]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/fs-writeback.c
writeback: splice dirty inode entries to default bdi on bdi_destroy()
[net-next-2.6.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
03ba3782
JA
22#include <linux/kthread.h>
23#include <linux/freezer.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/backing-dev.h>
27#include <linux/buffer_head.h>
07f3f05c 28#include "internal.h"
1da177e4 29
66f3b8e2 30#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
f11b00f3 31
d0bceac7
JA
32/*
33 * We don't actually have pdflush, but this one is exported though /proc...
34 */
35int nr_pdflush_threads;
36
c4a77a6c
JA
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_args {
41 long nr_pages;
42 struct super_block *sb;
43 enum writeback_sync_modes sync_mode;
44 int for_kupdate;
45 int range_cyclic;
46};
47
03ba3782
JA
48/*
49 * Work items for the bdi_writeback threads
f11b00f3 50 */
03ba3782
JA
51struct bdi_work {
52 struct list_head list;
03ba3782
JA
53 struct rcu_head rcu_head;
54
55 unsigned long seen;
56 atomic_t pending;
57
c4a77a6c 58 struct wb_writeback_args args;
03ba3782
JA
59
60 unsigned long state;
61};
62
63enum {
64 WS_USED_B = 0,
65 WS_ONSTACK_B,
66};
67
68#define WS_USED (1 << WS_USED_B)
69#define WS_ONSTACK (1 << WS_ONSTACK_B)
70
71static inline bool bdi_work_on_stack(struct bdi_work *work)
72{
73 return test_bit(WS_ONSTACK_B, &work->state);
74}
75
76static inline void bdi_work_init(struct bdi_work *work,
b6e51316 77 struct wb_writeback_args *args)
03ba3782
JA
78{
79 INIT_RCU_HEAD(&work->rcu_head);
b6e51316 80 work->args = *args;
03ba3782
JA
81 work->state = WS_USED;
82}
83
f11b00f3
AB
84/**
85 * writeback_in_progress - determine whether there is writeback in progress
86 * @bdi: the device's backing_dev_info structure.
87 *
03ba3782
JA
88 * Determine whether there is writeback waiting to be handled against a
89 * backing device.
f11b00f3
AB
90 */
91int writeback_in_progress(struct backing_dev_info *bdi)
92{
03ba3782 93 return !list_empty(&bdi->work_list);
f11b00f3
AB
94}
95
03ba3782 96static void bdi_work_clear(struct bdi_work *work)
f11b00f3 97{
03ba3782
JA
98 clear_bit(WS_USED_B, &work->state);
99 smp_mb__after_clear_bit();
100 wake_up_bit(&work->state, WS_USED_B);
f11b00f3
AB
101}
102
03ba3782 103static void bdi_work_free(struct rcu_head *head)
4195f73d 104{
03ba3782 105 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
4195f73d 106
03ba3782
JA
107 if (!bdi_work_on_stack(work))
108 kfree(work);
109 else
110 bdi_work_clear(work);
4195f73d
NP
111}
112
03ba3782 113static void wb_work_complete(struct bdi_work *work)
1da177e4 114{
c4a77a6c 115 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
1da177e4
LT
116
117 /*
03ba3782
JA
118 * For allocated work, we can clear the done/seen bit right here.
119 * For on-stack work, we need to postpone both the clear and free
120 * to after the RCU grace period, since the stack could be invalidated
121 * as soon as bdi_work_clear() has done the wakeup.
1da177e4 122 */
03ba3782
JA
123 if (!bdi_work_on_stack(work))
124 bdi_work_clear(work);
125 if (sync_mode == WB_SYNC_NONE || bdi_work_on_stack(work))
126 call_rcu(&work->rcu_head, bdi_work_free);
127}
1da177e4 128
03ba3782
JA
129static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
130{
1da177e4 131 /*
03ba3782
JA
132 * The caller has retrieved the work arguments from this work,
133 * drop our reference. If this is the last ref, delete and free it
1da177e4 134 */
03ba3782
JA
135 if (atomic_dec_and_test(&work->pending)) {
136 struct backing_dev_info *bdi = wb->bdi;
1da177e4 137
03ba3782
JA
138 spin_lock(&bdi->wb_lock);
139 list_del_rcu(&work->list);
140 spin_unlock(&bdi->wb_lock);
1da177e4 141
03ba3782
JA
142 wb_work_complete(work);
143 }
144}
1da177e4 145
03ba3782
JA
146static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
147{
bcddc3f0
JA
148 work->seen = bdi->wb_mask;
149 BUG_ON(!work->seen);
150 atomic_set(&work->pending, bdi->wb_cnt);
151 BUG_ON(!bdi->wb_cnt);
1da177e4 152
bcddc3f0
JA
153 /*
154 * Make sure stores are seen before it appears on the list
155 */
156 smp_mb();
1da177e4 157
bcddc3f0
JA
158 spin_lock(&bdi->wb_lock);
159 list_add_tail_rcu(&work->list, &bdi->work_list);
160 spin_unlock(&bdi->wb_lock);
03ba3782
JA
161
162 /*
163 * If the default thread isn't there, make sure we add it. When
164 * it gets created and wakes up, we'll run this work.
165 */
166 if (unlikely(list_empty_careful(&bdi->wb_list)))
167 wake_up_process(default_backing_dev_info.wb.task);
168 else {
169 struct bdi_writeback *wb = &bdi->wb;
1da177e4
LT
170
171 /*
bcddc3f0
JA
172 * End work now if this wb has no dirty IO pending. Otherwise
173 * wakeup the handling thread
1da177e4 174 */
bcddc3f0
JA
175 if (!wb_has_dirty_io(wb))
176 wb_clear_pending(wb, work);
177 else if (wb->task)
03ba3782 178 wake_up_process(wb->task);
1da177e4 179 }
1da177e4
LT
180}
181
03ba3782
JA
182/*
183 * Used for on-stack allocated work items. The caller needs to wait until
184 * the wb threads have acked the work before it's safe to continue.
185 */
186static void bdi_wait_on_work_clear(struct bdi_work *work)
187{
188 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
189 TASK_UNINTERRUPTIBLE);
190}
1da177e4 191
f11fcae8 192static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
b6e51316 193 struct wb_writeback_args *args)
1da177e4 194{
03ba3782
JA
195 struct bdi_work *work;
196
bcddc3f0
JA
197 /*
198 * This is WB_SYNC_NONE writeback, so if allocation fails just
199 * wakeup the thread for old dirty data writeback
200 */
03ba3782 201 work = kmalloc(sizeof(*work), GFP_ATOMIC);
bcddc3f0 202 if (work) {
b6e51316 203 bdi_work_init(work, args);
bcddc3f0
JA
204 bdi_queue_work(bdi, work);
205 } else {
206 struct bdi_writeback *wb = &bdi->wb;
03ba3782 207
bcddc3f0
JA
208 if (wb->task)
209 wake_up_process(wb->task);
210 }
03ba3782
JA
211}
212
b6e51316
JA
213/**
214 * bdi_sync_writeback - start and wait for writeback
215 * @bdi: the backing device to write from
216 * @sb: write inodes from this super_block
217 *
218 * Description:
219 * This does WB_SYNC_ALL data integrity writeback and waits for the
220 * IO to complete. Callers must hold the sb s_umount semaphore for
221 * reading, to avoid having the super disappear before we are done.
222 */
223static void bdi_sync_writeback(struct backing_dev_info *bdi,
224 struct super_block *sb)
03ba3782 225{
b6e51316
JA
226 struct wb_writeback_args args = {
227 .sb = sb,
228 .sync_mode = WB_SYNC_ALL,
229 .nr_pages = LONG_MAX,
230 .range_cyclic = 0,
231 };
232 struct bdi_work work;
03ba3782 233
b6e51316
JA
234 bdi_work_init(&work, &args);
235 work.state |= WS_ONSTACK;
03ba3782 236
b6e51316
JA
237 bdi_queue_work(bdi, &work);
238 bdi_wait_on_work_clear(&work);
239}
240
241/**
242 * bdi_start_writeback - start writeback
243 * @bdi: the backing device to write from
244 * @nr_pages: the number of pages to write
245 *
246 * Description:
247 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
248 * started when this function returns, we make no guarentees on
249 * completion. Caller need not hold sb s_umount semaphore.
250 *
251 */
252void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
253{
254 struct wb_writeback_args args = {
255 .sync_mode = WB_SYNC_NONE,
256 .nr_pages = nr_pages,
257 .range_cyclic = 1,
258 };
259
260 bdi_alloc_queue_work(bdi, &args);
1da177e4
LT
261}
262
6610a0bc
AM
263/*
264 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
265 * furthest end of its superblock's dirty-inode list.
266 *
267 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 268 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
269 * the case then the inode must have been redirtied while it was being written
270 * out and we don't reset its dirtied_when.
271 */
272static void redirty_tail(struct inode *inode)
273{
03ba3782 274 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
6610a0bc 275
03ba3782 276 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 277 struct inode *tail;
6610a0bc 278
03ba3782 279 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
66f3b8e2 280 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
281 inode->dirtied_when = jiffies;
282 }
03ba3782 283 list_move(&inode->i_list, &wb->b_dirty);
6610a0bc
AM
284}
285
c986d1e2 286/*
66f3b8e2 287 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 288 */
0e0f4fc2 289static void requeue_io(struct inode *inode)
c986d1e2 290{
03ba3782
JA
291 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
292
293 list_move(&inode->i_list, &wb->b_more_io);
c986d1e2
AM
294}
295
1c0eeaf5
JE
296static void inode_sync_complete(struct inode *inode)
297{
298 /*
299 * Prevent speculative execution through spin_unlock(&inode_lock);
300 */
301 smp_mb();
302 wake_up_bit(&inode->i_state, __I_SYNC);
303}
304
d2caa3c5
JL
305static bool inode_dirtied_after(struct inode *inode, unsigned long t)
306{
307 bool ret = time_after(inode->dirtied_when, t);
308#ifndef CONFIG_64BIT
309 /*
310 * For inodes being constantly redirtied, dirtied_when can get stuck.
311 * It _appears_ to be in the future, but is actually in distant past.
312 * This test is necessary to prevent such wrapped-around relative times
313 * from permanently stopping the whole pdflush writeback.
314 */
315 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
316#endif
317 return ret;
318}
319
2c136579
FW
320/*
321 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
322 */
323static void move_expired_inodes(struct list_head *delaying_queue,
324 struct list_head *dispatch_queue,
325 unsigned long *older_than_this)
326{
327 while (!list_empty(delaying_queue)) {
328 struct inode *inode = list_entry(delaying_queue->prev,
329 struct inode, i_list);
330 if (older_than_this &&
d2caa3c5 331 inode_dirtied_after(inode, *older_than_this))
2c136579
FW
332 break;
333 list_move(&inode->i_list, dispatch_queue);
334 }
335}
336
337/*
338 * Queue all expired dirty inodes for io, eldest first.
339 */
03ba3782 340static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
66f3b8e2 341{
03ba3782
JA
342 list_splice_init(&wb->b_more_io, wb->b_io.prev);
343 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
66f3b8e2
JA
344}
345
03ba3782 346static int write_inode(struct inode *inode, int sync)
08d8e974 347{
03ba3782
JA
348 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
349 return inode->i_sb->s_op->write_inode(inode, sync);
350 return 0;
08d8e974 351}
08d8e974 352
1da177e4 353/*
01c03194
CH
354 * Wait for writeback on an inode to complete.
355 */
356static void inode_wait_for_writeback(struct inode *inode)
357{
358 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
359 wait_queue_head_t *wqh;
360
361 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
362 do {
363 spin_unlock(&inode_lock);
364 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
365 spin_lock(&inode_lock);
366 } while (inode->i_state & I_SYNC);
367}
368
369/*
370 * Write out an inode's dirty pages. Called under inode_lock. Either the
371 * caller has ref on the inode (either via __iget or via syscall against an fd)
372 * or the inode has I_WILL_FREE set (via generic_forget_inode)
373 *
1da177e4
LT
374 * If `wait' is set, wait on the writeout.
375 *
376 * The whole writeout design is quite complex and fragile. We want to avoid
377 * starvation of particular inodes when others are being redirtied, prevent
378 * livelocks, etc.
379 *
380 * Called under inode_lock.
381 */
382static int
01c03194 383writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 384{
1da177e4 385 struct address_space *mapping = inode->i_mapping;
1da177e4 386 int wait = wbc->sync_mode == WB_SYNC_ALL;
01c03194 387 unsigned dirty;
1da177e4
LT
388 int ret;
389
01c03194
CH
390 if (!atomic_read(&inode->i_count))
391 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
392 else
393 WARN_ON(inode->i_state & I_WILL_FREE);
394
395 if (inode->i_state & I_SYNC) {
396 /*
397 * If this inode is locked for writeback and we are not doing
66f3b8e2 398 * writeback-for-data-integrity, move it to b_more_io so that
01c03194
CH
399 * writeback can proceed with the other inodes on s_io.
400 *
401 * We'll have another go at writing back this inode when we
66f3b8e2 402 * completed a full scan of b_io.
01c03194
CH
403 */
404 if (!wait) {
405 requeue_io(inode);
406 return 0;
407 }
408
409 /*
410 * It's a data-integrity sync. We must wait.
411 */
412 inode_wait_for_writeback(inode);
413 }
414
1c0eeaf5 415 BUG_ON(inode->i_state & I_SYNC);
1da177e4 416
1c0eeaf5 417 /* Set I_SYNC, reset I_DIRTY */
1da177e4 418 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 419 inode->i_state |= I_SYNC;
1da177e4
LT
420 inode->i_state &= ~I_DIRTY;
421
422 spin_unlock(&inode_lock);
423
424 ret = do_writepages(mapping, wbc);
425
426 /* Don't write the inode if only I_DIRTY_PAGES was set */
427 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
428 int err = write_inode(inode, wait);
429 if (ret == 0)
430 ret = err;
431 }
432
433 if (wait) {
434 int err = filemap_fdatawait(mapping);
435 if (ret == 0)
436 ret = err;
437 }
438
439 spin_lock(&inode_lock);
1c0eeaf5 440 inode->i_state &= ~I_SYNC;
84a89245 441 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
1da177e4
LT
442 if (!(inode->i_state & I_DIRTY) &&
443 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
444 /*
445 * We didn't write back all the pages. nfs_writepages()
446 * sometimes bales out without doing anything. Redirty
66f3b8e2 447 * the inode; Move it from b_io onto b_more_io/b_dirty.
1b43ef91
AM
448 */
449 /*
450 * akpm: if the caller was the kupdate function we put
66f3b8e2 451 * this inode at the head of b_dirty so it gets first
1b43ef91
AM
452 * consideration. Otherwise, move it to the tail, for
453 * the reasons described there. I'm not really sure
454 * how much sense this makes. Presumably I had a good
455 * reasons for doing it this way, and I'd rather not
456 * muck with it at present.
1da177e4
LT
457 */
458 if (wbc->for_kupdate) {
459 /*
2c136579 460 * For the kupdate function we move the inode
66f3b8e2 461 * to b_more_io so it will get more writeout as
2c136579 462 * soon as the queue becomes uncongested.
1da177e4
LT
463 */
464 inode->i_state |= I_DIRTY_PAGES;
8bc3be27
FW
465 if (wbc->nr_to_write <= 0) {
466 /*
467 * slice used up: queue for next turn
468 */
469 requeue_io(inode);
470 } else {
471 /*
472 * somehow blocked: retry later
473 */
474 redirty_tail(inode);
475 }
1da177e4
LT
476 } else {
477 /*
478 * Otherwise fully redirty the inode so that
479 * other inodes on this superblock will get some
480 * writeout. Otherwise heavy writing to one
481 * file would indefinitely suspend writeout of
482 * all the other files.
483 */
484 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 485 redirty_tail(inode);
1da177e4
LT
486 }
487 } else if (inode->i_state & I_DIRTY) {
488 /*
489 * Someone redirtied the inode while were writing back
490 * the pages.
491 */
6610a0bc 492 redirty_tail(inode);
1da177e4
LT
493 } else if (atomic_read(&inode->i_count)) {
494 /*
495 * The inode is clean, inuse
496 */
497 list_move(&inode->i_list, &inode_in_use);
498 } else {
499 /*
500 * The inode is clean, unused
501 */
502 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
503 }
504 }
1c0eeaf5 505 inode_sync_complete(inode);
1da177e4
LT
506 return ret;
507}
508
03ba3782
JA
509/*
510 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
511 * before calling writeback. So make sure that we do pin it, so it doesn't
512 * go away while we are writing inodes from it.
513 *
514 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
515 * 1 if we failed.
516 */
517static int pin_sb_for_writeback(struct writeback_control *wbc,
518 struct inode *inode)
519{
520 struct super_block *sb = inode->i_sb;
521
522 /*
523 * Caller must already hold the ref for this
524 */
525 if (wbc->sync_mode == WB_SYNC_ALL) {
526 WARN_ON(!rwsem_is_locked(&sb->s_umount));
527 return 0;
528 }
529
530 spin_lock(&sb_lock);
531 sb->s_count++;
532 if (down_read_trylock(&sb->s_umount)) {
533 if (sb->s_root) {
534 spin_unlock(&sb_lock);
535 return 0;
536 }
537 /*
538 * umounted, drop rwsem again and fall through to failure
539 */
540 up_read(&sb->s_umount);
541 }
542
543 sb->s_count--;
544 spin_unlock(&sb_lock);
545 return 1;
546}
547
548static void unpin_sb_for_writeback(struct writeback_control *wbc,
549 struct inode *inode)
550{
551 struct super_block *sb = inode->i_sb;
552
553 if (wbc->sync_mode == WB_SYNC_ALL)
554 return;
555
556 up_read(&sb->s_umount);
557 put_super(sb);
558}
559
560static void writeback_inodes_wb(struct bdi_writeback *wb,
561 struct writeback_control *wbc)
1da177e4 562{
03ba3782 563 struct super_block *sb = wbc->sb;
66f3b8e2 564 const int is_blkdev_sb = sb_is_blkdev_sb(sb);
1da177e4
LT
565 const unsigned long start = jiffies; /* livelock avoidance */
566
ae8547b0 567 spin_lock(&inode_lock);
1da177e4 568
03ba3782
JA
569 if (!wbc->for_kupdate || list_empty(&wb->b_io))
570 queue_io(wb, wbc->older_than_this);
66f3b8e2 571
03ba3782
JA
572 while (!list_empty(&wb->b_io)) {
573 struct inode *inode = list_entry(wb->b_io.prev,
1da177e4 574 struct inode, i_list);
1da177e4
LT
575 long pages_skipped;
576
66f3b8e2
JA
577 /*
578 * super block given and doesn't match, skip this inode
579 */
580 if (sb && sb != inode->i_sb) {
581 redirty_tail(inode);
582 continue;
583 }
584
03ba3782 585 if (!bdi_cap_writeback_dirty(wb->bdi)) {
9852a0e7 586 redirty_tail(inode);
66f3b8e2 587 if (is_blkdev_sb) {
1da177e4
LT
588 /*
589 * Dirty memory-backed blockdev: the ramdisk
590 * driver does this. Skip just this inode
591 */
592 continue;
593 }
594 /*
595 * Dirty memory-backed inode against a filesystem other
596 * than the kernel-internal bdev filesystem. Skip the
597 * entire superblock.
598 */
599 break;
600 }
601
84a89245 602 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
7ef0d737
NP
603 requeue_io(inode);
604 continue;
605 }
606
03ba3782 607 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
1da177e4 608 wbc->encountered_congestion = 1;
66f3b8e2 609 if (!is_blkdev_sb)
1da177e4 610 break; /* Skip a congested fs */
0e0f4fc2 611 requeue_io(inode);
1da177e4
LT
612 continue; /* Skip a congested blockdev */
613 }
614
d2caa3c5
JL
615 /*
616 * Was this inode dirtied after sync_sb_inodes was called?
617 * This keeps sync from extra jobs and livelock.
618 */
619 if (inode_dirtied_after(inode, start))
1da177e4
LT
620 break;
621
03ba3782
JA
622 if (pin_sb_for_writeback(wbc, inode)) {
623 requeue_io(inode);
624 continue;
625 }
1da177e4 626
84a89245 627 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
1da177e4
LT
628 __iget(inode);
629 pages_skipped = wbc->pages_skipped;
01c03194 630 writeback_single_inode(inode, wbc);
03ba3782 631 unpin_sb_for_writeback(wbc, inode);
1da177e4
LT
632 if (wbc->pages_skipped != pages_skipped) {
633 /*
634 * writeback is not making progress due to locked
635 * buffers. Skip this inode for now.
636 */
f57b9b7b 637 redirty_tail(inode);
1da177e4
LT
638 }
639 spin_unlock(&inode_lock);
1da177e4 640 iput(inode);
4ffc8444 641 cond_resched();
1da177e4 642 spin_lock(&inode_lock);
8bc3be27
FW
643 if (wbc->nr_to_write <= 0) {
644 wbc->more_io = 1;
1da177e4 645 break;
8bc3be27 646 }
03ba3782 647 if (!list_empty(&wb->b_more_io))
8bc3be27 648 wbc->more_io = 1;
1da177e4 649 }
38f21977 650
66f3b8e2
JA
651 spin_unlock(&inode_lock);
652 /* Leave any unwritten inodes on b_io */
653}
654
03ba3782
JA
655void writeback_inodes_wbc(struct writeback_control *wbc)
656{
657 struct backing_dev_info *bdi = wbc->bdi;
658
659 writeback_inodes_wb(&bdi->wb, wbc);
660}
661
66f3b8e2 662/*
03ba3782
JA
663 * The maximum number of pages to writeout in a single bdi flush/kupdate
664 * operation. We do this so we don't hold I_SYNC against an inode for
665 * enormous amounts of time, which would block a userspace task which has
666 * been forced to throttle against that inode. Also, the code reevaluates
667 * the dirty each time it has written this many pages.
668 */
669#define MAX_WRITEBACK_PAGES 1024
670
671static inline bool over_bground_thresh(void)
672{
673 unsigned long background_thresh, dirty_thresh;
674
675 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
676
677 return (global_page_state(NR_FILE_DIRTY) +
678 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
679}
680
681/*
682 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 683 *
03ba3782
JA
684 * Define "old": the first time one of an inode's pages is dirtied, we mark the
685 * dirtying-time in the inode's address_space. So this periodic writeback code
686 * just walks the superblock inode list, writing back any inodes which are
687 * older than a specific point in time.
66f3b8e2 688 *
03ba3782
JA
689 * Try to run once per dirty_writeback_interval. But if a writeback event
690 * takes longer than a dirty_writeback_interval interval, then leave a
691 * one-second gap.
66f3b8e2 692 *
03ba3782
JA
693 * older_than_this takes precedence over nr_to_write. So we'll only write back
694 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 695 */
c4a77a6c
JA
696static long wb_writeback(struct bdi_writeback *wb,
697 struct wb_writeback_args *args)
66f3b8e2 698{
03ba3782
JA
699 struct writeback_control wbc = {
700 .bdi = wb->bdi,
c4a77a6c
JA
701 .sb = args->sb,
702 .sync_mode = args->sync_mode,
03ba3782 703 .older_than_this = NULL,
c4a77a6c
JA
704 .for_kupdate = args->for_kupdate,
705 .range_cyclic = args->range_cyclic,
03ba3782
JA
706 };
707 unsigned long oldest_jif;
708 long wrote = 0;
66f3b8e2 709
03ba3782
JA
710 if (wbc.for_kupdate) {
711 wbc.older_than_this = &oldest_jif;
712 oldest_jif = jiffies -
713 msecs_to_jiffies(dirty_expire_interval * 10);
714 }
c4a77a6c
JA
715 if (!wbc.range_cyclic) {
716 wbc.range_start = 0;
717 wbc.range_end = LLONG_MAX;
718 }
38f21977 719
03ba3782
JA
720 for (;;) {
721 /*
722 * Don't flush anything for non-integrity writeback where
723 * no nr_pages was given
724 */
c4a77a6c
JA
725 if (!args->for_kupdate && args->nr_pages <= 0 &&
726 args->sync_mode == WB_SYNC_NONE)
03ba3782 727 break;
66f3b8e2 728
38f21977 729 /*
03ba3782
JA
730 * If no specific pages were given and this is just a
731 * periodic background writeout and we are below the
732 * background dirty threshold, don't do anything
38f21977 733 */
c4a77a6c
JA
734 if (args->for_kupdate && args->nr_pages <= 0 &&
735 !over_bground_thresh())
03ba3782 736 break;
38f21977 737
03ba3782
JA
738 wbc.more_io = 0;
739 wbc.encountered_congestion = 0;
740 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
741 wbc.pages_skipped = 0;
742 writeback_inodes_wb(wb, &wbc);
c4a77a6c 743 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
03ba3782
JA
744 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
745
746 /*
747 * If we ran out of stuff to write, bail unless more_io got set
748 */
749 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
750 if (wbc.more_io && !wbc.for_kupdate)
38f21977 751 continue;
03ba3782
JA
752 break;
753 }
754 }
755
756 return wrote;
757}
758
759/*
760 * Return the next bdi_work struct that hasn't been processed by this
761 * wb thread yet
762 */
763static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
764 struct bdi_writeback *wb)
765{
766 struct bdi_work *work, *ret = NULL;
767
768 rcu_read_lock();
769
770 list_for_each_entry_rcu(work, &bdi->work_list, list) {
771 if (!test_and_clear_bit(wb->nr, &work->seen))
772 continue;
773
774 ret = work;
775 break;
776 }
777
778 rcu_read_unlock();
779 return ret;
780}
781
782static long wb_check_old_data_flush(struct bdi_writeback *wb)
783{
784 unsigned long expired;
785 long nr_pages;
786
787 expired = wb->last_old_flush +
788 msecs_to_jiffies(dirty_writeback_interval * 10);
789 if (time_before(jiffies, expired))
790 return 0;
791
792 wb->last_old_flush = jiffies;
793 nr_pages = global_page_state(NR_FILE_DIRTY) +
794 global_page_state(NR_UNSTABLE_NFS) +
795 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
796
c4a77a6c
JA
797 if (nr_pages) {
798 struct wb_writeback_args args = {
799 .nr_pages = nr_pages,
800 .sync_mode = WB_SYNC_NONE,
801 .for_kupdate = 1,
802 .range_cyclic = 1,
803 };
804
805 return wb_writeback(wb, &args);
806 }
03ba3782
JA
807
808 return 0;
809}
810
811/*
812 * Retrieve work items and do the writeback they describe
813 */
814long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
815{
816 struct backing_dev_info *bdi = wb->bdi;
817 struct bdi_work *work;
c4a77a6c 818 long wrote = 0;
03ba3782
JA
819
820 while ((work = get_next_work_item(bdi, wb)) != NULL) {
c4a77a6c 821 struct wb_writeback_args args = work->args;
03ba3782
JA
822
823 /*
824 * Override sync mode, in case we must wait for completion
825 */
826 if (force_wait)
c4a77a6c 827 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
03ba3782
JA
828
829 /*
830 * If this isn't a data integrity operation, just notify
831 * that we have seen this work and we are now starting it.
832 */
c4a77a6c 833 if (args.sync_mode == WB_SYNC_NONE)
03ba3782
JA
834 wb_clear_pending(wb, work);
835
c4a77a6c 836 wrote += wb_writeback(wb, &args);
03ba3782
JA
837
838 /*
839 * This is a data integrity writeback, so only do the
840 * notification when we have completed the work.
841 */
c4a77a6c 842 if (args.sync_mode == WB_SYNC_ALL)
03ba3782
JA
843 wb_clear_pending(wb, work);
844 }
845
846 /*
847 * Check for periodic writeback, kupdated() style
848 */
849 wrote += wb_check_old_data_flush(wb);
850
851 return wrote;
852}
853
854/*
855 * Handle writeback of dirty data for the device backed by this bdi. Also
856 * wakes up periodically and does kupdated style flushing.
857 */
858int bdi_writeback_task(struct bdi_writeback *wb)
859{
860 unsigned long last_active = jiffies;
861 unsigned long wait_jiffies = -1UL;
862 long pages_written;
863
864 while (!kthread_should_stop()) {
865 pages_written = wb_do_writeback(wb, 0);
866
867 if (pages_written)
868 last_active = jiffies;
869 else if (wait_jiffies != -1UL) {
870 unsigned long max_idle;
871
38f21977 872 /*
03ba3782
JA
873 * Longest period of inactivity that we tolerate. If we
874 * see dirty data again later, the task will get
875 * recreated automatically.
38f21977 876 */
03ba3782
JA
877 max_idle = max(5UL * 60 * HZ, wait_jiffies);
878 if (time_after(jiffies, max_idle + last_active))
879 break;
880 }
881
882 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
883 set_current_state(TASK_INTERRUPTIBLE);
884 schedule_timeout(wait_jiffies);
885 try_to_freeze();
886 }
887
888 return 0;
889}
890
891/*
b6e51316
JA
892 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
893 * writeback, for integrity writeback see bdi_sync_writeback().
03ba3782 894 */
b6e51316 895static void bdi_writeback_all(struct super_block *sb, long nr_pages)
03ba3782 896{
b6e51316
JA
897 struct wb_writeback_args args = {
898 .sb = sb,
899 .nr_pages = nr_pages,
900 .sync_mode = WB_SYNC_NONE,
901 };
03ba3782 902 struct backing_dev_info *bdi;
03ba3782 903
cfc4ba53 904 rcu_read_lock();
03ba3782 905
cfc4ba53 906 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
03ba3782
JA
907 if (!bdi_has_dirty_io(bdi))
908 continue;
38f21977 909
b6e51316 910 bdi_alloc_queue_work(bdi, &args);
03ba3782
JA
911 }
912
cfc4ba53 913 rcu_read_unlock();
1da177e4
LT
914}
915
916/*
03ba3782
JA
917 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
918 * the whole world.
919 */
920void wakeup_flusher_threads(long nr_pages)
921{
03ba3782
JA
922 if (nr_pages == 0)
923 nr_pages = global_page_state(NR_FILE_DIRTY) +
924 global_page_state(NR_UNSTABLE_NFS);
b6e51316 925 bdi_writeback_all(NULL, nr_pages);
03ba3782
JA
926}
927
928static noinline void block_dump___mark_inode_dirty(struct inode *inode)
929{
930 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
931 struct dentry *dentry;
932 const char *name = "?";
933
934 dentry = d_find_alias(inode);
935 if (dentry) {
936 spin_lock(&dentry->d_lock);
937 name = (const char *) dentry->d_name.name;
938 }
939 printk(KERN_DEBUG
940 "%s(%d): dirtied inode %lu (%s) on %s\n",
941 current->comm, task_pid_nr(current), inode->i_ino,
942 name, inode->i_sb->s_id);
943 if (dentry) {
944 spin_unlock(&dentry->d_lock);
945 dput(dentry);
946 }
947 }
948}
949
950/**
951 * __mark_inode_dirty - internal function
952 * @inode: inode to mark
953 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
954 * Mark an inode as dirty. Callers should use mark_inode_dirty or
955 * mark_inode_dirty_sync.
1da177e4 956 *
03ba3782
JA
957 * Put the inode on the super block's dirty list.
958 *
959 * CAREFUL! We mark it dirty unconditionally, but move it onto the
960 * dirty list only if it is hashed or if it refers to a blockdev.
961 * If it was not hashed, it will never be added to the dirty list
962 * even if it is later hashed, as it will have been marked dirty already.
963 *
964 * In short, make sure you hash any inodes _before_ you start marking
965 * them dirty.
1da177e4 966 *
03ba3782
JA
967 * This function *must* be atomic for the I_DIRTY_PAGES case -
968 * set_page_dirty() is called under spinlock in several places.
1da177e4 969 *
03ba3782
JA
970 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
971 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
972 * the kernel-internal blockdev inode represents the dirtying time of the
973 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
974 * page->mapping->host, so the page-dirtying time is recorded in the internal
975 * blockdev inode.
1da177e4 976 */
03ba3782 977void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 978{
03ba3782 979 struct super_block *sb = inode->i_sb;
1da177e4 980
03ba3782
JA
981 /*
982 * Don't do this for I_DIRTY_PAGES - that doesn't actually
983 * dirty the inode itself
984 */
985 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
986 if (sb->s_op->dirty_inode)
987 sb->s_op->dirty_inode(inode);
988 }
989
990 /*
991 * make sure that changes are seen by all cpus before we test i_state
992 * -- mikulas
993 */
994 smp_mb();
995
996 /* avoid the locking if we can */
997 if ((inode->i_state & flags) == flags)
998 return;
999
1000 if (unlikely(block_dump))
1001 block_dump___mark_inode_dirty(inode);
1002
1003 spin_lock(&inode_lock);
1004 if ((inode->i_state & flags) != flags) {
1005 const int was_dirty = inode->i_state & I_DIRTY;
1006
1007 inode->i_state |= flags;
1008
1009 /*
1010 * If the inode is being synced, just update its dirty state.
1011 * The unlocker will place the inode on the appropriate
1012 * superblock list, based upon its state.
1013 */
1014 if (inode->i_state & I_SYNC)
1015 goto out;
1016
1017 /*
1018 * Only add valid (hashed) inodes to the superblock's
1019 * dirty list. Add blockdev inodes as well.
1020 */
1021 if (!S_ISBLK(inode->i_mode)) {
1022 if (hlist_unhashed(&inode->i_hash))
1023 goto out;
1024 }
1025 if (inode->i_state & (I_FREEING|I_CLEAR))
1026 goto out;
1027
1028 /*
1029 * If the inode was already on b_dirty/b_io/b_more_io, don't
1030 * reposition it (that would break b_dirty time-ordering).
1031 */
1032 if (!was_dirty) {
1033 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
500b067c
JA
1034 struct backing_dev_info *bdi = wb->bdi;
1035
1036 if (bdi_cap_writeback_dirty(bdi) &&
1037 !test_bit(BDI_registered, &bdi->state)) {
1038 WARN_ON(1);
1039 printk(KERN_ERR "bdi-%s not registered\n",
1040 bdi->name);
1041 }
03ba3782
JA
1042
1043 inode->dirtied_when = jiffies;
1044 list_move(&inode->i_list, &wb->b_dirty);
1da177e4 1045 }
1da177e4 1046 }
03ba3782
JA
1047out:
1048 spin_unlock(&inode_lock);
1049}
1050EXPORT_SYMBOL(__mark_inode_dirty);
1051
1052/*
1053 * Write out a superblock's list of dirty inodes. A wait will be performed
1054 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1055 *
1056 * If older_than_this is non-NULL, then only write out inodes which
1057 * had their first dirtying at a time earlier than *older_than_this.
1058 *
1059 * If we're a pdlfush thread, then implement pdflush collision avoidance
1060 * against the entire list.
1061 *
1062 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1063 * This function assumes that the blockdev superblock's inodes are backed by
1064 * a variety of queues, so all inodes are searched. For other superblocks,
1065 * assume that all inodes are backed by the same queue.
1066 *
1067 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1068 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1069 * on the writer throttling path, and we get decent balancing between many
1070 * throttled threads: we don't want them all piling up on inode_sync_wait.
1071 */
b6e51316 1072static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1073{
1074 struct inode *inode, *old_inode = NULL;
1075
1076 /*
1077 * We need to be protected against the filesystem going from
1078 * r/o to r/w or vice versa.
1079 */
b6e51316 1080 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782
JA
1081
1082 spin_lock(&inode_lock);
1083
1084 /*
1085 * Data integrity sync. Must wait for all pages under writeback,
1086 * because there may have been pages dirtied before our sync
1087 * call, but which had writeout started before we write it out.
1088 * In which case, the inode may not be on the dirty list, but
1089 * we still have to wait for that writeout.
1090 */
b6e51316 1091 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
03ba3782
JA
1092 struct address_space *mapping;
1093
1094 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1095 continue;
1096 mapping = inode->i_mapping;
1097 if (mapping->nrpages == 0)
1098 continue;
1099 __iget(inode);
1100 spin_unlock(&inode_lock);
1101 /*
1102 * We hold a reference to 'inode' so it couldn't have
1103 * been removed from s_inodes list while we dropped the
1104 * inode_lock. We cannot iput the inode now as we can
1105 * be holding the last reference and we cannot iput it
1106 * under inode_lock. So we keep the reference and iput
1107 * it later.
1108 */
1109 iput(old_inode);
1110 old_inode = inode;
1111
1112 filemap_fdatawait(mapping);
1113
1114 cond_resched();
1115
1116 spin_lock(&inode_lock);
1117 }
1118 spin_unlock(&inode_lock);
1119 iput(old_inode);
1da177e4
LT
1120}
1121
d8a8559c
JA
1122/**
1123 * writeback_inodes_sb - writeback dirty inodes from given super_block
1124 * @sb: the superblock
1da177e4 1125 *
d8a8559c
JA
1126 * Start writeback on some inodes on this super_block. No guarantees are made
1127 * on how many (if any) will be written, and this function does not wait
1128 * for IO completion of submitted IO. The number of pages submitted is
1129 * returned.
1da177e4 1130 */
b6e51316 1131void writeback_inodes_sb(struct super_block *sb)
1da177e4 1132{
d8a8559c
JA
1133 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1134 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1135 long nr_to_write;
1da177e4 1136
d8a8559c 1137 nr_to_write = nr_dirty + nr_unstable +
38f21977 1138 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
38f21977 1139
b6e51316 1140 bdi_writeback_all(sb, nr_to_write);
d8a8559c
JA
1141}
1142EXPORT_SYMBOL(writeback_inodes_sb);
1143
1144/**
1145 * sync_inodes_sb - sync sb inode pages
1146 * @sb: the superblock
1147 *
1148 * This function writes and waits on any dirty inode belonging to this
1149 * super_block. The number of pages synced is returned.
1150 */
b6e51316 1151void sync_inodes_sb(struct super_block *sb)
d8a8559c 1152{
b6e51316
JA
1153 bdi_sync_writeback(sb->s_bdi, sb);
1154 wait_sb_inodes(sb);
1da177e4 1155}
d8a8559c 1156EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 1157
1da177e4 1158/**
7f04c26d
AA
1159 * write_inode_now - write an inode to disk
1160 * @inode: inode to write to disk
1161 * @sync: whether the write should be synchronous or not
1162 *
1163 * This function commits an inode to disk immediately if it is dirty. This is
1164 * primarily needed by knfsd.
1da177e4 1165 *
7f04c26d 1166 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 1167 */
1da177e4
LT
1168int write_inode_now(struct inode *inode, int sync)
1169{
1170 int ret;
1171 struct writeback_control wbc = {
1172 .nr_to_write = LONG_MAX,
18914b18 1173 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
1174 .range_start = 0,
1175 .range_end = LLONG_MAX,
1da177e4
LT
1176 };
1177
1178 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 1179 wbc.nr_to_write = 0;
1da177e4
LT
1180
1181 might_sleep();
1182 spin_lock(&inode_lock);
01c03194 1183 ret = writeback_single_inode(inode, &wbc);
1da177e4
LT
1184 spin_unlock(&inode_lock);
1185 if (sync)
1c0eeaf5 1186 inode_sync_wait(inode);
1da177e4
LT
1187 return ret;
1188}
1189EXPORT_SYMBOL(write_inode_now);
1190
1191/**
1192 * sync_inode - write an inode and its pages to disk.
1193 * @inode: the inode to sync
1194 * @wbc: controls the writeback mode
1195 *
1196 * sync_inode() will write an inode and its pages to disk. It will also
1197 * correctly update the inode on its superblock's dirty inode lists and will
1198 * update inode->i_state.
1199 *
1200 * The caller must have a ref on the inode.
1201 */
1202int sync_inode(struct inode *inode, struct writeback_control *wbc)
1203{
1204 int ret;
1205
1206 spin_lock(&inode_lock);
01c03194 1207 ret = writeback_single_inode(inode, wbc);
1da177e4
LT
1208 spin_unlock(&inode_lock);
1209 return ret;
1210}
1211EXPORT_SYMBOL(sync_inode);