]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/fs-writeback.c
writeback: move inodes from one super_block together
[net-next-2.6.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
03ba3782
JA
22#include <linux/kthread.h>
23#include <linux/freezer.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/backing-dev.h>
27#include <linux/buffer_head.h>
07f3f05c 28#include "internal.h"
1da177e4 29
66f3b8e2 30#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
f11b00f3 31
d0bceac7
JA
32/*
33 * We don't actually have pdflush, but this one is exported though /proc...
34 */
35int nr_pdflush_threads;
36
c4a77a6c
JA
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_args {
41 long nr_pages;
42 struct super_block *sb;
43 enum writeback_sync_modes sync_mode;
d3ddec76
WF
44 int for_kupdate:1;
45 int range_cyclic:1;
46 int for_background:1;
c4a77a6c
JA
47};
48
03ba3782
JA
49/*
50 * Work items for the bdi_writeback threads
f11b00f3 51 */
03ba3782 52struct bdi_work {
8010c3b6
JA
53 struct list_head list; /* pending work list */
54 struct rcu_head rcu_head; /* for RCU free/clear of work */
03ba3782 55
8010c3b6
JA
56 unsigned long seen; /* threads that have seen this work */
57 atomic_t pending; /* number of threads still to do work */
03ba3782 58
8010c3b6 59 struct wb_writeback_args args; /* writeback arguments */
03ba3782 60
8010c3b6 61 unsigned long state; /* flag bits, see WS_* */
03ba3782
JA
62};
63
64enum {
65 WS_USED_B = 0,
66 WS_ONSTACK_B,
67};
68
69#define WS_USED (1 << WS_USED_B)
70#define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72static inline bool bdi_work_on_stack(struct bdi_work *work)
73{
74 return test_bit(WS_ONSTACK_B, &work->state);
75}
76
77static inline void bdi_work_init(struct bdi_work *work,
b6e51316 78 struct wb_writeback_args *args)
03ba3782
JA
79{
80 INIT_RCU_HEAD(&work->rcu_head);
b6e51316 81 work->args = *args;
03ba3782
JA
82 work->state = WS_USED;
83}
84
f11b00f3
AB
85/**
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
88 *
03ba3782
JA
89 * Determine whether there is writeback waiting to be handled against a
90 * backing device.
f11b00f3
AB
91 */
92int writeback_in_progress(struct backing_dev_info *bdi)
93{
03ba3782 94 return !list_empty(&bdi->work_list);
f11b00f3
AB
95}
96
03ba3782 97static void bdi_work_clear(struct bdi_work *work)
f11b00f3 98{
03ba3782
JA
99 clear_bit(WS_USED_B, &work->state);
100 smp_mb__after_clear_bit();
1ef7d9aa
NP
101 /*
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
105 */
03ba3782 106 wake_up_bit(&work->state, WS_USED_B);
f11b00f3
AB
107}
108
03ba3782 109static void bdi_work_free(struct rcu_head *head)
4195f73d 110{
03ba3782 111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
4195f73d 112
03ba3782
JA
113 if (!bdi_work_on_stack(work))
114 kfree(work);
115 else
116 bdi_work_clear(work);
4195f73d
NP
117}
118
03ba3782 119static void wb_work_complete(struct bdi_work *work)
1da177e4 120{
c4a77a6c 121 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
77b9d059 122 int onstack = bdi_work_on_stack(work);
1da177e4
LT
123
124 /*
03ba3782
JA
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
1da177e4 129 */
77b9d059 130 if (!onstack)
03ba3782 131 bdi_work_clear(work);
77b9d059 132 if (sync_mode == WB_SYNC_NONE || onstack)
03ba3782
JA
133 call_rcu(&work->rcu_head, bdi_work_free);
134}
1da177e4 135
03ba3782
JA
136static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137{
1da177e4 138 /*
03ba3782
JA
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
1da177e4 141 */
03ba3782
JA
142 if (atomic_dec_and_test(&work->pending)) {
143 struct backing_dev_info *bdi = wb->bdi;
1da177e4 144
03ba3782
JA
145 spin_lock(&bdi->wb_lock);
146 list_del_rcu(&work->list);
147 spin_unlock(&bdi->wb_lock);
1da177e4 148
03ba3782
JA
149 wb_work_complete(work);
150 }
151}
1da177e4 152
03ba3782
JA
153static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154{
bcddc3f0
JA
155 work->seen = bdi->wb_mask;
156 BUG_ON(!work->seen);
157 atomic_set(&work->pending, bdi->wb_cnt);
158 BUG_ON(!bdi->wb_cnt);
1da177e4 159
bcddc3f0 160 /*
deed62ed
NP
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
bcddc3f0 164 */
bcddc3f0
JA
165 spin_lock(&bdi->wb_lock);
166 list_add_tail_rcu(&work->list, &bdi->work_list);
167 spin_unlock(&bdi->wb_lock);
03ba3782
JA
168
169 /*
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
172 */
173 if (unlikely(list_empty_careful(&bdi->wb_list)))
174 wake_up_process(default_backing_dev_info.wb.task);
175 else {
176 struct bdi_writeback *wb = &bdi->wb;
1da177e4 177
1ef7d9aa 178 if (wb->task)
03ba3782 179 wake_up_process(wb->task);
1da177e4 180 }
1da177e4
LT
181}
182
03ba3782
JA
183/*
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
186 */
187static void bdi_wait_on_work_clear(struct bdi_work *work)
188{
189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190 TASK_UNINTERRUPTIBLE);
191}
1da177e4 192
f11fcae8 193static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
b6e51316 194 struct wb_writeback_args *args)
1da177e4 195{
03ba3782
JA
196 struct bdi_work *work;
197
bcddc3f0
JA
198 /*
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
201 */
03ba3782 202 work = kmalloc(sizeof(*work), GFP_ATOMIC);
bcddc3f0 203 if (work) {
b6e51316 204 bdi_work_init(work, args);
bcddc3f0
JA
205 bdi_queue_work(bdi, work);
206 } else {
207 struct bdi_writeback *wb = &bdi->wb;
03ba3782 208
bcddc3f0
JA
209 if (wb->task)
210 wake_up_process(wb->task);
211 }
03ba3782
JA
212}
213
b6e51316
JA
214/**
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
218 *
219 * Description:
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
223 */
224static void bdi_sync_writeback(struct backing_dev_info *bdi,
225 struct super_block *sb)
03ba3782 226{
b6e51316
JA
227 struct wb_writeback_args args = {
228 .sb = sb,
229 .sync_mode = WB_SYNC_ALL,
230 .nr_pages = LONG_MAX,
231 .range_cyclic = 0,
232 };
233 struct bdi_work work;
03ba3782 234
b6e51316
JA
235 bdi_work_init(&work, &args);
236 work.state |= WS_ONSTACK;
03ba3782 237
b6e51316
JA
238 bdi_queue_work(bdi, &work);
239 bdi_wait_on_work_clear(&work);
240}
241
242/**
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @nr_pages: the number of pages to write
246 *
247 * Description:
248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
249 * started when this function returns, we make no guarentees on
250 * completion. Caller need not hold sb s_umount semaphore.
251 *
252 */
253void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
254{
255 struct wb_writeback_args args = {
256 .sync_mode = WB_SYNC_NONE,
257 .nr_pages = nr_pages,
258 .range_cyclic = 1,
259 };
260
d3ddec76
WF
261 /*
262 * We treat @nr_pages=0 as the special case to do background writeback,
263 * ie. to sync pages until the background dirty threshold is reached.
264 */
265 if (!nr_pages) {
266 args.nr_pages = LONG_MAX;
267 args.for_background = 1;
268 }
269
b6e51316 270 bdi_alloc_queue_work(bdi, &args);
1da177e4
LT
271}
272
6610a0bc
AM
273/*
274 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
275 * furthest end of its superblock's dirty-inode list.
276 *
277 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 278 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
279 * the case then the inode must have been redirtied while it was being written
280 * out and we don't reset its dirtied_when.
281 */
282static void redirty_tail(struct inode *inode)
283{
03ba3782 284 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
6610a0bc 285
03ba3782 286 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 287 struct inode *tail;
6610a0bc 288
03ba3782 289 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
66f3b8e2 290 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
291 inode->dirtied_when = jiffies;
292 }
03ba3782 293 list_move(&inode->i_list, &wb->b_dirty);
6610a0bc
AM
294}
295
c986d1e2 296/*
66f3b8e2 297 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 298 */
0e0f4fc2 299static void requeue_io(struct inode *inode)
c986d1e2 300{
03ba3782
JA
301 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
302
303 list_move(&inode->i_list, &wb->b_more_io);
c986d1e2
AM
304}
305
1c0eeaf5
JE
306static void inode_sync_complete(struct inode *inode)
307{
308 /*
309 * Prevent speculative execution through spin_unlock(&inode_lock);
310 */
311 smp_mb();
312 wake_up_bit(&inode->i_state, __I_SYNC);
313}
314
d2caa3c5
JL
315static bool inode_dirtied_after(struct inode *inode, unsigned long t)
316{
317 bool ret = time_after(inode->dirtied_when, t);
318#ifndef CONFIG_64BIT
319 /*
320 * For inodes being constantly redirtied, dirtied_when can get stuck.
321 * It _appears_ to be in the future, but is actually in distant past.
322 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 323 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
324 */
325 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
326#endif
327 return ret;
328}
329
2c136579
FW
330/*
331 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
332 */
333static void move_expired_inodes(struct list_head *delaying_queue,
334 struct list_head *dispatch_queue,
335 unsigned long *older_than_this)
336{
5c03449d
SL
337 LIST_HEAD(tmp);
338 struct list_head *pos, *node;
339 struct super_block *sb;
340 struct inode *inode;
341
2c136579 342 while (!list_empty(delaying_queue)) {
5c03449d 343 inode = list_entry(delaying_queue->prev, struct inode, i_list);
2c136579 344 if (older_than_this &&
d2caa3c5 345 inode_dirtied_after(inode, *older_than_this))
2c136579 346 break;
5c03449d
SL
347 list_move(&inode->i_list, &tmp);
348 }
349
350 /* Move inodes from one superblock together */
351 while (!list_empty(&tmp)) {
352 inode = list_entry(tmp.prev, struct inode, i_list);
353 sb = inode->i_sb;
354 list_for_each_prev_safe(pos, node, &tmp) {
355 inode = list_entry(pos, struct inode, i_list);
356 if (inode->i_sb == sb)
357 list_move(&inode->i_list, dispatch_queue);
358 }
2c136579
FW
359 }
360}
361
362/*
363 * Queue all expired dirty inodes for io, eldest first.
364 */
03ba3782 365static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
66f3b8e2 366{
03ba3782
JA
367 list_splice_init(&wb->b_more_io, wb->b_io.prev);
368 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
66f3b8e2
JA
369}
370
03ba3782 371static int write_inode(struct inode *inode, int sync)
08d8e974 372{
03ba3782
JA
373 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
374 return inode->i_sb->s_op->write_inode(inode, sync);
375 return 0;
08d8e974 376}
08d8e974 377
1da177e4 378/*
01c03194
CH
379 * Wait for writeback on an inode to complete.
380 */
381static void inode_wait_for_writeback(struct inode *inode)
382{
383 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
384 wait_queue_head_t *wqh;
385
386 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
387 do {
388 spin_unlock(&inode_lock);
389 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
390 spin_lock(&inode_lock);
391 } while (inode->i_state & I_SYNC);
392}
393
394/*
395 * Write out an inode's dirty pages. Called under inode_lock. Either the
396 * caller has ref on the inode (either via __iget or via syscall against an fd)
397 * or the inode has I_WILL_FREE set (via generic_forget_inode)
398 *
1da177e4
LT
399 * If `wait' is set, wait on the writeout.
400 *
401 * The whole writeout design is quite complex and fragile. We want to avoid
402 * starvation of particular inodes when others are being redirtied, prevent
403 * livelocks, etc.
404 *
405 * Called under inode_lock.
406 */
407static int
01c03194 408writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 409{
1da177e4 410 struct address_space *mapping = inode->i_mapping;
1da177e4 411 int wait = wbc->sync_mode == WB_SYNC_ALL;
01c03194 412 unsigned dirty;
1da177e4
LT
413 int ret;
414
01c03194
CH
415 if (!atomic_read(&inode->i_count))
416 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
417 else
418 WARN_ON(inode->i_state & I_WILL_FREE);
419
420 if (inode->i_state & I_SYNC) {
421 /*
422 * If this inode is locked for writeback and we are not doing
66f3b8e2 423 * writeback-for-data-integrity, move it to b_more_io so that
01c03194
CH
424 * writeback can proceed with the other inodes on s_io.
425 *
426 * We'll have another go at writing back this inode when we
66f3b8e2 427 * completed a full scan of b_io.
01c03194
CH
428 */
429 if (!wait) {
430 requeue_io(inode);
431 return 0;
432 }
433
434 /*
435 * It's a data-integrity sync. We must wait.
436 */
437 inode_wait_for_writeback(inode);
438 }
439
1c0eeaf5 440 BUG_ON(inode->i_state & I_SYNC);
1da177e4 441
1c0eeaf5 442 /* Set I_SYNC, reset I_DIRTY */
1da177e4 443 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 444 inode->i_state |= I_SYNC;
1da177e4
LT
445 inode->i_state &= ~I_DIRTY;
446
447 spin_unlock(&inode_lock);
448
449 ret = do_writepages(mapping, wbc);
450
451 /* Don't write the inode if only I_DIRTY_PAGES was set */
452 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
453 int err = write_inode(inode, wait);
454 if (ret == 0)
455 ret = err;
456 }
457
458 if (wait) {
459 int err = filemap_fdatawait(mapping);
460 if (ret == 0)
461 ret = err;
462 }
463
464 spin_lock(&inode_lock);
1c0eeaf5 465 inode->i_state &= ~I_SYNC;
84a89245 466 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
ae1b7f7d
WF
467 if (inode->i_state & I_DIRTY) {
468 /*
469 * Someone redirtied the inode while were writing back
470 * the pages.
471 */
472 redirty_tail(inode);
473 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
1da177e4
LT
474 /*
475 * We didn't write back all the pages. nfs_writepages()
476 * sometimes bales out without doing anything. Redirty
66f3b8e2 477 * the inode; Move it from b_io onto b_more_io/b_dirty.
1b43ef91
AM
478 */
479 /*
480 * akpm: if the caller was the kupdate function we put
66f3b8e2 481 * this inode at the head of b_dirty so it gets first
1b43ef91
AM
482 * consideration. Otherwise, move it to the tail, for
483 * the reasons described there. I'm not really sure
484 * how much sense this makes. Presumably I had a good
485 * reasons for doing it this way, and I'd rather not
486 * muck with it at present.
1da177e4
LT
487 */
488 if (wbc->for_kupdate) {
489 /*
2c136579 490 * For the kupdate function we move the inode
66f3b8e2 491 * to b_more_io so it will get more writeout as
2c136579 492 * soon as the queue becomes uncongested.
1da177e4
LT
493 */
494 inode->i_state |= I_DIRTY_PAGES;
8bc3be27
FW
495 if (wbc->nr_to_write <= 0) {
496 /*
497 * slice used up: queue for next turn
498 */
499 requeue_io(inode);
500 } else {
501 /*
502 * somehow blocked: retry later
503 */
504 redirty_tail(inode);
505 }
1da177e4
LT
506 } else {
507 /*
508 * Otherwise fully redirty the inode so that
509 * other inodes on this superblock will get some
510 * writeout. Otherwise heavy writing to one
511 * file would indefinitely suspend writeout of
512 * all the other files.
513 */
514 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 515 redirty_tail(inode);
1da177e4 516 }
1da177e4
LT
517 } else if (atomic_read(&inode->i_count)) {
518 /*
519 * The inode is clean, inuse
520 */
521 list_move(&inode->i_list, &inode_in_use);
522 } else {
523 /*
524 * The inode is clean, unused
525 */
526 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
527 }
528 }
1c0eeaf5 529 inode_sync_complete(inode);
1da177e4
LT
530 return ret;
531}
532
03ba3782
JA
533/*
534 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
535 * before calling writeback. So make sure that we do pin it, so it doesn't
536 * go away while we are writing inodes from it.
537 *
538 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
539 * 1 if we failed.
540 */
541static int pin_sb_for_writeback(struct writeback_control *wbc,
542 struct inode *inode)
543{
544 struct super_block *sb = inode->i_sb;
545
546 /*
547 * Caller must already hold the ref for this
548 */
549 if (wbc->sync_mode == WB_SYNC_ALL) {
550 WARN_ON(!rwsem_is_locked(&sb->s_umount));
551 return 0;
552 }
553
554 spin_lock(&sb_lock);
555 sb->s_count++;
556 if (down_read_trylock(&sb->s_umount)) {
557 if (sb->s_root) {
558 spin_unlock(&sb_lock);
559 return 0;
560 }
561 /*
562 * umounted, drop rwsem again and fall through to failure
563 */
564 up_read(&sb->s_umount);
565 }
566
567 sb->s_count--;
568 spin_unlock(&sb_lock);
569 return 1;
570}
571
572static void unpin_sb_for_writeback(struct writeback_control *wbc,
573 struct inode *inode)
574{
575 struct super_block *sb = inode->i_sb;
576
577 if (wbc->sync_mode == WB_SYNC_ALL)
578 return;
579
580 up_read(&sb->s_umount);
581 put_super(sb);
582}
583
584static void writeback_inodes_wb(struct bdi_writeback *wb,
585 struct writeback_control *wbc)
1da177e4 586{
03ba3782 587 struct super_block *sb = wbc->sb;
66f3b8e2 588 const int is_blkdev_sb = sb_is_blkdev_sb(sb);
1da177e4
LT
589 const unsigned long start = jiffies; /* livelock avoidance */
590
ae8547b0 591 spin_lock(&inode_lock);
1da177e4 592
03ba3782
JA
593 if (!wbc->for_kupdate || list_empty(&wb->b_io))
594 queue_io(wb, wbc->older_than_this);
66f3b8e2 595
03ba3782
JA
596 while (!list_empty(&wb->b_io)) {
597 struct inode *inode = list_entry(wb->b_io.prev,
1da177e4 598 struct inode, i_list);
1da177e4
LT
599 long pages_skipped;
600
66f3b8e2
JA
601 /*
602 * super block given and doesn't match, skip this inode
603 */
604 if (sb && sb != inode->i_sb) {
605 redirty_tail(inode);
606 continue;
607 }
608
03ba3782 609 if (!bdi_cap_writeback_dirty(wb->bdi)) {
9852a0e7 610 redirty_tail(inode);
66f3b8e2 611 if (is_blkdev_sb) {
1da177e4
LT
612 /*
613 * Dirty memory-backed blockdev: the ramdisk
614 * driver does this. Skip just this inode
615 */
616 continue;
617 }
618 /*
619 * Dirty memory-backed inode against a filesystem other
620 * than the kernel-internal bdev filesystem. Skip the
621 * entire superblock.
622 */
623 break;
624 }
625
84a89245 626 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
7ef0d737
NP
627 requeue_io(inode);
628 continue;
629 }
630
03ba3782 631 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
1da177e4 632 wbc->encountered_congestion = 1;
66f3b8e2 633 if (!is_blkdev_sb)
1da177e4 634 break; /* Skip a congested fs */
0e0f4fc2 635 requeue_io(inode);
1da177e4
LT
636 continue; /* Skip a congested blockdev */
637 }
638
d2caa3c5
JL
639 /*
640 * Was this inode dirtied after sync_sb_inodes was called?
641 * This keeps sync from extra jobs and livelock.
642 */
643 if (inode_dirtied_after(inode, start))
1da177e4
LT
644 break;
645
03ba3782
JA
646 if (pin_sb_for_writeback(wbc, inode)) {
647 requeue_io(inode);
648 continue;
649 }
1da177e4 650
84a89245 651 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
1da177e4
LT
652 __iget(inode);
653 pages_skipped = wbc->pages_skipped;
01c03194 654 writeback_single_inode(inode, wbc);
03ba3782 655 unpin_sb_for_writeback(wbc, inode);
1da177e4
LT
656 if (wbc->pages_skipped != pages_skipped) {
657 /*
658 * writeback is not making progress due to locked
659 * buffers. Skip this inode for now.
660 */
f57b9b7b 661 redirty_tail(inode);
1da177e4
LT
662 }
663 spin_unlock(&inode_lock);
1da177e4 664 iput(inode);
4ffc8444 665 cond_resched();
1da177e4 666 spin_lock(&inode_lock);
8bc3be27
FW
667 if (wbc->nr_to_write <= 0) {
668 wbc->more_io = 1;
1da177e4 669 break;
8bc3be27 670 }
03ba3782 671 if (!list_empty(&wb->b_more_io))
8bc3be27 672 wbc->more_io = 1;
1da177e4 673 }
38f21977 674
66f3b8e2
JA
675 spin_unlock(&inode_lock);
676 /* Leave any unwritten inodes on b_io */
677}
678
03ba3782
JA
679void writeback_inodes_wbc(struct writeback_control *wbc)
680{
681 struct backing_dev_info *bdi = wbc->bdi;
682
683 writeback_inodes_wb(&bdi->wb, wbc);
684}
685
66f3b8e2 686/*
03ba3782
JA
687 * The maximum number of pages to writeout in a single bdi flush/kupdate
688 * operation. We do this so we don't hold I_SYNC against an inode for
689 * enormous amounts of time, which would block a userspace task which has
690 * been forced to throttle against that inode. Also, the code reevaluates
691 * the dirty each time it has written this many pages.
692 */
693#define MAX_WRITEBACK_PAGES 1024
694
695static inline bool over_bground_thresh(void)
696{
697 unsigned long background_thresh, dirty_thresh;
698
699 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
700
701 return (global_page_state(NR_FILE_DIRTY) +
702 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
703}
704
705/*
706 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 707 *
03ba3782
JA
708 * Define "old": the first time one of an inode's pages is dirtied, we mark the
709 * dirtying-time in the inode's address_space. So this periodic writeback code
710 * just walks the superblock inode list, writing back any inodes which are
711 * older than a specific point in time.
66f3b8e2 712 *
03ba3782
JA
713 * Try to run once per dirty_writeback_interval. But if a writeback event
714 * takes longer than a dirty_writeback_interval interval, then leave a
715 * one-second gap.
66f3b8e2 716 *
03ba3782
JA
717 * older_than_this takes precedence over nr_to_write. So we'll only write back
718 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 719 */
c4a77a6c
JA
720static long wb_writeback(struct bdi_writeback *wb,
721 struct wb_writeback_args *args)
66f3b8e2 722{
03ba3782
JA
723 struct writeback_control wbc = {
724 .bdi = wb->bdi,
c4a77a6c
JA
725 .sb = args->sb,
726 .sync_mode = args->sync_mode,
03ba3782 727 .older_than_this = NULL,
c4a77a6c
JA
728 .for_kupdate = args->for_kupdate,
729 .range_cyclic = args->range_cyclic,
03ba3782
JA
730 };
731 unsigned long oldest_jif;
732 long wrote = 0;
a5989bdc 733 struct inode *inode;
66f3b8e2 734
03ba3782
JA
735 if (wbc.for_kupdate) {
736 wbc.older_than_this = &oldest_jif;
737 oldest_jif = jiffies -
738 msecs_to_jiffies(dirty_expire_interval * 10);
739 }
c4a77a6c
JA
740 if (!wbc.range_cyclic) {
741 wbc.range_start = 0;
742 wbc.range_end = LLONG_MAX;
743 }
38f21977 744
03ba3782
JA
745 for (;;) {
746 /*
d3ddec76 747 * Stop writeback when nr_pages has been consumed
03ba3782 748 */
d3ddec76 749 if (args->nr_pages <= 0)
03ba3782 750 break;
66f3b8e2 751
38f21977 752 /*
d3ddec76
WF
753 * For background writeout, stop when we are below the
754 * background dirty threshold
38f21977 755 */
d3ddec76 756 if (args->for_background && !over_bground_thresh())
03ba3782 757 break;
38f21977 758
03ba3782
JA
759 wbc.more_io = 0;
760 wbc.encountered_congestion = 0;
761 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
762 wbc.pages_skipped = 0;
763 writeback_inodes_wb(wb, &wbc);
c4a77a6c 764 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
03ba3782
JA
765 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
766
767 /*
71fd05a8 768 * If we consumed everything, see if we have more
03ba3782 769 */
71fd05a8
JA
770 if (wbc.nr_to_write <= 0)
771 continue;
772 /*
773 * Didn't write everything and we don't have more IO, bail
774 */
775 if (!wbc.more_io)
03ba3782 776 break;
71fd05a8
JA
777 /*
778 * Did we write something? Try for more
779 */
780 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
781 continue;
782 /*
783 * Nothing written. Wait for some inode to
784 * become available for writeback. Otherwise
785 * we'll just busyloop.
786 */
787 spin_lock(&inode_lock);
788 if (!list_empty(&wb->b_more_io)) {
789 inode = list_entry(wb->b_more_io.prev,
790 struct inode, i_list);
791 inode_wait_for_writeback(inode);
03ba3782 792 }
71fd05a8 793 spin_unlock(&inode_lock);
03ba3782
JA
794 }
795
796 return wrote;
797}
798
799/*
800 * Return the next bdi_work struct that hasn't been processed by this
8010c3b6
JA
801 * wb thread yet. ->seen is initially set for each thread that exists
802 * for this device, when a thread first notices a piece of work it
803 * clears its bit. Depending on writeback type, the thread will notify
804 * completion on either receiving the work (WB_SYNC_NONE) or after
805 * it is done (WB_SYNC_ALL).
03ba3782
JA
806 */
807static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
808 struct bdi_writeback *wb)
809{
810 struct bdi_work *work, *ret = NULL;
811
812 rcu_read_lock();
813
814 list_for_each_entry_rcu(work, &bdi->work_list, list) {
77fad5e6 815 if (!test_bit(wb->nr, &work->seen))
03ba3782 816 continue;
77fad5e6 817 clear_bit(wb->nr, &work->seen);
03ba3782
JA
818
819 ret = work;
820 break;
821 }
822
823 rcu_read_unlock();
824 return ret;
825}
826
827static long wb_check_old_data_flush(struct bdi_writeback *wb)
828{
829 unsigned long expired;
830 long nr_pages;
831
832 expired = wb->last_old_flush +
833 msecs_to_jiffies(dirty_writeback_interval * 10);
834 if (time_before(jiffies, expired))
835 return 0;
836
837 wb->last_old_flush = jiffies;
838 nr_pages = global_page_state(NR_FILE_DIRTY) +
839 global_page_state(NR_UNSTABLE_NFS) +
840 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
841
c4a77a6c
JA
842 if (nr_pages) {
843 struct wb_writeback_args args = {
844 .nr_pages = nr_pages,
845 .sync_mode = WB_SYNC_NONE,
846 .for_kupdate = 1,
847 .range_cyclic = 1,
848 };
849
850 return wb_writeback(wb, &args);
851 }
03ba3782
JA
852
853 return 0;
854}
855
856/*
857 * Retrieve work items and do the writeback they describe
858 */
859long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
860{
861 struct backing_dev_info *bdi = wb->bdi;
862 struct bdi_work *work;
c4a77a6c 863 long wrote = 0;
03ba3782
JA
864
865 while ((work = get_next_work_item(bdi, wb)) != NULL) {
c4a77a6c 866 struct wb_writeback_args args = work->args;
03ba3782
JA
867
868 /*
869 * Override sync mode, in case we must wait for completion
870 */
871 if (force_wait)
c4a77a6c 872 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
03ba3782
JA
873
874 /*
875 * If this isn't a data integrity operation, just notify
876 * that we have seen this work and we are now starting it.
877 */
c4a77a6c 878 if (args.sync_mode == WB_SYNC_NONE)
03ba3782
JA
879 wb_clear_pending(wb, work);
880
c4a77a6c 881 wrote += wb_writeback(wb, &args);
03ba3782
JA
882
883 /*
884 * This is a data integrity writeback, so only do the
885 * notification when we have completed the work.
886 */
c4a77a6c 887 if (args.sync_mode == WB_SYNC_ALL)
03ba3782
JA
888 wb_clear_pending(wb, work);
889 }
890
891 /*
892 * Check for periodic writeback, kupdated() style
893 */
894 wrote += wb_check_old_data_flush(wb);
895
896 return wrote;
897}
898
899/*
900 * Handle writeback of dirty data for the device backed by this bdi. Also
901 * wakes up periodically and does kupdated style flushing.
902 */
903int bdi_writeback_task(struct bdi_writeback *wb)
904{
905 unsigned long last_active = jiffies;
906 unsigned long wait_jiffies = -1UL;
907 long pages_written;
908
909 while (!kthread_should_stop()) {
910 pages_written = wb_do_writeback(wb, 0);
911
912 if (pages_written)
913 last_active = jiffies;
914 else if (wait_jiffies != -1UL) {
915 unsigned long max_idle;
916
38f21977 917 /*
03ba3782
JA
918 * Longest period of inactivity that we tolerate. If we
919 * see dirty data again later, the task will get
920 * recreated automatically.
38f21977 921 */
03ba3782
JA
922 max_idle = max(5UL * 60 * HZ, wait_jiffies);
923 if (time_after(jiffies, max_idle + last_active))
924 break;
925 }
926
927 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
49db0414 928 schedule_timeout_interruptible(wait_jiffies);
03ba3782
JA
929 try_to_freeze();
930 }
931
932 return 0;
933}
934
935/*
b6e51316
JA
936 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
937 * writeback, for integrity writeback see bdi_sync_writeback().
03ba3782 938 */
b6e51316 939static void bdi_writeback_all(struct super_block *sb, long nr_pages)
03ba3782 940{
b6e51316
JA
941 struct wb_writeback_args args = {
942 .sb = sb,
943 .nr_pages = nr_pages,
944 .sync_mode = WB_SYNC_NONE,
945 };
03ba3782 946 struct backing_dev_info *bdi;
03ba3782 947
cfc4ba53 948 rcu_read_lock();
03ba3782 949
cfc4ba53 950 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
03ba3782
JA
951 if (!bdi_has_dirty_io(bdi))
952 continue;
38f21977 953
b6e51316 954 bdi_alloc_queue_work(bdi, &args);
03ba3782
JA
955 }
956
cfc4ba53 957 rcu_read_unlock();
1da177e4
LT
958}
959
960/*
03ba3782
JA
961 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
962 * the whole world.
963 */
964void wakeup_flusher_threads(long nr_pages)
965{
03ba3782
JA
966 if (nr_pages == 0)
967 nr_pages = global_page_state(NR_FILE_DIRTY) +
968 global_page_state(NR_UNSTABLE_NFS);
b6e51316 969 bdi_writeback_all(NULL, nr_pages);
03ba3782
JA
970}
971
972static noinline void block_dump___mark_inode_dirty(struct inode *inode)
973{
974 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
975 struct dentry *dentry;
976 const char *name = "?";
977
978 dentry = d_find_alias(inode);
979 if (dentry) {
980 spin_lock(&dentry->d_lock);
981 name = (const char *) dentry->d_name.name;
982 }
983 printk(KERN_DEBUG
984 "%s(%d): dirtied inode %lu (%s) on %s\n",
985 current->comm, task_pid_nr(current), inode->i_ino,
986 name, inode->i_sb->s_id);
987 if (dentry) {
988 spin_unlock(&dentry->d_lock);
989 dput(dentry);
990 }
991 }
992}
993
994/**
995 * __mark_inode_dirty - internal function
996 * @inode: inode to mark
997 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
998 * Mark an inode as dirty. Callers should use mark_inode_dirty or
999 * mark_inode_dirty_sync.
1da177e4 1000 *
03ba3782
JA
1001 * Put the inode on the super block's dirty list.
1002 *
1003 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1004 * dirty list only if it is hashed or if it refers to a blockdev.
1005 * If it was not hashed, it will never be added to the dirty list
1006 * even if it is later hashed, as it will have been marked dirty already.
1007 *
1008 * In short, make sure you hash any inodes _before_ you start marking
1009 * them dirty.
1da177e4 1010 *
03ba3782
JA
1011 * This function *must* be atomic for the I_DIRTY_PAGES case -
1012 * set_page_dirty() is called under spinlock in several places.
1da177e4 1013 *
03ba3782
JA
1014 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1015 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1016 * the kernel-internal blockdev inode represents the dirtying time of the
1017 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1018 * page->mapping->host, so the page-dirtying time is recorded in the internal
1019 * blockdev inode.
1da177e4 1020 */
03ba3782 1021void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1022{
03ba3782 1023 struct super_block *sb = inode->i_sb;
1da177e4 1024
03ba3782
JA
1025 /*
1026 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1027 * dirty the inode itself
1028 */
1029 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1030 if (sb->s_op->dirty_inode)
1031 sb->s_op->dirty_inode(inode);
1032 }
1033
1034 /*
1035 * make sure that changes are seen by all cpus before we test i_state
1036 * -- mikulas
1037 */
1038 smp_mb();
1039
1040 /* avoid the locking if we can */
1041 if ((inode->i_state & flags) == flags)
1042 return;
1043
1044 if (unlikely(block_dump))
1045 block_dump___mark_inode_dirty(inode);
1046
1047 spin_lock(&inode_lock);
1048 if ((inode->i_state & flags) != flags) {
1049 const int was_dirty = inode->i_state & I_DIRTY;
1050
1051 inode->i_state |= flags;
1052
1053 /*
1054 * If the inode is being synced, just update its dirty state.
1055 * The unlocker will place the inode on the appropriate
1056 * superblock list, based upon its state.
1057 */
1058 if (inode->i_state & I_SYNC)
1059 goto out;
1060
1061 /*
1062 * Only add valid (hashed) inodes to the superblock's
1063 * dirty list. Add blockdev inodes as well.
1064 */
1065 if (!S_ISBLK(inode->i_mode)) {
1066 if (hlist_unhashed(&inode->i_hash))
1067 goto out;
1068 }
1069 if (inode->i_state & (I_FREEING|I_CLEAR))
1070 goto out;
1071
1072 /*
1073 * If the inode was already on b_dirty/b_io/b_more_io, don't
1074 * reposition it (that would break b_dirty time-ordering).
1075 */
1076 if (!was_dirty) {
1077 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
500b067c
JA
1078 struct backing_dev_info *bdi = wb->bdi;
1079
1080 if (bdi_cap_writeback_dirty(bdi) &&
1081 !test_bit(BDI_registered, &bdi->state)) {
1082 WARN_ON(1);
1083 printk(KERN_ERR "bdi-%s not registered\n",
1084 bdi->name);
1085 }
03ba3782
JA
1086
1087 inode->dirtied_when = jiffies;
1088 list_move(&inode->i_list, &wb->b_dirty);
1da177e4 1089 }
1da177e4 1090 }
03ba3782
JA
1091out:
1092 spin_unlock(&inode_lock);
1093}
1094EXPORT_SYMBOL(__mark_inode_dirty);
1095
1096/*
1097 * Write out a superblock's list of dirty inodes. A wait will be performed
1098 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1099 *
1100 * If older_than_this is non-NULL, then only write out inodes which
1101 * had their first dirtying at a time earlier than *older_than_this.
1102 *
03ba3782
JA
1103 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1104 * This function assumes that the blockdev superblock's inodes are backed by
1105 * a variety of queues, so all inodes are searched. For other superblocks,
1106 * assume that all inodes are backed by the same queue.
1107 *
1108 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1109 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1110 * on the writer throttling path, and we get decent balancing between many
1111 * throttled threads: we don't want them all piling up on inode_sync_wait.
1112 */
b6e51316 1113static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1114{
1115 struct inode *inode, *old_inode = NULL;
1116
1117 /*
1118 * We need to be protected against the filesystem going from
1119 * r/o to r/w or vice versa.
1120 */
b6e51316 1121 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782
JA
1122
1123 spin_lock(&inode_lock);
1124
1125 /*
1126 * Data integrity sync. Must wait for all pages under writeback,
1127 * because there may have been pages dirtied before our sync
1128 * call, but which had writeout started before we write it out.
1129 * In which case, the inode may not be on the dirty list, but
1130 * we still have to wait for that writeout.
1131 */
b6e51316 1132 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
03ba3782
JA
1133 struct address_space *mapping;
1134
1135 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1136 continue;
1137 mapping = inode->i_mapping;
1138 if (mapping->nrpages == 0)
1139 continue;
1140 __iget(inode);
1141 spin_unlock(&inode_lock);
1142 /*
1143 * We hold a reference to 'inode' so it couldn't have
1144 * been removed from s_inodes list while we dropped the
1145 * inode_lock. We cannot iput the inode now as we can
1146 * be holding the last reference and we cannot iput it
1147 * under inode_lock. So we keep the reference and iput
1148 * it later.
1149 */
1150 iput(old_inode);
1151 old_inode = inode;
1152
1153 filemap_fdatawait(mapping);
1154
1155 cond_resched();
1156
1157 spin_lock(&inode_lock);
1158 }
1159 spin_unlock(&inode_lock);
1160 iput(old_inode);
1da177e4
LT
1161}
1162
d8a8559c
JA
1163/**
1164 * writeback_inodes_sb - writeback dirty inodes from given super_block
1165 * @sb: the superblock
1da177e4 1166 *
d8a8559c
JA
1167 * Start writeback on some inodes on this super_block. No guarantees are made
1168 * on how many (if any) will be written, and this function does not wait
1169 * for IO completion of submitted IO. The number of pages submitted is
1170 * returned.
1da177e4 1171 */
b6e51316 1172void writeback_inodes_sb(struct super_block *sb)
1da177e4 1173{
d8a8559c
JA
1174 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1175 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1176 long nr_to_write;
1da177e4 1177
d8a8559c 1178 nr_to_write = nr_dirty + nr_unstable +
38f21977 1179 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
38f21977 1180
b6e51316 1181 bdi_writeback_all(sb, nr_to_write);
d8a8559c
JA
1182}
1183EXPORT_SYMBOL(writeback_inodes_sb);
1184
1185/**
1186 * sync_inodes_sb - sync sb inode pages
1187 * @sb: the superblock
1188 *
1189 * This function writes and waits on any dirty inode belonging to this
1190 * super_block. The number of pages synced is returned.
1191 */
b6e51316 1192void sync_inodes_sb(struct super_block *sb)
d8a8559c 1193{
b6e51316
JA
1194 bdi_sync_writeback(sb->s_bdi, sb);
1195 wait_sb_inodes(sb);
1da177e4 1196}
d8a8559c 1197EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 1198
1da177e4 1199/**
7f04c26d
AA
1200 * write_inode_now - write an inode to disk
1201 * @inode: inode to write to disk
1202 * @sync: whether the write should be synchronous or not
1203 *
1204 * This function commits an inode to disk immediately if it is dirty. This is
1205 * primarily needed by knfsd.
1da177e4 1206 *
7f04c26d 1207 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 1208 */
1da177e4
LT
1209int write_inode_now(struct inode *inode, int sync)
1210{
1211 int ret;
1212 struct writeback_control wbc = {
1213 .nr_to_write = LONG_MAX,
18914b18 1214 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
1215 .range_start = 0,
1216 .range_end = LLONG_MAX,
1da177e4
LT
1217 };
1218
1219 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 1220 wbc.nr_to_write = 0;
1da177e4
LT
1221
1222 might_sleep();
1223 spin_lock(&inode_lock);
01c03194 1224 ret = writeback_single_inode(inode, &wbc);
1da177e4
LT
1225 spin_unlock(&inode_lock);
1226 if (sync)
1c0eeaf5 1227 inode_sync_wait(inode);
1da177e4
LT
1228 return ret;
1229}
1230EXPORT_SYMBOL(write_inode_now);
1231
1232/**
1233 * sync_inode - write an inode and its pages to disk.
1234 * @inode: the inode to sync
1235 * @wbc: controls the writeback mode
1236 *
1237 * sync_inode() will write an inode and its pages to disk. It will also
1238 * correctly update the inode on its superblock's dirty inode lists and will
1239 * update inode->i_state.
1240 *
1241 * The caller must have a ref on the inode.
1242 */
1243int sync_inode(struct inode *inode, struct writeback_control *wbc)
1244{
1245 int ret;
1246
1247 spin_lock(&inode_lock);
01c03194 1248 ret = writeback_single_inode(inode, wbc);
1da177e4
LT
1249 spin_unlock(&inode_lock);
1250 return ret;
1251}
1252EXPORT_SYMBOL(sync_inode);