]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
Merge branches 'tracing/function-graph-tracer' and 'linus' into tracing/core
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
7b3c3a50 17#include <linux/proc_fs.h>
81819f0f 18#include <linux/seq_file.h>
36994e58 19#include <trace/kmemtrace.h>
81819f0f
CL
20#include <linux/cpu.h>
21#include <linux/cpuset.h>
22#include <linux/mempolicy.h>
23#include <linux/ctype.h>
3ac7fe5a 24#include <linux/debugobjects.h>
81819f0f 25#include <linux/kallsyms.h>
b9049e23 26#include <linux/memory.h>
f8bd2258 27#include <linux/math64.h>
773ff60e 28#include <linux/fault-inject.h>
81819f0f
CL
29
30/*
31 * Lock order:
32 * 1. slab_lock(page)
33 * 2. slab->list_lock
34 *
35 * The slab_lock protects operations on the object of a particular
36 * slab and its metadata in the page struct. If the slab lock
37 * has been taken then no allocations nor frees can be performed
38 * on the objects in the slab nor can the slab be added or removed
39 * from the partial or full lists since this would mean modifying
40 * the page_struct of the slab.
41 *
42 * The list_lock protects the partial and full list on each node and
43 * the partial slab counter. If taken then no new slabs may be added or
44 * removed from the lists nor make the number of partial slabs be modified.
45 * (Note that the total number of slabs is an atomic value that may be
46 * modified without taking the list lock).
47 *
48 * The list_lock is a centralized lock and thus we avoid taking it as
49 * much as possible. As long as SLUB does not have to handle partial
50 * slabs, operations can continue without any centralized lock. F.e.
51 * allocating a long series of objects that fill up slabs does not require
52 * the list lock.
53 *
54 * The lock order is sometimes inverted when we are trying to get a slab
55 * off a list. We take the list_lock and then look for a page on the list
56 * to use. While we do that objects in the slabs may be freed. We can
57 * only operate on the slab if we have also taken the slab_lock. So we use
58 * a slab_trylock() on the slab. If trylock was successful then no frees
59 * can occur anymore and we can use the slab for allocations etc. If the
60 * slab_trylock() does not succeed then frees are in progress in the slab and
61 * we must stay away from it for a while since we may cause a bouncing
62 * cacheline if we try to acquire the lock. So go onto the next slab.
63 * If all pages are busy then we may allocate a new slab instead of reusing
64 * a partial slab. A new slab has noone operating on it and thus there is
65 * no danger of cacheline contention.
66 *
67 * Interrupts are disabled during allocation and deallocation in order to
68 * make the slab allocator safe to use in the context of an irq. In addition
69 * interrupts are disabled to ensure that the processor does not change
70 * while handling per_cpu slabs, due to kernel preemption.
71 *
72 * SLUB assigns one slab for allocation to each processor.
73 * Allocations only occur from these slabs called cpu slabs.
74 *
672bba3a
CL
75 * Slabs with free elements are kept on a partial list and during regular
76 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 77 * freed then the slab will show up again on the partial lists.
672bba3a
CL
78 * We track full slabs for debugging purposes though because otherwise we
79 * cannot scan all objects.
81819f0f
CL
80 *
81 * Slabs are freed when they become empty. Teardown and setup is
82 * minimal so we rely on the page allocators per cpu caches for
83 * fast frees and allocs.
84 *
85 * Overloading of page flags that are otherwise used for LRU management.
86 *
4b6f0750
CL
87 * PageActive The slab is frozen and exempt from list processing.
88 * This means that the slab is dedicated to a purpose
89 * such as satisfying allocations for a specific
90 * processor. Objects may be freed in the slab while
91 * it is frozen but slab_free will then skip the usual
92 * list operations. It is up to the processor holding
93 * the slab to integrate the slab into the slab lists
94 * when the slab is no longer needed.
95 *
96 * One use of this flag is to mark slabs that are
97 * used for allocations. Then such a slab becomes a cpu
98 * slab. The cpu slab may be equipped with an additional
dfb4f096 99 * freelist that allows lockless access to
894b8788
CL
100 * free objects in addition to the regular freelist
101 * that requires the slab lock.
81819f0f
CL
102 *
103 * PageError Slab requires special handling due to debug
104 * options set. This moves slab handling out of
894b8788 105 * the fast path and disables lockless freelists.
81819f0f
CL
106 */
107
5577bd8a 108#ifdef CONFIG_SLUB_DEBUG
8a38082d 109#define SLABDEBUG 1
5577bd8a
CL
110#else
111#define SLABDEBUG 0
112#endif
113
81819f0f
CL
114/*
115 * Issues still to be resolved:
116 *
81819f0f
CL
117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118 *
81819f0f
CL
119 * - Variable sizing of the per node arrays
120 */
121
122/* Enable to test recovery from slab corruption on boot */
123#undef SLUB_RESILIENCY_TEST
124
2086d26a
CL
125/*
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 */
76be8950 129#define MIN_PARTIAL 5
e95eed57 130
2086d26a
CL
131/*
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
135 */
136#define MAX_PARTIAL 10
137
81819f0f
CL
138#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
672bba3a 140
81819f0f
CL
141/*
142 * Set of flags that will prevent slab merging
143 */
144#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146
147#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 SLAB_CACHE_DMA)
149
150#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 151#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 155#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
156#endif
157
210b5c06
CG
158#define OO_SHIFT 16
159#define OO_MASK ((1 << OO_SHIFT) - 1)
160#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
161
81819f0f 162/* Internal SLUB flags */
1ceef402
CL
163#define __OBJECT_POISON 0x80000000 /* Poison object */
164#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
165
166static int kmem_size = sizeof(struct kmem_cache);
167
168#ifdef CONFIG_SMP
169static struct notifier_block slab_notifier;
170#endif
171
172static enum {
173 DOWN, /* No slab functionality available */
174 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 175 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
176 SYSFS /* Sysfs up */
177} slab_state = DOWN;
178
179/* A list of all slab caches on the system */
180static DECLARE_RWSEM(slub_lock);
5af328a5 181static LIST_HEAD(slab_caches);
81819f0f 182
02cbc874
CL
183/*
184 * Tracking user of a slab.
185 */
186struct track {
35995a4d 187 unsigned long addr; /* Called from address */
02cbc874
CL
188 int cpu; /* Was running on cpu */
189 int pid; /* Pid context */
190 unsigned long when; /* When did the operation occur */
191};
192
193enum track_item { TRACK_ALLOC, TRACK_FREE };
194
f6acb635 195#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
196static int sysfs_slab_add(struct kmem_cache *);
197static int sysfs_slab_alias(struct kmem_cache *, const char *);
198static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 199
81819f0f 200#else
0c710013
CL
201static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
202static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
203 { return 0; }
151c602f
CL
204static inline void sysfs_slab_remove(struct kmem_cache *s)
205{
206 kfree(s);
207}
8ff12cfc 208
81819f0f
CL
209#endif
210
8ff12cfc
CL
211static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
212{
213#ifdef CONFIG_SLUB_STATS
214 c->stat[si]++;
215#endif
216}
217
81819f0f
CL
218/********************************************************************
219 * Core slab cache functions
220 *******************************************************************/
221
222int slab_is_available(void)
223{
224 return slab_state >= UP;
225}
226
227static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228{
229#ifdef CONFIG_NUMA
230 return s->node[node];
231#else
232 return &s->local_node;
233#endif
234}
235
dfb4f096
CL
236static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
237{
4c93c355
CL
238#ifdef CONFIG_SMP
239 return s->cpu_slab[cpu];
240#else
241 return &s->cpu_slab;
242#endif
dfb4f096
CL
243}
244
6446faa2 245/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
246static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248{
249 void *base;
250
a973e9dd 251 if (!object)
02cbc874
CL
252 return 1;
253
a973e9dd 254 base = page_address(page);
39b26464 255 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261}
262
7656c72b
CL
263/*
264 * Slow version of get and set free pointer.
265 *
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
269 */
270static inline void *get_freepointer(struct kmem_cache *s, void *object)
271{
272 return *(void **)(object + s->offset);
273}
274
275static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276{
277 *(void **)(object + s->offset) = fp;
278}
279
280/* Loop over all objects in a slab */
224a88be
CL
281#define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
283 __p += (__s)->size)
284
285/* Scan freelist */
286#define for_each_free_object(__p, __s, __free) \
a973e9dd 287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
288
289/* Determine object index from a given position */
290static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291{
292 return (p - addr) / s->size;
293}
294
834f3d11
CL
295static inline struct kmem_cache_order_objects oo_make(int order,
296 unsigned long size)
297{
298 struct kmem_cache_order_objects x = {
210b5c06 299 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
300 };
301
302 return x;
303}
304
305static inline int oo_order(struct kmem_cache_order_objects x)
306{
210b5c06 307 return x.x >> OO_SHIFT;
834f3d11
CL
308}
309
310static inline int oo_objects(struct kmem_cache_order_objects x)
311{
210b5c06 312 return x.x & OO_MASK;
834f3d11
CL
313}
314
41ecc55b
CL
315#ifdef CONFIG_SLUB_DEBUG
316/*
317 * Debug settings:
318 */
f0630fff
CL
319#ifdef CONFIG_SLUB_DEBUG_ON
320static int slub_debug = DEBUG_DEFAULT_FLAGS;
321#else
41ecc55b 322static int slub_debug;
f0630fff 323#endif
41ecc55b
CL
324
325static char *slub_debug_slabs;
326
81819f0f
CL
327/*
328 * Object debugging
329 */
330static void print_section(char *text, u8 *addr, unsigned int length)
331{
332 int i, offset;
333 int newline = 1;
334 char ascii[17];
335
336 ascii[16] = 0;
337
338 for (i = 0; i < length; i++) {
339 if (newline) {
24922684 340 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
341 newline = 0;
342 }
06428780 343 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
344 offset = i % 16;
345 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
346 if (offset == 15) {
06428780 347 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
348 newline = 1;
349 }
350 }
351 if (!newline) {
352 i %= 16;
353 while (i < 16) {
06428780 354 printk(KERN_CONT " ");
81819f0f
CL
355 ascii[i] = ' ';
356 i++;
357 }
06428780 358 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
359 }
360}
361
81819f0f
CL
362static struct track *get_track(struct kmem_cache *s, void *object,
363 enum track_item alloc)
364{
365 struct track *p;
366
367 if (s->offset)
368 p = object + s->offset + sizeof(void *);
369 else
370 p = object + s->inuse;
371
372 return p + alloc;
373}
374
375static void set_track(struct kmem_cache *s, void *object,
35995a4d 376 enum track_item alloc, unsigned long addr)
81819f0f
CL
377{
378 struct track *p;
379
380 if (s->offset)
381 p = object + s->offset + sizeof(void *);
382 else
383 p = object + s->inuse;
384
385 p += alloc;
386 if (addr) {
387 p->addr = addr;
388 p->cpu = smp_processor_id();
88e4ccf2 389 p->pid = current->pid;
81819f0f
CL
390 p->when = jiffies;
391 } else
392 memset(p, 0, sizeof(struct track));
393}
394
81819f0f
CL
395static void init_tracking(struct kmem_cache *s, void *object)
396{
24922684
CL
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
399
35995a4d
EGM
400 set_track(s, object, TRACK_FREE, 0UL);
401 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
402}
403
404static void print_track(const char *s, struct track *t)
405{
406 if (!t->addr)
407 return;
408
7daf705f 409 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
35995a4d 410 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
411}
412
413static void print_tracking(struct kmem_cache *s, void *object)
414{
415 if (!(s->flags & SLAB_STORE_USER))
416 return;
417
418 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
419 print_track("Freed", get_track(s, object, TRACK_FREE));
420}
421
422static void print_page_info(struct page *page)
423{
39b26464
CL
424 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
425 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
426
427}
428
429static void slab_bug(struct kmem_cache *s, char *fmt, ...)
430{
431 va_list args;
432 char buf[100];
433
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "========================================"
438 "=====================================\n");
439 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
440 printk(KERN_ERR "----------------------------------------"
441 "-------------------------------------\n\n");
81819f0f
CL
442}
443
24922684
CL
444static void slab_fix(struct kmem_cache *s, char *fmt, ...)
445{
446 va_list args;
447 char buf[100];
448
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
453}
454
455static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
456{
457 unsigned int off; /* Offset of last byte */
a973e9dd 458 u8 *addr = page_address(page);
24922684
CL
459
460 print_tracking(s, p);
461
462 print_page_info(page);
463
464 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
465 p, p - addr, get_freepointer(s, p));
466
467 if (p > addr + 16)
468 print_section("Bytes b4", p - 16, 16);
469
0ebd652b 470 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
471
472 if (s->flags & SLAB_RED_ZONE)
473 print_section("Redzone", p + s->objsize,
474 s->inuse - s->objsize);
475
81819f0f
CL
476 if (s->offset)
477 off = s->offset + sizeof(void *);
478 else
479 off = s->inuse;
480
24922684 481 if (s->flags & SLAB_STORE_USER)
81819f0f 482 off += 2 * sizeof(struct track);
81819f0f
CL
483
484 if (off != s->size)
485 /* Beginning of the filler is the free pointer */
24922684
CL
486 print_section("Padding", p + off, s->size - off);
487
488 dump_stack();
81819f0f
CL
489}
490
491static void object_err(struct kmem_cache *s, struct page *page,
492 u8 *object, char *reason)
493{
3dc50637 494 slab_bug(s, "%s", reason);
24922684 495 print_trailer(s, page, object);
81819f0f
CL
496}
497
24922684 498static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
499{
500 va_list args;
501 char buf[100];
502
24922684
CL
503 va_start(args, fmt);
504 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 505 va_end(args);
3dc50637 506 slab_bug(s, "%s", buf);
24922684 507 print_page_info(page);
81819f0f
CL
508 dump_stack();
509}
510
511static void init_object(struct kmem_cache *s, void *object, int active)
512{
513 u8 *p = object;
514
515 if (s->flags & __OBJECT_POISON) {
516 memset(p, POISON_FREE, s->objsize - 1);
06428780 517 p[s->objsize - 1] = POISON_END;
81819f0f
CL
518 }
519
520 if (s->flags & SLAB_RED_ZONE)
521 memset(p + s->objsize,
522 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
523 s->inuse - s->objsize);
524}
525
24922684 526static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
527{
528 while (bytes) {
529 if (*start != (u8)value)
24922684 530 return start;
81819f0f
CL
531 start++;
532 bytes--;
533 }
24922684
CL
534 return NULL;
535}
536
537static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
538 void *from, void *to)
539{
540 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
541 memset(from, data, to - from);
542}
543
544static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
545 u8 *object, char *what,
06428780 546 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
547{
548 u8 *fault;
549 u8 *end;
550
551 fault = check_bytes(start, value, bytes);
552 if (!fault)
553 return 1;
554
555 end = start + bytes;
556 while (end > fault && end[-1] == value)
557 end--;
558
559 slab_bug(s, "%s overwritten", what);
560 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
561 fault, end - 1, fault[0], value);
562 print_trailer(s, page, object);
563
564 restore_bytes(s, what, value, fault, end);
565 return 0;
81819f0f
CL
566}
567
81819f0f
CL
568/*
569 * Object layout:
570 *
571 * object address
572 * Bytes of the object to be managed.
573 * If the freepointer may overlay the object then the free
574 * pointer is the first word of the object.
672bba3a 575 *
81819f0f
CL
576 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
577 * 0xa5 (POISON_END)
578 *
579 * object + s->objsize
580 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
581 * Padding is extended by another word if Redzoning is enabled and
582 * objsize == inuse.
583 *
81819f0f
CL
584 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
585 * 0xcc (RED_ACTIVE) for objects in use.
586 *
587 * object + s->inuse
672bba3a
CL
588 * Meta data starts here.
589 *
81819f0f
CL
590 * A. Free pointer (if we cannot overwrite object on free)
591 * B. Tracking data for SLAB_STORE_USER
672bba3a 592 * C. Padding to reach required alignment boundary or at mininum
6446faa2 593 * one word if debugging is on to be able to detect writes
672bba3a
CL
594 * before the word boundary.
595 *
596 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
597 *
598 * object + s->size
672bba3a 599 * Nothing is used beyond s->size.
81819f0f 600 *
672bba3a
CL
601 * If slabcaches are merged then the objsize and inuse boundaries are mostly
602 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
603 * may be used with merged slabcaches.
604 */
605
81819f0f
CL
606static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
607{
608 unsigned long off = s->inuse; /* The end of info */
609
610 if (s->offset)
611 /* Freepointer is placed after the object. */
612 off += sizeof(void *);
613
614 if (s->flags & SLAB_STORE_USER)
615 /* We also have user information there */
616 off += 2 * sizeof(struct track);
617
618 if (s->size == off)
619 return 1;
620
24922684
CL
621 return check_bytes_and_report(s, page, p, "Object padding",
622 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
623}
624
39b26464 625/* Check the pad bytes at the end of a slab page */
81819f0f
CL
626static int slab_pad_check(struct kmem_cache *s, struct page *page)
627{
24922684
CL
628 u8 *start;
629 u8 *fault;
630 u8 *end;
631 int length;
632 int remainder;
81819f0f
CL
633
634 if (!(s->flags & SLAB_POISON))
635 return 1;
636
a973e9dd 637 start = page_address(page);
834f3d11 638 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
639 end = start + length;
640 remainder = length % s->size;
81819f0f
CL
641 if (!remainder)
642 return 1;
643
39b26464 644 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
645 if (!fault)
646 return 1;
647 while (end > fault && end[-1] == POISON_INUSE)
648 end--;
649
650 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 651 print_section("Padding", end - remainder, remainder);
24922684
CL
652
653 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
654 return 0;
81819f0f
CL
655}
656
657static int check_object(struct kmem_cache *s, struct page *page,
658 void *object, int active)
659{
660 u8 *p = object;
661 u8 *endobject = object + s->objsize;
662
663 if (s->flags & SLAB_RED_ZONE) {
664 unsigned int red =
665 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
666
24922684
CL
667 if (!check_bytes_and_report(s, page, object, "Redzone",
668 endobject, red, s->inuse - s->objsize))
81819f0f 669 return 0;
81819f0f 670 } else {
3adbefee
IM
671 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
672 check_bytes_and_report(s, page, p, "Alignment padding",
673 endobject, POISON_INUSE, s->inuse - s->objsize);
674 }
81819f0f
CL
675 }
676
677 if (s->flags & SLAB_POISON) {
678 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
679 (!check_bytes_and_report(s, page, p, "Poison", p,
680 POISON_FREE, s->objsize - 1) ||
681 !check_bytes_and_report(s, page, p, "Poison",
06428780 682 p + s->objsize - 1, POISON_END, 1)))
81819f0f 683 return 0;
81819f0f
CL
684 /*
685 * check_pad_bytes cleans up on its own.
686 */
687 check_pad_bytes(s, page, p);
688 }
689
690 if (!s->offset && active)
691 /*
692 * Object and freepointer overlap. Cannot check
693 * freepointer while object is allocated.
694 */
695 return 1;
696
697 /* Check free pointer validity */
698 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
699 object_err(s, page, p, "Freepointer corrupt");
700 /*
9f6c708e 701 * No choice but to zap it and thus lose the remainder
81819f0f 702 * of the free objects in this slab. May cause
672bba3a 703 * another error because the object count is now wrong.
81819f0f 704 */
a973e9dd 705 set_freepointer(s, p, NULL);
81819f0f
CL
706 return 0;
707 }
708 return 1;
709}
710
711static int check_slab(struct kmem_cache *s, struct page *page)
712{
39b26464
CL
713 int maxobj;
714
81819f0f
CL
715 VM_BUG_ON(!irqs_disabled());
716
717 if (!PageSlab(page)) {
24922684 718 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
719 return 0;
720 }
39b26464
CL
721
722 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
723 if (page->objects > maxobj) {
724 slab_err(s, page, "objects %u > max %u",
725 s->name, page->objects, maxobj);
726 return 0;
727 }
728 if (page->inuse > page->objects) {
24922684 729 slab_err(s, page, "inuse %u > max %u",
39b26464 730 s->name, page->inuse, page->objects);
81819f0f
CL
731 return 0;
732 }
733 /* Slab_pad_check fixes things up after itself */
734 slab_pad_check(s, page);
735 return 1;
736}
737
738/*
672bba3a
CL
739 * Determine if a certain object on a page is on the freelist. Must hold the
740 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
741 */
742static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
743{
744 int nr = 0;
745 void *fp = page->freelist;
746 void *object = NULL;
224a88be 747 unsigned long max_objects;
81819f0f 748
39b26464 749 while (fp && nr <= page->objects) {
81819f0f
CL
750 if (fp == search)
751 return 1;
752 if (!check_valid_pointer(s, page, fp)) {
753 if (object) {
754 object_err(s, page, object,
755 "Freechain corrupt");
a973e9dd 756 set_freepointer(s, object, NULL);
81819f0f
CL
757 break;
758 } else {
24922684 759 slab_err(s, page, "Freepointer corrupt");
a973e9dd 760 page->freelist = NULL;
39b26464 761 page->inuse = page->objects;
24922684 762 slab_fix(s, "Freelist cleared");
81819f0f
CL
763 return 0;
764 }
765 break;
766 }
767 object = fp;
768 fp = get_freepointer(s, object);
769 nr++;
770 }
771
224a88be 772 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
773 if (max_objects > MAX_OBJS_PER_PAGE)
774 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
775
776 if (page->objects != max_objects) {
777 slab_err(s, page, "Wrong number of objects. Found %d but "
778 "should be %d", page->objects, max_objects);
779 page->objects = max_objects;
780 slab_fix(s, "Number of objects adjusted.");
781 }
39b26464 782 if (page->inuse != page->objects - nr) {
70d71228 783 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
784 "counted were %d", page->inuse, page->objects - nr);
785 page->inuse = page->objects - nr;
24922684 786 slab_fix(s, "Object count adjusted.");
81819f0f
CL
787 }
788 return search == NULL;
789}
790
0121c619
CL
791static void trace(struct kmem_cache *s, struct page *page, void *object,
792 int alloc)
3ec09742
CL
793{
794 if (s->flags & SLAB_TRACE) {
795 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
796 s->name,
797 alloc ? "alloc" : "free",
798 object, page->inuse,
799 page->freelist);
800
801 if (!alloc)
802 print_section("Object", (void *)object, s->objsize);
803
804 dump_stack();
805 }
806}
807
643b1138 808/*
672bba3a 809 * Tracking of fully allocated slabs for debugging purposes.
643b1138 810 */
e95eed57 811static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 812{
643b1138
CL
813 spin_lock(&n->list_lock);
814 list_add(&page->lru, &n->full);
815 spin_unlock(&n->list_lock);
816}
817
818static void remove_full(struct kmem_cache *s, struct page *page)
819{
820 struct kmem_cache_node *n;
821
822 if (!(s->flags & SLAB_STORE_USER))
823 return;
824
825 n = get_node(s, page_to_nid(page));
826
827 spin_lock(&n->list_lock);
828 list_del(&page->lru);
829 spin_unlock(&n->list_lock);
830}
831
0f389ec6
CL
832/* Tracking of the number of slabs for debugging purposes */
833static inline unsigned long slabs_node(struct kmem_cache *s, int node)
834{
835 struct kmem_cache_node *n = get_node(s, node);
836
837 return atomic_long_read(&n->nr_slabs);
838}
839
205ab99d 840static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
841{
842 struct kmem_cache_node *n = get_node(s, node);
843
844 /*
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
849 */
205ab99d 850 if (!NUMA_BUILD || n) {
0f389ec6 851 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
852 atomic_long_add(objects, &n->total_objects);
853 }
0f389ec6 854}
205ab99d 855static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
856{
857 struct kmem_cache_node *n = get_node(s, node);
858
859 atomic_long_dec(&n->nr_slabs);
205ab99d 860 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
861}
862
863/* Object debug checks for alloc/free paths */
3ec09742
CL
864static void setup_object_debug(struct kmem_cache *s, struct page *page,
865 void *object)
866{
867 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
868 return;
869
870 init_object(s, object, 0);
871 init_tracking(s, object);
872}
873
874static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
35995a4d 875 void *object, unsigned long addr)
81819f0f
CL
876{
877 if (!check_slab(s, page))
878 goto bad;
879
d692ef6d 880 if (!on_freelist(s, page, object)) {
24922684 881 object_err(s, page, object, "Object already allocated");
70d71228 882 goto bad;
81819f0f
CL
883 }
884
885 if (!check_valid_pointer(s, page, object)) {
886 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 887 goto bad;
81819f0f
CL
888 }
889
d692ef6d 890 if (!check_object(s, page, object, 0))
81819f0f 891 goto bad;
81819f0f 892
3ec09742
CL
893 /* Success perform special debug activities for allocs */
894 if (s->flags & SLAB_STORE_USER)
895 set_track(s, object, TRACK_ALLOC, addr);
896 trace(s, page, object, 1);
897 init_object(s, object, 1);
81819f0f 898 return 1;
3ec09742 899
81819f0f
CL
900bad:
901 if (PageSlab(page)) {
902 /*
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
672bba3a 905 * as used avoids touching the remaining objects.
81819f0f 906 */
24922684 907 slab_fix(s, "Marking all objects used");
39b26464 908 page->inuse = page->objects;
a973e9dd 909 page->freelist = NULL;
81819f0f
CL
910 }
911 return 0;
912}
913
3ec09742 914static int free_debug_processing(struct kmem_cache *s, struct page *page,
35995a4d 915 void *object, unsigned long addr)
81819f0f
CL
916{
917 if (!check_slab(s, page))
918 goto fail;
919
920 if (!check_valid_pointer(s, page, object)) {
70d71228 921 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
922 goto fail;
923 }
924
925 if (on_freelist(s, page, object)) {
24922684 926 object_err(s, page, object, "Object already free");
81819f0f
CL
927 goto fail;
928 }
929
930 if (!check_object(s, page, object, 1))
931 return 0;
932
933 if (unlikely(s != page->slab)) {
3adbefee 934 if (!PageSlab(page)) {
70d71228
CL
935 slab_err(s, page, "Attempt to free object(0x%p) "
936 "outside of slab", object);
3adbefee 937 } else if (!page->slab) {
81819f0f 938 printk(KERN_ERR
70d71228 939 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 940 object);
70d71228 941 dump_stack();
06428780 942 } else
24922684
CL
943 object_err(s, page, object,
944 "page slab pointer corrupt.");
81819f0f
CL
945 goto fail;
946 }
3ec09742
CL
947
948 /* Special debug activities for freeing objects */
8a38082d 949 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
950 remove_full(s, page);
951 if (s->flags & SLAB_STORE_USER)
952 set_track(s, object, TRACK_FREE, addr);
953 trace(s, page, object, 0);
954 init_object(s, object, 0);
81819f0f 955 return 1;
3ec09742 956
81819f0f 957fail:
24922684 958 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
959 return 0;
960}
961
41ecc55b
CL
962static int __init setup_slub_debug(char *str)
963{
f0630fff
CL
964 slub_debug = DEBUG_DEFAULT_FLAGS;
965 if (*str++ != '=' || !*str)
966 /*
967 * No options specified. Switch on full debugging.
968 */
969 goto out;
970
971 if (*str == ',')
972 /*
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
975 */
976 goto check_slabs;
977
978 slub_debug = 0;
979 if (*str == '-')
980 /*
981 * Switch off all debugging measures.
982 */
983 goto out;
984
985 /*
986 * Determine which debug features should be switched on
987 */
06428780 988 for (; *str && *str != ','; str++) {
f0630fff
CL
989 switch (tolower(*str)) {
990 case 'f':
991 slub_debug |= SLAB_DEBUG_FREE;
992 break;
993 case 'z':
994 slub_debug |= SLAB_RED_ZONE;
995 break;
996 case 'p':
997 slub_debug |= SLAB_POISON;
998 break;
999 case 'u':
1000 slub_debug |= SLAB_STORE_USER;
1001 break;
1002 case 't':
1003 slub_debug |= SLAB_TRACE;
1004 break;
1005 default:
1006 printk(KERN_ERR "slub_debug option '%c' "
06428780 1007 "unknown. skipped\n", *str);
f0630fff 1008 }
41ecc55b
CL
1009 }
1010
f0630fff 1011check_slabs:
41ecc55b
CL
1012 if (*str == ',')
1013 slub_debug_slabs = str + 1;
f0630fff 1014out:
41ecc55b
CL
1015 return 1;
1016}
1017
1018__setup("slub_debug", setup_slub_debug);
1019
ba0268a8
CL
1020static unsigned long kmem_cache_flags(unsigned long objsize,
1021 unsigned long flags, const char *name,
51cc5068 1022 void (*ctor)(void *))
41ecc55b
CL
1023{
1024 /*
e153362a 1025 * Enable debugging if selected on the kernel commandline.
41ecc55b 1026 */
e153362a
CL
1027 if (slub_debug && (!slub_debug_slabs ||
1028 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1029 flags |= slub_debug;
ba0268a8
CL
1030
1031 return flags;
41ecc55b
CL
1032}
1033#else
3ec09742
CL
1034static inline void setup_object_debug(struct kmem_cache *s,
1035 struct page *page, void *object) {}
41ecc55b 1036
3ec09742 1037static inline int alloc_debug_processing(struct kmem_cache *s,
35995a4d 1038 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1039
3ec09742 1040static inline int free_debug_processing(struct kmem_cache *s,
35995a4d 1041 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1042
41ecc55b
CL
1043static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1044 { return 1; }
1045static inline int check_object(struct kmem_cache *s, struct page *page,
1046 void *object, int active) { return 1; }
3ec09742 1047static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1048static inline unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
51cc5068 1050 void (*ctor)(void *))
ba0268a8
CL
1051{
1052 return flags;
1053}
41ecc55b 1054#define slub_debug 0
0f389ec6
CL
1055
1056static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
205ab99d
CL
1058static inline void inc_slabs_node(struct kmem_cache *s, int node,
1059 int objects) {}
1060static inline void dec_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
41ecc55b 1062#endif
205ab99d 1063
81819f0f
CL
1064/*
1065 * Slab allocation and freeing
1066 */
65c3376a
CL
1067static inline struct page *alloc_slab_page(gfp_t flags, int node,
1068 struct kmem_cache_order_objects oo)
1069{
1070 int order = oo_order(oo);
1071
1072 if (node == -1)
1073 return alloc_pages(flags, order);
1074 else
1075 return alloc_pages_node(node, flags, order);
1076}
1077
81819f0f
CL
1078static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1079{
06428780 1080 struct page *page;
834f3d11 1081 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1082
b7a49f0d 1083 flags |= s->allocflags;
e12ba74d 1084
65c3376a
CL
1085 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1086 oo);
1087 if (unlikely(!page)) {
1088 oo = s->min;
1089 /*
1090 * Allocation may have failed due to fragmentation.
1091 * Try a lower order alloc if possible
1092 */
1093 page = alloc_slab_page(flags, node, oo);
1094 if (!page)
1095 return NULL;
81819f0f 1096
65c3376a
CL
1097 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1098 }
834f3d11 1099 page->objects = oo_objects(oo);
81819f0f
CL
1100 mod_zone_page_state(page_zone(page),
1101 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1102 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1103 1 << oo_order(oo));
81819f0f
CL
1104
1105 return page;
1106}
1107
1108static void setup_object(struct kmem_cache *s, struct page *page,
1109 void *object)
1110{
3ec09742 1111 setup_object_debug(s, page, object);
4f104934 1112 if (unlikely(s->ctor))
51cc5068 1113 s->ctor(object);
81819f0f
CL
1114}
1115
1116static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1117{
1118 struct page *page;
81819f0f 1119 void *start;
81819f0f
CL
1120 void *last;
1121 void *p;
1122
6cb06229 1123 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1124
6cb06229
CL
1125 page = allocate_slab(s,
1126 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1127 if (!page)
1128 goto out;
1129
205ab99d 1130 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1131 page->slab = s;
1132 page->flags |= 1 << PG_slab;
1133 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1134 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1135 __SetPageSlubDebug(page);
81819f0f
CL
1136
1137 start = page_address(page);
81819f0f
CL
1138
1139 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1140 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1141
1142 last = start;
224a88be 1143 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1144 setup_object(s, page, last);
1145 set_freepointer(s, last, p);
1146 last = p;
1147 }
1148 setup_object(s, page, last);
a973e9dd 1149 set_freepointer(s, last, NULL);
81819f0f
CL
1150
1151 page->freelist = start;
1152 page->inuse = 0;
1153out:
81819f0f
CL
1154 return page;
1155}
1156
1157static void __free_slab(struct kmem_cache *s, struct page *page)
1158{
834f3d11
CL
1159 int order = compound_order(page);
1160 int pages = 1 << order;
81819f0f 1161
8a38082d 1162 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1163 void *p;
1164
1165 slab_pad_check(s, page);
224a88be
CL
1166 for_each_object(p, s, page_address(page),
1167 page->objects)
81819f0f 1168 check_object(s, page, p, 0);
8a38082d 1169 __ClearPageSlubDebug(page);
81819f0f
CL
1170 }
1171
1172 mod_zone_page_state(page_zone(page),
1173 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1174 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1175 -pages);
81819f0f 1176
49bd5221
CL
1177 __ClearPageSlab(page);
1178 reset_page_mapcount(page);
834f3d11 1179 __free_pages(page, order);
81819f0f
CL
1180}
1181
1182static void rcu_free_slab(struct rcu_head *h)
1183{
1184 struct page *page;
1185
1186 page = container_of((struct list_head *)h, struct page, lru);
1187 __free_slab(page->slab, page);
1188}
1189
1190static void free_slab(struct kmem_cache *s, struct page *page)
1191{
1192 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1193 /*
1194 * RCU free overloads the RCU head over the LRU
1195 */
1196 struct rcu_head *head = (void *)&page->lru;
1197
1198 call_rcu(head, rcu_free_slab);
1199 } else
1200 __free_slab(s, page);
1201}
1202
1203static void discard_slab(struct kmem_cache *s, struct page *page)
1204{
205ab99d 1205 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1206 free_slab(s, page);
1207}
1208
1209/*
1210 * Per slab locking using the pagelock
1211 */
1212static __always_inline void slab_lock(struct page *page)
1213{
1214 bit_spin_lock(PG_locked, &page->flags);
1215}
1216
1217static __always_inline void slab_unlock(struct page *page)
1218{
a76d3546 1219 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1220}
1221
1222static __always_inline int slab_trylock(struct page *page)
1223{
1224 int rc = 1;
1225
1226 rc = bit_spin_trylock(PG_locked, &page->flags);
1227 return rc;
1228}
1229
1230/*
1231 * Management of partially allocated slabs
1232 */
7c2e132c
CL
1233static void add_partial(struct kmem_cache_node *n,
1234 struct page *page, int tail)
81819f0f 1235{
e95eed57
CL
1236 spin_lock(&n->list_lock);
1237 n->nr_partial++;
7c2e132c
CL
1238 if (tail)
1239 list_add_tail(&page->lru, &n->partial);
1240 else
1241 list_add(&page->lru, &n->partial);
81819f0f
CL
1242 spin_unlock(&n->list_lock);
1243}
1244
0121c619 1245static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1246{
1247 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1248
1249 spin_lock(&n->list_lock);
1250 list_del(&page->lru);
1251 n->nr_partial--;
1252 spin_unlock(&n->list_lock);
1253}
1254
1255/*
672bba3a 1256 * Lock slab and remove from the partial list.
81819f0f 1257 *
672bba3a 1258 * Must hold list_lock.
81819f0f 1259 */
0121c619
CL
1260static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1261 struct page *page)
81819f0f
CL
1262{
1263 if (slab_trylock(page)) {
1264 list_del(&page->lru);
1265 n->nr_partial--;
8a38082d 1266 __SetPageSlubFrozen(page);
81819f0f
CL
1267 return 1;
1268 }
1269 return 0;
1270}
1271
1272/*
672bba3a 1273 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1274 */
1275static struct page *get_partial_node(struct kmem_cache_node *n)
1276{
1277 struct page *page;
1278
1279 /*
1280 * Racy check. If we mistakenly see no partial slabs then we
1281 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1282 * partial slab and there is none available then get_partials()
1283 * will return NULL.
81819f0f
CL
1284 */
1285 if (!n || !n->nr_partial)
1286 return NULL;
1287
1288 spin_lock(&n->list_lock);
1289 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1290 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1291 goto out;
1292 page = NULL;
1293out:
1294 spin_unlock(&n->list_lock);
1295 return page;
1296}
1297
1298/*
672bba3a 1299 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1300 */
1301static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1302{
1303#ifdef CONFIG_NUMA
1304 struct zonelist *zonelist;
dd1a239f 1305 struct zoneref *z;
54a6eb5c
MG
1306 struct zone *zone;
1307 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1308 struct page *page;
1309
1310 /*
672bba3a
CL
1311 * The defrag ratio allows a configuration of the tradeoffs between
1312 * inter node defragmentation and node local allocations. A lower
1313 * defrag_ratio increases the tendency to do local allocations
1314 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1315 *
672bba3a
CL
1316 * If the defrag_ratio is set to 0 then kmalloc() always
1317 * returns node local objects. If the ratio is higher then kmalloc()
1318 * may return off node objects because partial slabs are obtained
1319 * from other nodes and filled up.
81819f0f 1320 *
6446faa2 1321 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1322 * defrag_ratio = 1000) then every (well almost) allocation will
1323 * first attempt to defrag slab caches on other nodes. This means
1324 * scanning over all nodes to look for partial slabs which may be
1325 * expensive if we do it every time we are trying to find a slab
1326 * with available objects.
81819f0f 1327 */
9824601e
CL
1328 if (!s->remote_node_defrag_ratio ||
1329 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1330 return NULL;
1331
0e88460d 1332 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1333 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1334 struct kmem_cache_node *n;
1335
54a6eb5c 1336 n = get_node(s, zone_to_nid(zone));
81819f0f 1337
54a6eb5c 1338 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
5595cffc 1339 n->nr_partial > n->min_partial) {
81819f0f
CL
1340 page = get_partial_node(n);
1341 if (page)
1342 return page;
1343 }
1344 }
1345#endif
1346 return NULL;
1347}
1348
1349/*
1350 * Get a partial page, lock it and return it.
1351 */
1352static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1353{
1354 struct page *page;
1355 int searchnode = (node == -1) ? numa_node_id() : node;
1356
1357 page = get_partial_node(get_node(s, searchnode));
1358 if (page || (flags & __GFP_THISNODE))
1359 return page;
1360
1361 return get_any_partial(s, flags);
1362}
1363
1364/*
1365 * Move a page back to the lists.
1366 *
1367 * Must be called with the slab lock held.
1368 *
1369 * On exit the slab lock will have been dropped.
1370 */
7c2e132c 1371static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1372{
e95eed57 1373 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1374 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1375
8a38082d 1376 __ClearPageSlubFrozen(page);
81819f0f 1377 if (page->inuse) {
e95eed57 1378
a973e9dd 1379 if (page->freelist) {
7c2e132c 1380 add_partial(n, page, tail);
8ff12cfc
CL
1381 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1382 } else {
1383 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1384 if (SLABDEBUG && PageSlubDebug(page) &&
1385 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1386 add_full(n, page);
1387 }
81819f0f
CL
1388 slab_unlock(page);
1389 } else {
8ff12cfc 1390 stat(c, DEACTIVATE_EMPTY);
5595cffc 1391 if (n->nr_partial < n->min_partial) {
e95eed57 1392 /*
672bba3a
CL
1393 * Adding an empty slab to the partial slabs in order
1394 * to avoid page allocator overhead. This slab needs
1395 * to come after the other slabs with objects in
6446faa2
CL
1396 * so that the others get filled first. That way the
1397 * size of the partial list stays small.
1398 *
0121c619
CL
1399 * kmem_cache_shrink can reclaim any empty slabs from
1400 * the partial list.
e95eed57 1401 */
7c2e132c 1402 add_partial(n, page, 1);
e95eed57
CL
1403 slab_unlock(page);
1404 } else {
1405 slab_unlock(page);
8ff12cfc 1406 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1407 discard_slab(s, page);
1408 }
81819f0f
CL
1409 }
1410}
1411
1412/*
1413 * Remove the cpu slab
1414 */
dfb4f096 1415static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1416{
dfb4f096 1417 struct page *page = c->page;
7c2e132c 1418 int tail = 1;
8ff12cfc 1419
b773ad73 1420 if (page->freelist)
8ff12cfc 1421 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1422 /*
6446faa2 1423 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1424 * because both freelists are empty. So this is unlikely
1425 * to occur.
1426 */
a973e9dd 1427 while (unlikely(c->freelist)) {
894b8788
CL
1428 void **object;
1429
7c2e132c
CL
1430 tail = 0; /* Hot objects. Put the slab first */
1431
894b8788 1432 /* Retrieve object from cpu_freelist */
dfb4f096 1433 object = c->freelist;
b3fba8da 1434 c->freelist = c->freelist[c->offset];
894b8788
CL
1435
1436 /* And put onto the regular freelist */
b3fba8da 1437 object[c->offset] = page->freelist;
894b8788
CL
1438 page->freelist = object;
1439 page->inuse--;
1440 }
dfb4f096 1441 c->page = NULL;
7c2e132c 1442 unfreeze_slab(s, page, tail);
81819f0f
CL
1443}
1444
dfb4f096 1445static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1446{
8ff12cfc 1447 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1448 slab_lock(c->page);
1449 deactivate_slab(s, c);
81819f0f
CL
1450}
1451
1452/*
1453 * Flush cpu slab.
6446faa2 1454 *
81819f0f
CL
1455 * Called from IPI handler with interrupts disabled.
1456 */
0c710013 1457static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1458{
dfb4f096 1459 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1460
dfb4f096
CL
1461 if (likely(c && c->page))
1462 flush_slab(s, c);
81819f0f
CL
1463}
1464
1465static void flush_cpu_slab(void *d)
1466{
1467 struct kmem_cache *s = d;
81819f0f 1468
dfb4f096 1469 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1470}
1471
1472static void flush_all(struct kmem_cache *s)
1473{
15c8b6c1 1474 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1475}
1476
dfb4f096
CL
1477/*
1478 * Check if the objects in a per cpu structure fit numa
1479 * locality expectations.
1480 */
1481static inline int node_match(struct kmem_cache_cpu *c, int node)
1482{
1483#ifdef CONFIG_NUMA
1484 if (node != -1 && c->node != node)
1485 return 0;
1486#endif
1487 return 1;
1488}
1489
81819f0f 1490/*
894b8788
CL
1491 * Slow path. The lockless freelist is empty or we need to perform
1492 * debugging duties.
1493 *
1494 * Interrupts are disabled.
81819f0f 1495 *
894b8788
CL
1496 * Processing is still very fast if new objects have been freed to the
1497 * regular freelist. In that case we simply take over the regular freelist
1498 * as the lockless freelist and zap the regular freelist.
81819f0f 1499 *
894b8788
CL
1500 * If that is not working then we fall back to the partial lists. We take the
1501 * first element of the freelist as the object to allocate now and move the
1502 * rest of the freelist to the lockless freelist.
81819f0f 1503 *
894b8788 1504 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1505 * we need to allocate a new slab. This is the slowest path since it involves
1506 * a call to the page allocator and the setup of a new slab.
81819f0f 1507 */
35995a4d
EGM
1508static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1509 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1510{
81819f0f 1511 void **object;
dfb4f096 1512 struct page *new;
81819f0f 1513
e72e9c23
LT
1514 /* We handle __GFP_ZERO in the caller */
1515 gfpflags &= ~__GFP_ZERO;
1516
dfb4f096 1517 if (!c->page)
81819f0f
CL
1518 goto new_slab;
1519
dfb4f096
CL
1520 slab_lock(c->page);
1521 if (unlikely(!node_match(c, node)))
81819f0f 1522 goto another_slab;
6446faa2 1523
8ff12cfc 1524 stat(c, ALLOC_REFILL);
6446faa2 1525
894b8788 1526load_freelist:
dfb4f096 1527 object = c->page->freelist;
a973e9dd 1528 if (unlikely(!object))
81819f0f 1529 goto another_slab;
8a38082d 1530 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1531 goto debug;
1532
b3fba8da 1533 c->freelist = object[c->offset];
39b26464 1534 c->page->inuse = c->page->objects;
a973e9dd 1535 c->page->freelist = NULL;
dfb4f096 1536 c->node = page_to_nid(c->page);
1f84260c 1537unlock_out:
dfb4f096 1538 slab_unlock(c->page);
8ff12cfc 1539 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1540 return object;
1541
1542another_slab:
dfb4f096 1543 deactivate_slab(s, c);
81819f0f
CL
1544
1545new_slab:
dfb4f096
CL
1546 new = get_partial(s, gfpflags, node);
1547 if (new) {
1548 c->page = new;
8ff12cfc 1549 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1550 goto load_freelist;
81819f0f
CL
1551 }
1552
b811c202
CL
1553 if (gfpflags & __GFP_WAIT)
1554 local_irq_enable();
1555
dfb4f096 1556 new = new_slab(s, gfpflags, node);
b811c202
CL
1557
1558 if (gfpflags & __GFP_WAIT)
1559 local_irq_disable();
1560
dfb4f096
CL
1561 if (new) {
1562 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1563 stat(c, ALLOC_SLAB);
05aa3450 1564 if (c->page)
dfb4f096 1565 flush_slab(s, c);
dfb4f096 1566 slab_lock(new);
8a38082d 1567 __SetPageSlubFrozen(new);
dfb4f096 1568 c->page = new;
4b6f0750 1569 goto load_freelist;
81819f0f 1570 }
71c7a06f 1571 return NULL;
81819f0f 1572debug:
dfb4f096 1573 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1574 goto another_slab;
894b8788 1575
dfb4f096 1576 c->page->inuse++;
b3fba8da 1577 c->page->freelist = object[c->offset];
ee3c72a1 1578 c->node = -1;
1f84260c 1579 goto unlock_out;
894b8788
CL
1580}
1581
1582/*
1583 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1584 * have the fastpath folded into their functions. So no function call
1585 * overhead for requests that can be satisfied on the fastpath.
1586 *
1587 * The fastpath works by first checking if the lockless freelist can be used.
1588 * If not then __slab_alloc is called for slow processing.
1589 *
1590 * Otherwise we can simply pick the next object from the lockless free list.
1591 */
06428780 1592static __always_inline void *slab_alloc(struct kmem_cache *s,
35995a4d 1593 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1594{
894b8788 1595 void **object;
dfb4f096 1596 struct kmem_cache_cpu *c;
1f84260c 1597 unsigned long flags;
bdb21928 1598 unsigned int objsize;
1f84260c 1599
89124d70 1600 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1601
773ff60e
AM
1602 if (should_failslab(s->objsize, gfpflags))
1603 return NULL;
1f84260c 1604
894b8788 1605 local_irq_save(flags);
dfb4f096 1606 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1607 objsize = c->objsize;
a973e9dd 1608 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1609
dfb4f096 1610 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1611
1612 else {
dfb4f096 1613 object = c->freelist;
b3fba8da 1614 c->freelist = object[c->offset];
8ff12cfc 1615 stat(c, ALLOC_FASTPATH);
894b8788
CL
1616 }
1617 local_irq_restore(flags);
d07dbea4
CL
1618
1619 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1620 memset(object, 0, objsize);
d07dbea4 1621
894b8788 1622 return object;
81819f0f
CL
1623}
1624
1625void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1626{
5b882be4
EGM
1627 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1628
1629 kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
1630 s->objsize, s->size, gfpflags);
1631
1632 return ret;
81819f0f
CL
1633}
1634EXPORT_SYMBOL(kmem_cache_alloc);
1635
5b882be4
EGM
1636#ifdef CONFIG_KMEMTRACE
1637void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1638{
1639 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1640}
1641EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1642#endif
1643
81819f0f
CL
1644#ifdef CONFIG_NUMA
1645void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1646{
5b882be4
EGM
1647 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1648
1649 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
1650 s->objsize, s->size, gfpflags, node);
1651
1652 return ret;
81819f0f
CL
1653}
1654EXPORT_SYMBOL(kmem_cache_alloc_node);
1655#endif
1656
5b882be4
EGM
1657#ifdef CONFIG_KMEMTRACE
1658void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1659 gfp_t gfpflags,
1660 int node)
1661{
1662 return slab_alloc(s, gfpflags, node, _RET_IP_);
1663}
1664EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1665#endif
1666
81819f0f 1667/*
894b8788
CL
1668 * Slow patch handling. This may still be called frequently since objects
1669 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1670 *
894b8788
CL
1671 * So we still attempt to reduce cache line usage. Just take the slab
1672 * lock and free the item. If there is no additional partial page
1673 * handling required then we can return immediately.
81819f0f 1674 */
894b8788 1675static void __slab_free(struct kmem_cache *s, struct page *page,
35995a4d 1676 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1677{
1678 void *prior;
1679 void **object = (void *)x;
8ff12cfc 1680 struct kmem_cache_cpu *c;
81819f0f 1681
8ff12cfc
CL
1682 c = get_cpu_slab(s, raw_smp_processor_id());
1683 stat(c, FREE_SLOWPATH);
81819f0f
CL
1684 slab_lock(page);
1685
8a38082d 1686 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1687 goto debug;
6446faa2 1688
81819f0f 1689checks_ok:
b3fba8da 1690 prior = object[offset] = page->freelist;
81819f0f
CL
1691 page->freelist = object;
1692 page->inuse--;
1693
8a38082d 1694 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1695 stat(c, FREE_FROZEN);
81819f0f 1696 goto out_unlock;
8ff12cfc 1697 }
81819f0f
CL
1698
1699 if (unlikely(!page->inuse))
1700 goto slab_empty;
1701
1702 /*
6446faa2 1703 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1704 * then add it.
1705 */
a973e9dd 1706 if (unlikely(!prior)) {
7c2e132c 1707 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1708 stat(c, FREE_ADD_PARTIAL);
1709 }
81819f0f
CL
1710
1711out_unlock:
1712 slab_unlock(page);
81819f0f
CL
1713 return;
1714
1715slab_empty:
a973e9dd 1716 if (prior) {
81819f0f 1717 /*
672bba3a 1718 * Slab still on the partial list.
81819f0f
CL
1719 */
1720 remove_partial(s, page);
8ff12cfc
CL
1721 stat(c, FREE_REMOVE_PARTIAL);
1722 }
81819f0f 1723 slab_unlock(page);
8ff12cfc 1724 stat(c, FREE_SLAB);
81819f0f 1725 discard_slab(s, page);
81819f0f
CL
1726 return;
1727
1728debug:
3ec09742 1729 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1730 goto out_unlock;
77c5e2d0 1731 goto checks_ok;
81819f0f
CL
1732}
1733
894b8788
CL
1734/*
1735 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1736 * can perform fastpath freeing without additional function calls.
1737 *
1738 * The fastpath is only possible if we are freeing to the current cpu slab
1739 * of this processor. This typically the case if we have just allocated
1740 * the item before.
1741 *
1742 * If fastpath is not possible then fall back to __slab_free where we deal
1743 * with all sorts of special processing.
1744 */
06428780 1745static __always_inline void slab_free(struct kmem_cache *s,
35995a4d 1746 struct page *page, void *x, unsigned long addr)
894b8788
CL
1747{
1748 void **object = (void *)x;
dfb4f096 1749 struct kmem_cache_cpu *c;
1f84260c
CL
1750 unsigned long flags;
1751
894b8788 1752 local_irq_save(flags);
dfb4f096 1753 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1754 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a
TG
1755 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1757 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1758 object[c->offset] = c->freelist;
dfb4f096 1759 c->freelist = object;
8ff12cfc 1760 stat(c, FREE_FASTPATH);
894b8788 1761 } else
b3fba8da 1762 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1763
1764 local_irq_restore(flags);
1765}
1766
81819f0f
CL
1767void kmem_cache_free(struct kmem_cache *s, void *x)
1768{
77c5e2d0 1769 struct page *page;
81819f0f 1770
b49af68f 1771 page = virt_to_head_page(x);
81819f0f 1772
35995a4d 1773 slab_free(s, page, x, _RET_IP_);
5b882be4
EGM
1774
1775 kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, x);
81819f0f
CL
1776}
1777EXPORT_SYMBOL(kmem_cache_free);
1778
e9beef18 1779/* Figure out on which slab page the object resides */
81819f0f
CL
1780static struct page *get_object_page(const void *x)
1781{
b49af68f 1782 struct page *page = virt_to_head_page(x);
81819f0f
CL
1783
1784 if (!PageSlab(page))
1785 return NULL;
1786
1787 return page;
1788}
1789
1790/*
672bba3a
CL
1791 * Object placement in a slab is made very easy because we always start at
1792 * offset 0. If we tune the size of the object to the alignment then we can
1793 * get the required alignment by putting one properly sized object after
1794 * another.
81819f0f
CL
1795 *
1796 * Notice that the allocation order determines the sizes of the per cpu
1797 * caches. Each processor has always one slab available for allocations.
1798 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1799 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1800 * locking overhead.
81819f0f
CL
1801 */
1802
1803/*
1804 * Mininum / Maximum order of slab pages. This influences locking overhead
1805 * and slab fragmentation. A higher order reduces the number of partial slabs
1806 * and increases the number of allocations possible without having to
1807 * take the list_lock.
1808 */
1809static int slub_min_order;
114e9e89 1810static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1811static int slub_min_objects;
81819f0f
CL
1812
1813/*
1814 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1815 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1816 */
1817static int slub_nomerge;
1818
81819f0f
CL
1819/*
1820 * Calculate the order of allocation given an slab object size.
1821 *
672bba3a
CL
1822 * The order of allocation has significant impact on performance and other
1823 * system components. Generally order 0 allocations should be preferred since
1824 * order 0 does not cause fragmentation in the page allocator. Larger objects
1825 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1826 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1827 * would be wasted.
1828 *
1829 * In order to reach satisfactory performance we must ensure that a minimum
1830 * number of objects is in one slab. Otherwise we may generate too much
1831 * activity on the partial lists which requires taking the list_lock. This is
1832 * less a concern for large slabs though which are rarely used.
81819f0f 1833 *
672bba3a
CL
1834 * slub_max_order specifies the order where we begin to stop considering the
1835 * number of objects in a slab as critical. If we reach slub_max_order then
1836 * we try to keep the page order as low as possible. So we accept more waste
1837 * of space in favor of a small page order.
81819f0f 1838 *
672bba3a
CL
1839 * Higher order allocations also allow the placement of more objects in a
1840 * slab and thereby reduce object handling overhead. If the user has
1841 * requested a higher mininum order then we start with that one instead of
1842 * the smallest order which will fit the object.
81819f0f 1843 */
5e6d444e
CL
1844static inline int slab_order(int size, int min_objects,
1845 int max_order, int fract_leftover)
81819f0f
CL
1846{
1847 int order;
1848 int rem;
6300ea75 1849 int min_order = slub_min_order;
81819f0f 1850
210b5c06
CG
1851 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1852 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1853
6300ea75 1854 for (order = max(min_order,
5e6d444e
CL
1855 fls(min_objects * size - 1) - PAGE_SHIFT);
1856 order <= max_order; order++) {
81819f0f 1857
5e6d444e 1858 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1859
5e6d444e 1860 if (slab_size < min_objects * size)
81819f0f
CL
1861 continue;
1862
1863 rem = slab_size % size;
1864
5e6d444e 1865 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1866 break;
1867
1868 }
672bba3a 1869
81819f0f
CL
1870 return order;
1871}
1872
5e6d444e
CL
1873static inline int calculate_order(int size)
1874{
1875 int order;
1876 int min_objects;
1877 int fraction;
1878
1879 /*
1880 * Attempt to find best configuration for a slab. This
1881 * works by first attempting to generate a layout with
1882 * the best configuration and backing off gradually.
1883 *
1884 * First we reduce the acceptable waste in a slab. Then
1885 * we reduce the minimum objects required in a slab.
1886 */
1887 min_objects = slub_min_objects;
9b2cd506
CL
1888 if (!min_objects)
1889 min_objects = 4 * (fls(nr_cpu_ids) + 1);
5e6d444e 1890 while (min_objects > 1) {
c124f5b5 1891 fraction = 16;
5e6d444e
CL
1892 while (fraction >= 4) {
1893 order = slab_order(size, min_objects,
1894 slub_max_order, fraction);
1895 if (order <= slub_max_order)
1896 return order;
1897 fraction /= 2;
1898 }
1899 min_objects /= 2;
1900 }
1901
1902 /*
1903 * We were unable to place multiple objects in a slab. Now
1904 * lets see if we can place a single object there.
1905 */
1906 order = slab_order(size, 1, slub_max_order, 1);
1907 if (order <= slub_max_order)
1908 return order;
1909
1910 /*
1911 * Doh this slab cannot be placed using slub_max_order.
1912 */
1913 order = slab_order(size, 1, MAX_ORDER, 1);
1914 if (order <= MAX_ORDER)
1915 return order;
1916 return -ENOSYS;
1917}
1918
81819f0f 1919/*
672bba3a 1920 * Figure out what the alignment of the objects will be.
81819f0f
CL
1921 */
1922static unsigned long calculate_alignment(unsigned long flags,
1923 unsigned long align, unsigned long size)
1924{
1925 /*
6446faa2
CL
1926 * If the user wants hardware cache aligned objects then follow that
1927 * suggestion if the object is sufficiently large.
81819f0f 1928 *
6446faa2
CL
1929 * The hardware cache alignment cannot override the specified
1930 * alignment though. If that is greater then use it.
81819f0f 1931 */
b6210386
NP
1932 if (flags & SLAB_HWCACHE_ALIGN) {
1933 unsigned long ralign = cache_line_size();
1934 while (size <= ralign / 2)
1935 ralign /= 2;
1936 align = max(align, ralign);
1937 }
81819f0f
CL
1938
1939 if (align < ARCH_SLAB_MINALIGN)
b6210386 1940 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1941
1942 return ALIGN(align, sizeof(void *));
1943}
1944
dfb4f096
CL
1945static void init_kmem_cache_cpu(struct kmem_cache *s,
1946 struct kmem_cache_cpu *c)
1947{
1948 c->page = NULL;
a973e9dd 1949 c->freelist = NULL;
dfb4f096 1950 c->node = 0;
42a9fdbb
CL
1951 c->offset = s->offset / sizeof(void *);
1952 c->objsize = s->objsize;
62f75532
PE
1953#ifdef CONFIG_SLUB_STATS
1954 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1955#endif
dfb4f096
CL
1956}
1957
5595cffc
PE
1958static void
1959init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1960{
1961 n->nr_partial = 0;
5595cffc
PE
1962
1963 /*
1964 * The larger the object size is, the more pages we want on the partial
1965 * list to avoid pounding the page allocator excessively.
1966 */
1967 n->min_partial = ilog2(s->size);
1968 if (n->min_partial < MIN_PARTIAL)
1969 n->min_partial = MIN_PARTIAL;
1970 else if (n->min_partial > MAX_PARTIAL)
1971 n->min_partial = MAX_PARTIAL;
1972
81819f0f
CL
1973 spin_lock_init(&n->list_lock);
1974 INIT_LIST_HEAD(&n->partial);
8ab1372f 1975#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1976 atomic_long_set(&n->nr_slabs, 0);
02b71b70 1977 atomic_long_set(&n->total_objects, 0);
643b1138 1978 INIT_LIST_HEAD(&n->full);
8ab1372f 1979#endif
81819f0f
CL
1980}
1981
4c93c355
CL
1982#ifdef CONFIG_SMP
1983/*
1984 * Per cpu array for per cpu structures.
1985 *
1986 * The per cpu array places all kmem_cache_cpu structures from one processor
1987 * close together meaning that it becomes possible that multiple per cpu
1988 * structures are contained in one cacheline. This may be particularly
1989 * beneficial for the kmalloc caches.
1990 *
1991 * A desktop system typically has around 60-80 slabs. With 100 here we are
1992 * likely able to get per cpu structures for all caches from the array defined
1993 * here. We must be able to cover all kmalloc caches during bootstrap.
1994 *
1995 * If the per cpu array is exhausted then fall back to kmalloc
1996 * of individual cachelines. No sharing is possible then.
1997 */
1998#define NR_KMEM_CACHE_CPU 100
1999
2000static DEFINE_PER_CPU(struct kmem_cache_cpu,
2001 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2002
2003static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2004static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2005
2006static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2007 int cpu, gfp_t flags)
2008{
2009 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2010
2011 if (c)
2012 per_cpu(kmem_cache_cpu_free, cpu) =
2013 (void *)c->freelist;
2014 else {
2015 /* Table overflow: So allocate ourselves */
2016 c = kmalloc_node(
2017 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2018 flags, cpu_to_node(cpu));
2019 if (!c)
2020 return NULL;
2021 }
2022
2023 init_kmem_cache_cpu(s, c);
2024 return c;
2025}
2026
2027static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2028{
2029 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2030 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2031 kfree(c);
2032 return;
2033 }
2034 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2035 per_cpu(kmem_cache_cpu_free, cpu) = c;
2036}
2037
2038static void free_kmem_cache_cpus(struct kmem_cache *s)
2039{
2040 int cpu;
2041
2042 for_each_online_cpu(cpu) {
2043 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2044
2045 if (c) {
2046 s->cpu_slab[cpu] = NULL;
2047 free_kmem_cache_cpu(c, cpu);
2048 }
2049 }
2050}
2051
2052static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2053{
2054 int cpu;
2055
2056 for_each_online_cpu(cpu) {
2057 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2058
2059 if (c)
2060 continue;
2061
2062 c = alloc_kmem_cache_cpu(s, cpu, flags);
2063 if (!c) {
2064 free_kmem_cache_cpus(s);
2065 return 0;
2066 }
2067 s->cpu_slab[cpu] = c;
2068 }
2069 return 1;
2070}
2071
2072/*
2073 * Initialize the per cpu array.
2074 */
2075static void init_alloc_cpu_cpu(int cpu)
2076{
2077 int i;
2078
174596a0 2079 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2080 return;
2081
2082 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2083 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2084
174596a0 2085 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2086}
2087
2088static void __init init_alloc_cpu(void)
2089{
2090 int cpu;
2091
2092 for_each_online_cpu(cpu)
2093 init_alloc_cpu_cpu(cpu);
2094 }
2095
2096#else
2097static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2098static inline void init_alloc_cpu(void) {}
2099
2100static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2101{
2102 init_kmem_cache_cpu(s, &s->cpu_slab);
2103 return 1;
2104}
2105#endif
2106
81819f0f
CL
2107#ifdef CONFIG_NUMA
2108/*
2109 * No kmalloc_node yet so do it by hand. We know that this is the first
2110 * slab on the node for this slabcache. There are no concurrent accesses
2111 * possible.
2112 *
2113 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2114 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2115 * memory on a fresh node that has no slab structures yet.
81819f0f 2116 */
0094de92 2117static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2118{
2119 struct page *page;
2120 struct kmem_cache_node *n;
ba84c73c 2121 unsigned long flags;
81819f0f
CL
2122
2123 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2124
a2f92ee7 2125 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2126
2127 BUG_ON(!page);
a2f92ee7
CL
2128 if (page_to_nid(page) != node) {
2129 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2130 "node %d\n", node);
2131 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2132 "in order to be able to continue\n");
2133 }
2134
81819f0f
CL
2135 n = page->freelist;
2136 BUG_ON(!n);
2137 page->freelist = get_freepointer(kmalloc_caches, n);
2138 page->inuse++;
2139 kmalloc_caches->node[node] = n;
8ab1372f 2140#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2141 init_object(kmalloc_caches, n, 1);
2142 init_tracking(kmalloc_caches, n);
8ab1372f 2143#endif
5595cffc 2144 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2145 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2146
ba84c73c 2147 /*
2148 * lockdep requires consistent irq usage for each lock
2149 * so even though there cannot be a race this early in
2150 * the boot sequence, we still disable irqs.
2151 */
2152 local_irq_save(flags);
7c2e132c 2153 add_partial(n, page, 0);
ba84c73c 2154 local_irq_restore(flags);
81819f0f
CL
2155}
2156
2157static void free_kmem_cache_nodes(struct kmem_cache *s)
2158{
2159 int node;
2160
f64dc58c 2161 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2162 struct kmem_cache_node *n = s->node[node];
2163 if (n && n != &s->local_node)
2164 kmem_cache_free(kmalloc_caches, n);
2165 s->node[node] = NULL;
2166 }
2167}
2168
2169static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2170{
2171 int node;
2172 int local_node;
2173
2174 if (slab_state >= UP)
2175 local_node = page_to_nid(virt_to_page(s));
2176 else
2177 local_node = 0;
2178
f64dc58c 2179 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2180 struct kmem_cache_node *n;
2181
2182 if (local_node == node)
2183 n = &s->local_node;
2184 else {
2185 if (slab_state == DOWN) {
0094de92 2186 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2187 continue;
2188 }
2189 n = kmem_cache_alloc_node(kmalloc_caches,
2190 gfpflags, node);
2191
2192 if (!n) {
2193 free_kmem_cache_nodes(s);
2194 return 0;
2195 }
2196
2197 }
2198 s->node[node] = n;
5595cffc 2199 init_kmem_cache_node(n, s);
81819f0f
CL
2200 }
2201 return 1;
2202}
2203#else
2204static void free_kmem_cache_nodes(struct kmem_cache *s)
2205{
2206}
2207
2208static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2209{
5595cffc 2210 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2211 return 1;
2212}
2213#endif
2214
2215/*
2216 * calculate_sizes() determines the order and the distribution of data within
2217 * a slab object.
2218 */
06b285dc 2219static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2220{
2221 unsigned long flags = s->flags;
2222 unsigned long size = s->objsize;
2223 unsigned long align = s->align;
834f3d11 2224 int order;
81819f0f 2225
d8b42bf5
CL
2226 /*
2227 * Round up object size to the next word boundary. We can only
2228 * place the free pointer at word boundaries and this determines
2229 * the possible location of the free pointer.
2230 */
2231 size = ALIGN(size, sizeof(void *));
2232
2233#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2234 /*
2235 * Determine if we can poison the object itself. If the user of
2236 * the slab may touch the object after free or before allocation
2237 * then we should never poison the object itself.
2238 */
2239 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2240 !s->ctor)
81819f0f
CL
2241 s->flags |= __OBJECT_POISON;
2242 else
2243 s->flags &= ~__OBJECT_POISON;
2244
81819f0f
CL
2245
2246 /*
672bba3a 2247 * If we are Redzoning then check if there is some space between the
81819f0f 2248 * end of the object and the free pointer. If not then add an
672bba3a 2249 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2250 */
2251 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2252 size += sizeof(void *);
41ecc55b 2253#endif
81819f0f
CL
2254
2255 /*
672bba3a
CL
2256 * With that we have determined the number of bytes in actual use
2257 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2258 */
2259 s->inuse = size;
2260
2261 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2262 s->ctor)) {
81819f0f
CL
2263 /*
2264 * Relocate free pointer after the object if it is not
2265 * permitted to overwrite the first word of the object on
2266 * kmem_cache_free.
2267 *
2268 * This is the case if we do RCU, have a constructor or
2269 * destructor or are poisoning the objects.
2270 */
2271 s->offset = size;
2272 size += sizeof(void *);
2273 }
2274
c12b3c62 2275#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2276 if (flags & SLAB_STORE_USER)
2277 /*
2278 * Need to store information about allocs and frees after
2279 * the object.
2280 */
2281 size += 2 * sizeof(struct track);
2282
be7b3fbc 2283 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2284 /*
2285 * Add some empty padding so that we can catch
2286 * overwrites from earlier objects rather than let
2287 * tracking information or the free pointer be
0211a9c8 2288 * corrupted if a user writes before the start
81819f0f
CL
2289 * of the object.
2290 */
2291 size += sizeof(void *);
41ecc55b 2292#endif
672bba3a 2293
81819f0f
CL
2294 /*
2295 * Determine the alignment based on various parameters that the
65c02d4c
CL
2296 * user specified and the dynamic determination of cache line size
2297 * on bootup.
81819f0f
CL
2298 */
2299 align = calculate_alignment(flags, align, s->objsize);
2300
2301 /*
2302 * SLUB stores one object immediately after another beginning from
2303 * offset 0. In order to align the objects we have to simply size
2304 * each object to conform to the alignment.
2305 */
2306 size = ALIGN(size, align);
2307 s->size = size;
06b285dc
CL
2308 if (forced_order >= 0)
2309 order = forced_order;
2310 else
2311 order = calculate_order(size);
81819f0f 2312
834f3d11 2313 if (order < 0)
81819f0f
CL
2314 return 0;
2315
b7a49f0d 2316 s->allocflags = 0;
834f3d11 2317 if (order)
b7a49f0d
CL
2318 s->allocflags |= __GFP_COMP;
2319
2320 if (s->flags & SLAB_CACHE_DMA)
2321 s->allocflags |= SLUB_DMA;
2322
2323 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2324 s->allocflags |= __GFP_RECLAIMABLE;
2325
81819f0f
CL
2326 /*
2327 * Determine the number of objects per slab
2328 */
834f3d11 2329 s->oo = oo_make(order, size);
65c3376a 2330 s->min = oo_make(get_order(size), size);
205ab99d
CL
2331 if (oo_objects(s->oo) > oo_objects(s->max))
2332 s->max = s->oo;
81819f0f 2333
834f3d11 2334 return !!oo_objects(s->oo);
81819f0f
CL
2335
2336}
2337
81819f0f
CL
2338static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2339 const char *name, size_t size,
2340 size_t align, unsigned long flags,
51cc5068 2341 void (*ctor)(void *))
81819f0f
CL
2342{
2343 memset(s, 0, kmem_size);
2344 s->name = name;
2345 s->ctor = ctor;
81819f0f 2346 s->objsize = size;
81819f0f 2347 s->align = align;
ba0268a8 2348 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2349
06b285dc 2350 if (!calculate_sizes(s, -1))
81819f0f
CL
2351 goto error;
2352
2353 s->refcount = 1;
2354#ifdef CONFIG_NUMA
e2cb96b7 2355 s->remote_node_defrag_ratio = 1000;
81819f0f 2356#endif
dfb4f096
CL
2357 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2358 goto error;
81819f0f 2359
dfb4f096 2360 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2361 return 1;
4c93c355 2362 free_kmem_cache_nodes(s);
81819f0f
CL
2363error:
2364 if (flags & SLAB_PANIC)
2365 panic("Cannot create slab %s size=%lu realsize=%u "
2366 "order=%u offset=%u flags=%lx\n",
834f3d11 2367 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2368 s->offset, flags);
2369 return 0;
2370}
81819f0f
CL
2371
2372/*
2373 * Check if a given pointer is valid
2374 */
2375int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2376{
06428780 2377 struct page *page;
81819f0f
CL
2378
2379 page = get_object_page(object);
2380
2381 if (!page || s != page->slab)
2382 /* No slab or wrong slab */
2383 return 0;
2384
abcd08a6 2385 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2386 return 0;
2387
2388 /*
2389 * We could also check if the object is on the slabs freelist.
2390 * But this would be too expensive and it seems that the main
6446faa2 2391 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2392 * to a certain slab.
2393 */
2394 return 1;
2395}
2396EXPORT_SYMBOL(kmem_ptr_validate);
2397
2398/*
2399 * Determine the size of a slab object
2400 */
2401unsigned int kmem_cache_size(struct kmem_cache *s)
2402{
2403 return s->objsize;
2404}
2405EXPORT_SYMBOL(kmem_cache_size);
2406
2407const char *kmem_cache_name(struct kmem_cache *s)
2408{
2409 return s->name;
2410}
2411EXPORT_SYMBOL(kmem_cache_name);
2412
33b12c38
CL
2413static void list_slab_objects(struct kmem_cache *s, struct page *page,
2414 const char *text)
2415{
2416#ifdef CONFIG_SLUB_DEBUG
2417 void *addr = page_address(page);
2418 void *p;
2419 DECLARE_BITMAP(map, page->objects);
2420
2421 bitmap_zero(map, page->objects);
2422 slab_err(s, page, "%s", text);
2423 slab_lock(page);
2424 for_each_free_object(p, s, page->freelist)
2425 set_bit(slab_index(p, s, addr), map);
2426
2427 for_each_object(p, s, addr, page->objects) {
2428
2429 if (!test_bit(slab_index(p, s, addr), map)) {
2430 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2431 p, p - addr);
2432 print_tracking(s, p);
2433 }
2434 }
2435 slab_unlock(page);
2436#endif
2437}
2438
81819f0f 2439/*
599870b1 2440 * Attempt to free all partial slabs on a node.
81819f0f 2441 */
599870b1 2442static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2443{
81819f0f
CL
2444 unsigned long flags;
2445 struct page *page, *h;
2446
2447 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2448 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2449 if (!page->inuse) {
2450 list_del(&page->lru);
2451 discard_slab(s, page);
599870b1 2452 n->nr_partial--;
33b12c38
CL
2453 } else {
2454 list_slab_objects(s, page,
2455 "Objects remaining on kmem_cache_close()");
599870b1 2456 }
33b12c38 2457 }
81819f0f 2458 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2459}
2460
2461/*
672bba3a 2462 * Release all resources used by a slab cache.
81819f0f 2463 */
0c710013 2464static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2465{
2466 int node;
2467
2468 flush_all(s);
2469
2470 /* Attempt to free all objects */
4c93c355 2471 free_kmem_cache_cpus(s);
f64dc58c 2472 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2473 struct kmem_cache_node *n = get_node(s, node);
2474
599870b1
CL
2475 free_partial(s, n);
2476 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2477 return 1;
2478 }
2479 free_kmem_cache_nodes(s);
2480 return 0;
2481}
2482
2483/*
2484 * Close a cache and release the kmem_cache structure
2485 * (must be used for caches created using kmem_cache_create)
2486 */
2487void kmem_cache_destroy(struct kmem_cache *s)
2488{
2489 down_write(&slub_lock);
2490 s->refcount--;
2491 if (!s->refcount) {
2492 list_del(&s->list);
a0e1d1be 2493 up_write(&slub_lock);
d629d819
PE
2494 if (kmem_cache_close(s)) {
2495 printk(KERN_ERR "SLUB %s: %s called for cache that "
2496 "still has objects.\n", s->name, __func__);
2497 dump_stack();
2498 }
81819f0f 2499 sysfs_slab_remove(s);
a0e1d1be
CL
2500 } else
2501 up_write(&slub_lock);
81819f0f
CL
2502}
2503EXPORT_SYMBOL(kmem_cache_destroy);
2504
2505/********************************************************************
2506 * Kmalloc subsystem
2507 *******************************************************************/
2508
331dc558 2509struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2510EXPORT_SYMBOL(kmalloc_caches);
2511
81819f0f
CL
2512static int __init setup_slub_min_order(char *str)
2513{
06428780 2514 get_option(&str, &slub_min_order);
81819f0f
CL
2515
2516 return 1;
2517}
2518
2519__setup("slub_min_order=", setup_slub_min_order);
2520
2521static int __init setup_slub_max_order(char *str)
2522{
06428780 2523 get_option(&str, &slub_max_order);
81819f0f
CL
2524
2525 return 1;
2526}
2527
2528__setup("slub_max_order=", setup_slub_max_order);
2529
2530static int __init setup_slub_min_objects(char *str)
2531{
06428780 2532 get_option(&str, &slub_min_objects);
81819f0f
CL
2533
2534 return 1;
2535}
2536
2537__setup("slub_min_objects=", setup_slub_min_objects);
2538
2539static int __init setup_slub_nomerge(char *str)
2540{
2541 slub_nomerge = 1;
2542 return 1;
2543}
2544
2545__setup("slub_nomerge", setup_slub_nomerge);
2546
81819f0f
CL
2547static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2548 const char *name, int size, gfp_t gfp_flags)
2549{
2550 unsigned int flags = 0;
2551
2552 if (gfp_flags & SLUB_DMA)
2553 flags = SLAB_CACHE_DMA;
2554
2555 down_write(&slub_lock);
2556 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2557 flags, NULL))
81819f0f
CL
2558 goto panic;
2559
2560 list_add(&s->list, &slab_caches);
2561 up_write(&slub_lock);
2562 if (sysfs_slab_add(s))
2563 goto panic;
2564 return s;
2565
2566panic:
2567 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2568}
2569
2e443fd0 2570#ifdef CONFIG_ZONE_DMA
4097d601 2571static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2572
2573static void sysfs_add_func(struct work_struct *w)
2574{
2575 struct kmem_cache *s;
2576
2577 down_write(&slub_lock);
2578 list_for_each_entry(s, &slab_caches, list) {
2579 if (s->flags & __SYSFS_ADD_DEFERRED) {
2580 s->flags &= ~__SYSFS_ADD_DEFERRED;
2581 sysfs_slab_add(s);
2582 }
2583 }
2584 up_write(&slub_lock);
2585}
2586
2587static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2588
2e443fd0
CL
2589static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2590{
2591 struct kmem_cache *s;
2e443fd0
CL
2592 char *text;
2593 size_t realsize;
2594
2595 s = kmalloc_caches_dma[index];
2596 if (s)
2597 return s;
2598
2599 /* Dynamically create dma cache */
1ceef402
CL
2600 if (flags & __GFP_WAIT)
2601 down_write(&slub_lock);
2602 else {
2603 if (!down_write_trylock(&slub_lock))
2604 goto out;
2605 }
2606
2607 if (kmalloc_caches_dma[index])
2608 goto unlock_out;
2e443fd0 2609
7b55f620 2610 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2611 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2612 (unsigned int)realsize);
1ceef402
CL
2613 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2614
2615 if (!s || !text || !kmem_cache_open(s, flags, text,
2616 realsize, ARCH_KMALLOC_MINALIGN,
2617 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2618 kfree(s);
2619 kfree(text);
2620 goto unlock_out;
dfce8648 2621 }
1ceef402
CL
2622
2623 list_add(&s->list, &slab_caches);
2624 kmalloc_caches_dma[index] = s;
2625
2626 schedule_work(&sysfs_add_work);
2627
2628unlock_out:
dfce8648 2629 up_write(&slub_lock);
1ceef402 2630out:
dfce8648 2631 return kmalloc_caches_dma[index];
2e443fd0
CL
2632}
2633#endif
2634
f1b26339
CL
2635/*
2636 * Conversion table for small slabs sizes / 8 to the index in the
2637 * kmalloc array. This is necessary for slabs < 192 since we have non power
2638 * of two cache sizes there. The size of larger slabs can be determined using
2639 * fls.
2640 */
2641static s8 size_index[24] = {
2642 3, /* 8 */
2643 4, /* 16 */
2644 5, /* 24 */
2645 5, /* 32 */
2646 6, /* 40 */
2647 6, /* 48 */
2648 6, /* 56 */
2649 6, /* 64 */
2650 1, /* 72 */
2651 1, /* 80 */
2652 1, /* 88 */
2653 1, /* 96 */
2654 7, /* 104 */
2655 7, /* 112 */
2656 7, /* 120 */
2657 7, /* 128 */
2658 2, /* 136 */
2659 2, /* 144 */
2660 2, /* 152 */
2661 2, /* 160 */
2662 2, /* 168 */
2663 2, /* 176 */
2664 2, /* 184 */
2665 2 /* 192 */
2666};
2667
81819f0f
CL
2668static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2669{
f1b26339 2670 int index;
81819f0f 2671
f1b26339
CL
2672 if (size <= 192) {
2673 if (!size)
2674 return ZERO_SIZE_PTR;
81819f0f 2675
f1b26339 2676 index = size_index[(size - 1) / 8];
aadb4bc4 2677 } else
f1b26339 2678 index = fls(size - 1);
81819f0f
CL
2679
2680#ifdef CONFIG_ZONE_DMA
f1b26339 2681 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2682 return dma_kmalloc_cache(index, flags);
f1b26339 2683
81819f0f
CL
2684#endif
2685 return &kmalloc_caches[index];
2686}
2687
2688void *__kmalloc(size_t size, gfp_t flags)
2689{
aadb4bc4 2690 struct kmem_cache *s;
5b882be4 2691 void *ret;
81819f0f 2692
331dc558 2693 if (unlikely(size > PAGE_SIZE))
eada35ef 2694 return kmalloc_large(size, flags);
aadb4bc4
CL
2695
2696 s = get_slab(size, flags);
2697
2698 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2699 return s;
2700
5b882be4
EGM
2701 ret = slab_alloc(s, flags, -1, _RET_IP_);
2702
2703 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
2704 size, s->size, flags);
2705
2706 return ret;
81819f0f
CL
2707}
2708EXPORT_SYMBOL(__kmalloc);
2709
f619cfe1
CL
2710static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2711{
2712 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2713 get_order(size));
2714
2715 if (page)
2716 return page_address(page);
2717 else
2718 return NULL;
2719}
2720
81819f0f
CL
2721#ifdef CONFIG_NUMA
2722void *__kmalloc_node(size_t size, gfp_t flags, int node)
2723{
aadb4bc4 2724 struct kmem_cache *s;
5b882be4 2725 void *ret;
81819f0f 2726
5b882be4
EGM
2727 if (unlikely(size > PAGE_SIZE)) {
2728 ret = kmalloc_large_node(size, flags, node);
2729
2730 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC,
2731 _RET_IP_, ret,
2732 size, PAGE_SIZE << get_order(size),
2733 flags, node);
2734
2735 return ret;
2736 }
aadb4bc4
CL
2737
2738 s = get_slab(size, flags);
2739
2740 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2741 return s;
2742
5b882be4
EGM
2743 ret = slab_alloc(s, flags, node, _RET_IP_);
2744
2745 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, ret,
2746 size, s->size, flags, node);
2747
2748 return ret;
81819f0f
CL
2749}
2750EXPORT_SYMBOL(__kmalloc_node);
2751#endif
2752
2753size_t ksize(const void *object)
2754{
272c1d21 2755 struct page *page;
81819f0f
CL
2756 struct kmem_cache *s;
2757
ef8b4520 2758 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2759 return 0;
2760
294a80a8 2761 page = virt_to_head_page(object);
294a80a8 2762
76994412
PE
2763 if (unlikely(!PageSlab(page))) {
2764 WARN_ON(!PageCompound(page));
294a80a8 2765 return PAGE_SIZE << compound_order(page);
76994412 2766 }
81819f0f 2767 s = page->slab;
81819f0f 2768
ae20bfda 2769#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2770 /*
2771 * Debugging requires use of the padding between object
2772 * and whatever may come after it.
2773 */
2774 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2775 return s->objsize;
2776
ae20bfda 2777#endif
81819f0f
CL
2778 /*
2779 * If we have the need to store the freelist pointer
2780 * back there or track user information then we can
2781 * only use the space before that information.
2782 */
2783 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2784 return s->inuse;
81819f0f
CL
2785 /*
2786 * Else we can use all the padding etc for the allocation
2787 */
2788 return s->size;
2789}
b1aabecd 2790EXPORT_SYMBOL(ksize);
81819f0f
CL
2791
2792void kfree(const void *x)
2793{
81819f0f 2794 struct page *page;
5bb983b0 2795 void *object = (void *)x;
81819f0f 2796
2408c550 2797 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2798 return;
2799
b49af68f 2800 page = virt_to_head_page(x);
aadb4bc4 2801 if (unlikely(!PageSlab(page))) {
0937502a 2802 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2803 put_page(page);
2804 return;
2805 }
35995a4d 2806 slab_free(page->slab, page, object, _RET_IP_);
5b882be4
EGM
2807
2808 kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, x);
81819f0f
CL
2809}
2810EXPORT_SYMBOL(kfree);
2811
2086d26a 2812/*
672bba3a
CL
2813 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2814 * the remaining slabs by the number of items in use. The slabs with the
2815 * most items in use come first. New allocations will then fill those up
2816 * and thus they can be removed from the partial lists.
2817 *
2818 * The slabs with the least items are placed last. This results in them
2819 * being allocated from last increasing the chance that the last objects
2820 * are freed in them.
2086d26a
CL
2821 */
2822int kmem_cache_shrink(struct kmem_cache *s)
2823{
2824 int node;
2825 int i;
2826 struct kmem_cache_node *n;
2827 struct page *page;
2828 struct page *t;
205ab99d 2829 int objects = oo_objects(s->max);
2086d26a 2830 struct list_head *slabs_by_inuse =
834f3d11 2831 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2832 unsigned long flags;
2833
2834 if (!slabs_by_inuse)
2835 return -ENOMEM;
2836
2837 flush_all(s);
f64dc58c 2838 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2839 n = get_node(s, node);
2840
2841 if (!n->nr_partial)
2842 continue;
2843
834f3d11 2844 for (i = 0; i < objects; i++)
2086d26a
CL
2845 INIT_LIST_HEAD(slabs_by_inuse + i);
2846
2847 spin_lock_irqsave(&n->list_lock, flags);
2848
2849 /*
672bba3a 2850 * Build lists indexed by the items in use in each slab.
2086d26a 2851 *
672bba3a
CL
2852 * Note that concurrent frees may occur while we hold the
2853 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2854 */
2855 list_for_each_entry_safe(page, t, &n->partial, lru) {
2856 if (!page->inuse && slab_trylock(page)) {
2857 /*
2858 * Must hold slab lock here because slab_free
2859 * may have freed the last object and be
2860 * waiting to release the slab.
2861 */
2862 list_del(&page->lru);
2863 n->nr_partial--;
2864 slab_unlock(page);
2865 discard_slab(s, page);
2866 } else {
fcda3d89
CL
2867 list_move(&page->lru,
2868 slabs_by_inuse + page->inuse);
2086d26a
CL
2869 }
2870 }
2871
2086d26a 2872 /*
672bba3a
CL
2873 * Rebuild the partial list with the slabs filled up most
2874 * first and the least used slabs at the end.
2086d26a 2875 */
834f3d11 2876 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2877 list_splice(slabs_by_inuse + i, n->partial.prev);
2878
2086d26a
CL
2879 spin_unlock_irqrestore(&n->list_lock, flags);
2880 }
2881
2882 kfree(slabs_by_inuse);
2883 return 0;
2884}
2885EXPORT_SYMBOL(kmem_cache_shrink);
2886
b9049e23
YG
2887#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2888static int slab_mem_going_offline_callback(void *arg)
2889{
2890 struct kmem_cache *s;
2891
2892 down_read(&slub_lock);
2893 list_for_each_entry(s, &slab_caches, list)
2894 kmem_cache_shrink(s);
2895 up_read(&slub_lock);
2896
2897 return 0;
2898}
2899
2900static void slab_mem_offline_callback(void *arg)
2901{
2902 struct kmem_cache_node *n;
2903 struct kmem_cache *s;
2904 struct memory_notify *marg = arg;
2905 int offline_node;
2906
2907 offline_node = marg->status_change_nid;
2908
2909 /*
2910 * If the node still has available memory. we need kmem_cache_node
2911 * for it yet.
2912 */
2913 if (offline_node < 0)
2914 return;
2915
2916 down_read(&slub_lock);
2917 list_for_each_entry(s, &slab_caches, list) {
2918 n = get_node(s, offline_node);
2919 if (n) {
2920 /*
2921 * if n->nr_slabs > 0, slabs still exist on the node
2922 * that is going down. We were unable to free them,
2923 * and offline_pages() function shoudn't call this
2924 * callback. So, we must fail.
2925 */
0f389ec6 2926 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2927
2928 s->node[offline_node] = NULL;
2929 kmem_cache_free(kmalloc_caches, n);
2930 }
2931 }
2932 up_read(&slub_lock);
2933}
2934
2935static int slab_mem_going_online_callback(void *arg)
2936{
2937 struct kmem_cache_node *n;
2938 struct kmem_cache *s;
2939 struct memory_notify *marg = arg;
2940 int nid = marg->status_change_nid;
2941 int ret = 0;
2942
2943 /*
2944 * If the node's memory is already available, then kmem_cache_node is
2945 * already created. Nothing to do.
2946 */
2947 if (nid < 0)
2948 return 0;
2949
2950 /*
0121c619 2951 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2952 * allocate a kmem_cache_node structure in order to bring the node
2953 * online.
2954 */
2955 down_read(&slub_lock);
2956 list_for_each_entry(s, &slab_caches, list) {
2957 /*
2958 * XXX: kmem_cache_alloc_node will fallback to other nodes
2959 * since memory is not yet available from the node that
2960 * is brought up.
2961 */
2962 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2963 if (!n) {
2964 ret = -ENOMEM;
2965 goto out;
2966 }
5595cffc 2967 init_kmem_cache_node(n, s);
b9049e23
YG
2968 s->node[nid] = n;
2969 }
2970out:
2971 up_read(&slub_lock);
2972 return ret;
2973}
2974
2975static int slab_memory_callback(struct notifier_block *self,
2976 unsigned long action, void *arg)
2977{
2978 int ret = 0;
2979
2980 switch (action) {
2981 case MEM_GOING_ONLINE:
2982 ret = slab_mem_going_online_callback(arg);
2983 break;
2984 case MEM_GOING_OFFLINE:
2985 ret = slab_mem_going_offline_callback(arg);
2986 break;
2987 case MEM_OFFLINE:
2988 case MEM_CANCEL_ONLINE:
2989 slab_mem_offline_callback(arg);
2990 break;
2991 case MEM_ONLINE:
2992 case MEM_CANCEL_OFFLINE:
2993 break;
2994 }
dc19f9db
KH
2995 if (ret)
2996 ret = notifier_from_errno(ret);
2997 else
2998 ret = NOTIFY_OK;
b9049e23
YG
2999 return ret;
3000}
3001
3002#endif /* CONFIG_MEMORY_HOTPLUG */
3003
81819f0f
CL
3004/********************************************************************
3005 * Basic setup of slabs
3006 *******************************************************************/
3007
3008void __init kmem_cache_init(void)
3009{
3010 int i;
4b356be0 3011 int caches = 0;
81819f0f 3012
4c93c355
CL
3013 init_alloc_cpu();
3014
81819f0f
CL
3015#ifdef CONFIG_NUMA
3016 /*
3017 * Must first have the slab cache available for the allocations of the
672bba3a 3018 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3019 * kmem_cache_open for slab_state == DOWN.
3020 */
3021 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3022 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 3023 kmalloc_caches[0].refcount = -1;
4b356be0 3024 caches++;
b9049e23 3025
0c40ba4f 3026 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3027#endif
3028
3029 /* Able to allocate the per node structures */
3030 slab_state = PARTIAL;
3031
3032 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3033 if (KMALLOC_MIN_SIZE <= 64) {
3034 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 3035 "kmalloc-96", 96, GFP_KERNEL);
4b356be0 3036 caches++;
4b356be0 3037 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 3038 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
3039 caches++;
3040 }
81819f0f 3041
331dc558 3042 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
3043 create_kmalloc_cache(&kmalloc_caches[i],
3044 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3045 caches++;
3046 }
81819f0f 3047
f1b26339
CL
3048
3049 /*
3050 * Patch up the size_index table if we have strange large alignment
3051 * requirements for the kmalloc array. This is only the case for
6446faa2 3052 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3053 *
3054 * Largest permitted alignment is 256 bytes due to the way we
3055 * handle the index determination for the smaller caches.
3056 *
3057 * Make sure that nothing crazy happens if someone starts tinkering
3058 * around with ARCH_KMALLOC_MINALIGN
3059 */
3060 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3061 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3062
12ad6843 3063 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3064 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3065
41d54d3b
CL
3066 if (KMALLOC_MIN_SIZE == 128) {
3067 /*
3068 * The 192 byte sized cache is not used if the alignment
3069 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3070 * instead.
3071 */
3072 for (i = 128 + 8; i <= 192; i += 8)
3073 size_index[(i - 1) / 8] = 8;
3074 }
3075
81819f0f
CL
3076 slab_state = UP;
3077
3078 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3079 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3080 kmalloc_caches[i]. name =
3081 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3082
3083#ifdef CONFIG_SMP
3084 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3085 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3086 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3087#else
3088 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3089#endif
3090
3adbefee
IM
3091 printk(KERN_INFO
3092 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3093 " CPUs=%d, Nodes=%d\n",
3094 caches, cache_line_size(),
81819f0f
CL
3095 slub_min_order, slub_max_order, slub_min_objects,
3096 nr_cpu_ids, nr_node_ids);
3097}
3098
3099/*
3100 * Find a mergeable slab cache
3101 */
3102static int slab_unmergeable(struct kmem_cache *s)
3103{
3104 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3105 return 1;
3106
c59def9f 3107 if (s->ctor)
81819f0f
CL
3108 return 1;
3109
8ffa6875
CL
3110 /*
3111 * We may have set a slab to be unmergeable during bootstrap.
3112 */
3113 if (s->refcount < 0)
3114 return 1;
3115
81819f0f
CL
3116 return 0;
3117}
3118
3119static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3120 size_t align, unsigned long flags, const char *name,
51cc5068 3121 void (*ctor)(void *))
81819f0f 3122{
5b95a4ac 3123 struct kmem_cache *s;
81819f0f
CL
3124
3125 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3126 return NULL;
3127
c59def9f 3128 if (ctor)
81819f0f
CL
3129 return NULL;
3130
3131 size = ALIGN(size, sizeof(void *));
3132 align = calculate_alignment(flags, align, size);
3133 size = ALIGN(size, align);
ba0268a8 3134 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3135
5b95a4ac 3136 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3137 if (slab_unmergeable(s))
3138 continue;
3139
3140 if (size > s->size)
3141 continue;
3142
ba0268a8 3143 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3144 continue;
3145 /*
3146 * Check if alignment is compatible.
3147 * Courtesy of Adrian Drzewiecki
3148 */
06428780 3149 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3150 continue;
3151
3152 if (s->size - size >= sizeof(void *))
3153 continue;
3154
3155 return s;
3156 }
3157 return NULL;
3158}
3159
3160struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3161 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3162{
3163 struct kmem_cache *s;
3164
3165 down_write(&slub_lock);
ba0268a8 3166 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3167 if (s) {
42a9fdbb
CL
3168 int cpu;
3169
81819f0f
CL
3170 s->refcount++;
3171 /*
3172 * Adjust the object sizes so that we clear
3173 * the complete object on kzalloc.
3174 */
3175 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3176
3177 /*
3178 * And then we need to update the object size in the
3179 * per cpu structures
3180 */
3181 for_each_online_cpu(cpu)
3182 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3183
81819f0f 3184 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3185 up_write(&slub_lock);
6446faa2 3186
7b8f3b66
DR
3187 if (sysfs_slab_alias(s, name)) {
3188 down_write(&slub_lock);
3189 s->refcount--;
3190 up_write(&slub_lock);
81819f0f 3191 goto err;
7b8f3b66 3192 }
a0e1d1be
CL
3193 return s;
3194 }
6446faa2 3195
a0e1d1be
CL
3196 s = kmalloc(kmem_size, GFP_KERNEL);
3197 if (s) {
3198 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3199 size, align, flags, ctor)) {
81819f0f 3200 list_add(&s->list, &slab_caches);
a0e1d1be 3201 up_write(&slub_lock);
7b8f3b66
DR
3202 if (sysfs_slab_add(s)) {
3203 down_write(&slub_lock);
3204 list_del(&s->list);
3205 up_write(&slub_lock);
3206 kfree(s);
a0e1d1be 3207 goto err;
7b8f3b66 3208 }
a0e1d1be
CL
3209 return s;
3210 }
3211 kfree(s);
81819f0f
CL
3212 }
3213 up_write(&slub_lock);
81819f0f
CL
3214
3215err:
81819f0f
CL
3216 if (flags & SLAB_PANIC)
3217 panic("Cannot create slabcache %s\n", name);
3218 else
3219 s = NULL;
3220 return s;
3221}
3222EXPORT_SYMBOL(kmem_cache_create);
3223
81819f0f 3224#ifdef CONFIG_SMP
81819f0f 3225/*
672bba3a
CL
3226 * Use the cpu notifier to insure that the cpu slabs are flushed when
3227 * necessary.
81819f0f
CL
3228 */
3229static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3230 unsigned long action, void *hcpu)
3231{
3232 long cpu = (long)hcpu;
5b95a4ac
CL
3233 struct kmem_cache *s;
3234 unsigned long flags;
81819f0f
CL
3235
3236 switch (action) {
4c93c355
CL
3237 case CPU_UP_PREPARE:
3238 case CPU_UP_PREPARE_FROZEN:
3239 init_alloc_cpu_cpu(cpu);
3240 down_read(&slub_lock);
3241 list_for_each_entry(s, &slab_caches, list)
3242 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3243 GFP_KERNEL);
3244 up_read(&slub_lock);
3245 break;
3246
81819f0f 3247 case CPU_UP_CANCELED:
8bb78442 3248 case CPU_UP_CANCELED_FROZEN:
81819f0f 3249 case CPU_DEAD:
8bb78442 3250 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3251 down_read(&slub_lock);
3252 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3253 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3254
5b95a4ac
CL
3255 local_irq_save(flags);
3256 __flush_cpu_slab(s, cpu);
3257 local_irq_restore(flags);
4c93c355
CL
3258 free_kmem_cache_cpu(c, cpu);
3259 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3260 }
3261 up_read(&slub_lock);
81819f0f
CL
3262 break;
3263 default:
3264 break;
3265 }
3266 return NOTIFY_OK;
3267}
3268
06428780 3269static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3270 .notifier_call = slab_cpuup_callback
06428780 3271};
81819f0f
CL
3272
3273#endif
3274
35995a4d 3275void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3276{
aadb4bc4 3277 struct kmem_cache *s;
94b528d0 3278 void *ret;
aadb4bc4 3279
331dc558 3280 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3281 return kmalloc_large(size, gfpflags);
3282
aadb4bc4 3283 s = get_slab(size, gfpflags);
81819f0f 3284
2408c550 3285 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3286 return s;
81819f0f 3287
94b528d0
EGM
3288 ret = slab_alloc(s, gfpflags, -1, caller);
3289
3290 /* Honor the call site pointer we recieved. */
2e67624c
PE
3291 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, caller, ret, size,
3292 s->size, gfpflags);
94b528d0
EGM
3293
3294 return ret;
81819f0f
CL
3295}
3296
3297void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
35995a4d 3298 int node, unsigned long caller)
81819f0f 3299{
aadb4bc4 3300 struct kmem_cache *s;
94b528d0 3301 void *ret;
aadb4bc4 3302
331dc558 3303 if (unlikely(size > PAGE_SIZE))
f619cfe1 3304 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3305
aadb4bc4 3306 s = get_slab(size, gfpflags);
81819f0f 3307
2408c550 3308 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3309 return s;
81819f0f 3310
94b528d0
EGM
3311 ret = slab_alloc(s, gfpflags, node, caller);
3312
3313 /* Honor the call site pointer we recieved. */
2e67624c 3314 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC, caller, ret,
94b528d0
EGM
3315 size, s->size, gfpflags, node);
3316
3317 return ret;
81819f0f
CL
3318}
3319
f6acb635 3320#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3321static unsigned long count_partial(struct kmem_cache_node *n,
3322 int (*get_count)(struct page *))
5b06c853
CL
3323{
3324 unsigned long flags;
3325 unsigned long x = 0;
3326 struct page *page;
3327
3328 spin_lock_irqsave(&n->list_lock, flags);
3329 list_for_each_entry(page, &n->partial, lru)
205ab99d 3330 x += get_count(page);
5b06c853
CL
3331 spin_unlock_irqrestore(&n->list_lock, flags);
3332 return x;
3333}
205ab99d
CL
3334
3335static int count_inuse(struct page *page)
3336{
3337 return page->inuse;
3338}
3339
3340static int count_total(struct page *page)
3341{
3342 return page->objects;
3343}
3344
3345static int count_free(struct page *page)
3346{
3347 return page->objects - page->inuse;
3348}
5b06c853 3349
434e245d
CL
3350static int validate_slab(struct kmem_cache *s, struct page *page,
3351 unsigned long *map)
53e15af0
CL
3352{
3353 void *p;
a973e9dd 3354 void *addr = page_address(page);
53e15af0
CL
3355
3356 if (!check_slab(s, page) ||
3357 !on_freelist(s, page, NULL))
3358 return 0;
3359
3360 /* Now we know that a valid freelist exists */
39b26464 3361 bitmap_zero(map, page->objects);
53e15af0 3362
7656c72b
CL
3363 for_each_free_object(p, s, page->freelist) {
3364 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3365 if (!check_object(s, page, p, 0))
3366 return 0;
3367 }
3368
224a88be 3369 for_each_object(p, s, addr, page->objects)
7656c72b 3370 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3371 if (!check_object(s, page, p, 1))
3372 return 0;
3373 return 1;
3374}
3375
434e245d
CL
3376static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3377 unsigned long *map)
53e15af0
CL
3378{
3379 if (slab_trylock(page)) {
434e245d 3380 validate_slab(s, page, map);
53e15af0
CL
3381 slab_unlock(page);
3382 } else
3383 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3384 s->name, page);
3385
3386 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3387 if (!PageSlubDebug(page))
3388 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3389 "on slab 0x%p\n", s->name, page);
3390 } else {
8a38082d
AW
3391 if (PageSlubDebug(page))
3392 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3393 "slab 0x%p\n", s->name, page);
3394 }
3395}
3396
434e245d
CL
3397static int validate_slab_node(struct kmem_cache *s,
3398 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3399{
3400 unsigned long count = 0;
3401 struct page *page;
3402 unsigned long flags;
3403
3404 spin_lock_irqsave(&n->list_lock, flags);
3405
3406 list_for_each_entry(page, &n->partial, lru) {
434e245d 3407 validate_slab_slab(s, page, map);
53e15af0
CL
3408 count++;
3409 }
3410 if (count != n->nr_partial)
3411 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3412 "counter=%ld\n", s->name, count, n->nr_partial);
3413
3414 if (!(s->flags & SLAB_STORE_USER))
3415 goto out;
3416
3417 list_for_each_entry(page, &n->full, lru) {
434e245d 3418 validate_slab_slab(s, page, map);
53e15af0
CL
3419 count++;
3420 }
3421 if (count != atomic_long_read(&n->nr_slabs))
3422 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3423 "counter=%ld\n", s->name, count,
3424 atomic_long_read(&n->nr_slabs));
3425
3426out:
3427 spin_unlock_irqrestore(&n->list_lock, flags);
3428 return count;
3429}
3430
434e245d 3431static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3432{
3433 int node;
3434 unsigned long count = 0;
205ab99d 3435 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3436 sizeof(unsigned long), GFP_KERNEL);
3437
3438 if (!map)
3439 return -ENOMEM;
53e15af0
CL
3440
3441 flush_all(s);
f64dc58c 3442 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3443 struct kmem_cache_node *n = get_node(s, node);
3444
434e245d 3445 count += validate_slab_node(s, n, map);
53e15af0 3446 }
434e245d 3447 kfree(map);
53e15af0
CL
3448 return count;
3449}
3450
b3459709
CL
3451#ifdef SLUB_RESILIENCY_TEST
3452static void resiliency_test(void)
3453{
3454 u8 *p;
3455
3456 printk(KERN_ERR "SLUB resiliency testing\n");
3457 printk(KERN_ERR "-----------------------\n");
3458 printk(KERN_ERR "A. Corruption after allocation\n");
3459
3460 p = kzalloc(16, GFP_KERNEL);
3461 p[16] = 0x12;
3462 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3463 " 0x12->0x%p\n\n", p + 16);
3464
3465 validate_slab_cache(kmalloc_caches + 4);
3466
3467 /* Hmmm... The next two are dangerous */
3468 p = kzalloc(32, GFP_KERNEL);
3469 p[32 + sizeof(void *)] = 0x34;
3470 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3471 " 0x34 -> -0x%p\n", p);
3472 printk(KERN_ERR
3473 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3474
3475 validate_slab_cache(kmalloc_caches + 5);
3476 p = kzalloc(64, GFP_KERNEL);
3477 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3478 *p = 0x56;
3479 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3480 p);
3adbefee
IM
3481 printk(KERN_ERR
3482 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3483 validate_slab_cache(kmalloc_caches + 6);
3484
3485 printk(KERN_ERR "\nB. Corruption after free\n");
3486 p = kzalloc(128, GFP_KERNEL);
3487 kfree(p);
3488 *p = 0x78;
3489 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3490 validate_slab_cache(kmalloc_caches + 7);
3491
3492 p = kzalloc(256, GFP_KERNEL);
3493 kfree(p);
3494 p[50] = 0x9a;
3adbefee
IM
3495 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3496 p);
b3459709
CL
3497 validate_slab_cache(kmalloc_caches + 8);
3498
3499 p = kzalloc(512, GFP_KERNEL);
3500 kfree(p);
3501 p[512] = 0xab;
3502 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3503 validate_slab_cache(kmalloc_caches + 9);
3504}
3505#else
3506static void resiliency_test(void) {};
3507#endif
3508
88a420e4 3509/*
672bba3a 3510 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3511 * and freed.
3512 */
3513
3514struct location {
3515 unsigned long count;
35995a4d 3516 unsigned long addr;
45edfa58
CL
3517 long long sum_time;
3518 long min_time;
3519 long max_time;
3520 long min_pid;
3521 long max_pid;
174596a0 3522 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3523 nodemask_t nodes;
88a420e4
CL
3524};
3525
3526struct loc_track {
3527 unsigned long max;
3528 unsigned long count;
3529 struct location *loc;
3530};
3531
3532static void free_loc_track(struct loc_track *t)
3533{
3534 if (t->max)
3535 free_pages((unsigned long)t->loc,
3536 get_order(sizeof(struct location) * t->max));
3537}
3538
68dff6a9 3539static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3540{
3541 struct location *l;
3542 int order;
3543
88a420e4
CL
3544 order = get_order(sizeof(struct location) * max);
3545
68dff6a9 3546 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3547 if (!l)
3548 return 0;
3549
3550 if (t->count) {
3551 memcpy(l, t->loc, sizeof(struct location) * t->count);
3552 free_loc_track(t);
3553 }
3554 t->max = max;
3555 t->loc = l;
3556 return 1;
3557}
3558
3559static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3560 const struct track *track)
88a420e4
CL
3561{
3562 long start, end, pos;
3563 struct location *l;
35995a4d 3564 unsigned long caddr;
45edfa58 3565 unsigned long age = jiffies - track->when;
88a420e4
CL
3566
3567 start = -1;
3568 end = t->count;
3569
3570 for ( ; ; ) {
3571 pos = start + (end - start + 1) / 2;
3572
3573 /*
3574 * There is nothing at "end". If we end up there
3575 * we need to add something to before end.
3576 */
3577 if (pos == end)
3578 break;
3579
3580 caddr = t->loc[pos].addr;
45edfa58
CL
3581 if (track->addr == caddr) {
3582
3583 l = &t->loc[pos];
3584 l->count++;
3585 if (track->when) {
3586 l->sum_time += age;
3587 if (age < l->min_time)
3588 l->min_time = age;
3589 if (age > l->max_time)
3590 l->max_time = age;
3591
3592 if (track->pid < l->min_pid)
3593 l->min_pid = track->pid;
3594 if (track->pid > l->max_pid)
3595 l->max_pid = track->pid;
3596
174596a0
RR
3597 cpumask_set_cpu(track->cpu,
3598 to_cpumask(l->cpus));
45edfa58
CL
3599 }
3600 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3601 return 1;
3602 }
3603
45edfa58 3604 if (track->addr < caddr)
88a420e4
CL
3605 end = pos;
3606 else
3607 start = pos;
3608 }
3609
3610 /*
672bba3a 3611 * Not found. Insert new tracking element.
88a420e4 3612 */
68dff6a9 3613 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3614 return 0;
3615
3616 l = t->loc + pos;
3617 if (pos < t->count)
3618 memmove(l + 1, l,
3619 (t->count - pos) * sizeof(struct location));
3620 t->count++;
3621 l->count = 1;
45edfa58
CL
3622 l->addr = track->addr;
3623 l->sum_time = age;
3624 l->min_time = age;
3625 l->max_time = age;
3626 l->min_pid = track->pid;
3627 l->max_pid = track->pid;
174596a0
RR
3628 cpumask_clear(to_cpumask(l->cpus));
3629 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3630 nodes_clear(l->nodes);
3631 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3632 return 1;
3633}
3634
3635static void process_slab(struct loc_track *t, struct kmem_cache *s,
3636 struct page *page, enum track_item alloc)
3637{
a973e9dd 3638 void *addr = page_address(page);
39b26464 3639 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3640 void *p;
3641
39b26464 3642 bitmap_zero(map, page->objects);
7656c72b
CL
3643 for_each_free_object(p, s, page->freelist)
3644 set_bit(slab_index(p, s, addr), map);
88a420e4 3645
224a88be 3646 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3647 if (!test_bit(slab_index(p, s, addr), map))
3648 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3649}
3650
3651static int list_locations(struct kmem_cache *s, char *buf,
3652 enum track_item alloc)
3653{
e374d483 3654 int len = 0;
88a420e4 3655 unsigned long i;
68dff6a9 3656 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3657 int node;
3658
68dff6a9 3659 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3660 GFP_TEMPORARY))
68dff6a9 3661 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3662
3663 /* Push back cpu slabs */
3664 flush_all(s);
3665
f64dc58c 3666 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3667 struct kmem_cache_node *n = get_node(s, node);
3668 unsigned long flags;
3669 struct page *page;
3670
9e86943b 3671 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3672 continue;
3673
3674 spin_lock_irqsave(&n->list_lock, flags);
3675 list_for_each_entry(page, &n->partial, lru)
3676 process_slab(&t, s, page, alloc);
3677 list_for_each_entry(page, &n->full, lru)
3678 process_slab(&t, s, page, alloc);
3679 spin_unlock_irqrestore(&n->list_lock, flags);
3680 }
3681
3682 for (i = 0; i < t.count; i++) {
45edfa58 3683 struct location *l = &t.loc[i];
88a420e4 3684
9c246247 3685 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3686 break;
e374d483 3687 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3688
3689 if (l->addr)
e374d483 3690 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3691 else
e374d483 3692 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3693
3694 if (l->sum_time != l->min_time) {
e374d483 3695 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3696 l->min_time,
3697 (long)div_u64(l->sum_time, l->count),
3698 l->max_time);
45edfa58 3699 } else
e374d483 3700 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3701 l->min_time);
3702
3703 if (l->min_pid != l->max_pid)
e374d483 3704 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3705 l->min_pid, l->max_pid);
3706 else
e374d483 3707 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3708 l->min_pid);
3709
174596a0
RR
3710 if (num_online_cpus() > 1 &&
3711 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3712 len < PAGE_SIZE - 60) {
3713 len += sprintf(buf + len, " cpus=");
3714 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3715 to_cpumask(l->cpus));
45edfa58
CL
3716 }
3717
84966343 3718 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3719 len < PAGE_SIZE - 60) {
3720 len += sprintf(buf + len, " nodes=");
3721 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3722 l->nodes);
3723 }
3724
e374d483 3725 len += sprintf(buf + len, "\n");
88a420e4
CL
3726 }
3727
3728 free_loc_track(&t);
3729 if (!t.count)
e374d483
HH
3730 len += sprintf(buf, "No data\n");
3731 return len;
88a420e4
CL
3732}
3733
81819f0f 3734enum slab_stat_type {
205ab99d
CL
3735 SL_ALL, /* All slabs */
3736 SL_PARTIAL, /* Only partially allocated slabs */
3737 SL_CPU, /* Only slabs used for cpu caches */
3738 SL_OBJECTS, /* Determine allocated objects not slabs */
3739 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3740};
3741
205ab99d 3742#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3743#define SO_PARTIAL (1 << SL_PARTIAL)
3744#define SO_CPU (1 << SL_CPU)
3745#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3746#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3747
62e5c4b4
CG
3748static ssize_t show_slab_objects(struct kmem_cache *s,
3749 char *buf, unsigned long flags)
81819f0f
CL
3750{
3751 unsigned long total = 0;
81819f0f
CL
3752 int node;
3753 int x;
3754 unsigned long *nodes;
3755 unsigned long *per_cpu;
3756
3757 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3758 if (!nodes)
3759 return -ENOMEM;
81819f0f
CL
3760 per_cpu = nodes + nr_node_ids;
3761
205ab99d
CL
3762 if (flags & SO_CPU) {
3763 int cpu;
81819f0f 3764
205ab99d
CL
3765 for_each_possible_cpu(cpu) {
3766 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3767
205ab99d
CL
3768 if (!c || c->node < 0)
3769 continue;
3770
3771 if (c->page) {
3772 if (flags & SO_TOTAL)
3773 x = c->page->objects;
3774 else if (flags & SO_OBJECTS)
3775 x = c->page->inuse;
81819f0f
CL
3776 else
3777 x = 1;
205ab99d 3778
81819f0f 3779 total += x;
205ab99d 3780 nodes[c->node] += x;
81819f0f 3781 }
205ab99d 3782 per_cpu[c->node]++;
81819f0f
CL
3783 }
3784 }
3785
205ab99d
CL
3786 if (flags & SO_ALL) {
3787 for_each_node_state(node, N_NORMAL_MEMORY) {
3788 struct kmem_cache_node *n = get_node(s, node);
3789
3790 if (flags & SO_TOTAL)
3791 x = atomic_long_read(&n->total_objects);
3792 else if (flags & SO_OBJECTS)
3793 x = atomic_long_read(&n->total_objects) -
3794 count_partial(n, count_free);
81819f0f 3795
81819f0f 3796 else
205ab99d 3797 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3798 total += x;
3799 nodes[node] += x;
3800 }
3801
205ab99d
CL
3802 } else if (flags & SO_PARTIAL) {
3803 for_each_node_state(node, N_NORMAL_MEMORY) {
3804 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3805
205ab99d
CL
3806 if (flags & SO_TOTAL)
3807 x = count_partial(n, count_total);
3808 else if (flags & SO_OBJECTS)
3809 x = count_partial(n, count_inuse);
81819f0f 3810 else
205ab99d 3811 x = n->nr_partial;
81819f0f
CL
3812 total += x;
3813 nodes[node] += x;
3814 }
3815 }
81819f0f
CL
3816 x = sprintf(buf, "%lu", total);
3817#ifdef CONFIG_NUMA
f64dc58c 3818 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3819 if (nodes[node])
3820 x += sprintf(buf + x, " N%d=%lu",
3821 node, nodes[node]);
3822#endif
3823 kfree(nodes);
3824 return x + sprintf(buf + x, "\n");
3825}
3826
3827static int any_slab_objects(struct kmem_cache *s)
3828{
3829 int node;
81819f0f 3830
dfb4f096 3831 for_each_online_node(node) {
81819f0f
CL
3832 struct kmem_cache_node *n = get_node(s, node);
3833
dfb4f096
CL
3834 if (!n)
3835 continue;
3836
4ea33e2d 3837 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3838 return 1;
3839 }
3840 return 0;
3841}
3842
3843#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3844#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3845
3846struct slab_attribute {
3847 struct attribute attr;
3848 ssize_t (*show)(struct kmem_cache *s, char *buf);
3849 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3850};
3851
3852#define SLAB_ATTR_RO(_name) \
3853 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3854
3855#define SLAB_ATTR(_name) \
3856 static struct slab_attribute _name##_attr = \
3857 __ATTR(_name, 0644, _name##_show, _name##_store)
3858
81819f0f
CL
3859static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3860{
3861 return sprintf(buf, "%d\n", s->size);
3862}
3863SLAB_ATTR_RO(slab_size);
3864
3865static ssize_t align_show(struct kmem_cache *s, char *buf)
3866{
3867 return sprintf(buf, "%d\n", s->align);
3868}
3869SLAB_ATTR_RO(align);
3870
3871static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3872{
3873 return sprintf(buf, "%d\n", s->objsize);
3874}
3875SLAB_ATTR_RO(object_size);
3876
3877static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3878{
834f3d11 3879 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3880}
3881SLAB_ATTR_RO(objs_per_slab);
3882
06b285dc
CL
3883static ssize_t order_store(struct kmem_cache *s,
3884 const char *buf, size_t length)
3885{
0121c619
CL
3886 unsigned long order;
3887 int err;
3888
3889 err = strict_strtoul(buf, 10, &order);
3890 if (err)
3891 return err;
06b285dc
CL
3892
3893 if (order > slub_max_order || order < slub_min_order)
3894 return -EINVAL;
3895
3896 calculate_sizes(s, order);
3897 return length;
3898}
3899
81819f0f
CL
3900static ssize_t order_show(struct kmem_cache *s, char *buf)
3901{
834f3d11 3902 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3903}
06b285dc 3904SLAB_ATTR(order);
81819f0f
CL
3905
3906static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3907{
3908 if (s->ctor) {
3909 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3910
3911 return n + sprintf(buf + n, "\n");
3912 }
3913 return 0;
3914}
3915SLAB_ATTR_RO(ctor);
3916
81819f0f
CL
3917static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3918{
3919 return sprintf(buf, "%d\n", s->refcount - 1);
3920}
3921SLAB_ATTR_RO(aliases);
3922
3923static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3924{
205ab99d 3925 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3926}
3927SLAB_ATTR_RO(slabs);
3928
3929static ssize_t partial_show(struct kmem_cache *s, char *buf)
3930{
d9acf4b7 3931 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3932}
3933SLAB_ATTR_RO(partial);
3934
3935static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3936{
d9acf4b7 3937 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3938}
3939SLAB_ATTR_RO(cpu_slabs);
3940
3941static ssize_t objects_show(struct kmem_cache *s, char *buf)
3942{
205ab99d 3943 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3944}
3945SLAB_ATTR_RO(objects);
3946
205ab99d
CL
3947static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3948{
3949 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3950}
3951SLAB_ATTR_RO(objects_partial);
3952
3953static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3954{
3955 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3956}
3957SLAB_ATTR_RO(total_objects);
3958
81819f0f
CL
3959static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3960{
3961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3962}
3963
3964static ssize_t sanity_checks_store(struct kmem_cache *s,
3965 const char *buf, size_t length)
3966{
3967 s->flags &= ~SLAB_DEBUG_FREE;
3968 if (buf[0] == '1')
3969 s->flags |= SLAB_DEBUG_FREE;
3970 return length;
3971}
3972SLAB_ATTR(sanity_checks);
3973
3974static ssize_t trace_show(struct kmem_cache *s, char *buf)
3975{
3976 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3977}
3978
3979static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3980 size_t length)
3981{
3982 s->flags &= ~SLAB_TRACE;
3983 if (buf[0] == '1')
3984 s->flags |= SLAB_TRACE;
3985 return length;
3986}
3987SLAB_ATTR(trace);
3988
3989static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3990{
3991 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3992}
3993
3994static ssize_t reclaim_account_store(struct kmem_cache *s,
3995 const char *buf, size_t length)
3996{
3997 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3998 if (buf[0] == '1')
3999 s->flags |= SLAB_RECLAIM_ACCOUNT;
4000 return length;
4001}
4002SLAB_ATTR(reclaim_account);
4003
4004static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4005{
5af60839 4006 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4007}
4008SLAB_ATTR_RO(hwcache_align);
4009
4010#ifdef CONFIG_ZONE_DMA
4011static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4012{
4013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4014}
4015SLAB_ATTR_RO(cache_dma);
4016#endif
4017
4018static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4019{
4020 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4021}
4022SLAB_ATTR_RO(destroy_by_rcu);
4023
4024static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4025{
4026 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4027}
4028
4029static ssize_t red_zone_store(struct kmem_cache *s,
4030 const char *buf, size_t length)
4031{
4032 if (any_slab_objects(s))
4033 return -EBUSY;
4034
4035 s->flags &= ~SLAB_RED_ZONE;
4036 if (buf[0] == '1')
4037 s->flags |= SLAB_RED_ZONE;
06b285dc 4038 calculate_sizes(s, -1);
81819f0f
CL
4039 return length;
4040}
4041SLAB_ATTR(red_zone);
4042
4043static ssize_t poison_show(struct kmem_cache *s, char *buf)
4044{
4045 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4046}
4047
4048static ssize_t poison_store(struct kmem_cache *s,
4049 const char *buf, size_t length)
4050{
4051 if (any_slab_objects(s))
4052 return -EBUSY;
4053
4054 s->flags &= ~SLAB_POISON;
4055 if (buf[0] == '1')
4056 s->flags |= SLAB_POISON;
06b285dc 4057 calculate_sizes(s, -1);
81819f0f
CL
4058 return length;
4059}
4060SLAB_ATTR(poison);
4061
4062static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4063{
4064 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4065}
4066
4067static ssize_t store_user_store(struct kmem_cache *s,
4068 const char *buf, size_t length)
4069{
4070 if (any_slab_objects(s))
4071 return -EBUSY;
4072
4073 s->flags &= ~SLAB_STORE_USER;
4074 if (buf[0] == '1')
4075 s->flags |= SLAB_STORE_USER;
06b285dc 4076 calculate_sizes(s, -1);
81819f0f
CL
4077 return length;
4078}
4079SLAB_ATTR(store_user);
4080
53e15af0
CL
4081static ssize_t validate_show(struct kmem_cache *s, char *buf)
4082{
4083 return 0;
4084}
4085
4086static ssize_t validate_store(struct kmem_cache *s,
4087 const char *buf, size_t length)
4088{
434e245d
CL
4089 int ret = -EINVAL;
4090
4091 if (buf[0] == '1') {
4092 ret = validate_slab_cache(s);
4093 if (ret >= 0)
4094 ret = length;
4095 }
4096 return ret;
53e15af0
CL
4097}
4098SLAB_ATTR(validate);
4099
2086d26a
CL
4100static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4101{
4102 return 0;
4103}
4104
4105static ssize_t shrink_store(struct kmem_cache *s,
4106 const char *buf, size_t length)
4107{
4108 if (buf[0] == '1') {
4109 int rc = kmem_cache_shrink(s);
4110
4111 if (rc)
4112 return rc;
4113 } else
4114 return -EINVAL;
4115 return length;
4116}
4117SLAB_ATTR(shrink);
4118
88a420e4
CL
4119static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4120{
4121 if (!(s->flags & SLAB_STORE_USER))
4122 return -ENOSYS;
4123 return list_locations(s, buf, TRACK_ALLOC);
4124}
4125SLAB_ATTR_RO(alloc_calls);
4126
4127static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4128{
4129 if (!(s->flags & SLAB_STORE_USER))
4130 return -ENOSYS;
4131 return list_locations(s, buf, TRACK_FREE);
4132}
4133SLAB_ATTR_RO(free_calls);
4134
81819f0f 4135#ifdef CONFIG_NUMA
9824601e 4136static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4137{
9824601e 4138 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4139}
4140
9824601e 4141static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4142 const char *buf, size_t length)
4143{
0121c619
CL
4144 unsigned long ratio;
4145 int err;
4146
4147 err = strict_strtoul(buf, 10, &ratio);
4148 if (err)
4149 return err;
4150
e2cb96b7 4151 if (ratio <= 100)
0121c619 4152 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4153
81819f0f
CL
4154 return length;
4155}
9824601e 4156SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4157#endif
4158
8ff12cfc 4159#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4160static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4161{
4162 unsigned long sum = 0;
4163 int cpu;
4164 int len;
4165 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4166
4167 if (!data)
4168 return -ENOMEM;
4169
4170 for_each_online_cpu(cpu) {
4171 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4172
4173 data[cpu] = x;
4174 sum += x;
4175 }
4176
4177 len = sprintf(buf, "%lu", sum);
4178
50ef37b9 4179#ifdef CONFIG_SMP
8ff12cfc
CL
4180 for_each_online_cpu(cpu) {
4181 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4182 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4183 }
50ef37b9 4184#endif
8ff12cfc
CL
4185 kfree(data);
4186 return len + sprintf(buf + len, "\n");
4187}
4188
4189#define STAT_ATTR(si, text) \
4190static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4191{ \
4192 return show_stat(s, buf, si); \
4193} \
4194SLAB_ATTR_RO(text); \
4195
4196STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4197STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4198STAT_ATTR(FREE_FASTPATH, free_fastpath);
4199STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4200STAT_ATTR(FREE_FROZEN, free_frozen);
4201STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4202STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4203STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4204STAT_ATTR(ALLOC_SLAB, alloc_slab);
4205STAT_ATTR(ALLOC_REFILL, alloc_refill);
4206STAT_ATTR(FREE_SLAB, free_slab);
4207STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4208STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4209STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4210STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4211STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4212STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4213STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4214#endif
4215
06428780 4216static struct attribute *slab_attrs[] = {
81819f0f
CL
4217 &slab_size_attr.attr,
4218 &object_size_attr.attr,
4219 &objs_per_slab_attr.attr,
4220 &order_attr.attr,
4221 &objects_attr.attr,
205ab99d
CL
4222 &objects_partial_attr.attr,
4223 &total_objects_attr.attr,
81819f0f
CL
4224 &slabs_attr.attr,
4225 &partial_attr.attr,
4226 &cpu_slabs_attr.attr,
4227 &ctor_attr.attr,
81819f0f
CL
4228 &aliases_attr.attr,
4229 &align_attr.attr,
4230 &sanity_checks_attr.attr,
4231 &trace_attr.attr,
4232 &hwcache_align_attr.attr,
4233 &reclaim_account_attr.attr,
4234 &destroy_by_rcu_attr.attr,
4235 &red_zone_attr.attr,
4236 &poison_attr.attr,
4237 &store_user_attr.attr,
53e15af0 4238 &validate_attr.attr,
2086d26a 4239 &shrink_attr.attr,
88a420e4
CL
4240 &alloc_calls_attr.attr,
4241 &free_calls_attr.attr,
81819f0f
CL
4242#ifdef CONFIG_ZONE_DMA
4243 &cache_dma_attr.attr,
4244#endif
4245#ifdef CONFIG_NUMA
9824601e 4246 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4247#endif
4248#ifdef CONFIG_SLUB_STATS
4249 &alloc_fastpath_attr.attr,
4250 &alloc_slowpath_attr.attr,
4251 &free_fastpath_attr.attr,
4252 &free_slowpath_attr.attr,
4253 &free_frozen_attr.attr,
4254 &free_add_partial_attr.attr,
4255 &free_remove_partial_attr.attr,
4256 &alloc_from_partial_attr.attr,
4257 &alloc_slab_attr.attr,
4258 &alloc_refill_attr.attr,
4259 &free_slab_attr.attr,
4260 &cpuslab_flush_attr.attr,
4261 &deactivate_full_attr.attr,
4262 &deactivate_empty_attr.attr,
4263 &deactivate_to_head_attr.attr,
4264 &deactivate_to_tail_attr.attr,
4265 &deactivate_remote_frees_attr.attr,
65c3376a 4266 &order_fallback_attr.attr,
81819f0f
CL
4267#endif
4268 NULL
4269};
4270
4271static struct attribute_group slab_attr_group = {
4272 .attrs = slab_attrs,
4273};
4274
4275static ssize_t slab_attr_show(struct kobject *kobj,
4276 struct attribute *attr,
4277 char *buf)
4278{
4279 struct slab_attribute *attribute;
4280 struct kmem_cache *s;
4281 int err;
4282
4283 attribute = to_slab_attr(attr);
4284 s = to_slab(kobj);
4285
4286 if (!attribute->show)
4287 return -EIO;
4288
4289 err = attribute->show(s, buf);
4290
4291 return err;
4292}
4293
4294static ssize_t slab_attr_store(struct kobject *kobj,
4295 struct attribute *attr,
4296 const char *buf, size_t len)
4297{
4298 struct slab_attribute *attribute;
4299 struct kmem_cache *s;
4300 int err;
4301
4302 attribute = to_slab_attr(attr);
4303 s = to_slab(kobj);
4304
4305 if (!attribute->store)
4306 return -EIO;
4307
4308 err = attribute->store(s, buf, len);
4309
4310 return err;
4311}
4312
151c602f
CL
4313static void kmem_cache_release(struct kobject *kobj)
4314{
4315 struct kmem_cache *s = to_slab(kobj);
4316
4317 kfree(s);
4318}
4319
81819f0f
CL
4320static struct sysfs_ops slab_sysfs_ops = {
4321 .show = slab_attr_show,
4322 .store = slab_attr_store,
4323};
4324
4325static struct kobj_type slab_ktype = {
4326 .sysfs_ops = &slab_sysfs_ops,
151c602f 4327 .release = kmem_cache_release
81819f0f
CL
4328};
4329
4330static int uevent_filter(struct kset *kset, struct kobject *kobj)
4331{
4332 struct kobj_type *ktype = get_ktype(kobj);
4333
4334 if (ktype == &slab_ktype)
4335 return 1;
4336 return 0;
4337}
4338
4339static struct kset_uevent_ops slab_uevent_ops = {
4340 .filter = uevent_filter,
4341};
4342
27c3a314 4343static struct kset *slab_kset;
81819f0f
CL
4344
4345#define ID_STR_LENGTH 64
4346
4347/* Create a unique string id for a slab cache:
6446faa2
CL
4348 *
4349 * Format :[flags-]size
81819f0f
CL
4350 */
4351static char *create_unique_id(struct kmem_cache *s)
4352{
4353 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4354 char *p = name;
4355
4356 BUG_ON(!name);
4357
4358 *p++ = ':';
4359 /*
4360 * First flags affecting slabcache operations. We will only
4361 * get here for aliasable slabs so we do not need to support
4362 * too many flags. The flags here must cover all flags that
4363 * are matched during merging to guarantee that the id is
4364 * unique.
4365 */
4366 if (s->flags & SLAB_CACHE_DMA)
4367 *p++ = 'd';
4368 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4369 *p++ = 'a';
4370 if (s->flags & SLAB_DEBUG_FREE)
4371 *p++ = 'F';
4372 if (p != name + 1)
4373 *p++ = '-';
4374 p += sprintf(p, "%07d", s->size);
4375 BUG_ON(p > name + ID_STR_LENGTH - 1);
4376 return name;
4377}
4378
4379static int sysfs_slab_add(struct kmem_cache *s)
4380{
4381 int err;
4382 const char *name;
4383 int unmergeable;
4384
4385 if (slab_state < SYSFS)
4386 /* Defer until later */
4387 return 0;
4388
4389 unmergeable = slab_unmergeable(s);
4390 if (unmergeable) {
4391 /*
4392 * Slabcache can never be merged so we can use the name proper.
4393 * This is typically the case for debug situations. In that
4394 * case we can catch duplicate names easily.
4395 */
27c3a314 4396 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4397 name = s->name;
4398 } else {
4399 /*
4400 * Create a unique name for the slab as a target
4401 * for the symlinks.
4402 */
4403 name = create_unique_id(s);
4404 }
4405
27c3a314 4406 s->kobj.kset = slab_kset;
1eada11c
GKH
4407 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4408 if (err) {
4409 kobject_put(&s->kobj);
81819f0f 4410 return err;
1eada11c 4411 }
81819f0f
CL
4412
4413 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4414 if (err)
4415 return err;
4416 kobject_uevent(&s->kobj, KOBJ_ADD);
4417 if (!unmergeable) {
4418 /* Setup first alias */
4419 sysfs_slab_alias(s, s->name);
4420 kfree(name);
4421 }
4422 return 0;
4423}
4424
4425static void sysfs_slab_remove(struct kmem_cache *s)
4426{
4427 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4428 kobject_del(&s->kobj);
151c602f 4429 kobject_put(&s->kobj);
81819f0f
CL
4430}
4431
4432/*
4433 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4434 * available lest we lose that information.
81819f0f
CL
4435 */
4436struct saved_alias {
4437 struct kmem_cache *s;
4438 const char *name;
4439 struct saved_alias *next;
4440};
4441
5af328a5 4442static struct saved_alias *alias_list;
81819f0f
CL
4443
4444static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4445{
4446 struct saved_alias *al;
4447
4448 if (slab_state == SYSFS) {
4449 /*
4450 * If we have a leftover link then remove it.
4451 */
27c3a314
GKH
4452 sysfs_remove_link(&slab_kset->kobj, name);
4453 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4454 }
4455
4456 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4457 if (!al)
4458 return -ENOMEM;
4459
4460 al->s = s;
4461 al->name = name;
4462 al->next = alias_list;
4463 alias_list = al;
4464 return 0;
4465}
4466
4467static int __init slab_sysfs_init(void)
4468{
5b95a4ac 4469 struct kmem_cache *s;
81819f0f
CL
4470 int err;
4471
0ff21e46 4472 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4473 if (!slab_kset) {
81819f0f
CL
4474 printk(KERN_ERR "Cannot register slab subsystem.\n");
4475 return -ENOSYS;
4476 }
4477
26a7bd03
CL
4478 slab_state = SYSFS;
4479
5b95a4ac 4480 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4481 err = sysfs_slab_add(s);
5d540fb7
CL
4482 if (err)
4483 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4484 " to sysfs\n", s->name);
26a7bd03 4485 }
81819f0f
CL
4486
4487 while (alias_list) {
4488 struct saved_alias *al = alias_list;
4489
4490 alias_list = alias_list->next;
4491 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4492 if (err)
4493 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4494 " %s to sysfs\n", s->name);
81819f0f
CL
4495 kfree(al);
4496 }
4497
4498 resiliency_test();
4499 return 0;
4500}
4501
4502__initcall(slab_sysfs_init);
81819f0f 4503#endif
57ed3eda
PE
4504
4505/*
4506 * The /proc/slabinfo ABI
4507 */
158a9624 4508#ifdef CONFIG_SLABINFO
57ed3eda
PE
4509static void print_slabinfo_header(struct seq_file *m)
4510{
4511 seq_puts(m, "slabinfo - version: 2.1\n");
4512 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4513 "<objperslab> <pagesperslab>");
4514 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4515 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4516 seq_putc(m, '\n');
4517}
4518
4519static void *s_start(struct seq_file *m, loff_t *pos)
4520{
4521 loff_t n = *pos;
4522
4523 down_read(&slub_lock);
4524 if (!n)
4525 print_slabinfo_header(m);
4526
4527 return seq_list_start(&slab_caches, *pos);
4528}
4529
4530static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4531{
4532 return seq_list_next(p, &slab_caches, pos);
4533}
4534
4535static void s_stop(struct seq_file *m, void *p)
4536{
4537 up_read(&slub_lock);
4538}
4539
4540static int s_show(struct seq_file *m, void *p)
4541{
4542 unsigned long nr_partials = 0;
4543 unsigned long nr_slabs = 0;
4544 unsigned long nr_inuse = 0;
205ab99d
CL
4545 unsigned long nr_objs = 0;
4546 unsigned long nr_free = 0;
57ed3eda
PE
4547 struct kmem_cache *s;
4548 int node;
4549
4550 s = list_entry(p, struct kmem_cache, list);
4551
4552 for_each_online_node(node) {
4553 struct kmem_cache_node *n = get_node(s, node);
4554
4555 if (!n)
4556 continue;
4557
4558 nr_partials += n->nr_partial;
4559 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4560 nr_objs += atomic_long_read(&n->total_objects);
4561 nr_free += count_partial(n, count_free);
57ed3eda
PE
4562 }
4563
205ab99d 4564 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4565
4566 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4567 nr_objs, s->size, oo_objects(s->oo),
4568 (1 << oo_order(s->oo)));
57ed3eda
PE
4569 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4570 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4571 0UL);
4572 seq_putc(m, '\n');
4573 return 0;
4574}
4575
7b3c3a50 4576static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4577 .start = s_start,
4578 .next = s_next,
4579 .stop = s_stop,
4580 .show = s_show,
4581};
4582
7b3c3a50
AD
4583static int slabinfo_open(struct inode *inode, struct file *file)
4584{
4585 return seq_open(file, &slabinfo_op);
4586}
4587
4588static const struct file_operations proc_slabinfo_operations = {
4589 .open = slabinfo_open,
4590 .read = seq_read,
4591 .llseek = seq_lseek,
4592 .release = seq_release,
4593};
4594
4595static int __init slab_proc_init(void)
4596{
4597 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4598 return 0;
4599}
4600module_init(slab_proc_init);
158a9624 4601#endif /* CONFIG_SLABINFO */