]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/direct-io.c
[PATCH] md: assorted md and raid1 one-liners
[net-next-2.6.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 akpm@zip.com.au
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
38#include <asm/atomic.h>
39
40/*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
43 */
44#define DIO_PAGES 64
45
46/*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 *
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
1b1dcc1b 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
1da177e4
LT
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
63 */
64
65struct dio {
66 /* BIO submission state */
67 struct bio *bio; /* bio under assembly */
68 struct inode *inode;
69 int rw;
29504ff3 70 loff_t i_size; /* i_size when submitted */
1da177e4
LT
71 int lock_type; /* doesn't change */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 size_t size; /* total request size (doesn't change)*/
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 sector_t final_block_in_request;/* doesn't change */
87 unsigned first_block_in_page; /* doesn't change, Used only once */
88 int boundary; /* prev block is at a boundary */
89 int reap_counter; /* rate limit reaping */
1d8fa7a2 90 get_block_t *get_block; /* block mapping function */
1da177e4
LT
91 dio_iodone_t *end_io; /* IO completion function */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
1d8fa7a2 95 struct buffer_head map_bh; /* last get_block() result */
1da177e4
LT
96
97 /*
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
101 */
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
106
107 /*
108 * Page fetching state. These variables belong to dio_refill_pages().
109 */
110 int curr_page; /* changes */
111 int total_pages; /* doesn't change */
112 unsigned long curr_user_address;/* changes */
113
114 /*
115 * Page queue. These variables belong to dio_refill_pages() and
116 * dio_get_page().
117 */
118 struct page *pages[DIO_PAGES]; /* page buffer */
119 unsigned head; /* next page to process */
120 unsigned tail; /* last valid page + 1 */
121 int page_errors; /* errno from get_user_pages() */
122
123 /* BIO completion state */
124 spinlock_t bio_lock; /* protects BIO fields below */
125 int bio_count; /* nr bios to be completed */
126 int bios_in_flight; /* nr bios in flight */
127 struct bio *bio_list; /* singly linked via bi_private */
128 struct task_struct *waiter; /* waiting task (NULL if none) */
129
130 /* AIO related stuff */
131 struct kiocb *iocb; /* kiocb */
132 int is_async; /* is IO async ? */
174e27c6 133 int io_error; /* IO error in completion path */
1da177e4
LT
134 ssize_t result; /* IO result */
135};
136
137/*
138 * How many pages are in the queue?
139 */
140static inline unsigned dio_pages_present(struct dio *dio)
141{
142 return dio->tail - dio->head;
143}
144
145/*
146 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
147 */
148static int dio_refill_pages(struct dio *dio)
149{
150 int ret;
151 int nr_pages;
152
153 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
154 down_read(&current->mm->mmap_sem);
155 ret = get_user_pages(
156 current, /* Task for fault acounting */
157 current->mm, /* whose pages? */
158 dio->curr_user_address, /* Where from? */
159 nr_pages, /* How many pages? */
160 dio->rw == READ, /* Write to memory? */
161 0, /* force (?) */
162 &dio->pages[0],
163 NULL); /* vmas */
164 up_read(&current->mm->mmap_sem);
165
b31dc66a 166 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
b5810039 167 struct page *page = ZERO_PAGE(dio->curr_user_address);
1da177e4
LT
168 /*
169 * A memory fault, but the filesystem has some outstanding
170 * mapped blocks. We need to use those blocks up to avoid
171 * leaking stale data in the file.
172 */
173 if (dio->page_errors == 0)
174 dio->page_errors = ret;
b5810039
NP
175 page_cache_get(page);
176 dio->pages[0] = page;
1da177e4
LT
177 dio->head = 0;
178 dio->tail = 1;
179 ret = 0;
180 goto out;
181 }
182
183 if (ret >= 0) {
184 dio->curr_user_address += ret * PAGE_SIZE;
185 dio->curr_page += ret;
186 dio->head = 0;
187 dio->tail = ret;
188 ret = 0;
189 }
190out:
191 return ret;
192}
193
194/*
195 * Get another userspace page. Returns an ERR_PTR on error. Pages are
196 * buffered inside the dio so that we can call get_user_pages() against a
197 * decent number of pages, less frequently. To provide nicer use of the
198 * L1 cache.
199 */
200static struct page *dio_get_page(struct dio *dio)
201{
202 if (dio_pages_present(dio) == 0) {
203 int ret;
204
205 ret = dio_refill_pages(dio);
206 if (ret)
207 return ERR_PTR(ret);
208 BUG_ON(dio_pages_present(dio) == 0);
209 }
210 return dio->pages[dio->head++];
211}
212
213/*
214 * Called when all DIO BIO I/O has been completed - let the filesystem
1d8fa7a2 215 * know, if it registered an interest earlier via get_block. Pass the
1da177e4 216 * private field of the map buffer_head so that filesystems can use it
1d8fa7a2 217 * to hold additional state between get_block calls and dio_complete.
1da177e4
LT
218 */
219static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes)
220{
221 if (dio->end_io && dio->result)
92198f7e 222 dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private);
1da177e4 223 if (dio->lock_type == DIO_LOCKING)
d8aa905b
IM
224 /* lockdep: non-owner release */
225 up_read_non_owner(&dio->inode->i_alloc_sem);
1da177e4
LT
226}
227
228/*
229 * Called when a BIO has been processed. If the count goes to zero then IO is
230 * complete and we can signal this to the AIO layer.
231 */
232static void finished_one_bio(struct dio *dio)
233{
234 unsigned long flags;
235
236 spin_lock_irqsave(&dio->bio_lock, flags);
237 if (dio->bio_count == 1) {
238 if (dio->is_async) {
29504ff3
DM
239 ssize_t transferred;
240 loff_t offset;
241
1da177e4
LT
242 /*
243 * Last reference to the dio is going away.
244 * Drop spinlock and complete the DIO.
245 */
246 spin_unlock_irqrestore(&dio->bio_lock, flags);
29504ff3
DM
247
248 /* Check for short read case */
249 transferred = dio->result;
250 offset = dio->iocb->ki_pos;
251
252 if ((dio->rw == READ) &&
253 ((offset + transferred) > dio->i_size))
254 transferred = dio->i_size - offset;
255
174e27c6
KC
256 /* check for error in completion path */
257 if (dio->io_error)
258 transferred = dio->io_error;
259
29504ff3
DM
260 dio_complete(dio, offset, transferred);
261
1da177e4
LT
262 /* Complete AIO later if falling back to buffered i/o */
263 if (dio->result == dio->size ||
264 ((dio->rw == READ) && dio->result)) {
29504ff3 265 aio_complete(dio->iocb, transferred, 0);
1da177e4
LT
266 kfree(dio);
267 return;
268 } else {
269 /*
270 * Falling back to buffered
271 */
272 spin_lock_irqsave(&dio->bio_lock, flags);
273 dio->bio_count--;
274 if (dio->waiter)
275 wake_up_process(dio->waiter);
276 spin_unlock_irqrestore(&dio->bio_lock, flags);
277 return;
278 }
279 }
280 }
281 dio->bio_count--;
282 spin_unlock_irqrestore(&dio->bio_lock, flags);
283}
284
285static int dio_bio_complete(struct dio *dio, struct bio *bio);
286/*
287 * Asynchronous IO callback.
288 */
289static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
290{
291 struct dio *dio = bio->bi_private;
292
293 if (bio->bi_size)
294 return 1;
295
296 /* cleanup the bio */
297 dio_bio_complete(dio, bio);
298 return 0;
299}
300
301/*
302 * The BIO completion handler simply queues the BIO up for the process-context
303 * handler.
304 *
305 * During I/O bi_private points at the dio. After I/O, bi_private is used to
306 * implement a singly-linked list of completed BIOs, at dio->bio_list.
307 */
308static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
309{
310 struct dio *dio = bio->bi_private;
311 unsigned long flags;
312
313 if (bio->bi_size)
314 return 1;
315
316 spin_lock_irqsave(&dio->bio_lock, flags);
317 bio->bi_private = dio->bio_list;
318 dio->bio_list = bio;
319 dio->bios_in_flight--;
320 if (dio->waiter && dio->bios_in_flight == 0)
321 wake_up_process(dio->waiter);
322 spin_unlock_irqrestore(&dio->bio_lock, flags);
323 return 0;
324}
325
326static int
327dio_bio_alloc(struct dio *dio, struct block_device *bdev,
328 sector_t first_sector, int nr_vecs)
329{
330 struct bio *bio;
331
332 bio = bio_alloc(GFP_KERNEL, nr_vecs);
333 if (bio == NULL)
334 return -ENOMEM;
335
336 bio->bi_bdev = bdev;
337 bio->bi_sector = first_sector;
338 if (dio->is_async)
339 bio->bi_end_io = dio_bio_end_aio;
340 else
341 bio->bi_end_io = dio_bio_end_io;
342
343 dio->bio = bio;
344 return 0;
345}
346
347/*
348 * In the AIO read case we speculatively dirty the pages before starting IO.
349 * During IO completion, any of these pages which happen to have been written
350 * back will be redirtied by bio_check_pages_dirty().
351 */
352static void dio_bio_submit(struct dio *dio)
353{
354 struct bio *bio = dio->bio;
355 unsigned long flags;
356
357 bio->bi_private = dio;
358 spin_lock_irqsave(&dio->bio_lock, flags);
359 dio->bio_count++;
360 dio->bios_in_flight++;
361 spin_unlock_irqrestore(&dio->bio_lock, flags);
362 if (dio->is_async && dio->rw == READ)
363 bio_set_pages_dirty(bio);
364 submit_bio(dio->rw, bio);
365
366 dio->bio = NULL;
367 dio->boundary = 0;
368}
369
370/*
371 * Release any resources in case of a failure
372 */
373static void dio_cleanup(struct dio *dio)
374{
375 while (dio_pages_present(dio))
376 page_cache_release(dio_get_page(dio));
377}
378
379/*
380 * Wait for the next BIO to complete. Remove it and return it.
381 */
382static struct bio *dio_await_one(struct dio *dio)
383{
384 unsigned long flags;
385 struct bio *bio;
386
387 spin_lock_irqsave(&dio->bio_lock, flags);
388 while (dio->bio_list == NULL) {
389 set_current_state(TASK_UNINTERRUPTIBLE);
390 if (dio->bio_list == NULL) {
391 dio->waiter = current;
392 spin_unlock_irqrestore(&dio->bio_lock, flags);
393 blk_run_address_space(dio->inode->i_mapping);
394 io_schedule();
395 spin_lock_irqsave(&dio->bio_lock, flags);
396 dio->waiter = NULL;
397 }
398 set_current_state(TASK_RUNNING);
399 }
400 bio = dio->bio_list;
401 dio->bio_list = bio->bi_private;
402 spin_unlock_irqrestore(&dio->bio_lock, flags);
403 return bio;
404}
405
406/*
407 * Process one completed BIO. No locks are held.
408 */
409static int dio_bio_complete(struct dio *dio, struct bio *bio)
410{
411 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
412 struct bio_vec *bvec = bio->bi_io_vec;
413 int page_no;
414
415 if (!uptodate)
174e27c6 416 dio->io_error = -EIO;
1da177e4
LT
417
418 if (dio->is_async && dio->rw == READ) {
419 bio_check_pages_dirty(bio); /* transfers ownership */
420 } else {
421 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
422 struct page *page = bvec[page_no].bv_page;
423
424 if (dio->rw == READ && !PageCompound(page))
425 set_page_dirty_lock(page);
426 page_cache_release(page);
427 }
428 bio_put(bio);
429 }
430 finished_one_bio(dio);
431 return uptodate ? 0 : -EIO;
432}
433
434/*
435 * Wait on and process all in-flight BIOs.
436 */
437static int dio_await_completion(struct dio *dio)
438{
439 int ret = 0;
440
441 if (dio->bio)
442 dio_bio_submit(dio);
443
444 /*
445 * The bio_lock is not held for the read of bio_count.
446 * This is ok since it is the dio_bio_complete() that changes
447 * bio_count.
448 */
449 while (dio->bio_count) {
450 struct bio *bio = dio_await_one(dio);
451 int ret2;
452
453 ret2 = dio_bio_complete(dio, bio);
454 if (ret == 0)
455 ret = ret2;
456 }
457 return ret;
458}
459
460/*
461 * A really large O_DIRECT read or write can generate a lot of BIOs. So
462 * to keep the memory consumption sane we periodically reap any completed BIOs
463 * during the BIO generation phase.
464 *
465 * This also helps to limit the peak amount of pinned userspace memory.
466 */
467static int dio_bio_reap(struct dio *dio)
468{
469 int ret = 0;
470
471 if (dio->reap_counter++ >= 64) {
472 while (dio->bio_list) {
473 unsigned long flags;
474 struct bio *bio;
475 int ret2;
476
477 spin_lock_irqsave(&dio->bio_lock, flags);
478 bio = dio->bio_list;
479 dio->bio_list = bio->bi_private;
480 spin_unlock_irqrestore(&dio->bio_lock, flags);
481 ret2 = dio_bio_complete(dio, bio);
482 if (ret == 0)
483 ret = ret2;
484 }
485 dio->reap_counter = 0;
486 }
487 return ret;
488}
489
490/*
491 * Call into the fs to map some more disk blocks. We record the current number
492 * of available blocks at dio->blocks_available. These are in units of the
493 * fs blocksize, (1 << inode->i_blkbits).
494 *
495 * The fs is allowed to map lots of blocks at once. If it wants to do that,
496 * it uses the passed inode-relative block number as the file offset, as usual.
497 *
1d8fa7a2 498 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
499 * has remaining to do. The fs should not map more than this number of blocks.
500 *
501 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
502 * indicate how much contiguous disk space has been made available at
503 * bh->b_blocknr.
504 *
505 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
506 * This isn't very efficient...
507 *
508 * In the case of filesystem holes: the fs may return an arbitrarily-large
509 * hole by returning an appropriate value in b_size and by clearing
510 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 511 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4
LT
512 */
513static int get_more_blocks(struct dio *dio)
514{
515 int ret;
516 struct buffer_head *map_bh = &dio->map_bh;
517 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
518 unsigned long fs_count; /* Number of filesystem-sized blocks */
519 unsigned long dio_count;/* Number of dio_block-sized blocks */
520 unsigned long blkmask;
521 int create;
522
523 /*
524 * If there was a memory error and we've overwritten all the
525 * mapped blocks then we can now return that memory error
526 */
527 ret = dio->page_errors;
528 if (ret == 0) {
1da177e4
LT
529 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
530 fs_startblk = dio->block_in_file >> dio->blkfactor;
531 dio_count = dio->final_block_in_request - dio->block_in_file;
532 fs_count = dio_count >> dio->blkfactor;
533 blkmask = (1 << dio->blkfactor) - 1;
534 if (dio_count & blkmask)
535 fs_count++;
536
3c674e74
NS
537 map_bh->b_state = 0;
538 map_bh->b_size = fs_count << dio->inode->i_blkbits;
539
b31dc66a 540 create = dio->rw & WRITE;
1da177e4
LT
541 if (dio->lock_type == DIO_LOCKING) {
542 if (dio->block_in_file < (i_size_read(dio->inode) >>
543 dio->blkbits))
544 create = 0;
545 } else if (dio->lock_type == DIO_NO_LOCKING) {
546 create = 0;
547 }
3c674e74 548
1da177e4
LT
549 /*
550 * For writes inside i_size we forbid block creations: only
551 * overwrites are permitted. We fall back to buffered writes
552 * at a higher level for inside-i_size block-instantiating
553 * writes.
554 */
1d8fa7a2 555 ret = (*dio->get_block)(dio->inode, fs_startblk,
1da177e4
LT
556 map_bh, create);
557 }
558 return ret;
559}
560
561/*
562 * There is no bio. Make one now.
563 */
564static int dio_new_bio(struct dio *dio, sector_t start_sector)
565{
566 sector_t sector;
567 int ret, nr_pages;
568
569 ret = dio_bio_reap(dio);
570 if (ret)
571 goto out;
572 sector = start_sector << (dio->blkbits - 9);
573 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
574 BUG_ON(nr_pages <= 0);
575 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
576 dio->boundary = 0;
577out:
578 return ret;
579}
580
581/*
582 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
583 * that was successful then update final_block_in_bio and take a ref against
584 * the just-added page.
585 *
586 * Return zero on success. Non-zero means the caller needs to start a new BIO.
587 */
588static int dio_bio_add_page(struct dio *dio)
589{
590 int ret;
591
592 ret = bio_add_page(dio->bio, dio->cur_page,
593 dio->cur_page_len, dio->cur_page_offset);
594 if (ret == dio->cur_page_len) {
595 /*
596 * Decrement count only, if we are done with this page
597 */
598 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
599 dio->pages_in_io--;
600 page_cache_get(dio->cur_page);
601 dio->final_block_in_bio = dio->cur_page_block +
602 (dio->cur_page_len >> dio->blkbits);
603 ret = 0;
604 } else {
605 ret = 1;
606 }
607 return ret;
608}
609
610/*
611 * Put cur_page under IO. The section of cur_page which is described by
612 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
613 * starts on-disk at cur_page_block.
614 *
615 * We take a ref against the page here (on behalf of its presence in the bio).
616 *
617 * The caller of this function is responsible for removing cur_page from the
618 * dio, and for dropping the refcount which came from that presence.
619 */
620static int dio_send_cur_page(struct dio *dio)
621{
622 int ret = 0;
623
624 if (dio->bio) {
625 /*
626 * See whether this new request is contiguous with the old
627 */
628 if (dio->final_block_in_bio != dio->cur_page_block)
629 dio_bio_submit(dio);
630 /*
631 * Submit now if the underlying fs is about to perform a
632 * metadata read
633 */
634 if (dio->boundary)
635 dio_bio_submit(dio);
636 }
637
638 if (dio->bio == NULL) {
639 ret = dio_new_bio(dio, dio->cur_page_block);
640 if (ret)
641 goto out;
642 }
643
644 if (dio_bio_add_page(dio) != 0) {
645 dio_bio_submit(dio);
646 ret = dio_new_bio(dio, dio->cur_page_block);
647 if (ret == 0) {
648 ret = dio_bio_add_page(dio);
649 BUG_ON(ret != 0);
650 }
651 }
652out:
653 return ret;
654}
655
656/*
657 * An autonomous function to put a chunk of a page under deferred IO.
658 *
659 * The caller doesn't actually know (or care) whether this piece of page is in
660 * a BIO, or is under IO or whatever. We just take care of all possible
661 * situations here. The separation between the logic of do_direct_IO() and
662 * that of submit_page_section() is important for clarity. Please don't break.
663 *
664 * The chunk of page starts on-disk at blocknr.
665 *
666 * We perform deferred IO, by recording the last-submitted page inside our
667 * private part of the dio structure. If possible, we just expand the IO
668 * across that page here.
669 *
670 * If that doesn't work out then we put the old page into the bio and add this
671 * page to the dio instead.
672 */
673static int
674submit_page_section(struct dio *dio, struct page *page,
675 unsigned offset, unsigned len, sector_t blocknr)
676{
677 int ret = 0;
678
98c4d57d
AM
679 if (dio->rw & WRITE) {
680 /*
681 * Read accounting is performed in submit_bio()
682 */
683 task_io_account_write(len);
684 }
685
1da177e4
LT
686 /*
687 * Can we just grow the current page's presence in the dio?
688 */
689 if ( (dio->cur_page == page) &&
690 (dio->cur_page_offset + dio->cur_page_len == offset) &&
691 (dio->cur_page_block +
692 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
693 dio->cur_page_len += len;
694
695 /*
696 * If dio->boundary then we want to schedule the IO now to
697 * avoid metadata seeks.
698 */
699 if (dio->boundary) {
700 ret = dio_send_cur_page(dio);
701 page_cache_release(dio->cur_page);
702 dio->cur_page = NULL;
703 }
704 goto out;
705 }
706
707 /*
708 * If there's a deferred page already there then send it.
709 */
710 if (dio->cur_page) {
711 ret = dio_send_cur_page(dio);
712 page_cache_release(dio->cur_page);
713 dio->cur_page = NULL;
714 if (ret)
715 goto out;
716 }
717
718 page_cache_get(page); /* It is in dio */
719 dio->cur_page = page;
720 dio->cur_page_offset = offset;
721 dio->cur_page_len = len;
722 dio->cur_page_block = blocknr;
723out:
724 return ret;
725}
726
727/*
728 * Clean any dirty buffers in the blockdev mapping which alias newly-created
729 * file blocks. Only called for S_ISREG files - blockdevs do not set
730 * buffer_new
731 */
732static void clean_blockdev_aliases(struct dio *dio)
733{
734 unsigned i;
735 unsigned nblocks;
736
737 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
738
739 for (i = 0; i < nblocks; i++) {
740 unmap_underlying_metadata(dio->map_bh.b_bdev,
741 dio->map_bh.b_blocknr + i);
742 }
743}
744
745/*
746 * If we are not writing the entire block and get_block() allocated
747 * the block for us, we need to fill-in the unused portion of the
748 * block with zeros. This happens only if user-buffer, fileoffset or
749 * io length is not filesystem block-size multiple.
750 *
751 * `end' is zero if we're doing the start of the IO, 1 at the end of the
752 * IO.
753 */
754static void dio_zero_block(struct dio *dio, int end)
755{
756 unsigned dio_blocks_per_fs_block;
757 unsigned this_chunk_blocks; /* In dio_blocks */
758 unsigned this_chunk_bytes;
759 struct page *page;
760
761 dio->start_zero_done = 1;
762 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
763 return;
764
765 dio_blocks_per_fs_block = 1 << dio->blkfactor;
766 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
767
768 if (!this_chunk_blocks)
769 return;
770
771 /*
772 * We need to zero out part of an fs block. It is either at the
773 * beginning or the end of the fs block.
774 */
775 if (end)
776 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
777
778 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
779
780 page = ZERO_PAGE(dio->curr_user_address);
781 if (submit_page_section(dio, page, 0, this_chunk_bytes,
782 dio->next_block_for_io))
783 return;
784
785 dio->next_block_for_io += this_chunk_blocks;
786}
787
788/*
789 * Walk the user pages, and the file, mapping blocks to disk and generating
790 * a sequence of (page,offset,len,block) mappings. These mappings are injected
791 * into submit_page_section(), which takes care of the next stage of submission
792 *
793 * Direct IO against a blockdev is different from a file. Because we can
794 * happily perform page-sized but 512-byte aligned IOs. It is important that
795 * blockdev IO be able to have fine alignment and large sizes.
796 *
1d8fa7a2 797 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
798 * with the size of IO which is permitted at this offset and this i_blkbits.
799 *
800 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 801 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
802 * fine alignment but still allows this function to work in PAGE_SIZE units.
803 */
804static int do_direct_IO(struct dio *dio)
805{
806 const unsigned blkbits = dio->blkbits;
807 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
808 struct page *page;
809 unsigned block_in_page;
810 struct buffer_head *map_bh = &dio->map_bh;
811 int ret = 0;
812
813 /* The I/O can start at any block offset within the first page */
814 block_in_page = dio->first_block_in_page;
815
816 while (dio->block_in_file < dio->final_block_in_request) {
817 page = dio_get_page(dio);
818 if (IS_ERR(page)) {
819 ret = PTR_ERR(page);
820 goto out;
821 }
822
823 while (block_in_page < blocks_per_page) {
824 unsigned offset_in_page = block_in_page << blkbits;
825 unsigned this_chunk_bytes; /* # of bytes mapped */
826 unsigned this_chunk_blocks; /* # of blocks */
827 unsigned u;
828
829 if (dio->blocks_available == 0) {
830 /*
831 * Need to go and map some more disk
832 */
833 unsigned long blkmask;
834 unsigned long dio_remainder;
835
836 ret = get_more_blocks(dio);
837 if (ret) {
838 page_cache_release(page);
839 goto out;
840 }
841 if (!buffer_mapped(map_bh))
842 goto do_holes;
843
844 dio->blocks_available =
845 map_bh->b_size >> dio->blkbits;
846 dio->next_block_for_io =
847 map_bh->b_blocknr << dio->blkfactor;
848 if (buffer_new(map_bh))
849 clean_blockdev_aliases(dio);
850
851 if (!dio->blkfactor)
852 goto do_holes;
853
854 blkmask = (1 << dio->blkfactor) - 1;
855 dio_remainder = (dio->block_in_file & blkmask);
856
857 /*
858 * If we are at the start of IO and that IO
859 * starts partway into a fs-block,
860 * dio_remainder will be non-zero. If the IO
861 * is a read then we can simply advance the IO
862 * cursor to the first block which is to be
863 * read. But if the IO is a write and the
864 * block was newly allocated we cannot do that;
865 * the start of the fs block must be zeroed out
866 * on-disk
867 */
868 if (!buffer_new(map_bh))
869 dio->next_block_for_io += dio_remainder;
870 dio->blocks_available -= dio_remainder;
871 }
872do_holes:
873 /* Handle holes */
874 if (!buffer_mapped(map_bh)) {
875 char *kaddr;
35dc8161 876 loff_t i_size_aligned;
1da177e4
LT
877
878 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 879 if (dio->rw & WRITE) {
1da177e4
LT
880 page_cache_release(page);
881 return -ENOTBLK;
882 }
883
35dc8161
JM
884 /*
885 * Be sure to account for a partial block as the
886 * last block in the file
887 */
888 i_size_aligned = ALIGN(i_size_read(dio->inode),
889 1 << blkbits);
1da177e4 890 if (dio->block_in_file >=
35dc8161 891 i_size_aligned >> blkbits) {
1da177e4
LT
892 /* We hit eof */
893 page_cache_release(page);
894 goto out;
895 }
896 kaddr = kmap_atomic(page, KM_USER0);
897 memset(kaddr + (block_in_page << blkbits),
898 0, 1 << blkbits);
899 flush_dcache_page(page);
900 kunmap_atomic(kaddr, KM_USER0);
901 dio->block_in_file++;
902 block_in_page++;
903 goto next_block;
904 }
905
906 /*
907 * If we're performing IO which has an alignment which
908 * is finer than the underlying fs, go check to see if
909 * we must zero out the start of this block.
910 */
911 if (unlikely(dio->blkfactor && !dio->start_zero_done))
912 dio_zero_block(dio, 0);
913
914 /*
915 * Work out, in this_chunk_blocks, how much disk we
916 * can add to this page
917 */
918 this_chunk_blocks = dio->blocks_available;
919 u = (PAGE_SIZE - offset_in_page) >> blkbits;
920 if (this_chunk_blocks > u)
921 this_chunk_blocks = u;
922 u = dio->final_block_in_request - dio->block_in_file;
923 if (this_chunk_blocks > u)
924 this_chunk_blocks = u;
925 this_chunk_bytes = this_chunk_blocks << blkbits;
926 BUG_ON(this_chunk_bytes == 0);
927
928 dio->boundary = buffer_boundary(map_bh);
929 ret = submit_page_section(dio, page, offset_in_page,
930 this_chunk_bytes, dio->next_block_for_io);
931 if (ret) {
932 page_cache_release(page);
933 goto out;
934 }
935 dio->next_block_for_io += this_chunk_blocks;
936
937 dio->block_in_file += this_chunk_blocks;
938 block_in_page += this_chunk_blocks;
939 dio->blocks_available -= this_chunk_blocks;
940next_block:
d4569d2e 941 BUG_ON(dio->block_in_file > dio->final_block_in_request);
1da177e4
LT
942 if (dio->block_in_file == dio->final_block_in_request)
943 break;
944 }
945
946 /* Drop the ref which was taken in get_user_pages() */
947 page_cache_release(page);
948 block_in_page = 0;
949 }
950out:
951 return ret;
952}
953
954/*
1b1dcc1b 955 * Releases both i_mutex and i_alloc_sem
1da177e4
LT
956 */
957static ssize_t
958direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
959 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1d8fa7a2 960 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
961 struct dio *dio)
962{
963 unsigned long user_addr;
964 int seg;
965 ssize_t ret = 0;
966 ssize_t ret2;
967 size_t bytes;
968
969 dio->bio = NULL;
970 dio->inode = inode;
971 dio->rw = rw;
972 dio->blkbits = blkbits;
973 dio->blkfactor = inode->i_blkbits - blkbits;
974 dio->start_zero_done = 0;
975 dio->size = 0;
976 dio->block_in_file = offset >> blkbits;
977 dio->blocks_available = 0;
978 dio->cur_page = NULL;
979
980 dio->boundary = 0;
981 dio->reap_counter = 0;
1d8fa7a2 982 dio->get_block = get_block;
1da177e4
LT
983 dio->end_io = end_io;
984 dio->map_bh.b_private = NULL;
985 dio->final_block_in_bio = -1;
986 dio->next_block_for_io = -1;
987
988 dio->page_errors = 0;
174e27c6 989 dio->io_error = 0;
1da177e4
LT
990 dio->result = 0;
991 dio->iocb = iocb;
29504ff3 992 dio->i_size = i_size_read(inode);
1da177e4
LT
993
994 /*
995 * BIO completion state.
996 *
997 * ->bio_count starts out at one, and we decrement it to zero after all
998 * BIOs are submitted. This to avoid the situation where a really fast
999 * (or synchronous) device could take the count to zero while we're
1000 * still submitting BIOs.
1001 */
1002 dio->bio_count = 1;
1003 dio->bios_in_flight = 0;
1004 spin_lock_init(&dio->bio_lock);
1005 dio->bio_list = NULL;
1006 dio->waiter = NULL;
1007
1008 /*
1009 * In case of non-aligned buffers, we may need 2 more
1010 * pages since we need to zero out first and last block.
1011 */
1012 if (unlikely(dio->blkfactor))
1013 dio->pages_in_io = 2;
1014 else
1015 dio->pages_in_io = 0;
1016
1017 for (seg = 0; seg < nr_segs; seg++) {
1018 user_addr = (unsigned long)iov[seg].iov_base;
1019 dio->pages_in_io +=
1020 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1021 - user_addr/PAGE_SIZE);
1022 }
1023
1024 for (seg = 0; seg < nr_segs; seg++) {
1025 user_addr = (unsigned long)iov[seg].iov_base;
1026 dio->size += bytes = iov[seg].iov_len;
1027
1028 /* Index into the first page of the first block */
1029 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1030 dio->final_block_in_request = dio->block_in_file +
1031 (bytes >> blkbits);
1032 /* Page fetching state */
1033 dio->head = 0;
1034 dio->tail = 0;
1035 dio->curr_page = 0;
1036
1037 dio->total_pages = 0;
1038 if (user_addr & (PAGE_SIZE-1)) {
1039 dio->total_pages++;
1040 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1041 }
1042 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1043 dio->curr_user_address = user_addr;
1044
1045 ret = do_direct_IO(dio);
1046
1047 dio->result += iov[seg].iov_len -
1048 ((dio->final_block_in_request - dio->block_in_file) <<
1049 blkbits);
1050
1051 if (ret) {
1052 dio_cleanup(dio);
1053 break;
1054 }
1055 } /* end iovec loop */
1056
b31dc66a 1057 if (ret == -ENOTBLK && (rw & WRITE)) {
1da177e4
LT
1058 /*
1059 * The remaining part of the request will be
1060 * be handled by buffered I/O when we return
1061 */
1062 ret = 0;
1063 }
1064 /*
1065 * There may be some unwritten disk at the end of a part-written
1066 * fs-block-sized block. Go zero that now.
1067 */
1068 dio_zero_block(dio, 1);
1069
1070 if (dio->cur_page) {
1071 ret2 = dio_send_cur_page(dio);
1072 if (ret == 0)
1073 ret = ret2;
1074 page_cache_release(dio->cur_page);
1075 dio->cur_page = NULL;
1076 }
1077 if (dio->bio)
1078 dio_bio_submit(dio);
1079
1080 /*
1081 * It is possible that, we return short IO due to end of file.
1082 * In that case, we need to release all the pages we got hold on.
1083 */
1084 dio_cleanup(dio);
1085
1086 /*
1087 * All block lookups have been performed. For READ requests
1b1dcc1b 1088 * we can let i_mutex go now that its achieved its purpose
1da177e4
LT
1089 * of protecting us from looking up uninitialized blocks.
1090 */
1091 if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1b1dcc1b 1092 mutex_unlock(&dio->inode->i_mutex);
1da177e4
LT
1093
1094 /*
1095 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1096 * reflect the number of to-be-processed BIOs.
1097 */
1098 if (dio->is_async) {
1099 int should_wait = 0;
1100
b31dc66a 1101 if (dio->result < dio->size && (rw & WRITE)) {
1da177e4
LT
1102 dio->waiter = current;
1103 should_wait = 1;
1104 }
1105 if (ret == 0)
1106 ret = dio->result;
1107 finished_one_bio(dio); /* This can free the dio */
1108 blk_run_address_space(inode->i_mapping);
1109 if (should_wait) {
1110 unsigned long flags;
1111 /*
1112 * Wait for already issued I/O to drain out and
1113 * release its references to user-space pages
1114 * before returning to fallback on buffered I/O
1115 */
1116
1117 spin_lock_irqsave(&dio->bio_lock, flags);
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 while (dio->bio_count) {
1120 spin_unlock_irqrestore(&dio->bio_lock, flags);
1121 io_schedule();
1122 spin_lock_irqsave(&dio->bio_lock, flags);
1123 set_current_state(TASK_UNINTERRUPTIBLE);
1124 }
1125 spin_unlock_irqrestore(&dio->bio_lock, flags);
1126 set_current_state(TASK_RUNNING);
1127 kfree(dio);
1128 }
1129 } else {
1130 ssize_t transferred = 0;
1131
1132 finished_one_bio(dio);
1133 ret2 = dio_await_completion(dio);
1134 if (ret == 0)
1135 ret = ret2;
1136 if (ret == 0)
1137 ret = dio->page_errors;
1138 if (dio->result) {
1139 loff_t i_size = i_size_read(inode);
1140
1141 transferred = dio->result;
1142 /*
1143 * Adjust the return value if the read crossed a
1144 * non-block-aligned EOF.
1145 */
1146 if (rw == READ && (offset + transferred > i_size))
1147 transferred = i_size - offset;
1148 }
1149 dio_complete(dio, offset, transferred);
1150 if (ret == 0)
1151 ret = transferred;
1152
1153 /* We could have also come here on an AIO file extend */
b31dc66a 1154 if (!is_sync_kiocb(iocb) && (rw & WRITE) &&
1da177e4
LT
1155 ret >= 0 && dio->result == dio->size)
1156 /*
1157 * For AIO writes where we have completed the
1158 * i/o, we have to mark the the aio complete.
1159 */
1160 aio_complete(iocb, ret, 0);
1161 kfree(dio);
1162 }
1163 return ret;
1164}
1165
1166/*
1167 * This is a library function for use by filesystem drivers.
1168 * The locking rules are governed by the dio_lock_type parameter.
1169 *
1170 * DIO_NO_LOCKING (no locking, for raw block device access)
1b1dcc1b 1171 * For writes, i_mutex is not held on entry; it is never taken.
1da177e4
LT
1172 *
1173 * DIO_LOCKING (simple locking for regular files)
3fb962bd
NS
1174 * For writes we are called under i_mutex and return with i_mutex held, even
1175 * though it is internally dropped.
1b1dcc1b 1176 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1da177e4
LT
1177 * returning.
1178 *
1179 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1180 * uninitialised data, allowing parallel direct readers and writers)
1b1dcc1b 1181 * For writes we are called without i_mutex, return without it, never touch it.
3fb962bd
NS
1182 * For reads we are called under i_mutex and return with i_mutex held, even
1183 * though it may be internally dropped.
1da177e4
LT
1184 *
1185 * Additional i_alloc_sem locking requirements described inline below.
1186 */
1187ssize_t
1188__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1189 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1d8fa7a2 1190 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
1191 int dio_lock_type)
1192{
1193 int seg;
1194 size_t size;
1195 unsigned long addr;
1196 unsigned blkbits = inode->i_blkbits;
1197 unsigned bdev_blkbits = 0;
1198 unsigned blocksize_mask = (1 << blkbits) - 1;
1199 ssize_t retval = -EINVAL;
1200 loff_t end = offset;
1201 struct dio *dio;
3fb962bd
NS
1202 int release_i_mutex = 0;
1203 int acquire_i_mutex = 0;
1da177e4
LT
1204
1205 if (rw & WRITE)
b31dc66a 1206 rw = WRITE_SYNC;
1da177e4
LT
1207
1208 if (bdev)
1209 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1210
1211 if (offset & blocksize_mask) {
1212 if (bdev)
1213 blkbits = bdev_blkbits;
1214 blocksize_mask = (1 << blkbits) - 1;
1215 if (offset & blocksize_mask)
1216 goto out;
1217 }
1218
1219 /* Check the memory alignment. Blocks cannot straddle pages */
1220 for (seg = 0; seg < nr_segs; seg++) {
1221 addr = (unsigned long)iov[seg].iov_base;
1222 size = iov[seg].iov_len;
1223 end += size;
1224 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1225 if (bdev)
1226 blkbits = bdev_blkbits;
1227 blocksize_mask = (1 << blkbits) - 1;
1228 if ((addr & blocksize_mask) || (size & blocksize_mask))
1229 goto out;
1230 }
1231 }
1232
1233 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1234 retval = -ENOMEM;
1235 if (!dio)
1236 goto out;
1237
1238 /*
1239 * For block device access DIO_NO_LOCKING is used,
1240 * neither readers nor writers do any locking at all
1241 * For regular files using DIO_LOCKING,
1b1dcc1b
JS
1242 * readers need to grab i_mutex and i_alloc_sem
1243 * writers need to grab i_alloc_sem only (i_mutex is already held)
1da177e4
LT
1244 * For regular files using DIO_OWN_LOCKING,
1245 * neither readers nor writers take any locks here
1da177e4
LT
1246 */
1247 dio->lock_type = dio_lock_type;
1248 if (dio_lock_type != DIO_NO_LOCKING) {
1249 /* watch out for a 0 len io from a tricksy fs */
1250 if (rw == READ && end > offset) {
1251 struct address_space *mapping;
1252
1253 mapping = iocb->ki_filp->f_mapping;
1254 if (dio_lock_type != DIO_OWN_LOCKING) {
1b1dcc1b 1255 mutex_lock(&inode->i_mutex);
3fb962bd 1256 release_i_mutex = 1;
1da177e4
LT
1257 }
1258
1259 retval = filemap_write_and_wait_range(mapping, offset,
1260 end - 1);
1261 if (retval) {
1262 kfree(dio);
1263 goto out;
1264 }
1265
1266 if (dio_lock_type == DIO_OWN_LOCKING) {
1b1dcc1b 1267 mutex_unlock(&inode->i_mutex);
3fb962bd 1268 acquire_i_mutex = 1;
1da177e4
LT
1269 }
1270 }
1271
1272 if (dio_lock_type == DIO_LOCKING)
d8aa905b
IM
1273 /* lockdep: not the owner will release it */
1274 down_read_non_owner(&inode->i_alloc_sem);
1da177e4
LT
1275 }
1276
1277 /*
1278 * For file extending writes updating i_size before data
1279 * writeouts complete can expose uninitialized blocks. So
1280 * even for AIO, we need to wait for i/o to complete before
1281 * returning in this case.
1282 */
b31dc66a 1283 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1da177e4
LT
1284 (end > i_size_read(inode)));
1285
1286 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1d8fa7a2 1287 nr_segs, blkbits, get_block, end_io, dio);
1da177e4
LT
1288
1289 if (rw == READ && dio_lock_type == DIO_LOCKING)
3fb962bd 1290 release_i_mutex = 0;
1da177e4
LT
1291
1292out:
3fb962bd 1293 if (release_i_mutex)
1b1dcc1b 1294 mutex_unlock(&inode->i_mutex);
3fb962bd
NS
1295 else if (acquire_i_mutex)
1296 mutex_lock(&inode->i_mutex);
1da177e4
LT
1297 return retval;
1298}
1299EXPORT_SYMBOL(__blockdev_direct_IO);