]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/fs-writeback.c
namei.c : update mnt when it needed
[net-next-2.6.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
03ba3782
JA
23#include <linux/kthread.h>
24#include <linux/freezer.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/buffer_head.h>
07f3f05c 29#include "internal.h"
1da177e4 30
66f3b8e2 31#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
f11b00f3 32
d0bceac7
JA
33/*
34 * We don't actually have pdflush, but this one is exported though /proc...
35 */
36int nr_pdflush_threads;
37
c4a77a6c
JA
38/*
39 * Passed into wb_writeback(), essentially a subset of writeback_control
40 */
41struct wb_writeback_args {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
d3ddec76
WF
45 int for_kupdate:1;
46 int range_cyclic:1;
47 int for_background:1;
c4a77a6c
JA
48};
49
03ba3782
JA
50/*
51 * Work items for the bdi_writeback threads
f11b00f3 52 */
03ba3782 53struct bdi_work {
8010c3b6
JA
54 struct list_head list; /* pending work list */
55 struct rcu_head rcu_head; /* for RCU free/clear of work */
03ba3782 56
8010c3b6
JA
57 unsigned long seen; /* threads that have seen this work */
58 atomic_t pending; /* number of threads still to do work */
03ba3782 59
8010c3b6 60 struct wb_writeback_args args; /* writeback arguments */
03ba3782 61
8010c3b6 62 unsigned long state; /* flag bits, see WS_* */
03ba3782
JA
63};
64
65enum {
66 WS_USED_B = 0,
67 WS_ONSTACK_B,
68};
69
70#define WS_USED (1 << WS_USED_B)
71#define WS_ONSTACK (1 << WS_ONSTACK_B)
72
73static inline bool bdi_work_on_stack(struct bdi_work *work)
74{
75 return test_bit(WS_ONSTACK_B, &work->state);
76}
77
78static inline void bdi_work_init(struct bdi_work *work,
b6e51316 79 struct wb_writeback_args *args)
03ba3782
JA
80{
81 INIT_RCU_HEAD(&work->rcu_head);
b6e51316 82 work->args = *args;
03ba3782
JA
83 work->state = WS_USED;
84}
85
f11b00f3
AB
86/**
87 * writeback_in_progress - determine whether there is writeback in progress
88 * @bdi: the device's backing_dev_info structure.
89 *
03ba3782
JA
90 * Determine whether there is writeback waiting to be handled against a
91 * backing device.
f11b00f3
AB
92 */
93int writeback_in_progress(struct backing_dev_info *bdi)
94{
03ba3782 95 return !list_empty(&bdi->work_list);
f11b00f3
AB
96}
97
03ba3782 98static void bdi_work_clear(struct bdi_work *work)
f11b00f3 99{
03ba3782
JA
100 clear_bit(WS_USED_B, &work->state);
101 smp_mb__after_clear_bit();
1ef7d9aa
NP
102 /*
103 * work can have disappeared at this point. bit waitq functions
104 * should be able to tolerate this, provided bdi_sched_wait does
105 * not dereference it's pointer argument.
106 */
03ba3782 107 wake_up_bit(&work->state, WS_USED_B);
f11b00f3
AB
108}
109
03ba3782 110static void bdi_work_free(struct rcu_head *head)
4195f73d 111{
03ba3782 112 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
4195f73d 113
03ba3782
JA
114 if (!bdi_work_on_stack(work))
115 kfree(work);
116 else
117 bdi_work_clear(work);
4195f73d
NP
118}
119
03ba3782 120static void wb_work_complete(struct bdi_work *work)
1da177e4 121{
c4a77a6c 122 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
77b9d059 123 int onstack = bdi_work_on_stack(work);
1da177e4
LT
124
125 /*
03ba3782
JA
126 * For allocated work, we can clear the done/seen bit right here.
127 * For on-stack work, we need to postpone both the clear and free
128 * to after the RCU grace period, since the stack could be invalidated
129 * as soon as bdi_work_clear() has done the wakeup.
1da177e4 130 */
77b9d059 131 if (!onstack)
03ba3782 132 bdi_work_clear(work);
77b9d059 133 if (sync_mode == WB_SYNC_NONE || onstack)
03ba3782
JA
134 call_rcu(&work->rcu_head, bdi_work_free);
135}
1da177e4 136
03ba3782
JA
137static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
138{
1da177e4 139 /*
03ba3782
JA
140 * The caller has retrieved the work arguments from this work,
141 * drop our reference. If this is the last ref, delete and free it
1da177e4 142 */
03ba3782
JA
143 if (atomic_dec_and_test(&work->pending)) {
144 struct backing_dev_info *bdi = wb->bdi;
1da177e4 145
03ba3782
JA
146 spin_lock(&bdi->wb_lock);
147 list_del_rcu(&work->list);
148 spin_unlock(&bdi->wb_lock);
1da177e4 149
03ba3782
JA
150 wb_work_complete(work);
151 }
152}
1da177e4 153
03ba3782
JA
154static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
155{
bcddc3f0
JA
156 work->seen = bdi->wb_mask;
157 BUG_ON(!work->seen);
158 atomic_set(&work->pending, bdi->wb_cnt);
159 BUG_ON(!bdi->wb_cnt);
1da177e4 160
bcddc3f0 161 /*
deed62ed
NP
162 * list_add_tail_rcu() contains the necessary barriers to
163 * make sure the above stores are seen before the item is
164 * noticed on the list
bcddc3f0 165 */
bcddc3f0
JA
166 spin_lock(&bdi->wb_lock);
167 list_add_tail_rcu(&work->list, &bdi->work_list);
168 spin_unlock(&bdi->wb_lock);
03ba3782
JA
169
170 /*
171 * If the default thread isn't there, make sure we add it. When
172 * it gets created and wakes up, we'll run this work.
173 */
174 if (unlikely(list_empty_careful(&bdi->wb_list)))
175 wake_up_process(default_backing_dev_info.wb.task);
176 else {
177 struct bdi_writeback *wb = &bdi->wb;
1da177e4 178
1ef7d9aa 179 if (wb->task)
03ba3782 180 wake_up_process(wb->task);
1da177e4 181 }
1da177e4
LT
182}
183
03ba3782
JA
184/*
185 * Used for on-stack allocated work items. The caller needs to wait until
186 * the wb threads have acked the work before it's safe to continue.
187 */
188static void bdi_wait_on_work_clear(struct bdi_work *work)
189{
190 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
191 TASK_UNINTERRUPTIBLE);
192}
1da177e4 193
f11fcae8 194static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
b6e51316 195 struct wb_writeback_args *args)
1da177e4 196{
03ba3782
JA
197 struct bdi_work *work;
198
bcddc3f0
JA
199 /*
200 * This is WB_SYNC_NONE writeback, so if allocation fails just
201 * wakeup the thread for old dirty data writeback
202 */
03ba3782 203 work = kmalloc(sizeof(*work), GFP_ATOMIC);
bcddc3f0 204 if (work) {
b6e51316 205 bdi_work_init(work, args);
bcddc3f0
JA
206 bdi_queue_work(bdi, work);
207 } else {
208 struct bdi_writeback *wb = &bdi->wb;
03ba3782 209
bcddc3f0
JA
210 if (wb->task)
211 wake_up_process(wb->task);
212 }
03ba3782
JA
213}
214
b6e51316
JA
215/**
216 * bdi_sync_writeback - start and wait for writeback
217 * @bdi: the backing device to write from
218 * @sb: write inodes from this super_block
219 *
220 * Description:
221 * This does WB_SYNC_ALL data integrity writeback and waits for the
222 * IO to complete. Callers must hold the sb s_umount semaphore for
223 * reading, to avoid having the super disappear before we are done.
224 */
225static void bdi_sync_writeback(struct backing_dev_info *bdi,
226 struct super_block *sb)
03ba3782 227{
b6e51316
JA
228 struct wb_writeback_args args = {
229 .sb = sb,
230 .sync_mode = WB_SYNC_ALL,
231 .nr_pages = LONG_MAX,
232 .range_cyclic = 0,
233 };
234 struct bdi_work work;
03ba3782 235
b6e51316
JA
236 bdi_work_init(&work, &args);
237 work.state |= WS_ONSTACK;
03ba3782 238
b6e51316
JA
239 bdi_queue_work(bdi, &work);
240 bdi_wait_on_work_clear(&work);
241}
242
243/**
244 * bdi_start_writeback - start writeback
245 * @bdi: the backing device to write from
4b6764fa 246 * @sb: write inodes from this super_block
b6e51316
JA
247 * @nr_pages: the number of pages to write
248 *
249 * Description:
250 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
251 * started when this function returns, we make no guarentees on
252 * completion. Caller need not hold sb s_umount semaphore.
253 *
254 */
a72bfd4d
JA
255void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
256 long nr_pages)
b6e51316
JA
257{
258 struct wb_writeback_args args = {
a72bfd4d 259 .sb = sb,
b6e51316
JA
260 .sync_mode = WB_SYNC_NONE,
261 .nr_pages = nr_pages,
262 .range_cyclic = 1,
263 };
264
d3ddec76
WF
265 /*
266 * We treat @nr_pages=0 as the special case to do background writeback,
267 * ie. to sync pages until the background dirty threshold is reached.
268 */
269 if (!nr_pages) {
270 args.nr_pages = LONG_MAX;
271 args.for_background = 1;
272 }
273
b6e51316 274 bdi_alloc_queue_work(bdi, &args);
1da177e4
LT
275}
276
6610a0bc
AM
277/*
278 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
279 * furthest end of its superblock's dirty-inode list.
280 *
281 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 282 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
283 * the case then the inode must have been redirtied while it was being written
284 * out and we don't reset its dirtied_when.
285 */
286static void redirty_tail(struct inode *inode)
287{
03ba3782 288 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
6610a0bc 289
03ba3782 290 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 291 struct inode *tail;
6610a0bc 292
03ba3782 293 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
66f3b8e2 294 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
295 inode->dirtied_when = jiffies;
296 }
03ba3782 297 list_move(&inode->i_list, &wb->b_dirty);
6610a0bc
AM
298}
299
c986d1e2 300/*
66f3b8e2 301 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 302 */
0e0f4fc2 303static void requeue_io(struct inode *inode)
c986d1e2 304{
03ba3782
JA
305 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
306
307 list_move(&inode->i_list, &wb->b_more_io);
c986d1e2
AM
308}
309
1c0eeaf5
JE
310static void inode_sync_complete(struct inode *inode)
311{
312 /*
313 * Prevent speculative execution through spin_unlock(&inode_lock);
314 */
315 smp_mb();
316 wake_up_bit(&inode->i_state, __I_SYNC);
317}
318
d2caa3c5
JL
319static bool inode_dirtied_after(struct inode *inode, unsigned long t)
320{
321 bool ret = time_after(inode->dirtied_when, t);
322#ifndef CONFIG_64BIT
323 /*
324 * For inodes being constantly redirtied, dirtied_when can get stuck.
325 * It _appears_ to be in the future, but is actually in distant past.
326 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 327 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
328 */
329 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
330#endif
331 return ret;
332}
333
2c136579
FW
334/*
335 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
336 */
337static void move_expired_inodes(struct list_head *delaying_queue,
338 struct list_head *dispatch_queue,
339 unsigned long *older_than_this)
340{
5c03449d
SL
341 LIST_HEAD(tmp);
342 struct list_head *pos, *node;
cf137307 343 struct super_block *sb = NULL;
5c03449d 344 struct inode *inode;
cf137307 345 int do_sb_sort = 0;
5c03449d 346
2c136579 347 while (!list_empty(delaying_queue)) {
5c03449d 348 inode = list_entry(delaying_queue->prev, struct inode, i_list);
2c136579 349 if (older_than_this &&
d2caa3c5 350 inode_dirtied_after(inode, *older_than_this))
2c136579 351 break;
cf137307
JA
352 if (sb && sb != inode->i_sb)
353 do_sb_sort = 1;
354 sb = inode->i_sb;
5c03449d
SL
355 list_move(&inode->i_list, &tmp);
356 }
357
cf137307
JA
358 /* just one sb in list, splice to dispatch_queue and we're done */
359 if (!do_sb_sort) {
360 list_splice(&tmp, dispatch_queue);
361 return;
362 }
363
5c03449d
SL
364 /* Move inodes from one superblock together */
365 while (!list_empty(&tmp)) {
366 inode = list_entry(tmp.prev, struct inode, i_list);
367 sb = inode->i_sb;
368 list_for_each_prev_safe(pos, node, &tmp) {
369 inode = list_entry(pos, struct inode, i_list);
370 if (inode->i_sb == sb)
371 list_move(&inode->i_list, dispatch_queue);
372 }
2c136579
FW
373 }
374}
375
376/*
377 * Queue all expired dirty inodes for io, eldest first.
378 */
03ba3782 379static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
66f3b8e2 380{
03ba3782
JA
381 list_splice_init(&wb->b_more_io, wb->b_io.prev);
382 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
66f3b8e2
JA
383}
384
a9185b41 385static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 386{
03ba3782 387 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
a9185b41 388 return inode->i_sb->s_op->write_inode(inode, wbc);
03ba3782 389 return 0;
08d8e974 390}
08d8e974 391
1da177e4 392/*
01c03194
CH
393 * Wait for writeback on an inode to complete.
394 */
395static void inode_wait_for_writeback(struct inode *inode)
396{
397 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
398 wait_queue_head_t *wqh;
399
400 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
401 do {
402 spin_unlock(&inode_lock);
403 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
404 spin_lock(&inode_lock);
405 } while (inode->i_state & I_SYNC);
406}
407
408/*
409 * Write out an inode's dirty pages. Called under inode_lock. Either the
410 * caller has ref on the inode (either via __iget or via syscall against an fd)
411 * or the inode has I_WILL_FREE set (via generic_forget_inode)
412 *
1da177e4
LT
413 * If `wait' is set, wait on the writeout.
414 *
415 * The whole writeout design is quite complex and fragile. We want to avoid
416 * starvation of particular inodes when others are being redirtied, prevent
417 * livelocks, etc.
418 *
419 * Called under inode_lock.
420 */
421static int
01c03194 422writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 423{
1da177e4 424 struct address_space *mapping = inode->i_mapping;
01c03194 425 unsigned dirty;
1da177e4
LT
426 int ret;
427
01c03194
CH
428 if (!atomic_read(&inode->i_count))
429 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
430 else
431 WARN_ON(inode->i_state & I_WILL_FREE);
432
433 if (inode->i_state & I_SYNC) {
434 /*
435 * If this inode is locked for writeback and we are not doing
66f3b8e2 436 * writeback-for-data-integrity, move it to b_more_io so that
01c03194
CH
437 * writeback can proceed with the other inodes on s_io.
438 *
439 * We'll have another go at writing back this inode when we
66f3b8e2 440 * completed a full scan of b_io.
01c03194 441 */
a9185b41 442 if (wbc->sync_mode != WB_SYNC_ALL) {
01c03194
CH
443 requeue_io(inode);
444 return 0;
445 }
446
447 /*
448 * It's a data-integrity sync. We must wait.
449 */
450 inode_wait_for_writeback(inode);
451 }
452
1c0eeaf5 453 BUG_ON(inode->i_state & I_SYNC);
1da177e4 454
1c0eeaf5 455 /* Set I_SYNC, reset I_DIRTY */
1da177e4 456 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 457 inode->i_state |= I_SYNC;
1da177e4
LT
458 inode->i_state &= ~I_DIRTY;
459
460 spin_unlock(&inode_lock);
461
462 ret = do_writepages(mapping, wbc);
463
26821ed4
CH
464 /*
465 * Make sure to wait on the data before writing out the metadata.
466 * This is important for filesystems that modify metadata on data
467 * I/O completion.
468 */
a9185b41 469 if (wbc->sync_mode == WB_SYNC_ALL) {
26821ed4 470 int err = filemap_fdatawait(mapping);
1da177e4
LT
471 if (ret == 0)
472 ret = err;
473 }
474
26821ed4
CH
475 /* Don't write the inode if only I_DIRTY_PAGES was set */
476 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
a9185b41 477 int err = write_inode(inode, wbc);
1da177e4
LT
478 if (ret == 0)
479 ret = err;
480 }
481
482 spin_lock(&inode_lock);
1c0eeaf5 483 inode->i_state &= ~I_SYNC;
84a89245 484 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
b3af9468 485 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
ae1b7f7d 486 /*
b3af9468
WF
487 * More pages get dirtied by a fast dirtier.
488 */
489 goto select_queue;
490 } else if (inode->i_state & I_DIRTY) {
491 /*
492 * At least XFS will redirty the inode during the
493 * writeback (delalloc) and on io completion (isize).
ae1b7f7d
WF
494 */
495 redirty_tail(inode);
496 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
1da177e4
LT
497 /*
498 * We didn't write back all the pages. nfs_writepages()
499 * sometimes bales out without doing anything. Redirty
66f3b8e2 500 * the inode; Move it from b_io onto b_more_io/b_dirty.
1b43ef91
AM
501 */
502 /*
503 * akpm: if the caller was the kupdate function we put
66f3b8e2 504 * this inode at the head of b_dirty so it gets first
1b43ef91
AM
505 * consideration. Otherwise, move it to the tail, for
506 * the reasons described there. I'm not really sure
507 * how much sense this makes. Presumably I had a good
508 * reasons for doing it this way, and I'd rather not
509 * muck with it at present.
1da177e4
LT
510 */
511 if (wbc->for_kupdate) {
512 /*
2c136579 513 * For the kupdate function we move the inode
66f3b8e2 514 * to b_more_io so it will get more writeout as
2c136579 515 * soon as the queue becomes uncongested.
1da177e4
LT
516 */
517 inode->i_state |= I_DIRTY_PAGES;
b3af9468 518select_queue:
8bc3be27
FW
519 if (wbc->nr_to_write <= 0) {
520 /*
521 * slice used up: queue for next turn
522 */
523 requeue_io(inode);
524 } else {
525 /*
526 * somehow blocked: retry later
527 */
528 redirty_tail(inode);
529 }
1da177e4
LT
530 } else {
531 /*
532 * Otherwise fully redirty the inode so that
533 * other inodes on this superblock will get some
534 * writeout. Otherwise heavy writing to one
535 * file would indefinitely suspend writeout of
536 * all the other files.
537 */
538 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 539 redirty_tail(inode);
1da177e4 540 }
1da177e4
LT
541 } else if (atomic_read(&inode->i_count)) {
542 /*
543 * The inode is clean, inuse
544 */
545 list_move(&inode->i_list, &inode_in_use);
546 } else {
547 /*
548 * The inode is clean, unused
549 */
550 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
551 }
552 }
1c0eeaf5 553 inode_sync_complete(inode);
1da177e4
LT
554 return ret;
555}
556
f11c9c5c 557static void unpin_sb_for_writeback(struct super_block *sb)
9ecc2738 558{
f11c9c5c
ES
559 up_read(&sb->s_umount);
560 put_super(sb);
9ecc2738
JA
561}
562
f11c9c5c
ES
563enum sb_pin_state {
564 SB_PINNED,
565 SB_NOT_PINNED,
566 SB_PIN_FAILED
567};
568
03ba3782
JA
569/*
570 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
571 * before calling writeback. So make sure that we do pin it, so it doesn't
572 * go away while we are writing inodes from it.
03ba3782 573 */
f11c9c5c
ES
574static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
575 struct super_block *sb)
03ba3782 576{
03ba3782
JA
577 /*
578 * Caller must already hold the ref for this
579 */
580 if (wbc->sync_mode == WB_SYNC_ALL) {
581 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f11c9c5c 582 return SB_NOT_PINNED;
03ba3782 583 }
03ba3782
JA
584 spin_lock(&sb_lock);
585 sb->s_count++;
586 if (down_read_trylock(&sb->s_umount)) {
587 if (sb->s_root) {
588 spin_unlock(&sb_lock);
f11c9c5c 589 return SB_PINNED;
03ba3782
JA
590 }
591 /*
592 * umounted, drop rwsem again and fall through to failure
593 */
594 up_read(&sb->s_umount);
595 }
03ba3782
JA
596 sb->s_count--;
597 spin_unlock(&sb_lock);
f11c9c5c 598 return SB_PIN_FAILED;
03ba3782
JA
599}
600
f11c9c5c
ES
601/*
602 * Write a portion of b_io inodes which belong to @sb.
603 * If @wbc->sb != NULL, then find and write all such
604 * inodes. Otherwise write only ones which go sequentially
605 * in reverse order.
606 * Return 1, if the caller writeback routine should be
607 * interrupted. Otherwise return 0.
608 */
609static int writeback_sb_inodes(struct super_block *sb,
610 struct bdi_writeback *wb,
611 struct writeback_control *wbc)
1da177e4 612{
03ba3782 613 while (!list_empty(&wb->b_io)) {
1da177e4 614 long pages_skipped;
f11c9c5c
ES
615 struct inode *inode = list_entry(wb->b_io.prev,
616 struct inode, i_list);
617 if (wbc->sb && sb != inode->i_sb) {
618 /* super block given and doesn't
619 match, skip this inode */
66f3b8e2
JA
620 redirty_tail(inode);
621 continue;
622 }
f11c9c5c
ES
623 if (sb != inode->i_sb)
624 /* finish with this superblock */
625 return 0;
84a89245 626 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
7ef0d737
NP
627 requeue_io(inode);
628 continue;
629 }
d2caa3c5
JL
630 /*
631 * Was this inode dirtied after sync_sb_inodes was called?
632 * This keeps sync from extra jobs and livelock.
633 */
f11c9c5c
ES
634 if (inode_dirtied_after(inode, wbc->wb_start))
635 return 1;
1da177e4 636
84a89245 637 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
1da177e4
LT
638 __iget(inode);
639 pages_skipped = wbc->pages_skipped;
01c03194 640 writeback_single_inode(inode, wbc);
1da177e4
LT
641 if (wbc->pages_skipped != pages_skipped) {
642 /*
643 * writeback is not making progress due to locked
644 * buffers. Skip this inode for now.
645 */
f57b9b7b 646 redirty_tail(inode);
1da177e4
LT
647 }
648 spin_unlock(&inode_lock);
1da177e4 649 iput(inode);
4ffc8444 650 cond_resched();
1da177e4 651 spin_lock(&inode_lock);
8bc3be27
FW
652 if (wbc->nr_to_write <= 0) {
653 wbc->more_io = 1;
f11c9c5c 654 return 1;
8bc3be27 655 }
03ba3782 656 if (!list_empty(&wb->b_more_io))
8bc3be27 657 wbc->more_io = 1;
1da177e4 658 }
f11c9c5c
ES
659 /* b_io is empty */
660 return 1;
661}
662
663static void writeback_inodes_wb(struct bdi_writeback *wb,
664 struct writeback_control *wbc)
665{
666 int ret = 0;
667
668 wbc->wb_start = jiffies; /* livelock avoidance */
669 spin_lock(&inode_lock);
670 if (!wbc->for_kupdate || list_empty(&wb->b_io))
671 queue_io(wb, wbc->older_than_this);
38f21977 672
f11c9c5c
ES
673 while (!list_empty(&wb->b_io)) {
674 struct inode *inode = list_entry(wb->b_io.prev,
675 struct inode, i_list);
676 struct super_block *sb = inode->i_sb;
677 enum sb_pin_state state;
9ecc2738 678
f11c9c5c
ES
679 if (wbc->sb && sb != wbc->sb) {
680 /* super block given and doesn't
681 match, skip this inode */
682 redirty_tail(inode);
683 continue;
684 }
685 state = pin_sb_for_writeback(wbc, sb);
686
687 if (state == SB_PIN_FAILED) {
688 requeue_io(inode);
689 continue;
690 }
691 ret = writeback_sb_inodes(sb, wb, wbc);
692
693 if (state == SB_PINNED)
694 unpin_sb_for_writeback(sb);
695 if (ret)
696 break;
697 }
66f3b8e2
JA
698 spin_unlock(&inode_lock);
699 /* Leave any unwritten inodes on b_io */
700}
701
03ba3782
JA
702void writeback_inodes_wbc(struct writeback_control *wbc)
703{
704 struct backing_dev_info *bdi = wbc->bdi;
705
706 writeback_inodes_wb(&bdi->wb, wbc);
707}
708
66f3b8e2 709/*
03ba3782
JA
710 * The maximum number of pages to writeout in a single bdi flush/kupdate
711 * operation. We do this so we don't hold I_SYNC against an inode for
712 * enormous amounts of time, which would block a userspace task which has
713 * been forced to throttle against that inode. Also, the code reevaluates
714 * the dirty each time it has written this many pages.
715 */
716#define MAX_WRITEBACK_PAGES 1024
717
718static inline bool over_bground_thresh(void)
719{
720 unsigned long background_thresh, dirty_thresh;
721
722 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
723
724 return (global_page_state(NR_FILE_DIRTY) +
725 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
726}
727
728/*
729 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 730 *
03ba3782
JA
731 * Define "old": the first time one of an inode's pages is dirtied, we mark the
732 * dirtying-time in the inode's address_space. So this periodic writeback code
733 * just walks the superblock inode list, writing back any inodes which are
734 * older than a specific point in time.
66f3b8e2 735 *
03ba3782
JA
736 * Try to run once per dirty_writeback_interval. But if a writeback event
737 * takes longer than a dirty_writeback_interval interval, then leave a
738 * one-second gap.
66f3b8e2 739 *
03ba3782
JA
740 * older_than_this takes precedence over nr_to_write. So we'll only write back
741 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 742 */
c4a77a6c
JA
743static long wb_writeback(struct bdi_writeback *wb,
744 struct wb_writeback_args *args)
66f3b8e2 745{
03ba3782
JA
746 struct writeback_control wbc = {
747 .bdi = wb->bdi,
c4a77a6c
JA
748 .sb = args->sb,
749 .sync_mode = args->sync_mode,
03ba3782 750 .older_than_this = NULL,
c4a77a6c 751 .for_kupdate = args->for_kupdate,
b17621fe 752 .for_background = args->for_background,
c4a77a6c 753 .range_cyclic = args->range_cyclic,
03ba3782
JA
754 };
755 unsigned long oldest_jif;
756 long wrote = 0;
a5989bdc 757 struct inode *inode;
66f3b8e2 758
03ba3782
JA
759 if (wbc.for_kupdate) {
760 wbc.older_than_this = &oldest_jif;
761 oldest_jif = jiffies -
762 msecs_to_jiffies(dirty_expire_interval * 10);
763 }
c4a77a6c
JA
764 if (!wbc.range_cyclic) {
765 wbc.range_start = 0;
766 wbc.range_end = LLONG_MAX;
767 }
38f21977 768
03ba3782
JA
769 for (;;) {
770 /*
d3ddec76 771 * Stop writeback when nr_pages has been consumed
03ba3782 772 */
d3ddec76 773 if (args->nr_pages <= 0)
03ba3782 774 break;
66f3b8e2 775
38f21977 776 /*
d3ddec76
WF
777 * For background writeout, stop when we are below the
778 * background dirty threshold
38f21977 779 */
d3ddec76 780 if (args->for_background && !over_bground_thresh())
03ba3782 781 break;
38f21977 782
03ba3782 783 wbc.more_io = 0;
03ba3782
JA
784 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
785 wbc.pages_skipped = 0;
786 writeback_inodes_wb(wb, &wbc);
c4a77a6c 787 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
03ba3782
JA
788 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
789
790 /*
71fd05a8 791 * If we consumed everything, see if we have more
03ba3782 792 */
71fd05a8
JA
793 if (wbc.nr_to_write <= 0)
794 continue;
795 /*
796 * Didn't write everything and we don't have more IO, bail
797 */
798 if (!wbc.more_io)
03ba3782 799 break;
71fd05a8
JA
800 /*
801 * Did we write something? Try for more
802 */
803 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
804 continue;
805 /*
806 * Nothing written. Wait for some inode to
807 * become available for writeback. Otherwise
808 * we'll just busyloop.
809 */
810 spin_lock(&inode_lock);
811 if (!list_empty(&wb->b_more_io)) {
812 inode = list_entry(wb->b_more_io.prev,
813 struct inode, i_list);
814 inode_wait_for_writeback(inode);
03ba3782 815 }
71fd05a8 816 spin_unlock(&inode_lock);
03ba3782
JA
817 }
818
819 return wrote;
820}
821
822/*
823 * Return the next bdi_work struct that hasn't been processed by this
8010c3b6
JA
824 * wb thread yet. ->seen is initially set for each thread that exists
825 * for this device, when a thread first notices a piece of work it
826 * clears its bit. Depending on writeback type, the thread will notify
827 * completion on either receiving the work (WB_SYNC_NONE) or after
828 * it is done (WB_SYNC_ALL).
03ba3782
JA
829 */
830static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
831 struct bdi_writeback *wb)
832{
833 struct bdi_work *work, *ret = NULL;
834
835 rcu_read_lock();
836
837 list_for_each_entry_rcu(work, &bdi->work_list, list) {
77fad5e6 838 if (!test_bit(wb->nr, &work->seen))
03ba3782 839 continue;
77fad5e6 840 clear_bit(wb->nr, &work->seen);
03ba3782
JA
841
842 ret = work;
843 break;
844 }
845
846 rcu_read_unlock();
847 return ret;
848}
849
850static long wb_check_old_data_flush(struct bdi_writeback *wb)
851{
852 unsigned long expired;
853 long nr_pages;
854
855 expired = wb->last_old_flush +
856 msecs_to_jiffies(dirty_writeback_interval * 10);
857 if (time_before(jiffies, expired))
858 return 0;
859
860 wb->last_old_flush = jiffies;
861 nr_pages = global_page_state(NR_FILE_DIRTY) +
862 global_page_state(NR_UNSTABLE_NFS) +
863 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
864
c4a77a6c
JA
865 if (nr_pages) {
866 struct wb_writeback_args args = {
867 .nr_pages = nr_pages,
868 .sync_mode = WB_SYNC_NONE,
869 .for_kupdate = 1,
870 .range_cyclic = 1,
871 };
872
873 return wb_writeback(wb, &args);
874 }
03ba3782
JA
875
876 return 0;
877}
878
879/*
880 * Retrieve work items and do the writeback they describe
881 */
882long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
883{
884 struct backing_dev_info *bdi = wb->bdi;
885 struct bdi_work *work;
c4a77a6c 886 long wrote = 0;
03ba3782
JA
887
888 while ((work = get_next_work_item(bdi, wb)) != NULL) {
c4a77a6c 889 struct wb_writeback_args args = work->args;
03ba3782
JA
890
891 /*
892 * Override sync mode, in case we must wait for completion
893 */
894 if (force_wait)
c4a77a6c 895 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
03ba3782
JA
896
897 /*
898 * If this isn't a data integrity operation, just notify
899 * that we have seen this work and we are now starting it.
900 */
c4a77a6c 901 if (args.sync_mode == WB_SYNC_NONE)
03ba3782
JA
902 wb_clear_pending(wb, work);
903
c4a77a6c 904 wrote += wb_writeback(wb, &args);
03ba3782
JA
905
906 /*
907 * This is a data integrity writeback, so only do the
908 * notification when we have completed the work.
909 */
c4a77a6c 910 if (args.sync_mode == WB_SYNC_ALL)
03ba3782
JA
911 wb_clear_pending(wb, work);
912 }
913
914 /*
915 * Check for periodic writeback, kupdated() style
916 */
917 wrote += wb_check_old_data_flush(wb);
918
919 return wrote;
920}
921
922/*
923 * Handle writeback of dirty data for the device backed by this bdi. Also
924 * wakes up periodically and does kupdated style flushing.
925 */
926int bdi_writeback_task(struct bdi_writeback *wb)
927{
928 unsigned long last_active = jiffies;
929 unsigned long wait_jiffies = -1UL;
930 long pages_written;
931
932 while (!kthread_should_stop()) {
933 pages_written = wb_do_writeback(wb, 0);
934
935 if (pages_written)
936 last_active = jiffies;
937 else if (wait_jiffies != -1UL) {
938 unsigned long max_idle;
939
38f21977 940 /*
03ba3782
JA
941 * Longest period of inactivity that we tolerate. If we
942 * see dirty data again later, the task will get
943 * recreated automatically.
38f21977 944 */
03ba3782
JA
945 max_idle = max(5UL * 60 * HZ, wait_jiffies);
946 if (time_after(jiffies, max_idle + last_active))
947 break;
948 }
949
950 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
49db0414 951 schedule_timeout_interruptible(wait_jiffies);
03ba3782
JA
952 try_to_freeze();
953 }
954
955 return 0;
956}
957
958/*
b6e51316
JA
959 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
960 * writeback, for integrity writeback see bdi_sync_writeback().
03ba3782 961 */
b6e51316 962static void bdi_writeback_all(struct super_block *sb, long nr_pages)
03ba3782 963{
b6e51316
JA
964 struct wb_writeback_args args = {
965 .sb = sb,
966 .nr_pages = nr_pages,
967 .sync_mode = WB_SYNC_NONE,
968 };
03ba3782 969 struct backing_dev_info *bdi;
03ba3782 970
cfc4ba53 971 rcu_read_lock();
03ba3782 972
cfc4ba53 973 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
03ba3782
JA
974 if (!bdi_has_dirty_io(bdi))
975 continue;
38f21977 976
b6e51316 977 bdi_alloc_queue_work(bdi, &args);
03ba3782
JA
978 }
979
cfc4ba53 980 rcu_read_unlock();
1da177e4
LT
981}
982
983/*
03ba3782
JA
984 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
985 * the whole world.
986 */
987void wakeup_flusher_threads(long nr_pages)
988{
03ba3782
JA
989 if (nr_pages == 0)
990 nr_pages = global_page_state(NR_FILE_DIRTY) +
991 global_page_state(NR_UNSTABLE_NFS);
b6e51316 992 bdi_writeback_all(NULL, nr_pages);
03ba3782
JA
993}
994
995static noinline void block_dump___mark_inode_dirty(struct inode *inode)
996{
997 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
998 struct dentry *dentry;
999 const char *name = "?";
1000
1001 dentry = d_find_alias(inode);
1002 if (dentry) {
1003 spin_lock(&dentry->d_lock);
1004 name = (const char *) dentry->d_name.name;
1005 }
1006 printk(KERN_DEBUG
1007 "%s(%d): dirtied inode %lu (%s) on %s\n",
1008 current->comm, task_pid_nr(current), inode->i_ino,
1009 name, inode->i_sb->s_id);
1010 if (dentry) {
1011 spin_unlock(&dentry->d_lock);
1012 dput(dentry);
1013 }
1014 }
1015}
1016
1017/**
1018 * __mark_inode_dirty - internal function
1019 * @inode: inode to mark
1020 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1021 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1022 * mark_inode_dirty_sync.
1da177e4 1023 *
03ba3782
JA
1024 * Put the inode on the super block's dirty list.
1025 *
1026 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1027 * dirty list only if it is hashed or if it refers to a blockdev.
1028 * If it was not hashed, it will never be added to the dirty list
1029 * even if it is later hashed, as it will have been marked dirty already.
1030 *
1031 * In short, make sure you hash any inodes _before_ you start marking
1032 * them dirty.
1da177e4 1033 *
03ba3782
JA
1034 * This function *must* be atomic for the I_DIRTY_PAGES case -
1035 * set_page_dirty() is called under spinlock in several places.
1da177e4 1036 *
03ba3782
JA
1037 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1038 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1039 * the kernel-internal blockdev inode represents the dirtying time of the
1040 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1041 * page->mapping->host, so the page-dirtying time is recorded in the internal
1042 * blockdev inode.
1da177e4 1043 */
03ba3782 1044void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1045{
03ba3782 1046 struct super_block *sb = inode->i_sb;
1da177e4 1047
03ba3782
JA
1048 /*
1049 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1050 * dirty the inode itself
1051 */
1052 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1053 if (sb->s_op->dirty_inode)
1054 sb->s_op->dirty_inode(inode);
1055 }
1056
1057 /*
1058 * make sure that changes are seen by all cpus before we test i_state
1059 * -- mikulas
1060 */
1061 smp_mb();
1062
1063 /* avoid the locking if we can */
1064 if ((inode->i_state & flags) == flags)
1065 return;
1066
1067 if (unlikely(block_dump))
1068 block_dump___mark_inode_dirty(inode);
1069
1070 spin_lock(&inode_lock);
1071 if ((inode->i_state & flags) != flags) {
1072 const int was_dirty = inode->i_state & I_DIRTY;
1073
1074 inode->i_state |= flags;
1075
1076 /*
1077 * If the inode is being synced, just update its dirty state.
1078 * The unlocker will place the inode on the appropriate
1079 * superblock list, based upon its state.
1080 */
1081 if (inode->i_state & I_SYNC)
1082 goto out;
1083
1084 /*
1085 * Only add valid (hashed) inodes to the superblock's
1086 * dirty list. Add blockdev inodes as well.
1087 */
1088 if (!S_ISBLK(inode->i_mode)) {
1089 if (hlist_unhashed(&inode->i_hash))
1090 goto out;
1091 }
1092 if (inode->i_state & (I_FREEING|I_CLEAR))
1093 goto out;
1094
1095 /*
1096 * If the inode was already on b_dirty/b_io/b_more_io, don't
1097 * reposition it (that would break b_dirty time-ordering).
1098 */
1099 if (!was_dirty) {
1100 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
500b067c
JA
1101 struct backing_dev_info *bdi = wb->bdi;
1102
1103 if (bdi_cap_writeback_dirty(bdi) &&
1104 !test_bit(BDI_registered, &bdi->state)) {
1105 WARN_ON(1);
1106 printk(KERN_ERR "bdi-%s not registered\n",
1107 bdi->name);
1108 }
03ba3782
JA
1109
1110 inode->dirtied_when = jiffies;
1111 list_move(&inode->i_list, &wb->b_dirty);
1da177e4 1112 }
1da177e4 1113 }
03ba3782
JA
1114out:
1115 spin_unlock(&inode_lock);
1116}
1117EXPORT_SYMBOL(__mark_inode_dirty);
1118
1119/*
1120 * Write out a superblock's list of dirty inodes. A wait will be performed
1121 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1122 *
1123 * If older_than_this is non-NULL, then only write out inodes which
1124 * had their first dirtying at a time earlier than *older_than_this.
1125 *
03ba3782
JA
1126 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1127 * This function assumes that the blockdev superblock's inodes are backed by
1128 * a variety of queues, so all inodes are searched. For other superblocks,
1129 * assume that all inodes are backed by the same queue.
1130 *
1131 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1132 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1133 * on the writer throttling path, and we get decent balancing between many
1134 * throttled threads: we don't want them all piling up on inode_sync_wait.
1135 */
b6e51316 1136static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1137{
1138 struct inode *inode, *old_inode = NULL;
1139
1140 /*
1141 * We need to be protected against the filesystem going from
1142 * r/o to r/w or vice versa.
1143 */
b6e51316 1144 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782
JA
1145
1146 spin_lock(&inode_lock);
1147
1148 /*
1149 * Data integrity sync. Must wait for all pages under writeback,
1150 * because there may have been pages dirtied before our sync
1151 * call, but which had writeout started before we write it out.
1152 * In which case, the inode may not be on the dirty list, but
1153 * we still have to wait for that writeout.
1154 */
b6e51316 1155 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
03ba3782
JA
1156 struct address_space *mapping;
1157
1158 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1159 continue;
1160 mapping = inode->i_mapping;
1161 if (mapping->nrpages == 0)
1162 continue;
1163 __iget(inode);
1164 spin_unlock(&inode_lock);
1165 /*
1166 * We hold a reference to 'inode' so it couldn't have
1167 * been removed from s_inodes list while we dropped the
1168 * inode_lock. We cannot iput the inode now as we can
1169 * be holding the last reference and we cannot iput it
1170 * under inode_lock. So we keep the reference and iput
1171 * it later.
1172 */
1173 iput(old_inode);
1174 old_inode = inode;
1175
1176 filemap_fdatawait(mapping);
1177
1178 cond_resched();
1179
1180 spin_lock(&inode_lock);
1181 }
1182 spin_unlock(&inode_lock);
1183 iput(old_inode);
1da177e4
LT
1184}
1185
d8a8559c
JA
1186/**
1187 * writeback_inodes_sb - writeback dirty inodes from given super_block
1188 * @sb: the superblock
1da177e4 1189 *
d8a8559c
JA
1190 * Start writeback on some inodes on this super_block. No guarantees are made
1191 * on how many (if any) will be written, and this function does not wait
1192 * for IO completion of submitted IO. The number of pages submitted is
1193 * returned.
1da177e4 1194 */
b6e51316 1195void writeback_inodes_sb(struct super_block *sb)
1da177e4 1196{
d8a8559c
JA
1197 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1198 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1199 long nr_to_write;
1da177e4 1200
d8a8559c 1201 nr_to_write = nr_dirty + nr_unstable +
38f21977 1202 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
38f21977 1203
a72bfd4d 1204 bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
d8a8559c
JA
1205}
1206EXPORT_SYMBOL(writeback_inodes_sb);
1207
17bd55d0
ES
1208/**
1209 * writeback_inodes_sb_if_idle - start writeback if none underway
1210 * @sb: the superblock
1211 *
1212 * Invoke writeback_inodes_sb if no writeback is currently underway.
1213 * Returns 1 if writeback was started, 0 if not.
1214 */
1215int writeback_inodes_sb_if_idle(struct super_block *sb)
1216{
1217 if (!writeback_in_progress(sb->s_bdi)) {
1218 writeback_inodes_sb(sb);
1219 return 1;
1220 } else
1221 return 0;
1222}
1223EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1224
d8a8559c
JA
1225/**
1226 * sync_inodes_sb - sync sb inode pages
1227 * @sb: the superblock
1228 *
1229 * This function writes and waits on any dirty inode belonging to this
1230 * super_block. The number of pages synced is returned.
1231 */
b6e51316 1232void sync_inodes_sb(struct super_block *sb)
d8a8559c 1233{
b6e51316
JA
1234 bdi_sync_writeback(sb->s_bdi, sb);
1235 wait_sb_inodes(sb);
1da177e4 1236}
d8a8559c 1237EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 1238
1da177e4 1239/**
7f04c26d
AA
1240 * write_inode_now - write an inode to disk
1241 * @inode: inode to write to disk
1242 * @sync: whether the write should be synchronous or not
1243 *
1244 * This function commits an inode to disk immediately if it is dirty. This is
1245 * primarily needed by knfsd.
1da177e4 1246 *
7f04c26d 1247 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 1248 */
1da177e4
LT
1249int write_inode_now(struct inode *inode, int sync)
1250{
1251 int ret;
1252 struct writeback_control wbc = {
1253 .nr_to_write = LONG_MAX,
18914b18 1254 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
1255 .range_start = 0,
1256 .range_end = LLONG_MAX,
1da177e4
LT
1257 };
1258
1259 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 1260 wbc.nr_to_write = 0;
1da177e4
LT
1261
1262 might_sleep();
1263 spin_lock(&inode_lock);
01c03194 1264 ret = writeback_single_inode(inode, &wbc);
1da177e4
LT
1265 spin_unlock(&inode_lock);
1266 if (sync)
1c0eeaf5 1267 inode_sync_wait(inode);
1da177e4
LT
1268 return ret;
1269}
1270EXPORT_SYMBOL(write_inode_now);
1271
1272/**
1273 * sync_inode - write an inode and its pages to disk.
1274 * @inode: the inode to sync
1275 * @wbc: controls the writeback mode
1276 *
1277 * sync_inode() will write an inode and its pages to disk. It will also
1278 * correctly update the inode on its superblock's dirty inode lists and will
1279 * update inode->i_state.
1280 *
1281 * The caller must have a ref on the inode.
1282 */
1283int sync_inode(struct inode *inode, struct writeback_control *wbc)
1284{
1285 int ret;
1286
1287 spin_lock(&inode_lock);
01c03194 1288 ret = writeback_single_inode(inode, wbc);
1da177e4
LT
1289 spin_unlock(&inode_lock);
1290 return ret;
1291}
1292EXPORT_SYMBOL(sync_inode);