648 l->sum_time = age;
3649 l->min_time = age;
3650 l->max_time = age;
3651 l->min_pid = track->pid;
3652 l->max_pid = track->pid;
174596a0
RR
3653 cpumask_clear(to_cpumask(l->cpus));
3654 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3655 nodes_clear(l->nodes);
3656 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3657 return 1;
3658}
3659
3660static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3661 struct page *page, enum track_item alloc,
a5dd5c11 3662 unsigned long *map)
88a420e4 3663{
a973e9dd 3664 void *addr = page_address(page);
88a420e4
CL
3665 void *p;
3666
39b26464 3667 bitmap_zero(map, page->objects);
7656c72b
CL
3668 for_each_free_object(p, s, page->freelist)
3669 set_bit(slab_index(p, s, addr), map);
88a420e4 3670
224a88be 3671 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3672 if (!test_bit(slab_index(p, s, addr), map))
3673 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3674}
3675
3676static int list_locations(struct kmem_cache *s, char *buf,
3677 enum track_item alloc)
3678{
e374d483 3679 int len = 0;
88a420e4 3680 unsigned long i;
68dff6a9 3681 struct loc_track t = { 0, 0, NULL };
88a420e4 3682 int node;
bbd7d57b
ED
3683 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3684 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3685
bbd7d57b
ED
3686 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3687 GFP_TEMPORARY)) {
3688 kfree(map);
68dff6a9 3689 return sprintf(buf, "Out of memory\n");
bbd7d57b 3690 }
88a420e4
CL
3691 /* Push back cpu slabs */
3692 flush_all(s);
3693
f64dc58c 3694 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3695 struct kmem_cache_node *n = get_node(s, node);
3696 unsigned long flags;
3697 struct page *page;
3698
9e86943b 3699 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3700 continue;
3701
3702 spin_lock_irqsave(&n->list_lock, flags);
3703 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3704 process_slab(&t, s, page, alloc, map);
88a420e4 3705 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3706 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3707 spin_unlock_irqrestore(&n->list_lock, flags);
3708 }
3709
3710 for (i = 0; i < t.count; i++) {
45edfa58 3711 struct location *l = &t.loc[i];
88a420e4 3712
9c246247 3713 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3714 break;
e374d483 3715 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3716
3717 if (l->addr)
e374d483 3718 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3719 else
e374d483 3720 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3721
3722 if (l->sum_time != l->min_time) {
e374d483 3723 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3724 l->min_time,
3725 (long)div_u64(l->sum_time, l->count),
3726 l->max_time);
45edfa58 3727 } else
e374d483 3728 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3729 l->min_time);
3730
3731 if (l->min_pid != l->max_pid)
e374d483 3732 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3733 l->min_pid, l->max_pid);
3734 else
e374d483 3735 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3736 l->min_pid);
3737
174596a0
RR
3738 if (num_online_cpus() > 1 &&
3739 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3740 len < PAGE_SIZE - 60) {
3741 len += sprintf(buf + len, " cpus=");
3742 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3743 to_cpumask(l->cpus));
45edfa58
CL
3744 }
3745
62bc62a8 3746 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3747 len < PAGE_SIZE - 60) {
3748 len += sprintf(buf + len, " nodes=");
3749 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3750 l->nodes);
3751 }
3752
e374d483 3753 len += sprintf(buf + len, "\n");
88a420e4
CL
3754 }
3755
3756 free_loc_track(&t);
bbd7d57b 3757 kfree(map);
88a420e4 3758 if (!t.count)
e374d483
HH
3759 len += sprintf(buf, "No data\n");
3760 return len;
88a420e4
CL
3761}
3762
81819f0f 3763enum slab_stat_type {
205ab99d
CL
3764 SL_ALL, /* All slabs */
3765 SL_PARTIAL, /* Only partially allocated slabs */
3766 SL_CPU, /* Only slabs used for cpu caches */
3767 SL_OBJECTS, /* Determine allocated objects not slabs */
3768 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3769};
3770
205ab99d 3771#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3772#define SO_PARTIAL (1 << SL_PARTIAL)
3773#define SO_CPU (1 << SL_CPU)
3774#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3775#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3776
62e5c4b4
CG
3777static ssize_t show_slab_objects(struct kmem_cache *s,
3778 char *buf, unsigned long flags)
81819f0f
CL
3779{
3780 unsigned long total = 0;
81819f0f
CL
3781 int node;
3782 int x;
3783 unsigned long *nodes;
3784 unsigned long *per_cpu;
3785
3786 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3787 if (!nodes)
3788 return -ENOMEM;
81819f0f
CL
3789 per_cpu = nodes + nr_node_ids;
3790
205ab99d
CL
3791 if (flags & SO_CPU) {
3792 int cpu;
81819f0f 3793
205ab99d 3794 for_each_possible_cpu(cpu) {
9dfc6e68 3795 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3796
205ab99d
CL
3797 if (!c || c->node < 0)
3798 continue;
3799
3800 if (c->page) {
3801 if (flags & SO_TOTAL)
3802 x = c->page->objects;
3803 else if (flags & SO_OBJECTS)
3804 x = c->page->inuse;
81819f0f
CL
3805 else
3806 x = 1;
205ab99d 3807
81819f0f 3808 total += x;
205ab99d 3809 nodes[c->node] += x;
81819f0f 3810 }
205ab99d 3811 per_cpu[c->node]++;
81819f0f
CL
3812 }
3813 }
3814
205ab99d
CL
3815 if (flags & SO_ALL) {
3816 for_each_node_state(node, N_NORMAL_MEMORY) {
3817 struct kmem_cache_node *n = get_node(s, node);
3818
3819 if (flags & SO_TOTAL)
3820 x = atomic_long_read(&n->total_objects);
3821 else if (flags & SO_OBJECTS)
3822 x = atomic_long_read(&n->total_objects) -
3823 count_partial(n, count_free);
81819f0f 3824
81819f0f 3825 else
205ab99d 3826 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3827 total += x;
3828 nodes[node] += x;
3829 }
3830
205ab99d
CL
3831 } else if (flags & SO_PARTIAL) {
3832 for_each_node_state(node, N_NORMAL_MEMORY) {
3833 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3834
205ab99d
CL
3835 if (flags & SO_TOTAL)
3836 x = count_partial(n, count_total);
3837 else if (flags & SO_OBJECTS)
3838 x = count_partial(n, count_inuse);
81819f0f 3839 else
205ab99d 3840 x = n->nr_partial;
81819f0f
CL
3841 total += x;
3842 nodes[node] += x;
3843 }
3844 }
81819f0f
CL
3845 x = sprintf(buf, "%lu", total);
3846#ifdef CONFIG_NUMA
f64dc58c 3847 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3848 if (nodes[node])
3849 x += sprintf(buf + x, " N%d=%lu",
3850 node, nodes[node]);
3851#endif
3852 kfree(nodes);
3853 return x + sprintf(buf + x, "\n");
3854}
3855
3856static int any_slab_objects(struct kmem_cache *s)
3857{
3858 int node;
81819f0f 3859
dfb4f096 3860 for_each_online_node(node) {
81819f0f
CL
3861 struct kmem_cache_node *n = get_node(s, node);
3862
dfb4f096
CL
3863 if (!n)
3864 continue;
3865
4ea33e2d 3866 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3867 return 1;
3868 }
3869 return 0;
3870}
3871
3872#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3873#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3874
3875struct slab_attribute {
3876 struct attribute attr;
3877 ssize_t (*show)(struct kmem_cache *s, char *buf);
3878 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3879};
3880
3881#define SLAB_ATTR_RO(_name) \
3882 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3883
3884#define SLAB_ATTR(_name) \
3885 static struct slab_attribute _name##_attr = \
3886 __ATTR(_name, 0644, _name##_show, _name##_store)
3887
81819f0f
CL
3888static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3889{
3890 return sprintf(buf, "%d\n", s->size);
3891}
3892SLAB_ATTR_RO(slab_size);
3893
3894static ssize_t align_show(struct kmem_cache *s, char *buf)
3895{
3896 return sprintf(buf, "%d\n", s->align);
3897}
3898SLAB_ATTR_RO(align);
3899
3900static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3901{
3902 return sprintf(buf, "%d\n", s->objsize);
3903}
3904SLAB_ATTR_RO(object_size);
3905
3906static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3907{
834f3d11 3908 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3909}
3910SLAB_ATTR_RO(objs_per_slab);
3911
06b285dc
CL
3912static ssize_t order_store(struct kmem_cache *s,
3913 const char *buf, size_t length)
3914{
0121c619
CL
3915 unsigned long order;
3916 int err;
3917
3918 err = strict_strtoul(buf, 10, &order);
3919 if (err)
3920 return err;
06b285dc
CL
3921
3922 if (order > slub_max_order || order < slub_min_order)
3923 return -EINVAL;
3924
3925 calculate_sizes(s, order);
3926 return length;
3927}
3928
81819f0f
CL
3929static ssize_t order_show(struct kmem_cache *s, char *buf)
3930{
834f3d11 3931 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3932}
06b285dc 3933SLAB_ATTR(order);
81819f0f 3934
73d342b1
DR
3935static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3936{
3937 return sprintf(buf, "%lu\n", s->min_partial);
3938}
3939
3940static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3941 size_t length)
3942{
3943 unsigned long min;
3944 int err;
3945
3946 err = strict_strtoul(buf, 10, &min);
3947 if (err)
3948 return err;
3949
c0bdb232 3950 set_min_partial(s, min);
73d342b1
DR
3951 return length;
3952}
3953SLAB_ATTR(min_partial);
3954
81819f0f
CL
3955static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3956{
3957 if (s->ctor) {
3958 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3959
3960 return n + sprintf(buf + n, "\n");
3961 }
3962 return 0;
3963}
3964SLAB_ATTR_RO(ctor);
3965
81819f0f
CL
3966static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3967{
3968 return sprintf(buf, "%d\n", s->refcount - 1);
3969}
3970SLAB_ATTR_RO(aliases);
3971
3972static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3973{
205ab99d 3974 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3975}
3976SLAB_ATTR_RO(slabs);
3977
3978static ssize_t partial_show(struct kmem_cache *s, char *buf)
3979{
d9acf4b7 3980 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3981}
3982SLAB_ATTR_RO(partial);
3983
3984static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3985{
d9acf4b7 3986 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3987}
3988SLAB_ATTR_RO(cpu_slabs);
3989
3990static ssize_t objects_show(struct kmem_cache *s, char *buf)
3991{
205ab99d 3992 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3993}
3994SLAB_ATTR_RO(objects);
3995
205ab99d
CL
3996static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3997{
3998 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3999}
4000SLAB_ATTR_RO(objects_partial);
4001
4002static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4003{
4004 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4005}
4006SLAB_ATTR_RO(total_objects);
4007
81819f0f
CL
4008static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4009{
4010 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4011}
4012
4013static ssize_t sanity_checks_store(struct kmem_cache *s,
4014 const char *buf, size_t length)
4015{
4016 s->flags &= ~SLAB_DEBUG_FREE;
4017 if (buf[0] == '1')
4018 s->flags |= SLAB_DEBUG_FREE;
4019 return length;
4020}
4021SLAB_ATTR(sanity_checks);
4022
4023static ssize_t trace_show(struct kmem_cache *s, char *buf)
4024{
4025 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4026}
4027
4028static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4029 size_t length)
4030{
4031 s->flags &= ~SLAB_TRACE;
4032 if (buf[0] == '1')
4033 s->flags |= SLAB_TRACE;
4034 return length;
4035}
4036SLAB_ATTR(trace);
4037
4c13dd3b
DM
4038#ifdef CONFIG_FAILSLAB
4039static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4040{
4041 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4042}
4043
4044static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4045 size_t length)
4046{
4047 s->flags &= ~SLAB_FAILSLAB;
4048 if (buf[0] == '1')
4049 s->flags |= SLAB_FAILSLAB;
4050 return length;
4051}
4052SLAB_ATTR(failslab);
4053#endif
4054
81819f0f
CL
4055static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4056{
4057 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4058}
4059
4060static ssize_t reclaim_account_store(struct kmem_cache *s,
4061 const char *buf, size_t length)
4062{
4063 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4064 if (buf[0] == '1')
4065 s->flags |= SLAB_RECLAIM_ACCOUNT;
4066 return length;
4067}
4068SLAB_ATTR(reclaim_account);
4069
4070static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4071{
5af60839 4072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4073}
4074SLAB_ATTR_RO(hwcache_align);
4075
4076#ifdef CONFIG_ZONE_DMA
4077static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4078{
4079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4080}
4081SLAB_ATTR_RO(cache_dma);
4082#endif
4083
4084static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4085{
4086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4087}
4088SLAB_ATTR_RO(destroy_by_rcu);
4089
4090static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4091{
4092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4093}
4094
4095static ssize_t red_zone_store(struct kmem_cache *s,
4096 const char *buf, size_t length)
4097{
4098 if (any_slab_objects(s))
4099 return -EBUSY;
4100
4101 s->flags &= ~SLAB_RED_ZONE;
4102 if (buf[0] == '1')
4103 s->flags |= SLAB_RED_ZONE;
06b285dc 4104 calculate_sizes(s, -1);
81819f0f
CL
4105 return length;
4106}
4107SLAB_ATTR(red_zone);
4108
4109static ssize_t poison_show(struct kmem_cache *s, char *buf)
4110{
4111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4112}
4113
4114static ssize_t poison_store(struct kmem_cache *s,
4115 const char *buf, size_t length)
4116{
4117 if (any_slab_objects(s))
4118 return -EBUSY;
4119
4120 s->flags &= ~SLAB_POISON;
4121 if (buf[0] == '1')
4122 s->flags |= SLAB_POISON;
06b285dc 4123 calculate_sizes(s, -1);
81819f0f
CL
4124 return length;
4125}
4126SLAB_ATTR(poison);
4127
4128static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4129{
4130 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4131}
4132
4133static ssize_t store_user_store(struct kmem_cache *s,
4134 const char *buf, size_t length)
4135{
4136 if (any_slab_objects(s))
4137 return -EBUSY;
4138
4139 s->flags &= ~SLAB_STORE_USER;
4140 if (buf[0] == '1')
4141 s->flags |= SLAB_STORE_USER;
06b285dc 4142 calculate_sizes(s, -1);
81819f0f
CL
4143 return length;
4144}
4145SLAB_ATTR(store_user);
4146
53e15af0
CL
4147static ssize_t validate_show(struct kmem_cache *s, char *buf)
4148{
4149 return 0;
4150}
4151
4152static ssize_t validate_store(struct kmem_cache *s,
4153 const char *buf, size_t length)
4154{
434e245d
CL
4155 int ret = -EINVAL;
4156
4157 if (buf[0] == '1') {
4158 ret = validate_slab_cache(s);
4159 if (ret >= 0)
4160 ret = length;
4161 }
4162 return ret;
53e15af0
CL
4163}
4164SLAB_ATTR(validate);
4165
2086d26a
CL
4166static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4167{
4168 return 0;
4169}
4170
4171static ssize_t shrink_store(struct kmem_cache *s,
4172 const char *buf, size_t length)
4173{
4174 if (buf[0] == '1') {
4175 int rc = kmem_cache_shrink(s);
4176
4177 if (rc)
4178 return rc;
4179 } else
4180 return -EINVAL;
4181 return length;
4182}
4183SLAB_ATTR(shrink);
4184
88a420e4
CL
4185static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4186{
4187 if (!(s->flags & SLAB_STORE_USER))
4188 return -ENOSYS;
4189 return list_locations(s, buf, TRACK_ALLOC);
4190}
4191SLAB_ATTR_RO(alloc_calls);
4192
4193static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4194{
4195 if (!(s->flags & SLAB_STORE_USER))
4196 return -ENOSYS;
4197 return list_locations(s, buf, TRACK_FREE);
4198}
4199SLAB_ATTR_RO(free_calls);
4200
81819f0f 4201#ifdef CONFIG_NUMA
9824601e 4202static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4203{
9824601e 4204 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4205}
4206
9824601e 4207static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4208 const char *buf, size_t length)
4209{
0121c619
CL
4210 unsigned long ratio;
4211 int err;
4212
4213 err = strict_strtoul(buf, 10, &ratio);
4214 if (err)
4215 return err;
4216
e2cb96b7 4217 if (ratio <= 100)
0121c619 4218 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4219
81819f0f
CL
4220 return length;
4221}
9824601e 4222SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4223#endif
4224
8ff12cfc 4225#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4226static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4227{
4228 unsigned long sum = 0;
4229 int cpu;
4230 int len;
4231 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4232
4233 if (!data)
4234 return -ENOMEM;
4235
4236 for_each_online_cpu(cpu) {
9dfc6e68 4237 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4238
4239 data[cpu] = x;
4240 sum += x;
4241 }
4242
4243 len = sprintf(buf, "%lu", sum);
4244
50ef37b9 4245#ifdef CONFIG_SMP
8ff12cfc
CL
4246 for_each_online_cpu(cpu) {
4247 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4248 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4249 }
50ef37b9 4250#endif
8ff12cfc
CL
4251 kfree(data);
4252 return len + sprintf(buf + len, "\n");
4253}
4254
78eb00cc
DR
4255static void clear_stat(struct kmem_cache *s, enum stat_item si)
4256{
4257 int cpu;
4258
4259 for_each_online_cpu(cpu)
9dfc6e68 4260 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4261}
4262
8ff12cfc
CL
4263#define STAT_ATTR(si, text) \
4264static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4265{ \
4266 return show_stat(s, buf, si); \
4267} \
78eb00cc
DR
4268static ssize_t text##_store(struct kmem_cache *s, \
4269 const char *buf, size_t length) \
4270{ \
4271 if (buf[0] != '0') \
4272 return -EINVAL; \
4273 clear_stat(s, si); \
4274 return length; \
4275} \
4276SLAB_ATTR(text); \
8ff12cfc
CL
4277
4278STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4279STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4280STAT_ATTR(FREE_FASTPATH, free_fastpath);
4281STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4282STAT_ATTR(FREE_FROZEN, free_frozen);
4283STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4284STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4285STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4286STAT_ATTR(ALLOC_SLAB, alloc_slab);
4287STAT_ATTR(ALLOC_REFILL, alloc_refill);
4288STAT_ATTR(FREE_SLAB, free_slab);
4289STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4290STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4291STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4292STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4293STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4294STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4295STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4296#endif
4297
06428780 4298static struct attribute *slab_attrs[] = {
81819f0f
CL
4299 &slab_size_attr.attr,
4300 &object_size_attr.attr,
4301 &objs_per_slab_attr.attr,
4302 &order_attr.attr,
73d342b1 4303 &min_partial_attr.attr,
81819f0f 4304 &objects_attr.attr,
205ab99d
CL
4305 &objects_partial_attr.attr,
4306 &total_objects_attr.attr,
81819f0f
CL
4307 &slabs_attr.attr,
4308 &partial_attr.attr,
4309 &cpu_slabs_attr.attr,
4310 &ctor_attr.attr,
81819f0f
CL
4311 &aliases_attr.attr,
4312 &align_attr.attr,
4313 &sanity_checks_attr.attr,
4314 &trace_attr.attr,
4315 &hwcache_align_attr.attr,
4316 &reclaim_account_attr.attr,
4317 &destroy_by_rcu_attr.attr,
4318 &red_zone_attr.attr,
4319 &poison_attr.attr,
4320 &store_user_attr.attr,
53e15af0 4321 &validate_attr.attr,
2086d26a 4322 &shrink_attr.attr,
88a420e4
CL
4323 &alloc_calls_attr.attr,
4324 &free_calls_attr.attr,
81819f0f
CL
4325#ifdef CONFIG_ZONE_DMA
4326 &cache_dma_attr.attr,
4327#endif
4328#ifdef CONFIG_NUMA
9824601e 4329 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4330#endif
4331#ifdef CONFIG_SLUB_STATS
4332 &alloc_fastpath_attr.attr,
4333 &alloc_slowpath_attr.attr,
4334 &free_fastpath_attr.attr,
4335 &free_slowpath_attr.attr,
4336 &free_frozen_attr.attr,
4337 &free_add_partial_attr.attr,
4338 &free_remove_partial_attr.attr,
4339 &alloc_from_partial_attr.attr,
4340 &alloc_slab_attr.attr,
4341 &alloc_refill_attr.attr,
4342 &free_slab_attr.attr,
4343 &cpuslab_flush_attr.attr,
4344 &deactivate_full_attr.attr,
4345 &deactivate_empty_attr.attr,
4346 &deactivate_to_head_attr.attr,
4347 &deactivate_to_tail_attr.attr,
4348 &deactivate_remote_frees_attr.attr,
65c3376a 4349 &order_fallback_attr.attr,
81819f0f 4350#endif
4c13dd3b
DM
4351#ifdef CONFIG_FAILSLAB
4352 &failslab_attr.attr,
4353#endif
4354
81819f0f
CL
4355 NULL
4356};
4357
4358static struct attribute_group slab_attr_group = {
4359 .attrs = slab_attrs,
4360};
4361
4362static ssize_t slab_attr_show(struct kobject *kobj,
4363 struct attribute *attr,
4364 char *buf)
4365{
4366 struct slab_attribute *attribute;
4367 struct kmem_cache *s;
4368 int err;
4369
4370 attribute = to_slab_attr(attr);
4371 s = to_slab(kobj);
4372
4373 if (!attribute->show)
4374 return -EIO;
4375
4376 err = attribute->show(s, buf);
4377
4378 return err;
4379}
4380
4381static ssize_t slab_attr_store(struct kobject *kobj,
4382 struct attribute *attr,
4383 const char *buf, size_t len)
4384{
4385 struct slab_attribute *attribute;
4386 struct kmem_cache *s;
4387 int err;
4388
4389 attribute = to_slab_attr(attr);
4390 s = to_slab(kobj);
4391
4392 if (!attribute->store)
4393 return -EIO;
4394
4395 err = attribute->store(s, buf, len);
4396
4397 return err;
4398}
4399
151c602f
CL
4400static void kmem_cache_release(struct kobject *kobj)
4401{
4402 struct kmem_cache *s = to_slab(kobj);
4403
84c1cf62 4404 kfree(s->name);
151c602f
CL
4405 kfree(s);
4406}
4407
52cf25d0 4408static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4409 .show = slab_attr_show,
4410 .store = slab_attr_store,
4411};
4412
4413static struct kobj_type slab_ktype = {
4414 .sysfs_ops = &slab_sysfs_ops,
151c602f 4415 .release = kmem_cache_release
81819f0f
CL
4416};
4417
4418static int uevent_filter(struct kset *kset, struct kobject *kobj)
4419{
4420 struct kobj_type *ktype = get_ktype(kobj);
4421
4422 if (ktype == &slab_ktype)
4423 return 1;
4424 return 0;
4425}
4426
9cd43611 4427static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4428 .filter = uevent_filter,
4429};
4430
27c3a314 4431static struct kset *slab_kset;
81819f0f
CL
4432
4433#define ID_STR_LENGTH 64
4434
4435/* Create a unique string id for a slab cache:
6446faa2
CL
4436 *
4437 * Format :[flags-]size
81819f0f
CL
4438 */
4439static char *create_unique_id(struct kmem_cache *s)
4440{
4441 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4442 char *p = name;
4443
4444 BUG_ON(!name);
4445
4446 *p++ = ':';
4447 /*
4448 * First flags affecting slabcache operations. We will only
4449 * get here for aliasable slabs so we do not need to support
4450 * too many flags. The flags here must cover all flags that
4451 * are matched during merging to guarantee that the id is
4452 * unique.
4453 */
4454 if (s->flags & SLAB_CACHE_DMA)
4455 *p++ = 'd';
4456 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4457 *p++ = 'a';
4458 if (s->flags & SLAB_DEBUG_FREE)
4459 *p++ = 'F';
5a896d9e
VN
4460 if (!(s->flags & SLAB_NOTRACK))
4461 *p++ = 't';
81819f0f
CL
4462 if (p != name + 1)
4463 *p++ = '-';
4464 p += sprintf(p, "%07d", s->size);
4465 BUG_ON(p > name + ID_STR_LENGTH - 1);
4466 return name;
4467}
4468
4469static int sysfs_slab_add(struct kmem_cache *s)
4470{
4471 int err;
4472 const char *name;
4473 int unmergeable;
4474
4475 if (slab_state < SYSFS)
4476 /* Defer until later */
4477 return 0;
4478
4479 unmergeable = slab_unmergeable(s);
4480 if (unmergeable) {
4481 /*
4482 * Slabcache can never be merged so we can use the name proper.
4483 * This is typically the case for debug situations. In that
4484 * case we can catch duplicate names easily.
4485 */
27c3a314 4486 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4487 name = s->name;
4488 } else {
4489 /*
4490 * Create a unique name for the slab as a target
4491 * for the symlinks.
4492 */
4493 name = create_unique_id(s);
4494 }
4495
27c3a314 4496 s->kobj.kset = slab_kset;
1eada11c
GKH
4497 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4498 if (err) {
4499 kobject_put(&s->kobj);
81819f0f 4500 return err;
1eada11c 4501 }
81819f0f
CL
4502
4503 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4504 if (err) {
4505 kobject_del(&s->kobj);
4506 kobject_put(&s->kobj);
81819f0f 4507 return err;
5788d8ad 4508 }
81819f0f
CL
4509 kobject_uevent(&s->kobj, KOBJ_ADD);
4510 if (!unmergeable) {
4511 /* Setup first alias */
4512 sysfs_slab_alias(s, s->name);
4513 kfree(name);
4514 }
4515 return 0;
4516}
4517
4518static void sysfs_slab_remove(struct kmem_cache *s)
4519{
2bce6485
CL
4520 if (slab_state < SYSFS)
4521 /*
4522 * Sysfs has not been setup yet so no need to remove the
4523 * cache from sysfs.
4524 */
4525 return;
4526
81819f0f
CL
4527 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4528 kobject_del(&s->kobj);
151c602f 4529 kobject_put(&s->kobj);
81819f0f
CL
4530}
4531
4532/*
4533 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4534 * available lest we lose that information.
81819f0f
CL
4535 */
4536struct saved_alias {
4537 struct kmem_cache *s;
4538 const char *name;
4539 struct saved_alias *next;
4540};
4541
5af328a5 4542static struct saved_alias *alias_list;
81819f0f
CL
4543
4544static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4545{
4546 struct saved_alias *al;
4547
4548 if (slab_state == SYSFS) {
4549 /*
4550 * If we have a leftover link then remove it.
4551 */
27c3a314
GKH
4552 sysfs_remove_link(&slab_kset->kobj, name);
4553 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4554 }
4555
4556 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4557 if (!al)
4558 return -ENOMEM;
4559
4560 al->s = s;
4561 al->name = name;
4562 al->next = alias_list;
4563 alias_list = al;
4564 return 0;
4565}
4566
4567static int __init slab_sysfs_init(void)
4568{
5b95a4ac 4569 struct kmem_cache *s;
81819f0f
CL
4570 int err;
4571
2bce6485
CL
4572 down_write(&slub_lock);
4573
0ff21e46 4574 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4575 if (!slab_kset) {
2bce6485 4576 up_write(&slub_lock);
81819f0f
CL
4577 printk(KERN_ERR "Cannot register slab subsystem.\n");
4578 return -ENOSYS;
4579 }
4580
26a7bd03
CL
4581 slab_state = SYSFS;
4582
5b95a4ac 4583 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4584 err = sysfs_slab_add(s);
5d540fb7
CL
4585 if (err)
4586 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4587 " to sysfs\n", s->name);
26a7bd03 4588 }
81819f0f
CL
4589
4590 while (alias_list) {
4591 struct saved_alias *al = alias_list;
4592
4593 alias_list = alias_list->next;
4594 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4595 if (err)
4596 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4597 " %s to sysfs\n", s->name);
81819f0f
CL
4598 kfree(al);
4599 }
4600
2bce6485 4601 up_write(&slub_lock);
81819f0f
CL
4602 resiliency_test();
4603 return 0;
4604}
4605
4606__initcall(slab_sysfs_init);
81819f0f 4607#endif
57ed3eda
PE
4608
4609/*
4610 * The /proc/slabinfo ABI
4611 */
158a9624 4612#ifdef CONFIG_SLABINFO
57ed3eda
PE
4613static void print_slabinfo_header(struct seq_file *m)
4614{
4615 seq_puts(m, "slabinfo - version: 2.1\n");
4616 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4617 "<objperslab> <pagesperslab>");
4618 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4619 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4620 seq_putc(m, '\n');
4621}
4622
4623static void *s_start(struct seq_file *m, loff_t *pos)
4624{
4625 loff_t n = *pos;
4626
4627 down_read(&slub_lock);
4628 if (!n)
4629 print_slabinfo_header(m);
4630
4631 return seq_list_start(&slab_caches, *pos);
4632}
4633
4634static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4635{
4636 return seq_list_next(p, &slab_caches, pos);
4637}
4638
4639static void s_stop(struct seq_file *m, void *p)
4640{
4641 up_read(&slub_lock);
4642}
4643
4644static int s_show(struct seq_file *m, void *p)
4645{
4646 unsigned long nr_partials = 0;
4647 unsigned long nr_slabs = 0;
4648 unsigned long nr_inuse = 0;
205ab99d
CL
4649 unsigned long nr_objs = 0;
4650 unsigned long nr_free = 0;
57ed3eda
PE
4651 struct kmem_cache *s;
4652 int node;
4653
4654 s = list_entry(p, struct kmem_cache, list);
4655
4656 for_each_online_node(node) {
4657 struct kmem_cache_node *n = get_node(s, node);
4658
4659 if (!n)
4660 continue;
4661
4662 nr_partials += n->nr_partial;
4663 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4664 nr_objs += atomic_long_read(&n->total_objects);
4665 nr_free += count_partial(n, count_free);
57ed3eda
PE
4666 }
4667
205ab99d 4668 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4669
4670 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4671 nr_objs, s->size, oo_objects(s->oo),
4672 (1 << oo_order(s->oo)));
57ed3eda
PE
4673 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4674 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4675 0UL);
4676 seq_putc(m, '\n');
4677 return 0;
4678}
4679
7b3c3a50 4680static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4681 .start = s_start,
4682 .next = s_next,
4683 .stop = s_stop,
4684 .show = s_show,
4685};
4686
7b3c3a50
AD
4687static int slabinfo_open(struct inode *inode, struct file *file)
4688{
4689 return seq_open(file, &slabinfo_op);
4690}
4691
4692static const struct file_operations proc_slabinfo_operations = {
4693 .open = slabinfo_open,
4694 .read = seq_read,
4695 .llseek = seq_lseek,
4696 .release = seq_release,
4697};
4698
4699static int __init slab_proc_init(void)
4700{
cf5d1131 4701 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4702 return 0;
4703}
4704module_init(slab_proc_init);
158a9624 4705#endif /* CONFIG_SLABINFO */