]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
slub: Use kmem_cache flags to detect if slab is in debugging mode.
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f
CL
31
32/*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
af537b0a
CL
110#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
111 SLAB_TRACE | SLAB_DEBUG_FREE)
112
113static inline int kmem_cache_debug(struct kmem_cache *s)
114{
5577bd8a 115#ifdef CONFIG_SLUB_DEBUG
af537b0a 116 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 117#else
af537b0a 118 return 0;
5577bd8a 119#endif
af537b0a 120}
5577bd8a 121
81819f0f
CL
122/*
123 * Issues still to be resolved:
124 *
81819f0f
CL
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 *
81819f0f
CL
127 * - Variable sizing of the per node arrays
128 */
129
130/* Enable to test recovery from slab corruption on boot */
131#undef SLUB_RESILIENCY_TEST
132
2086d26a
CL
133/*
134 * Mininum number of partial slabs. These will be left on the partial
135 * lists even if they are empty. kmem_cache_shrink may reclaim them.
136 */
76be8950 137#define MIN_PARTIAL 5
e95eed57 138
2086d26a
CL
139/*
140 * Maximum number of desirable partial slabs.
141 * The existence of more partial slabs makes kmem_cache_shrink
142 * sort the partial list by the number of objects in the.
143 */
144#define MAX_PARTIAL 10
145
81819f0f
CL
146#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
147 SLAB_POISON | SLAB_STORE_USER)
672bba3a 148
fa5ec8a1 149/*
3de47213
DR
150 * Debugging flags that require metadata to be stored in the slab. These get
151 * disabled when slub_debug=O is used and a cache's min order increases with
152 * metadata.
fa5ec8a1 153 */
3de47213 154#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 155
81819f0f
CL
156/*
157 * Set of flags that will prevent slab merging
158 */
159#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
160 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
161 SLAB_FAILSLAB)
81819f0f
CL
162
163#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 164 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 165
210b5c06
CG
166#define OO_SHIFT 16
167#define OO_MASK ((1 << OO_SHIFT) - 1)
168#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
169
81819f0f 170/* Internal SLUB flags */
f90ec390
CL
171#define __OBJECT_POISON 0x80000000UL /* Poison object */
172#define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
f6acb635 203#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
214 kfree(s);
215}
8ff12cfc 216
81819f0f
CL
217#endif
218
84e554e6 219static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
220{
221#ifdef CONFIG_SLUB_STATS
84e554e6 222 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
223#endif
224}
225
81819f0f
CL
226/********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
229
230int slab_is_available(void)
231{
232 return slab_state >= UP;
233}
234
235static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236{
237#ifdef CONFIG_NUMA
238 return s->node[node];
239#else
240 return &s->local_node;
241#endif
242}
243
6446faa2 244/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
245static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
247{
248 void *base;
249
a973e9dd 250 if (!object)
02cbc874
CL
251 return 1;
252
a973e9dd 253 base = page_address(page);
39b26464 254 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
255 (object - base) % s->size) {
256 return 0;
257 }
258
259 return 1;
260}
261
7656c72b
CL
262static inline void *get_freepointer(struct kmem_cache *s, void *object)
263{
264 return *(void **)(object + s->offset);
265}
266
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
277/* Scan freelist */
278#define for_each_free_object(__p, __s, __free) \
a973e9dd 279 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
280
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
834f3d11
CL
287static inline struct kmem_cache_order_objects oo_make(int order,
288 unsigned long size)
289{
290 struct kmem_cache_order_objects x = {
210b5c06 291 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
292 };
293
294 return x;
295}
296
297static inline int oo_order(struct kmem_cache_order_objects x)
298{
210b5c06 299 return x.x >> OO_SHIFT;
834f3d11
CL
300}
301
302static inline int oo_objects(struct kmem_cache_order_objects x)
303{
210b5c06 304 return x.x & OO_MASK;
834f3d11
CL
305}
306
41ecc55b
CL
307#ifdef CONFIG_SLUB_DEBUG
308/*
309 * Debug settings:
310 */
f0630fff
CL
311#ifdef CONFIG_SLUB_DEBUG_ON
312static int slub_debug = DEBUG_DEFAULT_FLAGS;
313#else
41ecc55b 314static int slub_debug;
f0630fff 315#endif
41ecc55b
CL
316
317static char *slub_debug_slabs;
fa5ec8a1 318static int disable_higher_order_debug;
41ecc55b 319
81819f0f
CL
320/*
321 * Object debugging
322 */
323static void print_section(char *text, u8 *addr, unsigned int length)
324{
325 int i, offset;
326 int newline = 1;
327 char ascii[17];
328
329 ascii[16] = 0;
330
331 for (i = 0; i < length; i++) {
332 if (newline) {
24922684 333 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
334 newline = 0;
335 }
06428780 336 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
337 offset = i % 16;
338 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
339 if (offset == 15) {
06428780 340 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
341 newline = 1;
342 }
343 }
344 if (!newline) {
345 i %= 16;
346 while (i < 16) {
06428780 347 printk(KERN_CONT " ");
81819f0f
CL
348 ascii[i] = ' ';
349 i++;
350 }
06428780 351 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
352 }
353}
354
81819f0f
CL
355static struct track *get_track(struct kmem_cache *s, void *object,
356 enum track_item alloc)
357{
358 struct track *p;
359
360 if (s->offset)
361 p = object + s->offset + sizeof(void *);
362 else
363 p = object + s->inuse;
364
365 return p + alloc;
366}
367
368static void set_track(struct kmem_cache *s, void *object,
ce71e27c 369 enum track_item alloc, unsigned long addr)
81819f0f 370{
1a00df4a 371 struct track *p = get_track(s, object, alloc);
81819f0f 372
81819f0f
CL
373 if (addr) {
374 p->addr = addr;
375 p->cpu = smp_processor_id();
88e4ccf2 376 p->pid = current->pid;
81819f0f
CL
377 p->when = jiffies;
378 } else
379 memset(p, 0, sizeof(struct track));
380}
381
81819f0f
CL
382static void init_tracking(struct kmem_cache *s, void *object)
383{
24922684
CL
384 if (!(s->flags & SLAB_STORE_USER))
385 return;
386
ce71e27c
EGM
387 set_track(s, object, TRACK_FREE, 0UL);
388 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
389}
390
391static void print_track(const char *s, struct track *t)
392{
393 if (!t->addr)
394 return;
395
7daf705f 396 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 397 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
398}
399
400static void print_tracking(struct kmem_cache *s, void *object)
401{
402 if (!(s->flags & SLAB_STORE_USER))
403 return;
404
405 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
406 print_track("Freed", get_track(s, object, TRACK_FREE));
407}
408
409static void print_page_info(struct page *page)
410{
39b26464
CL
411 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
412 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
413
414}
415
416static void slab_bug(struct kmem_cache *s, char *fmt, ...)
417{
418 va_list args;
419 char buf[100];
420
421 va_start(args, fmt);
422 vsnprintf(buf, sizeof(buf), fmt, args);
423 va_end(args);
424 printk(KERN_ERR "========================================"
425 "=====================================\n");
426 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
427 printk(KERN_ERR "----------------------------------------"
428 "-------------------------------------\n\n");
81819f0f
CL
429}
430
24922684
CL
431static void slab_fix(struct kmem_cache *s, char *fmt, ...)
432{
433 va_list args;
434 char buf[100];
435
436 va_start(args, fmt);
437 vsnprintf(buf, sizeof(buf), fmt, args);
438 va_end(args);
439 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
440}
441
442static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
443{
444 unsigned int off; /* Offset of last byte */
a973e9dd 445 u8 *addr = page_address(page);
24922684
CL
446
447 print_tracking(s, p);
448
449 print_page_info(page);
450
451 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
452 p, p - addr, get_freepointer(s, p));
453
454 if (p > addr + 16)
455 print_section("Bytes b4", p - 16, 16);
456
0ebd652b 457 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
458
459 if (s->flags & SLAB_RED_ZONE)
460 print_section("Redzone", p + s->objsize,
461 s->inuse - s->objsize);
462
81819f0f
CL
463 if (s->offset)
464 off = s->offset + sizeof(void *);
465 else
466 off = s->inuse;
467
24922684 468 if (s->flags & SLAB_STORE_USER)
81819f0f 469 off += 2 * sizeof(struct track);
81819f0f
CL
470
471 if (off != s->size)
472 /* Beginning of the filler is the free pointer */
24922684
CL
473 print_section("Padding", p + off, s->size - off);
474
475 dump_stack();
81819f0f
CL
476}
477
478static void object_err(struct kmem_cache *s, struct page *page,
479 u8 *object, char *reason)
480{
3dc50637 481 slab_bug(s, "%s", reason);
24922684 482 print_trailer(s, page, object);
81819f0f
CL
483}
484
24922684 485static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
486{
487 va_list args;
488 char buf[100];
489
24922684
CL
490 va_start(args, fmt);
491 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 492 va_end(args);
3dc50637 493 slab_bug(s, "%s", buf);
24922684 494 print_page_info(page);
81819f0f
CL
495 dump_stack();
496}
497
498static void init_object(struct kmem_cache *s, void *object, int active)
499{
500 u8 *p = object;
501
502 if (s->flags & __OBJECT_POISON) {
503 memset(p, POISON_FREE, s->objsize - 1);
06428780 504 p[s->objsize - 1] = POISON_END;
81819f0f
CL
505 }
506
507 if (s->flags & SLAB_RED_ZONE)
508 memset(p + s->objsize,
509 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
510 s->inuse - s->objsize);
511}
512
24922684 513static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
514{
515 while (bytes) {
516 if (*start != (u8)value)
24922684 517 return start;
81819f0f
CL
518 start++;
519 bytes--;
520 }
24922684
CL
521 return NULL;
522}
523
524static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
525 void *from, void *to)
526{
527 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
528 memset(from, data, to - from);
529}
530
531static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
532 u8 *object, char *what,
06428780 533 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
534{
535 u8 *fault;
536 u8 *end;
537
538 fault = check_bytes(start, value, bytes);
539 if (!fault)
540 return 1;
541
542 end = start + bytes;
543 while (end > fault && end[-1] == value)
544 end--;
545
546 slab_bug(s, "%s overwritten", what);
547 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
548 fault, end - 1, fault[0], value);
549 print_trailer(s, page, object);
550
551 restore_bytes(s, what, value, fault, end);
552 return 0;
81819f0f
CL
553}
554
81819f0f
CL
555/*
556 * Object layout:
557 *
558 * object address
559 * Bytes of the object to be managed.
560 * If the freepointer may overlay the object then the free
561 * pointer is the first word of the object.
672bba3a 562 *
81819f0f
CL
563 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
564 * 0xa5 (POISON_END)
565 *
566 * object + s->objsize
567 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
568 * Padding is extended by another word if Redzoning is enabled and
569 * objsize == inuse.
570 *
81819f0f
CL
571 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
572 * 0xcc (RED_ACTIVE) for objects in use.
573 *
574 * object + s->inuse
672bba3a
CL
575 * Meta data starts here.
576 *
81819f0f
CL
577 * A. Free pointer (if we cannot overwrite object on free)
578 * B. Tracking data for SLAB_STORE_USER
672bba3a 579 * C. Padding to reach required alignment boundary or at mininum
6446faa2 580 * one word if debugging is on to be able to detect writes
672bba3a
CL
581 * before the word boundary.
582 *
583 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
584 *
585 * object + s->size
672bba3a 586 * Nothing is used beyond s->size.
81819f0f 587 *
672bba3a
CL
588 * If slabcaches are merged then the objsize and inuse boundaries are mostly
589 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
590 * may be used with merged slabcaches.
591 */
592
81819f0f
CL
593static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
594{
595 unsigned long off = s->inuse; /* The end of info */
596
597 if (s->offset)
598 /* Freepointer is placed after the object. */
599 off += sizeof(void *);
600
601 if (s->flags & SLAB_STORE_USER)
602 /* We also have user information there */
603 off += 2 * sizeof(struct track);
604
605 if (s->size == off)
606 return 1;
607
24922684
CL
608 return check_bytes_and_report(s, page, p, "Object padding",
609 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
610}
611
39b26464 612/* Check the pad bytes at the end of a slab page */
81819f0f
CL
613static int slab_pad_check(struct kmem_cache *s, struct page *page)
614{
24922684
CL
615 u8 *start;
616 u8 *fault;
617 u8 *end;
618 int length;
619 int remainder;
81819f0f
CL
620
621 if (!(s->flags & SLAB_POISON))
622 return 1;
623
a973e9dd 624 start = page_address(page);
834f3d11 625 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
626 end = start + length;
627 remainder = length % s->size;
81819f0f
CL
628 if (!remainder)
629 return 1;
630
39b26464 631 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
632 if (!fault)
633 return 1;
634 while (end > fault && end[-1] == POISON_INUSE)
635 end--;
636
637 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 638 print_section("Padding", end - remainder, remainder);
24922684 639
8a3d271d 640 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 641 return 0;
81819f0f
CL
642}
643
644static int check_object(struct kmem_cache *s, struct page *page,
645 void *object, int active)
646{
647 u8 *p = object;
648 u8 *endobject = object + s->objsize;
649
650 if (s->flags & SLAB_RED_ZONE) {
651 unsigned int red =
652 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
653
24922684
CL
654 if (!check_bytes_and_report(s, page, object, "Redzone",
655 endobject, red, s->inuse - s->objsize))
81819f0f 656 return 0;
81819f0f 657 } else {
3adbefee
IM
658 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
659 check_bytes_and_report(s, page, p, "Alignment padding",
660 endobject, POISON_INUSE, s->inuse - s->objsize);
661 }
81819f0f
CL
662 }
663
664 if (s->flags & SLAB_POISON) {
665 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
666 (!check_bytes_and_report(s, page, p, "Poison", p,
667 POISON_FREE, s->objsize - 1) ||
668 !check_bytes_and_report(s, page, p, "Poison",
06428780 669 p + s->objsize - 1, POISON_END, 1)))
81819f0f 670 return 0;
81819f0f
CL
671 /*
672 * check_pad_bytes cleans up on its own.
673 */
674 check_pad_bytes(s, page, p);
675 }
676
677 if (!s->offset && active)
678 /*
679 * Object and freepointer overlap. Cannot check
680 * freepointer while object is allocated.
681 */
682 return 1;
683
684 /* Check free pointer validity */
685 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
686 object_err(s, page, p, "Freepointer corrupt");
687 /*
9f6c708e 688 * No choice but to zap it and thus lose the remainder
81819f0f 689 * of the free objects in this slab. May cause
672bba3a 690 * another error because the object count is now wrong.
81819f0f 691 */
a973e9dd 692 set_freepointer(s, p, NULL);
81819f0f
CL
693 return 0;
694 }
695 return 1;
696}
697
698static int check_slab(struct kmem_cache *s, struct page *page)
699{
39b26464
CL
700 int maxobj;
701
81819f0f
CL
702 VM_BUG_ON(!irqs_disabled());
703
704 if (!PageSlab(page)) {
24922684 705 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
706 return 0;
707 }
39b26464
CL
708
709 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
710 if (page->objects > maxobj) {
711 slab_err(s, page, "objects %u > max %u",
712 s->name, page->objects, maxobj);
713 return 0;
714 }
715 if (page->inuse > page->objects) {
24922684 716 slab_err(s, page, "inuse %u > max %u",
39b26464 717 s->name, page->inuse, page->objects);
81819f0f
CL
718 return 0;
719 }
720 /* Slab_pad_check fixes things up after itself */
721 slab_pad_check(s, page);
722 return 1;
723}
724
725/*
672bba3a
CL
726 * Determine if a certain object on a page is on the freelist. Must hold the
727 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
728 */
729static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
730{
731 int nr = 0;
732 void *fp = page->freelist;
733 void *object = NULL;
224a88be 734 unsigned long max_objects;
81819f0f 735
39b26464 736 while (fp && nr <= page->objects) {
81819f0f
CL
737 if (fp == search)
738 return 1;
739 if (!check_valid_pointer(s, page, fp)) {
740 if (object) {
741 object_err(s, page, object,
742 "Freechain corrupt");
a973e9dd 743 set_freepointer(s, object, NULL);
81819f0f
CL
744 break;
745 } else {
24922684 746 slab_err(s, page, "Freepointer corrupt");
a973e9dd 747 page->freelist = NULL;
39b26464 748 page->inuse = page->objects;
24922684 749 slab_fix(s, "Freelist cleared");
81819f0f
CL
750 return 0;
751 }
752 break;
753 }
754 object = fp;
755 fp = get_freepointer(s, object);
756 nr++;
757 }
758
224a88be 759 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
760 if (max_objects > MAX_OBJS_PER_PAGE)
761 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
762
763 if (page->objects != max_objects) {
764 slab_err(s, page, "Wrong number of objects. Found %d but "
765 "should be %d", page->objects, max_objects);
766 page->objects = max_objects;
767 slab_fix(s, "Number of objects adjusted.");
768 }
39b26464 769 if (page->inuse != page->objects - nr) {
70d71228 770 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
771 "counted were %d", page->inuse, page->objects - nr);
772 page->inuse = page->objects - nr;
24922684 773 slab_fix(s, "Object count adjusted.");
81819f0f
CL
774 }
775 return search == NULL;
776}
777
0121c619
CL
778static void trace(struct kmem_cache *s, struct page *page, void *object,
779 int alloc)
3ec09742
CL
780{
781 if (s->flags & SLAB_TRACE) {
782 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
783 s->name,
784 alloc ? "alloc" : "free",
785 object, page->inuse,
786 page->freelist);
787
788 if (!alloc)
789 print_section("Object", (void *)object, s->objsize);
790
791 dump_stack();
792 }
793}
794
643b1138 795/*
672bba3a 796 * Tracking of fully allocated slabs for debugging purposes.
643b1138 797 */
e95eed57 798static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 799{
643b1138
CL
800 spin_lock(&n->list_lock);
801 list_add(&page->lru, &n->full);
802 spin_unlock(&n->list_lock);
803}
804
805static void remove_full(struct kmem_cache *s, struct page *page)
806{
807 struct kmem_cache_node *n;
808
809 if (!(s->flags & SLAB_STORE_USER))
810 return;
811
812 n = get_node(s, page_to_nid(page));
813
814 spin_lock(&n->list_lock);
815 list_del(&page->lru);
816 spin_unlock(&n->list_lock);
817}
818
0f389ec6
CL
819/* Tracking of the number of slabs for debugging purposes */
820static inline unsigned long slabs_node(struct kmem_cache *s, int node)
821{
822 struct kmem_cache_node *n = get_node(s, node);
823
824 return atomic_long_read(&n->nr_slabs);
825}
826
26c02cf0
AB
827static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
828{
829 return atomic_long_read(&n->nr_slabs);
830}
831
205ab99d 832static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
833{
834 struct kmem_cache_node *n = get_node(s, node);
835
836 /*
837 * May be called early in order to allocate a slab for the
838 * kmem_cache_node structure. Solve the chicken-egg
839 * dilemma by deferring the increment of the count during
840 * bootstrap (see early_kmem_cache_node_alloc).
841 */
205ab99d 842 if (!NUMA_BUILD || n) {
0f389ec6 843 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
844 atomic_long_add(objects, &n->total_objects);
845 }
0f389ec6 846}
205ab99d 847static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
848{
849 struct kmem_cache_node *n = get_node(s, node);
850
851 atomic_long_dec(&n->nr_slabs);
205ab99d 852 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
853}
854
855/* Object debug checks for alloc/free paths */
3ec09742
CL
856static void setup_object_debug(struct kmem_cache *s, struct page *page,
857 void *object)
858{
859 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
860 return;
861
862 init_object(s, object, 0);
863 init_tracking(s, object);
864}
865
866static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 867 void *object, unsigned long addr)
81819f0f
CL
868{
869 if (!check_slab(s, page))
870 goto bad;
871
d692ef6d 872 if (!on_freelist(s, page, object)) {
24922684 873 object_err(s, page, object, "Object already allocated");
70d71228 874 goto bad;
81819f0f
CL
875 }
876
877 if (!check_valid_pointer(s, page, object)) {
878 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 879 goto bad;
81819f0f
CL
880 }
881
d692ef6d 882 if (!check_object(s, page, object, 0))
81819f0f 883 goto bad;
81819f0f 884
3ec09742
CL
885 /* Success perform special debug activities for allocs */
886 if (s->flags & SLAB_STORE_USER)
887 set_track(s, object, TRACK_ALLOC, addr);
888 trace(s, page, object, 1);
889 init_object(s, object, 1);
81819f0f 890 return 1;
3ec09742 891
81819f0f
CL
892bad:
893 if (PageSlab(page)) {
894 /*
895 * If this is a slab page then lets do the best we can
896 * to avoid issues in the future. Marking all objects
672bba3a 897 * as used avoids touching the remaining objects.
81819f0f 898 */
24922684 899 slab_fix(s, "Marking all objects used");
39b26464 900 page->inuse = page->objects;
a973e9dd 901 page->freelist = NULL;
81819f0f
CL
902 }
903 return 0;
904}
905
3ec09742 906static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 907 void *object, unsigned long addr)
81819f0f
CL
908{
909 if (!check_slab(s, page))
910 goto fail;
911
912 if (!check_valid_pointer(s, page, object)) {
70d71228 913 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
914 goto fail;
915 }
916
917 if (on_freelist(s, page, object)) {
24922684 918 object_err(s, page, object, "Object already free");
81819f0f
CL
919 goto fail;
920 }
921
922 if (!check_object(s, page, object, 1))
923 return 0;
924
925 if (unlikely(s != page->slab)) {
3adbefee 926 if (!PageSlab(page)) {
70d71228
CL
927 slab_err(s, page, "Attempt to free object(0x%p) "
928 "outside of slab", object);
3adbefee 929 } else if (!page->slab) {
81819f0f 930 printk(KERN_ERR
70d71228 931 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 932 object);
70d71228 933 dump_stack();
06428780 934 } else
24922684
CL
935 object_err(s, page, object,
936 "page slab pointer corrupt.");
81819f0f
CL
937 goto fail;
938 }
3ec09742
CL
939
940 /* Special debug activities for freeing objects */
8a38082d 941 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
942 remove_full(s, page);
943 if (s->flags & SLAB_STORE_USER)
944 set_track(s, object, TRACK_FREE, addr);
945 trace(s, page, object, 0);
946 init_object(s, object, 0);
81819f0f 947 return 1;
3ec09742 948
81819f0f 949fail:
24922684 950 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
951 return 0;
952}
953
41ecc55b
CL
954static int __init setup_slub_debug(char *str)
955{
f0630fff
CL
956 slub_debug = DEBUG_DEFAULT_FLAGS;
957 if (*str++ != '=' || !*str)
958 /*
959 * No options specified. Switch on full debugging.
960 */
961 goto out;
962
963 if (*str == ',')
964 /*
965 * No options but restriction on slabs. This means full
966 * debugging for slabs matching a pattern.
967 */
968 goto check_slabs;
969
fa5ec8a1
DR
970 if (tolower(*str) == 'o') {
971 /*
972 * Avoid enabling debugging on caches if its minimum order
973 * would increase as a result.
974 */
975 disable_higher_order_debug = 1;
976 goto out;
977 }
978
f0630fff
CL
979 slub_debug = 0;
980 if (*str == '-')
981 /*
982 * Switch off all debugging measures.
983 */
984 goto out;
985
986 /*
987 * Determine which debug features should be switched on
988 */
06428780 989 for (; *str && *str != ','; str++) {
f0630fff
CL
990 switch (tolower(*str)) {
991 case 'f':
992 slub_debug |= SLAB_DEBUG_FREE;
993 break;
994 case 'z':
995 slub_debug |= SLAB_RED_ZONE;
996 break;
997 case 'p':
998 slub_debug |= SLAB_POISON;
999 break;
1000 case 'u':
1001 slub_debug |= SLAB_STORE_USER;
1002 break;
1003 case 't':
1004 slub_debug |= SLAB_TRACE;
1005 break;
4c13dd3b
DM
1006 case 'a':
1007 slub_debug |= SLAB_FAILSLAB;
1008 break;
f0630fff
CL
1009 default:
1010 printk(KERN_ERR "slub_debug option '%c' "
06428780 1011 "unknown. skipped\n", *str);
f0630fff 1012 }
41ecc55b
CL
1013 }
1014
f0630fff 1015check_slabs:
41ecc55b
CL
1016 if (*str == ',')
1017 slub_debug_slabs = str + 1;
f0630fff 1018out:
41ecc55b
CL
1019 return 1;
1020}
1021
1022__setup("slub_debug", setup_slub_debug);
1023
ba0268a8
CL
1024static unsigned long kmem_cache_flags(unsigned long objsize,
1025 unsigned long flags, const char *name,
51cc5068 1026 void (*ctor)(void *))
41ecc55b
CL
1027{
1028 /*
e153362a 1029 * Enable debugging if selected on the kernel commandline.
41ecc55b 1030 */
e153362a 1031 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1032 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1033 flags |= slub_debug;
ba0268a8
CL
1034
1035 return flags;
41ecc55b
CL
1036}
1037#else
3ec09742
CL
1038static inline void setup_object_debug(struct kmem_cache *s,
1039 struct page *page, void *object) {}
41ecc55b 1040
3ec09742 1041static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1042 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1043
3ec09742 1044static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1045 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1046
41ecc55b
CL
1047static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1048 { return 1; }
1049static inline int check_object(struct kmem_cache *s, struct page *page,
1050 void *object, int active) { return 1; }
3ec09742 1051static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1052static inline unsigned long kmem_cache_flags(unsigned long objsize,
1053 unsigned long flags, const char *name,
51cc5068 1054 void (*ctor)(void *))
ba0268a8
CL
1055{
1056 return flags;
1057}
41ecc55b 1058#define slub_debug 0
0f389ec6 1059
fdaa45e9
IM
1060#define disable_higher_order_debug 0
1061
0f389ec6
CL
1062static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1063 { return 0; }
26c02cf0
AB
1064static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1065 { return 0; }
205ab99d
CL
1066static inline void inc_slabs_node(struct kmem_cache *s, int node,
1067 int objects) {}
1068static inline void dec_slabs_node(struct kmem_cache *s, int node,
1069 int objects) {}
41ecc55b 1070#endif
205ab99d 1071
81819f0f
CL
1072/*
1073 * Slab allocation and freeing
1074 */
65c3376a
CL
1075static inline struct page *alloc_slab_page(gfp_t flags, int node,
1076 struct kmem_cache_order_objects oo)
1077{
1078 int order = oo_order(oo);
1079
b1eeab67
VN
1080 flags |= __GFP_NOTRACK;
1081
2154a336 1082 if (node == NUMA_NO_NODE)
65c3376a
CL
1083 return alloc_pages(flags, order);
1084 else
6b65aaf3 1085 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1086}
1087
81819f0f
CL
1088static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1089{
06428780 1090 struct page *page;
834f3d11 1091 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1092 gfp_t alloc_gfp;
81819f0f 1093
b7a49f0d 1094 flags |= s->allocflags;
e12ba74d 1095
ba52270d
PE
1096 /*
1097 * Let the initial higher-order allocation fail under memory pressure
1098 * so we fall-back to the minimum order allocation.
1099 */
1100 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1101
1102 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1103 if (unlikely(!page)) {
1104 oo = s->min;
1105 /*
1106 * Allocation may have failed due to fragmentation.
1107 * Try a lower order alloc if possible
1108 */
1109 page = alloc_slab_page(flags, node, oo);
1110 if (!page)
1111 return NULL;
81819f0f 1112
84e554e6 1113 stat(s, ORDER_FALLBACK);
65c3376a 1114 }
5a896d9e
VN
1115
1116 if (kmemcheck_enabled
5086c389 1117 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1118 int pages = 1 << oo_order(oo);
1119
1120 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1121
1122 /*
1123 * Objects from caches that have a constructor don't get
1124 * cleared when they're allocated, so we need to do it here.
1125 */
1126 if (s->ctor)
1127 kmemcheck_mark_uninitialized_pages(page, pages);
1128 else
1129 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1130 }
1131
834f3d11 1132 page->objects = oo_objects(oo);
81819f0f
CL
1133 mod_zone_page_state(page_zone(page),
1134 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1135 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1136 1 << oo_order(oo));
81819f0f
CL
1137
1138 return page;
1139}
1140
1141static void setup_object(struct kmem_cache *s, struct page *page,
1142 void *object)
1143{
3ec09742 1144 setup_object_debug(s, page, object);
4f104934 1145 if (unlikely(s->ctor))
51cc5068 1146 s->ctor(object);
81819f0f
CL
1147}
1148
1149static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1150{
1151 struct page *page;
81819f0f 1152 void *start;
81819f0f
CL
1153 void *last;
1154 void *p;
1155
6cb06229 1156 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1157
6cb06229
CL
1158 page = allocate_slab(s,
1159 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1160 if (!page)
1161 goto out;
1162
205ab99d 1163 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1164 page->slab = s;
1165 page->flags |= 1 << PG_slab;
81819f0f
CL
1166
1167 start = page_address(page);
81819f0f
CL
1168
1169 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1170 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1171
1172 last = start;
224a88be 1173 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, p);
1176 last = p;
1177 }
1178 setup_object(s, page, last);
a973e9dd 1179 set_freepointer(s, last, NULL);
81819f0f
CL
1180
1181 page->freelist = start;
1182 page->inuse = 0;
1183out:
81819f0f
CL
1184 return page;
1185}
1186
1187static void __free_slab(struct kmem_cache *s, struct page *page)
1188{
834f3d11
CL
1189 int order = compound_order(page);
1190 int pages = 1 << order;
81819f0f 1191
af537b0a 1192 if (kmem_cache_debug(s)) {
81819f0f
CL
1193 void *p;
1194
1195 slab_pad_check(s, page);
224a88be
CL
1196 for_each_object(p, s, page_address(page),
1197 page->objects)
81819f0f 1198 check_object(s, page, p, 0);
81819f0f
CL
1199 }
1200
b1eeab67 1201 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1202
81819f0f
CL
1203 mod_zone_page_state(page_zone(page),
1204 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1205 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1206 -pages);
81819f0f 1207
49bd5221
CL
1208 __ClearPageSlab(page);
1209 reset_page_mapcount(page);
1eb5ac64
NP
1210 if (current->reclaim_state)
1211 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1212 __free_pages(page, order);
81819f0f
CL
1213}
1214
1215static void rcu_free_slab(struct rcu_head *h)
1216{
1217 struct page *page;
1218
1219 page = container_of((struct list_head *)h, struct page, lru);
1220 __free_slab(page->slab, page);
1221}
1222
1223static void free_slab(struct kmem_cache *s, struct page *page)
1224{
1225 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1226 /*
1227 * RCU free overloads the RCU head over the LRU
1228 */
1229 struct rcu_head *head = (void *)&page->lru;
1230
1231 call_rcu(head, rcu_free_slab);
1232 } else
1233 __free_slab(s, page);
1234}
1235
1236static void discard_slab(struct kmem_cache *s, struct page *page)
1237{
205ab99d 1238 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1239 free_slab(s, page);
1240}
1241
1242/*
1243 * Per slab locking using the pagelock
1244 */
1245static __always_inline void slab_lock(struct page *page)
1246{
1247 bit_spin_lock(PG_locked, &page->flags);
1248}
1249
1250static __always_inline void slab_unlock(struct page *page)
1251{
a76d3546 1252 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1253}
1254
1255static __always_inline int slab_trylock(struct page *page)
1256{
1257 int rc = 1;
1258
1259 rc = bit_spin_trylock(PG_locked, &page->flags);
1260 return rc;
1261}
1262
1263/*
1264 * Management of partially allocated slabs
1265 */
7c2e132c
CL
1266static void add_partial(struct kmem_cache_node *n,
1267 struct page *page, int tail)
81819f0f 1268{
e95eed57
CL
1269 spin_lock(&n->list_lock);
1270 n->nr_partial++;
7c2e132c
CL
1271 if (tail)
1272 list_add_tail(&page->lru, &n->partial);
1273 else
1274 list_add(&page->lru, &n->partial);
81819f0f
CL
1275 spin_unlock(&n->list_lock);
1276}
1277
0121c619 1278static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1279{
1280 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1281
1282 spin_lock(&n->list_lock);
1283 list_del(&page->lru);
1284 n->nr_partial--;
1285 spin_unlock(&n->list_lock);
1286}
1287
1288/*
672bba3a 1289 * Lock slab and remove from the partial list.
81819f0f 1290 *
672bba3a 1291 * Must hold list_lock.
81819f0f 1292 */
0121c619
CL
1293static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1294 struct page *page)
81819f0f
CL
1295{
1296 if (slab_trylock(page)) {
1297 list_del(&page->lru);
1298 n->nr_partial--;
8a38082d 1299 __SetPageSlubFrozen(page);
81819f0f
CL
1300 return 1;
1301 }
1302 return 0;
1303}
1304
1305/*
672bba3a 1306 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1307 */
1308static struct page *get_partial_node(struct kmem_cache_node *n)
1309{
1310 struct page *page;
1311
1312 /*
1313 * Racy check. If we mistakenly see no partial slabs then we
1314 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1315 * partial slab and there is none available then get_partials()
1316 * will return NULL.
81819f0f
CL
1317 */
1318 if (!n || !n->nr_partial)
1319 return NULL;
1320
1321 spin_lock(&n->list_lock);
1322 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1323 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1324 goto out;
1325 page = NULL;
1326out:
1327 spin_unlock(&n->list_lock);
1328 return page;
1329}
1330
1331/*
672bba3a 1332 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1333 */
1334static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1335{
1336#ifdef CONFIG_NUMA
1337 struct zonelist *zonelist;
dd1a239f 1338 struct zoneref *z;
54a6eb5c
MG
1339 struct zone *zone;
1340 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1341 struct page *page;
1342
1343 /*
672bba3a
CL
1344 * The defrag ratio allows a configuration of the tradeoffs between
1345 * inter node defragmentation and node local allocations. A lower
1346 * defrag_ratio increases the tendency to do local allocations
1347 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1348 *
672bba3a
CL
1349 * If the defrag_ratio is set to 0 then kmalloc() always
1350 * returns node local objects. If the ratio is higher then kmalloc()
1351 * may return off node objects because partial slabs are obtained
1352 * from other nodes and filled up.
81819f0f 1353 *
6446faa2 1354 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1355 * defrag_ratio = 1000) then every (well almost) allocation will
1356 * first attempt to defrag slab caches on other nodes. This means
1357 * scanning over all nodes to look for partial slabs which may be
1358 * expensive if we do it every time we are trying to find a slab
1359 * with available objects.
81819f0f 1360 */
9824601e
CL
1361 if (!s->remote_node_defrag_ratio ||
1362 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1363 return NULL;
1364
c0ff7453 1365 get_mems_allowed();
0e88460d 1366 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1367 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1368 struct kmem_cache_node *n;
1369
54a6eb5c 1370 n = get_node(s, zone_to_nid(zone));
81819f0f 1371
54a6eb5c 1372 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1373 n->nr_partial > s->min_partial) {
81819f0f 1374 page = get_partial_node(n);
c0ff7453
MX
1375 if (page) {
1376 put_mems_allowed();
81819f0f 1377 return page;
c0ff7453 1378 }
81819f0f
CL
1379 }
1380 }
c0ff7453 1381 put_mems_allowed();
81819f0f
CL
1382#endif
1383 return NULL;
1384}
1385
1386/*
1387 * Get a partial page, lock it and return it.
1388 */
1389static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1390{
1391 struct page *page;
2154a336 1392 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1393
1394 page = get_partial_node(get_node(s, searchnode));
1395 if (page || (flags & __GFP_THISNODE))
1396 return page;
1397
1398 return get_any_partial(s, flags);
1399}
1400
1401/*
1402 * Move a page back to the lists.
1403 *
1404 * Must be called with the slab lock held.
1405 *
1406 * On exit the slab lock will have been dropped.
1407 */
7c2e132c 1408static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1409{
e95eed57
CL
1410 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1411
8a38082d 1412 __ClearPageSlubFrozen(page);
81819f0f 1413 if (page->inuse) {
e95eed57 1414
a973e9dd 1415 if (page->freelist) {
7c2e132c 1416 add_partial(n, page, tail);
84e554e6 1417 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1418 } else {
84e554e6 1419 stat(s, DEACTIVATE_FULL);
af537b0a 1420 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1421 add_full(n, page);
1422 }
81819f0f
CL
1423 slab_unlock(page);
1424 } else {
84e554e6 1425 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1426 if (n->nr_partial < s->min_partial) {
e95eed57 1427 /*
672bba3a
CL
1428 * Adding an empty slab to the partial slabs in order
1429 * to avoid page allocator overhead. This slab needs
1430 * to come after the other slabs with objects in
6446faa2
CL
1431 * so that the others get filled first. That way the
1432 * size of the partial list stays small.
1433 *
0121c619
CL
1434 * kmem_cache_shrink can reclaim any empty slabs from
1435 * the partial list.
e95eed57 1436 */
7c2e132c 1437 add_partial(n, page, 1);
e95eed57
CL
1438 slab_unlock(page);
1439 } else {
1440 slab_unlock(page);
84e554e6 1441 stat(s, FREE_SLAB);
e95eed57
CL
1442 discard_slab(s, page);
1443 }
81819f0f
CL
1444 }
1445}
1446
1447/*
1448 * Remove the cpu slab
1449 */
dfb4f096 1450static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1451{
dfb4f096 1452 struct page *page = c->page;
7c2e132c 1453 int tail = 1;
8ff12cfc 1454
b773ad73 1455 if (page->freelist)
84e554e6 1456 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1457 /*
6446faa2 1458 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1459 * because both freelists are empty. So this is unlikely
1460 * to occur.
1461 */
a973e9dd 1462 while (unlikely(c->freelist)) {
894b8788
CL
1463 void **object;
1464
7c2e132c
CL
1465 tail = 0; /* Hot objects. Put the slab first */
1466
894b8788 1467 /* Retrieve object from cpu_freelist */
dfb4f096 1468 object = c->freelist;
ff12059e 1469 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1470
1471 /* And put onto the regular freelist */
ff12059e 1472 set_freepointer(s, object, page->freelist);
894b8788
CL
1473 page->freelist = object;
1474 page->inuse--;
1475 }
dfb4f096 1476 c->page = NULL;
7c2e132c 1477 unfreeze_slab(s, page, tail);
81819f0f
CL
1478}
1479
dfb4f096 1480static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1481{
84e554e6 1482 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1483 slab_lock(c->page);
1484 deactivate_slab(s, c);
81819f0f
CL
1485}
1486
1487/*
1488 * Flush cpu slab.
6446faa2 1489 *
81819f0f
CL
1490 * Called from IPI handler with interrupts disabled.
1491 */
0c710013 1492static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1493{
9dfc6e68 1494 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1495
dfb4f096
CL
1496 if (likely(c && c->page))
1497 flush_slab(s, c);
81819f0f
CL
1498}
1499
1500static void flush_cpu_slab(void *d)
1501{
1502 struct kmem_cache *s = d;
81819f0f 1503
dfb4f096 1504 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1505}
1506
1507static void flush_all(struct kmem_cache *s)
1508{
15c8b6c1 1509 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1510}
1511
dfb4f096
CL
1512/*
1513 * Check if the objects in a per cpu structure fit numa
1514 * locality expectations.
1515 */
1516static inline int node_match(struct kmem_cache_cpu *c, int node)
1517{
1518#ifdef CONFIG_NUMA
2154a336 1519 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1520 return 0;
1521#endif
1522 return 1;
1523}
1524
781b2ba6
PE
1525static int count_free(struct page *page)
1526{
1527 return page->objects - page->inuse;
1528}
1529
1530static unsigned long count_partial(struct kmem_cache_node *n,
1531 int (*get_count)(struct page *))
1532{
1533 unsigned long flags;
1534 unsigned long x = 0;
1535 struct page *page;
1536
1537 spin_lock_irqsave(&n->list_lock, flags);
1538 list_for_each_entry(page, &n->partial, lru)
1539 x += get_count(page);
1540 spin_unlock_irqrestore(&n->list_lock, flags);
1541 return x;
1542}
1543
26c02cf0
AB
1544static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1545{
1546#ifdef CONFIG_SLUB_DEBUG
1547 return atomic_long_read(&n->total_objects);
1548#else
1549 return 0;
1550#endif
1551}
1552
781b2ba6
PE
1553static noinline void
1554slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1555{
1556 int node;
1557
1558 printk(KERN_WARNING
1559 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1560 nid, gfpflags);
1561 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1562 "default order: %d, min order: %d\n", s->name, s->objsize,
1563 s->size, oo_order(s->oo), oo_order(s->min));
1564
fa5ec8a1
DR
1565 if (oo_order(s->min) > get_order(s->objsize))
1566 printk(KERN_WARNING " %s debugging increased min order, use "
1567 "slub_debug=O to disable.\n", s->name);
1568
781b2ba6
PE
1569 for_each_online_node(node) {
1570 struct kmem_cache_node *n = get_node(s, node);
1571 unsigned long nr_slabs;
1572 unsigned long nr_objs;
1573 unsigned long nr_free;
1574
1575 if (!n)
1576 continue;
1577
26c02cf0
AB
1578 nr_free = count_partial(n, count_free);
1579 nr_slabs = node_nr_slabs(n);
1580 nr_objs = node_nr_objs(n);
781b2ba6
PE
1581
1582 printk(KERN_WARNING
1583 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1584 node, nr_slabs, nr_objs, nr_free);
1585 }
1586}
1587
81819f0f 1588/*
894b8788
CL
1589 * Slow path. The lockless freelist is empty or we need to perform
1590 * debugging duties.
1591 *
1592 * Interrupts are disabled.
81819f0f 1593 *
894b8788
CL
1594 * Processing is still very fast if new objects have been freed to the
1595 * regular freelist. In that case we simply take over the regular freelist
1596 * as the lockless freelist and zap the regular freelist.
81819f0f 1597 *
894b8788
CL
1598 * If that is not working then we fall back to the partial lists. We take the
1599 * first element of the freelist as the object to allocate now and move the
1600 * rest of the freelist to the lockless freelist.
81819f0f 1601 *
894b8788 1602 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1603 * we need to allocate a new slab. This is the slowest path since it involves
1604 * a call to the page allocator and the setup of a new slab.
81819f0f 1605 */
ce71e27c
EGM
1606static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1607 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1608{
81819f0f 1609 void **object;
dfb4f096 1610 struct page *new;
81819f0f 1611
e72e9c23
LT
1612 /* We handle __GFP_ZERO in the caller */
1613 gfpflags &= ~__GFP_ZERO;
1614
dfb4f096 1615 if (!c->page)
81819f0f
CL
1616 goto new_slab;
1617
dfb4f096
CL
1618 slab_lock(c->page);
1619 if (unlikely(!node_match(c, node)))
81819f0f 1620 goto another_slab;
6446faa2 1621
84e554e6 1622 stat(s, ALLOC_REFILL);
6446faa2 1623
894b8788 1624load_freelist:
dfb4f096 1625 object = c->page->freelist;
a973e9dd 1626 if (unlikely(!object))
81819f0f 1627 goto another_slab;
af537b0a 1628 if (kmem_cache_debug(s))
81819f0f
CL
1629 goto debug;
1630
ff12059e 1631 c->freelist = get_freepointer(s, object);
39b26464 1632 c->page->inuse = c->page->objects;
a973e9dd 1633 c->page->freelist = NULL;
dfb4f096 1634 c->node = page_to_nid(c->page);
1f84260c 1635unlock_out:
dfb4f096 1636 slab_unlock(c->page);
84e554e6 1637 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1638 return object;
1639
1640another_slab:
dfb4f096 1641 deactivate_slab(s, c);
81819f0f
CL
1642
1643new_slab:
dfb4f096
CL
1644 new = get_partial(s, gfpflags, node);
1645 if (new) {
1646 c->page = new;
84e554e6 1647 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1648 goto load_freelist;
81819f0f
CL
1649 }
1650
b811c202
CL
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_enable();
1653
dfb4f096 1654 new = new_slab(s, gfpflags, node);
b811c202
CL
1655
1656 if (gfpflags & __GFP_WAIT)
1657 local_irq_disable();
1658
dfb4f096 1659 if (new) {
9dfc6e68 1660 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1661 stat(s, ALLOC_SLAB);
05aa3450 1662 if (c->page)
dfb4f096 1663 flush_slab(s, c);
dfb4f096 1664 slab_lock(new);
8a38082d 1665 __SetPageSlubFrozen(new);
dfb4f096 1666 c->page = new;
4b6f0750 1667 goto load_freelist;
81819f0f 1668 }
95f85989
PE
1669 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1670 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1671 return NULL;
81819f0f 1672debug:
dfb4f096 1673 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1674 goto another_slab;
894b8788 1675
dfb4f096 1676 c->page->inuse++;
ff12059e 1677 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1678 c->node = -1;
1f84260c 1679 goto unlock_out;
894b8788
CL
1680}
1681
1682/*
1683 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1684 * have the fastpath folded into their functions. So no function call
1685 * overhead for requests that can be satisfied on the fastpath.
1686 *
1687 * The fastpath works by first checking if the lockless freelist can be used.
1688 * If not then __slab_alloc is called for slow processing.
1689 *
1690 * Otherwise we can simply pick the next object from the lockless free list.
1691 */
06428780 1692static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1693 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1694{
894b8788 1695 void **object;
dfb4f096 1696 struct kmem_cache_cpu *c;
1f84260c
CL
1697 unsigned long flags;
1698
dcce284a 1699 gfpflags &= gfp_allowed_mask;
7e85ee0c 1700
cf40bd16 1701 lockdep_trace_alloc(gfpflags);
89124d70 1702 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1703
4c13dd3b 1704 if (should_failslab(s->objsize, gfpflags, s->flags))
773ff60e 1705 return NULL;
1f84260c 1706
894b8788 1707 local_irq_save(flags);
9dfc6e68
CL
1708 c = __this_cpu_ptr(s->cpu_slab);
1709 object = c->freelist;
9dfc6e68 1710 if (unlikely(!object || !node_match(c, node)))
894b8788 1711
dfb4f096 1712 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1713
1714 else {
ff12059e 1715 c->freelist = get_freepointer(s, object);
84e554e6 1716 stat(s, ALLOC_FASTPATH);
894b8788
CL
1717 }
1718 local_irq_restore(flags);
d07dbea4 1719
74e2134f 1720 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1721 memset(object, 0, s->objsize);
d07dbea4 1722
ff12059e
CL
1723 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1724 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
5a896d9e 1725
894b8788 1726 return object;
81819f0f
CL
1727}
1728
1729void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1730{
2154a336 1731 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1732
ca2b84cb 1733 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1734
1735 return ret;
81819f0f
CL
1736}
1737EXPORT_SYMBOL(kmem_cache_alloc);
1738
0f24f128 1739#ifdef CONFIG_TRACING
5b882be4
EGM
1740void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1741{
2154a336 1742 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1743}
1744EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1745#endif
1746
81819f0f
CL
1747#ifdef CONFIG_NUMA
1748void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1749{
5b882be4
EGM
1750 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1751
ca2b84cb
EGM
1752 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1753 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1754
1755 return ret;
81819f0f
CL
1756}
1757EXPORT_SYMBOL(kmem_cache_alloc_node);
1758#endif
1759
0f24f128 1760#ifdef CONFIG_TRACING
5b882be4
EGM
1761void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1762 gfp_t gfpflags,
1763 int node)
1764{
1765 return slab_alloc(s, gfpflags, node, _RET_IP_);
1766}
1767EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1768#endif
1769
81819f0f 1770/*
894b8788
CL
1771 * Slow patch handling. This may still be called frequently since objects
1772 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1773 *
894b8788
CL
1774 * So we still attempt to reduce cache line usage. Just take the slab
1775 * lock and free the item. If there is no additional partial page
1776 * handling required then we can return immediately.
81819f0f 1777 */
894b8788 1778static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1779 void *x, unsigned long addr)
81819f0f
CL
1780{
1781 void *prior;
1782 void **object = (void *)x;
81819f0f 1783
84e554e6 1784 stat(s, FREE_SLOWPATH);
81819f0f
CL
1785 slab_lock(page);
1786
af537b0a 1787 if (kmem_cache_debug(s))
81819f0f 1788 goto debug;
6446faa2 1789
81819f0f 1790checks_ok:
ff12059e
CL
1791 prior = page->freelist;
1792 set_freepointer(s, object, prior);
81819f0f
CL
1793 page->freelist = object;
1794 page->inuse--;
1795
8a38082d 1796 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1797 stat(s, FREE_FROZEN);
81819f0f 1798 goto out_unlock;
8ff12cfc 1799 }
81819f0f
CL
1800
1801 if (unlikely(!page->inuse))
1802 goto slab_empty;
1803
1804 /*
6446faa2 1805 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1806 * then add it.
1807 */
a973e9dd 1808 if (unlikely(!prior)) {
7c2e132c 1809 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1810 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1811 }
81819f0f
CL
1812
1813out_unlock:
1814 slab_unlock(page);
81819f0f
CL
1815 return;
1816
1817slab_empty:
a973e9dd 1818 if (prior) {
81819f0f 1819 /*
672bba3a 1820 * Slab still on the partial list.
81819f0f
CL
1821 */
1822 remove_partial(s, page);
84e554e6 1823 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1824 }
81819f0f 1825 slab_unlock(page);
84e554e6 1826 stat(s, FREE_SLAB);
81819f0f 1827 discard_slab(s, page);
81819f0f
CL
1828 return;
1829
1830debug:
3ec09742 1831 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1832 goto out_unlock;
77c5e2d0 1833 goto checks_ok;
81819f0f
CL
1834}
1835
894b8788
CL
1836/*
1837 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1838 * can perform fastpath freeing without additional function calls.
1839 *
1840 * The fastpath is only possible if we are freeing to the current cpu slab
1841 * of this processor. This typically the case if we have just allocated
1842 * the item before.
1843 *
1844 * If fastpath is not possible then fall back to __slab_free where we deal
1845 * with all sorts of special processing.
1846 */
06428780 1847static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1848 struct page *page, void *x, unsigned long addr)
894b8788
CL
1849{
1850 void **object = (void *)x;
dfb4f096 1851 struct kmem_cache_cpu *c;
1f84260c
CL
1852 unsigned long flags;
1853
06f22f13 1854 kmemleak_free_recursive(x, s->flags);
894b8788 1855 local_irq_save(flags);
9dfc6e68 1856 c = __this_cpu_ptr(s->cpu_slab);
ff12059e
CL
1857 kmemcheck_slab_free(s, object, s->objsize);
1858 debug_check_no_locks_freed(object, s->objsize);
3ac7fe5a 1859 if (!(s->flags & SLAB_DEBUG_OBJECTS))
ff12059e 1860 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1861 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1862 set_freepointer(s, object, c->freelist);
dfb4f096 1863 c->freelist = object;
84e554e6 1864 stat(s, FREE_FASTPATH);
894b8788 1865 } else
ff12059e 1866 __slab_free(s, page, x, addr);
894b8788
CL
1867
1868 local_irq_restore(flags);
1869}
1870
81819f0f
CL
1871void kmem_cache_free(struct kmem_cache *s, void *x)
1872{
77c5e2d0 1873 struct page *page;
81819f0f 1874
b49af68f 1875 page = virt_to_head_page(x);
81819f0f 1876
ce71e27c 1877 slab_free(s, page, x, _RET_IP_);
5b882be4 1878
ca2b84cb 1879 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1880}
1881EXPORT_SYMBOL(kmem_cache_free);
1882
e9beef18 1883/* Figure out on which slab page the object resides */
81819f0f
CL
1884static struct page *get_object_page(const void *x)
1885{
b49af68f 1886 struct page *page = virt_to_head_page(x);
81819f0f
CL
1887
1888 if (!PageSlab(page))
1889 return NULL;
1890
1891 return page;
1892}
1893
1894/*
672bba3a
CL
1895 * Object placement in a slab is made very easy because we always start at
1896 * offset 0. If we tune the size of the object to the alignment then we can
1897 * get the required alignment by putting one properly sized object after
1898 * another.
81819f0f
CL
1899 *
1900 * Notice that the allocation order determines the sizes of the per cpu
1901 * caches. Each processor has always one slab available for allocations.
1902 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1903 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1904 * locking overhead.
81819f0f
CL
1905 */
1906
1907/*
1908 * Mininum / Maximum order of slab pages. This influences locking overhead
1909 * and slab fragmentation. A higher order reduces the number of partial slabs
1910 * and increases the number of allocations possible without having to
1911 * take the list_lock.
1912 */
1913static int slub_min_order;
114e9e89 1914static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1915static int slub_min_objects;
81819f0f
CL
1916
1917/*
1918 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1919 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1920 */
1921static int slub_nomerge;
1922
81819f0f
CL
1923/*
1924 * Calculate the order of allocation given an slab object size.
1925 *
672bba3a
CL
1926 * The order of allocation has significant impact on performance and other
1927 * system components. Generally order 0 allocations should be preferred since
1928 * order 0 does not cause fragmentation in the page allocator. Larger objects
1929 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1930 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1931 * would be wasted.
1932 *
1933 * In order to reach satisfactory performance we must ensure that a minimum
1934 * number of objects is in one slab. Otherwise we may generate too much
1935 * activity on the partial lists which requires taking the list_lock. This is
1936 * less a concern for large slabs though which are rarely used.
81819f0f 1937 *
672bba3a
CL
1938 * slub_max_order specifies the order where we begin to stop considering the
1939 * number of objects in a slab as critical. If we reach slub_max_order then
1940 * we try to keep the page order as low as possible. So we accept more waste
1941 * of space in favor of a small page order.
81819f0f 1942 *
672bba3a
CL
1943 * Higher order allocations also allow the placement of more objects in a
1944 * slab and thereby reduce object handling overhead. If the user has
1945 * requested a higher mininum order then we start with that one instead of
1946 * the smallest order which will fit the object.
81819f0f 1947 */
5e6d444e
CL
1948static inline int slab_order(int size, int min_objects,
1949 int max_order, int fract_leftover)
81819f0f
CL
1950{
1951 int order;
1952 int rem;
6300ea75 1953 int min_order = slub_min_order;
81819f0f 1954
210b5c06
CG
1955 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1956 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1957
6300ea75 1958 for (order = max(min_order,
5e6d444e
CL
1959 fls(min_objects * size - 1) - PAGE_SHIFT);
1960 order <= max_order; order++) {
81819f0f 1961
5e6d444e 1962 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1963
5e6d444e 1964 if (slab_size < min_objects * size)
81819f0f
CL
1965 continue;
1966
1967 rem = slab_size % size;
1968
5e6d444e 1969 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1970 break;
1971
1972 }
672bba3a 1973
81819f0f
CL
1974 return order;
1975}
1976
5e6d444e
CL
1977static inline int calculate_order(int size)
1978{
1979 int order;
1980 int min_objects;
1981 int fraction;
e8120ff1 1982 int max_objects;
5e6d444e
CL
1983
1984 /*
1985 * Attempt to find best configuration for a slab. This
1986 * works by first attempting to generate a layout with
1987 * the best configuration and backing off gradually.
1988 *
1989 * First we reduce the acceptable waste in a slab. Then
1990 * we reduce the minimum objects required in a slab.
1991 */
1992 min_objects = slub_min_objects;
9b2cd506
CL
1993 if (!min_objects)
1994 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1995 max_objects = (PAGE_SIZE << slub_max_order)/size;
1996 min_objects = min(min_objects, max_objects);
1997
5e6d444e 1998 while (min_objects > 1) {
c124f5b5 1999 fraction = 16;
5e6d444e
CL
2000 while (fraction >= 4) {
2001 order = slab_order(size, min_objects,
2002 slub_max_order, fraction);
2003 if (order <= slub_max_order)
2004 return order;
2005 fraction /= 2;
2006 }
5086c389 2007 min_objects--;
5e6d444e
CL
2008 }
2009
2010 /*
2011 * We were unable to place multiple objects in a slab. Now
2012 * lets see if we can place a single object there.
2013 */
2014 order = slab_order(size, 1, slub_max_order, 1);
2015 if (order <= slub_max_order)
2016 return order;
2017
2018 /*
2019 * Doh this slab cannot be placed using slub_max_order.
2020 */
2021 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2022 if (order < MAX_ORDER)
5e6d444e
CL
2023 return order;
2024 return -ENOSYS;
2025}
2026
81819f0f 2027/*
672bba3a 2028 * Figure out what the alignment of the objects will be.
81819f0f
CL
2029 */
2030static unsigned long calculate_alignment(unsigned long flags,
2031 unsigned long align, unsigned long size)
2032{
2033 /*
6446faa2
CL
2034 * If the user wants hardware cache aligned objects then follow that
2035 * suggestion if the object is sufficiently large.
81819f0f 2036 *
6446faa2
CL
2037 * The hardware cache alignment cannot override the specified
2038 * alignment though. If that is greater then use it.
81819f0f 2039 */
b6210386
NP
2040 if (flags & SLAB_HWCACHE_ALIGN) {
2041 unsigned long ralign = cache_line_size();
2042 while (size <= ralign / 2)
2043 ralign /= 2;
2044 align = max(align, ralign);
2045 }
81819f0f
CL
2046
2047 if (align < ARCH_SLAB_MINALIGN)
b6210386 2048 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2049
2050 return ALIGN(align, sizeof(void *));
2051}
2052
5595cffc
PE
2053static void
2054init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2055{
2056 n->nr_partial = 0;
81819f0f
CL
2057 spin_lock_init(&n->list_lock);
2058 INIT_LIST_HEAD(&n->partial);
8ab1372f 2059#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2060 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2061 atomic_long_set(&n->total_objects, 0);
643b1138 2062 INIT_LIST_HEAD(&n->full);
8ab1372f 2063#endif
81819f0f
CL
2064}
2065
91efd773 2066static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
4c93c355 2067
9dfc6e68 2068static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
4c93c355 2069{
756dee75 2070 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
9dfc6e68
CL
2071 /*
2072 * Boot time creation of the kmalloc array. Use static per cpu data
2073 * since the per cpu allocator is not available yet.
2074 */
1154fab7 2075 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
9dfc6e68
CL
2076 else
2077 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2078
9dfc6e68
CL
2079 if (!s->cpu_slab)
2080 return 0;
4c93c355 2081
4c93c355
CL
2082 return 1;
2083}
4c93c355 2084
81819f0f
CL
2085#ifdef CONFIG_NUMA
2086/*
2087 * No kmalloc_node yet so do it by hand. We know that this is the first
2088 * slab on the node for this slabcache. There are no concurrent accesses
2089 * possible.
2090 *
2091 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2092 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2093 * memory on a fresh node that has no slab structures yet.
81819f0f 2094 */
0094de92 2095static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2096{
2097 struct page *page;
2098 struct kmem_cache_node *n;
ba84c73c 2099 unsigned long flags;
81819f0f
CL
2100
2101 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2102
a2f92ee7 2103 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2104
2105 BUG_ON(!page);
a2f92ee7
CL
2106 if (page_to_nid(page) != node) {
2107 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2108 "node %d\n", node);
2109 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2110 "in order to be able to continue\n");
2111 }
2112
81819f0f
CL
2113 n = page->freelist;
2114 BUG_ON(!n);
2115 page->freelist = get_freepointer(kmalloc_caches, n);
2116 page->inuse++;
2117 kmalloc_caches->node[node] = n;
8ab1372f 2118#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2119 init_object(kmalloc_caches, n, 1);
2120 init_tracking(kmalloc_caches, n);
8ab1372f 2121#endif
5595cffc 2122 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2123 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2124
ba84c73c 2125 /*
2126 * lockdep requires consistent irq usage for each lock
2127 * so even though there cannot be a race this early in
2128 * the boot sequence, we still disable irqs.
2129 */
2130 local_irq_save(flags);
7c2e132c 2131 add_partial(n, page, 0);
ba84c73c 2132 local_irq_restore(flags);
81819f0f
CL
2133}
2134
2135static void free_kmem_cache_nodes(struct kmem_cache *s)
2136{
2137 int node;
2138
f64dc58c 2139 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2140 struct kmem_cache_node *n = s->node[node];
73367bd8 2141 if (n)
81819f0f
CL
2142 kmem_cache_free(kmalloc_caches, n);
2143 s->node[node] = NULL;
2144 }
2145}
2146
2147static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2148{
2149 int node;
81819f0f 2150
f64dc58c 2151 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2152 struct kmem_cache_node *n;
2153
73367bd8
AD
2154 if (slab_state == DOWN) {
2155 early_kmem_cache_node_alloc(gfpflags, node);
2156 continue;
2157 }
2158 n = kmem_cache_alloc_node(kmalloc_caches,
2159 gfpflags, node);
81819f0f 2160
73367bd8
AD
2161 if (!n) {
2162 free_kmem_cache_nodes(s);
2163 return 0;
81819f0f 2164 }
73367bd8 2165
81819f0f 2166 s->node[node] = n;
5595cffc 2167 init_kmem_cache_node(n, s);
81819f0f
CL
2168 }
2169 return 1;
2170}
2171#else
2172static void free_kmem_cache_nodes(struct kmem_cache *s)
2173{
2174}
2175
2176static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2177{
5595cffc 2178 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2179 return 1;
2180}
2181#endif
2182
c0bdb232 2183static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2184{
2185 if (min < MIN_PARTIAL)
2186 min = MIN_PARTIAL;
2187 else if (min > MAX_PARTIAL)
2188 min = MAX_PARTIAL;
2189 s->min_partial = min;
2190}
2191
81819f0f
CL
2192/*
2193 * calculate_sizes() determines the order and the distribution of data within
2194 * a slab object.
2195 */
06b285dc 2196static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2197{
2198 unsigned long flags = s->flags;
2199 unsigned long size = s->objsize;
2200 unsigned long align = s->align;
834f3d11 2201 int order;
81819f0f 2202
d8b42bf5
CL
2203 /*
2204 * Round up object size to the next word boundary. We can only
2205 * place the free pointer at word boundaries and this determines
2206 * the possible location of the free pointer.
2207 */
2208 size = ALIGN(size, sizeof(void *));
2209
2210#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2211 /*
2212 * Determine if we can poison the object itself. If the user of
2213 * the slab may touch the object after free or before allocation
2214 * then we should never poison the object itself.
2215 */
2216 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2217 !s->ctor)
81819f0f
CL
2218 s->flags |= __OBJECT_POISON;
2219 else
2220 s->flags &= ~__OBJECT_POISON;
2221
81819f0f
CL
2222
2223 /*
672bba3a 2224 * If we are Redzoning then check if there is some space between the
81819f0f 2225 * end of the object and the free pointer. If not then add an
672bba3a 2226 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2227 */
2228 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2229 size += sizeof(void *);
41ecc55b 2230#endif
81819f0f
CL
2231
2232 /*
672bba3a
CL
2233 * With that we have determined the number of bytes in actual use
2234 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2235 */
2236 s->inuse = size;
2237
2238 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2239 s->ctor)) {
81819f0f
CL
2240 /*
2241 * Relocate free pointer after the object if it is not
2242 * permitted to overwrite the first word of the object on
2243 * kmem_cache_free.
2244 *
2245 * This is the case if we do RCU, have a constructor or
2246 * destructor or are poisoning the objects.
2247 */
2248 s->offset = size;
2249 size += sizeof(void *);
2250 }
2251
c12b3c62 2252#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2253 if (flags & SLAB_STORE_USER)
2254 /*
2255 * Need to store information about allocs and frees after
2256 * the object.
2257 */
2258 size += 2 * sizeof(struct track);
2259
be7b3fbc 2260 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2261 /*
2262 * Add some empty padding so that we can catch
2263 * overwrites from earlier objects rather than let
2264 * tracking information or the free pointer be
0211a9c8 2265 * corrupted if a user writes before the start
81819f0f
CL
2266 * of the object.
2267 */
2268 size += sizeof(void *);
41ecc55b 2269#endif
672bba3a 2270
81819f0f
CL
2271 /*
2272 * Determine the alignment based on various parameters that the
65c02d4c
CL
2273 * user specified and the dynamic determination of cache line size
2274 * on bootup.
81819f0f
CL
2275 */
2276 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2277 s->align = align;
81819f0f
CL
2278
2279 /*
2280 * SLUB stores one object immediately after another beginning from
2281 * offset 0. In order to align the objects we have to simply size
2282 * each object to conform to the alignment.
2283 */
2284 size = ALIGN(size, align);
2285 s->size = size;
06b285dc
CL
2286 if (forced_order >= 0)
2287 order = forced_order;
2288 else
2289 order = calculate_order(size);
81819f0f 2290
834f3d11 2291 if (order < 0)
81819f0f
CL
2292 return 0;
2293
b7a49f0d 2294 s->allocflags = 0;
834f3d11 2295 if (order)
b7a49f0d
CL
2296 s->allocflags |= __GFP_COMP;
2297
2298 if (s->flags & SLAB_CACHE_DMA)
2299 s->allocflags |= SLUB_DMA;
2300
2301 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2302 s->allocflags |= __GFP_RECLAIMABLE;
2303
81819f0f
CL
2304 /*
2305 * Determine the number of objects per slab
2306 */
834f3d11 2307 s->oo = oo_make(order, size);
65c3376a 2308 s->min = oo_make(get_order(size), size);
205ab99d
CL
2309 if (oo_objects(s->oo) > oo_objects(s->max))
2310 s->max = s->oo;
81819f0f 2311
834f3d11 2312 return !!oo_objects(s->oo);
81819f0f
CL
2313
2314}
2315
81819f0f
CL
2316static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2317 const char *name, size_t size,
2318 size_t align, unsigned long flags,
51cc5068 2319 void (*ctor)(void *))
81819f0f
CL
2320{
2321 memset(s, 0, kmem_size);
2322 s->name = name;
2323 s->ctor = ctor;
81819f0f 2324 s->objsize = size;
81819f0f 2325 s->align = align;
ba0268a8 2326 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2327
06b285dc 2328 if (!calculate_sizes(s, -1))
81819f0f 2329 goto error;
3de47213
DR
2330 if (disable_higher_order_debug) {
2331 /*
2332 * Disable debugging flags that store metadata if the min slab
2333 * order increased.
2334 */
2335 if (get_order(s->size) > get_order(s->objsize)) {
2336 s->flags &= ~DEBUG_METADATA_FLAGS;
2337 s->offset = 0;
2338 if (!calculate_sizes(s, -1))
2339 goto error;
2340 }
2341 }
81819f0f 2342
3b89d7d8
DR
2343 /*
2344 * The larger the object size is, the more pages we want on the partial
2345 * list to avoid pounding the page allocator excessively.
2346 */
c0bdb232 2347 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2348 s->refcount = 1;
2349#ifdef CONFIG_NUMA
e2cb96b7 2350 s->remote_node_defrag_ratio = 1000;
81819f0f 2351#endif
dfb4f096
CL
2352 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2353 goto error;
81819f0f 2354
dfb4f096 2355 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2356 return 1;
ff12059e 2357
4c93c355 2358 free_kmem_cache_nodes(s);
81819f0f
CL
2359error:
2360 if (flags & SLAB_PANIC)
2361 panic("Cannot create slab %s size=%lu realsize=%u "
2362 "order=%u offset=%u flags=%lx\n",
834f3d11 2363 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2364 s->offset, flags);
2365 return 0;
2366}
81819f0f
CL
2367
2368/*
2369 * Check if a given pointer is valid
2370 */
2371int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2372{
06428780 2373 struct page *page;
81819f0f 2374
d3e06e2b
PE
2375 if (!kern_ptr_validate(object, s->size))
2376 return 0;
2377
81819f0f
CL
2378 page = get_object_page(object);
2379
2380 if (!page || s != page->slab)
2381 /* No slab or wrong slab */
2382 return 0;
2383
abcd08a6 2384 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2385 return 0;
2386
2387 /*
2388 * We could also check if the object is on the slabs freelist.
2389 * But this would be too expensive and it seems that the main
6446faa2 2390 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2391 * to a certain slab.
2392 */
2393 return 1;
2394}
2395EXPORT_SYMBOL(kmem_ptr_validate);
2396
2397/*
2398 * Determine the size of a slab object
2399 */
2400unsigned int kmem_cache_size(struct kmem_cache *s)
2401{
2402 return s->objsize;
2403}
2404EXPORT_SYMBOL(kmem_cache_size);
2405
2406const char *kmem_cache_name(struct kmem_cache *s)
2407{
2408 return s->name;
2409}
2410EXPORT_SYMBOL(kmem_cache_name);
2411
33b12c38
CL
2412static void list_slab_objects(struct kmem_cache *s, struct page *page,
2413 const char *text)
2414{
2415#ifdef CONFIG_SLUB_DEBUG
2416 void *addr = page_address(page);
2417 void *p;
bbd7d57b
ED
2418 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2419 GFP_ATOMIC);
33b12c38 2420
bbd7d57b
ED
2421 if (!map)
2422 return;
33b12c38
CL
2423 slab_err(s, page, "%s", text);
2424 slab_lock(page);
2425 for_each_free_object(p, s, page->freelist)
2426 set_bit(slab_index(p, s, addr), map);
2427
2428 for_each_object(p, s, addr, page->objects) {
2429
2430 if (!test_bit(slab_index(p, s, addr), map)) {
2431 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2432 p, p - addr);
2433 print_tracking(s, p);
2434 }
2435 }
2436 slab_unlock(page);
bbd7d57b 2437 kfree(map);
33b12c38
CL
2438#endif
2439}
2440
81819f0f 2441/*
599870b1 2442 * Attempt to free all partial slabs on a node.
81819f0f 2443 */
599870b1 2444static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2445{
81819f0f
CL
2446 unsigned long flags;
2447 struct page *page, *h;
2448
2449 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2450 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2451 if (!page->inuse) {
2452 list_del(&page->lru);
2453 discard_slab(s, page);
599870b1 2454 n->nr_partial--;
33b12c38
CL
2455 } else {
2456 list_slab_objects(s, page,
2457 "Objects remaining on kmem_cache_close()");
599870b1 2458 }
33b12c38 2459 }
81819f0f 2460 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2461}
2462
2463/*
672bba3a 2464 * Release all resources used by a slab cache.
81819f0f 2465 */
0c710013 2466static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2467{
2468 int node;
2469
2470 flush_all(s);
9dfc6e68 2471 free_percpu(s->cpu_slab);
81819f0f 2472 /* Attempt to free all objects */
f64dc58c 2473 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2474 struct kmem_cache_node *n = get_node(s, node);
2475
599870b1
CL
2476 free_partial(s, n);
2477 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2478 return 1;
2479 }
2480 free_kmem_cache_nodes(s);
2481 return 0;
2482}
2483
2484/*
2485 * Close a cache and release the kmem_cache structure
2486 * (must be used for caches created using kmem_cache_create)
2487 */
2488void kmem_cache_destroy(struct kmem_cache *s)
2489{
2490 down_write(&slub_lock);
2491 s->refcount--;
2492 if (!s->refcount) {
2493 list_del(&s->list);
a0e1d1be 2494 up_write(&slub_lock);
d629d819
PE
2495 if (kmem_cache_close(s)) {
2496 printk(KERN_ERR "SLUB %s: %s called for cache that "
2497 "still has objects.\n", s->name, __func__);
2498 dump_stack();
2499 }
d76b1590
ED
2500 if (s->flags & SLAB_DESTROY_BY_RCU)
2501 rcu_barrier();
81819f0f 2502 sysfs_slab_remove(s);
a0e1d1be
CL
2503 } else
2504 up_write(&slub_lock);
81819f0f
CL
2505}
2506EXPORT_SYMBOL(kmem_cache_destroy);
2507
2508/********************************************************************
2509 * Kmalloc subsystem
2510 *******************************************************************/
2511
756dee75 2512struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
81819f0f
CL
2513EXPORT_SYMBOL(kmalloc_caches);
2514
81819f0f
CL
2515static int __init setup_slub_min_order(char *str)
2516{
06428780 2517 get_option(&str, &slub_min_order);
81819f0f
CL
2518
2519 return 1;
2520}
2521
2522__setup("slub_min_order=", setup_slub_min_order);
2523
2524static int __init setup_slub_max_order(char *str)
2525{
06428780 2526 get_option(&str, &slub_max_order);
818cf590 2527 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2528
2529 return 1;
2530}
2531
2532__setup("slub_max_order=", setup_slub_max_order);
2533
2534static int __init setup_slub_min_objects(char *str)
2535{
06428780 2536 get_option(&str, &slub_min_objects);
81819f0f
CL
2537
2538 return 1;
2539}
2540
2541__setup("slub_min_objects=", setup_slub_min_objects);
2542
2543static int __init setup_slub_nomerge(char *str)
2544{
2545 slub_nomerge = 1;
2546 return 1;
2547}
2548
2549__setup("slub_nomerge", setup_slub_nomerge);
2550
81819f0f
CL
2551static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2552 const char *name, int size, gfp_t gfp_flags)
2553{
2554 unsigned int flags = 0;
2555
2556 if (gfp_flags & SLUB_DMA)
2557 flags = SLAB_CACHE_DMA;
2558
83b519e8
PE
2559 /*
2560 * This function is called with IRQs disabled during early-boot on
2561 * single CPU so there's no need to take slub_lock here.
2562 */
81819f0f 2563 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2564 flags, NULL))
81819f0f
CL
2565 goto panic;
2566
2567 list_add(&s->list, &slab_caches);
83b519e8 2568
81819f0f
CL
2569 if (sysfs_slab_add(s))
2570 goto panic;
2571 return s;
2572
2573panic:
2574 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2575}
2576
2e443fd0 2577#ifdef CONFIG_ZONE_DMA
ffadd4d0 2578static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2579
2580static void sysfs_add_func(struct work_struct *w)
2581{
2582 struct kmem_cache *s;
2583
2584 down_write(&slub_lock);
2585 list_for_each_entry(s, &slab_caches, list) {
2586 if (s->flags & __SYSFS_ADD_DEFERRED) {
2587 s->flags &= ~__SYSFS_ADD_DEFERRED;
2588 sysfs_slab_add(s);
2589 }
2590 }
2591 up_write(&slub_lock);
2592}
2593
2594static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2595
2e443fd0
CL
2596static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2597{
2598 struct kmem_cache *s;
2e443fd0
CL
2599 char *text;
2600 size_t realsize;
964cf35c 2601 unsigned long slabflags;
756dee75 2602 int i;
2e443fd0
CL
2603
2604 s = kmalloc_caches_dma[index];
2605 if (s)
2606 return s;
2607
2608 /* Dynamically create dma cache */
1ceef402
CL
2609 if (flags & __GFP_WAIT)
2610 down_write(&slub_lock);
2611 else {
2612 if (!down_write_trylock(&slub_lock))
2613 goto out;
2614 }
2615
2616 if (kmalloc_caches_dma[index])
2617 goto unlock_out;
2e443fd0 2618
7b55f620 2619 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2620 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2621 (unsigned int)realsize);
9dfc6e68 2622
756dee75
CL
2623 s = NULL;
2624 for (i = 0; i < KMALLOC_CACHES; i++)
2625 if (!kmalloc_caches[i].size)
2626 break;
9dfc6e68 2627
756dee75
CL
2628 BUG_ON(i >= KMALLOC_CACHES);
2629 s = kmalloc_caches + i;
1ceef402 2630
964cf35c
NP
2631 /*
2632 * Must defer sysfs creation to a workqueue because we don't know
2633 * what context we are called from. Before sysfs comes up, we don't
2634 * need to do anything because our sysfs initcall will start by
2635 * adding all existing slabs to sysfs.
2636 */
5caf5c7d 2637 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
964cf35c
NP
2638 if (slab_state >= SYSFS)
2639 slabflags |= __SYSFS_ADD_DEFERRED;
2640
7738dd9e 2641 if (!text || !kmem_cache_open(s, flags, text,
964cf35c 2642 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
756dee75 2643 s->size = 0;
1ceef402
CL
2644 kfree(text);
2645 goto unlock_out;
dfce8648 2646 }
1ceef402
CL
2647
2648 list_add(&s->list, &slab_caches);
2649 kmalloc_caches_dma[index] = s;
2650
964cf35c
NP
2651 if (slab_state >= SYSFS)
2652 schedule_work(&sysfs_add_work);
1ceef402
CL
2653
2654unlock_out:
dfce8648 2655 up_write(&slub_lock);
1ceef402 2656out:
dfce8648 2657 return kmalloc_caches_dma[index];
2e443fd0
CL
2658}
2659#endif
2660
f1b26339
CL
2661/*
2662 * Conversion table for small slabs sizes / 8 to the index in the
2663 * kmalloc array. This is necessary for slabs < 192 since we have non power
2664 * of two cache sizes there. The size of larger slabs can be determined using
2665 * fls.
2666 */
2667static s8 size_index[24] = {
2668 3, /* 8 */
2669 4, /* 16 */
2670 5, /* 24 */
2671 5, /* 32 */
2672 6, /* 40 */
2673 6, /* 48 */
2674 6, /* 56 */
2675 6, /* 64 */
2676 1, /* 72 */
2677 1, /* 80 */
2678 1, /* 88 */
2679 1, /* 96 */
2680 7, /* 104 */
2681 7, /* 112 */
2682 7, /* 120 */
2683 7, /* 128 */
2684 2, /* 136 */
2685 2, /* 144 */
2686 2, /* 152 */
2687 2, /* 160 */
2688 2, /* 168 */
2689 2, /* 176 */
2690 2, /* 184 */
2691 2 /* 192 */
2692};
2693
acdfcd04
AK
2694static inline int size_index_elem(size_t bytes)
2695{
2696 return (bytes - 1) / 8;
2697}
2698
81819f0f
CL
2699static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2700{
f1b26339 2701 int index;
81819f0f 2702
f1b26339
CL
2703 if (size <= 192) {
2704 if (!size)
2705 return ZERO_SIZE_PTR;
81819f0f 2706
acdfcd04 2707 index = size_index[size_index_elem(size)];
aadb4bc4 2708 } else
f1b26339 2709 index = fls(size - 1);
81819f0f
CL
2710
2711#ifdef CONFIG_ZONE_DMA
f1b26339 2712 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2713 return dma_kmalloc_cache(index, flags);
f1b26339 2714
81819f0f
CL
2715#endif
2716 return &kmalloc_caches[index];
2717}
2718
2719void *__kmalloc(size_t size, gfp_t flags)
2720{
aadb4bc4 2721 struct kmem_cache *s;
5b882be4 2722 void *ret;
81819f0f 2723
ffadd4d0 2724 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2725 return kmalloc_large(size, flags);
aadb4bc4
CL
2726
2727 s = get_slab(size, flags);
2728
2729 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2730 return s;
2731
2154a336 2732 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2733
ca2b84cb 2734 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2735
2736 return ret;
81819f0f
CL
2737}
2738EXPORT_SYMBOL(__kmalloc);
2739
f619cfe1
CL
2740static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2741{
b1eeab67 2742 struct page *page;
e4f7c0b4 2743 void *ptr = NULL;
f619cfe1 2744
b1eeab67
VN
2745 flags |= __GFP_COMP | __GFP_NOTRACK;
2746 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2747 if (page)
e4f7c0b4
CM
2748 ptr = page_address(page);
2749
2750 kmemleak_alloc(ptr, size, 1, flags);
2751 return ptr;
f619cfe1
CL
2752}
2753
81819f0f
CL
2754#ifdef CONFIG_NUMA
2755void *__kmalloc_node(size_t size, gfp_t flags, int node)
2756{
aadb4bc4 2757 struct kmem_cache *s;
5b882be4 2758 void *ret;
81819f0f 2759
057685cf 2760 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2761 ret = kmalloc_large_node(size, flags, node);
2762
ca2b84cb
EGM
2763 trace_kmalloc_node(_RET_IP_, ret,
2764 size, PAGE_SIZE << get_order(size),
2765 flags, node);
5b882be4
EGM
2766
2767 return ret;
2768 }
aadb4bc4
CL
2769
2770 s = get_slab(size, flags);
2771
2772 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2773 return s;
2774
5b882be4
EGM
2775 ret = slab_alloc(s, flags, node, _RET_IP_);
2776
ca2b84cb 2777 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2778
2779 return ret;
81819f0f
CL
2780}
2781EXPORT_SYMBOL(__kmalloc_node);
2782#endif
2783
2784size_t ksize(const void *object)
2785{
272c1d21 2786 struct page *page;
81819f0f
CL
2787 struct kmem_cache *s;
2788
ef8b4520 2789 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2790 return 0;
2791
294a80a8 2792 page = virt_to_head_page(object);
294a80a8 2793
76994412
PE
2794 if (unlikely(!PageSlab(page))) {
2795 WARN_ON(!PageCompound(page));
294a80a8 2796 return PAGE_SIZE << compound_order(page);
76994412 2797 }
81819f0f 2798 s = page->slab;
81819f0f 2799
ae20bfda 2800#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2801 /*
2802 * Debugging requires use of the padding between object
2803 * and whatever may come after it.
2804 */
2805 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2806 return s->objsize;
2807
ae20bfda 2808#endif
81819f0f
CL
2809 /*
2810 * If we have the need to store the freelist pointer
2811 * back there or track user information then we can
2812 * only use the space before that information.
2813 */
2814 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2815 return s->inuse;
81819f0f
CL
2816 /*
2817 * Else we can use all the padding etc for the allocation
2818 */
2819 return s->size;
2820}
b1aabecd 2821EXPORT_SYMBOL(ksize);
81819f0f
CL
2822
2823void kfree(const void *x)
2824{
81819f0f 2825 struct page *page;
5bb983b0 2826 void *object = (void *)x;
81819f0f 2827
2121db74
PE
2828 trace_kfree(_RET_IP_, x);
2829
2408c550 2830 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2831 return;
2832
b49af68f 2833 page = virt_to_head_page(x);
aadb4bc4 2834 if (unlikely(!PageSlab(page))) {
0937502a 2835 BUG_ON(!PageCompound(page));
e4f7c0b4 2836 kmemleak_free(x);
aadb4bc4
CL
2837 put_page(page);
2838 return;
2839 }
ce71e27c 2840 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2841}
2842EXPORT_SYMBOL(kfree);
2843
2086d26a 2844/*
672bba3a
CL
2845 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2846 * the remaining slabs by the number of items in use. The slabs with the
2847 * most items in use come first. New allocations will then fill those up
2848 * and thus they can be removed from the partial lists.
2849 *
2850 * The slabs with the least items are placed last. This results in them
2851 * being allocated from last increasing the chance that the last objects
2852 * are freed in them.
2086d26a
CL
2853 */
2854int kmem_cache_shrink(struct kmem_cache *s)
2855{
2856 int node;
2857 int i;
2858 struct kmem_cache_node *n;
2859 struct page *page;
2860 struct page *t;
205ab99d 2861 int objects = oo_objects(s->max);
2086d26a 2862 struct list_head *slabs_by_inuse =
834f3d11 2863 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2864 unsigned long flags;
2865
2866 if (!slabs_by_inuse)
2867 return -ENOMEM;
2868
2869 flush_all(s);
f64dc58c 2870 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2871 n = get_node(s, node);
2872
2873 if (!n->nr_partial)
2874 continue;
2875
834f3d11 2876 for (i = 0; i < objects; i++)
2086d26a
CL
2877 INIT_LIST_HEAD(slabs_by_inuse + i);
2878
2879 spin_lock_irqsave(&n->list_lock, flags);
2880
2881 /*
672bba3a 2882 * Build lists indexed by the items in use in each slab.
2086d26a 2883 *
672bba3a
CL
2884 * Note that concurrent frees may occur while we hold the
2885 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2886 */
2887 list_for_each_entry_safe(page, t, &n->partial, lru) {
2888 if (!page->inuse && slab_trylock(page)) {
2889 /*
2890 * Must hold slab lock here because slab_free
2891 * may have freed the last object and be
2892 * waiting to release the slab.
2893 */
2894 list_del(&page->lru);
2895 n->nr_partial--;
2896 slab_unlock(page);
2897 discard_slab(s, page);
2898 } else {
fcda3d89
CL
2899 list_move(&page->lru,
2900 slabs_by_inuse + page->inuse);
2086d26a
CL
2901 }
2902 }
2903
2086d26a 2904 /*
672bba3a
CL
2905 * Rebuild the partial list with the slabs filled up most
2906 * first and the least used slabs at the end.
2086d26a 2907 */
834f3d11 2908 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2909 list_splice(slabs_by_inuse + i, n->partial.prev);
2910
2086d26a
CL
2911 spin_unlock_irqrestore(&n->list_lock, flags);
2912 }
2913
2914 kfree(slabs_by_inuse);
2915 return 0;
2916}
2917EXPORT_SYMBOL(kmem_cache_shrink);
2918
b9049e23
YG
2919#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2920static int slab_mem_going_offline_callback(void *arg)
2921{
2922 struct kmem_cache *s;
2923
2924 down_read(&slub_lock);
2925 list_for_each_entry(s, &slab_caches, list)
2926 kmem_cache_shrink(s);
2927 up_read(&slub_lock);
2928
2929 return 0;
2930}
2931
2932static void slab_mem_offline_callback(void *arg)
2933{
2934 struct kmem_cache_node *n;
2935 struct kmem_cache *s;
2936 struct memory_notify *marg = arg;
2937 int offline_node;
2938
2939 offline_node = marg->status_change_nid;
2940
2941 /*
2942 * If the node still has available memory. we need kmem_cache_node
2943 * for it yet.
2944 */
2945 if (offline_node < 0)
2946 return;
2947
2948 down_read(&slub_lock);
2949 list_for_each_entry(s, &slab_caches, list) {
2950 n = get_node(s, offline_node);
2951 if (n) {
2952 /*
2953 * if n->nr_slabs > 0, slabs still exist on the node
2954 * that is going down. We were unable to free them,
c9404c9c 2955 * and offline_pages() function shouldn't call this
b9049e23
YG
2956 * callback. So, we must fail.
2957 */
0f389ec6 2958 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2959
2960 s->node[offline_node] = NULL;
2961 kmem_cache_free(kmalloc_caches, n);
2962 }
2963 }
2964 up_read(&slub_lock);
2965}
2966
2967static int slab_mem_going_online_callback(void *arg)
2968{
2969 struct kmem_cache_node *n;
2970 struct kmem_cache *s;
2971 struct memory_notify *marg = arg;
2972 int nid = marg->status_change_nid;
2973 int ret = 0;
2974
2975 /*
2976 * If the node's memory is already available, then kmem_cache_node is
2977 * already created. Nothing to do.
2978 */
2979 if (nid < 0)
2980 return 0;
2981
2982 /*
0121c619 2983 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2984 * allocate a kmem_cache_node structure in order to bring the node
2985 * online.
2986 */
2987 down_read(&slub_lock);
2988 list_for_each_entry(s, &slab_caches, list) {
2989 /*
2990 * XXX: kmem_cache_alloc_node will fallback to other nodes
2991 * since memory is not yet available from the node that
2992 * is brought up.
2993 */
2994 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2995 if (!n) {
2996 ret = -ENOMEM;
2997 goto out;
2998 }
5595cffc 2999 init_kmem_cache_node(n, s);
b9049e23
YG
3000 s->node[nid] = n;
3001 }
3002out:
3003 up_read(&slub_lock);
3004 return ret;
3005}
3006
3007static int slab_memory_callback(struct notifier_block *self,
3008 unsigned long action, void *arg)
3009{
3010 int ret = 0;
3011
3012 switch (action) {
3013 case MEM_GOING_ONLINE:
3014 ret = slab_mem_going_online_callback(arg);
3015 break;
3016 case MEM_GOING_OFFLINE:
3017 ret = slab_mem_going_offline_callback(arg);
3018 break;
3019 case MEM_OFFLINE:
3020 case MEM_CANCEL_ONLINE:
3021 slab_mem_offline_callback(arg);
3022 break;
3023 case MEM_ONLINE:
3024 case MEM_CANCEL_OFFLINE:
3025 break;
3026 }
dc19f9db
KH
3027 if (ret)
3028 ret = notifier_from_errno(ret);
3029 else
3030 ret = NOTIFY_OK;
b9049e23
YG
3031 return ret;
3032}
3033
3034#endif /* CONFIG_MEMORY_HOTPLUG */
3035
81819f0f
CL
3036/********************************************************************
3037 * Basic setup of slabs
3038 *******************************************************************/
3039
3040void __init kmem_cache_init(void)
3041{
3042 int i;
4b356be0 3043 int caches = 0;
81819f0f
CL
3044
3045#ifdef CONFIG_NUMA
3046 /*
3047 * Must first have the slab cache available for the allocations of the
672bba3a 3048 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3049 * kmem_cache_open for slab_state == DOWN.
3050 */
3051 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3052 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3053 kmalloc_caches[0].refcount = -1;
4b356be0 3054 caches++;
b9049e23 3055
0c40ba4f 3056 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3057#endif
3058
3059 /* Able to allocate the per node structures */
3060 slab_state = PARTIAL;
3061
3062 /* Caches that are not of the two-to-the-power-of size */
acdfcd04 3063 if (KMALLOC_MIN_SIZE <= 32) {
4b356be0 3064 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3065 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3066 caches++;
acdfcd04
AK
3067 }
3068 if (KMALLOC_MIN_SIZE <= 64) {
4b356be0 3069 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3070 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3071 caches++;
3072 }
81819f0f 3073
ffadd4d0 3074 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3075 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3076 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3077 caches++;
3078 }
81819f0f 3079
f1b26339
CL
3080
3081 /*
3082 * Patch up the size_index table if we have strange large alignment
3083 * requirements for the kmalloc array. This is only the case for
6446faa2 3084 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3085 *
3086 * Largest permitted alignment is 256 bytes due to the way we
3087 * handle the index determination for the smaller caches.
3088 *
3089 * Make sure that nothing crazy happens if someone starts tinkering
3090 * around with ARCH_KMALLOC_MINALIGN
3091 */
3092 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3093 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3094
acdfcd04
AK
3095 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3096 int elem = size_index_elem(i);
3097 if (elem >= ARRAY_SIZE(size_index))
3098 break;
3099 size_index[elem] = KMALLOC_SHIFT_LOW;
3100 }
f1b26339 3101
acdfcd04
AK
3102 if (KMALLOC_MIN_SIZE == 64) {
3103 /*
3104 * The 96 byte size cache is not used if the alignment
3105 * is 64 byte.
3106 */
3107 for (i = 64 + 8; i <= 96; i += 8)
3108 size_index[size_index_elem(i)] = 7;
3109 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3110 /*
3111 * The 192 byte sized cache is not used if the alignment
3112 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3113 * instead.
3114 */
3115 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3116 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3117 }
3118
81819f0f
CL
3119 slab_state = UP;
3120
3121 /* Provide the correct kmalloc names now that the caches are up */
d7278bd7
CL
3122 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3123 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3124
3125 BUG_ON(!s);
3126 kmalloc_caches[i].name = s;
3127 }
81819f0f
CL
3128
3129#ifdef CONFIG_SMP
3130 register_cpu_notifier(&slab_notifier);
9dfc6e68
CL
3131#endif
3132#ifdef CONFIG_NUMA
3133 kmem_size = offsetof(struct kmem_cache, node) +
3134 nr_node_ids * sizeof(struct kmem_cache_node *);
4c93c355
CL
3135#else
3136 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3137#endif
3138
3adbefee
IM
3139 printk(KERN_INFO
3140 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3141 " CPUs=%d, Nodes=%d\n",
3142 caches, cache_line_size(),
81819f0f
CL
3143 slub_min_order, slub_max_order, slub_min_objects,
3144 nr_cpu_ids, nr_node_ids);
3145}
3146
7e85ee0c
PE
3147void __init kmem_cache_init_late(void)
3148{
7e85ee0c
PE
3149}
3150
81819f0f
CL
3151/*
3152 * Find a mergeable slab cache
3153 */
3154static int slab_unmergeable(struct kmem_cache *s)
3155{
3156 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3157 return 1;
3158
c59def9f 3159 if (s->ctor)
81819f0f
CL
3160 return 1;
3161
8ffa6875
CL
3162 /*
3163 * We may have set a slab to be unmergeable during bootstrap.
3164 */
3165 if (s->refcount < 0)
3166 return 1;
3167
81819f0f
CL
3168 return 0;
3169}
3170
3171static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3172 size_t align, unsigned long flags, const char *name,
51cc5068 3173 void (*ctor)(void *))
81819f0f 3174{
5b95a4ac 3175 struct kmem_cache *s;
81819f0f
CL
3176
3177 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3178 return NULL;
3179
c59def9f 3180 if (ctor)
81819f0f
CL
3181 return NULL;
3182
3183 size = ALIGN(size, sizeof(void *));
3184 align = calculate_alignment(flags, align, size);
3185 size = ALIGN(size, align);
ba0268a8 3186 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3187
5b95a4ac 3188 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3189 if (slab_unmergeable(s))
3190 continue;
3191
3192 if (size > s->size)
3193 continue;
3194
ba0268a8 3195 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3196 continue;
3197 /*
3198 * Check if alignment is compatible.
3199 * Courtesy of Adrian Drzewiecki
3200 */
06428780 3201 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3202 continue;
3203
3204 if (s->size - size >= sizeof(void *))
3205 continue;
3206
3207 return s;
3208 }
3209 return NULL;
3210}
3211
3212struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3213 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3214{
3215 struct kmem_cache *s;
3216
fe1ff49d
BH
3217 if (WARN_ON(!name))
3218 return NULL;
3219
81819f0f 3220 down_write(&slub_lock);
ba0268a8 3221 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3222 if (s) {
3223 s->refcount++;
3224 /*
3225 * Adjust the object sizes so that we clear
3226 * the complete object on kzalloc.
3227 */
3228 s->objsize = max(s->objsize, (int)size);
3229 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3230 up_write(&slub_lock);
6446faa2 3231
7b8f3b66
DR
3232 if (sysfs_slab_alias(s, name)) {
3233 down_write(&slub_lock);
3234 s->refcount--;
3235 up_write(&slub_lock);
81819f0f 3236 goto err;
7b8f3b66 3237 }
a0e1d1be
CL
3238 return s;
3239 }
6446faa2 3240
a0e1d1be
CL
3241 s = kmalloc(kmem_size, GFP_KERNEL);
3242 if (s) {
3243 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3244 size, align, flags, ctor)) {
81819f0f 3245 list_add(&s->list, &slab_caches);
a0e1d1be 3246 up_write(&slub_lock);
7b8f3b66
DR
3247 if (sysfs_slab_add(s)) {
3248 down_write(&slub_lock);
3249 list_del(&s->list);
3250 up_write(&slub_lock);
3251 kfree(s);
a0e1d1be 3252 goto err;
7b8f3b66 3253 }
a0e1d1be
CL
3254 return s;
3255 }
3256 kfree(s);
81819f0f
CL
3257 }
3258 up_write(&slub_lock);
81819f0f
CL
3259
3260err:
81819f0f
CL
3261 if (flags & SLAB_PANIC)
3262 panic("Cannot create slabcache %s\n", name);
3263 else
3264 s = NULL;
3265 return s;
3266}
3267EXPORT_SYMBOL(kmem_cache_create);
3268
81819f0f 3269#ifdef CONFIG_SMP
81819f0f 3270/*
672bba3a
CL
3271 * Use the cpu notifier to insure that the cpu slabs are flushed when
3272 * necessary.
81819f0f
CL
3273 */
3274static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3275 unsigned long action, void *hcpu)
3276{
3277 long cpu = (long)hcpu;
5b95a4ac
CL
3278 struct kmem_cache *s;
3279 unsigned long flags;
81819f0f
CL
3280
3281 switch (action) {
3282 case CPU_UP_CANCELED:
8bb78442 3283 case CPU_UP_CANCELED_FROZEN:
81819f0f 3284 case CPU_DEAD:
8bb78442 3285 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3286 down_read(&slub_lock);
3287 list_for_each_entry(s, &slab_caches, list) {
3288 local_irq_save(flags);
3289 __flush_cpu_slab(s, cpu);
3290 local_irq_restore(flags);
3291 }
3292 up_read(&slub_lock);
81819f0f
CL
3293 break;
3294 default:
3295 break;
3296 }
3297 return NOTIFY_OK;
3298}
3299
06428780 3300static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3301 .notifier_call = slab_cpuup_callback
06428780 3302};
81819f0f
CL
3303
3304#endif
3305
ce71e27c 3306void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3307{
aadb4bc4 3308 struct kmem_cache *s;
94b528d0 3309 void *ret;
aadb4bc4 3310
ffadd4d0 3311 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3312 return kmalloc_large(size, gfpflags);
3313
aadb4bc4 3314 s = get_slab(size, gfpflags);
81819f0f 3315
2408c550 3316 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3317 return s;
81819f0f 3318
2154a336 3319 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3320
3321 /* Honor the call site pointer we recieved. */
ca2b84cb 3322 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3323
3324 return ret;
81819f0f
CL
3325}
3326
3327void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3328 int node, unsigned long caller)
81819f0f 3329{
aadb4bc4 3330 struct kmem_cache *s;
94b528d0 3331 void *ret;
aadb4bc4 3332
d3e14aa3
XF
3333 if (unlikely(size > SLUB_MAX_SIZE)) {
3334 ret = kmalloc_large_node(size, gfpflags, node);
3335
3336 trace_kmalloc_node(caller, ret,
3337 size, PAGE_SIZE << get_order(size),
3338 gfpflags, node);
3339
3340 return ret;
3341 }
eada35ef 3342
aadb4bc4 3343 s = get_slab(size, gfpflags);
81819f0f 3344
2408c550 3345 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3346 return s;
81819f0f 3347
94b528d0
EGM
3348 ret = slab_alloc(s, gfpflags, node, caller);
3349
3350 /* Honor the call site pointer we recieved. */
ca2b84cb 3351 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3352
3353 return ret;
81819f0f
CL
3354}
3355
f6acb635 3356#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3357static int count_inuse(struct page *page)
3358{
3359 return page->inuse;
3360}
3361
3362static int count_total(struct page *page)
3363{
3364 return page->objects;
3365}
3366
434e245d
CL
3367static int validate_slab(struct kmem_cache *s, struct page *page,
3368 unsigned long *map)
53e15af0
CL
3369{
3370 void *p;
a973e9dd 3371 void *addr = page_address(page);
53e15af0
CL
3372
3373 if (!check_slab(s, page) ||
3374 !on_freelist(s, page, NULL))
3375 return 0;
3376
3377 /* Now we know that a valid freelist exists */
39b26464 3378 bitmap_zero(map, page->objects);
53e15af0 3379
7656c72b
CL
3380 for_each_free_object(p, s, page->freelist) {
3381 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3382 if (!check_object(s, page, p, 0))
3383 return 0;
3384 }
3385
224a88be 3386 for_each_object(p, s, addr, page->objects)
7656c72b 3387 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3388 if (!check_object(s, page, p, 1))
3389 return 0;
3390 return 1;
3391}
3392
434e245d
CL
3393static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3394 unsigned long *map)
53e15af0
CL
3395{
3396 if (slab_trylock(page)) {
434e245d 3397 validate_slab(s, page, map);
53e15af0
CL
3398 slab_unlock(page);
3399 } else
3400 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3401 s->name, page);
53e15af0
CL
3402}
3403
434e245d
CL
3404static int validate_slab_node(struct kmem_cache *s,
3405 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3406{
3407 unsigned long count = 0;
3408 struct page *page;
3409 unsigned long flags;
3410
3411 spin_lock_irqsave(&n->list_lock, flags);
3412
3413 list_for_each_entry(page, &n->partial, lru) {
434e245d 3414 validate_slab_slab(s, page, map);
53e15af0
CL
3415 count++;
3416 }
3417 if (count != n->nr_partial)
3418 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3419 "counter=%ld\n", s->name, count, n->nr_partial);
3420
3421 if (!(s->flags & SLAB_STORE_USER))
3422 goto out;
3423
3424 list_for_each_entry(page, &n->full, lru) {
434e245d 3425 validate_slab_slab(s, page, map);
53e15af0
CL
3426 count++;
3427 }
3428 if (count != atomic_long_read(&n->nr_slabs))
3429 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3430 "counter=%ld\n", s->name, count,
3431 atomic_long_read(&n->nr_slabs));
3432
3433out:
3434 spin_unlock_irqrestore(&n->list_lock, flags);
3435 return count;
3436}
3437
434e245d 3438static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3439{
3440 int node;
3441 unsigned long count = 0;
205ab99d 3442 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3443 sizeof(unsigned long), GFP_KERNEL);
3444
3445 if (!map)
3446 return -ENOMEM;
53e15af0
CL
3447
3448 flush_all(s);
f64dc58c 3449 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3450 struct kmem_cache_node *n = get_node(s, node);
3451
434e245d 3452 count += validate_slab_node(s, n, map);
53e15af0 3453 }
434e245d 3454 kfree(map);
53e15af0
CL
3455 return count;
3456}
3457
b3459709
CL
3458#ifdef SLUB_RESILIENCY_TEST
3459static void resiliency_test(void)
3460{
3461 u8 *p;
3462
3463 printk(KERN_ERR "SLUB resiliency testing\n");
3464 printk(KERN_ERR "-----------------------\n");
3465 printk(KERN_ERR "A. Corruption after allocation\n");
3466
3467 p = kzalloc(16, GFP_KERNEL);
3468 p[16] = 0x12;
3469 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3470 " 0x12->0x%p\n\n", p + 16);
3471
3472 validate_slab_cache(kmalloc_caches + 4);
3473
3474 /* Hmmm... The next two are dangerous */
3475 p = kzalloc(32, GFP_KERNEL);
3476 p[32 + sizeof(void *)] = 0x34;
3477 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3478 " 0x34 -> -0x%p\n", p);
3479 printk(KERN_ERR
3480 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3481
3482 validate_slab_cache(kmalloc_caches + 5);
3483 p = kzalloc(64, GFP_KERNEL);
3484 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3485 *p = 0x56;
3486 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3487 p);
3adbefee
IM
3488 printk(KERN_ERR
3489 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3490 validate_slab_cache(kmalloc_caches + 6);
3491
3492 printk(KERN_ERR "\nB. Corruption after free\n");
3493 p = kzalloc(128, GFP_KERNEL);
3494 kfree(p);
3495 *p = 0x78;
3496 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3497 validate_slab_cache(kmalloc_caches + 7);
3498
3499 p = kzalloc(256, GFP_KERNEL);
3500 kfree(p);
3501 p[50] = 0x9a;
3adbefee
IM
3502 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3503 p);
b3459709
CL
3504 validate_slab_cache(kmalloc_caches + 8);
3505
3506 p = kzalloc(512, GFP_KERNEL);
3507 kfree(p);
3508 p[512] = 0xab;
3509 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3510 validate_slab_cache(kmalloc_caches + 9);
3511}
3512#else
3513static void resiliency_test(void) {};
3514#endif
3515
88a420e4 3516/*
672bba3a 3517 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3518 * and freed.
3519 */
3520
3521struct location {
3522 unsigned long count;
ce71e27c 3523 unsigned long addr;
45edfa58
CL
3524 long long sum_time;
3525 long min_time;
3526 long max_time;
3527 long min_pid;
3528 long max_pid;
174596a0 3529 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3530 nodemask_t nodes;
88a420e4
CL
3531};
3532
3533struct loc_track {
3534 unsigned long max;
3535 unsigned long count;
3536 struct location *loc;
3537};
3538
3539static void free_loc_track(struct loc_track *t)
3540{
3541 if (t->max)
3542 free_pages((unsigned long)t->loc,
3543 get_order(sizeof(struct location) * t->max));
3544}
3545
68dff6a9 3546static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3547{
3548 struct location *l;
3549 int order;
3550
88a420e4
CL
3551 order = get_order(sizeof(struct location) * max);
3552
68dff6a9 3553 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3554 if (!l)
3555 return 0;
3556
3557 if (t->count) {
3558 memcpy(l, t->loc, sizeof(struct location) * t->count);
3559 free_loc_track(t);
3560 }
3561 t->max = max;
3562 t->loc = l;
3563 return 1;
3564}
3565
3566static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3567 const struct track *track)
88a420e4
CL
3568{
3569 long start, end, pos;
3570 struct location *l;
ce71e27c 3571 unsigned long caddr;
45edfa58 3572 unsigned long age = jiffies - track->when;
88a420e4
CL
3573
3574 start = -1;
3575 end = t->count;
3576
3577 for ( ; ; ) {
3578 pos = start + (end - start + 1) / 2;
3579
3580 /*
3581 * There is nothing at "end". If we end up there
3582 * we need to add something to before end.
3583 */
3584 if (pos == end)
3585 break;
3586
3587 caddr = t->loc[pos].addr;
45edfa58
CL
3588 if (track->addr == caddr) {
3589
3590 l = &t->loc[pos];
3591 l->count++;
3592 if (track->when) {
3593 l->sum_time += age;
3594 if (age < l->min_time)
3595 l->min_time = age;
3596 if (age > l->max_time)
3597 l->max_time = age;
3598
3599 if (track->pid < l->min_pid)
3600 l->min_pid = track->pid;
3601 if (track->pid > l->max_pid)
3602 l->max_pid = track->pid;
3603
174596a0
RR
3604 cpumask_set_cpu(track->cpu,
3605 to_cpumask(l->cpus));
45edfa58
CL
3606 }
3607 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3608 return 1;
3609 }
3610
45edfa58 3611 if (track->addr < caddr)
88a420e4
CL
3612 end = pos;
3613 else
3614 start = pos;
3615 }
3616
3617 /*
672bba3a 3618 * Not found. Insert new tracking element.
88a420e4 3619 */
68dff6a9 3620 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3621 return 0;
3622
3623 l = t->loc + pos;
3624 if (pos < t->count)
3625 memmove(l + 1, l,
3626 (t->count - pos) * sizeof(struct location));
3627 t->count++;
3628 l->count = 1;
45edfa58
CL
3629 l->addr = track->addr;
3630 l->sum_time = age;
3631 l->min_time = age;
3632 l->max_time = age;
3633 l->min_pid = track->pid;
3634 l->max_pid = track->pid;
174596a0
RR
3635 cpumask_clear(to_cpumask(l->cpus));
3636 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3637 nodes_clear(l->nodes);
3638 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3639 return 1;
3640}
3641
3642static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b
ED
3643 struct page *page, enum track_item alloc,
3644 long *map)
88a420e4 3645{
a973e9dd 3646 void *addr = page_address(page);
88a420e4
CL
3647 void *p;
3648
39b26464 3649 bitmap_zero(map, page->objects);
7656c72b
CL
3650 for_each_free_object(p, s, page->freelist)
3651 set_bit(slab_index(p, s, addr), map);
88a420e4 3652
224a88be 3653 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3654 if (!test_bit(slab_index(p, s, addr), map))
3655 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3656}
3657
3658static int list_locations(struct kmem_cache *s, char *buf,
3659 enum track_item alloc)
3660{
e374d483 3661 int len = 0;
88a420e4 3662 unsigned long i;
68dff6a9 3663 struct loc_track t = { 0, 0, NULL };
88a420e4 3664 int node;
bbd7d57b
ED
3665 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3666 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3667
bbd7d57b
ED
3668 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3669 GFP_TEMPORARY)) {
3670 kfree(map);
68dff6a9 3671 return sprintf(buf, "Out of memory\n");
bbd7d57b 3672 }
88a420e4
CL
3673 /* Push back cpu slabs */
3674 flush_all(s);
3675
f64dc58c 3676 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3677 struct kmem_cache_node *n = get_node(s, node);
3678 unsigned long flags;
3679 struct page *page;
3680
9e86943b 3681 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3682 continue;
3683
3684 spin_lock_irqsave(&n->list_lock, flags);
3685 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3686 process_slab(&t, s, page, alloc, map);
88a420e4 3687 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3688 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3689 spin_unlock_irqrestore(&n->list_lock, flags);
3690 }
3691
3692 for (i = 0; i < t.count; i++) {
45edfa58 3693 struct location *l = &t.loc[i];
88a420e4 3694
9c246247 3695 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3696 break;
e374d483 3697 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3698
3699 if (l->addr)
e374d483 3700 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3701 else
e374d483 3702 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3703
3704 if (l->sum_time != l->min_time) {
e374d483 3705 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3706 l->min_time,
3707 (long)div_u64(l->sum_time, l->count),
3708 l->max_time);
45edfa58 3709 } else
e374d483 3710 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3711 l->min_time);
3712
3713 if (l->min_pid != l->max_pid)
e374d483 3714 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3715 l->min_pid, l->max_pid);
3716 else
e374d483 3717 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3718 l->min_pid);
3719
174596a0
RR
3720 if (num_online_cpus() > 1 &&
3721 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3722 len < PAGE_SIZE - 60) {
3723 len += sprintf(buf + len, " cpus=");
3724 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3725 to_cpumask(l->cpus));
45edfa58
CL
3726 }
3727
62bc62a8 3728 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3729 len < PAGE_SIZE - 60) {
3730 len += sprintf(buf + len, " nodes=");
3731 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3732 l->nodes);
3733 }
3734
e374d483 3735 len += sprintf(buf + len, "\n");
88a420e4
CL
3736 }
3737
3738 free_loc_track(&t);
bbd7d57b 3739 kfree(map);
88a420e4 3740 if (!t.count)
e374d483
HH
3741 len += sprintf(buf, "No data\n");
3742 return len;
88a420e4
CL
3743}
3744
81819f0f 3745enum slab_stat_type {
205ab99d
CL
3746 SL_ALL, /* All slabs */
3747 SL_PARTIAL, /* Only partially allocated slabs */
3748 SL_CPU, /* Only slabs used for cpu caches */
3749 SL_OBJECTS, /* Determine allocated objects not slabs */
3750 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3751};
3752
205ab99d 3753#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3754#define SO_PARTIAL (1 << SL_PARTIAL)
3755#define SO_CPU (1 << SL_CPU)
3756#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3757#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3758
62e5c4b4
CG
3759static ssize_t show_slab_objects(struct kmem_cache *s,
3760 char *buf, unsigned long flags)
81819f0f
CL
3761{
3762 unsigned long total = 0;
81819f0f
CL
3763 int node;
3764 int x;
3765 unsigned long *nodes;
3766 unsigned long *per_cpu;
3767
3768 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3769 if (!nodes)
3770 return -ENOMEM;
81819f0f
CL
3771 per_cpu = nodes + nr_node_ids;
3772
205ab99d
CL
3773 if (flags & SO_CPU) {
3774 int cpu;
81819f0f 3775
205ab99d 3776 for_each_possible_cpu(cpu) {
9dfc6e68 3777 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3778
205ab99d
CL
3779 if (!c || c->node < 0)
3780 continue;
3781
3782 if (c->page) {
3783 if (flags & SO_TOTAL)
3784 x = c->page->objects;
3785 else if (flags & SO_OBJECTS)
3786 x = c->page->inuse;
81819f0f
CL
3787 else
3788 x = 1;
205ab99d 3789
81819f0f 3790 total += x;
205ab99d 3791 nodes[c->node] += x;
81819f0f 3792 }
205ab99d 3793 per_cpu[c->node]++;
81819f0f
CL
3794 }
3795 }
3796
205ab99d
CL
3797 if (flags & SO_ALL) {
3798 for_each_node_state(node, N_NORMAL_MEMORY) {
3799 struct kmem_cache_node *n = get_node(s, node);
3800
3801 if (flags & SO_TOTAL)
3802 x = atomic_long_read(&n->total_objects);
3803 else if (flags & SO_OBJECTS)
3804 x = atomic_long_read(&n->total_objects) -
3805 count_partial(n, count_free);
81819f0f 3806
81819f0f 3807 else
205ab99d 3808 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3809 total += x;
3810 nodes[node] += x;
3811 }
3812
205ab99d
CL
3813 } else if (flags & SO_PARTIAL) {
3814 for_each_node_state(node, N_NORMAL_MEMORY) {
3815 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3816
205ab99d
CL
3817 if (flags & SO_TOTAL)
3818 x = count_partial(n, count_total);
3819 else if (flags & SO_OBJECTS)
3820 x = count_partial(n, count_inuse);
81819f0f 3821 else
205ab99d 3822 x = n->nr_partial;
81819f0f
CL
3823 total += x;
3824 nodes[node] += x;
3825 }
3826 }
81819f0f
CL
3827 x = sprintf(buf, "%lu", total);
3828#ifdef CONFIG_NUMA
f64dc58c 3829 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3830 if (nodes[node])
3831 x += sprintf(buf + x, " N%d=%lu",
3832 node, nodes[node]);
3833#endif
3834 kfree(nodes);
3835 return x + sprintf(buf + x, "\n");
3836}
3837
3838static int any_slab_objects(struct kmem_cache *s)
3839{
3840 int node;
81819f0f 3841
dfb4f096 3842 for_each_online_node(node) {
81819f0f
CL
3843 struct kmem_cache_node *n = get_node(s, node);
3844
dfb4f096
CL
3845 if (!n)
3846 continue;
3847
4ea33e2d 3848 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3849 return 1;
3850 }
3851 return 0;
3852}
3853
3854#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3855#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3856
3857struct slab_attribute {
3858 struct attribute attr;
3859 ssize_t (*show)(struct kmem_cache *s, char *buf);
3860 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3861};
3862
3863#define SLAB_ATTR_RO(_name) \
3864 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3865
3866#define SLAB_ATTR(_name) \
3867 static struct slab_attribute _name##_attr = \
3868 __ATTR(_name, 0644, _name##_show, _name##_store)
3869
81819f0f
CL
3870static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3871{
3872 return sprintf(buf, "%d\n", s->size);
3873}
3874SLAB_ATTR_RO(slab_size);
3875
3876static ssize_t align_show(struct kmem_cache *s, char *buf)
3877{
3878 return sprintf(buf, "%d\n", s->align);
3879}
3880SLAB_ATTR_RO(align);
3881
3882static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3883{
3884 return sprintf(buf, "%d\n", s->objsize);
3885}
3886SLAB_ATTR_RO(object_size);
3887
3888static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3889{
834f3d11 3890 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3891}
3892SLAB_ATTR_RO(objs_per_slab);
3893
06b285dc
CL
3894static ssize_t order_store(struct kmem_cache *s,
3895 const char *buf, size_t length)
3896{
0121c619
CL
3897 unsigned long order;
3898 int err;
3899
3900 err = strict_strtoul(buf, 10, &order);
3901 if (err)
3902 return err;
06b285dc
CL
3903
3904 if (order > slub_max_order || order < slub_min_order)
3905 return -EINVAL;
3906
3907 calculate_sizes(s, order);
3908 return length;
3909}
3910
81819f0f
CL
3911static ssize_t order_show(struct kmem_cache *s, char *buf)
3912{
834f3d11 3913 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3914}
06b285dc 3915SLAB_ATTR(order);
81819f0f 3916
73d342b1
DR
3917static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3918{
3919 return sprintf(buf, "%lu\n", s->min_partial);
3920}
3921
3922static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3923 size_t length)
3924{
3925 unsigned long min;
3926 int err;
3927
3928 err = strict_strtoul(buf, 10, &min);
3929 if (err)
3930 return err;
3931
c0bdb232 3932 set_min_partial(s, min);
73d342b1
DR
3933 return length;
3934}
3935SLAB_ATTR(min_partial);
3936
81819f0f
CL
3937static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3938{
3939 if (s->ctor) {
3940 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3941
3942 return n + sprintf(buf + n, "\n");
3943 }
3944 return 0;
3945}
3946SLAB_ATTR_RO(ctor);
3947
81819f0f
CL
3948static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3949{
3950 return sprintf(buf, "%d\n", s->refcount - 1);
3951}
3952SLAB_ATTR_RO(aliases);
3953
3954static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3955{
205ab99d 3956 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3957}
3958SLAB_ATTR_RO(slabs);
3959
3960static ssize_t partial_show(struct kmem_cache *s, char *buf)
3961{
d9acf4b7 3962 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3963}
3964SLAB_ATTR_RO(partial);
3965
3966static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3967{
d9acf4b7 3968 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3969}
3970SLAB_ATTR_RO(cpu_slabs);
3971
3972static ssize_t objects_show(struct kmem_cache *s, char *buf)
3973{
205ab99d 3974 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3975}
3976SLAB_ATTR_RO(objects);
3977
205ab99d
CL
3978static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3979{
3980 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3981}
3982SLAB_ATTR_RO(objects_partial);
3983
3984static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3985{
3986 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3987}
3988SLAB_ATTR_RO(total_objects);
3989
81819f0f
CL
3990static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3991{
3992 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3993}
3994
3995static ssize_t sanity_checks_store(struct kmem_cache *s,
3996 const char *buf, size_t length)
3997{
3998 s->flags &= ~SLAB_DEBUG_FREE;
3999 if (buf[0] == '1')
4000 s->flags |= SLAB_DEBUG_FREE;
4001 return length;
4002}
4003SLAB_ATTR(sanity_checks);
4004
4005static ssize_t trace_show(struct kmem_cache *s, char *buf)
4006{
4007 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4008}
4009
4010static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4011 size_t length)
4012{
4013 s->flags &= ~SLAB_TRACE;
4014 if (buf[0] == '1')
4015 s->flags |= SLAB_TRACE;
4016 return length;
4017}
4018SLAB_ATTR(trace);
4019
4c13dd3b
DM
4020#ifdef CONFIG_FAILSLAB
4021static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4022{
4023 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4024}
4025
4026static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4027 size_t length)
4028{
4029 s->flags &= ~SLAB_FAILSLAB;
4030 if (buf[0] == '1')
4031 s->flags |= SLAB_FAILSLAB;
4032 return length;
4033}
4034SLAB_ATTR(failslab);
4035#endif
4036
81819f0f
CL
4037static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4038{
4039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4040}
4041
4042static ssize_t reclaim_account_store(struct kmem_cache *s,
4043 const char *buf, size_t length)
4044{
4045 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4046 if (buf[0] == '1')
4047 s->flags |= SLAB_RECLAIM_ACCOUNT;
4048 return length;
4049}
4050SLAB_ATTR(reclaim_account);
4051
4052static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4053{
5af60839 4054 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4055}
4056SLAB_ATTR_RO(hwcache_align);
4057
4058#ifdef CONFIG_ZONE_DMA
4059static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4060{
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4062}
4063SLAB_ATTR_RO(cache_dma);
4064#endif
4065
4066static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4067{
4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4069}
4070SLAB_ATTR_RO(destroy_by_rcu);
4071
4072static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4073{
4074 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4075}
4076
4077static ssize_t red_zone_store(struct kmem_cache *s,
4078 const char *buf, size_t length)
4079{
4080 if (any_slab_objects(s))
4081 return -EBUSY;
4082
4083 s->flags &= ~SLAB_RED_ZONE;
4084 if (buf[0] == '1')
4085 s->flags |= SLAB_RED_ZONE;
06b285dc 4086 calculate_sizes(s, -1);
81819f0f
CL
4087 return length;
4088}
4089SLAB_ATTR(red_zone);
4090
4091static ssize_t poison_show(struct kmem_cache *s, char *buf)
4092{
4093 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4094}
4095
4096static ssize_t poison_store(struct kmem_cache *s,
4097 const char *buf, size_t length)
4098{
4099 if (any_slab_objects(s))
4100 return -EBUSY;
4101
4102 s->flags &= ~SLAB_POISON;
4103 if (buf[0] == '1')
4104 s->flags |= SLAB_POISON;
06b285dc 4105 calculate_sizes(s, -1);
81819f0f
CL
4106 return length;
4107}
4108SLAB_ATTR(poison);
4109
4110static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4111{
4112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4113}
4114
4115static ssize_t store_user_store(struct kmem_cache *s,
4116 const char *buf, size_t length)
4117{
4118 if (any_slab_objects(s))
4119 return -EBUSY;
4120
4121 s->flags &= ~SLAB_STORE_USER;
4122 if (buf[0] == '1')
4123 s->flags |= SLAB_STORE_USER;
06b285dc 4124 calculate_sizes(s, -1);
81819f0f
CL
4125 return length;
4126}
4127SLAB_ATTR(store_user);
4128
53e15af0
CL
4129static ssize_t validate_show(struct kmem_cache *s, char *buf)
4130{
4131 return 0;
4132}
4133
4134static ssize_t validate_store(struct kmem_cache *s,
4135 const char *buf, size_t length)
4136{
434e245d
CL
4137 int ret = -EINVAL;
4138
4139 if (buf[0] == '1') {
4140 ret = validate_slab_cache(s);
4141 if (ret >= 0)
4142 ret = length;
4143 }
4144 return ret;
53e15af0
CL
4145}
4146SLAB_ATTR(validate);
4147
2086d26a
CL
4148static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4149{
4150 return 0;
4151}
4152
4153static ssize_t shrink_store(struct kmem_cache *s,
4154 const char *buf, size_t length)
4155{
4156 if (buf[0] == '1') {
4157 int rc = kmem_cache_shrink(s);
4158
4159 if (rc)
4160 return rc;
4161 } else
4162 return -EINVAL;
4163 return length;
4164}
4165SLAB_ATTR(shrink);
4166
88a420e4
CL
4167static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4168{
4169 if (!(s->flags & SLAB_STORE_USER))
4170 return -ENOSYS;
4171 return list_locations(s, buf, TRACK_ALLOC);
4172}
4173SLAB_ATTR_RO(alloc_calls);
4174
4175static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4176{
4177 if (!(s->flags & SLAB_STORE_USER))
4178 return -ENOSYS;
4179 return list_locations(s, buf, TRACK_FREE);
4180}
4181SLAB_ATTR_RO(free_calls);
4182
81819f0f 4183#ifdef CONFIG_NUMA
9824601e 4184static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4185{
9824601e 4186 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4187}
4188
9824601e 4189static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4190 const char *buf, size_t length)
4191{
0121c619
CL
4192 unsigned long ratio;
4193 int err;
4194
4195 err = strict_strtoul(buf, 10, &ratio);
4196 if (err)
4197 return err;
4198
e2cb96b7 4199 if (ratio <= 100)
0121c619 4200 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4201
81819f0f
CL
4202 return length;
4203}
9824601e 4204SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4205#endif
4206
8ff12cfc 4207#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4208static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4209{
4210 unsigned long sum = 0;
4211 int cpu;
4212 int len;
4213 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4214
4215 if (!data)
4216 return -ENOMEM;
4217
4218 for_each_online_cpu(cpu) {
9dfc6e68 4219 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4220
4221 data[cpu] = x;
4222 sum += x;
4223 }
4224
4225 len = sprintf(buf, "%lu", sum);
4226
50ef37b9 4227#ifdef CONFIG_SMP
8ff12cfc
CL
4228 for_each_online_cpu(cpu) {
4229 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4230 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4231 }
50ef37b9 4232#endif
8ff12cfc
CL
4233 kfree(data);
4234 return len + sprintf(buf + len, "\n");
4235}
4236
78eb00cc
DR
4237static void clear_stat(struct kmem_cache *s, enum stat_item si)
4238{
4239 int cpu;
4240
4241 for_each_online_cpu(cpu)
9dfc6e68 4242 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4243}
4244
8ff12cfc
CL
4245#define STAT_ATTR(si, text) \
4246static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4247{ \
4248 return show_stat(s, buf, si); \
4249} \
78eb00cc
DR
4250static ssize_t text##_store(struct kmem_cache *s, \
4251 const char *buf, size_t length) \
4252{ \
4253 if (buf[0] != '0') \
4254 return -EINVAL; \
4255 clear_stat(s, si); \
4256 return length; \
4257} \
4258SLAB_ATTR(text); \
8ff12cfc
CL
4259
4260STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4261STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4262STAT_ATTR(FREE_FASTPATH, free_fastpath);
4263STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4264STAT_ATTR(FREE_FROZEN, free_frozen);
4265STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4266STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4267STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4268STAT_ATTR(ALLOC_SLAB, alloc_slab);
4269STAT_ATTR(ALLOC_REFILL, alloc_refill);
4270STAT_ATTR(FREE_SLAB, free_slab);
4271STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4272STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4273STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4274STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4275STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4276STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4277STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4278#endif
4279
06428780 4280static struct attribute *slab_attrs[] = {
81819f0f
CL
4281 &slab_size_attr.attr,
4282 &object_size_attr.attr,
4283 &objs_per_slab_attr.attr,
4284 &order_attr.attr,
73d342b1 4285 &min_partial_attr.attr,
81819f0f 4286 &objects_attr.attr,
205ab99d
CL
4287 &objects_partial_attr.attr,
4288 &total_objects_attr.attr,
81819f0f
CL
4289 &slabs_attr.attr,
4290 &partial_attr.attr,
4291 &cpu_slabs_attr.attr,
4292 &ctor_attr.attr,
81819f0f
CL
4293 &aliases_attr.attr,
4294 &align_attr.attr,
4295 &sanity_checks_attr.attr,
4296 &trace_attr.attr,
4297 &hwcache_align_attr.attr,
4298 &reclaim_account_attr.attr,
4299 &destroy_by_rcu_attr.attr,
4300 &red_zone_attr.attr,
4301 &poison_attr.attr,
4302 &store_user_attr.attr,
53e15af0 4303 &validate_attr.attr,
2086d26a 4304 &shrink_attr.attr,
88a420e4
CL
4305 &alloc_calls_attr.attr,
4306 &free_calls_attr.attr,
81819f0f
CL
4307#ifdef CONFIG_ZONE_DMA
4308 &cache_dma_attr.attr,
4309#endif
4310#ifdef CONFIG_NUMA
9824601e 4311 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4312#endif
4313#ifdef CONFIG_SLUB_STATS
4314 &alloc_fastpath_attr.attr,
4315 &alloc_slowpath_attr.attr,
4316 &free_fastpath_attr.attr,
4317 &free_slowpath_attr.attr,
4318 &free_frozen_attr.attr,
4319 &free_add_partial_attr.attr,
4320 &free_remove_partial_attr.attr,
4321 &alloc_from_partial_attr.attr,
4322 &alloc_slab_attr.attr,
4323 &alloc_refill_attr.attr,
4324 &free_slab_attr.attr,
4325 &cpuslab_flush_attr.attr,
4326 &deactivate_full_attr.attr,
4327 &deactivate_empty_attr.attr,
4328 &deactivate_to_head_attr.attr,
4329 &deactivate_to_tail_attr.attr,
4330 &deactivate_remote_frees_attr.attr,
65c3376a 4331 &order_fallback_attr.attr,
81819f0f 4332#endif
4c13dd3b
DM
4333#ifdef CONFIG_FAILSLAB
4334 &failslab_attr.attr,
4335#endif
4336
81819f0f
CL
4337 NULL
4338};
4339
4340static struct attribute_group slab_attr_group = {
4341 .attrs = slab_attrs,
4342};
4343
4344static ssize_t slab_attr_show(struct kobject *kobj,
4345 struct attribute *attr,
4346 char *buf)
4347{
4348 struct slab_attribute *attribute;
4349 struct kmem_cache *s;
4350 int err;
4351
4352 attribute = to_slab_attr(attr);
4353 s = to_slab(kobj);
4354
4355 if (!attribute->show)
4356 return -EIO;
4357
4358 err = attribute->show(s, buf);
4359
4360 return err;
4361}
4362
4363static ssize_t slab_attr_store(struct kobject *kobj,
4364 struct attribute *attr,
4365 const char *buf, size_t len)
4366{
4367 struct slab_attribute *attribute;
4368 struct kmem_cache *s;
4369 int err;
4370
4371 attribute = to_slab_attr(attr);
4372 s = to_slab(kobj);
4373
4374 if (!attribute->store)
4375 return -EIO;
4376
4377 err = attribute->store(s, buf, len);
4378
4379 return err;
4380}
4381
151c602f
CL
4382static void kmem_cache_release(struct kobject *kobj)
4383{
4384 struct kmem_cache *s = to_slab(kobj);
4385
4386 kfree(s);
4387}
4388
52cf25d0 4389static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4390 .show = slab_attr_show,
4391 .store = slab_attr_store,
4392};
4393
4394static struct kobj_type slab_ktype = {
4395 .sysfs_ops = &slab_sysfs_ops,
151c602f 4396 .release = kmem_cache_release
81819f0f
CL
4397};
4398
4399static int uevent_filter(struct kset *kset, struct kobject *kobj)
4400{
4401 struct kobj_type *ktype = get_ktype(kobj);
4402
4403 if (ktype == &slab_ktype)
4404 return 1;
4405 return 0;
4406}
4407
9cd43611 4408static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4409 .filter = uevent_filter,
4410};
4411
27c3a314 4412static struct kset *slab_kset;
81819f0f
CL
4413
4414#define ID_STR_LENGTH 64
4415
4416/* Create a unique string id for a slab cache:
6446faa2
CL
4417 *
4418 * Format :[flags-]size
81819f0f
CL
4419 */
4420static char *create_unique_id(struct kmem_cache *s)
4421{
4422 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4423 char *p = name;
4424
4425 BUG_ON(!name);
4426
4427 *p++ = ':';
4428 /*
4429 * First flags affecting slabcache operations. We will only
4430 * get here for aliasable slabs so we do not need to support
4431 * too many flags. The flags here must cover all flags that
4432 * are matched during merging to guarantee that the id is
4433 * unique.
4434 */
4435 if (s->flags & SLAB_CACHE_DMA)
4436 *p++ = 'd';
4437 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4438 *p++ = 'a';
4439 if (s->flags & SLAB_DEBUG_FREE)
4440 *p++ = 'F';
5a896d9e
VN
4441 if (!(s->flags & SLAB_NOTRACK))
4442 *p++ = 't';
81819f0f
CL
4443 if (p != name + 1)
4444 *p++ = '-';
4445 p += sprintf(p, "%07d", s->size);
4446 BUG_ON(p > name + ID_STR_LENGTH - 1);
4447 return name;
4448}
4449
4450static int sysfs_slab_add(struct kmem_cache *s)
4451{
4452 int err;
4453 const char *name;
4454 int unmergeable;
4455
4456 if (slab_state < SYSFS)
4457 /* Defer until later */
4458 return 0;
4459
4460 unmergeable = slab_unmergeable(s);
4461 if (unmergeable) {
4462 /*
4463 * Slabcache can never be merged so we can use the name proper.
4464 * This is typically the case for debug situations. In that
4465 * case we can catch duplicate names easily.
4466 */
27c3a314 4467 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4468 name = s->name;
4469 } else {
4470 /*
4471 * Create a unique name for the slab as a target
4472 * for the symlinks.
4473 */
4474 name = create_unique_id(s);
4475 }
4476
27c3a314 4477 s->kobj.kset = slab_kset;
1eada11c
GKH
4478 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4479 if (err) {
4480 kobject_put(&s->kobj);
81819f0f 4481 return err;
1eada11c 4482 }
81819f0f
CL
4483
4484 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4485 if (err) {
4486 kobject_del(&s->kobj);
4487 kobject_put(&s->kobj);
81819f0f 4488 return err;
5788d8ad 4489 }
81819f0f
CL
4490 kobject_uevent(&s->kobj, KOBJ_ADD);
4491 if (!unmergeable) {
4492 /* Setup first alias */
4493 sysfs_slab_alias(s, s->name);
4494 kfree(name);
4495 }
4496 return 0;
4497}
4498
4499static void sysfs_slab_remove(struct kmem_cache *s)
4500{
f5b801ac
CL
4501 if (slab_state < SYSFS)
4502 /*
4503 * Sysfs has not been setup yet so no need to remove the
4504 * cache from sysfs.
4505 */
4506 return;
4507
81819f0f
CL
4508 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4509 kobject_del(&s->kobj);
151c602f 4510 kobject_put(&s->kobj);
81819f0f
CL
4511}
4512
4513/*
4514 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4515 * available lest we lose that information.
81819f0f
CL
4516 */
4517struct saved_alias {
4518 struct kmem_cache *s;
4519 const char *name;
4520 struct saved_alias *next;
4521};
4522
5af328a5 4523static struct saved_alias *alias_list;
81819f0f
CL
4524
4525static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4526{
4527 struct saved_alias *al;
4528
4529 if (slab_state == SYSFS) {
4530 /*
4531 * If we have a leftover link then remove it.
4532 */
27c3a314
GKH
4533 sysfs_remove_link(&slab_kset->kobj, name);
4534 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4535 }
4536
4537 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4538 if (!al)
4539 return -ENOMEM;
4540
4541 al->s = s;
4542 al->name = name;
4543 al->next = alias_list;
4544 alias_list = al;
4545 return 0;
4546}
4547
4548static int __init slab_sysfs_init(void)
4549{
5b95a4ac 4550 struct kmem_cache *s;
81819f0f
CL
4551 int err;
4552
0ff21e46 4553 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4554 if (!slab_kset) {
81819f0f
CL
4555 printk(KERN_ERR "Cannot register slab subsystem.\n");
4556 return -ENOSYS;
4557 }
4558
26a7bd03
CL
4559 slab_state = SYSFS;
4560
5b95a4ac 4561 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4562 err = sysfs_slab_add(s);
5d540fb7
CL
4563 if (err)
4564 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4565 " to sysfs\n", s->name);
26a7bd03 4566 }
81819f0f
CL
4567
4568 while (alias_list) {
4569 struct saved_alias *al = alias_list;
4570
4571 alias_list = alias_list->next;
4572 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4573 if (err)
4574 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4575 " %s to sysfs\n", s->name);
81819f0f
CL
4576 kfree(al);
4577 }
4578
4579 resiliency_test();
4580 return 0;
4581}
4582
4583__initcall(slab_sysfs_init);
81819f0f 4584#endif
57ed3eda
PE
4585
4586/*
4587 * The /proc/slabinfo ABI
4588 */
158a9624 4589#ifdef CONFIG_SLABINFO
57ed3eda
PE
4590static void print_slabinfo_header(struct seq_file *m)
4591{
4592 seq_puts(m, "slabinfo - version: 2.1\n");
4593 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4594 "<objperslab> <pagesperslab>");
4595 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4596 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4597 seq_putc(m, '\n');
4598}
4599
4600static void *s_start(struct seq_file *m, loff_t *pos)
4601{
4602 loff_t n = *pos;
4603
4604 down_read(&slub_lock);
4605 if (!n)
4606 print_slabinfo_header(m);
4607
4608 return seq_list_start(&slab_caches, *pos);
4609}
4610
4611static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4612{
4613 return seq_list_next(p, &slab_caches, pos);
4614}
4615
4616static void s_stop(struct seq_file *m, void *p)
4617{
4618 up_read(&slub_lock);
4619}
4620
4621static int s_show(struct seq_file *m, void *p)
4622{
4623 unsigned long nr_partials = 0;
4624 unsigned long nr_slabs = 0;
4625 unsigned long nr_inuse = 0;
205ab99d
CL
4626 unsigned long nr_objs = 0;
4627 unsigned long nr_free = 0;
57ed3eda
PE
4628 struct kmem_cache *s;
4629 int node;
4630
4631 s = list_entry(p, struct kmem_cache, list);
4632
4633 for_each_online_node(node) {
4634 struct kmem_cache_node *n = get_node(s, node);
4635
4636 if (!n)
4637 continue;
4638
4639 nr_partials += n->nr_partial;
4640 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4641 nr_objs += atomic_long_read(&n->total_objects);
4642 nr_free += count_partial(n, count_free);
57ed3eda
PE
4643 }
4644
205ab99d 4645 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4646
4647 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4648 nr_objs, s->size, oo_objects(s->oo),
4649 (1 << oo_order(s->oo)));
57ed3eda
PE
4650 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4651 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4652 0UL);
4653 seq_putc(m, '\n');
4654 return 0;
4655}
4656
7b3c3a50 4657static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4658 .start = s_start,
4659 .next = s_next,
4660 .stop = s_stop,
4661 .show = s_show,
4662};
4663
7b3c3a50
AD
4664static int slabinfo_open(struct inode *inode, struct file *file)
4665{
4666 return seq_open(file, &slabinfo_op);
4667}
4668
4669static const struct file_operations proc_slabinfo_operations = {
4670 .open = slabinfo_open,
4671 .read = seq_read,
4672 .llseek = seq_lseek,
4673 .release = seq_release,
4674};
4675
4676static int __init slab_proc_init(void)
4677{
cf5d1131 4678 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4679 return 0;
4680}
4681module_init(slab_proc_init);
158a9624 4682#endif /* CONFIG_SLABINFO */