]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/direct-io.c
dio: don't zero out the pages array inside struct dio
[net-next-2.6.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
38#include <asm/atomic.h>
39
40/*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
43 */
44#define DIO_PAGES 64
45
46/*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 *
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
1b1dcc1b 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
1da177e4
LT
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
63 */
64
65struct dio {
66 /* BIO submission state */
67 struct bio *bio; /* bio under assembly */
68 struct inode *inode;
69 int rw;
29504ff3 70 loff_t i_size; /* i_size when submitted */
1da177e4
LT
71 int lock_type; /* doesn't change */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 size_t size; /* total request size (doesn't change)*/
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 sector_t final_block_in_request;/* doesn't change */
87 unsigned first_block_in_page; /* doesn't change, Used only once */
88 int boundary; /* prev block is at a boundary */
89 int reap_counter; /* rate limit reaping */
1d8fa7a2 90 get_block_t *get_block; /* block mapping function */
1da177e4
LT
91 dio_iodone_t *end_io; /* IO completion function */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
1d8fa7a2 95 struct buffer_head map_bh; /* last get_block() result */
1da177e4
LT
96
97 /*
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
101 */
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
106
23aee091
JM
107 /* BIO completion state */
108 spinlock_t bio_lock; /* protects BIO fields below */
109 unsigned long refcount; /* direct_io_worker() and bios */
110 struct bio *bio_list; /* singly linked via bi_private */
111 struct task_struct *waiter; /* waiting task (NULL if none) */
112
113 /* AIO related stuff */
114 struct kiocb *iocb; /* kiocb */
115 int is_async; /* is IO async ? */
116 int io_error; /* IO error in completion path */
117 ssize_t result; /* IO result */
118
1da177e4
LT
119 /*
120 * Page fetching state. These variables belong to dio_refill_pages().
121 */
122 int curr_page; /* changes */
123 int total_pages; /* doesn't change */
124 unsigned long curr_user_address;/* changes */
125
126 /*
127 * Page queue. These variables belong to dio_refill_pages() and
128 * dio_get_page().
129 */
1da177e4
LT
130 unsigned head; /* next page to process */
131 unsigned tail; /* last valid page + 1 */
132 int page_errors; /* errno from get_user_pages() */
133
23aee091
JM
134 /*
135 * pages[] (and any fields placed after it) are not zeroed out at
136 * allocation time. Don't add new fields after pages[] unless you
137 * wish that they not be zeroed.
138 */
139 struct page *pages[DIO_PAGES]; /* page buffer */
1da177e4
LT
140};
141
142/*
143 * How many pages are in the queue?
144 */
145static inline unsigned dio_pages_present(struct dio *dio)
146{
147 return dio->tail - dio->head;
148}
149
150/*
151 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
152 */
153static int dio_refill_pages(struct dio *dio)
154{
155 int ret;
156 int nr_pages;
157
158 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
f5dd33c4 159 ret = get_user_pages_fast(
1da177e4
LT
160 dio->curr_user_address, /* Where from? */
161 nr_pages, /* How many pages? */
162 dio->rw == READ, /* Write to memory? */
f5dd33c4 163 &dio->pages[0]); /* Put results here */
1da177e4 164
b31dc66a 165 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
557ed1fa 166 struct page *page = ZERO_PAGE(0);
1da177e4
LT
167 /*
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
171 */
172 if (dio->page_errors == 0)
173 dio->page_errors = ret;
b5810039
NP
174 page_cache_get(page);
175 dio->pages[0] = page;
1da177e4
LT
176 dio->head = 0;
177 dio->tail = 1;
178 ret = 0;
179 goto out;
180 }
181
182 if (ret >= 0) {
183 dio->curr_user_address += ret * PAGE_SIZE;
184 dio->curr_page += ret;
185 dio->head = 0;
186 dio->tail = ret;
187 ret = 0;
188 }
189out:
190 return ret;
191}
192
193/*
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
197 * L1 cache.
198 */
199static struct page *dio_get_page(struct dio *dio)
200{
201 if (dio_pages_present(dio) == 0) {
202 int ret;
203
204 ret = dio_refill_pages(dio);
205 if (ret)
206 return ERR_PTR(ret);
207 BUG_ON(dio_pages_present(dio) == 0);
208 }
209 return dio->pages[dio->head++];
210}
211
6d544bb4
ZB
212/**
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
215 *
216 * This releases locks as dictated by the locking type, lets interested parties
217 * know that a DIO operation has completed, and calculates the resulting return
218 * code for the operation.
219 *
220 * It lets the filesystem know if it registered an interest earlier via
221 * get_block. Pass the private field of the map buffer_head so that
222 * filesystems can use it to hold additional state between get_block calls and
223 * dio_complete.
1da177e4 224 */
6d544bb4 225static int dio_complete(struct dio *dio, loff_t offset, int ret)
1da177e4 226{
6d544bb4
ZB
227 ssize_t transferred = 0;
228
8459d86a
ZB
229 /*
230 * AIO submission can race with bio completion to get here while
231 * expecting to have the last io completed by bio completion.
232 * In that case -EIOCBQUEUED is in fact not an error we want
233 * to preserve through this call.
234 */
235 if (ret == -EIOCBQUEUED)
236 ret = 0;
237
6d544bb4
ZB
238 if (dio->result) {
239 transferred = dio->result;
240
241 /* Check for short read case */
242 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
243 transferred = dio->i_size - offset;
244 }
245
1da177e4 246 if (dio->end_io && dio->result)
6d544bb4
ZB
247 dio->end_io(dio->iocb, offset, transferred,
248 dio->map_bh.b_private);
1da177e4 249 if (dio->lock_type == DIO_LOCKING)
d8aa905b
IM
250 /* lockdep: non-owner release */
251 up_read_non_owner(&dio->inode->i_alloc_sem);
6d544bb4
ZB
252
253 if (ret == 0)
254 ret = dio->page_errors;
255 if (ret == 0)
256 ret = dio->io_error;
257 if (ret == 0)
258 ret = transferred;
259
260 return ret;
1da177e4
LT
261}
262
1da177e4
LT
263static int dio_bio_complete(struct dio *dio, struct bio *bio);
264/*
265 * Asynchronous IO callback.
266 */
6712ecf8 267static void dio_bio_end_aio(struct bio *bio, int error)
1da177e4
LT
268{
269 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
270 unsigned long remaining;
271 unsigned long flags;
1da177e4 272
1da177e4
LT
273 /* cleanup the bio */
274 dio_bio_complete(dio, bio);
0273201e 275
5eb6c7a2
ZB
276 spin_lock_irqsave(&dio->bio_lock, flags);
277 remaining = --dio->refcount;
278 if (remaining == 1 && dio->waiter)
20258b2b 279 wake_up_process(dio->waiter);
5eb6c7a2 280 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 281
8459d86a
ZB
282 if (remaining == 0) {
283 int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
284 aio_complete(dio->iocb, ret, 0);
285 kfree(dio);
286 }
1da177e4
LT
287}
288
289/*
290 * The BIO completion handler simply queues the BIO up for the process-context
291 * handler.
292 *
293 * During I/O bi_private points at the dio. After I/O, bi_private is used to
294 * implement a singly-linked list of completed BIOs, at dio->bio_list.
295 */
6712ecf8 296static void dio_bio_end_io(struct bio *bio, int error)
1da177e4
LT
297{
298 struct dio *dio = bio->bi_private;
299 unsigned long flags;
300
1da177e4
LT
301 spin_lock_irqsave(&dio->bio_lock, flags);
302 bio->bi_private = dio->bio_list;
303 dio->bio_list = bio;
5eb6c7a2 304 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
305 wake_up_process(dio->waiter);
306 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
307}
308
309static int
310dio_bio_alloc(struct dio *dio, struct block_device *bdev,
311 sector_t first_sector, int nr_vecs)
312{
313 struct bio *bio;
314
315 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
316
317 bio->bi_bdev = bdev;
318 bio->bi_sector = first_sector;
319 if (dio->is_async)
320 bio->bi_end_io = dio_bio_end_aio;
321 else
322 bio->bi_end_io = dio_bio_end_io;
323
324 dio->bio = bio;
325 return 0;
326}
327
328/*
329 * In the AIO read case we speculatively dirty the pages before starting IO.
330 * During IO completion, any of these pages which happen to have been written
331 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
332 *
333 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4
LT
334 */
335static void dio_bio_submit(struct dio *dio)
336{
337 struct bio *bio = dio->bio;
5eb6c7a2 338 unsigned long flags;
1da177e4
LT
339
340 bio->bi_private = dio;
5eb6c7a2
ZB
341
342 spin_lock_irqsave(&dio->bio_lock, flags);
343 dio->refcount++;
344 spin_unlock_irqrestore(&dio->bio_lock, flags);
345
1da177e4
LT
346 if (dio->is_async && dio->rw == READ)
347 bio_set_pages_dirty(bio);
5eb6c7a2 348
1da177e4
LT
349 submit_bio(dio->rw, bio);
350
351 dio->bio = NULL;
352 dio->boundary = 0;
353}
354
355/*
356 * Release any resources in case of a failure
357 */
358static void dio_cleanup(struct dio *dio)
359{
360 while (dio_pages_present(dio))
361 page_cache_release(dio_get_page(dio));
362}
363
364/*
0273201e
ZB
365 * Wait for the next BIO to complete. Remove it and return it. NULL is
366 * returned once all BIOs have been completed. This must only be called once
367 * all bios have been issued so that dio->refcount can only decrease. This
368 * requires that that the caller hold a reference on the dio.
1da177e4
LT
369 */
370static struct bio *dio_await_one(struct dio *dio)
371{
372 unsigned long flags;
0273201e 373 struct bio *bio = NULL;
1da177e4
LT
374
375 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
376
377 /*
378 * Wait as long as the list is empty and there are bios in flight. bio
379 * completion drops the count, maybe adds to the list, and wakes while
380 * holding the bio_lock so we don't need set_current_state()'s barrier
381 * and can call it after testing our condition.
382 */
383 while (dio->refcount > 1 && dio->bio_list == NULL) {
384 __set_current_state(TASK_UNINTERRUPTIBLE);
385 dio->waiter = current;
386 spin_unlock_irqrestore(&dio->bio_lock, flags);
387 io_schedule();
388 /* wake up sets us TASK_RUNNING */
389 spin_lock_irqsave(&dio->bio_lock, flags);
390 dio->waiter = NULL;
1da177e4 391 }
0273201e
ZB
392 if (dio->bio_list) {
393 bio = dio->bio_list;
394 dio->bio_list = bio->bi_private;
395 }
1da177e4
LT
396 spin_unlock_irqrestore(&dio->bio_lock, flags);
397 return bio;
398}
399
400/*
401 * Process one completed BIO. No locks are held.
402 */
403static int dio_bio_complete(struct dio *dio, struct bio *bio)
404{
405 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
406 struct bio_vec *bvec = bio->bi_io_vec;
407 int page_no;
408
409 if (!uptodate)
174e27c6 410 dio->io_error = -EIO;
1da177e4
LT
411
412 if (dio->is_async && dio->rw == READ) {
413 bio_check_pages_dirty(bio); /* transfers ownership */
414 } else {
415 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
416 struct page *page = bvec[page_no].bv_page;
417
418 if (dio->rw == READ && !PageCompound(page))
419 set_page_dirty_lock(page);
420 page_cache_release(page);
421 }
422 bio_put(bio);
423 }
1da177e4
LT
424 return uptodate ? 0 : -EIO;
425}
426
427/*
0273201e
ZB
428 * Wait on and process all in-flight BIOs. This must only be called once
429 * all bios have been issued so that the refcount can only decrease.
430 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 431 * errors are propagated through dio->io_error and should be propagated via
0273201e 432 * dio_complete().
1da177e4 433 */
6d544bb4 434static void dio_await_completion(struct dio *dio)
1da177e4 435{
0273201e
ZB
436 struct bio *bio;
437 do {
438 bio = dio_await_one(dio);
439 if (bio)
440 dio_bio_complete(dio, bio);
441 } while (bio);
1da177e4
LT
442}
443
444/*
445 * A really large O_DIRECT read or write can generate a lot of BIOs. So
446 * to keep the memory consumption sane we periodically reap any completed BIOs
447 * during the BIO generation phase.
448 *
449 * This also helps to limit the peak amount of pinned userspace memory.
450 */
451static int dio_bio_reap(struct dio *dio)
452{
453 int ret = 0;
454
455 if (dio->reap_counter++ >= 64) {
456 while (dio->bio_list) {
457 unsigned long flags;
458 struct bio *bio;
459 int ret2;
460
461 spin_lock_irqsave(&dio->bio_lock, flags);
462 bio = dio->bio_list;
463 dio->bio_list = bio->bi_private;
464 spin_unlock_irqrestore(&dio->bio_lock, flags);
465 ret2 = dio_bio_complete(dio, bio);
466 if (ret == 0)
467 ret = ret2;
468 }
469 dio->reap_counter = 0;
470 }
471 return ret;
472}
473
474/*
475 * Call into the fs to map some more disk blocks. We record the current number
476 * of available blocks at dio->blocks_available. These are in units of the
477 * fs blocksize, (1 << inode->i_blkbits).
478 *
479 * The fs is allowed to map lots of blocks at once. If it wants to do that,
480 * it uses the passed inode-relative block number as the file offset, as usual.
481 *
1d8fa7a2 482 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
483 * has remaining to do. The fs should not map more than this number of blocks.
484 *
485 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
486 * indicate how much contiguous disk space has been made available at
487 * bh->b_blocknr.
488 *
489 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
490 * This isn't very efficient...
491 *
492 * In the case of filesystem holes: the fs may return an arbitrarily-large
493 * hole by returning an appropriate value in b_size and by clearing
494 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 495 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4
LT
496 */
497static int get_more_blocks(struct dio *dio)
498{
499 int ret;
500 struct buffer_head *map_bh = &dio->map_bh;
501 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
502 unsigned long fs_count; /* Number of filesystem-sized blocks */
503 unsigned long dio_count;/* Number of dio_block-sized blocks */
504 unsigned long blkmask;
505 int create;
506
507 /*
508 * If there was a memory error and we've overwritten all the
509 * mapped blocks then we can now return that memory error
510 */
511 ret = dio->page_errors;
512 if (ret == 0) {
1da177e4
LT
513 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
514 fs_startblk = dio->block_in_file >> dio->blkfactor;
515 dio_count = dio->final_block_in_request - dio->block_in_file;
516 fs_count = dio_count >> dio->blkfactor;
517 blkmask = (1 << dio->blkfactor) - 1;
518 if (dio_count & blkmask)
519 fs_count++;
520
3c674e74
NS
521 map_bh->b_state = 0;
522 map_bh->b_size = fs_count << dio->inode->i_blkbits;
523
b31dc66a 524 create = dio->rw & WRITE;
1da177e4
LT
525 if (dio->lock_type == DIO_LOCKING) {
526 if (dio->block_in_file < (i_size_read(dio->inode) >>
527 dio->blkbits))
528 create = 0;
529 } else if (dio->lock_type == DIO_NO_LOCKING) {
530 create = 0;
531 }
3c674e74 532
1da177e4
LT
533 /*
534 * For writes inside i_size we forbid block creations: only
535 * overwrites are permitted. We fall back to buffered writes
536 * at a higher level for inside-i_size block-instantiating
537 * writes.
538 */
1d8fa7a2 539 ret = (*dio->get_block)(dio->inode, fs_startblk,
1da177e4
LT
540 map_bh, create);
541 }
542 return ret;
543}
544
545/*
546 * There is no bio. Make one now.
547 */
548static int dio_new_bio(struct dio *dio, sector_t start_sector)
549{
550 sector_t sector;
551 int ret, nr_pages;
552
553 ret = dio_bio_reap(dio);
554 if (ret)
555 goto out;
556 sector = start_sector << (dio->blkbits - 9);
557 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
558 BUG_ON(nr_pages <= 0);
559 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
560 dio->boundary = 0;
561out:
562 return ret;
563}
564
565/*
566 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
567 * that was successful then update final_block_in_bio and take a ref against
568 * the just-added page.
569 *
570 * Return zero on success. Non-zero means the caller needs to start a new BIO.
571 */
572static int dio_bio_add_page(struct dio *dio)
573{
574 int ret;
575
576 ret = bio_add_page(dio->bio, dio->cur_page,
577 dio->cur_page_len, dio->cur_page_offset);
578 if (ret == dio->cur_page_len) {
579 /*
580 * Decrement count only, if we are done with this page
581 */
582 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
583 dio->pages_in_io--;
584 page_cache_get(dio->cur_page);
585 dio->final_block_in_bio = dio->cur_page_block +
586 (dio->cur_page_len >> dio->blkbits);
587 ret = 0;
588 } else {
589 ret = 1;
590 }
591 return ret;
592}
593
594/*
595 * Put cur_page under IO. The section of cur_page which is described by
596 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
597 * starts on-disk at cur_page_block.
598 *
599 * We take a ref against the page here (on behalf of its presence in the bio).
600 *
601 * The caller of this function is responsible for removing cur_page from the
602 * dio, and for dropping the refcount which came from that presence.
603 */
604static int dio_send_cur_page(struct dio *dio)
605{
606 int ret = 0;
607
608 if (dio->bio) {
609 /*
610 * See whether this new request is contiguous with the old
611 */
612 if (dio->final_block_in_bio != dio->cur_page_block)
613 dio_bio_submit(dio);
614 /*
615 * Submit now if the underlying fs is about to perform a
616 * metadata read
617 */
618 if (dio->boundary)
619 dio_bio_submit(dio);
620 }
621
622 if (dio->bio == NULL) {
623 ret = dio_new_bio(dio, dio->cur_page_block);
624 if (ret)
625 goto out;
626 }
627
628 if (dio_bio_add_page(dio) != 0) {
629 dio_bio_submit(dio);
630 ret = dio_new_bio(dio, dio->cur_page_block);
631 if (ret == 0) {
632 ret = dio_bio_add_page(dio);
633 BUG_ON(ret != 0);
634 }
635 }
636out:
637 return ret;
638}
639
640/*
641 * An autonomous function to put a chunk of a page under deferred IO.
642 *
643 * The caller doesn't actually know (or care) whether this piece of page is in
644 * a BIO, or is under IO or whatever. We just take care of all possible
645 * situations here. The separation between the logic of do_direct_IO() and
646 * that of submit_page_section() is important for clarity. Please don't break.
647 *
648 * The chunk of page starts on-disk at blocknr.
649 *
650 * We perform deferred IO, by recording the last-submitted page inside our
651 * private part of the dio structure. If possible, we just expand the IO
652 * across that page here.
653 *
654 * If that doesn't work out then we put the old page into the bio and add this
655 * page to the dio instead.
656 */
657static int
658submit_page_section(struct dio *dio, struct page *page,
659 unsigned offset, unsigned len, sector_t blocknr)
660{
661 int ret = 0;
662
98c4d57d
AM
663 if (dio->rw & WRITE) {
664 /*
665 * Read accounting is performed in submit_bio()
666 */
667 task_io_account_write(len);
668 }
669
1da177e4
LT
670 /*
671 * Can we just grow the current page's presence in the dio?
672 */
673 if ( (dio->cur_page == page) &&
674 (dio->cur_page_offset + dio->cur_page_len == offset) &&
675 (dio->cur_page_block +
676 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
677 dio->cur_page_len += len;
678
679 /*
680 * If dio->boundary then we want to schedule the IO now to
681 * avoid metadata seeks.
682 */
683 if (dio->boundary) {
684 ret = dio_send_cur_page(dio);
685 page_cache_release(dio->cur_page);
686 dio->cur_page = NULL;
687 }
688 goto out;
689 }
690
691 /*
692 * If there's a deferred page already there then send it.
693 */
694 if (dio->cur_page) {
695 ret = dio_send_cur_page(dio);
696 page_cache_release(dio->cur_page);
697 dio->cur_page = NULL;
698 if (ret)
699 goto out;
700 }
701
702 page_cache_get(page); /* It is in dio */
703 dio->cur_page = page;
704 dio->cur_page_offset = offset;
705 dio->cur_page_len = len;
706 dio->cur_page_block = blocknr;
707out:
708 return ret;
709}
710
711/*
712 * Clean any dirty buffers in the blockdev mapping which alias newly-created
713 * file blocks. Only called for S_ISREG files - blockdevs do not set
714 * buffer_new
715 */
716static void clean_blockdev_aliases(struct dio *dio)
717{
718 unsigned i;
719 unsigned nblocks;
720
721 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
722
723 for (i = 0; i < nblocks; i++) {
724 unmap_underlying_metadata(dio->map_bh.b_bdev,
725 dio->map_bh.b_blocknr + i);
726 }
727}
728
729/*
730 * If we are not writing the entire block and get_block() allocated
731 * the block for us, we need to fill-in the unused portion of the
732 * block with zeros. This happens only if user-buffer, fileoffset or
733 * io length is not filesystem block-size multiple.
734 *
735 * `end' is zero if we're doing the start of the IO, 1 at the end of the
736 * IO.
737 */
738static void dio_zero_block(struct dio *dio, int end)
739{
740 unsigned dio_blocks_per_fs_block;
741 unsigned this_chunk_blocks; /* In dio_blocks */
742 unsigned this_chunk_bytes;
743 struct page *page;
744
745 dio->start_zero_done = 1;
746 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
747 return;
748
749 dio_blocks_per_fs_block = 1 << dio->blkfactor;
750 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
751
752 if (!this_chunk_blocks)
753 return;
754
755 /*
756 * We need to zero out part of an fs block. It is either at the
757 * beginning or the end of the fs block.
758 */
759 if (end)
760 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
761
762 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
763
557ed1fa 764 page = ZERO_PAGE(0);
1da177e4
LT
765 if (submit_page_section(dio, page, 0, this_chunk_bytes,
766 dio->next_block_for_io))
767 return;
768
769 dio->next_block_for_io += this_chunk_blocks;
770}
771
772/*
773 * Walk the user pages, and the file, mapping blocks to disk and generating
774 * a sequence of (page,offset,len,block) mappings. These mappings are injected
775 * into submit_page_section(), which takes care of the next stage of submission
776 *
777 * Direct IO against a blockdev is different from a file. Because we can
778 * happily perform page-sized but 512-byte aligned IOs. It is important that
779 * blockdev IO be able to have fine alignment and large sizes.
780 *
1d8fa7a2 781 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
782 * with the size of IO which is permitted at this offset and this i_blkbits.
783 *
784 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 785 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
786 * fine alignment but still allows this function to work in PAGE_SIZE units.
787 */
788static int do_direct_IO(struct dio *dio)
789{
790 const unsigned blkbits = dio->blkbits;
791 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
792 struct page *page;
793 unsigned block_in_page;
794 struct buffer_head *map_bh = &dio->map_bh;
795 int ret = 0;
796
797 /* The I/O can start at any block offset within the first page */
798 block_in_page = dio->first_block_in_page;
799
800 while (dio->block_in_file < dio->final_block_in_request) {
801 page = dio_get_page(dio);
802 if (IS_ERR(page)) {
803 ret = PTR_ERR(page);
804 goto out;
805 }
806
807 while (block_in_page < blocks_per_page) {
808 unsigned offset_in_page = block_in_page << blkbits;
809 unsigned this_chunk_bytes; /* # of bytes mapped */
810 unsigned this_chunk_blocks; /* # of blocks */
811 unsigned u;
812
813 if (dio->blocks_available == 0) {
814 /*
815 * Need to go and map some more disk
816 */
817 unsigned long blkmask;
818 unsigned long dio_remainder;
819
820 ret = get_more_blocks(dio);
821 if (ret) {
822 page_cache_release(page);
823 goto out;
824 }
825 if (!buffer_mapped(map_bh))
826 goto do_holes;
827
828 dio->blocks_available =
829 map_bh->b_size >> dio->blkbits;
830 dio->next_block_for_io =
831 map_bh->b_blocknr << dio->blkfactor;
832 if (buffer_new(map_bh))
833 clean_blockdev_aliases(dio);
834
835 if (!dio->blkfactor)
836 goto do_holes;
837
838 blkmask = (1 << dio->blkfactor) - 1;
839 dio_remainder = (dio->block_in_file & blkmask);
840
841 /*
842 * If we are at the start of IO and that IO
843 * starts partway into a fs-block,
844 * dio_remainder will be non-zero. If the IO
845 * is a read then we can simply advance the IO
846 * cursor to the first block which is to be
847 * read. But if the IO is a write and the
848 * block was newly allocated we cannot do that;
849 * the start of the fs block must be zeroed out
850 * on-disk
851 */
852 if (!buffer_new(map_bh))
853 dio->next_block_for_io += dio_remainder;
854 dio->blocks_available -= dio_remainder;
855 }
856do_holes:
857 /* Handle holes */
858 if (!buffer_mapped(map_bh)) {
35dc8161 859 loff_t i_size_aligned;
1da177e4
LT
860
861 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 862 if (dio->rw & WRITE) {
1da177e4
LT
863 page_cache_release(page);
864 return -ENOTBLK;
865 }
866
35dc8161
JM
867 /*
868 * Be sure to account for a partial block as the
869 * last block in the file
870 */
871 i_size_aligned = ALIGN(i_size_read(dio->inode),
872 1 << blkbits);
1da177e4 873 if (dio->block_in_file >=
35dc8161 874 i_size_aligned >> blkbits) {
1da177e4
LT
875 /* We hit eof */
876 page_cache_release(page);
877 goto out;
878 }
eebd2aa3
CL
879 zero_user(page, block_in_page << blkbits,
880 1 << blkbits);
1da177e4
LT
881 dio->block_in_file++;
882 block_in_page++;
883 goto next_block;
884 }
885
886 /*
887 * If we're performing IO which has an alignment which
888 * is finer than the underlying fs, go check to see if
889 * we must zero out the start of this block.
890 */
891 if (unlikely(dio->blkfactor && !dio->start_zero_done))
892 dio_zero_block(dio, 0);
893
894 /*
895 * Work out, in this_chunk_blocks, how much disk we
896 * can add to this page
897 */
898 this_chunk_blocks = dio->blocks_available;
899 u = (PAGE_SIZE - offset_in_page) >> blkbits;
900 if (this_chunk_blocks > u)
901 this_chunk_blocks = u;
902 u = dio->final_block_in_request - dio->block_in_file;
903 if (this_chunk_blocks > u)
904 this_chunk_blocks = u;
905 this_chunk_bytes = this_chunk_blocks << blkbits;
906 BUG_ON(this_chunk_bytes == 0);
907
908 dio->boundary = buffer_boundary(map_bh);
909 ret = submit_page_section(dio, page, offset_in_page,
910 this_chunk_bytes, dio->next_block_for_io);
911 if (ret) {
912 page_cache_release(page);
913 goto out;
914 }
915 dio->next_block_for_io += this_chunk_blocks;
916
917 dio->block_in_file += this_chunk_blocks;
918 block_in_page += this_chunk_blocks;
919 dio->blocks_available -= this_chunk_blocks;
920next_block:
d4569d2e 921 BUG_ON(dio->block_in_file > dio->final_block_in_request);
1da177e4
LT
922 if (dio->block_in_file == dio->final_block_in_request)
923 break;
924 }
925
926 /* Drop the ref which was taken in get_user_pages() */
927 page_cache_release(page);
928 block_in_page = 0;
929 }
930out:
931 return ret;
932}
933
934/*
1b1dcc1b 935 * Releases both i_mutex and i_alloc_sem
1da177e4
LT
936 */
937static ssize_t
938direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
939 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1d8fa7a2 940 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
941 struct dio *dio)
942{
943 unsigned long user_addr;
5eb6c7a2 944 unsigned long flags;
1da177e4
LT
945 int seg;
946 ssize_t ret = 0;
947 ssize_t ret2;
948 size_t bytes;
949
1da177e4
LT
950 dio->inode = inode;
951 dio->rw = rw;
952 dio->blkbits = blkbits;
953 dio->blkfactor = inode->i_blkbits - blkbits;
1da177e4 954 dio->block_in_file = offset >> blkbits;
1da177e4 955
1d8fa7a2 956 dio->get_block = get_block;
1da177e4 957 dio->end_io = end_io;
1da177e4
LT
958 dio->final_block_in_bio = -1;
959 dio->next_block_for_io = -1;
960
1da177e4 961 dio->iocb = iocb;
29504ff3 962 dio->i_size = i_size_read(inode);
1da177e4 963
1da177e4 964 spin_lock_init(&dio->bio_lock);
5eb6c7a2 965 dio->refcount = 1;
1da177e4
LT
966
967 /*
968 * In case of non-aligned buffers, we may need 2 more
969 * pages since we need to zero out first and last block.
970 */
971 if (unlikely(dio->blkfactor))
972 dio->pages_in_io = 2;
1da177e4
LT
973
974 for (seg = 0; seg < nr_segs; seg++) {
975 user_addr = (unsigned long)iov[seg].iov_base;
976 dio->pages_in_io +=
977 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
978 - user_addr/PAGE_SIZE);
979 }
980
981 for (seg = 0; seg < nr_segs; seg++) {
982 user_addr = (unsigned long)iov[seg].iov_base;
983 dio->size += bytes = iov[seg].iov_len;
984
985 /* Index into the first page of the first block */
986 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
987 dio->final_block_in_request = dio->block_in_file +
988 (bytes >> blkbits);
989 /* Page fetching state */
990 dio->head = 0;
991 dio->tail = 0;
992 dio->curr_page = 0;
993
994 dio->total_pages = 0;
995 if (user_addr & (PAGE_SIZE-1)) {
996 dio->total_pages++;
997 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
998 }
999 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1000 dio->curr_user_address = user_addr;
1001
1002 ret = do_direct_IO(dio);
1003
1004 dio->result += iov[seg].iov_len -
1005 ((dio->final_block_in_request - dio->block_in_file) <<
1006 blkbits);
1007
1008 if (ret) {
1009 dio_cleanup(dio);
1010 break;
1011 }
1012 } /* end iovec loop */
1013
b31dc66a 1014 if (ret == -ENOTBLK && (rw & WRITE)) {
1da177e4
LT
1015 /*
1016 * The remaining part of the request will be
1017 * be handled by buffered I/O when we return
1018 */
1019 ret = 0;
1020 }
1021 /*
1022 * There may be some unwritten disk at the end of a part-written
1023 * fs-block-sized block. Go zero that now.
1024 */
1025 dio_zero_block(dio, 1);
1026
1027 if (dio->cur_page) {
1028 ret2 = dio_send_cur_page(dio);
1029 if (ret == 0)
1030 ret = ret2;
1031 page_cache_release(dio->cur_page);
1032 dio->cur_page = NULL;
1033 }
1034 if (dio->bio)
1035 dio_bio_submit(dio);
1036
1037 /*
1038 * It is possible that, we return short IO due to end of file.
1039 * In that case, we need to release all the pages we got hold on.
1040 */
1041 dio_cleanup(dio);
1042
1043 /*
1044 * All block lookups have been performed. For READ requests
1b1dcc1b 1045 * we can let i_mutex go now that its achieved its purpose
1da177e4
LT
1046 * of protecting us from looking up uninitialized blocks.
1047 */
1048 if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1b1dcc1b 1049 mutex_unlock(&dio->inode->i_mutex);
1da177e4
LT
1050
1051 /*
8459d86a
ZB
1052 * The only time we want to leave bios in flight is when a successful
1053 * partial aio read or full aio write have been setup. In that case
1054 * bio completion will call aio_complete. The only time it's safe to
1055 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1056 * This had *better* be the only place that raises -EIOCBQUEUED.
1da177e4 1057 */
8459d86a
ZB
1058 BUG_ON(ret == -EIOCBQUEUED);
1059 if (dio->is_async && ret == 0 && dio->result &&
1060 ((rw & READ) || (dio->result == dio->size)))
1061 ret = -EIOCBQUEUED;
0273201e 1062
cfb1e33e
JM
1063 if (ret != -EIOCBQUEUED) {
1064 /* All IO is now issued, send it on its way */
1065 blk_run_address_space(inode->i_mapping);
6d544bb4 1066 dio_await_completion(dio);
cfb1e33e 1067 }
1da177e4 1068
8459d86a
ZB
1069 /*
1070 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1071 * operation. AIO can if it was a broken operation described above or
1072 * in fact if all the bios race to complete before we get here. In
1073 * that case dio_complete() translates the EIOCBQUEUED into the proper
1074 * return code that the caller will hand to aio_complete().
1075 *
1076 * This is managed by the bio_lock instead of being an atomic_t so that
1077 * completion paths can drop their ref and use the remaining count to
1078 * decide to wake the submission path atomically.
8459d86a 1079 */
5eb6c7a2
ZB
1080 spin_lock_irqsave(&dio->bio_lock, flags);
1081 ret2 = --dio->refcount;
1082 spin_unlock_irqrestore(&dio->bio_lock, flags);
fcb82f88 1083
5eb6c7a2 1084 if (ret2 == 0) {
6d544bb4 1085 ret = dio_complete(dio, offset, ret);
8459d86a
ZB
1086 kfree(dio);
1087 } else
1088 BUG_ON(ret != -EIOCBQUEUED);
1da177e4 1089
1da177e4
LT
1090 return ret;
1091}
1092
1093/*
1094 * This is a library function for use by filesystem drivers.
1095 * The locking rules are governed by the dio_lock_type parameter.
1096 *
1097 * DIO_NO_LOCKING (no locking, for raw block device access)
1b1dcc1b 1098 * For writes, i_mutex is not held on entry; it is never taken.
1da177e4
LT
1099 *
1100 * DIO_LOCKING (simple locking for regular files)
3fb962bd
NS
1101 * For writes we are called under i_mutex and return with i_mutex held, even
1102 * though it is internally dropped.
1b1dcc1b 1103 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1da177e4
LT
1104 * returning.
1105 *
1106 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1107 * uninitialised data, allowing parallel direct readers and writers)
1b1dcc1b 1108 * For writes we are called without i_mutex, return without it, never touch it.
3fb962bd
NS
1109 * For reads we are called under i_mutex and return with i_mutex held, even
1110 * though it may be internally dropped.
1da177e4
LT
1111 *
1112 * Additional i_alloc_sem locking requirements described inline below.
1113 */
1114ssize_t
1115__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1116 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1d8fa7a2 1117 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
1118 int dio_lock_type)
1119{
1120 int seg;
1121 size_t size;
1122 unsigned long addr;
1123 unsigned blkbits = inode->i_blkbits;
1124 unsigned bdev_blkbits = 0;
1125 unsigned blocksize_mask = (1 << blkbits) - 1;
1126 ssize_t retval = -EINVAL;
1127 loff_t end = offset;
1128 struct dio *dio;
3fb962bd
NS
1129 int release_i_mutex = 0;
1130 int acquire_i_mutex = 0;
1da177e4
LT
1131
1132 if (rw & WRITE)
d9449ce3 1133 rw = WRITE_ODIRECT_PLUG;
1da177e4
LT
1134
1135 if (bdev)
e1defc4f 1136 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4
LT
1137
1138 if (offset & blocksize_mask) {
1139 if (bdev)
1140 blkbits = bdev_blkbits;
1141 blocksize_mask = (1 << blkbits) - 1;
1142 if (offset & blocksize_mask)
1143 goto out;
1144 }
1145
1146 /* Check the memory alignment. Blocks cannot straddle pages */
1147 for (seg = 0; seg < nr_segs; seg++) {
1148 addr = (unsigned long)iov[seg].iov_base;
1149 size = iov[seg].iov_len;
1150 end += size;
1151 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1152 if (bdev)
1153 blkbits = bdev_blkbits;
1154 blocksize_mask = (1 << blkbits) - 1;
1155 if ((addr & blocksize_mask) || (size & blocksize_mask))
1156 goto out;
1157 }
1158 }
1159
23aee091 1160 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1da177e4
LT
1161 retval = -ENOMEM;
1162 if (!dio)
1163 goto out;
23aee091
JM
1164 /*
1165 * Believe it or not, zeroing out the page array caused a .5%
1166 * performance regression in a database benchmark. So, we take
1167 * care to only zero out what's needed.
1168 */
1169 memset(dio, 0, offsetof(struct dio, pages));
1da177e4
LT
1170
1171 /*
1172 * For block device access DIO_NO_LOCKING is used,
1173 * neither readers nor writers do any locking at all
1174 * For regular files using DIO_LOCKING,
1b1dcc1b
JS
1175 * readers need to grab i_mutex and i_alloc_sem
1176 * writers need to grab i_alloc_sem only (i_mutex is already held)
1da177e4
LT
1177 * For regular files using DIO_OWN_LOCKING,
1178 * neither readers nor writers take any locks here
1da177e4
LT
1179 */
1180 dio->lock_type = dio_lock_type;
1181 if (dio_lock_type != DIO_NO_LOCKING) {
1182 /* watch out for a 0 len io from a tricksy fs */
1183 if (rw == READ && end > offset) {
1184 struct address_space *mapping;
1185
1186 mapping = iocb->ki_filp->f_mapping;
1187 if (dio_lock_type != DIO_OWN_LOCKING) {
1b1dcc1b 1188 mutex_lock(&inode->i_mutex);
3fb962bd 1189 release_i_mutex = 1;
1da177e4
LT
1190 }
1191
1192 retval = filemap_write_and_wait_range(mapping, offset,
1193 end - 1);
1194 if (retval) {
1195 kfree(dio);
1196 goto out;
1197 }
1198
1199 if (dio_lock_type == DIO_OWN_LOCKING) {
1b1dcc1b 1200 mutex_unlock(&inode->i_mutex);
3fb962bd 1201 acquire_i_mutex = 1;
1da177e4
LT
1202 }
1203 }
1204
1205 if (dio_lock_type == DIO_LOCKING)
d8aa905b
IM
1206 /* lockdep: not the owner will release it */
1207 down_read_non_owner(&inode->i_alloc_sem);
1da177e4
LT
1208 }
1209
1210 /*
1211 * For file extending writes updating i_size before data
1212 * writeouts complete can expose uninitialized blocks. So
1213 * even for AIO, we need to wait for i/o to complete before
1214 * returning in this case.
1215 */
b31dc66a 1216 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1da177e4
LT
1217 (end > i_size_read(inode)));
1218
1219 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1d8fa7a2 1220 nr_segs, blkbits, get_block, end_io, dio);
1da177e4 1221
0f64415d
DM
1222 /*
1223 * In case of error extending write may have instantiated a few
1224 * blocks outside i_size. Trim these off again for DIO_LOCKING.
1225 * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this by
1226 * it's own meaner.
1227 */
1228 if (unlikely(retval < 0 && (rw & WRITE))) {
1229 loff_t isize = i_size_read(inode);
1230
1231 if (end > isize && dio_lock_type == DIO_LOCKING)
1232 vmtruncate(inode, isize);
1233 }
1234
1da177e4 1235 if (rw == READ && dio_lock_type == DIO_LOCKING)
3fb962bd 1236 release_i_mutex = 0;
1da177e4
LT
1237
1238out:
3fb962bd 1239 if (release_i_mutex)
1b1dcc1b 1240 mutex_unlock(&inode->i_mutex);
3fb962bd
NS
1241 else if (acquire_i_mutex)
1242 mutex_lock(&inode->i_mutex);
1da177e4
LT
1243 return retval;
1244}
1245EXPORT_SYMBOL(__blockdev_direct_IO);