]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/direct-io.c
[PATCH] dio: formalize bio counters as a dio reference count
[net-next-2.6.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 akpm@zip.com.au
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
38#include <asm/atomic.h>
39
40/*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
43 */
44#define DIO_PAGES 64
45
46/*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 *
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
1b1dcc1b 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
1da177e4
LT
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
63 */
64
65struct dio {
66 /* BIO submission state */
67 struct bio *bio; /* bio under assembly */
68 struct inode *inode;
69 int rw;
29504ff3 70 loff_t i_size; /* i_size when submitted */
1da177e4
LT
71 int lock_type; /* doesn't change */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 size_t size; /* total request size (doesn't change)*/
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 sector_t final_block_in_request;/* doesn't change */
87 unsigned first_block_in_page; /* doesn't change, Used only once */
88 int boundary; /* prev block is at a boundary */
89 int reap_counter; /* rate limit reaping */
1d8fa7a2 90 get_block_t *get_block; /* block mapping function */
1da177e4
LT
91 dio_iodone_t *end_io; /* IO completion function */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
1d8fa7a2 95 struct buffer_head map_bh; /* last get_block() result */
1da177e4
LT
96
97 /*
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
101 */
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
106
107 /*
108 * Page fetching state. These variables belong to dio_refill_pages().
109 */
110 int curr_page; /* changes */
111 int total_pages; /* doesn't change */
112 unsigned long curr_user_address;/* changes */
113
114 /*
115 * Page queue. These variables belong to dio_refill_pages() and
116 * dio_get_page().
117 */
118 struct page *pages[DIO_PAGES]; /* page buffer */
119 unsigned head; /* next page to process */
120 unsigned tail; /* last valid page + 1 */
121 int page_errors; /* errno from get_user_pages() */
122
123 /* BIO completion state */
0273201e 124 atomic_t refcount; /* direct_io_worker() and bios */
1da177e4 125 spinlock_t bio_lock; /* protects BIO fields below */
1da177e4
LT
126 struct bio *bio_list; /* singly linked via bi_private */
127 struct task_struct *waiter; /* waiting task (NULL if none) */
128
129 /* AIO related stuff */
130 struct kiocb *iocb; /* kiocb */
131 int is_async; /* is IO async ? */
174e27c6 132 int io_error; /* IO error in completion path */
1da177e4
LT
133 ssize_t result; /* IO result */
134};
135
136/*
137 * How many pages are in the queue?
138 */
139static inline unsigned dio_pages_present(struct dio *dio)
140{
141 return dio->tail - dio->head;
142}
143
144/*
145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
146 */
147static int dio_refill_pages(struct dio *dio)
148{
149 int ret;
150 int nr_pages;
151
152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 down_read(&current->mm->mmap_sem);
154 ret = get_user_pages(
155 current, /* Task for fault acounting */
156 current->mm, /* whose pages? */
157 dio->curr_user_address, /* Where from? */
158 nr_pages, /* How many pages? */
159 dio->rw == READ, /* Write to memory? */
160 0, /* force (?) */
161 &dio->pages[0],
162 NULL); /* vmas */
163 up_read(&current->mm->mmap_sem);
164
b31dc66a 165 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
b5810039 166 struct page *page = ZERO_PAGE(dio->curr_user_address);
1da177e4
LT
167 /*
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
171 */
172 if (dio->page_errors == 0)
173 dio->page_errors = ret;
b5810039
NP
174 page_cache_get(page);
175 dio->pages[0] = page;
1da177e4
LT
176 dio->head = 0;
177 dio->tail = 1;
178 ret = 0;
179 goto out;
180 }
181
182 if (ret >= 0) {
183 dio->curr_user_address += ret * PAGE_SIZE;
184 dio->curr_page += ret;
185 dio->head = 0;
186 dio->tail = ret;
187 ret = 0;
188 }
189out:
190 return ret;
191}
192
193/*
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
197 * L1 cache.
198 */
199static struct page *dio_get_page(struct dio *dio)
200{
201 if (dio_pages_present(dio) == 0) {
202 int ret;
203
204 ret = dio_refill_pages(dio);
205 if (ret)
206 return ERR_PTR(ret);
207 BUG_ON(dio_pages_present(dio) == 0);
208 }
209 return dio->pages[dio->head++];
210}
211
6d544bb4
ZB
212/**
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
215 *
216 * This releases locks as dictated by the locking type, lets interested parties
217 * know that a DIO operation has completed, and calculates the resulting return
218 * code for the operation.
219 *
220 * It lets the filesystem know if it registered an interest earlier via
221 * get_block. Pass the private field of the map buffer_head so that
222 * filesystems can use it to hold additional state between get_block calls and
223 * dio_complete.
1da177e4 224 */
6d544bb4 225static int dio_complete(struct dio *dio, loff_t offset, int ret)
1da177e4 226{
6d544bb4
ZB
227 ssize_t transferred = 0;
228
229 if (dio->result) {
230 transferred = dio->result;
231
232 /* Check for short read case */
233 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
234 transferred = dio->i_size - offset;
235 }
236
1da177e4 237 if (dio->end_io && dio->result)
6d544bb4
ZB
238 dio->end_io(dio->iocb, offset, transferred,
239 dio->map_bh.b_private);
1da177e4 240 if (dio->lock_type == DIO_LOCKING)
d8aa905b
IM
241 /* lockdep: non-owner release */
242 up_read_non_owner(&dio->inode->i_alloc_sem);
6d544bb4
ZB
243
244 if (ret == 0)
245 ret = dio->page_errors;
246 if (ret == 0)
247 ret = dio->io_error;
248 if (ret == 0)
249 ret = transferred;
250
251 return ret;
1da177e4
LT
252}
253
254/*
255 * Called when a BIO has been processed. If the count goes to zero then IO is
256 * complete and we can signal this to the AIO layer.
257 */
0273201e 258static void dio_complete_aio(struct dio *dio)
1da177e4
LT
259{
260 unsigned long flags;
0273201e 261 int ret;
1da177e4 262
0273201e 263 ret = dio_complete(dio, dio->iocb->ki_pos, 0);
29504ff3 264
0273201e
ZB
265 /* Complete AIO later if falling back to buffered i/o */
266 if (dio->result == dio->size ||
267 ((dio->rw == READ) && dio->result)) {
268 aio_complete(dio->iocb, ret, 0);
269 kfree(dio);
270 } else {
271 /*
272 * Falling back to buffered
273 */
274 spin_lock_irqsave(&dio->bio_lock, flags);
275 if (dio->waiter)
276 wake_up_process(dio->waiter);
277 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4 278 }
1da177e4
LT
279}
280
281static int dio_bio_complete(struct dio *dio, struct bio *bio);
282/*
283 * Asynchronous IO callback.
284 */
285static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
286{
287 struct dio *dio = bio->bi_private;
288
289 if (bio->bi_size)
290 return 1;
291
292 /* cleanup the bio */
293 dio_bio_complete(dio, bio);
0273201e
ZB
294
295 if (atomic_dec_and_test(&dio->refcount))
296 dio_complete_aio(dio);
297
1da177e4
LT
298 return 0;
299}
300
301/*
302 * The BIO completion handler simply queues the BIO up for the process-context
303 * handler.
304 *
305 * During I/O bi_private points at the dio. After I/O, bi_private is used to
306 * implement a singly-linked list of completed BIOs, at dio->bio_list.
307 */
308static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
309{
310 struct dio *dio = bio->bi_private;
311 unsigned long flags;
312
313 if (bio->bi_size)
314 return 1;
315
316 spin_lock_irqsave(&dio->bio_lock, flags);
317 bio->bi_private = dio->bio_list;
318 dio->bio_list = bio;
0273201e 319 if ((atomic_sub_return(1, &dio->refcount) == 1) && dio->waiter)
1da177e4
LT
320 wake_up_process(dio->waiter);
321 spin_unlock_irqrestore(&dio->bio_lock, flags);
322 return 0;
323}
324
325static int
326dio_bio_alloc(struct dio *dio, struct block_device *bdev,
327 sector_t first_sector, int nr_vecs)
328{
329 struct bio *bio;
330
331 bio = bio_alloc(GFP_KERNEL, nr_vecs);
332 if (bio == NULL)
333 return -ENOMEM;
334
335 bio->bi_bdev = bdev;
336 bio->bi_sector = first_sector;
337 if (dio->is_async)
338 bio->bi_end_io = dio_bio_end_aio;
339 else
340 bio->bi_end_io = dio_bio_end_io;
341
342 dio->bio = bio;
343 return 0;
344}
345
346/*
347 * In the AIO read case we speculatively dirty the pages before starting IO.
348 * During IO completion, any of these pages which happen to have been written
349 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
350 *
351 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4
LT
352 */
353static void dio_bio_submit(struct dio *dio)
354{
355 struct bio *bio = dio->bio;
1da177e4
LT
356
357 bio->bi_private = dio;
0273201e 358 atomic_inc(&dio->refcount);
1da177e4
LT
359 if (dio->is_async && dio->rw == READ)
360 bio_set_pages_dirty(bio);
361 submit_bio(dio->rw, bio);
362
363 dio->bio = NULL;
364 dio->boundary = 0;
365}
366
367/*
368 * Release any resources in case of a failure
369 */
370static void dio_cleanup(struct dio *dio)
371{
372 while (dio_pages_present(dio))
373 page_cache_release(dio_get_page(dio));
374}
375
0273201e
ZB
376static int wait_for_more_bios(struct dio *dio)
377{
378 assert_spin_locked(&dio->bio_lock);
379
380 return (atomic_read(&dio->refcount) > 1) && (dio->bio_list == NULL);
381}
382
1da177e4 383/*
0273201e
ZB
384 * Wait for the next BIO to complete. Remove it and return it. NULL is
385 * returned once all BIOs have been completed. This must only be called once
386 * all bios have been issued so that dio->refcount can only decrease. This
387 * requires that that the caller hold a reference on the dio.
1da177e4
LT
388 */
389static struct bio *dio_await_one(struct dio *dio)
390{
391 unsigned long flags;
0273201e 392 struct bio *bio = NULL;
1da177e4
LT
393
394 spin_lock_irqsave(&dio->bio_lock, flags);
0273201e 395 while (wait_for_more_bios(dio)) {
1da177e4 396 set_current_state(TASK_UNINTERRUPTIBLE);
0273201e 397 if (wait_for_more_bios(dio)) {
1da177e4
LT
398 dio->waiter = current;
399 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
400 io_schedule();
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 dio->waiter = NULL;
403 }
404 set_current_state(TASK_RUNNING);
405 }
0273201e
ZB
406 if (dio->bio_list) {
407 bio = dio->bio_list;
408 dio->bio_list = bio->bi_private;
409 }
1da177e4
LT
410 spin_unlock_irqrestore(&dio->bio_lock, flags);
411 return bio;
412}
413
414/*
415 * Process one completed BIO. No locks are held.
416 */
417static int dio_bio_complete(struct dio *dio, struct bio *bio)
418{
419 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
420 struct bio_vec *bvec = bio->bi_io_vec;
421 int page_no;
422
423 if (!uptodate)
174e27c6 424 dio->io_error = -EIO;
1da177e4
LT
425
426 if (dio->is_async && dio->rw == READ) {
427 bio_check_pages_dirty(bio); /* transfers ownership */
428 } else {
429 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
430 struct page *page = bvec[page_no].bv_page;
431
432 if (dio->rw == READ && !PageCompound(page))
433 set_page_dirty_lock(page);
434 page_cache_release(page);
435 }
436 bio_put(bio);
437 }
1da177e4
LT
438 return uptodate ? 0 : -EIO;
439}
440
441/*
0273201e
ZB
442 * Wait on and process all in-flight BIOs. This must only be called once
443 * all bios have been issued so that the refcount can only decrease.
444 * This just waits for all bios to make it through dio_bio_complete. IO
445 * errors are propogated through dio->io_error and should be propogated via
446 * dio_complete().
1da177e4 447 */
6d544bb4 448static void dio_await_completion(struct dio *dio)
1da177e4 449{
0273201e
ZB
450 struct bio *bio;
451 do {
452 bio = dio_await_one(dio);
453 if (bio)
454 dio_bio_complete(dio, bio);
455 } while (bio);
1da177e4
LT
456}
457
458/*
459 * A really large O_DIRECT read or write can generate a lot of BIOs. So
460 * to keep the memory consumption sane we periodically reap any completed BIOs
461 * during the BIO generation phase.
462 *
463 * This also helps to limit the peak amount of pinned userspace memory.
464 */
465static int dio_bio_reap(struct dio *dio)
466{
467 int ret = 0;
468
469 if (dio->reap_counter++ >= 64) {
470 while (dio->bio_list) {
471 unsigned long flags;
472 struct bio *bio;
473 int ret2;
474
475 spin_lock_irqsave(&dio->bio_lock, flags);
476 bio = dio->bio_list;
477 dio->bio_list = bio->bi_private;
478 spin_unlock_irqrestore(&dio->bio_lock, flags);
479 ret2 = dio_bio_complete(dio, bio);
480 if (ret == 0)
481 ret = ret2;
482 }
483 dio->reap_counter = 0;
484 }
485 return ret;
486}
487
488/*
489 * Call into the fs to map some more disk blocks. We record the current number
490 * of available blocks at dio->blocks_available. These are in units of the
491 * fs blocksize, (1 << inode->i_blkbits).
492 *
493 * The fs is allowed to map lots of blocks at once. If it wants to do that,
494 * it uses the passed inode-relative block number as the file offset, as usual.
495 *
1d8fa7a2 496 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
497 * has remaining to do. The fs should not map more than this number of blocks.
498 *
499 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
500 * indicate how much contiguous disk space has been made available at
501 * bh->b_blocknr.
502 *
503 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
504 * This isn't very efficient...
505 *
506 * In the case of filesystem holes: the fs may return an arbitrarily-large
507 * hole by returning an appropriate value in b_size and by clearing
508 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 509 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4
LT
510 */
511static int get_more_blocks(struct dio *dio)
512{
513 int ret;
514 struct buffer_head *map_bh = &dio->map_bh;
515 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
516 unsigned long fs_count; /* Number of filesystem-sized blocks */
517 unsigned long dio_count;/* Number of dio_block-sized blocks */
518 unsigned long blkmask;
519 int create;
520
521 /*
522 * If there was a memory error and we've overwritten all the
523 * mapped blocks then we can now return that memory error
524 */
525 ret = dio->page_errors;
526 if (ret == 0) {
1da177e4
LT
527 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
528 fs_startblk = dio->block_in_file >> dio->blkfactor;
529 dio_count = dio->final_block_in_request - dio->block_in_file;
530 fs_count = dio_count >> dio->blkfactor;
531 blkmask = (1 << dio->blkfactor) - 1;
532 if (dio_count & blkmask)
533 fs_count++;
534
3c674e74
NS
535 map_bh->b_state = 0;
536 map_bh->b_size = fs_count << dio->inode->i_blkbits;
537
b31dc66a 538 create = dio->rw & WRITE;
1da177e4
LT
539 if (dio->lock_type == DIO_LOCKING) {
540 if (dio->block_in_file < (i_size_read(dio->inode) >>
541 dio->blkbits))
542 create = 0;
543 } else if (dio->lock_type == DIO_NO_LOCKING) {
544 create = 0;
545 }
3c674e74 546
1da177e4
LT
547 /*
548 * For writes inside i_size we forbid block creations: only
549 * overwrites are permitted. We fall back to buffered writes
550 * at a higher level for inside-i_size block-instantiating
551 * writes.
552 */
1d8fa7a2 553 ret = (*dio->get_block)(dio->inode, fs_startblk,
1da177e4
LT
554 map_bh, create);
555 }
556 return ret;
557}
558
559/*
560 * There is no bio. Make one now.
561 */
562static int dio_new_bio(struct dio *dio, sector_t start_sector)
563{
564 sector_t sector;
565 int ret, nr_pages;
566
567 ret = dio_bio_reap(dio);
568 if (ret)
569 goto out;
570 sector = start_sector << (dio->blkbits - 9);
571 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
572 BUG_ON(nr_pages <= 0);
573 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
574 dio->boundary = 0;
575out:
576 return ret;
577}
578
579/*
580 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
581 * that was successful then update final_block_in_bio and take a ref against
582 * the just-added page.
583 *
584 * Return zero on success. Non-zero means the caller needs to start a new BIO.
585 */
586static int dio_bio_add_page(struct dio *dio)
587{
588 int ret;
589
590 ret = bio_add_page(dio->bio, dio->cur_page,
591 dio->cur_page_len, dio->cur_page_offset);
592 if (ret == dio->cur_page_len) {
593 /*
594 * Decrement count only, if we are done with this page
595 */
596 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
597 dio->pages_in_io--;
598 page_cache_get(dio->cur_page);
599 dio->final_block_in_bio = dio->cur_page_block +
600 (dio->cur_page_len >> dio->blkbits);
601 ret = 0;
602 } else {
603 ret = 1;
604 }
605 return ret;
606}
607
608/*
609 * Put cur_page under IO. The section of cur_page which is described by
610 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
611 * starts on-disk at cur_page_block.
612 *
613 * We take a ref against the page here (on behalf of its presence in the bio).
614 *
615 * The caller of this function is responsible for removing cur_page from the
616 * dio, and for dropping the refcount which came from that presence.
617 */
618static int dio_send_cur_page(struct dio *dio)
619{
620 int ret = 0;
621
622 if (dio->bio) {
623 /*
624 * See whether this new request is contiguous with the old
625 */
626 if (dio->final_block_in_bio != dio->cur_page_block)
627 dio_bio_submit(dio);
628 /*
629 * Submit now if the underlying fs is about to perform a
630 * metadata read
631 */
632 if (dio->boundary)
633 dio_bio_submit(dio);
634 }
635
636 if (dio->bio == NULL) {
637 ret = dio_new_bio(dio, dio->cur_page_block);
638 if (ret)
639 goto out;
640 }
641
642 if (dio_bio_add_page(dio) != 0) {
643 dio_bio_submit(dio);
644 ret = dio_new_bio(dio, dio->cur_page_block);
645 if (ret == 0) {
646 ret = dio_bio_add_page(dio);
647 BUG_ON(ret != 0);
648 }
649 }
650out:
651 return ret;
652}
653
654/*
655 * An autonomous function to put a chunk of a page under deferred IO.
656 *
657 * The caller doesn't actually know (or care) whether this piece of page is in
658 * a BIO, or is under IO or whatever. We just take care of all possible
659 * situations here. The separation between the logic of do_direct_IO() and
660 * that of submit_page_section() is important for clarity. Please don't break.
661 *
662 * The chunk of page starts on-disk at blocknr.
663 *
664 * We perform deferred IO, by recording the last-submitted page inside our
665 * private part of the dio structure. If possible, we just expand the IO
666 * across that page here.
667 *
668 * If that doesn't work out then we put the old page into the bio and add this
669 * page to the dio instead.
670 */
671static int
672submit_page_section(struct dio *dio, struct page *page,
673 unsigned offset, unsigned len, sector_t blocknr)
674{
675 int ret = 0;
676
98c4d57d
AM
677 if (dio->rw & WRITE) {
678 /*
679 * Read accounting is performed in submit_bio()
680 */
681 task_io_account_write(len);
682 }
683
1da177e4
LT
684 /*
685 * Can we just grow the current page's presence in the dio?
686 */
687 if ( (dio->cur_page == page) &&
688 (dio->cur_page_offset + dio->cur_page_len == offset) &&
689 (dio->cur_page_block +
690 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
691 dio->cur_page_len += len;
692
693 /*
694 * If dio->boundary then we want to schedule the IO now to
695 * avoid metadata seeks.
696 */
697 if (dio->boundary) {
698 ret = dio_send_cur_page(dio);
699 page_cache_release(dio->cur_page);
700 dio->cur_page = NULL;
701 }
702 goto out;
703 }
704
705 /*
706 * If there's a deferred page already there then send it.
707 */
708 if (dio->cur_page) {
709 ret = dio_send_cur_page(dio);
710 page_cache_release(dio->cur_page);
711 dio->cur_page = NULL;
712 if (ret)
713 goto out;
714 }
715
716 page_cache_get(page); /* It is in dio */
717 dio->cur_page = page;
718 dio->cur_page_offset = offset;
719 dio->cur_page_len = len;
720 dio->cur_page_block = blocknr;
721out:
722 return ret;
723}
724
725/*
726 * Clean any dirty buffers in the blockdev mapping which alias newly-created
727 * file blocks. Only called for S_ISREG files - blockdevs do not set
728 * buffer_new
729 */
730static void clean_blockdev_aliases(struct dio *dio)
731{
732 unsigned i;
733 unsigned nblocks;
734
735 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
736
737 for (i = 0; i < nblocks; i++) {
738 unmap_underlying_metadata(dio->map_bh.b_bdev,
739 dio->map_bh.b_blocknr + i);
740 }
741}
742
743/*
744 * If we are not writing the entire block and get_block() allocated
745 * the block for us, we need to fill-in the unused portion of the
746 * block with zeros. This happens only if user-buffer, fileoffset or
747 * io length is not filesystem block-size multiple.
748 *
749 * `end' is zero if we're doing the start of the IO, 1 at the end of the
750 * IO.
751 */
752static void dio_zero_block(struct dio *dio, int end)
753{
754 unsigned dio_blocks_per_fs_block;
755 unsigned this_chunk_blocks; /* In dio_blocks */
756 unsigned this_chunk_bytes;
757 struct page *page;
758
759 dio->start_zero_done = 1;
760 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
761 return;
762
763 dio_blocks_per_fs_block = 1 << dio->blkfactor;
764 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
765
766 if (!this_chunk_blocks)
767 return;
768
769 /*
770 * We need to zero out part of an fs block. It is either at the
771 * beginning or the end of the fs block.
772 */
773 if (end)
774 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
775
776 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
777
778 page = ZERO_PAGE(dio->curr_user_address);
779 if (submit_page_section(dio, page, 0, this_chunk_bytes,
780 dio->next_block_for_io))
781 return;
782
783 dio->next_block_for_io += this_chunk_blocks;
784}
785
786/*
787 * Walk the user pages, and the file, mapping blocks to disk and generating
788 * a sequence of (page,offset,len,block) mappings. These mappings are injected
789 * into submit_page_section(), which takes care of the next stage of submission
790 *
791 * Direct IO against a blockdev is different from a file. Because we can
792 * happily perform page-sized but 512-byte aligned IOs. It is important that
793 * blockdev IO be able to have fine alignment and large sizes.
794 *
1d8fa7a2 795 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
796 * with the size of IO which is permitted at this offset and this i_blkbits.
797 *
798 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 799 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
800 * fine alignment but still allows this function to work in PAGE_SIZE units.
801 */
802static int do_direct_IO(struct dio *dio)
803{
804 const unsigned blkbits = dio->blkbits;
805 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
806 struct page *page;
807 unsigned block_in_page;
808 struct buffer_head *map_bh = &dio->map_bh;
809 int ret = 0;
810
811 /* The I/O can start at any block offset within the first page */
812 block_in_page = dio->first_block_in_page;
813
814 while (dio->block_in_file < dio->final_block_in_request) {
815 page = dio_get_page(dio);
816 if (IS_ERR(page)) {
817 ret = PTR_ERR(page);
818 goto out;
819 }
820
821 while (block_in_page < blocks_per_page) {
822 unsigned offset_in_page = block_in_page << blkbits;
823 unsigned this_chunk_bytes; /* # of bytes mapped */
824 unsigned this_chunk_blocks; /* # of blocks */
825 unsigned u;
826
827 if (dio->blocks_available == 0) {
828 /*
829 * Need to go and map some more disk
830 */
831 unsigned long blkmask;
832 unsigned long dio_remainder;
833
834 ret = get_more_blocks(dio);
835 if (ret) {
836 page_cache_release(page);
837 goto out;
838 }
839 if (!buffer_mapped(map_bh))
840 goto do_holes;
841
842 dio->blocks_available =
843 map_bh->b_size >> dio->blkbits;
844 dio->next_block_for_io =
845 map_bh->b_blocknr << dio->blkfactor;
846 if (buffer_new(map_bh))
847 clean_blockdev_aliases(dio);
848
849 if (!dio->blkfactor)
850 goto do_holes;
851
852 blkmask = (1 << dio->blkfactor) - 1;
853 dio_remainder = (dio->block_in_file & blkmask);
854
855 /*
856 * If we are at the start of IO and that IO
857 * starts partway into a fs-block,
858 * dio_remainder will be non-zero. If the IO
859 * is a read then we can simply advance the IO
860 * cursor to the first block which is to be
861 * read. But if the IO is a write and the
862 * block was newly allocated we cannot do that;
863 * the start of the fs block must be zeroed out
864 * on-disk
865 */
866 if (!buffer_new(map_bh))
867 dio->next_block_for_io += dio_remainder;
868 dio->blocks_available -= dio_remainder;
869 }
870do_holes:
871 /* Handle holes */
872 if (!buffer_mapped(map_bh)) {
873 char *kaddr;
35dc8161 874 loff_t i_size_aligned;
1da177e4
LT
875
876 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 877 if (dio->rw & WRITE) {
1da177e4
LT
878 page_cache_release(page);
879 return -ENOTBLK;
880 }
881
35dc8161
JM
882 /*
883 * Be sure to account for a partial block as the
884 * last block in the file
885 */
886 i_size_aligned = ALIGN(i_size_read(dio->inode),
887 1 << blkbits);
1da177e4 888 if (dio->block_in_file >=
35dc8161 889 i_size_aligned >> blkbits) {
1da177e4
LT
890 /* We hit eof */
891 page_cache_release(page);
892 goto out;
893 }
894 kaddr = kmap_atomic(page, KM_USER0);
895 memset(kaddr + (block_in_page << blkbits),
896 0, 1 << blkbits);
897 flush_dcache_page(page);
898 kunmap_atomic(kaddr, KM_USER0);
899 dio->block_in_file++;
900 block_in_page++;
901 goto next_block;
902 }
903
904 /*
905 * If we're performing IO which has an alignment which
906 * is finer than the underlying fs, go check to see if
907 * we must zero out the start of this block.
908 */
909 if (unlikely(dio->blkfactor && !dio->start_zero_done))
910 dio_zero_block(dio, 0);
911
912 /*
913 * Work out, in this_chunk_blocks, how much disk we
914 * can add to this page
915 */
916 this_chunk_blocks = dio->blocks_available;
917 u = (PAGE_SIZE - offset_in_page) >> blkbits;
918 if (this_chunk_blocks > u)
919 this_chunk_blocks = u;
920 u = dio->final_block_in_request - dio->block_in_file;
921 if (this_chunk_blocks > u)
922 this_chunk_blocks = u;
923 this_chunk_bytes = this_chunk_blocks << blkbits;
924 BUG_ON(this_chunk_bytes == 0);
925
926 dio->boundary = buffer_boundary(map_bh);
927 ret = submit_page_section(dio, page, offset_in_page,
928 this_chunk_bytes, dio->next_block_for_io);
929 if (ret) {
930 page_cache_release(page);
931 goto out;
932 }
933 dio->next_block_for_io += this_chunk_blocks;
934
935 dio->block_in_file += this_chunk_blocks;
936 block_in_page += this_chunk_blocks;
937 dio->blocks_available -= this_chunk_blocks;
938next_block:
d4569d2e 939 BUG_ON(dio->block_in_file > dio->final_block_in_request);
1da177e4
LT
940 if (dio->block_in_file == dio->final_block_in_request)
941 break;
942 }
943
944 /* Drop the ref which was taken in get_user_pages() */
945 page_cache_release(page);
946 block_in_page = 0;
947 }
948out:
949 return ret;
950}
951
952/*
1b1dcc1b 953 * Releases both i_mutex and i_alloc_sem
1da177e4
LT
954 */
955static ssize_t
956direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
957 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1d8fa7a2 958 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
959 struct dio *dio)
960{
961 unsigned long user_addr;
962 int seg;
963 ssize_t ret = 0;
964 ssize_t ret2;
965 size_t bytes;
966
967 dio->bio = NULL;
968 dio->inode = inode;
969 dio->rw = rw;
970 dio->blkbits = blkbits;
971 dio->blkfactor = inode->i_blkbits - blkbits;
972 dio->start_zero_done = 0;
973 dio->size = 0;
974 dio->block_in_file = offset >> blkbits;
975 dio->blocks_available = 0;
976 dio->cur_page = NULL;
977
978 dio->boundary = 0;
979 dio->reap_counter = 0;
1d8fa7a2 980 dio->get_block = get_block;
1da177e4
LT
981 dio->end_io = end_io;
982 dio->map_bh.b_private = NULL;
983 dio->final_block_in_bio = -1;
984 dio->next_block_for_io = -1;
985
986 dio->page_errors = 0;
174e27c6 987 dio->io_error = 0;
1da177e4
LT
988 dio->result = 0;
989 dio->iocb = iocb;
29504ff3 990 dio->i_size = i_size_read(inode);
1da177e4 991
0273201e 992 atomic_set(&dio->refcount, 1);
1da177e4
LT
993 spin_lock_init(&dio->bio_lock);
994 dio->bio_list = NULL;
995 dio->waiter = NULL;
996
997 /*
998 * In case of non-aligned buffers, we may need 2 more
999 * pages since we need to zero out first and last block.
1000 */
1001 if (unlikely(dio->blkfactor))
1002 dio->pages_in_io = 2;
1003 else
1004 dio->pages_in_io = 0;
1005
1006 for (seg = 0; seg < nr_segs; seg++) {
1007 user_addr = (unsigned long)iov[seg].iov_base;
1008 dio->pages_in_io +=
1009 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1010 - user_addr/PAGE_SIZE);
1011 }
1012
1013 for (seg = 0; seg < nr_segs; seg++) {
1014 user_addr = (unsigned long)iov[seg].iov_base;
1015 dio->size += bytes = iov[seg].iov_len;
1016
1017 /* Index into the first page of the first block */
1018 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1019 dio->final_block_in_request = dio->block_in_file +
1020 (bytes >> blkbits);
1021 /* Page fetching state */
1022 dio->head = 0;
1023 dio->tail = 0;
1024 dio->curr_page = 0;
1025
1026 dio->total_pages = 0;
1027 if (user_addr & (PAGE_SIZE-1)) {
1028 dio->total_pages++;
1029 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1030 }
1031 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1032 dio->curr_user_address = user_addr;
1033
1034 ret = do_direct_IO(dio);
1035
1036 dio->result += iov[seg].iov_len -
1037 ((dio->final_block_in_request - dio->block_in_file) <<
1038 blkbits);
1039
1040 if (ret) {
1041 dio_cleanup(dio);
1042 break;
1043 }
1044 } /* end iovec loop */
1045
b31dc66a 1046 if (ret == -ENOTBLK && (rw & WRITE)) {
1da177e4
LT
1047 /*
1048 * The remaining part of the request will be
1049 * be handled by buffered I/O when we return
1050 */
1051 ret = 0;
1052 }
1053 /*
1054 * There may be some unwritten disk at the end of a part-written
1055 * fs-block-sized block. Go zero that now.
1056 */
1057 dio_zero_block(dio, 1);
1058
1059 if (dio->cur_page) {
1060 ret2 = dio_send_cur_page(dio);
1061 if (ret == 0)
1062 ret = ret2;
1063 page_cache_release(dio->cur_page);
1064 dio->cur_page = NULL;
1065 }
1066 if (dio->bio)
1067 dio_bio_submit(dio);
1068
17a7b1d7
ZB
1069 /* All IO is now issued, send it on its way */
1070 blk_run_address_space(inode->i_mapping);
1071
1da177e4
LT
1072 /*
1073 * It is possible that, we return short IO due to end of file.
1074 * In that case, we need to release all the pages we got hold on.
1075 */
1076 dio_cleanup(dio);
1077
1078 /*
1079 * All block lookups have been performed. For READ requests
1b1dcc1b 1080 * we can let i_mutex go now that its achieved its purpose
1da177e4
LT
1081 * of protecting us from looking up uninitialized blocks.
1082 */
1083 if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1b1dcc1b 1084 mutex_unlock(&dio->inode->i_mutex);
1da177e4
LT
1085
1086 /*
1087 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1088 * reflect the number of to-be-processed BIOs.
1089 */
1090 if (dio->is_async) {
1091 int should_wait = 0;
1092
b31dc66a 1093 if (dio->result < dio->size && (rw & WRITE)) {
1da177e4
LT
1094 dio->waiter = current;
1095 should_wait = 1;
1096 }
1097 if (ret == 0)
1098 ret = dio->result;
0273201e
ZB
1099
1100 /* this can free the dio */
1101 if (atomic_dec_and_test(&dio->refcount))
1102 dio_complete_aio(dio);
1103
1da177e4
LT
1104 if (should_wait) {
1105 unsigned long flags;
1106 /*
1107 * Wait for already issued I/O to drain out and
1108 * release its references to user-space pages
1109 * before returning to fallback on buffered I/O
1110 */
1111
1112 spin_lock_irqsave(&dio->bio_lock, flags);
1113 set_current_state(TASK_UNINTERRUPTIBLE);
0273201e 1114 while (atomic_read(&dio->refcount)) {
1da177e4
LT
1115 spin_unlock_irqrestore(&dio->bio_lock, flags);
1116 io_schedule();
1117 spin_lock_irqsave(&dio->bio_lock, flags);
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 }
1120 spin_unlock_irqrestore(&dio->bio_lock, flags);
1121 set_current_state(TASK_RUNNING);
1122 kfree(dio);
1123 }
1124 } else {
6d544bb4 1125 dio_await_completion(dio);
1da177e4 1126
6d544bb4 1127 ret = dio_complete(dio, offset, ret);
1da177e4
LT
1128
1129 /* We could have also come here on an AIO file extend */
b31dc66a 1130 if (!is_sync_kiocb(iocb) && (rw & WRITE) &&
1da177e4
LT
1131 ret >= 0 && dio->result == dio->size)
1132 /*
1133 * For AIO writes where we have completed the
1134 * i/o, we have to mark the the aio complete.
1135 */
1136 aio_complete(iocb, ret, 0);
0273201e
ZB
1137
1138 if (atomic_dec_and_test(&dio->refcount))
1139 kfree(dio);
1140 else
1141 BUG();
1da177e4
LT
1142 }
1143 return ret;
1144}
1145
1146/*
1147 * This is a library function for use by filesystem drivers.
1148 * The locking rules are governed by the dio_lock_type parameter.
1149 *
1150 * DIO_NO_LOCKING (no locking, for raw block device access)
1b1dcc1b 1151 * For writes, i_mutex is not held on entry; it is never taken.
1da177e4
LT
1152 *
1153 * DIO_LOCKING (simple locking for regular files)
3fb962bd
NS
1154 * For writes we are called under i_mutex and return with i_mutex held, even
1155 * though it is internally dropped.
1b1dcc1b 1156 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1da177e4
LT
1157 * returning.
1158 *
1159 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1160 * uninitialised data, allowing parallel direct readers and writers)
1b1dcc1b 1161 * For writes we are called without i_mutex, return without it, never touch it.
3fb962bd
NS
1162 * For reads we are called under i_mutex and return with i_mutex held, even
1163 * though it may be internally dropped.
1da177e4
LT
1164 *
1165 * Additional i_alloc_sem locking requirements described inline below.
1166 */
1167ssize_t
1168__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1169 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1d8fa7a2 1170 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
1171 int dio_lock_type)
1172{
1173 int seg;
1174 size_t size;
1175 unsigned long addr;
1176 unsigned blkbits = inode->i_blkbits;
1177 unsigned bdev_blkbits = 0;
1178 unsigned blocksize_mask = (1 << blkbits) - 1;
1179 ssize_t retval = -EINVAL;
1180 loff_t end = offset;
1181 struct dio *dio;
3fb962bd
NS
1182 int release_i_mutex = 0;
1183 int acquire_i_mutex = 0;
1da177e4
LT
1184
1185 if (rw & WRITE)
b31dc66a 1186 rw = WRITE_SYNC;
1da177e4
LT
1187
1188 if (bdev)
1189 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1190
1191 if (offset & blocksize_mask) {
1192 if (bdev)
1193 blkbits = bdev_blkbits;
1194 blocksize_mask = (1 << blkbits) - 1;
1195 if (offset & blocksize_mask)
1196 goto out;
1197 }
1198
1199 /* Check the memory alignment. Blocks cannot straddle pages */
1200 for (seg = 0; seg < nr_segs; seg++) {
1201 addr = (unsigned long)iov[seg].iov_base;
1202 size = iov[seg].iov_len;
1203 end += size;
1204 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1205 if (bdev)
1206 blkbits = bdev_blkbits;
1207 blocksize_mask = (1 << blkbits) - 1;
1208 if ((addr & blocksize_mask) || (size & blocksize_mask))
1209 goto out;
1210 }
1211 }
1212
1213 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1214 retval = -ENOMEM;
1215 if (!dio)
1216 goto out;
1217
1218 /*
1219 * For block device access DIO_NO_LOCKING is used,
1220 * neither readers nor writers do any locking at all
1221 * For regular files using DIO_LOCKING,
1b1dcc1b
JS
1222 * readers need to grab i_mutex and i_alloc_sem
1223 * writers need to grab i_alloc_sem only (i_mutex is already held)
1da177e4
LT
1224 * For regular files using DIO_OWN_LOCKING,
1225 * neither readers nor writers take any locks here
1da177e4
LT
1226 */
1227 dio->lock_type = dio_lock_type;
1228 if (dio_lock_type != DIO_NO_LOCKING) {
1229 /* watch out for a 0 len io from a tricksy fs */
1230 if (rw == READ && end > offset) {
1231 struct address_space *mapping;
1232
1233 mapping = iocb->ki_filp->f_mapping;
1234 if (dio_lock_type != DIO_OWN_LOCKING) {
1b1dcc1b 1235 mutex_lock(&inode->i_mutex);
3fb962bd 1236 release_i_mutex = 1;
1da177e4
LT
1237 }
1238
1239 retval = filemap_write_and_wait_range(mapping, offset,
1240 end - 1);
1241 if (retval) {
1242 kfree(dio);
1243 goto out;
1244 }
1245
1246 if (dio_lock_type == DIO_OWN_LOCKING) {
1b1dcc1b 1247 mutex_unlock(&inode->i_mutex);
3fb962bd 1248 acquire_i_mutex = 1;
1da177e4
LT
1249 }
1250 }
1251
1252 if (dio_lock_type == DIO_LOCKING)
d8aa905b
IM
1253 /* lockdep: not the owner will release it */
1254 down_read_non_owner(&inode->i_alloc_sem);
1da177e4
LT
1255 }
1256
1257 /*
1258 * For file extending writes updating i_size before data
1259 * writeouts complete can expose uninitialized blocks. So
1260 * even for AIO, we need to wait for i/o to complete before
1261 * returning in this case.
1262 */
b31dc66a 1263 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1da177e4
LT
1264 (end > i_size_read(inode)));
1265
1266 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1d8fa7a2 1267 nr_segs, blkbits, get_block, end_io, dio);
1da177e4
LT
1268
1269 if (rw == READ && dio_lock_type == DIO_LOCKING)
3fb962bd 1270 release_i_mutex = 0;
1da177e4
LT
1271
1272out:
3fb962bd 1273 if (release_i_mutex)
1b1dcc1b 1274 mutex_unlock(&inode->i_mutex);
3fb962bd
NS
1275 else if (acquire_i_mutex)
1276 mutex_lock(&inode->i_mutex);
1da177e4
LT
1277 return retval;
1278}
1279EXPORT_SYMBOL(__blockdev_direct_IO);