]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
Slab allocators: consolidate code for krealloc in mm/util.c
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
4b6f0750
CL
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
894b8788
CL
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
81819f0f
CL
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
894b8788 99 * the fast path and disables lockless freelists.
81819f0f
CL
100 */
101
5577bd8a
CL
102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
4b6f0750
CL
110static inline int SlabFrozen(struct page *page)
111{
5577bd8a 112 return page->flags & FROZEN;
4b6f0750
CL
113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
5577bd8a 117 page->flags |= FROZEN;
4b6f0750
CL
118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
5577bd8a 122 page->flags &= ~FROZEN;
4b6f0750
CL
123}
124
35e5d7ee
CL
125static inline int SlabDebug(struct page *page)
126{
5577bd8a 127 return page->flags & SLABDEBUG;
35e5d7ee
CL
128}
129
130static inline void SetSlabDebug(struct page *page)
131{
5577bd8a 132 page->flags |= SLABDEBUG;
35e5d7ee
CL
133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
5577bd8a 137 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
138}
139
81819f0f
CL
140/*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156#if PAGE_SHIFT <= 12
157
158/*
159 * Small page size. Make sure that we do not fragment memory
160 */
161#define DEFAULT_MAX_ORDER 1
162#define DEFAULT_MIN_OBJECTS 4
163
164#else
165
166/*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170#define DEFAULT_MAX_ORDER 2
171#define DEFAULT_MIN_OBJECTS 8
172
173#endif
174
2086d26a
CL
175/*
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
e95eed57
CL
179#define MIN_PARTIAL 2
180
2086d26a
CL
181/*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186#define MAX_PARTIAL 10
187
81819f0f
CL
188#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
672bba3a 190
81819f0f
CL
191/*
192 * Set of flags that will prevent slab merging
193 */
194#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
199
200#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 201#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 205#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
206#endif
207
6300ea75
CL
208/*
209 * The page->inuse field is 16 bit thus we have this limitation
210 */
211#define MAX_OBJECTS_PER_SLAB 65535
212
81819f0f
CL
213/* Internal SLUB flags */
214#define __OBJECT_POISON 0x80000000 /* Poison object */
215
65c02d4c
CL
216/* Not all arches define cache_line_size */
217#ifndef cache_line_size
218#define cache_line_size() L1_CACHE_BYTES
219#endif
220
81819f0f
CL
221static int kmem_size = sizeof(struct kmem_cache);
222
223#ifdef CONFIG_SMP
224static struct notifier_block slab_notifier;
225#endif
226
227static enum {
228 DOWN, /* No slab functionality available */
229 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 230 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
231 SYSFS /* Sysfs up */
232} slab_state = DOWN;
233
234/* A list of all slab caches on the system */
235static DECLARE_RWSEM(slub_lock);
236LIST_HEAD(slab_caches);
237
02cbc874
CL
238/*
239 * Tracking user of a slab.
240 */
241struct track {
242 void *addr; /* Called from address */
243 int cpu; /* Was running on cpu */
244 int pid; /* Pid context */
245 unsigned long when; /* When did the operation occur */
246};
247
248enum track_item { TRACK_ALLOC, TRACK_FREE };
249
41ecc55b 250#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
251static int sysfs_slab_add(struct kmem_cache *);
252static int sysfs_slab_alias(struct kmem_cache *, const char *);
253static void sysfs_slab_remove(struct kmem_cache *);
254#else
255static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
257static void sysfs_slab_remove(struct kmem_cache *s) {}
258#endif
259
260/********************************************************************
261 * Core slab cache functions
262 *******************************************************************/
263
264int slab_is_available(void)
265{
266 return slab_state >= UP;
267}
268
269static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
270{
271#ifdef CONFIG_NUMA
272 return s->node[node];
273#else
274 return &s->local_node;
275#endif
276}
277
02cbc874
CL
278static inline int check_valid_pointer(struct kmem_cache *s,
279 struct page *page, const void *object)
280{
281 void *base;
282
283 if (!object)
284 return 1;
285
286 base = page_address(page);
287 if (object < base || object >= base + s->objects * s->size ||
288 (object - base) % s->size) {
289 return 0;
290 }
291
292 return 1;
293}
294
7656c72b
CL
295/*
296 * Slow version of get and set free pointer.
297 *
298 * This version requires touching the cache lines of kmem_cache which
299 * we avoid to do in the fast alloc free paths. There we obtain the offset
300 * from the page struct.
301 */
302static inline void *get_freepointer(struct kmem_cache *s, void *object)
303{
304 return *(void **)(object + s->offset);
305}
306
307static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
308{
309 *(void **)(object + s->offset) = fp;
310}
311
312/* Loop over all objects in a slab */
313#define for_each_object(__p, __s, __addr) \
314 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
315 __p += (__s)->size)
316
317/* Scan freelist */
318#define for_each_free_object(__p, __s, __free) \
319 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
320
321/* Determine object index from a given position */
322static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
323{
324 return (p - addr) / s->size;
325}
326
41ecc55b
CL
327#ifdef CONFIG_SLUB_DEBUG
328/*
329 * Debug settings:
330 */
f0630fff
CL
331#ifdef CONFIG_SLUB_DEBUG_ON
332static int slub_debug = DEBUG_DEFAULT_FLAGS;
333#else
41ecc55b 334static int slub_debug;
f0630fff 335#endif
41ecc55b
CL
336
337static char *slub_debug_slabs;
338
81819f0f
CL
339/*
340 * Object debugging
341 */
342static void print_section(char *text, u8 *addr, unsigned int length)
343{
344 int i, offset;
345 int newline = 1;
346 char ascii[17];
347
348 ascii[16] = 0;
349
350 for (i = 0; i < length; i++) {
351 if (newline) {
24922684 352 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
353 newline = 0;
354 }
355 printk(" %02x", addr[i]);
356 offset = i % 16;
357 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
358 if (offset == 15) {
359 printk(" %s\n",ascii);
360 newline = 1;
361 }
362 }
363 if (!newline) {
364 i %= 16;
365 while (i < 16) {
366 printk(" ");
367 ascii[i] = ' ';
368 i++;
369 }
370 printk(" %s\n", ascii);
371 }
372}
373
81819f0f
CL
374static struct track *get_track(struct kmem_cache *s, void *object,
375 enum track_item alloc)
376{
377 struct track *p;
378
379 if (s->offset)
380 p = object + s->offset + sizeof(void *);
381 else
382 p = object + s->inuse;
383
384 return p + alloc;
385}
386
387static void set_track(struct kmem_cache *s, void *object,
388 enum track_item alloc, void *addr)
389{
390 struct track *p;
391
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
396
397 p += alloc;
398 if (addr) {
399 p->addr = addr;
400 p->cpu = smp_processor_id();
401 p->pid = current ? current->pid : -1;
402 p->when = jiffies;
403 } else
404 memset(p, 0, sizeof(struct track));
405}
406
81819f0f
CL
407static void init_tracking(struct kmem_cache *s, void *object)
408{
24922684
CL
409 if (!(s->flags & SLAB_STORE_USER))
410 return;
411
412 set_track(s, object, TRACK_FREE, NULL);
413 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
414}
415
416static void print_track(const char *s, struct track *t)
417{
418 if (!t->addr)
419 return;
420
24922684 421 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 422 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
423 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
424}
425
426static void print_tracking(struct kmem_cache *s, void *object)
427{
428 if (!(s->flags & SLAB_STORE_USER))
429 return;
430
431 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
432 print_track("Freed", get_track(s, object, TRACK_FREE));
433}
434
435static void print_page_info(struct page *page)
436{
437 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
438 page, page->inuse, page->freelist, page->flags);
439
440}
441
442static void slab_bug(struct kmem_cache *s, char *fmt, ...)
443{
444 va_list args;
445 char buf[100];
446
447 va_start(args, fmt);
448 vsnprintf(buf, sizeof(buf), fmt, args);
449 va_end(args);
450 printk(KERN_ERR "========================================"
451 "=====================================\n");
452 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
453 printk(KERN_ERR "----------------------------------------"
454 "-------------------------------------\n\n");
81819f0f
CL
455}
456
24922684
CL
457static void slab_fix(struct kmem_cache *s, char *fmt, ...)
458{
459 va_list args;
460 char buf[100];
461
462 va_start(args, fmt);
463 vsnprintf(buf, sizeof(buf), fmt, args);
464 va_end(args);
465 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
466}
467
468static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
469{
470 unsigned int off; /* Offset of last byte */
24922684
CL
471 u8 *addr = page_address(page);
472
473 print_tracking(s, p);
474
475 print_page_info(page);
476
477 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
478 p, p - addr, get_freepointer(s, p));
479
480 if (p > addr + 16)
481 print_section("Bytes b4", p - 16, 16);
482
483 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
484
485 if (s->flags & SLAB_RED_ZONE)
486 print_section("Redzone", p + s->objsize,
487 s->inuse - s->objsize);
488
81819f0f
CL
489 if (s->offset)
490 off = s->offset + sizeof(void *);
491 else
492 off = s->inuse;
493
24922684 494 if (s->flags & SLAB_STORE_USER)
81819f0f 495 off += 2 * sizeof(struct track);
81819f0f
CL
496
497 if (off != s->size)
498 /* Beginning of the filler is the free pointer */
24922684
CL
499 print_section("Padding", p + off, s->size - off);
500
501 dump_stack();
81819f0f
CL
502}
503
504static void object_err(struct kmem_cache *s, struct page *page,
505 u8 *object, char *reason)
506{
24922684
CL
507 slab_bug(s, reason);
508 print_trailer(s, page, object);
81819f0f
CL
509}
510
24922684 511static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
512{
513 va_list args;
514 char buf[100];
515
24922684
CL
516 va_start(args, fmt);
517 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 518 va_end(args);
24922684
CL
519 slab_bug(s, fmt);
520 print_page_info(page);
81819f0f
CL
521 dump_stack();
522}
523
524static void init_object(struct kmem_cache *s, void *object, int active)
525{
526 u8 *p = object;
527
528 if (s->flags & __OBJECT_POISON) {
529 memset(p, POISON_FREE, s->objsize - 1);
530 p[s->objsize -1] = POISON_END;
531 }
532
533 if (s->flags & SLAB_RED_ZONE)
534 memset(p + s->objsize,
535 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
536 s->inuse - s->objsize);
537}
538
24922684 539static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
540{
541 while (bytes) {
542 if (*start != (u8)value)
24922684 543 return start;
81819f0f
CL
544 start++;
545 bytes--;
546 }
24922684
CL
547 return NULL;
548}
549
550static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
551 void *from, void *to)
552{
553 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
554 memset(from, data, to - from);
555}
556
557static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
558 u8 *object, char *what,
559 u8* start, unsigned int value, unsigned int bytes)
560{
561 u8 *fault;
562 u8 *end;
563
564 fault = check_bytes(start, value, bytes);
565 if (!fault)
566 return 1;
567
568 end = start + bytes;
569 while (end > fault && end[-1] == value)
570 end--;
571
572 slab_bug(s, "%s overwritten", what);
573 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
574 fault, end - 1, fault[0], value);
575 print_trailer(s, page, object);
576
577 restore_bytes(s, what, value, fault, end);
578 return 0;
81819f0f
CL
579}
580
81819f0f
CL
581/*
582 * Object layout:
583 *
584 * object address
585 * Bytes of the object to be managed.
586 * If the freepointer may overlay the object then the free
587 * pointer is the first word of the object.
672bba3a 588 *
81819f0f
CL
589 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
590 * 0xa5 (POISON_END)
591 *
592 * object + s->objsize
593 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
594 * Padding is extended by another word if Redzoning is enabled and
595 * objsize == inuse.
596 *
81819f0f
CL
597 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
598 * 0xcc (RED_ACTIVE) for objects in use.
599 *
600 * object + s->inuse
672bba3a
CL
601 * Meta data starts here.
602 *
81819f0f
CL
603 * A. Free pointer (if we cannot overwrite object on free)
604 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
605 * C. Padding to reach required alignment boundary or at mininum
606 * one word if debuggin is on to be able to detect writes
607 * before the word boundary.
608 *
609 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
610 *
611 * object + s->size
672bba3a 612 * Nothing is used beyond s->size.
81819f0f 613 *
672bba3a
CL
614 * If slabcaches are merged then the objsize and inuse boundaries are mostly
615 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
616 * may be used with merged slabcaches.
617 */
618
81819f0f
CL
619static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
620{
621 unsigned long off = s->inuse; /* The end of info */
622
623 if (s->offset)
624 /* Freepointer is placed after the object. */
625 off += sizeof(void *);
626
627 if (s->flags & SLAB_STORE_USER)
628 /* We also have user information there */
629 off += 2 * sizeof(struct track);
630
631 if (s->size == off)
632 return 1;
633
24922684
CL
634 return check_bytes_and_report(s, page, p, "Object padding",
635 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
636}
637
638static int slab_pad_check(struct kmem_cache *s, struct page *page)
639{
24922684
CL
640 u8 *start;
641 u8 *fault;
642 u8 *end;
643 int length;
644 int remainder;
81819f0f
CL
645
646 if (!(s->flags & SLAB_POISON))
647 return 1;
648
24922684
CL
649 start = page_address(page);
650 end = start + (PAGE_SIZE << s->order);
81819f0f 651 length = s->objects * s->size;
24922684 652 remainder = end - (start + length);
81819f0f
CL
653 if (!remainder)
654 return 1;
655
24922684
CL
656 fault = check_bytes(start + length, POISON_INUSE, remainder);
657 if (!fault)
658 return 1;
659 while (end > fault && end[-1] == POISON_INUSE)
660 end--;
661
662 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
663 print_section("Padding", start, length);
664
665 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
666 return 0;
81819f0f
CL
667}
668
669static int check_object(struct kmem_cache *s, struct page *page,
670 void *object, int active)
671{
672 u8 *p = object;
673 u8 *endobject = object + s->objsize;
674
675 if (s->flags & SLAB_RED_ZONE) {
676 unsigned int red =
677 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
678
24922684
CL
679 if (!check_bytes_and_report(s, page, object, "Redzone",
680 endobject, red, s->inuse - s->objsize))
81819f0f 681 return 0;
81819f0f 682 } else {
24922684
CL
683 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
684 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
685 POISON_INUSE, s->inuse - s->objsize);
81819f0f
CL
686 }
687
688 if (s->flags & SLAB_POISON) {
689 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
690 (!check_bytes_and_report(s, page, p, "Poison", p,
691 POISON_FREE, s->objsize - 1) ||
692 !check_bytes_and_report(s, page, p, "Poison",
693 p + s->objsize -1, POISON_END, 1)))
81819f0f 694 return 0;
81819f0f
CL
695 /*
696 * check_pad_bytes cleans up on its own.
697 */
698 check_pad_bytes(s, page, p);
699 }
700
701 if (!s->offset && active)
702 /*
703 * Object and freepointer overlap. Cannot check
704 * freepointer while object is allocated.
705 */
706 return 1;
707
708 /* Check free pointer validity */
709 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
710 object_err(s, page, p, "Freepointer corrupt");
711 /*
712 * No choice but to zap it and thus loose the remainder
713 * of the free objects in this slab. May cause
672bba3a 714 * another error because the object count is now wrong.
81819f0f
CL
715 */
716 set_freepointer(s, p, NULL);
717 return 0;
718 }
719 return 1;
720}
721
722static int check_slab(struct kmem_cache *s, struct page *page)
723{
724 VM_BUG_ON(!irqs_disabled());
725
726 if (!PageSlab(page)) {
24922684 727 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
728 return 0;
729 }
730 if (page->offset * sizeof(void *) != s->offset) {
24922684
CL
731 slab_err(s, page, "Corrupted offset %lu",
732 (unsigned long)(page->offset * sizeof(void *)));
81819f0f
CL
733 return 0;
734 }
735 if (page->inuse > s->objects) {
24922684
CL
736 slab_err(s, page, "inuse %u > max %u",
737 s->name, page->inuse, s->objects);
81819f0f
CL
738 return 0;
739 }
740 /* Slab_pad_check fixes things up after itself */
741 slab_pad_check(s, page);
742 return 1;
743}
744
745/*
672bba3a
CL
746 * Determine if a certain object on a page is on the freelist. Must hold the
747 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
748 */
749static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
750{
751 int nr = 0;
752 void *fp = page->freelist;
753 void *object = NULL;
754
755 while (fp && nr <= s->objects) {
756 if (fp == search)
757 return 1;
758 if (!check_valid_pointer(s, page, fp)) {
759 if (object) {
760 object_err(s, page, object,
761 "Freechain corrupt");
762 set_freepointer(s, object, NULL);
763 break;
764 } else {
24922684 765 slab_err(s, page, "Freepointer corrupt");
81819f0f
CL
766 page->freelist = NULL;
767 page->inuse = s->objects;
24922684 768 slab_fix(s, "Freelist cleared");
81819f0f
CL
769 return 0;
770 }
771 break;
772 }
773 object = fp;
774 fp = get_freepointer(s, object);
775 nr++;
776 }
777
778 if (page->inuse != s->objects - nr) {
70d71228 779 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 780 "counted were %d", page->inuse, s->objects - nr);
81819f0f 781 page->inuse = s->objects - nr;
24922684 782 slab_fix(s, "Object count adjusted.");
81819f0f
CL
783 }
784 return search == NULL;
785}
786
3ec09742
CL
787static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
788{
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
795
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
798
799 dump_stack();
800 }
801}
802
643b1138 803/*
672bba3a 804 * Tracking of fully allocated slabs for debugging purposes.
643b1138 805 */
e95eed57 806static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 807{
643b1138
CL
808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
811}
812
813static void remove_full(struct kmem_cache *s, struct page *page)
814{
815 struct kmem_cache_node *n;
816
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
819
820 n = get_node(s, page_to_nid(page));
821
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
825}
826
3ec09742
CL
827static void setup_object_debug(struct kmem_cache *s, struct page *page,
828 void *object)
829{
830 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
831 return;
832
833 init_object(s, object, 0);
834 init_tracking(s, object);
835}
836
837static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
838 void *object, void *addr)
81819f0f
CL
839{
840 if (!check_slab(s, page))
841 goto bad;
842
843 if (object && !on_freelist(s, page, object)) {
24922684 844 object_err(s, page, object, "Object already allocated");
70d71228 845 goto bad;
81819f0f
CL
846 }
847
848 if (!check_valid_pointer(s, page, object)) {
849 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 850 goto bad;
81819f0f
CL
851 }
852
3ec09742 853 if (object && !check_object(s, page, object, 0))
81819f0f 854 goto bad;
81819f0f 855
3ec09742
CL
856 /* Success perform special debug activities for allocs */
857 if (s->flags & SLAB_STORE_USER)
858 set_track(s, object, TRACK_ALLOC, addr);
859 trace(s, page, object, 1);
860 init_object(s, object, 1);
81819f0f 861 return 1;
3ec09742 862
81819f0f
CL
863bad:
864 if (PageSlab(page)) {
865 /*
866 * If this is a slab page then lets do the best we can
867 * to avoid issues in the future. Marking all objects
672bba3a 868 * as used avoids touching the remaining objects.
81819f0f 869 */
24922684 870 slab_fix(s, "Marking all objects used");
81819f0f
CL
871 page->inuse = s->objects;
872 page->freelist = NULL;
873 /* Fix up fields that may be corrupted */
874 page->offset = s->offset / sizeof(void *);
875 }
876 return 0;
877}
878
3ec09742
CL
879static int free_debug_processing(struct kmem_cache *s, struct page *page,
880 void *object, void *addr)
81819f0f
CL
881{
882 if (!check_slab(s, page))
883 goto fail;
884
885 if (!check_valid_pointer(s, page, object)) {
70d71228 886 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
887 goto fail;
888 }
889
890 if (on_freelist(s, page, object)) {
24922684 891 object_err(s, page, object, "Object already free");
81819f0f
CL
892 goto fail;
893 }
894
895 if (!check_object(s, page, object, 1))
896 return 0;
897
898 if (unlikely(s != page->slab)) {
899 if (!PageSlab(page))
70d71228
CL
900 slab_err(s, page, "Attempt to free object(0x%p) "
901 "outside of slab", object);
81819f0f 902 else
70d71228 903 if (!page->slab) {
81819f0f 904 printk(KERN_ERR
70d71228 905 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 906 object);
70d71228
CL
907 dump_stack();
908 }
81819f0f 909 else
24922684
CL
910 object_err(s, page, object,
911 "page slab pointer corrupt.");
81819f0f
CL
912 goto fail;
913 }
3ec09742
CL
914
915 /* Special debug activities for freeing objects */
916 if (!SlabFrozen(page) && !page->freelist)
917 remove_full(s, page);
918 if (s->flags & SLAB_STORE_USER)
919 set_track(s, object, TRACK_FREE, addr);
920 trace(s, page, object, 0);
921 init_object(s, object, 0);
81819f0f 922 return 1;
3ec09742 923
81819f0f 924fail:
24922684 925 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
926 return 0;
927}
928
41ecc55b
CL
929static int __init setup_slub_debug(char *str)
930{
f0630fff
CL
931 slub_debug = DEBUG_DEFAULT_FLAGS;
932 if (*str++ != '=' || !*str)
933 /*
934 * No options specified. Switch on full debugging.
935 */
936 goto out;
937
938 if (*str == ',')
939 /*
940 * No options but restriction on slabs. This means full
941 * debugging for slabs matching a pattern.
942 */
943 goto check_slabs;
944
945 slub_debug = 0;
946 if (*str == '-')
947 /*
948 * Switch off all debugging measures.
949 */
950 goto out;
951
952 /*
953 * Determine which debug features should be switched on
954 */
955 for ( ;*str && *str != ','; str++) {
956 switch (tolower(*str)) {
957 case 'f':
958 slub_debug |= SLAB_DEBUG_FREE;
959 break;
960 case 'z':
961 slub_debug |= SLAB_RED_ZONE;
962 break;
963 case 'p':
964 slub_debug |= SLAB_POISON;
965 break;
966 case 'u':
967 slub_debug |= SLAB_STORE_USER;
968 break;
969 case 't':
970 slub_debug |= SLAB_TRACE;
971 break;
972 default:
973 printk(KERN_ERR "slub_debug option '%c' "
974 "unknown. skipped\n",*str);
975 }
41ecc55b
CL
976 }
977
f0630fff 978check_slabs:
41ecc55b
CL
979 if (*str == ',')
980 slub_debug_slabs = str + 1;
f0630fff 981out:
41ecc55b
CL
982 return 1;
983}
984
985__setup("slub_debug", setup_slub_debug);
986
987static void kmem_cache_open_debug_check(struct kmem_cache *s)
988{
989 /*
990 * The page->offset field is only 16 bit wide. This is an offset
991 * in units of words from the beginning of an object. If the slab
992 * size is bigger then we cannot move the free pointer behind the
993 * object anymore.
994 *
995 * On 32 bit platforms the limit is 256k. On 64bit platforms
996 * the limit is 512k.
997 *
c59def9f 998 * Debugging or ctor may create a need to move the free
41ecc55b
CL
999 * pointer. Fail if this happens.
1000 */
33e9e241 1001 if (s->objsize >= 65535 * sizeof(void *)) {
41ecc55b
CL
1002 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
1003 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
c59def9f 1004 BUG_ON(s->ctor);
41ecc55b
CL
1005 }
1006 else
1007 /*
1008 * Enable debugging if selected on the kernel commandline.
1009 */
1010 if (slub_debug && (!slub_debug_slabs ||
1011 strncmp(slub_debug_slabs, s->name,
1012 strlen(slub_debug_slabs)) == 0))
1013 s->flags |= slub_debug;
1014}
1015#else
3ec09742
CL
1016static inline void setup_object_debug(struct kmem_cache *s,
1017 struct page *page, void *object) {}
41ecc55b 1018
3ec09742
CL
1019static inline int alloc_debug_processing(struct kmem_cache *s,
1020 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1021
3ec09742
CL
1022static inline int free_debug_processing(struct kmem_cache *s,
1023 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1024
41ecc55b
CL
1025static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1026 { return 1; }
1027static inline int check_object(struct kmem_cache *s, struct page *page,
1028 void *object, int active) { return 1; }
3ec09742 1029static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
41ecc55b
CL
1030static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
1031#define slub_debug 0
1032#endif
81819f0f
CL
1033/*
1034 * Slab allocation and freeing
1035 */
1036static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1037{
1038 struct page * page;
1039 int pages = 1 << s->order;
1040
1041 if (s->order)
1042 flags |= __GFP_COMP;
1043
1044 if (s->flags & SLAB_CACHE_DMA)
1045 flags |= SLUB_DMA;
1046
1047 if (node == -1)
1048 page = alloc_pages(flags, s->order);
1049 else
1050 page = alloc_pages_node(node, flags, s->order);
1051
1052 if (!page)
1053 return NULL;
1054
1055 mod_zone_page_state(page_zone(page),
1056 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1057 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1058 pages);
1059
1060 return page;
1061}
1062
1063static void setup_object(struct kmem_cache *s, struct page *page,
1064 void *object)
1065{
3ec09742 1066 setup_object_debug(s, page, object);
4f104934 1067 if (unlikely(s->ctor))
a35afb83 1068 s->ctor(object, s, 0);
81819f0f
CL
1069}
1070
1071static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1072{
1073 struct page *page;
1074 struct kmem_cache_node *n;
1075 void *start;
1076 void *end;
1077 void *last;
1078 void *p;
1079
81819f0f
CL
1080 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1081
1082 if (flags & __GFP_WAIT)
1083 local_irq_enable();
1084
1085 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1086 if (!page)
1087 goto out;
1088
1089 n = get_node(s, page_to_nid(page));
1090 if (n)
1091 atomic_long_inc(&n->nr_slabs);
1092 page->offset = s->offset / sizeof(void *);
1093 page->slab = s;
1094 page->flags |= 1 << PG_slab;
1095 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1096 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1097 SetSlabDebug(page);
81819f0f
CL
1098
1099 start = page_address(page);
1100 end = start + s->objects * s->size;
1101
1102 if (unlikely(s->flags & SLAB_POISON))
1103 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1104
1105 last = start;
7656c72b 1106 for_each_object(p, s, start) {
81819f0f
CL
1107 setup_object(s, page, last);
1108 set_freepointer(s, last, p);
1109 last = p;
1110 }
1111 setup_object(s, page, last);
1112 set_freepointer(s, last, NULL);
1113
1114 page->freelist = start;
894b8788 1115 page->lockless_freelist = NULL;
81819f0f
CL
1116 page->inuse = 0;
1117out:
1118 if (flags & __GFP_WAIT)
1119 local_irq_disable();
1120 return page;
1121}
1122
1123static void __free_slab(struct kmem_cache *s, struct page *page)
1124{
1125 int pages = 1 << s->order;
1126
c59def9f 1127 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1128 void *p;
1129
1130 slab_pad_check(s, page);
c59def9f 1131 for_each_object(p, s, page_address(page))
81819f0f 1132 check_object(s, page, p, 0);
81819f0f
CL
1133 }
1134
1135 mod_zone_page_state(page_zone(page),
1136 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138 - pages);
1139
1140 page->mapping = NULL;
1141 __free_pages(page, s->order);
1142}
1143
1144static void rcu_free_slab(struct rcu_head *h)
1145{
1146 struct page *page;
1147
1148 page = container_of((struct list_head *)h, struct page, lru);
1149 __free_slab(page->slab, page);
1150}
1151
1152static void free_slab(struct kmem_cache *s, struct page *page)
1153{
1154 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1155 /*
1156 * RCU free overloads the RCU head over the LRU
1157 */
1158 struct rcu_head *head = (void *)&page->lru;
1159
1160 call_rcu(head, rcu_free_slab);
1161 } else
1162 __free_slab(s, page);
1163}
1164
1165static void discard_slab(struct kmem_cache *s, struct page *page)
1166{
1167 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1168
1169 atomic_long_dec(&n->nr_slabs);
1170 reset_page_mapcount(page);
35e5d7ee
CL
1171 ClearSlabDebug(page);
1172 __ClearPageSlab(page);
81819f0f
CL
1173 free_slab(s, page);
1174}
1175
1176/*
1177 * Per slab locking using the pagelock
1178 */
1179static __always_inline void slab_lock(struct page *page)
1180{
1181 bit_spin_lock(PG_locked, &page->flags);
1182}
1183
1184static __always_inline void slab_unlock(struct page *page)
1185{
1186 bit_spin_unlock(PG_locked, &page->flags);
1187}
1188
1189static __always_inline int slab_trylock(struct page *page)
1190{
1191 int rc = 1;
1192
1193 rc = bit_spin_trylock(PG_locked, &page->flags);
1194 return rc;
1195}
1196
1197/*
1198 * Management of partially allocated slabs
1199 */
e95eed57 1200static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1201{
e95eed57
CL
1202 spin_lock(&n->list_lock);
1203 n->nr_partial++;
1204 list_add_tail(&page->lru, &n->partial);
1205 spin_unlock(&n->list_lock);
1206}
81819f0f 1207
e95eed57
CL
1208static void add_partial(struct kmem_cache_node *n, struct page *page)
1209{
81819f0f
CL
1210 spin_lock(&n->list_lock);
1211 n->nr_partial++;
1212 list_add(&page->lru, &n->partial);
1213 spin_unlock(&n->list_lock);
1214}
1215
1216static void remove_partial(struct kmem_cache *s,
1217 struct page *page)
1218{
1219 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1220
1221 spin_lock(&n->list_lock);
1222 list_del(&page->lru);
1223 n->nr_partial--;
1224 spin_unlock(&n->list_lock);
1225}
1226
1227/*
672bba3a 1228 * Lock slab and remove from the partial list.
81819f0f 1229 *
672bba3a 1230 * Must hold list_lock.
81819f0f 1231 */
4b6f0750 1232static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1233{
1234 if (slab_trylock(page)) {
1235 list_del(&page->lru);
1236 n->nr_partial--;
4b6f0750 1237 SetSlabFrozen(page);
81819f0f
CL
1238 return 1;
1239 }
1240 return 0;
1241}
1242
1243/*
672bba3a 1244 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1245 */
1246static struct page *get_partial_node(struct kmem_cache_node *n)
1247{
1248 struct page *page;
1249
1250 /*
1251 * Racy check. If we mistakenly see no partial slabs then we
1252 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1253 * partial slab and there is none available then get_partials()
1254 * will return NULL.
81819f0f
CL
1255 */
1256 if (!n || !n->nr_partial)
1257 return NULL;
1258
1259 spin_lock(&n->list_lock);
1260 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1261 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1262 goto out;
1263 page = NULL;
1264out:
1265 spin_unlock(&n->list_lock);
1266 return page;
1267}
1268
1269/*
672bba3a 1270 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1271 */
1272static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1273{
1274#ifdef CONFIG_NUMA
1275 struct zonelist *zonelist;
1276 struct zone **z;
1277 struct page *page;
1278
1279 /*
672bba3a
CL
1280 * The defrag ratio allows a configuration of the tradeoffs between
1281 * inter node defragmentation and node local allocations. A lower
1282 * defrag_ratio increases the tendency to do local allocations
1283 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1284 *
672bba3a
CL
1285 * If the defrag_ratio is set to 0 then kmalloc() always
1286 * returns node local objects. If the ratio is higher then kmalloc()
1287 * may return off node objects because partial slabs are obtained
1288 * from other nodes and filled up.
81819f0f
CL
1289 *
1290 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1291 * defrag_ratio = 1000) then every (well almost) allocation will
1292 * first attempt to defrag slab caches on other nodes. This means
1293 * scanning over all nodes to look for partial slabs which may be
1294 * expensive if we do it every time we are trying to find a slab
1295 * with available objects.
81819f0f
CL
1296 */
1297 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1298 return NULL;
1299
1300 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1301 ->node_zonelists[gfp_zone(flags)];
1302 for (z = zonelist->zones; *z; z++) {
1303 struct kmem_cache_node *n;
1304
1305 n = get_node(s, zone_to_nid(*z));
1306
1307 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1308 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1309 page = get_partial_node(n);
1310 if (page)
1311 return page;
1312 }
1313 }
1314#endif
1315 return NULL;
1316}
1317
1318/*
1319 * Get a partial page, lock it and return it.
1320 */
1321static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1322{
1323 struct page *page;
1324 int searchnode = (node == -1) ? numa_node_id() : node;
1325
1326 page = get_partial_node(get_node(s, searchnode));
1327 if (page || (flags & __GFP_THISNODE))
1328 return page;
1329
1330 return get_any_partial(s, flags);
1331}
1332
1333/*
1334 * Move a page back to the lists.
1335 *
1336 * Must be called with the slab lock held.
1337 *
1338 * On exit the slab lock will have been dropped.
1339 */
4b6f0750 1340static void unfreeze_slab(struct kmem_cache *s, struct page *page)
81819f0f 1341{
e95eed57
CL
1342 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1343
4b6f0750 1344 ClearSlabFrozen(page);
81819f0f 1345 if (page->inuse) {
e95eed57 1346
81819f0f 1347 if (page->freelist)
e95eed57 1348 add_partial(n, page);
35e5d7ee 1349 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1350 add_full(n, page);
81819f0f 1351 slab_unlock(page);
e95eed57 1352
81819f0f 1353 } else {
e95eed57
CL
1354 if (n->nr_partial < MIN_PARTIAL) {
1355 /*
672bba3a
CL
1356 * Adding an empty slab to the partial slabs in order
1357 * to avoid page allocator overhead. This slab needs
1358 * to come after the other slabs with objects in
1359 * order to fill them up. That way the size of the
1360 * partial list stays small. kmem_cache_shrink can
1361 * reclaim empty slabs from the partial list.
e95eed57
CL
1362 */
1363 add_partial_tail(n, page);
1364 slab_unlock(page);
1365 } else {
1366 slab_unlock(page);
1367 discard_slab(s, page);
1368 }
81819f0f
CL
1369 }
1370}
1371
1372/*
1373 * Remove the cpu slab
1374 */
1375static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1376{
894b8788
CL
1377 /*
1378 * Merge cpu freelist into freelist. Typically we get here
1379 * because both freelists are empty. So this is unlikely
1380 * to occur.
1381 */
1382 while (unlikely(page->lockless_freelist)) {
1383 void **object;
1384
1385 /* Retrieve object from cpu_freelist */
1386 object = page->lockless_freelist;
1387 page->lockless_freelist = page->lockless_freelist[page->offset];
1388
1389 /* And put onto the regular freelist */
1390 object[page->offset] = page->freelist;
1391 page->freelist = object;
1392 page->inuse--;
1393 }
81819f0f 1394 s->cpu_slab[cpu] = NULL;
4b6f0750 1395 unfreeze_slab(s, page);
81819f0f
CL
1396}
1397
1398static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1399{
1400 slab_lock(page);
1401 deactivate_slab(s, page, cpu);
1402}
1403
1404/*
1405 * Flush cpu slab.
1406 * Called from IPI handler with interrupts disabled.
1407 */
1408static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1409{
1410 struct page *page = s->cpu_slab[cpu];
1411
1412 if (likely(page))
1413 flush_slab(s, page, cpu);
1414}
1415
1416static void flush_cpu_slab(void *d)
1417{
1418 struct kmem_cache *s = d;
1419 int cpu = smp_processor_id();
1420
1421 __flush_cpu_slab(s, cpu);
1422}
1423
1424static void flush_all(struct kmem_cache *s)
1425{
1426#ifdef CONFIG_SMP
1427 on_each_cpu(flush_cpu_slab, s, 1, 1);
1428#else
1429 unsigned long flags;
1430
1431 local_irq_save(flags);
1432 flush_cpu_slab(s);
1433 local_irq_restore(flags);
1434#endif
1435}
1436
1437/*
894b8788
CL
1438 * Slow path. The lockless freelist is empty or we need to perform
1439 * debugging duties.
1440 *
1441 * Interrupts are disabled.
81819f0f 1442 *
894b8788
CL
1443 * Processing is still very fast if new objects have been freed to the
1444 * regular freelist. In that case we simply take over the regular freelist
1445 * as the lockless freelist and zap the regular freelist.
81819f0f 1446 *
894b8788
CL
1447 * If that is not working then we fall back to the partial lists. We take the
1448 * first element of the freelist as the object to allocate now and move the
1449 * rest of the freelist to the lockless freelist.
81819f0f 1450 *
894b8788
CL
1451 * And if we were unable to get a new slab from the partial slab lists then
1452 * we need to allocate a new slab. This is slowest path since we may sleep.
81819f0f 1453 */
894b8788
CL
1454static void *__slab_alloc(struct kmem_cache *s,
1455 gfp_t gfpflags, int node, void *addr, struct page *page)
81819f0f 1456{
81819f0f 1457 void **object;
894b8788 1458 int cpu = smp_processor_id();
81819f0f 1459
81819f0f
CL
1460 if (!page)
1461 goto new_slab;
1462
1463 slab_lock(page);
1464 if (unlikely(node != -1 && page_to_nid(page) != node))
1465 goto another_slab;
894b8788 1466load_freelist:
81819f0f
CL
1467 object = page->freelist;
1468 if (unlikely(!object))
1469 goto another_slab;
35e5d7ee 1470 if (unlikely(SlabDebug(page)))
81819f0f
CL
1471 goto debug;
1472
894b8788
CL
1473 object = page->freelist;
1474 page->lockless_freelist = object[page->offset];
1475 page->inuse = s->objects;
1476 page->freelist = NULL;
81819f0f 1477 slab_unlock(page);
81819f0f
CL
1478 return object;
1479
1480another_slab:
1481 deactivate_slab(s, page, cpu);
1482
1483new_slab:
1484 page = get_partial(s, gfpflags, node);
894b8788 1485 if (page) {
81819f0f 1486 s->cpu_slab[cpu] = page;
894b8788 1487 goto load_freelist;
81819f0f
CL
1488 }
1489
1490 page = new_slab(s, gfpflags, node);
1491 if (page) {
1492 cpu = smp_processor_id();
1493 if (s->cpu_slab[cpu]) {
1494 /*
672bba3a
CL
1495 * Someone else populated the cpu_slab while we
1496 * enabled interrupts, or we have gotten scheduled
1497 * on another cpu. The page may not be on the
1498 * requested node even if __GFP_THISNODE was
1499 * specified. So we need to recheck.
81819f0f
CL
1500 */
1501 if (node == -1 ||
1502 page_to_nid(s->cpu_slab[cpu]) == node) {
1503 /*
1504 * Current cpuslab is acceptable and we
1505 * want the current one since its cache hot
1506 */
1507 discard_slab(s, page);
1508 page = s->cpu_slab[cpu];
1509 slab_lock(page);
894b8788 1510 goto load_freelist;
81819f0f 1511 }
672bba3a 1512 /* New slab does not fit our expectations */
81819f0f
CL
1513 flush_slab(s, s->cpu_slab[cpu], cpu);
1514 }
1515 slab_lock(page);
4b6f0750
CL
1516 SetSlabFrozen(page);
1517 s->cpu_slab[cpu] = page;
1518 goto load_freelist;
81819f0f 1519 }
81819f0f
CL
1520 return NULL;
1521debug:
894b8788 1522 object = page->freelist;
3ec09742 1523 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1524 goto another_slab;
894b8788
CL
1525
1526 page->inuse++;
1527 page->freelist = object[page->offset];
1528 slab_unlock(page);
1529 return object;
1530}
1531
1532/*
1533 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1534 * have the fastpath folded into their functions. So no function call
1535 * overhead for requests that can be satisfied on the fastpath.
1536 *
1537 * The fastpath works by first checking if the lockless freelist can be used.
1538 * If not then __slab_alloc is called for slow processing.
1539 *
1540 * Otherwise we can simply pick the next object from the lockless free list.
1541 */
1542static void __always_inline *slab_alloc(struct kmem_cache *s,
1543 gfp_t gfpflags, int node, void *addr)
1544{
1545 struct page *page;
1546 void **object;
1547 unsigned long flags;
1548
1549 local_irq_save(flags);
1550 page = s->cpu_slab[smp_processor_id()];
1551 if (unlikely(!page || !page->lockless_freelist ||
1552 (node != -1 && page_to_nid(page) != node)))
1553
1554 object = __slab_alloc(s, gfpflags, node, addr, page);
1555
1556 else {
1557 object = page->lockless_freelist;
1558 page->lockless_freelist = object[page->offset];
1559 }
1560 local_irq_restore(flags);
1561 return object;
81819f0f
CL
1562}
1563
1564void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1565{
77c5e2d0 1566 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1567}
1568EXPORT_SYMBOL(kmem_cache_alloc);
1569
1570#ifdef CONFIG_NUMA
1571void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1572{
77c5e2d0 1573 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1574}
1575EXPORT_SYMBOL(kmem_cache_alloc_node);
1576#endif
1577
1578/*
894b8788
CL
1579 * Slow patch handling. This may still be called frequently since objects
1580 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1581 *
894b8788
CL
1582 * So we still attempt to reduce cache line usage. Just take the slab
1583 * lock and free the item. If there is no additional partial page
1584 * handling required then we can return immediately.
81819f0f 1585 */
894b8788 1586static void __slab_free(struct kmem_cache *s, struct page *page,
77c5e2d0 1587 void *x, void *addr)
81819f0f
CL
1588{
1589 void *prior;
1590 void **object = (void *)x;
81819f0f 1591
81819f0f
CL
1592 slab_lock(page);
1593
35e5d7ee 1594 if (unlikely(SlabDebug(page)))
81819f0f
CL
1595 goto debug;
1596checks_ok:
1597 prior = object[page->offset] = page->freelist;
1598 page->freelist = object;
1599 page->inuse--;
1600
4b6f0750 1601 if (unlikely(SlabFrozen(page)))
81819f0f
CL
1602 goto out_unlock;
1603
1604 if (unlikely(!page->inuse))
1605 goto slab_empty;
1606
1607 /*
1608 * Objects left in the slab. If it
1609 * was not on the partial list before
1610 * then add it.
1611 */
1612 if (unlikely(!prior))
e95eed57 1613 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1614
1615out_unlock:
1616 slab_unlock(page);
81819f0f
CL
1617 return;
1618
1619slab_empty:
1620 if (prior)
1621 /*
672bba3a 1622 * Slab still on the partial list.
81819f0f
CL
1623 */
1624 remove_partial(s, page);
1625
1626 slab_unlock(page);
1627 discard_slab(s, page);
81819f0f
CL
1628 return;
1629
1630debug:
3ec09742 1631 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1632 goto out_unlock;
77c5e2d0 1633 goto checks_ok;
81819f0f
CL
1634}
1635
894b8788
CL
1636/*
1637 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1638 * can perform fastpath freeing without additional function calls.
1639 *
1640 * The fastpath is only possible if we are freeing to the current cpu slab
1641 * of this processor. This typically the case if we have just allocated
1642 * the item before.
1643 *
1644 * If fastpath is not possible then fall back to __slab_free where we deal
1645 * with all sorts of special processing.
1646 */
1647static void __always_inline slab_free(struct kmem_cache *s,
1648 struct page *page, void *x, void *addr)
1649{
1650 void **object = (void *)x;
1651 unsigned long flags;
1652
1653 local_irq_save(flags);
1654 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1655 !SlabDebug(page))) {
1656 object[page->offset] = page->lockless_freelist;
1657 page->lockless_freelist = object;
1658 } else
1659 __slab_free(s, page, x, addr);
1660
1661 local_irq_restore(flags);
1662}
1663
81819f0f
CL
1664void kmem_cache_free(struct kmem_cache *s, void *x)
1665{
77c5e2d0 1666 struct page *page;
81819f0f 1667
b49af68f 1668 page = virt_to_head_page(x);
81819f0f 1669
77c5e2d0 1670 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1671}
1672EXPORT_SYMBOL(kmem_cache_free);
1673
1674/* Figure out on which slab object the object resides */
1675static struct page *get_object_page(const void *x)
1676{
b49af68f 1677 struct page *page = virt_to_head_page(x);
81819f0f
CL
1678
1679 if (!PageSlab(page))
1680 return NULL;
1681
1682 return page;
1683}
1684
1685/*
672bba3a
CL
1686 * Object placement in a slab is made very easy because we always start at
1687 * offset 0. If we tune the size of the object to the alignment then we can
1688 * get the required alignment by putting one properly sized object after
1689 * another.
81819f0f
CL
1690 *
1691 * Notice that the allocation order determines the sizes of the per cpu
1692 * caches. Each processor has always one slab available for allocations.
1693 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1694 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1695 * locking overhead.
81819f0f
CL
1696 */
1697
1698/*
1699 * Mininum / Maximum order of slab pages. This influences locking overhead
1700 * and slab fragmentation. A higher order reduces the number of partial slabs
1701 * and increases the number of allocations possible without having to
1702 * take the list_lock.
1703 */
1704static int slub_min_order;
1705static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1706static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1707
1708/*
1709 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1710 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1711 */
1712static int slub_nomerge;
1713
81819f0f
CL
1714/*
1715 * Calculate the order of allocation given an slab object size.
1716 *
672bba3a
CL
1717 * The order of allocation has significant impact on performance and other
1718 * system components. Generally order 0 allocations should be preferred since
1719 * order 0 does not cause fragmentation in the page allocator. Larger objects
1720 * be problematic to put into order 0 slabs because there may be too much
1721 * unused space left. We go to a higher order if more than 1/8th of the slab
1722 * would be wasted.
1723 *
1724 * In order to reach satisfactory performance we must ensure that a minimum
1725 * number of objects is in one slab. Otherwise we may generate too much
1726 * activity on the partial lists which requires taking the list_lock. This is
1727 * less a concern for large slabs though which are rarely used.
81819f0f 1728 *
672bba3a
CL
1729 * slub_max_order specifies the order where we begin to stop considering the
1730 * number of objects in a slab as critical. If we reach slub_max_order then
1731 * we try to keep the page order as low as possible. So we accept more waste
1732 * of space in favor of a small page order.
81819f0f 1733 *
672bba3a
CL
1734 * Higher order allocations also allow the placement of more objects in a
1735 * slab and thereby reduce object handling overhead. If the user has
1736 * requested a higher mininum order then we start with that one instead of
1737 * the smallest order which will fit the object.
81819f0f 1738 */
5e6d444e
CL
1739static inline int slab_order(int size, int min_objects,
1740 int max_order, int fract_leftover)
81819f0f
CL
1741{
1742 int order;
1743 int rem;
6300ea75 1744 int min_order = slub_min_order;
81819f0f 1745
6300ea75
CL
1746 /*
1747 * If we would create too many object per slab then reduce
1748 * the slab order even if it goes below slub_min_order.
1749 */
1750 while (min_order > 0 &&
1751 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1752 min_order--;
1753
1754 for (order = max(min_order,
5e6d444e
CL
1755 fls(min_objects * size - 1) - PAGE_SHIFT);
1756 order <= max_order; order++) {
81819f0f 1757
5e6d444e 1758 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1759
5e6d444e 1760 if (slab_size < min_objects * size)
81819f0f
CL
1761 continue;
1762
1763 rem = slab_size % size;
1764
5e6d444e 1765 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1766 break;
1767
6300ea75
CL
1768 /* If the next size is too high then exit now */
1769 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1770 break;
81819f0f 1771 }
672bba3a 1772
81819f0f
CL
1773 return order;
1774}
1775
5e6d444e
CL
1776static inline int calculate_order(int size)
1777{
1778 int order;
1779 int min_objects;
1780 int fraction;
1781
1782 /*
1783 * Attempt to find best configuration for a slab. This
1784 * works by first attempting to generate a layout with
1785 * the best configuration and backing off gradually.
1786 *
1787 * First we reduce the acceptable waste in a slab. Then
1788 * we reduce the minimum objects required in a slab.
1789 */
1790 min_objects = slub_min_objects;
1791 while (min_objects > 1) {
1792 fraction = 8;
1793 while (fraction >= 4) {
1794 order = slab_order(size, min_objects,
1795 slub_max_order, fraction);
1796 if (order <= slub_max_order)
1797 return order;
1798 fraction /= 2;
1799 }
1800 min_objects /= 2;
1801 }
1802
1803 /*
1804 * We were unable to place multiple objects in a slab. Now
1805 * lets see if we can place a single object there.
1806 */
1807 order = slab_order(size, 1, slub_max_order, 1);
1808 if (order <= slub_max_order)
1809 return order;
1810
1811 /*
1812 * Doh this slab cannot be placed using slub_max_order.
1813 */
1814 order = slab_order(size, 1, MAX_ORDER, 1);
1815 if (order <= MAX_ORDER)
1816 return order;
1817 return -ENOSYS;
1818}
1819
81819f0f 1820/*
672bba3a 1821 * Figure out what the alignment of the objects will be.
81819f0f
CL
1822 */
1823static unsigned long calculate_alignment(unsigned long flags,
1824 unsigned long align, unsigned long size)
1825{
1826 /*
1827 * If the user wants hardware cache aligned objects then
1828 * follow that suggestion if the object is sufficiently
1829 * large.
1830 *
1831 * The hardware cache alignment cannot override the
1832 * specified alignment though. If that is greater
1833 * then use it.
1834 */
5af60839 1835 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1836 size > cache_line_size() / 2)
1837 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1838
1839 if (align < ARCH_SLAB_MINALIGN)
1840 return ARCH_SLAB_MINALIGN;
1841
1842 return ALIGN(align, sizeof(void *));
1843}
1844
1845static void init_kmem_cache_node(struct kmem_cache_node *n)
1846{
1847 n->nr_partial = 0;
1848 atomic_long_set(&n->nr_slabs, 0);
1849 spin_lock_init(&n->list_lock);
1850 INIT_LIST_HEAD(&n->partial);
643b1138 1851 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1852}
1853
1854#ifdef CONFIG_NUMA
1855/*
1856 * No kmalloc_node yet so do it by hand. We know that this is the first
1857 * slab on the node for this slabcache. There are no concurrent accesses
1858 * possible.
1859 *
1860 * Note that this function only works on the kmalloc_node_cache
1861 * when allocating for the kmalloc_node_cache.
1862 */
1863static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1864 int node)
1865{
1866 struct page *page;
1867 struct kmem_cache_node *n;
1868
1869 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1870
1871 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
81819f0f
CL
1872
1873 BUG_ON(!page);
1874 n = page->freelist;
1875 BUG_ON(!n);
1876 page->freelist = get_freepointer(kmalloc_caches, n);
1877 page->inuse++;
1878 kmalloc_caches->node[node] = n;
d45f39cb
CL
1879 init_object(kmalloc_caches, n, 1);
1880 init_tracking(kmalloc_caches, n);
81819f0f
CL
1881 init_kmem_cache_node(n);
1882 atomic_long_inc(&n->nr_slabs);
e95eed57 1883 add_partial(n, page);
dbc55faa
CL
1884
1885 /*
1886 * new_slab() disables interupts. If we do not reenable interrupts here
1887 * then bootup would continue with interrupts disabled.
1888 */
1889 local_irq_enable();
81819f0f
CL
1890 return n;
1891}
1892
1893static void free_kmem_cache_nodes(struct kmem_cache *s)
1894{
1895 int node;
1896
1897 for_each_online_node(node) {
1898 struct kmem_cache_node *n = s->node[node];
1899 if (n && n != &s->local_node)
1900 kmem_cache_free(kmalloc_caches, n);
1901 s->node[node] = NULL;
1902 }
1903}
1904
1905static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1906{
1907 int node;
1908 int local_node;
1909
1910 if (slab_state >= UP)
1911 local_node = page_to_nid(virt_to_page(s));
1912 else
1913 local_node = 0;
1914
1915 for_each_online_node(node) {
1916 struct kmem_cache_node *n;
1917
1918 if (local_node == node)
1919 n = &s->local_node;
1920 else {
1921 if (slab_state == DOWN) {
1922 n = early_kmem_cache_node_alloc(gfpflags,
1923 node);
1924 continue;
1925 }
1926 n = kmem_cache_alloc_node(kmalloc_caches,
1927 gfpflags, node);
1928
1929 if (!n) {
1930 free_kmem_cache_nodes(s);
1931 return 0;
1932 }
1933
1934 }
1935 s->node[node] = n;
1936 init_kmem_cache_node(n);
1937 }
1938 return 1;
1939}
1940#else
1941static void free_kmem_cache_nodes(struct kmem_cache *s)
1942{
1943}
1944
1945static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1946{
1947 init_kmem_cache_node(&s->local_node);
1948 return 1;
1949}
1950#endif
1951
1952/*
1953 * calculate_sizes() determines the order and the distribution of data within
1954 * a slab object.
1955 */
1956static int calculate_sizes(struct kmem_cache *s)
1957{
1958 unsigned long flags = s->flags;
1959 unsigned long size = s->objsize;
1960 unsigned long align = s->align;
1961
1962 /*
1963 * Determine if we can poison the object itself. If the user of
1964 * the slab may touch the object after free or before allocation
1965 * then we should never poison the object itself.
1966 */
1967 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 1968 !s->ctor)
81819f0f
CL
1969 s->flags |= __OBJECT_POISON;
1970 else
1971 s->flags &= ~__OBJECT_POISON;
1972
1973 /*
1974 * Round up object size to the next word boundary. We can only
1975 * place the free pointer at word boundaries and this determines
1976 * the possible location of the free pointer.
1977 */
1978 size = ALIGN(size, sizeof(void *));
1979
41ecc55b 1980#ifdef CONFIG_SLUB_DEBUG
81819f0f 1981 /*
672bba3a 1982 * If we are Redzoning then check if there is some space between the
81819f0f 1983 * end of the object and the free pointer. If not then add an
672bba3a 1984 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1985 */
1986 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1987 size += sizeof(void *);
41ecc55b 1988#endif
81819f0f
CL
1989
1990 /*
672bba3a
CL
1991 * With that we have determined the number of bytes in actual use
1992 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
1993 */
1994 s->inuse = size;
1995
1996 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 1997 s->ctor)) {
81819f0f
CL
1998 /*
1999 * Relocate free pointer after the object if it is not
2000 * permitted to overwrite the first word of the object on
2001 * kmem_cache_free.
2002 *
2003 * This is the case if we do RCU, have a constructor or
2004 * destructor or are poisoning the objects.
2005 */
2006 s->offset = size;
2007 size += sizeof(void *);
2008 }
2009
c12b3c62 2010#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2011 if (flags & SLAB_STORE_USER)
2012 /*
2013 * Need to store information about allocs and frees after
2014 * the object.
2015 */
2016 size += 2 * sizeof(struct track);
2017
be7b3fbc 2018 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2019 /*
2020 * Add some empty padding so that we can catch
2021 * overwrites from earlier objects rather than let
2022 * tracking information or the free pointer be
2023 * corrupted if an user writes before the start
2024 * of the object.
2025 */
2026 size += sizeof(void *);
41ecc55b 2027#endif
672bba3a 2028
81819f0f
CL
2029 /*
2030 * Determine the alignment based on various parameters that the
65c02d4c
CL
2031 * user specified and the dynamic determination of cache line size
2032 * on bootup.
81819f0f
CL
2033 */
2034 align = calculate_alignment(flags, align, s->objsize);
2035
2036 /*
2037 * SLUB stores one object immediately after another beginning from
2038 * offset 0. In order to align the objects we have to simply size
2039 * each object to conform to the alignment.
2040 */
2041 size = ALIGN(size, align);
2042 s->size = size;
2043
2044 s->order = calculate_order(size);
2045 if (s->order < 0)
2046 return 0;
2047
2048 /*
2049 * Determine the number of objects per slab
2050 */
2051 s->objects = (PAGE_SIZE << s->order) / size;
2052
2053 /*
2054 * Verify that the number of objects is within permitted limits.
2055 * The page->inuse field is only 16 bit wide! So we cannot have
2056 * more than 64k objects per slab.
2057 */
6300ea75 2058 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
81819f0f
CL
2059 return 0;
2060 return 1;
2061
2062}
2063
81819f0f
CL
2064static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2065 const char *name, size_t size,
2066 size_t align, unsigned long flags,
c59def9f 2067 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f
CL
2068{
2069 memset(s, 0, kmem_size);
2070 s->name = name;
2071 s->ctor = ctor;
81819f0f
CL
2072 s->objsize = size;
2073 s->flags = flags;
2074 s->align = align;
41ecc55b 2075 kmem_cache_open_debug_check(s);
81819f0f
CL
2076
2077 if (!calculate_sizes(s))
2078 goto error;
2079
2080 s->refcount = 1;
2081#ifdef CONFIG_NUMA
2082 s->defrag_ratio = 100;
2083#endif
2084
2085 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2086 return 1;
2087error:
2088 if (flags & SLAB_PANIC)
2089 panic("Cannot create slab %s size=%lu realsize=%u "
2090 "order=%u offset=%u flags=%lx\n",
2091 s->name, (unsigned long)size, s->size, s->order,
2092 s->offset, flags);
2093 return 0;
2094}
81819f0f
CL
2095
2096/*
2097 * Check if a given pointer is valid
2098 */
2099int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2100{
2101 struct page * page;
81819f0f
CL
2102
2103 page = get_object_page(object);
2104
2105 if (!page || s != page->slab)
2106 /* No slab or wrong slab */
2107 return 0;
2108
abcd08a6 2109 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2110 return 0;
2111
2112 /*
2113 * We could also check if the object is on the slabs freelist.
2114 * But this would be too expensive and it seems that the main
2115 * purpose of kmem_ptr_valid is to check if the object belongs
2116 * to a certain slab.
2117 */
2118 return 1;
2119}
2120EXPORT_SYMBOL(kmem_ptr_validate);
2121
2122/*
2123 * Determine the size of a slab object
2124 */
2125unsigned int kmem_cache_size(struct kmem_cache *s)
2126{
2127 return s->objsize;
2128}
2129EXPORT_SYMBOL(kmem_cache_size);
2130
2131const char *kmem_cache_name(struct kmem_cache *s)
2132{
2133 return s->name;
2134}
2135EXPORT_SYMBOL(kmem_cache_name);
2136
2137/*
672bba3a
CL
2138 * Attempt to free all slabs on a node. Return the number of slabs we
2139 * were unable to free.
81819f0f
CL
2140 */
2141static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2142 struct list_head *list)
2143{
2144 int slabs_inuse = 0;
2145 unsigned long flags;
2146 struct page *page, *h;
2147
2148 spin_lock_irqsave(&n->list_lock, flags);
2149 list_for_each_entry_safe(page, h, list, lru)
2150 if (!page->inuse) {
2151 list_del(&page->lru);
2152 discard_slab(s, page);
2153 } else
2154 slabs_inuse++;
2155 spin_unlock_irqrestore(&n->list_lock, flags);
2156 return slabs_inuse;
2157}
2158
2159/*
672bba3a 2160 * Release all resources used by a slab cache.
81819f0f
CL
2161 */
2162static int kmem_cache_close(struct kmem_cache *s)
2163{
2164 int node;
2165
2166 flush_all(s);
2167
2168 /* Attempt to free all objects */
2169 for_each_online_node(node) {
2170 struct kmem_cache_node *n = get_node(s, node);
2171
2086d26a 2172 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2173 if (atomic_long_read(&n->nr_slabs))
2174 return 1;
2175 }
2176 free_kmem_cache_nodes(s);
2177 return 0;
2178}
2179
2180/*
2181 * Close a cache and release the kmem_cache structure
2182 * (must be used for caches created using kmem_cache_create)
2183 */
2184void kmem_cache_destroy(struct kmem_cache *s)
2185{
2186 down_write(&slub_lock);
2187 s->refcount--;
2188 if (!s->refcount) {
2189 list_del(&s->list);
2190 if (kmem_cache_close(s))
2191 WARN_ON(1);
2192 sysfs_slab_remove(s);
2193 kfree(s);
2194 }
2195 up_write(&slub_lock);
2196}
2197EXPORT_SYMBOL(kmem_cache_destroy);
2198
2199/********************************************************************
2200 * Kmalloc subsystem
2201 *******************************************************************/
2202
2203struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2204EXPORT_SYMBOL(kmalloc_caches);
2205
2206#ifdef CONFIG_ZONE_DMA
2207static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2208#endif
2209
2210static int __init setup_slub_min_order(char *str)
2211{
2212 get_option (&str, &slub_min_order);
2213
2214 return 1;
2215}
2216
2217__setup("slub_min_order=", setup_slub_min_order);
2218
2219static int __init setup_slub_max_order(char *str)
2220{
2221 get_option (&str, &slub_max_order);
2222
2223 return 1;
2224}
2225
2226__setup("slub_max_order=", setup_slub_max_order);
2227
2228static int __init setup_slub_min_objects(char *str)
2229{
2230 get_option (&str, &slub_min_objects);
2231
2232 return 1;
2233}
2234
2235__setup("slub_min_objects=", setup_slub_min_objects);
2236
2237static int __init setup_slub_nomerge(char *str)
2238{
2239 slub_nomerge = 1;
2240 return 1;
2241}
2242
2243__setup("slub_nomerge", setup_slub_nomerge);
2244
81819f0f
CL
2245static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2246 const char *name, int size, gfp_t gfp_flags)
2247{
2248 unsigned int flags = 0;
2249
2250 if (gfp_flags & SLUB_DMA)
2251 flags = SLAB_CACHE_DMA;
2252
2253 down_write(&slub_lock);
2254 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
c59def9f 2255 flags, NULL))
81819f0f
CL
2256 goto panic;
2257
2258 list_add(&s->list, &slab_caches);
2259 up_write(&slub_lock);
2260 if (sysfs_slab_add(s))
2261 goto panic;
2262 return s;
2263
2264panic:
2265 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2266}
2267
2268static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2269{
2270 int index = kmalloc_index(size);
2271
614410d5 2272 if (!index)
81819f0f
CL
2273 return NULL;
2274
2275 /* Allocation too large? */
2276 BUG_ON(index < 0);
2277
2278#ifdef CONFIG_ZONE_DMA
2279 if ((flags & SLUB_DMA)) {
2280 struct kmem_cache *s;
2281 struct kmem_cache *x;
2282 char *text;
2283 size_t realsize;
2284
2285 s = kmalloc_caches_dma[index];
2286 if (s)
2287 return s;
2288
2289 /* Dynamically create dma cache */
2290 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2291 if (!x)
2292 panic("Unable to allocate memory for dma cache\n");
2293
2294 if (index <= KMALLOC_SHIFT_HIGH)
2295 realsize = 1 << index;
2296 else {
2297 if (index == 1)
2298 realsize = 96;
2299 else
2300 realsize = 192;
2301 }
2302
2303 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2304 (unsigned int)realsize);
2305 s = create_kmalloc_cache(x, text, realsize, flags);
2306 kmalloc_caches_dma[index] = s;
2307 return s;
2308 }
2309#endif
2310 return &kmalloc_caches[index];
2311}
2312
2313void *__kmalloc(size_t size, gfp_t flags)
2314{
2315 struct kmem_cache *s = get_slab(size, flags);
2316
2317 if (s)
77c5e2d0 2318 return slab_alloc(s, flags, -1, __builtin_return_address(0));
272c1d21 2319 return ZERO_SIZE_PTR;
81819f0f
CL
2320}
2321EXPORT_SYMBOL(__kmalloc);
2322
2323#ifdef CONFIG_NUMA
2324void *__kmalloc_node(size_t size, gfp_t flags, int node)
2325{
2326 struct kmem_cache *s = get_slab(size, flags);
2327
2328 if (s)
77c5e2d0 2329 return slab_alloc(s, flags, node, __builtin_return_address(0));
272c1d21 2330 return ZERO_SIZE_PTR;
81819f0f
CL
2331}
2332EXPORT_SYMBOL(__kmalloc_node);
2333#endif
2334
2335size_t ksize(const void *object)
2336{
272c1d21 2337 struct page *page;
81819f0f
CL
2338 struct kmem_cache *s;
2339
272c1d21
CL
2340 if (object == ZERO_SIZE_PTR)
2341 return 0;
2342
2343 page = get_object_page(object);
81819f0f
CL
2344 BUG_ON(!page);
2345 s = page->slab;
2346 BUG_ON(!s);
2347
2348 /*
2349 * Debugging requires use of the padding between object
2350 * and whatever may come after it.
2351 */
2352 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2353 return s->objsize;
2354
2355 /*
2356 * If we have the need to store the freelist pointer
2357 * back there or track user information then we can
2358 * only use the space before that information.
2359 */
2360 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2361 return s->inuse;
2362
2363 /*
2364 * Else we can use all the padding etc for the allocation
2365 */
2366 return s->size;
2367}
2368EXPORT_SYMBOL(ksize);
2369
2370void kfree(const void *x)
2371{
2372 struct kmem_cache *s;
2373 struct page *page;
2374
272c1d21
CL
2375 /*
2376 * This has to be an unsigned comparison. According to Linus
2377 * some gcc version treat a pointer as a signed entity. Then
2378 * this comparison would be true for all "negative" pointers
2379 * (which would cover the whole upper half of the address space).
2380 */
2381 if ((unsigned long)x <= (unsigned long)ZERO_SIZE_PTR)
81819f0f
CL
2382 return;
2383
b49af68f 2384 page = virt_to_head_page(x);
81819f0f
CL
2385 s = page->slab;
2386
77c5e2d0 2387 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2388}
2389EXPORT_SYMBOL(kfree);
2390
2086d26a 2391/*
672bba3a
CL
2392 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2393 * the remaining slabs by the number of items in use. The slabs with the
2394 * most items in use come first. New allocations will then fill those up
2395 * and thus they can be removed from the partial lists.
2396 *
2397 * The slabs with the least items are placed last. This results in them
2398 * being allocated from last increasing the chance that the last objects
2399 * are freed in them.
2086d26a
CL
2400 */
2401int kmem_cache_shrink(struct kmem_cache *s)
2402{
2403 int node;
2404 int i;
2405 struct kmem_cache_node *n;
2406 struct page *page;
2407 struct page *t;
2408 struct list_head *slabs_by_inuse =
2409 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2410 unsigned long flags;
2411
2412 if (!slabs_by_inuse)
2413 return -ENOMEM;
2414
2415 flush_all(s);
2416 for_each_online_node(node) {
2417 n = get_node(s, node);
2418
2419 if (!n->nr_partial)
2420 continue;
2421
2422 for (i = 0; i < s->objects; i++)
2423 INIT_LIST_HEAD(slabs_by_inuse + i);
2424
2425 spin_lock_irqsave(&n->list_lock, flags);
2426
2427 /*
672bba3a 2428 * Build lists indexed by the items in use in each slab.
2086d26a 2429 *
672bba3a
CL
2430 * Note that concurrent frees may occur while we hold the
2431 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2432 */
2433 list_for_each_entry_safe(page, t, &n->partial, lru) {
2434 if (!page->inuse && slab_trylock(page)) {
2435 /*
2436 * Must hold slab lock here because slab_free
2437 * may have freed the last object and be
2438 * waiting to release the slab.
2439 */
2440 list_del(&page->lru);
2441 n->nr_partial--;
2442 slab_unlock(page);
2443 discard_slab(s, page);
2444 } else {
2445 if (n->nr_partial > MAX_PARTIAL)
2446 list_move(&page->lru,
2447 slabs_by_inuse + page->inuse);
2448 }
2449 }
2450
2451 if (n->nr_partial <= MAX_PARTIAL)
2452 goto out;
2453
2454 /*
672bba3a
CL
2455 * Rebuild the partial list with the slabs filled up most
2456 * first and the least used slabs at the end.
2086d26a
CL
2457 */
2458 for (i = s->objects - 1; i >= 0; i--)
2459 list_splice(slabs_by_inuse + i, n->partial.prev);
2460
2461 out:
2462 spin_unlock_irqrestore(&n->list_lock, flags);
2463 }
2464
2465 kfree(slabs_by_inuse);
2466 return 0;
2467}
2468EXPORT_SYMBOL(kmem_cache_shrink);
2469
81819f0f
CL
2470/********************************************************************
2471 * Basic setup of slabs
2472 *******************************************************************/
2473
2474void __init kmem_cache_init(void)
2475{
2476 int i;
4b356be0 2477 int caches = 0;
81819f0f
CL
2478
2479#ifdef CONFIG_NUMA
2480 /*
2481 * Must first have the slab cache available for the allocations of the
672bba3a 2482 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2483 * kmem_cache_open for slab_state == DOWN.
2484 */
2485 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2486 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2487 kmalloc_caches[0].refcount = -1;
4b356be0 2488 caches++;
81819f0f
CL
2489#endif
2490
2491 /* Able to allocate the per node structures */
2492 slab_state = PARTIAL;
2493
2494 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2495 if (KMALLOC_MIN_SIZE <= 64) {
2496 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2497 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2498 caches++;
2499 }
2500 if (KMALLOC_MIN_SIZE <= 128) {
2501 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2502 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2503 caches++;
2504 }
81819f0f 2505
4b356be0 2506 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
81819f0f
CL
2507 create_kmalloc_cache(&kmalloc_caches[i],
2508 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2509 caches++;
2510 }
81819f0f
CL
2511
2512 slab_state = UP;
2513
2514 /* Provide the correct kmalloc names now that the caches are up */
2515 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2516 kmalloc_caches[i]. name =
2517 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2518
2519#ifdef CONFIG_SMP
2520 register_cpu_notifier(&slab_notifier);
2521#endif
2522
bcf889f9
CL
2523 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2524 nr_cpu_ids * sizeof(struct page *);
81819f0f
CL
2525
2526 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2527 " CPUs=%d, Nodes=%d\n",
2528 caches, cache_line_size(),
81819f0f
CL
2529 slub_min_order, slub_max_order, slub_min_objects,
2530 nr_cpu_ids, nr_node_ids);
2531}
2532
2533/*
2534 * Find a mergeable slab cache
2535 */
2536static int slab_unmergeable(struct kmem_cache *s)
2537{
2538 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2539 return 1;
2540
c59def9f 2541 if (s->ctor)
81819f0f
CL
2542 return 1;
2543
8ffa6875
CL
2544 /*
2545 * We may have set a slab to be unmergeable during bootstrap.
2546 */
2547 if (s->refcount < 0)
2548 return 1;
2549
81819f0f
CL
2550 return 0;
2551}
2552
2553static struct kmem_cache *find_mergeable(size_t size,
2554 size_t align, unsigned long flags,
c59def9f 2555 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f 2556{
5b95a4ac 2557 struct kmem_cache *s;
81819f0f
CL
2558
2559 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2560 return NULL;
2561
c59def9f 2562 if (ctor)
81819f0f
CL
2563 return NULL;
2564
2565 size = ALIGN(size, sizeof(void *));
2566 align = calculate_alignment(flags, align, size);
2567 size = ALIGN(size, align);
2568
5b95a4ac 2569 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
2570 if (slab_unmergeable(s))
2571 continue;
2572
2573 if (size > s->size)
2574 continue;
2575
2576 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2577 (s->flags & SLUB_MERGE_SAME))
2578 continue;
2579 /*
2580 * Check if alignment is compatible.
2581 * Courtesy of Adrian Drzewiecki
2582 */
2583 if ((s->size & ~(align -1)) != s->size)
2584 continue;
2585
2586 if (s->size - size >= sizeof(void *))
2587 continue;
2588
2589 return s;
2590 }
2591 return NULL;
2592}
2593
2594struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2595 size_t align, unsigned long flags,
2596 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2597 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2598{
2599 struct kmem_cache *s;
2600
c59def9f 2601 BUG_ON(dtor);
81819f0f 2602 down_write(&slub_lock);
c59def9f 2603 s = find_mergeable(size, align, flags, ctor);
81819f0f
CL
2604 if (s) {
2605 s->refcount++;
2606 /*
2607 * Adjust the object sizes so that we clear
2608 * the complete object on kzalloc.
2609 */
2610 s->objsize = max(s->objsize, (int)size);
2611 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2612 if (sysfs_slab_alias(s, name))
2613 goto err;
2614 } else {
2615 s = kmalloc(kmem_size, GFP_KERNEL);
2616 if (s && kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 2617 size, align, flags, ctor)) {
81819f0f
CL
2618 if (sysfs_slab_add(s)) {
2619 kfree(s);
2620 goto err;
2621 }
2622 list_add(&s->list, &slab_caches);
2623 } else
2624 kfree(s);
2625 }
2626 up_write(&slub_lock);
2627 return s;
2628
2629err:
2630 up_write(&slub_lock);
2631 if (flags & SLAB_PANIC)
2632 panic("Cannot create slabcache %s\n", name);
2633 else
2634 s = NULL;
2635 return s;
2636}
2637EXPORT_SYMBOL(kmem_cache_create);
2638
2639void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2640{
2641 void *x;
2642
77c5e2d0 2643 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2644 if (x)
2645 memset(x, 0, s->objsize);
2646 return x;
2647}
2648EXPORT_SYMBOL(kmem_cache_zalloc);
2649
2650#ifdef CONFIG_SMP
81819f0f 2651/*
672bba3a
CL
2652 * Use the cpu notifier to insure that the cpu slabs are flushed when
2653 * necessary.
81819f0f
CL
2654 */
2655static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2656 unsigned long action, void *hcpu)
2657{
2658 long cpu = (long)hcpu;
5b95a4ac
CL
2659 struct kmem_cache *s;
2660 unsigned long flags;
81819f0f
CL
2661
2662 switch (action) {
2663 case CPU_UP_CANCELED:
8bb78442 2664 case CPU_UP_CANCELED_FROZEN:
81819f0f 2665 case CPU_DEAD:
8bb78442 2666 case CPU_DEAD_FROZEN:
5b95a4ac
CL
2667 down_read(&slub_lock);
2668 list_for_each_entry(s, &slab_caches, list) {
2669 local_irq_save(flags);
2670 __flush_cpu_slab(s, cpu);
2671 local_irq_restore(flags);
2672 }
2673 up_read(&slub_lock);
81819f0f
CL
2674 break;
2675 default:
2676 break;
2677 }
2678 return NOTIFY_OK;
2679}
2680
2681static struct notifier_block __cpuinitdata slab_notifier =
2682 { &slab_cpuup_callback, NULL, 0 };
2683
2684#endif
2685
81819f0f
CL
2686void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2687{
2688 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2689
2690 if (!s)
272c1d21 2691 return ZERO_SIZE_PTR;
81819f0f 2692
77c5e2d0 2693 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2694}
2695
2696void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2697 int node, void *caller)
2698{
2699 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2700
2701 if (!s)
272c1d21 2702 return ZERO_SIZE_PTR;
81819f0f 2703
77c5e2d0 2704 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2705}
2706
41ecc55b 2707#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
53e15af0
CL
2708static int validate_slab(struct kmem_cache *s, struct page *page)
2709{
2710 void *p;
2711 void *addr = page_address(page);
7656c72b 2712 DECLARE_BITMAP(map, s->objects);
53e15af0
CL
2713
2714 if (!check_slab(s, page) ||
2715 !on_freelist(s, page, NULL))
2716 return 0;
2717
2718 /* Now we know that a valid freelist exists */
2719 bitmap_zero(map, s->objects);
2720
7656c72b
CL
2721 for_each_free_object(p, s, page->freelist) {
2722 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2723 if (!check_object(s, page, p, 0))
2724 return 0;
2725 }
2726
7656c72b
CL
2727 for_each_object(p, s, addr)
2728 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2729 if (!check_object(s, page, p, 1))
2730 return 0;
2731 return 1;
2732}
2733
2734static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2735{
2736 if (slab_trylock(page)) {
2737 validate_slab(s, page);
2738 slab_unlock(page);
2739 } else
2740 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2741 s->name, page);
2742
2743 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2744 if (!SlabDebug(page))
2745 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2746 "on slab 0x%p\n", s->name, page);
2747 } else {
35e5d7ee
CL
2748 if (SlabDebug(page))
2749 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2750 "slab 0x%p\n", s->name, page);
2751 }
2752}
2753
2754static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2755{
2756 unsigned long count = 0;
2757 struct page *page;
2758 unsigned long flags;
2759
2760 spin_lock_irqsave(&n->list_lock, flags);
2761
2762 list_for_each_entry(page, &n->partial, lru) {
2763 validate_slab_slab(s, page);
2764 count++;
2765 }
2766 if (count != n->nr_partial)
2767 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2768 "counter=%ld\n", s->name, count, n->nr_partial);
2769
2770 if (!(s->flags & SLAB_STORE_USER))
2771 goto out;
2772
2773 list_for_each_entry(page, &n->full, lru) {
2774 validate_slab_slab(s, page);
2775 count++;
2776 }
2777 if (count != atomic_long_read(&n->nr_slabs))
2778 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2779 "counter=%ld\n", s->name, count,
2780 atomic_long_read(&n->nr_slabs));
2781
2782out:
2783 spin_unlock_irqrestore(&n->list_lock, flags);
2784 return count;
2785}
2786
2787static unsigned long validate_slab_cache(struct kmem_cache *s)
2788{
2789 int node;
2790 unsigned long count = 0;
2791
2792 flush_all(s);
2793 for_each_online_node(node) {
2794 struct kmem_cache_node *n = get_node(s, node);
2795
2796 count += validate_slab_node(s, n);
2797 }
2798 return count;
2799}
2800
b3459709
CL
2801#ifdef SLUB_RESILIENCY_TEST
2802static void resiliency_test(void)
2803{
2804 u8 *p;
2805
2806 printk(KERN_ERR "SLUB resiliency testing\n");
2807 printk(KERN_ERR "-----------------------\n");
2808 printk(KERN_ERR "A. Corruption after allocation\n");
2809
2810 p = kzalloc(16, GFP_KERNEL);
2811 p[16] = 0x12;
2812 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2813 " 0x12->0x%p\n\n", p + 16);
2814
2815 validate_slab_cache(kmalloc_caches + 4);
2816
2817 /* Hmmm... The next two are dangerous */
2818 p = kzalloc(32, GFP_KERNEL);
2819 p[32 + sizeof(void *)] = 0x34;
2820 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2821 " 0x34 -> -0x%p\n", p);
2822 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2823
2824 validate_slab_cache(kmalloc_caches + 5);
2825 p = kzalloc(64, GFP_KERNEL);
2826 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2827 *p = 0x56;
2828 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2829 p);
2830 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2831 validate_slab_cache(kmalloc_caches + 6);
2832
2833 printk(KERN_ERR "\nB. Corruption after free\n");
2834 p = kzalloc(128, GFP_KERNEL);
2835 kfree(p);
2836 *p = 0x78;
2837 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2838 validate_slab_cache(kmalloc_caches + 7);
2839
2840 p = kzalloc(256, GFP_KERNEL);
2841 kfree(p);
2842 p[50] = 0x9a;
2843 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2844 validate_slab_cache(kmalloc_caches + 8);
2845
2846 p = kzalloc(512, GFP_KERNEL);
2847 kfree(p);
2848 p[512] = 0xab;
2849 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2850 validate_slab_cache(kmalloc_caches + 9);
2851}
2852#else
2853static void resiliency_test(void) {};
2854#endif
2855
88a420e4 2856/*
672bba3a 2857 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2858 * and freed.
2859 */
2860
2861struct location {
2862 unsigned long count;
2863 void *addr;
45edfa58
CL
2864 long long sum_time;
2865 long min_time;
2866 long max_time;
2867 long min_pid;
2868 long max_pid;
2869 cpumask_t cpus;
2870 nodemask_t nodes;
88a420e4
CL
2871};
2872
2873struct loc_track {
2874 unsigned long max;
2875 unsigned long count;
2876 struct location *loc;
2877};
2878
2879static void free_loc_track(struct loc_track *t)
2880{
2881 if (t->max)
2882 free_pages((unsigned long)t->loc,
2883 get_order(sizeof(struct location) * t->max));
2884}
2885
68dff6a9 2886static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
2887{
2888 struct location *l;
2889 int order;
2890
88a420e4
CL
2891 order = get_order(sizeof(struct location) * max);
2892
68dff6a9 2893 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
2894 if (!l)
2895 return 0;
2896
2897 if (t->count) {
2898 memcpy(l, t->loc, sizeof(struct location) * t->count);
2899 free_loc_track(t);
2900 }
2901 t->max = max;
2902 t->loc = l;
2903 return 1;
2904}
2905
2906static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 2907 const struct track *track)
88a420e4
CL
2908{
2909 long start, end, pos;
2910 struct location *l;
2911 void *caddr;
45edfa58 2912 unsigned long age = jiffies - track->when;
88a420e4
CL
2913
2914 start = -1;
2915 end = t->count;
2916
2917 for ( ; ; ) {
2918 pos = start + (end - start + 1) / 2;
2919
2920 /*
2921 * There is nothing at "end". If we end up there
2922 * we need to add something to before end.
2923 */
2924 if (pos == end)
2925 break;
2926
2927 caddr = t->loc[pos].addr;
45edfa58
CL
2928 if (track->addr == caddr) {
2929
2930 l = &t->loc[pos];
2931 l->count++;
2932 if (track->when) {
2933 l->sum_time += age;
2934 if (age < l->min_time)
2935 l->min_time = age;
2936 if (age > l->max_time)
2937 l->max_time = age;
2938
2939 if (track->pid < l->min_pid)
2940 l->min_pid = track->pid;
2941 if (track->pid > l->max_pid)
2942 l->max_pid = track->pid;
2943
2944 cpu_set(track->cpu, l->cpus);
2945 }
2946 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2947 return 1;
2948 }
2949
45edfa58 2950 if (track->addr < caddr)
88a420e4
CL
2951 end = pos;
2952 else
2953 start = pos;
2954 }
2955
2956 /*
672bba3a 2957 * Not found. Insert new tracking element.
88a420e4 2958 */
68dff6a9 2959 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
2960 return 0;
2961
2962 l = t->loc + pos;
2963 if (pos < t->count)
2964 memmove(l + 1, l,
2965 (t->count - pos) * sizeof(struct location));
2966 t->count++;
2967 l->count = 1;
45edfa58
CL
2968 l->addr = track->addr;
2969 l->sum_time = age;
2970 l->min_time = age;
2971 l->max_time = age;
2972 l->min_pid = track->pid;
2973 l->max_pid = track->pid;
2974 cpus_clear(l->cpus);
2975 cpu_set(track->cpu, l->cpus);
2976 nodes_clear(l->nodes);
2977 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2978 return 1;
2979}
2980
2981static void process_slab(struct loc_track *t, struct kmem_cache *s,
2982 struct page *page, enum track_item alloc)
2983{
2984 void *addr = page_address(page);
7656c72b 2985 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
2986 void *p;
2987
2988 bitmap_zero(map, s->objects);
7656c72b
CL
2989 for_each_free_object(p, s, page->freelist)
2990 set_bit(slab_index(p, s, addr), map);
88a420e4 2991
7656c72b 2992 for_each_object(p, s, addr)
45edfa58
CL
2993 if (!test_bit(slab_index(p, s, addr), map))
2994 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
2995}
2996
2997static int list_locations(struct kmem_cache *s, char *buf,
2998 enum track_item alloc)
2999{
3000 int n = 0;
3001 unsigned long i;
68dff6a9 3002 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3003 int node;
3004
68dff6a9
CL
3005 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3006 GFP_KERNEL))
3007 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3008
3009 /* Push back cpu slabs */
3010 flush_all(s);
3011
3012 for_each_online_node(node) {
3013 struct kmem_cache_node *n = get_node(s, node);
3014 unsigned long flags;
3015 struct page *page;
3016
3017 if (!atomic_read(&n->nr_slabs))
3018 continue;
3019
3020 spin_lock_irqsave(&n->list_lock, flags);
3021 list_for_each_entry(page, &n->partial, lru)
3022 process_slab(&t, s, page, alloc);
3023 list_for_each_entry(page, &n->full, lru)
3024 process_slab(&t, s, page, alloc);
3025 spin_unlock_irqrestore(&n->list_lock, flags);
3026 }
3027
3028 for (i = 0; i < t.count; i++) {
45edfa58 3029 struct location *l = &t.loc[i];
88a420e4
CL
3030
3031 if (n > PAGE_SIZE - 100)
3032 break;
45edfa58
CL
3033 n += sprintf(buf + n, "%7ld ", l->count);
3034
3035 if (l->addr)
3036 n += sprint_symbol(buf + n, (unsigned long)l->addr);
88a420e4
CL
3037 else
3038 n += sprintf(buf + n, "<not-available>");
45edfa58
CL
3039
3040 if (l->sum_time != l->min_time) {
3041 unsigned long remainder;
3042
3043 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3044 l->min_time,
3045 div_long_long_rem(l->sum_time, l->count, &remainder),
3046 l->max_time);
3047 } else
3048 n += sprintf(buf + n, " age=%ld",
3049 l->min_time);
3050
3051 if (l->min_pid != l->max_pid)
3052 n += sprintf(buf + n, " pid=%ld-%ld",
3053 l->min_pid, l->max_pid);
3054 else
3055 n += sprintf(buf + n, " pid=%ld",
3056 l->min_pid);
3057
84966343
CL
3058 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3059 n < PAGE_SIZE - 60) {
45edfa58
CL
3060 n += sprintf(buf + n, " cpus=");
3061 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3062 l->cpus);
3063 }
3064
84966343
CL
3065 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3066 n < PAGE_SIZE - 60) {
45edfa58
CL
3067 n += sprintf(buf + n, " nodes=");
3068 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3069 l->nodes);
3070 }
3071
88a420e4
CL
3072 n += sprintf(buf + n, "\n");
3073 }
3074
3075 free_loc_track(&t);
3076 if (!t.count)
3077 n += sprintf(buf, "No data\n");
3078 return n;
3079}
3080
81819f0f
CL
3081static unsigned long count_partial(struct kmem_cache_node *n)
3082{
3083 unsigned long flags;
3084 unsigned long x = 0;
3085 struct page *page;
3086
3087 spin_lock_irqsave(&n->list_lock, flags);
3088 list_for_each_entry(page, &n->partial, lru)
3089 x += page->inuse;
3090 spin_unlock_irqrestore(&n->list_lock, flags);
3091 return x;
3092}
3093
3094enum slab_stat_type {
3095 SL_FULL,
3096 SL_PARTIAL,
3097 SL_CPU,
3098 SL_OBJECTS
3099};
3100
3101#define SO_FULL (1 << SL_FULL)
3102#define SO_PARTIAL (1 << SL_PARTIAL)
3103#define SO_CPU (1 << SL_CPU)
3104#define SO_OBJECTS (1 << SL_OBJECTS)
3105
3106static unsigned long slab_objects(struct kmem_cache *s,
3107 char *buf, unsigned long flags)
3108{
3109 unsigned long total = 0;
3110 int cpu;
3111 int node;
3112 int x;
3113 unsigned long *nodes;
3114 unsigned long *per_cpu;
3115
3116 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3117 per_cpu = nodes + nr_node_ids;
3118
3119 for_each_possible_cpu(cpu) {
3120 struct page *page = s->cpu_slab[cpu];
3121 int node;
3122
3123 if (page) {
3124 node = page_to_nid(page);
3125 if (flags & SO_CPU) {
3126 int x = 0;
3127
3128 if (flags & SO_OBJECTS)
3129 x = page->inuse;
3130 else
3131 x = 1;
3132 total += x;
3133 nodes[node] += x;
3134 }
3135 per_cpu[node]++;
3136 }
3137 }
3138
3139 for_each_online_node(node) {
3140 struct kmem_cache_node *n = get_node(s, node);
3141
3142 if (flags & SO_PARTIAL) {
3143 if (flags & SO_OBJECTS)
3144 x = count_partial(n);
3145 else
3146 x = n->nr_partial;
3147 total += x;
3148 nodes[node] += x;
3149 }
3150
3151 if (flags & SO_FULL) {
3152 int full_slabs = atomic_read(&n->nr_slabs)
3153 - per_cpu[node]
3154 - n->nr_partial;
3155
3156 if (flags & SO_OBJECTS)
3157 x = full_slabs * s->objects;
3158 else
3159 x = full_slabs;
3160 total += x;
3161 nodes[node] += x;
3162 }
3163 }
3164
3165 x = sprintf(buf, "%lu", total);
3166#ifdef CONFIG_NUMA
3167 for_each_online_node(node)
3168 if (nodes[node])
3169 x += sprintf(buf + x, " N%d=%lu",
3170 node, nodes[node]);
3171#endif
3172 kfree(nodes);
3173 return x + sprintf(buf + x, "\n");
3174}
3175
3176static int any_slab_objects(struct kmem_cache *s)
3177{
3178 int node;
3179 int cpu;
3180
3181 for_each_possible_cpu(cpu)
3182 if (s->cpu_slab[cpu])
3183 return 1;
3184
3185 for_each_node(node) {
3186 struct kmem_cache_node *n = get_node(s, node);
3187
3188 if (n->nr_partial || atomic_read(&n->nr_slabs))
3189 return 1;
3190 }
3191 return 0;
3192}
3193
3194#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3195#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3196
3197struct slab_attribute {
3198 struct attribute attr;
3199 ssize_t (*show)(struct kmem_cache *s, char *buf);
3200 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3201};
3202
3203#define SLAB_ATTR_RO(_name) \
3204 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3205
3206#define SLAB_ATTR(_name) \
3207 static struct slab_attribute _name##_attr = \
3208 __ATTR(_name, 0644, _name##_show, _name##_store)
3209
81819f0f
CL
3210static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3211{
3212 return sprintf(buf, "%d\n", s->size);
3213}
3214SLAB_ATTR_RO(slab_size);
3215
3216static ssize_t align_show(struct kmem_cache *s, char *buf)
3217{
3218 return sprintf(buf, "%d\n", s->align);
3219}
3220SLAB_ATTR_RO(align);
3221
3222static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3223{
3224 return sprintf(buf, "%d\n", s->objsize);
3225}
3226SLAB_ATTR_RO(object_size);
3227
3228static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3229{
3230 return sprintf(buf, "%d\n", s->objects);
3231}
3232SLAB_ATTR_RO(objs_per_slab);
3233
3234static ssize_t order_show(struct kmem_cache *s, char *buf)
3235{
3236 return sprintf(buf, "%d\n", s->order);
3237}
3238SLAB_ATTR_RO(order);
3239
3240static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3241{
3242 if (s->ctor) {
3243 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3244
3245 return n + sprintf(buf + n, "\n");
3246 }
3247 return 0;
3248}
3249SLAB_ATTR_RO(ctor);
3250
81819f0f
CL
3251static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3252{
3253 return sprintf(buf, "%d\n", s->refcount - 1);
3254}
3255SLAB_ATTR_RO(aliases);
3256
3257static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3258{
3259 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3260}
3261SLAB_ATTR_RO(slabs);
3262
3263static ssize_t partial_show(struct kmem_cache *s, char *buf)
3264{
3265 return slab_objects(s, buf, SO_PARTIAL);
3266}
3267SLAB_ATTR_RO(partial);
3268
3269static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3270{
3271 return slab_objects(s, buf, SO_CPU);
3272}
3273SLAB_ATTR_RO(cpu_slabs);
3274
3275static ssize_t objects_show(struct kmem_cache *s, char *buf)
3276{
3277 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3278}
3279SLAB_ATTR_RO(objects);
3280
3281static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3282{
3283 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3284}
3285
3286static ssize_t sanity_checks_store(struct kmem_cache *s,
3287 const char *buf, size_t length)
3288{
3289 s->flags &= ~SLAB_DEBUG_FREE;
3290 if (buf[0] == '1')
3291 s->flags |= SLAB_DEBUG_FREE;
3292 return length;
3293}
3294SLAB_ATTR(sanity_checks);
3295
3296static ssize_t trace_show(struct kmem_cache *s, char *buf)
3297{
3298 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3299}
3300
3301static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3302 size_t length)
3303{
3304 s->flags &= ~SLAB_TRACE;
3305 if (buf[0] == '1')
3306 s->flags |= SLAB_TRACE;
3307 return length;
3308}
3309SLAB_ATTR(trace);
3310
3311static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3312{
3313 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3314}
3315
3316static ssize_t reclaim_account_store(struct kmem_cache *s,
3317 const char *buf, size_t length)
3318{
3319 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3320 if (buf[0] == '1')
3321 s->flags |= SLAB_RECLAIM_ACCOUNT;
3322 return length;
3323}
3324SLAB_ATTR(reclaim_account);
3325
3326static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3327{
5af60839 3328 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3329}
3330SLAB_ATTR_RO(hwcache_align);
3331
3332#ifdef CONFIG_ZONE_DMA
3333static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3334{
3335 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3336}
3337SLAB_ATTR_RO(cache_dma);
3338#endif
3339
3340static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3341{
3342 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3343}
3344SLAB_ATTR_RO(destroy_by_rcu);
3345
3346static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3347{
3348 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3349}
3350
3351static ssize_t red_zone_store(struct kmem_cache *s,
3352 const char *buf, size_t length)
3353{
3354 if (any_slab_objects(s))
3355 return -EBUSY;
3356
3357 s->flags &= ~SLAB_RED_ZONE;
3358 if (buf[0] == '1')
3359 s->flags |= SLAB_RED_ZONE;
3360 calculate_sizes(s);
3361 return length;
3362}
3363SLAB_ATTR(red_zone);
3364
3365static ssize_t poison_show(struct kmem_cache *s, char *buf)
3366{
3367 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3368}
3369
3370static ssize_t poison_store(struct kmem_cache *s,
3371 const char *buf, size_t length)
3372{
3373 if (any_slab_objects(s))
3374 return -EBUSY;
3375
3376 s->flags &= ~SLAB_POISON;
3377 if (buf[0] == '1')
3378 s->flags |= SLAB_POISON;
3379 calculate_sizes(s);
3380 return length;
3381}
3382SLAB_ATTR(poison);
3383
3384static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3385{
3386 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3387}
3388
3389static ssize_t store_user_store(struct kmem_cache *s,
3390 const char *buf, size_t length)
3391{
3392 if (any_slab_objects(s))
3393 return -EBUSY;
3394
3395 s->flags &= ~SLAB_STORE_USER;
3396 if (buf[0] == '1')
3397 s->flags |= SLAB_STORE_USER;
3398 calculate_sizes(s);
3399 return length;
3400}
3401SLAB_ATTR(store_user);
3402
53e15af0
CL
3403static ssize_t validate_show(struct kmem_cache *s, char *buf)
3404{
3405 return 0;
3406}
3407
3408static ssize_t validate_store(struct kmem_cache *s,
3409 const char *buf, size_t length)
3410{
3411 if (buf[0] == '1')
3412 validate_slab_cache(s);
3413 else
3414 return -EINVAL;
3415 return length;
3416}
3417SLAB_ATTR(validate);
3418
2086d26a
CL
3419static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3420{
3421 return 0;
3422}
3423
3424static ssize_t shrink_store(struct kmem_cache *s,
3425 const char *buf, size_t length)
3426{
3427 if (buf[0] == '1') {
3428 int rc = kmem_cache_shrink(s);
3429
3430 if (rc)
3431 return rc;
3432 } else
3433 return -EINVAL;
3434 return length;
3435}
3436SLAB_ATTR(shrink);
3437
88a420e4
CL
3438static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3439{
3440 if (!(s->flags & SLAB_STORE_USER))
3441 return -ENOSYS;
3442 return list_locations(s, buf, TRACK_ALLOC);
3443}
3444SLAB_ATTR_RO(alloc_calls);
3445
3446static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3447{
3448 if (!(s->flags & SLAB_STORE_USER))
3449 return -ENOSYS;
3450 return list_locations(s, buf, TRACK_FREE);
3451}
3452SLAB_ATTR_RO(free_calls);
3453
81819f0f
CL
3454#ifdef CONFIG_NUMA
3455static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3456{
3457 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3458}
3459
3460static ssize_t defrag_ratio_store(struct kmem_cache *s,
3461 const char *buf, size_t length)
3462{
3463 int n = simple_strtoul(buf, NULL, 10);
3464
3465 if (n < 100)
3466 s->defrag_ratio = n * 10;
3467 return length;
3468}
3469SLAB_ATTR(defrag_ratio);
3470#endif
3471
3472static struct attribute * slab_attrs[] = {
3473 &slab_size_attr.attr,
3474 &object_size_attr.attr,
3475 &objs_per_slab_attr.attr,
3476 &order_attr.attr,
3477 &objects_attr.attr,
3478 &slabs_attr.attr,
3479 &partial_attr.attr,
3480 &cpu_slabs_attr.attr,
3481 &ctor_attr.attr,
81819f0f
CL
3482 &aliases_attr.attr,
3483 &align_attr.attr,
3484 &sanity_checks_attr.attr,
3485 &trace_attr.attr,
3486 &hwcache_align_attr.attr,
3487 &reclaim_account_attr.attr,
3488 &destroy_by_rcu_attr.attr,
3489 &red_zone_attr.attr,
3490 &poison_attr.attr,
3491 &store_user_attr.attr,
53e15af0 3492 &validate_attr.attr,
2086d26a 3493 &shrink_attr.attr,
88a420e4
CL
3494 &alloc_calls_attr.attr,
3495 &free_calls_attr.attr,
81819f0f
CL
3496#ifdef CONFIG_ZONE_DMA
3497 &cache_dma_attr.attr,
3498#endif
3499#ifdef CONFIG_NUMA
3500 &defrag_ratio_attr.attr,
3501#endif
3502 NULL
3503};
3504
3505static struct attribute_group slab_attr_group = {
3506 .attrs = slab_attrs,
3507};
3508
3509static ssize_t slab_attr_show(struct kobject *kobj,
3510 struct attribute *attr,
3511 char *buf)
3512{
3513 struct slab_attribute *attribute;
3514 struct kmem_cache *s;
3515 int err;
3516
3517 attribute = to_slab_attr(attr);
3518 s = to_slab(kobj);
3519
3520 if (!attribute->show)
3521 return -EIO;
3522
3523 err = attribute->show(s, buf);
3524
3525 return err;
3526}
3527
3528static ssize_t slab_attr_store(struct kobject *kobj,
3529 struct attribute *attr,
3530 const char *buf, size_t len)
3531{
3532 struct slab_attribute *attribute;
3533 struct kmem_cache *s;
3534 int err;
3535
3536 attribute = to_slab_attr(attr);
3537 s = to_slab(kobj);
3538
3539 if (!attribute->store)
3540 return -EIO;
3541
3542 err = attribute->store(s, buf, len);
3543
3544 return err;
3545}
3546
3547static struct sysfs_ops slab_sysfs_ops = {
3548 .show = slab_attr_show,
3549 .store = slab_attr_store,
3550};
3551
3552static struct kobj_type slab_ktype = {
3553 .sysfs_ops = &slab_sysfs_ops,
3554};
3555
3556static int uevent_filter(struct kset *kset, struct kobject *kobj)
3557{
3558 struct kobj_type *ktype = get_ktype(kobj);
3559
3560 if (ktype == &slab_ktype)
3561 return 1;
3562 return 0;
3563}
3564
3565static struct kset_uevent_ops slab_uevent_ops = {
3566 .filter = uevent_filter,
3567};
3568
3569decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3570
3571#define ID_STR_LENGTH 64
3572
3573/* Create a unique string id for a slab cache:
3574 * format
3575 * :[flags-]size:[memory address of kmemcache]
3576 */
3577static char *create_unique_id(struct kmem_cache *s)
3578{
3579 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3580 char *p = name;
3581
3582 BUG_ON(!name);
3583
3584 *p++ = ':';
3585 /*
3586 * First flags affecting slabcache operations. We will only
3587 * get here for aliasable slabs so we do not need to support
3588 * too many flags. The flags here must cover all flags that
3589 * are matched during merging to guarantee that the id is
3590 * unique.
3591 */
3592 if (s->flags & SLAB_CACHE_DMA)
3593 *p++ = 'd';
3594 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3595 *p++ = 'a';
3596 if (s->flags & SLAB_DEBUG_FREE)
3597 *p++ = 'F';
3598 if (p != name + 1)
3599 *p++ = '-';
3600 p += sprintf(p, "%07d", s->size);
3601 BUG_ON(p > name + ID_STR_LENGTH - 1);
3602 return name;
3603}
3604
3605static int sysfs_slab_add(struct kmem_cache *s)
3606{
3607 int err;
3608 const char *name;
3609 int unmergeable;
3610
3611 if (slab_state < SYSFS)
3612 /* Defer until later */
3613 return 0;
3614
3615 unmergeable = slab_unmergeable(s);
3616 if (unmergeable) {
3617 /*
3618 * Slabcache can never be merged so we can use the name proper.
3619 * This is typically the case for debug situations. In that
3620 * case we can catch duplicate names easily.
3621 */
0f9008ef 3622 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3623 name = s->name;
3624 } else {
3625 /*
3626 * Create a unique name for the slab as a target
3627 * for the symlinks.
3628 */
3629 name = create_unique_id(s);
3630 }
3631
3632 kobj_set_kset_s(s, slab_subsys);
3633 kobject_set_name(&s->kobj, name);
3634 kobject_init(&s->kobj);
3635 err = kobject_add(&s->kobj);
3636 if (err)
3637 return err;
3638
3639 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3640 if (err)
3641 return err;
3642 kobject_uevent(&s->kobj, KOBJ_ADD);
3643 if (!unmergeable) {
3644 /* Setup first alias */
3645 sysfs_slab_alias(s, s->name);
3646 kfree(name);
3647 }
3648 return 0;
3649}
3650
3651static void sysfs_slab_remove(struct kmem_cache *s)
3652{
3653 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3654 kobject_del(&s->kobj);
3655}
3656
3657/*
3658 * Need to buffer aliases during bootup until sysfs becomes
3659 * available lest we loose that information.
3660 */
3661struct saved_alias {
3662 struct kmem_cache *s;
3663 const char *name;
3664 struct saved_alias *next;
3665};
3666
3667struct saved_alias *alias_list;
3668
3669static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3670{
3671 struct saved_alias *al;
3672
3673 if (slab_state == SYSFS) {
3674 /*
3675 * If we have a leftover link then remove it.
3676 */
0f9008ef
LT
3677 sysfs_remove_link(&slab_subsys.kobj, name);
3678 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3679 &s->kobj, name);
3680 }
3681
3682 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3683 if (!al)
3684 return -ENOMEM;
3685
3686 al->s = s;
3687 al->name = name;
3688 al->next = alias_list;
3689 alias_list = al;
3690 return 0;
3691}
3692
3693static int __init slab_sysfs_init(void)
3694{
5b95a4ac 3695 struct kmem_cache *s;
81819f0f
CL
3696 int err;
3697
3698 err = subsystem_register(&slab_subsys);
3699 if (err) {
3700 printk(KERN_ERR "Cannot register slab subsystem.\n");
3701 return -ENOSYS;
3702 }
3703
26a7bd03
CL
3704 slab_state = SYSFS;
3705
5b95a4ac 3706 list_for_each_entry(s, &slab_caches, list) {
26a7bd03
CL
3707 err = sysfs_slab_add(s);
3708 BUG_ON(err);
3709 }
81819f0f
CL
3710
3711 while (alias_list) {
3712 struct saved_alias *al = alias_list;
3713
3714 alias_list = alias_list->next;
3715 err = sysfs_slab_alias(al->s, al->name);
3716 BUG_ON(err);
3717 kfree(al);
3718 }
3719
3720 resiliency_test();
3721 return 0;
3722}
3723
3724__initcall(slab_sysfs_init);
81819f0f 3725#endif