]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
sysdev: fix up the probe/release attributes
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f
CL
31
32/*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
5577bd8a 110#ifdef CONFIG_SLUB_DEBUG
8a38082d 111#define SLABDEBUG 1
5577bd8a
CL
112#else
113#define SLABDEBUG 0
114#endif
115
81819f0f
CL
116/*
117 * Issues still to be resolved:
118 *
81819f0f
CL
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
81819f0f
CL
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
2086d26a
CL
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
76be8950 131#define MIN_PARTIAL 5
e95eed57 132
2086d26a
CL
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
81819f0f
CL
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
672bba3a 142
fa5ec8a1 143/*
3de47213
DR
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
fa5ec8a1 147 */
3de47213 148#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 149
81819f0f
CL
150/*
151 * Set of flags that will prevent slab merging
152 */
153#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 SLAB_FAILSLAB)
81819f0f
CL
156
157#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 158 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f
CL
159
160#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 161#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
162#endif
163
164#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 165#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
166#endif
167
210b5c06
CG
168#define OO_SHIFT 16
169#define OO_MASK ((1 << OO_SHIFT) - 1)
170#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171
81819f0f 172/* Internal SLUB flags */
1ceef402
CL
173#define __OBJECT_POISON 0x80000000 /* Poison object */
174#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
175
176static int kmem_size = sizeof(struct kmem_cache);
177
178#ifdef CONFIG_SMP
179static struct notifier_block slab_notifier;
180#endif
181
182static enum {
183 DOWN, /* No slab functionality available */
184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 185 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
186 SYSFS /* Sysfs up */
187} slab_state = DOWN;
188
189/* A list of all slab caches on the system */
190static DECLARE_RWSEM(slub_lock);
5af328a5 191static LIST_HEAD(slab_caches);
81819f0f 192
02cbc874
CL
193/*
194 * Tracking user of a slab.
195 */
196struct track {
ce71e27c 197 unsigned long addr; /* Called from address */
02cbc874
CL
198 int cpu; /* Was running on cpu */
199 int pid; /* Pid context */
200 unsigned long when; /* When did the operation occur */
201};
202
203enum track_item { TRACK_ALLOC, TRACK_FREE };
204
f6acb635 205#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
206static int sysfs_slab_add(struct kmem_cache *);
207static int sysfs_slab_alias(struct kmem_cache *, const char *);
208static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 209
81819f0f 210#else
0c710013
CL
211static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 { return 0; }
151c602f
CL
214static inline void sysfs_slab_remove(struct kmem_cache *s)
215{
216 kfree(s);
217}
8ff12cfc 218
81819f0f
CL
219#endif
220
84e554e6 221static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
84e554e6 224 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
225#endif
226}
227
81819f0f
CL
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232int slab_is_available(void)
233{
234 return slab_state >= UP;
235}
236
237static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238{
239#ifdef CONFIG_NUMA
240 return s->node[node];
241#else
242 return &s->local_node;
243#endif
244}
245
6446faa2 246/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
247static inline int check_valid_pointer(struct kmem_cache *s,
248 struct page *page, const void *object)
249{
250 void *base;
251
a973e9dd 252 if (!object)
02cbc874
CL
253 return 1;
254
a973e9dd 255 base = page_address(page);
39b26464 256 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
257 (object - base) % s->size) {
258 return 0;
259 }
260
261 return 1;
262}
263
7656c72b
CL
264static inline void *get_freepointer(struct kmem_cache *s, void *object)
265{
266 return *(void **)(object + s->offset);
267}
268
269static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270{
271 *(void **)(object + s->offset) = fp;
272}
273
274/* Loop over all objects in a slab */
224a88be
CL
275#define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
277 __p += (__s)->size)
278
279/* Scan freelist */
280#define for_each_free_object(__p, __s, __free) \
a973e9dd 281 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
282
283/* Determine object index from a given position */
284static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
285{
286 return (p - addr) / s->size;
287}
288
834f3d11
CL
289static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size)
291{
292 struct kmem_cache_order_objects x = {
210b5c06 293 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
294 };
295
296 return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x >> OO_SHIFT;
834f3d11
CL
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
210b5c06 306 return x.x & OO_MASK;
834f3d11
CL
307}
308
41ecc55b
CL
309#ifdef CONFIG_SLUB_DEBUG
310/*
311 * Debug settings:
312 */
f0630fff
CL
313#ifdef CONFIG_SLUB_DEBUG_ON
314static int slub_debug = DEBUG_DEFAULT_FLAGS;
315#else
41ecc55b 316static int slub_debug;
f0630fff 317#endif
41ecc55b
CL
318
319static char *slub_debug_slabs;
fa5ec8a1 320static int disable_higher_order_debug;
41ecc55b 321
81819f0f
CL
322/*
323 * Object debugging
324 */
325static void print_section(char *text, u8 *addr, unsigned int length)
326{
327 int i, offset;
328 int newline = 1;
329 char ascii[17];
330
331 ascii[16] = 0;
332
333 for (i = 0; i < length; i++) {
334 if (newline) {
24922684 335 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
336 newline = 0;
337 }
06428780 338 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
339 offset = i % 16;
340 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
341 if (offset == 15) {
06428780 342 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
343 newline = 1;
344 }
345 }
346 if (!newline) {
347 i %= 16;
348 while (i < 16) {
06428780 349 printk(KERN_CONT " ");
81819f0f
CL
350 ascii[i] = ' ';
351 i++;
352 }
06428780 353 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
354 }
355}
356
81819f0f
CL
357static struct track *get_track(struct kmem_cache *s, void *object,
358 enum track_item alloc)
359{
360 struct track *p;
361
362 if (s->offset)
363 p = object + s->offset + sizeof(void *);
364 else
365 p = object + s->inuse;
366
367 return p + alloc;
368}
369
370static void set_track(struct kmem_cache *s, void *object,
ce71e27c 371 enum track_item alloc, unsigned long addr)
81819f0f 372{
1a00df4a 373 struct track *p = get_track(s, object, alloc);
81819f0f 374
81819f0f
CL
375 if (addr) {
376 p->addr = addr;
377 p->cpu = smp_processor_id();
88e4ccf2 378 p->pid = current->pid;
81819f0f
CL
379 p->when = jiffies;
380 } else
381 memset(p, 0, sizeof(struct track));
382}
383
81819f0f
CL
384static void init_tracking(struct kmem_cache *s, void *object)
385{
24922684
CL
386 if (!(s->flags & SLAB_STORE_USER))
387 return;
388
ce71e27c
EGM
389 set_track(s, object, TRACK_FREE, 0UL);
390 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
391}
392
393static void print_track(const char *s, struct track *t)
394{
395 if (!t->addr)
396 return;
397
7daf705f 398 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 399 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
400}
401
402static void print_tracking(struct kmem_cache *s, void *object)
403{
404 if (!(s->flags & SLAB_STORE_USER))
405 return;
406
407 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
408 print_track("Freed", get_track(s, object, TRACK_FREE));
409}
410
411static void print_page_info(struct page *page)
412{
39b26464
CL
413 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
415
416}
417
418static void slab_bug(struct kmem_cache *s, char *fmt, ...)
419{
420 va_list args;
421 char buf[100];
422
423 va_start(args, fmt);
424 vsnprintf(buf, sizeof(buf), fmt, args);
425 va_end(args);
426 printk(KERN_ERR "========================================"
427 "=====================================\n");
428 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
429 printk(KERN_ERR "----------------------------------------"
430 "-------------------------------------\n\n");
81819f0f
CL
431}
432
24922684
CL
433static void slab_fix(struct kmem_cache *s, char *fmt, ...)
434{
435 va_list args;
436 char buf[100];
437
438 va_start(args, fmt);
439 vsnprintf(buf, sizeof(buf), fmt, args);
440 va_end(args);
441 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
442}
443
444static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
445{
446 unsigned int off; /* Offset of last byte */
a973e9dd 447 u8 *addr = page_address(page);
24922684
CL
448
449 print_tracking(s, p);
450
451 print_page_info(page);
452
453 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454 p, p - addr, get_freepointer(s, p));
455
456 if (p > addr + 16)
457 print_section("Bytes b4", p - 16, 16);
458
0ebd652b 459 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
460
461 if (s->flags & SLAB_RED_ZONE)
462 print_section("Redzone", p + s->objsize,
463 s->inuse - s->objsize);
464
81819f0f
CL
465 if (s->offset)
466 off = s->offset + sizeof(void *);
467 else
468 off = s->inuse;
469
24922684 470 if (s->flags & SLAB_STORE_USER)
81819f0f 471 off += 2 * sizeof(struct track);
81819f0f
CL
472
473 if (off != s->size)
474 /* Beginning of the filler is the free pointer */
24922684
CL
475 print_section("Padding", p + off, s->size - off);
476
477 dump_stack();
81819f0f
CL
478}
479
480static void object_err(struct kmem_cache *s, struct page *page,
481 u8 *object, char *reason)
482{
3dc50637 483 slab_bug(s, "%s", reason);
24922684 484 print_trailer(s, page, object);
81819f0f
CL
485}
486
24922684 487static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
488{
489 va_list args;
490 char buf[100];
491
24922684
CL
492 va_start(args, fmt);
493 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 494 va_end(args);
3dc50637 495 slab_bug(s, "%s", buf);
24922684 496 print_page_info(page);
81819f0f
CL
497 dump_stack();
498}
499
500static void init_object(struct kmem_cache *s, void *object, int active)
501{
502 u8 *p = object;
503
504 if (s->flags & __OBJECT_POISON) {
505 memset(p, POISON_FREE, s->objsize - 1);
06428780 506 p[s->objsize - 1] = POISON_END;
81819f0f
CL
507 }
508
509 if (s->flags & SLAB_RED_ZONE)
510 memset(p + s->objsize,
511 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
512 s->inuse - s->objsize);
513}
514
24922684 515static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
516{
517 while (bytes) {
518 if (*start != (u8)value)
24922684 519 return start;
81819f0f
CL
520 start++;
521 bytes--;
522 }
24922684
CL
523 return NULL;
524}
525
526static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
527 void *from, void *to)
528{
529 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
530 memset(from, data, to - from);
531}
532
533static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
534 u8 *object, char *what,
06428780 535 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
536{
537 u8 *fault;
538 u8 *end;
539
540 fault = check_bytes(start, value, bytes);
541 if (!fault)
542 return 1;
543
544 end = start + bytes;
545 while (end > fault && end[-1] == value)
546 end--;
547
548 slab_bug(s, "%s overwritten", what);
549 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
550 fault, end - 1, fault[0], value);
551 print_trailer(s, page, object);
552
553 restore_bytes(s, what, value, fault, end);
554 return 0;
81819f0f
CL
555}
556
81819f0f
CL
557/*
558 * Object layout:
559 *
560 * object address
561 * Bytes of the object to be managed.
562 * If the freepointer may overlay the object then the free
563 * pointer is the first word of the object.
672bba3a 564 *
81819f0f
CL
565 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
566 * 0xa5 (POISON_END)
567 *
568 * object + s->objsize
569 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
570 * Padding is extended by another word if Redzoning is enabled and
571 * objsize == inuse.
572 *
81819f0f
CL
573 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
574 * 0xcc (RED_ACTIVE) for objects in use.
575 *
576 * object + s->inuse
672bba3a
CL
577 * Meta data starts here.
578 *
81819f0f
CL
579 * A. Free pointer (if we cannot overwrite object on free)
580 * B. Tracking data for SLAB_STORE_USER
672bba3a 581 * C. Padding to reach required alignment boundary or at mininum
6446faa2 582 * one word if debugging is on to be able to detect writes
672bba3a
CL
583 * before the word boundary.
584 *
585 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
586 *
587 * object + s->size
672bba3a 588 * Nothing is used beyond s->size.
81819f0f 589 *
672bba3a
CL
590 * If slabcaches are merged then the objsize and inuse boundaries are mostly
591 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
592 * may be used with merged slabcaches.
593 */
594
81819f0f
CL
595static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
596{
597 unsigned long off = s->inuse; /* The end of info */
598
599 if (s->offset)
600 /* Freepointer is placed after the object. */
601 off += sizeof(void *);
602
603 if (s->flags & SLAB_STORE_USER)
604 /* We also have user information there */
605 off += 2 * sizeof(struct track);
606
607 if (s->size == off)
608 return 1;
609
24922684
CL
610 return check_bytes_and_report(s, page, p, "Object padding",
611 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
612}
613
39b26464 614/* Check the pad bytes at the end of a slab page */
81819f0f
CL
615static int slab_pad_check(struct kmem_cache *s, struct page *page)
616{
24922684
CL
617 u8 *start;
618 u8 *fault;
619 u8 *end;
620 int length;
621 int remainder;
81819f0f
CL
622
623 if (!(s->flags & SLAB_POISON))
624 return 1;
625
a973e9dd 626 start = page_address(page);
834f3d11 627 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
628 end = start + length;
629 remainder = length % s->size;
81819f0f
CL
630 if (!remainder)
631 return 1;
632
39b26464 633 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
634 if (!fault)
635 return 1;
636 while (end > fault && end[-1] == POISON_INUSE)
637 end--;
638
639 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 640 print_section("Padding", end - remainder, remainder);
24922684 641
8a3d271d 642 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 643 return 0;
81819f0f
CL
644}
645
646static int check_object(struct kmem_cache *s, struct page *page,
647 void *object, int active)
648{
649 u8 *p = object;
650 u8 *endobject = object + s->objsize;
651
652 if (s->flags & SLAB_RED_ZONE) {
653 unsigned int red =
654 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
655
24922684
CL
656 if (!check_bytes_and_report(s, page, object, "Redzone",
657 endobject, red, s->inuse - s->objsize))
81819f0f 658 return 0;
81819f0f 659 } else {
3adbefee
IM
660 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
661 check_bytes_and_report(s, page, p, "Alignment padding",
662 endobject, POISON_INUSE, s->inuse - s->objsize);
663 }
81819f0f
CL
664 }
665
666 if (s->flags & SLAB_POISON) {
667 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
668 (!check_bytes_and_report(s, page, p, "Poison", p,
669 POISON_FREE, s->objsize - 1) ||
670 !check_bytes_and_report(s, page, p, "Poison",
06428780 671 p + s->objsize - 1, POISON_END, 1)))
81819f0f 672 return 0;
81819f0f
CL
673 /*
674 * check_pad_bytes cleans up on its own.
675 */
676 check_pad_bytes(s, page, p);
677 }
678
679 if (!s->offset && active)
680 /*
681 * Object and freepointer overlap. Cannot check
682 * freepointer while object is allocated.
683 */
684 return 1;
685
686 /* Check free pointer validity */
687 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
688 object_err(s, page, p, "Freepointer corrupt");
689 /*
9f6c708e 690 * No choice but to zap it and thus lose the remainder
81819f0f 691 * of the free objects in this slab. May cause
672bba3a 692 * another error because the object count is now wrong.
81819f0f 693 */
a973e9dd 694 set_freepointer(s, p, NULL);
81819f0f
CL
695 return 0;
696 }
697 return 1;
698}
699
700static int check_slab(struct kmem_cache *s, struct page *page)
701{
39b26464
CL
702 int maxobj;
703
81819f0f
CL
704 VM_BUG_ON(!irqs_disabled());
705
706 if (!PageSlab(page)) {
24922684 707 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
708 return 0;
709 }
39b26464
CL
710
711 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
712 if (page->objects > maxobj) {
713 slab_err(s, page, "objects %u > max %u",
714 s->name, page->objects, maxobj);
715 return 0;
716 }
717 if (page->inuse > page->objects) {
24922684 718 slab_err(s, page, "inuse %u > max %u",
39b26464 719 s->name, page->inuse, page->objects);
81819f0f
CL
720 return 0;
721 }
722 /* Slab_pad_check fixes things up after itself */
723 slab_pad_check(s, page);
724 return 1;
725}
726
727/*
672bba3a
CL
728 * Determine if a certain object on a page is on the freelist. Must hold the
729 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
730 */
731static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
732{
733 int nr = 0;
734 void *fp = page->freelist;
735 void *object = NULL;
224a88be 736 unsigned long max_objects;
81819f0f 737
39b26464 738 while (fp && nr <= page->objects) {
81819f0f
CL
739 if (fp == search)
740 return 1;
741 if (!check_valid_pointer(s, page, fp)) {
742 if (object) {
743 object_err(s, page, object,
744 "Freechain corrupt");
a973e9dd 745 set_freepointer(s, object, NULL);
81819f0f
CL
746 break;
747 } else {
24922684 748 slab_err(s, page, "Freepointer corrupt");
a973e9dd 749 page->freelist = NULL;
39b26464 750 page->inuse = page->objects;
24922684 751 slab_fix(s, "Freelist cleared");
81819f0f
CL
752 return 0;
753 }
754 break;
755 }
756 object = fp;
757 fp = get_freepointer(s, object);
758 nr++;
759 }
760
224a88be 761 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
762 if (max_objects > MAX_OBJS_PER_PAGE)
763 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
764
765 if (page->objects != max_objects) {
766 slab_err(s, page, "Wrong number of objects. Found %d but "
767 "should be %d", page->objects, max_objects);
768 page->objects = max_objects;
769 slab_fix(s, "Number of objects adjusted.");
770 }
39b26464 771 if (page->inuse != page->objects - nr) {
70d71228 772 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
773 "counted were %d", page->inuse, page->objects - nr);
774 page->inuse = page->objects - nr;
24922684 775 slab_fix(s, "Object count adjusted.");
81819f0f
CL
776 }
777 return search == NULL;
778}
779
0121c619
CL
780static void trace(struct kmem_cache *s, struct page *page, void *object,
781 int alloc)
3ec09742
CL
782{
783 if (s->flags & SLAB_TRACE) {
784 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
785 s->name,
786 alloc ? "alloc" : "free",
787 object, page->inuse,
788 page->freelist);
789
790 if (!alloc)
791 print_section("Object", (void *)object, s->objsize);
792
793 dump_stack();
794 }
795}
796
643b1138 797/*
672bba3a 798 * Tracking of fully allocated slabs for debugging purposes.
643b1138 799 */
e95eed57 800static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 801{
643b1138
CL
802 spin_lock(&n->list_lock);
803 list_add(&page->lru, &n->full);
804 spin_unlock(&n->list_lock);
805}
806
807static void remove_full(struct kmem_cache *s, struct page *page)
808{
809 struct kmem_cache_node *n;
810
811 if (!(s->flags & SLAB_STORE_USER))
812 return;
813
814 n = get_node(s, page_to_nid(page));
815
816 spin_lock(&n->list_lock);
817 list_del(&page->lru);
818 spin_unlock(&n->list_lock);
819}
820
0f389ec6
CL
821/* Tracking of the number of slabs for debugging purposes */
822static inline unsigned long slabs_node(struct kmem_cache *s, int node)
823{
824 struct kmem_cache_node *n = get_node(s, node);
825
826 return atomic_long_read(&n->nr_slabs);
827}
828
26c02cf0
AB
829static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
830{
831 return atomic_long_read(&n->nr_slabs);
832}
833
205ab99d 834static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
835{
836 struct kmem_cache_node *n = get_node(s, node);
837
838 /*
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
843 */
205ab99d 844 if (!NUMA_BUILD || n) {
0f389ec6 845 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
846 atomic_long_add(objects, &n->total_objects);
847 }
0f389ec6 848}
205ab99d 849static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
850{
851 struct kmem_cache_node *n = get_node(s, node);
852
853 atomic_long_dec(&n->nr_slabs);
205ab99d 854 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
855}
856
857/* Object debug checks for alloc/free paths */
3ec09742
CL
858static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 void *object)
860{
861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 return;
863
864 init_object(s, object, 0);
865 init_tracking(s, object);
866}
867
868static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 869 void *object, unsigned long addr)
81819f0f
CL
870{
871 if (!check_slab(s, page))
872 goto bad;
873
d692ef6d 874 if (!on_freelist(s, page, object)) {
24922684 875 object_err(s, page, object, "Object already allocated");
70d71228 876 goto bad;
81819f0f
CL
877 }
878
879 if (!check_valid_pointer(s, page, object)) {
880 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 881 goto bad;
81819f0f
CL
882 }
883
d692ef6d 884 if (!check_object(s, page, object, 0))
81819f0f 885 goto bad;
81819f0f 886
3ec09742
CL
887 /* Success perform special debug activities for allocs */
888 if (s->flags & SLAB_STORE_USER)
889 set_track(s, object, TRACK_ALLOC, addr);
890 trace(s, page, object, 1);
891 init_object(s, object, 1);
81819f0f 892 return 1;
3ec09742 893
81819f0f
CL
894bad:
895 if (PageSlab(page)) {
896 /*
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
672bba3a 899 * as used avoids touching the remaining objects.
81819f0f 900 */
24922684 901 slab_fix(s, "Marking all objects used");
39b26464 902 page->inuse = page->objects;
a973e9dd 903 page->freelist = NULL;
81819f0f
CL
904 }
905 return 0;
906}
907
3ec09742 908static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 909 void *object, unsigned long addr)
81819f0f
CL
910{
911 if (!check_slab(s, page))
912 goto fail;
913
914 if (!check_valid_pointer(s, page, object)) {
70d71228 915 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
916 goto fail;
917 }
918
919 if (on_freelist(s, page, object)) {
24922684 920 object_err(s, page, object, "Object already free");
81819f0f
CL
921 goto fail;
922 }
923
924 if (!check_object(s, page, object, 1))
925 return 0;
926
927 if (unlikely(s != page->slab)) {
3adbefee 928 if (!PageSlab(page)) {
70d71228
CL
929 slab_err(s, page, "Attempt to free object(0x%p) "
930 "outside of slab", object);
3adbefee 931 } else if (!page->slab) {
81819f0f 932 printk(KERN_ERR
70d71228 933 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 934 object);
70d71228 935 dump_stack();
06428780 936 } else
24922684
CL
937 object_err(s, page, object,
938 "page slab pointer corrupt.");
81819f0f
CL
939 goto fail;
940 }
3ec09742
CL
941
942 /* Special debug activities for freeing objects */
8a38082d 943 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
944 remove_full(s, page);
945 if (s->flags & SLAB_STORE_USER)
946 set_track(s, object, TRACK_FREE, addr);
947 trace(s, page, object, 0);
948 init_object(s, object, 0);
81819f0f 949 return 1;
3ec09742 950
81819f0f 951fail:
24922684 952 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
953 return 0;
954}
955
41ecc55b
CL
956static int __init setup_slub_debug(char *str)
957{
f0630fff
CL
958 slub_debug = DEBUG_DEFAULT_FLAGS;
959 if (*str++ != '=' || !*str)
960 /*
961 * No options specified. Switch on full debugging.
962 */
963 goto out;
964
965 if (*str == ',')
966 /*
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
969 */
970 goto check_slabs;
971
fa5ec8a1
DR
972 if (tolower(*str) == 'o') {
973 /*
974 * Avoid enabling debugging on caches if its minimum order
975 * would increase as a result.
976 */
977 disable_higher_order_debug = 1;
978 goto out;
979 }
980
f0630fff
CL
981 slub_debug = 0;
982 if (*str == '-')
983 /*
984 * Switch off all debugging measures.
985 */
986 goto out;
987
988 /*
989 * Determine which debug features should be switched on
990 */
06428780 991 for (; *str && *str != ','; str++) {
f0630fff
CL
992 switch (tolower(*str)) {
993 case 'f':
994 slub_debug |= SLAB_DEBUG_FREE;
995 break;
996 case 'z':
997 slub_debug |= SLAB_RED_ZONE;
998 break;
999 case 'p':
1000 slub_debug |= SLAB_POISON;
1001 break;
1002 case 'u':
1003 slub_debug |= SLAB_STORE_USER;
1004 break;
1005 case 't':
1006 slub_debug |= SLAB_TRACE;
1007 break;
4c13dd3b
DM
1008 case 'a':
1009 slub_debug |= SLAB_FAILSLAB;
1010 break;
f0630fff
CL
1011 default:
1012 printk(KERN_ERR "slub_debug option '%c' "
06428780 1013 "unknown. skipped\n", *str);
f0630fff 1014 }
41ecc55b
CL
1015 }
1016
f0630fff 1017check_slabs:
41ecc55b
CL
1018 if (*str == ',')
1019 slub_debug_slabs = str + 1;
f0630fff 1020out:
41ecc55b
CL
1021 return 1;
1022}
1023
1024__setup("slub_debug", setup_slub_debug);
1025
ba0268a8
CL
1026static unsigned long kmem_cache_flags(unsigned long objsize,
1027 unsigned long flags, const char *name,
51cc5068 1028 void (*ctor)(void *))
41ecc55b
CL
1029{
1030 /*
e153362a 1031 * Enable debugging if selected on the kernel commandline.
41ecc55b 1032 */
e153362a 1033 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1034 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1035 flags |= slub_debug;
ba0268a8
CL
1036
1037 return flags;
41ecc55b
CL
1038}
1039#else
3ec09742
CL
1040static inline void setup_object_debug(struct kmem_cache *s,
1041 struct page *page, void *object) {}
41ecc55b 1042
3ec09742 1043static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1044 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1045
3ec09742 1046static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1047 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1048
41ecc55b
CL
1049static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1050 { return 1; }
1051static inline int check_object(struct kmem_cache *s, struct page *page,
1052 void *object, int active) { return 1; }
3ec09742 1053static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1054static inline unsigned long kmem_cache_flags(unsigned long objsize,
1055 unsigned long flags, const char *name,
51cc5068 1056 void (*ctor)(void *))
ba0268a8
CL
1057{
1058 return flags;
1059}
41ecc55b 1060#define slub_debug 0
0f389ec6 1061
fdaa45e9
IM
1062#define disable_higher_order_debug 0
1063
0f389ec6
CL
1064static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1065 { return 0; }
26c02cf0
AB
1066static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1067 { return 0; }
205ab99d
CL
1068static inline void inc_slabs_node(struct kmem_cache *s, int node,
1069 int objects) {}
1070static inline void dec_slabs_node(struct kmem_cache *s, int node,
1071 int objects) {}
41ecc55b 1072#endif
205ab99d 1073
81819f0f
CL
1074/*
1075 * Slab allocation and freeing
1076 */
65c3376a
CL
1077static inline struct page *alloc_slab_page(gfp_t flags, int node,
1078 struct kmem_cache_order_objects oo)
1079{
1080 int order = oo_order(oo);
1081
b1eeab67
VN
1082 flags |= __GFP_NOTRACK;
1083
65c3376a
CL
1084 if (node == -1)
1085 return alloc_pages(flags, order);
1086 else
1087 return alloc_pages_node(node, flags, order);
1088}
1089
81819f0f
CL
1090static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1091{
06428780 1092 struct page *page;
834f3d11 1093 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1094 gfp_t alloc_gfp;
81819f0f 1095
b7a49f0d 1096 flags |= s->allocflags;
e12ba74d 1097
ba52270d
PE
1098 /*
1099 * Let the initial higher-order allocation fail under memory pressure
1100 * so we fall-back to the minimum order allocation.
1101 */
1102 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1103
1104 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1105 if (unlikely(!page)) {
1106 oo = s->min;
1107 /*
1108 * Allocation may have failed due to fragmentation.
1109 * Try a lower order alloc if possible
1110 */
1111 page = alloc_slab_page(flags, node, oo);
1112 if (!page)
1113 return NULL;
81819f0f 1114
84e554e6 1115 stat(s, ORDER_FALLBACK);
65c3376a 1116 }
5a896d9e
VN
1117
1118 if (kmemcheck_enabled
5086c389 1119 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1120 int pages = 1 << oo_order(oo);
1121
1122 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1123
1124 /*
1125 * Objects from caches that have a constructor don't get
1126 * cleared when they're allocated, so we need to do it here.
1127 */
1128 if (s->ctor)
1129 kmemcheck_mark_uninitialized_pages(page, pages);
1130 else
1131 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1132 }
1133
834f3d11 1134 page->objects = oo_objects(oo);
81819f0f
CL
1135 mod_zone_page_state(page_zone(page),
1136 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1138 1 << oo_order(oo));
81819f0f
CL
1139
1140 return page;
1141}
1142
1143static void setup_object(struct kmem_cache *s, struct page *page,
1144 void *object)
1145{
3ec09742 1146 setup_object_debug(s, page, object);
4f104934 1147 if (unlikely(s->ctor))
51cc5068 1148 s->ctor(object);
81819f0f
CL
1149}
1150
1151static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1152{
1153 struct page *page;
81819f0f 1154 void *start;
81819f0f
CL
1155 void *last;
1156 void *p;
1157
6cb06229 1158 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1159
6cb06229
CL
1160 page = allocate_slab(s,
1161 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1162 if (!page)
1163 goto out;
1164
205ab99d 1165 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1166 page->slab = s;
1167 page->flags |= 1 << PG_slab;
1168 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1169 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1170 __SetPageSlubDebug(page);
81819f0f
CL
1171
1172 start = page_address(page);
81819f0f
CL
1173
1174 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1175 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1176
1177 last = start;
224a88be 1178 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1179 setup_object(s, page, last);
1180 set_freepointer(s, last, p);
1181 last = p;
1182 }
1183 setup_object(s, page, last);
a973e9dd 1184 set_freepointer(s, last, NULL);
81819f0f
CL
1185
1186 page->freelist = start;
1187 page->inuse = 0;
1188out:
81819f0f
CL
1189 return page;
1190}
1191
1192static void __free_slab(struct kmem_cache *s, struct page *page)
1193{
834f3d11
CL
1194 int order = compound_order(page);
1195 int pages = 1 << order;
81819f0f 1196
8a38082d 1197 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1198 void *p;
1199
1200 slab_pad_check(s, page);
224a88be
CL
1201 for_each_object(p, s, page_address(page),
1202 page->objects)
81819f0f 1203 check_object(s, page, p, 0);
8a38082d 1204 __ClearPageSlubDebug(page);
81819f0f
CL
1205 }
1206
b1eeab67 1207 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1208
81819f0f
CL
1209 mod_zone_page_state(page_zone(page),
1210 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1211 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1212 -pages);
81819f0f 1213
49bd5221
CL
1214 __ClearPageSlab(page);
1215 reset_page_mapcount(page);
1eb5ac64
NP
1216 if (current->reclaim_state)
1217 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1218 __free_pages(page, order);
81819f0f
CL
1219}
1220
1221static void rcu_free_slab(struct rcu_head *h)
1222{
1223 struct page *page;
1224
1225 page = container_of((struct list_head *)h, struct page, lru);
1226 __free_slab(page->slab, page);
1227}
1228
1229static void free_slab(struct kmem_cache *s, struct page *page)
1230{
1231 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1232 /*
1233 * RCU free overloads the RCU head over the LRU
1234 */
1235 struct rcu_head *head = (void *)&page->lru;
1236
1237 call_rcu(head, rcu_free_slab);
1238 } else
1239 __free_slab(s, page);
1240}
1241
1242static void discard_slab(struct kmem_cache *s, struct page *page)
1243{
205ab99d 1244 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1245 free_slab(s, page);
1246}
1247
1248/*
1249 * Per slab locking using the pagelock
1250 */
1251static __always_inline void slab_lock(struct page *page)
1252{
1253 bit_spin_lock(PG_locked, &page->flags);
1254}
1255
1256static __always_inline void slab_unlock(struct page *page)
1257{
a76d3546 1258 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1259}
1260
1261static __always_inline int slab_trylock(struct page *page)
1262{
1263 int rc = 1;
1264
1265 rc = bit_spin_trylock(PG_locked, &page->flags);
1266 return rc;
1267}
1268
1269/*
1270 * Management of partially allocated slabs
1271 */
7c2e132c
CL
1272static void add_partial(struct kmem_cache_node *n,
1273 struct page *page, int tail)
81819f0f 1274{
e95eed57
CL
1275 spin_lock(&n->list_lock);
1276 n->nr_partial++;
7c2e132c
CL
1277 if (tail)
1278 list_add_tail(&page->lru, &n->partial);
1279 else
1280 list_add(&page->lru, &n->partial);
81819f0f
CL
1281 spin_unlock(&n->list_lock);
1282}
1283
0121c619 1284static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1285{
1286 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1287
1288 spin_lock(&n->list_lock);
1289 list_del(&page->lru);
1290 n->nr_partial--;
1291 spin_unlock(&n->list_lock);
1292}
1293
1294/*
672bba3a 1295 * Lock slab and remove from the partial list.
81819f0f 1296 *
672bba3a 1297 * Must hold list_lock.
81819f0f 1298 */
0121c619
CL
1299static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1300 struct page *page)
81819f0f
CL
1301{
1302 if (slab_trylock(page)) {
1303 list_del(&page->lru);
1304 n->nr_partial--;
8a38082d 1305 __SetPageSlubFrozen(page);
81819f0f
CL
1306 return 1;
1307 }
1308 return 0;
1309}
1310
1311/*
672bba3a 1312 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1313 */
1314static struct page *get_partial_node(struct kmem_cache_node *n)
1315{
1316 struct page *page;
1317
1318 /*
1319 * Racy check. If we mistakenly see no partial slabs then we
1320 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1321 * partial slab and there is none available then get_partials()
1322 * will return NULL.
81819f0f
CL
1323 */
1324 if (!n || !n->nr_partial)
1325 return NULL;
1326
1327 spin_lock(&n->list_lock);
1328 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1329 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1330 goto out;
1331 page = NULL;
1332out:
1333 spin_unlock(&n->list_lock);
1334 return page;
1335}
1336
1337/*
672bba3a 1338 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1339 */
1340static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1341{
1342#ifdef CONFIG_NUMA
1343 struct zonelist *zonelist;
dd1a239f 1344 struct zoneref *z;
54a6eb5c
MG
1345 struct zone *zone;
1346 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1347 struct page *page;
1348
1349 /*
672bba3a
CL
1350 * The defrag ratio allows a configuration of the tradeoffs between
1351 * inter node defragmentation and node local allocations. A lower
1352 * defrag_ratio increases the tendency to do local allocations
1353 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1354 *
672bba3a
CL
1355 * If the defrag_ratio is set to 0 then kmalloc() always
1356 * returns node local objects. If the ratio is higher then kmalloc()
1357 * may return off node objects because partial slabs are obtained
1358 * from other nodes and filled up.
81819f0f 1359 *
6446faa2 1360 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1361 * defrag_ratio = 1000) then every (well almost) allocation will
1362 * first attempt to defrag slab caches on other nodes. This means
1363 * scanning over all nodes to look for partial slabs which may be
1364 * expensive if we do it every time we are trying to find a slab
1365 * with available objects.
81819f0f 1366 */
9824601e
CL
1367 if (!s->remote_node_defrag_ratio ||
1368 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1369 return NULL;
1370
0e88460d 1371 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1372 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1373 struct kmem_cache_node *n;
1374
54a6eb5c 1375 n = get_node(s, zone_to_nid(zone));
81819f0f 1376
54a6eb5c 1377 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1378 n->nr_partial > s->min_partial) {
81819f0f
CL
1379 page = get_partial_node(n);
1380 if (page)
1381 return page;
1382 }
1383 }
1384#endif
1385 return NULL;
1386}
1387
1388/*
1389 * Get a partial page, lock it and return it.
1390 */
1391static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1392{
1393 struct page *page;
1394 int searchnode = (node == -1) ? numa_node_id() : node;
1395
1396 page = get_partial_node(get_node(s, searchnode));
1397 if (page || (flags & __GFP_THISNODE))
1398 return page;
1399
1400 return get_any_partial(s, flags);
1401}
1402
1403/*
1404 * Move a page back to the lists.
1405 *
1406 * Must be called with the slab lock held.
1407 *
1408 * On exit the slab lock will have been dropped.
1409 */
7c2e132c 1410static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1411{
e95eed57
CL
1412 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1413
8a38082d 1414 __ClearPageSlubFrozen(page);
81819f0f 1415 if (page->inuse) {
e95eed57 1416
a973e9dd 1417 if (page->freelist) {
7c2e132c 1418 add_partial(n, page, tail);
84e554e6 1419 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1420 } else {
84e554e6 1421 stat(s, DEACTIVATE_FULL);
8a38082d
AW
1422 if (SLABDEBUG && PageSlubDebug(page) &&
1423 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1424 add_full(n, page);
1425 }
81819f0f
CL
1426 slab_unlock(page);
1427 } else {
84e554e6 1428 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1429 if (n->nr_partial < s->min_partial) {
e95eed57 1430 /*
672bba3a
CL
1431 * Adding an empty slab to the partial slabs in order
1432 * to avoid page allocator overhead. This slab needs
1433 * to come after the other slabs with objects in
6446faa2
CL
1434 * so that the others get filled first. That way the
1435 * size of the partial list stays small.
1436 *
0121c619
CL
1437 * kmem_cache_shrink can reclaim any empty slabs from
1438 * the partial list.
e95eed57 1439 */
7c2e132c 1440 add_partial(n, page, 1);
e95eed57
CL
1441 slab_unlock(page);
1442 } else {
1443 slab_unlock(page);
84e554e6 1444 stat(s, FREE_SLAB);
e95eed57
CL
1445 discard_slab(s, page);
1446 }
81819f0f
CL
1447 }
1448}
1449
1450/*
1451 * Remove the cpu slab
1452 */
dfb4f096 1453static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1454{
dfb4f096 1455 struct page *page = c->page;
7c2e132c 1456 int tail = 1;
8ff12cfc 1457
b773ad73 1458 if (page->freelist)
84e554e6 1459 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1460 /*
6446faa2 1461 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1462 * because both freelists are empty. So this is unlikely
1463 * to occur.
1464 */
a973e9dd 1465 while (unlikely(c->freelist)) {
894b8788
CL
1466 void **object;
1467
7c2e132c
CL
1468 tail = 0; /* Hot objects. Put the slab first */
1469
894b8788 1470 /* Retrieve object from cpu_freelist */
dfb4f096 1471 object = c->freelist;
ff12059e 1472 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1473
1474 /* And put onto the regular freelist */
ff12059e 1475 set_freepointer(s, object, page->freelist);
894b8788
CL
1476 page->freelist = object;
1477 page->inuse--;
1478 }
dfb4f096 1479 c->page = NULL;
7c2e132c 1480 unfreeze_slab(s, page, tail);
81819f0f
CL
1481}
1482
dfb4f096 1483static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1484{
84e554e6 1485 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1486 slab_lock(c->page);
1487 deactivate_slab(s, c);
81819f0f
CL
1488}
1489
1490/*
1491 * Flush cpu slab.
6446faa2 1492 *
81819f0f
CL
1493 * Called from IPI handler with interrupts disabled.
1494 */
0c710013 1495static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1496{
9dfc6e68 1497 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1498
dfb4f096
CL
1499 if (likely(c && c->page))
1500 flush_slab(s, c);
81819f0f
CL
1501}
1502
1503static void flush_cpu_slab(void *d)
1504{
1505 struct kmem_cache *s = d;
81819f0f 1506
dfb4f096 1507 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1508}
1509
1510static void flush_all(struct kmem_cache *s)
1511{
15c8b6c1 1512 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1513}
1514
dfb4f096
CL
1515/*
1516 * Check if the objects in a per cpu structure fit numa
1517 * locality expectations.
1518 */
1519static inline int node_match(struct kmem_cache_cpu *c, int node)
1520{
1521#ifdef CONFIG_NUMA
1522 if (node != -1 && c->node != node)
1523 return 0;
1524#endif
1525 return 1;
1526}
1527
781b2ba6
PE
1528static int count_free(struct page *page)
1529{
1530 return page->objects - page->inuse;
1531}
1532
1533static unsigned long count_partial(struct kmem_cache_node *n,
1534 int (*get_count)(struct page *))
1535{
1536 unsigned long flags;
1537 unsigned long x = 0;
1538 struct page *page;
1539
1540 spin_lock_irqsave(&n->list_lock, flags);
1541 list_for_each_entry(page, &n->partial, lru)
1542 x += get_count(page);
1543 spin_unlock_irqrestore(&n->list_lock, flags);
1544 return x;
1545}
1546
26c02cf0
AB
1547static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1548{
1549#ifdef CONFIG_SLUB_DEBUG
1550 return atomic_long_read(&n->total_objects);
1551#else
1552 return 0;
1553#endif
1554}
1555
781b2ba6
PE
1556static noinline void
1557slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1558{
1559 int node;
1560
1561 printk(KERN_WARNING
1562 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1563 nid, gfpflags);
1564 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1565 "default order: %d, min order: %d\n", s->name, s->objsize,
1566 s->size, oo_order(s->oo), oo_order(s->min));
1567
fa5ec8a1
DR
1568 if (oo_order(s->min) > get_order(s->objsize))
1569 printk(KERN_WARNING " %s debugging increased min order, use "
1570 "slub_debug=O to disable.\n", s->name);
1571
781b2ba6
PE
1572 for_each_online_node(node) {
1573 struct kmem_cache_node *n = get_node(s, node);
1574 unsigned long nr_slabs;
1575 unsigned long nr_objs;
1576 unsigned long nr_free;
1577
1578 if (!n)
1579 continue;
1580
26c02cf0
AB
1581 nr_free = count_partial(n, count_free);
1582 nr_slabs = node_nr_slabs(n);
1583 nr_objs = node_nr_objs(n);
781b2ba6
PE
1584
1585 printk(KERN_WARNING
1586 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587 node, nr_slabs, nr_objs, nr_free);
1588 }
1589}
1590
81819f0f 1591/*
894b8788
CL
1592 * Slow path. The lockless freelist is empty or we need to perform
1593 * debugging duties.
1594 *
1595 * Interrupts are disabled.
81819f0f 1596 *
894b8788
CL
1597 * Processing is still very fast if new objects have been freed to the
1598 * regular freelist. In that case we simply take over the regular freelist
1599 * as the lockless freelist and zap the regular freelist.
81819f0f 1600 *
894b8788
CL
1601 * If that is not working then we fall back to the partial lists. We take the
1602 * first element of the freelist as the object to allocate now and move the
1603 * rest of the freelist to the lockless freelist.
81819f0f 1604 *
894b8788 1605 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1606 * we need to allocate a new slab. This is the slowest path since it involves
1607 * a call to the page allocator and the setup of a new slab.
81819f0f 1608 */
ce71e27c
EGM
1609static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1610 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1611{
81819f0f 1612 void **object;
dfb4f096 1613 struct page *new;
81819f0f 1614
e72e9c23
LT
1615 /* We handle __GFP_ZERO in the caller */
1616 gfpflags &= ~__GFP_ZERO;
1617
dfb4f096 1618 if (!c->page)
81819f0f
CL
1619 goto new_slab;
1620
dfb4f096
CL
1621 slab_lock(c->page);
1622 if (unlikely(!node_match(c, node)))
81819f0f 1623 goto another_slab;
6446faa2 1624
84e554e6 1625 stat(s, ALLOC_REFILL);
6446faa2 1626
894b8788 1627load_freelist:
dfb4f096 1628 object = c->page->freelist;
a973e9dd 1629 if (unlikely(!object))
81819f0f 1630 goto another_slab;
8a38082d 1631 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1632 goto debug;
1633
ff12059e 1634 c->freelist = get_freepointer(s, object);
39b26464 1635 c->page->inuse = c->page->objects;
a973e9dd 1636 c->page->freelist = NULL;
dfb4f096 1637 c->node = page_to_nid(c->page);
1f84260c 1638unlock_out:
dfb4f096 1639 slab_unlock(c->page);
84e554e6 1640 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1641 return object;
1642
1643another_slab:
dfb4f096 1644 deactivate_slab(s, c);
81819f0f
CL
1645
1646new_slab:
dfb4f096
CL
1647 new = get_partial(s, gfpflags, node);
1648 if (new) {
1649 c->page = new;
84e554e6 1650 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1651 goto load_freelist;
81819f0f
CL
1652 }
1653
b811c202
CL
1654 if (gfpflags & __GFP_WAIT)
1655 local_irq_enable();
1656
dfb4f096 1657 new = new_slab(s, gfpflags, node);
b811c202
CL
1658
1659 if (gfpflags & __GFP_WAIT)
1660 local_irq_disable();
1661
dfb4f096 1662 if (new) {
9dfc6e68 1663 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1664 stat(s, ALLOC_SLAB);
05aa3450 1665 if (c->page)
dfb4f096 1666 flush_slab(s, c);
dfb4f096 1667 slab_lock(new);
8a38082d 1668 __SetPageSlubFrozen(new);
dfb4f096 1669 c->page = new;
4b6f0750 1670 goto load_freelist;
81819f0f 1671 }
95f85989
PE
1672 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1673 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1674 return NULL;
81819f0f 1675debug:
dfb4f096 1676 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1677 goto another_slab;
894b8788 1678
dfb4f096 1679 c->page->inuse++;
ff12059e 1680 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1681 c->node = -1;
1f84260c 1682 goto unlock_out;
894b8788
CL
1683}
1684
1685/*
1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687 * have the fastpath folded into their functions. So no function call
1688 * overhead for requests that can be satisfied on the fastpath.
1689 *
1690 * The fastpath works by first checking if the lockless freelist can be used.
1691 * If not then __slab_alloc is called for slow processing.
1692 *
1693 * Otherwise we can simply pick the next object from the lockless free list.
1694 */
06428780 1695static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1696 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1697{
894b8788 1698 void **object;
dfb4f096 1699 struct kmem_cache_cpu *c;
1f84260c
CL
1700 unsigned long flags;
1701
dcce284a 1702 gfpflags &= gfp_allowed_mask;
7e85ee0c 1703
cf40bd16 1704 lockdep_trace_alloc(gfpflags);
89124d70 1705 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1706
4c13dd3b 1707 if (should_failslab(s->objsize, gfpflags, s->flags))
773ff60e 1708 return NULL;
1f84260c 1709
894b8788 1710 local_irq_save(flags);
9dfc6e68
CL
1711 c = __this_cpu_ptr(s->cpu_slab);
1712 object = c->freelist;
9dfc6e68 1713 if (unlikely(!object || !node_match(c, node)))
894b8788 1714
dfb4f096 1715 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1716
1717 else {
ff12059e 1718 c->freelist = get_freepointer(s, object);
84e554e6 1719 stat(s, ALLOC_FASTPATH);
894b8788
CL
1720 }
1721 local_irq_restore(flags);
d07dbea4 1722
74e2134f 1723 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1724 memset(object, 0, s->objsize);
d07dbea4 1725
ff12059e
CL
1726 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1727 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
5a896d9e 1728
894b8788 1729 return object;
81819f0f
CL
1730}
1731
1732void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1733{
5b882be4
EGM
1734 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1735
ca2b84cb 1736 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1737
1738 return ret;
81819f0f
CL
1739}
1740EXPORT_SYMBOL(kmem_cache_alloc);
1741
0f24f128 1742#ifdef CONFIG_TRACING
5b882be4
EGM
1743void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1744{
1745 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1746}
1747EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1748#endif
1749
81819f0f
CL
1750#ifdef CONFIG_NUMA
1751void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1752{
5b882be4
EGM
1753 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1754
ca2b84cb
EGM
1755 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1756 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1757
1758 return ret;
81819f0f
CL
1759}
1760EXPORT_SYMBOL(kmem_cache_alloc_node);
1761#endif
1762
0f24f128 1763#ifdef CONFIG_TRACING
5b882be4
EGM
1764void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1765 gfp_t gfpflags,
1766 int node)
1767{
1768 return slab_alloc(s, gfpflags, node, _RET_IP_);
1769}
1770EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1771#endif
1772
81819f0f 1773/*
894b8788
CL
1774 * Slow patch handling. This may still be called frequently since objects
1775 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1776 *
894b8788
CL
1777 * So we still attempt to reduce cache line usage. Just take the slab
1778 * lock and free the item. If there is no additional partial page
1779 * handling required then we can return immediately.
81819f0f 1780 */
894b8788 1781static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1782 void *x, unsigned long addr)
81819f0f
CL
1783{
1784 void *prior;
1785 void **object = (void *)x;
81819f0f 1786
84e554e6 1787 stat(s, FREE_SLOWPATH);
81819f0f
CL
1788 slab_lock(page);
1789
8a38082d 1790 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1791 goto debug;
6446faa2 1792
81819f0f 1793checks_ok:
ff12059e
CL
1794 prior = page->freelist;
1795 set_freepointer(s, object, prior);
81819f0f
CL
1796 page->freelist = object;
1797 page->inuse--;
1798
8a38082d 1799 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1800 stat(s, FREE_FROZEN);
81819f0f 1801 goto out_unlock;
8ff12cfc 1802 }
81819f0f
CL
1803
1804 if (unlikely(!page->inuse))
1805 goto slab_empty;
1806
1807 /*
6446faa2 1808 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1809 * then add it.
1810 */
a973e9dd 1811 if (unlikely(!prior)) {
7c2e132c 1812 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1813 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1814 }
81819f0f
CL
1815
1816out_unlock:
1817 slab_unlock(page);
81819f0f
CL
1818 return;
1819
1820slab_empty:
a973e9dd 1821 if (prior) {
81819f0f 1822 /*
672bba3a 1823 * Slab still on the partial list.
81819f0f
CL
1824 */
1825 remove_partial(s, page);
84e554e6 1826 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1827 }
81819f0f 1828 slab_unlock(page);
84e554e6 1829 stat(s, FREE_SLAB);
81819f0f 1830 discard_slab(s, page);
81819f0f
CL
1831 return;
1832
1833debug:
3ec09742 1834 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1835 goto out_unlock;
77c5e2d0 1836 goto checks_ok;
81819f0f
CL
1837}
1838
894b8788
CL
1839/*
1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841 * can perform fastpath freeing without additional function calls.
1842 *
1843 * The fastpath is only possible if we are freeing to the current cpu slab
1844 * of this processor. This typically the case if we have just allocated
1845 * the item before.
1846 *
1847 * If fastpath is not possible then fall back to __slab_free where we deal
1848 * with all sorts of special processing.
1849 */
06428780 1850static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1851 struct page *page, void *x, unsigned long addr)
894b8788
CL
1852{
1853 void **object = (void *)x;
dfb4f096 1854 struct kmem_cache_cpu *c;
1f84260c
CL
1855 unsigned long flags;
1856
06f22f13 1857 kmemleak_free_recursive(x, s->flags);
894b8788 1858 local_irq_save(flags);
9dfc6e68 1859 c = __this_cpu_ptr(s->cpu_slab);
ff12059e
CL
1860 kmemcheck_slab_free(s, object, s->objsize);
1861 debug_check_no_locks_freed(object, s->objsize);
3ac7fe5a 1862 if (!(s->flags & SLAB_DEBUG_OBJECTS))
ff12059e 1863 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1864 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1865 set_freepointer(s, object, c->freelist);
dfb4f096 1866 c->freelist = object;
84e554e6 1867 stat(s, FREE_FASTPATH);
894b8788 1868 } else
ff12059e 1869 __slab_free(s, page, x, addr);
894b8788
CL
1870
1871 local_irq_restore(flags);
1872}
1873
81819f0f
CL
1874void kmem_cache_free(struct kmem_cache *s, void *x)
1875{
77c5e2d0 1876 struct page *page;
81819f0f 1877
b49af68f 1878 page = virt_to_head_page(x);
81819f0f 1879
ce71e27c 1880 slab_free(s, page, x, _RET_IP_);
5b882be4 1881
ca2b84cb 1882 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1883}
1884EXPORT_SYMBOL(kmem_cache_free);
1885
e9beef18 1886/* Figure out on which slab page the object resides */
81819f0f
CL
1887static struct page *get_object_page(const void *x)
1888{
b49af68f 1889 struct page *page = virt_to_head_page(x);
81819f0f
CL
1890
1891 if (!PageSlab(page))
1892 return NULL;
1893
1894 return page;
1895}
1896
1897/*
672bba3a
CL
1898 * Object placement in a slab is made very easy because we always start at
1899 * offset 0. If we tune the size of the object to the alignment then we can
1900 * get the required alignment by putting one properly sized object after
1901 * another.
81819f0f
CL
1902 *
1903 * Notice that the allocation order determines the sizes of the per cpu
1904 * caches. Each processor has always one slab available for allocations.
1905 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1906 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1907 * locking overhead.
81819f0f
CL
1908 */
1909
1910/*
1911 * Mininum / Maximum order of slab pages. This influences locking overhead
1912 * and slab fragmentation. A higher order reduces the number of partial slabs
1913 * and increases the number of allocations possible without having to
1914 * take the list_lock.
1915 */
1916static int slub_min_order;
114e9e89 1917static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1918static int slub_min_objects;
81819f0f
CL
1919
1920/*
1921 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1922 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1923 */
1924static int slub_nomerge;
1925
81819f0f
CL
1926/*
1927 * Calculate the order of allocation given an slab object size.
1928 *
672bba3a
CL
1929 * The order of allocation has significant impact on performance and other
1930 * system components. Generally order 0 allocations should be preferred since
1931 * order 0 does not cause fragmentation in the page allocator. Larger objects
1932 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1933 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1934 * would be wasted.
1935 *
1936 * In order to reach satisfactory performance we must ensure that a minimum
1937 * number of objects is in one slab. Otherwise we may generate too much
1938 * activity on the partial lists which requires taking the list_lock. This is
1939 * less a concern for large slabs though which are rarely used.
81819f0f 1940 *
672bba3a
CL
1941 * slub_max_order specifies the order where we begin to stop considering the
1942 * number of objects in a slab as critical. If we reach slub_max_order then
1943 * we try to keep the page order as low as possible. So we accept more waste
1944 * of space in favor of a small page order.
81819f0f 1945 *
672bba3a
CL
1946 * Higher order allocations also allow the placement of more objects in a
1947 * slab and thereby reduce object handling overhead. If the user has
1948 * requested a higher mininum order then we start with that one instead of
1949 * the smallest order which will fit the object.
81819f0f 1950 */
5e6d444e
CL
1951static inline int slab_order(int size, int min_objects,
1952 int max_order, int fract_leftover)
81819f0f
CL
1953{
1954 int order;
1955 int rem;
6300ea75 1956 int min_order = slub_min_order;
81819f0f 1957
210b5c06
CG
1958 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1959 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1960
6300ea75 1961 for (order = max(min_order,
5e6d444e
CL
1962 fls(min_objects * size - 1) - PAGE_SHIFT);
1963 order <= max_order; order++) {
81819f0f 1964
5e6d444e 1965 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1966
5e6d444e 1967 if (slab_size < min_objects * size)
81819f0f
CL
1968 continue;
1969
1970 rem = slab_size % size;
1971
5e6d444e 1972 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1973 break;
1974
1975 }
672bba3a 1976
81819f0f
CL
1977 return order;
1978}
1979
5e6d444e
CL
1980static inline int calculate_order(int size)
1981{
1982 int order;
1983 int min_objects;
1984 int fraction;
e8120ff1 1985 int max_objects;
5e6d444e
CL
1986
1987 /*
1988 * Attempt to find best configuration for a slab. This
1989 * works by first attempting to generate a layout with
1990 * the best configuration and backing off gradually.
1991 *
1992 * First we reduce the acceptable waste in a slab. Then
1993 * we reduce the minimum objects required in a slab.
1994 */
1995 min_objects = slub_min_objects;
9b2cd506
CL
1996 if (!min_objects)
1997 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1998 max_objects = (PAGE_SIZE << slub_max_order)/size;
1999 min_objects = min(min_objects, max_objects);
2000
5e6d444e 2001 while (min_objects > 1) {
c124f5b5 2002 fraction = 16;
5e6d444e
CL
2003 while (fraction >= 4) {
2004 order = slab_order(size, min_objects,
2005 slub_max_order, fraction);
2006 if (order <= slub_max_order)
2007 return order;
2008 fraction /= 2;
2009 }
5086c389 2010 min_objects--;
5e6d444e
CL
2011 }
2012
2013 /*
2014 * We were unable to place multiple objects in a slab. Now
2015 * lets see if we can place a single object there.
2016 */
2017 order = slab_order(size, 1, slub_max_order, 1);
2018 if (order <= slub_max_order)
2019 return order;
2020
2021 /*
2022 * Doh this slab cannot be placed using slub_max_order.
2023 */
2024 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2025 if (order < MAX_ORDER)
5e6d444e
CL
2026 return order;
2027 return -ENOSYS;
2028}
2029
81819f0f 2030/*
672bba3a 2031 * Figure out what the alignment of the objects will be.
81819f0f
CL
2032 */
2033static unsigned long calculate_alignment(unsigned long flags,
2034 unsigned long align, unsigned long size)
2035{
2036 /*
6446faa2
CL
2037 * If the user wants hardware cache aligned objects then follow that
2038 * suggestion if the object is sufficiently large.
81819f0f 2039 *
6446faa2
CL
2040 * The hardware cache alignment cannot override the specified
2041 * alignment though. If that is greater then use it.
81819f0f 2042 */
b6210386
NP
2043 if (flags & SLAB_HWCACHE_ALIGN) {
2044 unsigned long ralign = cache_line_size();
2045 while (size <= ralign / 2)
2046 ralign /= 2;
2047 align = max(align, ralign);
2048 }
81819f0f
CL
2049
2050 if (align < ARCH_SLAB_MINALIGN)
b6210386 2051 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2052
2053 return ALIGN(align, sizeof(void *));
2054}
2055
5595cffc
PE
2056static void
2057init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2058{
2059 n->nr_partial = 0;
81819f0f
CL
2060 spin_lock_init(&n->list_lock);
2061 INIT_LIST_HEAD(&n->partial);
8ab1372f 2062#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2063 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2064 atomic_long_set(&n->total_objects, 0);
643b1138 2065 INIT_LIST_HEAD(&n->full);
8ab1372f 2066#endif
81819f0f
CL
2067}
2068
91efd773 2069static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
4c93c355 2070
9dfc6e68 2071static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
4c93c355 2072{
756dee75 2073 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
9dfc6e68
CL
2074 /*
2075 * Boot time creation of the kmalloc array. Use static per cpu data
2076 * since the per cpu allocator is not available yet.
2077 */
1154fab7 2078 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
9dfc6e68
CL
2079 else
2080 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2081
9dfc6e68
CL
2082 if (!s->cpu_slab)
2083 return 0;
4c93c355 2084
4c93c355
CL
2085 return 1;
2086}
4c93c355 2087
81819f0f
CL
2088#ifdef CONFIG_NUMA
2089/*
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2092 * possible.
2093 *
2094 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
81819f0f 2097 */
0094de92 2098static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2099{
2100 struct page *page;
2101 struct kmem_cache_node *n;
ba84c73c 2102 unsigned long flags;
81819f0f
CL
2103
2104 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2105
a2f92ee7 2106 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2107
2108 BUG_ON(!page);
a2f92ee7
CL
2109 if (page_to_nid(page) != node) {
2110 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111 "node %d\n", node);
2112 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113 "in order to be able to continue\n");
2114 }
2115
81819f0f
CL
2116 n = page->freelist;
2117 BUG_ON(!n);
2118 page->freelist = get_freepointer(kmalloc_caches, n);
2119 page->inuse++;
2120 kmalloc_caches->node[node] = n;
8ab1372f 2121#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2122 init_object(kmalloc_caches, n, 1);
2123 init_tracking(kmalloc_caches, n);
8ab1372f 2124#endif
5595cffc 2125 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2126 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2127
ba84c73c 2128 /*
2129 * lockdep requires consistent irq usage for each lock
2130 * so even though there cannot be a race this early in
2131 * the boot sequence, we still disable irqs.
2132 */
2133 local_irq_save(flags);
7c2e132c 2134 add_partial(n, page, 0);
ba84c73c 2135 local_irq_restore(flags);
81819f0f
CL
2136}
2137
2138static void free_kmem_cache_nodes(struct kmem_cache *s)
2139{
2140 int node;
2141
f64dc58c 2142 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2143 struct kmem_cache_node *n = s->node[node];
2144 if (n && n != &s->local_node)
2145 kmem_cache_free(kmalloc_caches, n);
2146 s->node[node] = NULL;
2147 }
2148}
2149
2150static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2151{
2152 int node;
2153 int local_node;
2154
91efd773
CL
2155 if (slab_state >= UP && (s < kmalloc_caches ||
2156 s > kmalloc_caches + KMALLOC_CACHES))
81819f0f
CL
2157 local_node = page_to_nid(virt_to_page(s));
2158 else
2159 local_node = 0;
2160
f64dc58c 2161 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2162 struct kmem_cache_node *n;
2163
2164 if (local_node == node)
2165 n = &s->local_node;
2166 else {
2167 if (slab_state == DOWN) {
0094de92 2168 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2169 continue;
2170 }
2171 n = kmem_cache_alloc_node(kmalloc_caches,
2172 gfpflags, node);
2173
2174 if (!n) {
2175 free_kmem_cache_nodes(s);
2176 return 0;
2177 }
2178
2179 }
2180 s->node[node] = n;
5595cffc 2181 init_kmem_cache_node(n, s);
81819f0f
CL
2182 }
2183 return 1;
2184}
2185#else
2186static void free_kmem_cache_nodes(struct kmem_cache *s)
2187{
2188}
2189
2190static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2191{
5595cffc 2192 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2193 return 1;
2194}
2195#endif
2196
c0bdb232 2197static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2198{
2199 if (min < MIN_PARTIAL)
2200 min = MIN_PARTIAL;
2201 else if (min > MAX_PARTIAL)
2202 min = MAX_PARTIAL;
2203 s->min_partial = min;
2204}
2205
81819f0f
CL
2206/*
2207 * calculate_sizes() determines the order and the distribution of data within
2208 * a slab object.
2209 */
06b285dc 2210static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2211{
2212 unsigned long flags = s->flags;
2213 unsigned long size = s->objsize;
2214 unsigned long align = s->align;
834f3d11 2215 int order;
81819f0f 2216
d8b42bf5
CL
2217 /*
2218 * Round up object size to the next word boundary. We can only
2219 * place the free pointer at word boundaries and this determines
2220 * the possible location of the free pointer.
2221 */
2222 size = ALIGN(size, sizeof(void *));
2223
2224#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2225 /*
2226 * Determine if we can poison the object itself. If the user of
2227 * the slab may touch the object after free or before allocation
2228 * then we should never poison the object itself.
2229 */
2230 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2231 !s->ctor)
81819f0f
CL
2232 s->flags |= __OBJECT_POISON;
2233 else
2234 s->flags &= ~__OBJECT_POISON;
2235
81819f0f
CL
2236
2237 /*
672bba3a 2238 * If we are Redzoning then check if there is some space between the
81819f0f 2239 * end of the object and the free pointer. If not then add an
672bba3a 2240 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2241 */
2242 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2243 size += sizeof(void *);
41ecc55b 2244#endif
81819f0f
CL
2245
2246 /*
672bba3a
CL
2247 * With that we have determined the number of bytes in actual use
2248 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2249 */
2250 s->inuse = size;
2251
2252 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2253 s->ctor)) {
81819f0f
CL
2254 /*
2255 * Relocate free pointer after the object if it is not
2256 * permitted to overwrite the first word of the object on
2257 * kmem_cache_free.
2258 *
2259 * This is the case if we do RCU, have a constructor or
2260 * destructor or are poisoning the objects.
2261 */
2262 s->offset = size;
2263 size += sizeof(void *);
2264 }
2265
c12b3c62 2266#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2267 if (flags & SLAB_STORE_USER)
2268 /*
2269 * Need to store information about allocs and frees after
2270 * the object.
2271 */
2272 size += 2 * sizeof(struct track);
2273
be7b3fbc 2274 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2275 /*
2276 * Add some empty padding so that we can catch
2277 * overwrites from earlier objects rather than let
2278 * tracking information or the free pointer be
0211a9c8 2279 * corrupted if a user writes before the start
81819f0f
CL
2280 * of the object.
2281 */
2282 size += sizeof(void *);
41ecc55b 2283#endif
672bba3a 2284
81819f0f
CL
2285 /*
2286 * Determine the alignment based on various parameters that the
65c02d4c
CL
2287 * user specified and the dynamic determination of cache line size
2288 * on bootup.
81819f0f
CL
2289 */
2290 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2291 s->align = align;
81819f0f
CL
2292
2293 /*
2294 * SLUB stores one object immediately after another beginning from
2295 * offset 0. In order to align the objects we have to simply size
2296 * each object to conform to the alignment.
2297 */
2298 size = ALIGN(size, align);
2299 s->size = size;
06b285dc
CL
2300 if (forced_order >= 0)
2301 order = forced_order;
2302 else
2303 order = calculate_order(size);
81819f0f 2304
834f3d11 2305 if (order < 0)
81819f0f
CL
2306 return 0;
2307
b7a49f0d 2308 s->allocflags = 0;
834f3d11 2309 if (order)
b7a49f0d
CL
2310 s->allocflags |= __GFP_COMP;
2311
2312 if (s->flags & SLAB_CACHE_DMA)
2313 s->allocflags |= SLUB_DMA;
2314
2315 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2316 s->allocflags |= __GFP_RECLAIMABLE;
2317
81819f0f
CL
2318 /*
2319 * Determine the number of objects per slab
2320 */
834f3d11 2321 s->oo = oo_make(order, size);
65c3376a 2322 s->min = oo_make(get_order(size), size);
205ab99d
CL
2323 if (oo_objects(s->oo) > oo_objects(s->max))
2324 s->max = s->oo;
81819f0f 2325
834f3d11 2326 return !!oo_objects(s->oo);
81819f0f
CL
2327
2328}
2329
81819f0f
CL
2330static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2331 const char *name, size_t size,
2332 size_t align, unsigned long flags,
51cc5068 2333 void (*ctor)(void *))
81819f0f
CL
2334{
2335 memset(s, 0, kmem_size);
2336 s->name = name;
2337 s->ctor = ctor;
81819f0f 2338 s->objsize = size;
81819f0f 2339 s->align = align;
ba0268a8 2340 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2341
06b285dc 2342 if (!calculate_sizes(s, -1))
81819f0f 2343 goto error;
3de47213
DR
2344 if (disable_higher_order_debug) {
2345 /*
2346 * Disable debugging flags that store metadata if the min slab
2347 * order increased.
2348 */
2349 if (get_order(s->size) > get_order(s->objsize)) {
2350 s->flags &= ~DEBUG_METADATA_FLAGS;
2351 s->offset = 0;
2352 if (!calculate_sizes(s, -1))
2353 goto error;
2354 }
2355 }
81819f0f 2356
3b89d7d8
DR
2357 /*
2358 * The larger the object size is, the more pages we want on the partial
2359 * list to avoid pounding the page allocator excessively.
2360 */
c0bdb232 2361 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2362 s->refcount = 1;
2363#ifdef CONFIG_NUMA
e2cb96b7 2364 s->remote_node_defrag_ratio = 1000;
81819f0f 2365#endif
dfb4f096
CL
2366 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2367 goto error;
81819f0f 2368
dfb4f096 2369 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2370 return 1;
ff12059e 2371
4c93c355 2372 free_kmem_cache_nodes(s);
81819f0f
CL
2373error:
2374 if (flags & SLAB_PANIC)
2375 panic("Cannot create slab %s size=%lu realsize=%u "
2376 "order=%u offset=%u flags=%lx\n",
834f3d11 2377 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2378 s->offset, flags);
2379 return 0;
2380}
81819f0f
CL
2381
2382/*
2383 * Check if a given pointer is valid
2384 */
2385int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2386{
06428780 2387 struct page *page;
81819f0f
CL
2388
2389 page = get_object_page(object);
2390
2391 if (!page || s != page->slab)
2392 /* No slab or wrong slab */
2393 return 0;
2394
abcd08a6 2395 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2396 return 0;
2397
2398 /*
2399 * We could also check if the object is on the slabs freelist.
2400 * But this would be too expensive and it seems that the main
6446faa2 2401 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2402 * to a certain slab.
2403 */
2404 return 1;
2405}
2406EXPORT_SYMBOL(kmem_ptr_validate);
2407
2408/*
2409 * Determine the size of a slab object
2410 */
2411unsigned int kmem_cache_size(struct kmem_cache *s)
2412{
2413 return s->objsize;
2414}
2415EXPORT_SYMBOL(kmem_cache_size);
2416
2417const char *kmem_cache_name(struct kmem_cache *s)
2418{
2419 return s->name;
2420}
2421EXPORT_SYMBOL(kmem_cache_name);
2422
33b12c38
CL
2423static void list_slab_objects(struct kmem_cache *s, struct page *page,
2424 const char *text)
2425{
2426#ifdef CONFIG_SLUB_DEBUG
2427 void *addr = page_address(page);
2428 void *p;
2429 DECLARE_BITMAP(map, page->objects);
2430
2431 bitmap_zero(map, page->objects);
2432 slab_err(s, page, "%s", text);
2433 slab_lock(page);
2434 for_each_free_object(p, s, page->freelist)
2435 set_bit(slab_index(p, s, addr), map);
2436
2437 for_each_object(p, s, addr, page->objects) {
2438
2439 if (!test_bit(slab_index(p, s, addr), map)) {
2440 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2441 p, p - addr);
2442 print_tracking(s, p);
2443 }
2444 }
2445 slab_unlock(page);
2446#endif
2447}
2448
81819f0f 2449/*
599870b1 2450 * Attempt to free all partial slabs on a node.
81819f0f 2451 */
599870b1 2452static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2453{
81819f0f
CL
2454 unsigned long flags;
2455 struct page *page, *h;
2456
2457 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2458 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2459 if (!page->inuse) {
2460 list_del(&page->lru);
2461 discard_slab(s, page);
599870b1 2462 n->nr_partial--;
33b12c38
CL
2463 } else {
2464 list_slab_objects(s, page,
2465 "Objects remaining on kmem_cache_close()");
599870b1 2466 }
33b12c38 2467 }
81819f0f 2468 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2469}
2470
2471/*
672bba3a 2472 * Release all resources used by a slab cache.
81819f0f 2473 */
0c710013 2474static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2475{
2476 int node;
2477
2478 flush_all(s);
9dfc6e68 2479 free_percpu(s->cpu_slab);
81819f0f 2480 /* Attempt to free all objects */
f64dc58c 2481 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2482 struct kmem_cache_node *n = get_node(s, node);
2483
599870b1
CL
2484 free_partial(s, n);
2485 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2486 return 1;
2487 }
2488 free_kmem_cache_nodes(s);
2489 return 0;
2490}
2491
2492/*
2493 * Close a cache and release the kmem_cache structure
2494 * (must be used for caches created using kmem_cache_create)
2495 */
2496void kmem_cache_destroy(struct kmem_cache *s)
2497{
2498 down_write(&slub_lock);
2499 s->refcount--;
2500 if (!s->refcount) {
2501 list_del(&s->list);
a0e1d1be 2502 up_write(&slub_lock);
d629d819
PE
2503 if (kmem_cache_close(s)) {
2504 printk(KERN_ERR "SLUB %s: %s called for cache that "
2505 "still has objects.\n", s->name, __func__);
2506 dump_stack();
2507 }
d76b1590
ED
2508 if (s->flags & SLAB_DESTROY_BY_RCU)
2509 rcu_barrier();
81819f0f 2510 sysfs_slab_remove(s);
a0e1d1be
CL
2511 } else
2512 up_write(&slub_lock);
81819f0f
CL
2513}
2514EXPORT_SYMBOL(kmem_cache_destroy);
2515
2516/********************************************************************
2517 * Kmalloc subsystem
2518 *******************************************************************/
2519
756dee75 2520struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
81819f0f
CL
2521EXPORT_SYMBOL(kmalloc_caches);
2522
81819f0f
CL
2523static int __init setup_slub_min_order(char *str)
2524{
06428780 2525 get_option(&str, &slub_min_order);
81819f0f
CL
2526
2527 return 1;
2528}
2529
2530__setup("slub_min_order=", setup_slub_min_order);
2531
2532static int __init setup_slub_max_order(char *str)
2533{
06428780 2534 get_option(&str, &slub_max_order);
818cf590 2535 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2536
2537 return 1;
2538}
2539
2540__setup("slub_max_order=", setup_slub_max_order);
2541
2542static int __init setup_slub_min_objects(char *str)
2543{
06428780 2544 get_option(&str, &slub_min_objects);
81819f0f
CL
2545
2546 return 1;
2547}
2548
2549__setup("slub_min_objects=", setup_slub_min_objects);
2550
2551static int __init setup_slub_nomerge(char *str)
2552{
2553 slub_nomerge = 1;
2554 return 1;
2555}
2556
2557__setup("slub_nomerge", setup_slub_nomerge);
2558
81819f0f
CL
2559static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2560 const char *name, int size, gfp_t gfp_flags)
2561{
2562 unsigned int flags = 0;
2563
2564 if (gfp_flags & SLUB_DMA)
2565 flags = SLAB_CACHE_DMA;
2566
83b519e8
PE
2567 /*
2568 * This function is called with IRQs disabled during early-boot on
2569 * single CPU so there's no need to take slub_lock here.
2570 */
81819f0f 2571 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2572 flags, NULL))
81819f0f
CL
2573 goto panic;
2574
2575 list_add(&s->list, &slab_caches);
83b519e8 2576
81819f0f
CL
2577 if (sysfs_slab_add(s))
2578 goto panic;
2579 return s;
2580
2581panic:
2582 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2583}
2584
2e443fd0 2585#ifdef CONFIG_ZONE_DMA
ffadd4d0 2586static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2587
2588static void sysfs_add_func(struct work_struct *w)
2589{
2590 struct kmem_cache *s;
2591
2592 down_write(&slub_lock);
2593 list_for_each_entry(s, &slab_caches, list) {
2594 if (s->flags & __SYSFS_ADD_DEFERRED) {
2595 s->flags &= ~__SYSFS_ADD_DEFERRED;
2596 sysfs_slab_add(s);
2597 }
2598 }
2599 up_write(&slub_lock);
2600}
2601
2602static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2603
2e443fd0
CL
2604static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2605{
2606 struct kmem_cache *s;
2e443fd0
CL
2607 char *text;
2608 size_t realsize;
964cf35c 2609 unsigned long slabflags;
756dee75 2610 int i;
2e443fd0
CL
2611
2612 s = kmalloc_caches_dma[index];
2613 if (s)
2614 return s;
2615
2616 /* Dynamically create dma cache */
1ceef402
CL
2617 if (flags & __GFP_WAIT)
2618 down_write(&slub_lock);
2619 else {
2620 if (!down_write_trylock(&slub_lock))
2621 goto out;
2622 }
2623
2624 if (kmalloc_caches_dma[index])
2625 goto unlock_out;
2e443fd0 2626
7b55f620 2627 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2628 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2629 (unsigned int)realsize);
9dfc6e68 2630
756dee75
CL
2631 s = NULL;
2632 for (i = 0; i < KMALLOC_CACHES; i++)
2633 if (!kmalloc_caches[i].size)
2634 break;
9dfc6e68 2635
756dee75
CL
2636 BUG_ON(i >= KMALLOC_CACHES);
2637 s = kmalloc_caches + i;
1ceef402 2638
964cf35c
NP
2639 /*
2640 * Must defer sysfs creation to a workqueue because we don't know
2641 * what context we are called from. Before sysfs comes up, we don't
2642 * need to do anything because our sysfs initcall will start by
2643 * adding all existing slabs to sysfs.
2644 */
5caf5c7d 2645 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
964cf35c
NP
2646 if (slab_state >= SYSFS)
2647 slabflags |= __SYSFS_ADD_DEFERRED;
2648
7738dd9e 2649 if (!text || !kmem_cache_open(s, flags, text,
964cf35c 2650 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
756dee75 2651 s->size = 0;
1ceef402
CL
2652 kfree(text);
2653 goto unlock_out;
dfce8648 2654 }
1ceef402
CL
2655
2656 list_add(&s->list, &slab_caches);
2657 kmalloc_caches_dma[index] = s;
2658
964cf35c
NP
2659 if (slab_state >= SYSFS)
2660 schedule_work(&sysfs_add_work);
1ceef402
CL
2661
2662unlock_out:
dfce8648 2663 up_write(&slub_lock);
1ceef402 2664out:
dfce8648 2665 return kmalloc_caches_dma[index];
2e443fd0
CL
2666}
2667#endif
2668
f1b26339
CL
2669/*
2670 * Conversion table for small slabs sizes / 8 to the index in the
2671 * kmalloc array. This is necessary for slabs < 192 since we have non power
2672 * of two cache sizes there. The size of larger slabs can be determined using
2673 * fls.
2674 */
2675static s8 size_index[24] = {
2676 3, /* 8 */
2677 4, /* 16 */
2678 5, /* 24 */
2679 5, /* 32 */
2680 6, /* 40 */
2681 6, /* 48 */
2682 6, /* 56 */
2683 6, /* 64 */
2684 1, /* 72 */
2685 1, /* 80 */
2686 1, /* 88 */
2687 1, /* 96 */
2688 7, /* 104 */
2689 7, /* 112 */
2690 7, /* 120 */
2691 7, /* 128 */
2692 2, /* 136 */
2693 2, /* 144 */
2694 2, /* 152 */
2695 2, /* 160 */
2696 2, /* 168 */
2697 2, /* 176 */
2698 2, /* 184 */
2699 2 /* 192 */
2700};
2701
acdfcd04
AK
2702static inline int size_index_elem(size_t bytes)
2703{
2704 return (bytes - 1) / 8;
2705}
2706
81819f0f
CL
2707static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2708{
f1b26339 2709 int index;
81819f0f 2710
f1b26339
CL
2711 if (size <= 192) {
2712 if (!size)
2713 return ZERO_SIZE_PTR;
81819f0f 2714
acdfcd04 2715 index = size_index[size_index_elem(size)];
aadb4bc4 2716 } else
f1b26339 2717 index = fls(size - 1);
81819f0f
CL
2718
2719#ifdef CONFIG_ZONE_DMA
f1b26339 2720 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2721 return dma_kmalloc_cache(index, flags);
f1b26339 2722
81819f0f
CL
2723#endif
2724 return &kmalloc_caches[index];
2725}
2726
2727void *__kmalloc(size_t size, gfp_t flags)
2728{
aadb4bc4 2729 struct kmem_cache *s;
5b882be4 2730 void *ret;
81819f0f 2731
ffadd4d0 2732 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2733 return kmalloc_large(size, flags);
aadb4bc4
CL
2734
2735 s = get_slab(size, flags);
2736
2737 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2738 return s;
2739
5b882be4
EGM
2740 ret = slab_alloc(s, flags, -1, _RET_IP_);
2741
ca2b84cb 2742 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2743
2744 return ret;
81819f0f
CL
2745}
2746EXPORT_SYMBOL(__kmalloc);
2747
f619cfe1
CL
2748static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2749{
b1eeab67 2750 struct page *page;
e4f7c0b4 2751 void *ptr = NULL;
f619cfe1 2752
b1eeab67
VN
2753 flags |= __GFP_COMP | __GFP_NOTRACK;
2754 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2755 if (page)
e4f7c0b4
CM
2756 ptr = page_address(page);
2757
2758 kmemleak_alloc(ptr, size, 1, flags);
2759 return ptr;
f619cfe1
CL
2760}
2761
81819f0f
CL
2762#ifdef CONFIG_NUMA
2763void *__kmalloc_node(size_t size, gfp_t flags, int node)
2764{
aadb4bc4 2765 struct kmem_cache *s;
5b882be4 2766 void *ret;
81819f0f 2767
057685cf 2768 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2769 ret = kmalloc_large_node(size, flags, node);
2770
ca2b84cb
EGM
2771 trace_kmalloc_node(_RET_IP_, ret,
2772 size, PAGE_SIZE << get_order(size),
2773 flags, node);
5b882be4
EGM
2774
2775 return ret;
2776 }
aadb4bc4
CL
2777
2778 s = get_slab(size, flags);
2779
2780 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2781 return s;
2782
5b882be4
EGM
2783 ret = slab_alloc(s, flags, node, _RET_IP_);
2784
ca2b84cb 2785 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2786
2787 return ret;
81819f0f
CL
2788}
2789EXPORT_SYMBOL(__kmalloc_node);
2790#endif
2791
2792size_t ksize(const void *object)
2793{
272c1d21 2794 struct page *page;
81819f0f
CL
2795 struct kmem_cache *s;
2796
ef8b4520 2797 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2798 return 0;
2799
294a80a8 2800 page = virt_to_head_page(object);
294a80a8 2801
76994412
PE
2802 if (unlikely(!PageSlab(page))) {
2803 WARN_ON(!PageCompound(page));
294a80a8 2804 return PAGE_SIZE << compound_order(page);
76994412 2805 }
81819f0f 2806 s = page->slab;
81819f0f 2807
ae20bfda 2808#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2809 /*
2810 * Debugging requires use of the padding between object
2811 * and whatever may come after it.
2812 */
2813 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2814 return s->objsize;
2815
ae20bfda 2816#endif
81819f0f
CL
2817 /*
2818 * If we have the need to store the freelist pointer
2819 * back there or track user information then we can
2820 * only use the space before that information.
2821 */
2822 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2823 return s->inuse;
81819f0f
CL
2824 /*
2825 * Else we can use all the padding etc for the allocation
2826 */
2827 return s->size;
2828}
b1aabecd 2829EXPORT_SYMBOL(ksize);
81819f0f
CL
2830
2831void kfree(const void *x)
2832{
81819f0f 2833 struct page *page;
5bb983b0 2834 void *object = (void *)x;
81819f0f 2835
2121db74
PE
2836 trace_kfree(_RET_IP_, x);
2837
2408c550 2838 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2839 return;
2840
b49af68f 2841 page = virt_to_head_page(x);
aadb4bc4 2842 if (unlikely(!PageSlab(page))) {
0937502a 2843 BUG_ON(!PageCompound(page));
e4f7c0b4 2844 kmemleak_free(x);
aadb4bc4
CL
2845 put_page(page);
2846 return;
2847 }
ce71e27c 2848 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2849}
2850EXPORT_SYMBOL(kfree);
2851
2086d26a 2852/*
672bba3a
CL
2853 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2854 * the remaining slabs by the number of items in use. The slabs with the
2855 * most items in use come first. New allocations will then fill those up
2856 * and thus they can be removed from the partial lists.
2857 *
2858 * The slabs with the least items are placed last. This results in them
2859 * being allocated from last increasing the chance that the last objects
2860 * are freed in them.
2086d26a
CL
2861 */
2862int kmem_cache_shrink(struct kmem_cache *s)
2863{
2864 int node;
2865 int i;
2866 struct kmem_cache_node *n;
2867 struct page *page;
2868 struct page *t;
205ab99d 2869 int objects = oo_objects(s->max);
2086d26a 2870 struct list_head *slabs_by_inuse =
834f3d11 2871 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2872 unsigned long flags;
2873
2874 if (!slabs_by_inuse)
2875 return -ENOMEM;
2876
2877 flush_all(s);
f64dc58c 2878 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2879 n = get_node(s, node);
2880
2881 if (!n->nr_partial)
2882 continue;
2883
834f3d11 2884 for (i = 0; i < objects; i++)
2086d26a
CL
2885 INIT_LIST_HEAD(slabs_by_inuse + i);
2886
2887 spin_lock_irqsave(&n->list_lock, flags);
2888
2889 /*
672bba3a 2890 * Build lists indexed by the items in use in each slab.
2086d26a 2891 *
672bba3a
CL
2892 * Note that concurrent frees may occur while we hold the
2893 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2894 */
2895 list_for_each_entry_safe(page, t, &n->partial, lru) {
2896 if (!page->inuse && slab_trylock(page)) {
2897 /*
2898 * Must hold slab lock here because slab_free
2899 * may have freed the last object and be
2900 * waiting to release the slab.
2901 */
2902 list_del(&page->lru);
2903 n->nr_partial--;
2904 slab_unlock(page);
2905 discard_slab(s, page);
2906 } else {
fcda3d89
CL
2907 list_move(&page->lru,
2908 slabs_by_inuse + page->inuse);
2086d26a
CL
2909 }
2910 }
2911
2086d26a 2912 /*
672bba3a
CL
2913 * Rebuild the partial list with the slabs filled up most
2914 * first and the least used slabs at the end.
2086d26a 2915 */
834f3d11 2916 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2917 list_splice(slabs_by_inuse + i, n->partial.prev);
2918
2086d26a
CL
2919 spin_unlock_irqrestore(&n->list_lock, flags);
2920 }
2921
2922 kfree(slabs_by_inuse);
2923 return 0;
2924}
2925EXPORT_SYMBOL(kmem_cache_shrink);
2926
b9049e23
YG
2927#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2928static int slab_mem_going_offline_callback(void *arg)
2929{
2930 struct kmem_cache *s;
2931
2932 down_read(&slub_lock);
2933 list_for_each_entry(s, &slab_caches, list)
2934 kmem_cache_shrink(s);
2935 up_read(&slub_lock);
2936
2937 return 0;
2938}
2939
2940static void slab_mem_offline_callback(void *arg)
2941{
2942 struct kmem_cache_node *n;
2943 struct kmem_cache *s;
2944 struct memory_notify *marg = arg;
2945 int offline_node;
2946
2947 offline_node = marg->status_change_nid;
2948
2949 /*
2950 * If the node still has available memory. we need kmem_cache_node
2951 * for it yet.
2952 */
2953 if (offline_node < 0)
2954 return;
2955
2956 down_read(&slub_lock);
2957 list_for_each_entry(s, &slab_caches, list) {
2958 n = get_node(s, offline_node);
2959 if (n) {
2960 /*
2961 * if n->nr_slabs > 0, slabs still exist on the node
2962 * that is going down. We were unable to free them,
2963 * and offline_pages() function shoudn't call this
2964 * callback. So, we must fail.
2965 */
0f389ec6 2966 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2967
2968 s->node[offline_node] = NULL;
2969 kmem_cache_free(kmalloc_caches, n);
2970 }
2971 }
2972 up_read(&slub_lock);
2973}
2974
2975static int slab_mem_going_online_callback(void *arg)
2976{
2977 struct kmem_cache_node *n;
2978 struct kmem_cache *s;
2979 struct memory_notify *marg = arg;
2980 int nid = marg->status_change_nid;
2981 int ret = 0;
2982
2983 /*
2984 * If the node's memory is already available, then kmem_cache_node is
2985 * already created. Nothing to do.
2986 */
2987 if (nid < 0)
2988 return 0;
2989
2990 /*
0121c619 2991 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2992 * allocate a kmem_cache_node structure in order to bring the node
2993 * online.
2994 */
2995 down_read(&slub_lock);
2996 list_for_each_entry(s, &slab_caches, list) {
2997 /*
2998 * XXX: kmem_cache_alloc_node will fallback to other nodes
2999 * since memory is not yet available from the node that
3000 * is brought up.
3001 */
3002 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3003 if (!n) {
3004 ret = -ENOMEM;
3005 goto out;
3006 }
5595cffc 3007 init_kmem_cache_node(n, s);
b9049e23
YG
3008 s->node[nid] = n;
3009 }
3010out:
3011 up_read(&slub_lock);
3012 return ret;
3013}
3014
3015static int slab_memory_callback(struct notifier_block *self,
3016 unsigned long action, void *arg)
3017{
3018 int ret = 0;
3019
3020 switch (action) {
3021 case MEM_GOING_ONLINE:
3022 ret = slab_mem_going_online_callback(arg);
3023 break;
3024 case MEM_GOING_OFFLINE:
3025 ret = slab_mem_going_offline_callback(arg);
3026 break;
3027 case MEM_OFFLINE:
3028 case MEM_CANCEL_ONLINE:
3029 slab_mem_offline_callback(arg);
3030 break;
3031 case MEM_ONLINE:
3032 case MEM_CANCEL_OFFLINE:
3033 break;
3034 }
dc19f9db
KH
3035 if (ret)
3036 ret = notifier_from_errno(ret);
3037 else
3038 ret = NOTIFY_OK;
b9049e23
YG
3039 return ret;
3040}
3041
3042#endif /* CONFIG_MEMORY_HOTPLUG */
3043
81819f0f
CL
3044/********************************************************************
3045 * Basic setup of slabs
3046 *******************************************************************/
3047
3048void __init kmem_cache_init(void)
3049{
3050 int i;
4b356be0 3051 int caches = 0;
81819f0f
CL
3052
3053#ifdef CONFIG_NUMA
3054 /*
3055 * Must first have the slab cache available for the allocations of the
672bba3a 3056 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3057 * kmem_cache_open for slab_state == DOWN.
3058 */
3059 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3060 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3061 kmalloc_caches[0].refcount = -1;
4b356be0 3062 caches++;
b9049e23 3063
0c40ba4f 3064 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3065#endif
3066
3067 /* Able to allocate the per node structures */
3068 slab_state = PARTIAL;
3069
3070 /* Caches that are not of the two-to-the-power-of size */
acdfcd04 3071 if (KMALLOC_MIN_SIZE <= 32) {
4b356be0 3072 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3073 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3074 caches++;
acdfcd04
AK
3075 }
3076 if (KMALLOC_MIN_SIZE <= 64) {
4b356be0 3077 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3078 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3079 caches++;
3080 }
81819f0f 3081
ffadd4d0 3082 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3083 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3084 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3085 caches++;
3086 }
81819f0f 3087
f1b26339
CL
3088
3089 /*
3090 * Patch up the size_index table if we have strange large alignment
3091 * requirements for the kmalloc array. This is only the case for
6446faa2 3092 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3093 *
3094 * Largest permitted alignment is 256 bytes due to the way we
3095 * handle the index determination for the smaller caches.
3096 *
3097 * Make sure that nothing crazy happens if someone starts tinkering
3098 * around with ARCH_KMALLOC_MINALIGN
3099 */
3100 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3101 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3102
acdfcd04
AK
3103 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3104 int elem = size_index_elem(i);
3105 if (elem >= ARRAY_SIZE(size_index))
3106 break;
3107 size_index[elem] = KMALLOC_SHIFT_LOW;
3108 }
f1b26339 3109
acdfcd04
AK
3110 if (KMALLOC_MIN_SIZE == 64) {
3111 /*
3112 * The 96 byte size cache is not used if the alignment
3113 * is 64 byte.
3114 */
3115 for (i = 64 + 8; i <= 96; i += 8)
3116 size_index[size_index_elem(i)] = 7;
3117 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3118 /*
3119 * The 192 byte sized cache is not used if the alignment
3120 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3121 * instead.
3122 */
3123 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3124 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3125 }
3126
81819f0f
CL
3127 slab_state = UP;
3128
3129 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3130 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3131 kmalloc_caches[i]. name =
83b519e8 3132 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3133
3134#ifdef CONFIG_SMP
3135 register_cpu_notifier(&slab_notifier);
9dfc6e68
CL
3136#endif
3137#ifdef CONFIG_NUMA
3138 kmem_size = offsetof(struct kmem_cache, node) +
3139 nr_node_ids * sizeof(struct kmem_cache_node *);
4c93c355
CL
3140#else
3141 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3142#endif
3143
3adbefee
IM
3144 printk(KERN_INFO
3145 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3146 " CPUs=%d, Nodes=%d\n",
3147 caches, cache_line_size(),
81819f0f
CL
3148 slub_min_order, slub_max_order, slub_min_objects,
3149 nr_cpu_ids, nr_node_ids);
3150}
3151
7e85ee0c
PE
3152void __init kmem_cache_init_late(void)
3153{
7e85ee0c
PE
3154}
3155
81819f0f
CL
3156/*
3157 * Find a mergeable slab cache
3158 */
3159static int slab_unmergeable(struct kmem_cache *s)
3160{
3161 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3162 return 1;
3163
c59def9f 3164 if (s->ctor)
81819f0f
CL
3165 return 1;
3166
8ffa6875
CL
3167 /*
3168 * We may have set a slab to be unmergeable during bootstrap.
3169 */
3170 if (s->refcount < 0)
3171 return 1;
3172
81819f0f
CL
3173 return 0;
3174}
3175
3176static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3177 size_t align, unsigned long flags, const char *name,
51cc5068 3178 void (*ctor)(void *))
81819f0f 3179{
5b95a4ac 3180 struct kmem_cache *s;
81819f0f
CL
3181
3182 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3183 return NULL;
3184
c59def9f 3185 if (ctor)
81819f0f
CL
3186 return NULL;
3187
3188 size = ALIGN(size, sizeof(void *));
3189 align = calculate_alignment(flags, align, size);
3190 size = ALIGN(size, align);
ba0268a8 3191 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3192
5b95a4ac 3193 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3194 if (slab_unmergeable(s))
3195 continue;
3196
3197 if (size > s->size)
3198 continue;
3199
ba0268a8 3200 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3201 continue;
3202 /*
3203 * Check if alignment is compatible.
3204 * Courtesy of Adrian Drzewiecki
3205 */
06428780 3206 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3207 continue;
3208
3209 if (s->size - size >= sizeof(void *))
3210 continue;
3211
3212 return s;
3213 }
3214 return NULL;
3215}
3216
3217struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3218 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3219{
3220 struct kmem_cache *s;
3221
fe1ff49d
BH
3222 if (WARN_ON(!name))
3223 return NULL;
3224
81819f0f 3225 down_write(&slub_lock);
ba0268a8 3226 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3227 if (s) {
3228 s->refcount++;
3229 /*
3230 * Adjust the object sizes so that we clear
3231 * the complete object on kzalloc.
3232 */
3233 s->objsize = max(s->objsize, (int)size);
3234 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3235 up_write(&slub_lock);
6446faa2 3236
7b8f3b66
DR
3237 if (sysfs_slab_alias(s, name)) {
3238 down_write(&slub_lock);
3239 s->refcount--;
3240 up_write(&slub_lock);
81819f0f 3241 goto err;
7b8f3b66 3242 }
a0e1d1be
CL
3243 return s;
3244 }
6446faa2 3245
a0e1d1be
CL
3246 s = kmalloc(kmem_size, GFP_KERNEL);
3247 if (s) {
3248 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3249 size, align, flags, ctor)) {
81819f0f 3250 list_add(&s->list, &slab_caches);
a0e1d1be 3251 up_write(&slub_lock);
7b8f3b66
DR
3252 if (sysfs_slab_add(s)) {
3253 down_write(&slub_lock);
3254 list_del(&s->list);
3255 up_write(&slub_lock);
3256 kfree(s);
a0e1d1be 3257 goto err;
7b8f3b66 3258 }
a0e1d1be
CL
3259 return s;
3260 }
3261 kfree(s);
81819f0f
CL
3262 }
3263 up_write(&slub_lock);
81819f0f
CL
3264
3265err:
81819f0f
CL
3266 if (flags & SLAB_PANIC)
3267 panic("Cannot create slabcache %s\n", name);
3268 else
3269 s = NULL;
3270 return s;
3271}
3272EXPORT_SYMBOL(kmem_cache_create);
3273
81819f0f 3274#ifdef CONFIG_SMP
81819f0f 3275/*
672bba3a
CL
3276 * Use the cpu notifier to insure that the cpu slabs are flushed when
3277 * necessary.
81819f0f
CL
3278 */
3279static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3280 unsigned long action, void *hcpu)
3281{
3282 long cpu = (long)hcpu;
5b95a4ac
CL
3283 struct kmem_cache *s;
3284 unsigned long flags;
81819f0f
CL
3285
3286 switch (action) {
3287 case CPU_UP_CANCELED:
8bb78442 3288 case CPU_UP_CANCELED_FROZEN:
81819f0f 3289 case CPU_DEAD:
8bb78442 3290 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3291 down_read(&slub_lock);
3292 list_for_each_entry(s, &slab_caches, list) {
3293 local_irq_save(flags);
3294 __flush_cpu_slab(s, cpu);
3295 local_irq_restore(flags);
3296 }
3297 up_read(&slub_lock);
81819f0f
CL
3298 break;
3299 default:
3300 break;
3301 }
3302 return NOTIFY_OK;
3303}
3304
06428780 3305static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3306 .notifier_call = slab_cpuup_callback
06428780 3307};
81819f0f
CL
3308
3309#endif
3310
ce71e27c 3311void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3312{
aadb4bc4 3313 struct kmem_cache *s;
94b528d0 3314 void *ret;
aadb4bc4 3315
ffadd4d0 3316 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3317 return kmalloc_large(size, gfpflags);
3318
aadb4bc4 3319 s = get_slab(size, gfpflags);
81819f0f 3320
2408c550 3321 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3322 return s;
81819f0f 3323
94b528d0
EGM
3324 ret = slab_alloc(s, gfpflags, -1, caller);
3325
3326 /* Honor the call site pointer we recieved. */
ca2b84cb 3327 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3328
3329 return ret;
81819f0f
CL
3330}
3331
3332void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3333 int node, unsigned long caller)
81819f0f 3334{
aadb4bc4 3335 struct kmem_cache *s;
94b528d0 3336 void *ret;
aadb4bc4 3337
ffadd4d0 3338 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3339 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3340
aadb4bc4 3341 s = get_slab(size, gfpflags);
81819f0f 3342
2408c550 3343 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3344 return s;
81819f0f 3345
94b528d0
EGM
3346 ret = slab_alloc(s, gfpflags, node, caller);
3347
3348 /* Honor the call site pointer we recieved. */
ca2b84cb 3349 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3350
3351 return ret;
81819f0f
CL
3352}
3353
f6acb635 3354#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3355static int count_inuse(struct page *page)
3356{
3357 return page->inuse;
3358}
3359
3360static int count_total(struct page *page)
3361{
3362 return page->objects;
3363}
3364
434e245d
CL
3365static int validate_slab(struct kmem_cache *s, struct page *page,
3366 unsigned long *map)
53e15af0
CL
3367{
3368 void *p;
a973e9dd 3369 void *addr = page_address(page);
53e15af0
CL
3370
3371 if (!check_slab(s, page) ||
3372 !on_freelist(s, page, NULL))
3373 return 0;
3374
3375 /* Now we know that a valid freelist exists */
39b26464 3376 bitmap_zero(map, page->objects);
53e15af0 3377
7656c72b
CL
3378 for_each_free_object(p, s, page->freelist) {
3379 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3380 if (!check_object(s, page, p, 0))
3381 return 0;
3382 }
3383
224a88be 3384 for_each_object(p, s, addr, page->objects)
7656c72b 3385 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3386 if (!check_object(s, page, p, 1))
3387 return 0;
3388 return 1;
3389}
3390
434e245d
CL
3391static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3392 unsigned long *map)
53e15af0
CL
3393{
3394 if (slab_trylock(page)) {
434e245d 3395 validate_slab(s, page, map);
53e15af0
CL
3396 slab_unlock(page);
3397 } else
3398 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3399 s->name, page);
3400
3401 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3402 if (!PageSlubDebug(page))
3403 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3404 "on slab 0x%p\n", s->name, page);
3405 } else {
8a38082d
AW
3406 if (PageSlubDebug(page))
3407 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3408 "slab 0x%p\n", s->name, page);
3409 }
3410}
3411
434e245d
CL
3412static int validate_slab_node(struct kmem_cache *s,
3413 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3414{
3415 unsigned long count = 0;
3416 struct page *page;
3417 unsigned long flags;
3418
3419 spin_lock_irqsave(&n->list_lock, flags);
3420
3421 list_for_each_entry(page, &n->partial, lru) {
434e245d 3422 validate_slab_slab(s, page, map);
53e15af0
CL
3423 count++;
3424 }
3425 if (count != n->nr_partial)
3426 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3427 "counter=%ld\n", s->name, count, n->nr_partial);
3428
3429 if (!(s->flags & SLAB_STORE_USER))
3430 goto out;
3431
3432 list_for_each_entry(page, &n->full, lru) {
434e245d 3433 validate_slab_slab(s, page, map);
53e15af0
CL
3434 count++;
3435 }
3436 if (count != atomic_long_read(&n->nr_slabs))
3437 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3438 "counter=%ld\n", s->name, count,
3439 atomic_long_read(&n->nr_slabs));
3440
3441out:
3442 spin_unlock_irqrestore(&n->list_lock, flags);
3443 return count;
3444}
3445
434e245d 3446static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3447{
3448 int node;
3449 unsigned long count = 0;
205ab99d 3450 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3451 sizeof(unsigned long), GFP_KERNEL);
3452
3453 if (!map)
3454 return -ENOMEM;
53e15af0
CL
3455
3456 flush_all(s);
f64dc58c 3457 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3458 struct kmem_cache_node *n = get_node(s, node);
3459
434e245d 3460 count += validate_slab_node(s, n, map);
53e15af0 3461 }
434e245d 3462 kfree(map);
53e15af0
CL
3463 return count;
3464}
3465
b3459709
CL
3466#ifdef SLUB_RESILIENCY_TEST
3467static void resiliency_test(void)
3468{
3469 u8 *p;
3470
3471 printk(KERN_ERR "SLUB resiliency testing\n");
3472 printk(KERN_ERR "-----------------------\n");
3473 printk(KERN_ERR "A. Corruption after allocation\n");
3474
3475 p = kzalloc(16, GFP_KERNEL);
3476 p[16] = 0x12;
3477 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3478 " 0x12->0x%p\n\n", p + 16);
3479
3480 validate_slab_cache(kmalloc_caches + 4);
3481
3482 /* Hmmm... The next two are dangerous */
3483 p = kzalloc(32, GFP_KERNEL);
3484 p[32 + sizeof(void *)] = 0x34;
3485 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3486 " 0x34 -> -0x%p\n", p);
3487 printk(KERN_ERR
3488 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3489
3490 validate_slab_cache(kmalloc_caches + 5);
3491 p = kzalloc(64, GFP_KERNEL);
3492 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3493 *p = 0x56;
3494 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3495 p);
3adbefee
IM
3496 printk(KERN_ERR
3497 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3498 validate_slab_cache(kmalloc_caches + 6);
3499
3500 printk(KERN_ERR "\nB. Corruption after free\n");
3501 p = kzalloc(128, GFP_KERNEL);
3502 kfree(p);
3503 *p = 0x78;
3504 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3505 validate_slab_cache(kmalloc_caches + 7);
3506
3507 p = kzalloc(256, GFP_KERNEL);
3508 kfree(p);
3509 p[50] = 0x9a;
3adbefee
IM
3510 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3511 p);
b3459709
CL
3512 validate_slab_cache(kmalloc_caches + 8);
3513
3514 p = kzalloc(512, GFP_KERNEL);
3515 kfree(p);
3516 p[512] = 0xab;
3517 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3518 validate_slab_cache(kmalloc_caches + 9);
3519}
3520#else
3521static void resiliency_test(void) {};
3522#endif
3523
88a420e4 3524/*
672bba3a 3525 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3526 * and freed.
3527 */
3528
3529struct location {
3530 unsigned long count;
ce71e27c 3531 unsigned long addr;
45edfa58
CL
3532 long long sum_time;
3533 long min_time;
3534 long max_time;
3535 long min_pid;
3536 long max_pid;
174596a0 3537 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3538 nodemask_t nodes;
88a420e4
CL
3539};
3540
3541struct loc_track {
3542 unsigned long max;
3543 unsigned long count;
3544 struct location *loc;
3545};
3546
3547static void free_loc_track(struct loc_track *t)
3548{
3549 if (t->max)
3550 free_pages((unsigned long)t->loc,
3551 get_order(sizeof(struct location) * t->max));
3552}
3553
68dff6a9 3554static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3555{
3556 struct location *l;
3557 int order;
3558
88a420e4
CL
3559 order = get_order(sizeof(struct location) * max);
3560
68dff6a9 3561 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3562 if (!l)
3563 return 0;
3564
3565 if (t->count) {
3566 memcpy(l, t->loc, sizeof(struct location) * t->count);
3567 free_loc_track(t);
3568 }
3569 t->max = max;
3570 t->loc = l;
3571 return 1;
3572}
3573
3574static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3575 const struct track *track)
88a420e4
CL
3576{
3577 long start, end, pos;
3578 struct location *l;
ce71e27c 3579 unsigned long caddr;
45edfa58 3580 unsigned long age = jiffies - track->when;
88a420e4
CL
3581
3582 start = -1;
3583 end = t->count;
3584
3585 for ( ; ; ) {
3586 pos = start + (end - start + 1) / 2;
3587
3588 /*
3589 * There is nothing at "end". If we end up there
3590 * we need to add something to before end.
3591 */
3592 if (pos == end)
3593 break;
3594
3595 caddr = t->loc[pos].addr;
45edfa58
CL
3596 if (track->addr == caddr) {
3597
3598 l = &t->loc[pos];
3599 l->count++;
3600 if (track->when) {
3601 l->sum_time += age;
3602 if (age < l->min_time)
3603 l->min_time = age;
3604 if (age > l->max_time)
3605 l->max_time = age;
3606
3607 if (track->pid < l->min_pid)
3608 l->min_pid = track->pid;
3609 if (track->pid > l->max_pid)
3610 l->max_pid = track->pid;
3611
174596a0
RR
3612 cpumask_set_cpu(track->cpu,
3613 to_cpumask(l->cpus));
45edfa58
CL
3614 }
3615 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3616 return 1;
3617 }
3618
45edfa58 3619 if (track->addr < caddr)
88a420e4
CL
3620 end = pos;
3621 else
3622 start = pos;
3623 }
3624
3625 /*
672bba3a 3626 * Not found. Insert new tracking element.
88a420e4 3627 */
68dff6a9 3628 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3629 return 0;
3630
3631 l = t->loc + pos;
3632 if (pos < t->count)
3633 memmove(l + 1, l,
3634 (t->count - pos) * sizeof(struct location));
3635 t->count++;
3636 l->count = 1;
45edfa58
CL
3637 l->addr = track->addr;
3638 l->sum_time = age;
3639 l->min_time = age;
3640 l->max_time = age;
3641 l->min_pid = track->pid;
3642 l->max_pid = track->pid;
174596a0
RR
3643 cpumask_clear(to_cpumask(l->cpus));
3644 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3645 nodes_clear(l->nodes);
3646 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3647 return 1;
3648}
3649
3650static void process_slab(struct loc_track *t, struct kmem_cache *s,
3651 struct page *page, enum track_item alloc)
3652{
a973e9dd 3653 void *addr = page_address(page);
39b26464 3654 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3655 void *p;
3656
39b26464 3657 bitmap_zero(map, page->objects);
7656c72b
CL
3658 for_each_free_object(p, s, page->freelist)
3659 set_bit(slab_index(p, s, addr), map);
88a420e4 3660
224a88be 3661 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3662 if (!test_bit(slab_index(p, s, addr), map))
3663 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3664}
3665
3666static int list_locations(struct kmem_cache *s, char *buf,
3667 enum track_item alloc)
3668{
e374d483 3669 int len = 0;
88a420e4 3670 unsigned long i;
68dff6a9 3671 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3672 int node;
3673
68dff6a9 3674 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3675 GFP_TEMPORARY))
68dff6a9 3676 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3677
3678 /* Push back cpu slabs */
3679 flush_all(s);
3680
f64dc58c 3681 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3682 struct kmem_cache_node *n = get_node(s, node);
3683 unsigned long flags;
3684 struct page *page;
3685
9e86943b 3686 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3687 continue;
3688
3689 spin_lock_irqsave(&n->list_lock, flags);
3690 list_for_each_entry(page, &n->partial, lru)
3691 process_slab(&t, s, page, alloc);
3692 list_for_each_entry(page, &n->full, lru)
3693 process_slab(&t, s, page, alloc);
3694 spin_unlock_irqrestore(&n->list_lock, flags);
3695 }
3696
3697 for (i = 0; i < t.count; i++) {
45edfa58 3698 struct location *l = &t.loc[i];
88a420e4 3699
9c246247 3700 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3701 break;
e374d483 3702 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3703
3704 if (l->addr)
e374d483 3705 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3706 else
e374d483 3707 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3708
3709 if (l->sum_time != l->min_time) {
e374d483 3710 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3711 l->min_time,
3712 (long)div_u64(l->sum_time, l->count),
3713 l->max_time);
45edfa58 3714 } else
e374d483 3715 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3716 l->min_time);
3717
3718 if (l->min_pid != l->max_pid)
e374d483 3719 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3720 l->min_pid, l->max_pid);
3721 else
e374d483 3722 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3723 l->min_pid);
3724
174596a0
RR
3725 if (num_online_cpus() > 1 &&
3726 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3727 len < PAGE_SIZE - 60) {
3728 len += sprintf(buf + len, " cpus=");
3729 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3730 to_cpumask(l->cpus));
45edfa58
CL
3731 }
3732
62bc62a8 3733 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3734 len < PAGE_SIZE - 60) {
3735 len += sprintf(buf + len, " nodes=");
3736 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3737 l->nodes);
3738 }
3739
e374d483 3740 len += sprintf(buf + len, "\n");
88a420e4
CL
3741 }
3742
3743 free_loc_track(&t);
3744 if (!t.count)
e374d483
HH
3745 len += sprintf(buf, "No data\n");
3746 return len;
88a420e4
CL
3747}
3748
81819f0f 3749enum slab_stat_type {
205ab99d
CL
3750 SL_ALL, /* All slabs */
3751 SL_PARTIAL, /* Only partially allocated slabs */
3752 SL_CPU, /* Only slabs used for cpu caches */
3753 SL_OBJECTS, /* Determine allocated objects not slabs */
3754 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3755};
3756
205ab99d 3757#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3758#define SO_PARTIAL (1 << SL_PARTIAL)
3759#define SO_CPU (1 << SL_CPU)
3760#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3761#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3762
62e5c4b4
CG
3763static ssize_t show_slab_objects(struct kmem_cache *s,
3764 char *buf, unsigned long flags)
81819f0f
CL
3765{
3766 unsigned long total = 0;
81819f0f
CL
3767 int node;
3768 int x;
3769 unsigned long *nodes;
3770 unsigned long *per_cpu;
3771
3772 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3773 if (!nodes)
3774 return -ENOMEM;
81819f0f
CL
3775 per_cpu = nodes + nr_node_ids;
3776
205ab99d
CL
3777 if (flags & SO_CPU) {
3778 int cpu;
81819f0f 3779
205ab99d 3780 for_each_possible_cpu(cpu) {
9dfc6e68 3781 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3782
205ab99d
CL
3783 if (!c || c->node < 0)
3784 continue;
3785
3786 if (c->page) {
3787 if (flags & SO_TOTAL)
3788 x = c->page->objects;
3789 else if (flags & SO_OBJECTS)
3790 x = c->page->inuse;
81819f0f
CL
3791 else
3792 x = 1;
205ab99d 3793
81819f0f 3794 total += x;
205ab99d 3795 nodes[c->node] += x;
81819f0f 3796 }
205ab99d 3797 per_cpu[c->node]++;
81819f0f
CL
3798 }
3799 }
3800
205ab99d
CL
3801 if (flags & SO_ALL) {
3802 for_each_node_state(node, N_NORMAL_MEMORY) {
3803 struct kmem_cache_node *n = get_node(s, node);
3804
3805 if (flags & SO_TOTAL)
3806 x = atomic_long_read(&n->total_objects);
3807 else if (flags & SO_OBJECTS)
3808 x = atomic_long_read(&n->total_objects) -
3809 count_partial(n, count_free);
81819f0f 3810
81819f0f 3811 else
205ab99d 3812 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3813 total += x;
3814 nodes[node] += x;
3815 }
3816
205ab99d
CL
3817 } else if (flags & SO_PARTIAL) {
3818 for_each_node_state(node, N_NORMAL_MEMORY) {
3819 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3820
205ab99d
CL
3821 if (flags & SO_TOTAL)
3822 x = count_partial(n, count_total);
3823 else if (flags & SO_OBJECTS)
3824 x = count_partial(n, count_inuse);
81819f0f 3825 else
205ab99d 3826 x = n->nr_partial;
81819f0f
CL
3827 total += x;
3828 nodes[node] += x;
3829 }
3830 }
81819f0f
CL
3831 x = sprintf(buf, "%lu", total);
3832#ifdef CONFIG_NUMA
f64dc58c 3833 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3834 if (nodes[node])
3835 x += sprintf(buf + x, " N%d=%lu",
3836 node, nodes[node]);
3837#endif
3838 kfree(nodes);
3839 return x + sprintf(buf + x, "\n");
3840}
3841
3842static int any_slab_objects(struct kmem_cache *s)
3843{
3844 int node;
81819f0f 3845
dfb4f096 3846 for_each_online_node(node) {
81819f0f
CL
3847 struct kmem_cache_node *n = get_node(s, node);
3848
dfb4f096
CL
3849 if (!n)
3850 continue;
3851
4ea33e2d 3852 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3853 return 1;
3854 }
3855 return 0;
3856}
3857
3858#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3859#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3860
3861struct slab_attribute {
3862 struct attribute attr;
3863 ssize_t (*show)(struct kmem_cache *s, char *buf);
3864 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3865};
3866
3867#define SLAB_ATTR_RO(_name) \
3868 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3869
3870#define SLAB_ATTR(_name) \
3871 static struct slab_attribute _name##_attr = \
3872 __ATTR(_name, 0644, _name##_show, _name##_store)
3873
81819f0f
CL
3874static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3875{
3876 return sprintf(buf, "%d\n", s->size);
3877}
3878SLAB_ATTR_RO(slab_size);
3879
3880static ssize_t align_show(struct kmem_cache *s, char *buf)
3881{
3882 return sprintf(buf, "%d\n", s->align);
3883}
3884SLAB_ATTR_RO(align);
3885
3886static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3887{
3888 return sprintf(buf, "%d\n", s->objsize);
3889}
3890SLAB_ATTR_RO(object_size);
3891
3892static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3893{
834f3d11 3894 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3895}
3896SLAB_ATTR_RO(objs_per_slab);
3897
06b285dc
CL
3898static ssize_t order_store(struct kmem_cache *s,
3899 const char *buf, size_t length)
3900{
0121c619
CL
3901 unsigned long order;
3902 int err;
3903
3904 err = strict_strtoul(buf, 10, &order);
3905 if (err)
3906 return err;
06b285dc
CL
3907
3908 if (order > slub_max_order || order < slub_min_order)
3909 return -EINVAL;
3910
3911 calculate_sizes(s, order);
3912 return length;
3913}
3914
81819f0f
CL
3915static ssize_t order_show(struct kmem_cache *s, char *buf)
3916{
834f3d11 3917 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3918}
06b285dc 3919SLAB_ATTR(order);
81819f0f 3920
73d342b1
DR
3921static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3922{
3923 return sprintf(buf, "%lu\n", s->min_partial);
3924}
3925
3926static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3927 size_t length)
3928{
3929 unsigned long min;
3930 int err;
3931
3932 err = strict_strtoul(buf, 10, &min);
3933 if (err)
3934 return err;
3935
c0bdb232 3936 set_min_partial(s, min);
73d342b1
DR
3937 return length;
3938}
3939SLAB_ATTR(min_partial);
3940
81819f0f
CL
3941static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3942{
3943 if (s->ctor) {
3944 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3945
3946 return n + sprintf(buf + n, "\n");
3947 }
3948 return 0;
3949}
3950SLAB_ATTR_RO(ctor);
3951
81819f0f
CL
3952static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3953{
3954 return sprintf(buf, "%d\n", s->refcount - 1);
3955}
3956SLAB_ATTR_RO(aliases);
3957
3958static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3959{
205ab99d 3960 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3961}
3962SLAB_ATTR_RO(slabs);
3963
3964static ssize_t partial_show(struct kmem_cache *s, char *buf)
3965{
d9acf4b7 3966 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3967}
3968SLAB_ATTR_RO(partial);
3969
3970static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3971{
d9acf4b7 3972 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3973}
3974SLAB_ATTR_RO(cpu_slabs);
3975
3976static ssize_t objects_show(struct kmem_cache *s, char *buf)
3977{
205ab99d 3978 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3979}
3980SLAB_ATTR_RO(objects);
3981
205ab99d
CL
3982static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3983{
3984 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3985}
3986SLAB_ATTR_RO(objects_partial);
3987
3988static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3989{
3990 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3991}
3992SLAB_ATTR_RO(total_objects);
3993
81819f0f
CL
3994static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3995{
3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3997}
3998
3999static ssize_t sanity_checks_store(struct kmem_cache *s,
4000 const char *buf, size_t length)
4001{
4002 s->flags &= ~SLAB_DEBUG_FREE;
4003 if (buf[0] == '1')
4004 s->flags |= SLAB_DEBUG_FREE;
4005 return length;
4006}
4007SLAB_ATTR(sanity_checks);
4008
4009static ssize_t trace_show(struct kmem_cache *s, char *buf)
4010{
4011 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4012}
4013
4014static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4015 size_t length)
4016{
4017 s->flags &= ~SLAB_TRACE;
4018 if (buf[0] == '1')
4019 s->flags |= SLAB_TRACE;
4020 return length;
4021}
4022SLAB_ATTR(trace);
4023
4c13dd3b
DM
4024#ifdef CONFIG_FAILSLAB
4025static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4026{
4027 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4028}
4029
4030static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4031 size_t length)
4032{
4033 s->flags &= ~SLAB_FAILSLAB;
4034 if (buf[0] == '1')
4035 s->flags |= SLAB_FAILSLAB;
4036 return length;
4037}
4038SLAB_ATTR(failslab);
4039#endif
4040
81819f0f
CL
4041static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4042{
4043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4044}
4045
4046static ssize_t reclaim_account_store(struct kmem_cache *s,
4047 const char *buf, size_t length)
4048{
4049 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4050 if (buf[0] == '1')
4051 s->flags |= SLAB_RECLAIM_ACCOUNT;
4052 return length;
4053}
4054SLAB_ATTR(reclaim_account);
4055
4056static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4057{
5af60839 4058 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4059}
4060SLAB_ATTR_RO(hwcache_align);
4061
4062#ifdef CONFIG_ZONE_DMA
4063static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4064{
4065 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4066}
4067SLAB_ATTR_RO(cache_dma);
4068#endif
4069
4070static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4071{
4072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4073}
4074SLAB_ATTR_RO(destroy_by_rcu);
4075
4076static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4077{
4078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4079}
4080
4081static ssize_t red_zone_store(struct kmem_cache *s,
4082 const char *buf, size_t length)
4083{
4084 if (any_slab_objects(s))
4085 return -EBUSY;
4086
4087 s->flags &= ~SLAB_RED_ZONE;
4088 if (buf[0] == '1')
4089 s->flags |= SLAB_RED_ZONE;
06b285dc 4090 calculate_sizes(s, -1);
81819f0f
CL
4091 return length;
4092}
4093SLAB_ATTR(red_zone);
4094
4095static ssize_t poison_show(struct kmem_cache *s, char *buf)
4096{
4097 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4098}
4099
4100static ssize_t poison_store(struct kmem_cache *s,
4101 const char *buf, size_t length)
4102{
4103 if (any_slab_objects(s))
4104 return -EBUSY;
4105
4106 s->flags &= ~SLAB_POISON;
4107 if (buf[0] == '1')
4108 s->flags |= SLAB_POISON;
06b285dc 4109 calculate_sizes(s, -1);
81819f0f
CL
4110 return length;
4111}
4112SLAB_ATTR(poison);
4113
4114static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4115{
4116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4117}
4118
4119static ssize_t store_user_store(struct kmem_cache *s,
4120 const char *buf, size_t length)
4121{
4122 if (any_slab_objects(s))
4123 return -EBUSY;
4124
4125 s->flags &= ~SLAB_STORE_USER;
4126 if (buf[0] == '1')
4127 s->flags |= SLAB_STORE_USER;
06b285dc 4128 calculate_sizes(s, -1);
81819f0f
CL
4129 return length;
4130}
4131SLAB_ATTR(store_user);
4132
53e15af0
CL
4133static ssize_t validate_show(struct kmem_cache *s, char *buf)
4134{
4135 return 0;
4136}
4137
4138static ssize_t validate_store(struct kmem_cache *s,
4139 const char *buf, size_t length)
4140{
434e245d
CL
4141 int ret = -EINVAL;
4142
4143 if (buf[0] == '1') {
4144 ret = validate_slab_cache(s);
4145 if (ret >= 0)
4146 ret = length;
4147 }
4148 return ret;
53e15af0
CL
4149}
4150SLAB_ATTR(validate);
4151
2086d26a
CL
4152static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4153{
4154 return 0;
4155}
4156
4157static ssize_t shrink_store(struct kmem_cache *s,
4158 const char *buf, size_t length)
4159{
4160 if (buf[0] == '1') {
4161 int rc = kmem_cache_shrink(s);
4162
4163 if (rc)
4164 return rc;
4165 } else
4166 return -EINVAL;
4167 return length;
4168}
4169SLAB_ATTR(shrink);
4170
88a420e4
CL
4171static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4172{
4173 if (!(s->flags & SLAB_STORE_USER))
4174 return -ENOSYS;
4175 return list_locations(s, buf, TRACK_ALLOC);
4176}
4177SLAB_ATTR_RO(alloc_calls);
4178
4179static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4180{
4181 if (!(s->flags & SLAB_STORE_USER))
4182 return -ENOSYS;
4183 return list_locations(s, buf, TRACK_FREE);
4184}
4185SLAB_ATTR_RO(free_calls);
4186
81819f0f 4187#ifdef CONFIG_NUMA
9824601e 4188static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4189{
9824601e 4190 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4191}
4192
9824601e 4193static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4194 const char *buf, size_t length)
4195{
0121c619
CL
4196 unsigned long ratio;
4197 int err;
4198
4199 err = strict_strtoul(buf, 10, &ratio);
4200 if (err)
4201 return err;
4202
e2cb96b7 4203 if (ratio <= 100)
0121c619 4204 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4205
81819f0f
CL
4206 return length;
4207}
9824601e 4208SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4209#endif
4210
8ff12cfc 4211#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4212static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4213{
4214 unsigned long sum = 0;
4215 int cpu;
4216 int len;
4217 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4218
4219 if (!data)
4220 return -ENOMEM;
4221
4222 for_each_online_cpu(cpu) {
9dfc6e68 4223 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4224
4225 data[cpu] = x;
4226 sum += x;
4227 }
4228
4229 len = sprintf(buf, "%lu", sum);
4230
50ef37b9 4231#ifdef CONFIG_SMP
8ff12cfc
CL
4232 for_each_online_cpu(cpu) {
4233 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4234 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4235 }
50ef37b9 4236#endif
8ff12cfc
CL
4237 kfree(data);
4238 return len + sprintf(buf + len, "\n");
4239}
4240
78eb00cc
DR
4241static void clear_stat(struct kmem_cache *s, enum stat_item si)
4242{
4243 int cpu;
4244
4245 for_each_online_cpu(cpu)
9dfc6e68 4246 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4247}
4248
8ff12cfc
CL
4249#define STAT_ATTR(si, text) \
4250static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4251{ \
4252 return show_stat(s, buf, si); \
4253} \
78eb00cc
DR
4254static ssize_t text##_store(struct kmem_cache *s, \
4255 const char *buf, size_t length) \
4256{ \
4257 if (buf[0] != '0') \
4258 return -EINVAL; \
4259 clear_stat(s, si); \
4260 return length; \
4261} \
4262SLAB_ATTR(text); \
8ff12cfc
CL
4263
4264STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4265STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4266STAT_ATTR(FREE_FASTPATH, free_fastpath);
4267STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4268STAT_ATTR(FREE_FROZEN, free_frozen);
4269STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4270STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4271STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4272STAT_ATTR(ALLOC_SLAB, alloc_slab);
4273STAT_ATTR(ALLOC_REFILL, alloc_refill);
4274STAT_ATTR(FREE_SLAB, free_slab);
4275STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4276STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4277STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4278STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4279STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4280STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4281STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4282#endif
4283
06428780 4284static struct attribute *slab_attrs[] = {
81819f0f
CL
4285 &slab_size_attr.attr,
4286 &object_size_attr.attr,
4287 &objs_per_slab_attr.attr,
4288 &order_attr.attr,
73d342b1 4289 &min_partial_attr.attr,
81819f0f 4290 &objects_attr.attr,
205ab99d
CL
4291 &objects_partial_attr.attr,
4292 &total_objects_attr.attr,
81819f0f
CL
4293 &slabs_attr.attr,
4294 &partial_attr.attr,
4295 &cpu_slabs_attr.attr,
4296 &ctor_attr.attr,
81819f0f
CL
4297 &aliases_attr.attr,
4298 &align_attr.attr,
4299 &sanity_checks_attr.attr,
4300 &trace_attr.attr,
4301 &hwcache_align_attr.attr,
4302 &reclaim_account_attr.attr,
4303 &destroy_by_rcu_attr.attr,
4304 &red_zone_attr.attr,
4305 &poison_attr.attr,
4306 &store_user_attr.attr,
53e15af0 4307 &validate_attr.attr,
2086d26a 4308 &shrink_attr.attr,
88a420e4
CL
4309 &alloc_calls_attr.attr,
4310 &free_calls_attr.attr,
81819f0f
CL
4311#ifdef CONFIG_ZONE_DMA
4312 &cache_dma_attr.attr,
4313#endif
4314#ifdef CONFIG_NUMA
9824601e 4315 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4316#endif
4317#ifdef CONFIG_SLUB_STATS
4318 &alloc_fastpath_attr.attr,
4319 &alloc_slowpath_attr.attr,
4320 &free_fastpath_attr.attr,
4321 &free_slowpath_attr.attr,
4322 &free_frozen_attr.attr,
4323 &free_add_partial_attr.attr,
4324 &free_remove_partial_attr.attr,
4325 &alloc_from_partial_attr.attr,
4326 &alloc_slab_attr.attr,
4327 &alloc_refill_attr.attr,
4328 &free_slab_attr.attr,
4329 &cpuslab_flush_attr.attr,
4330 &deactivate_full_attr.attr,
4331 &deactivate_empty_attr.attr,
4332 &deactivate_to_head_attr.attr,
4333 &deactivate_to_tail_attr.attr,
4334 &deactivate_remote_frees_attr.attr,
65c3376a 4335 &order_fallback_attr.attr,
81819f0f 4336#endif
4c13dd3b
DM
4337#ifdef CONFIG_FAILSLAB
4338 &failslab_attr.attr,
4339#endif
4340
81819f0f
CL
4341 NULL
4342};
4343
4344static struct attribute_group slab_attr_group = {
4345 .attrs = slab_attrs,
4346};
4347
4348static ssize_t slab_attr_show(struct kobject *kobj,
4349 struct attribute *attr,
4350 char *buf)
4351{
4352 struct slab_attribute *attribute;
4353 struct kmem_cache *s;
4354 int err;
4355
4356 attribute = to_slab_attr(attr);
4357 s = to_slab(kobj);
4358
4359 if (!attribute->show)
4360 return -EIO;
4361
4362 err = attribute->show(s, buf);
4363
4364 return err;
4365}
4366
4367static ssize_t slab_attr_store(struct kobject *kobj,
4368 struct attribute *attr,
4369 const char *buf, size_t len)
4370{
4371 struct slab_attribute *attribute;
4372 struct kmem_cache *s;
4373 int err;
4374
4375 attribute = to_slab_attr(attr);
4376 s = to_slab(kobj);
4377
4378 if (!attribute->store)
4379 return -EIO;
4380
4381 err = attribute->store(s, buf, len);
4382
4383 return err;
4384}
4385
151c602f
CL
4386static void kmem_cache_release(struct kobject *kobj)
4387{
4388 struct kmem_cache *s = to_slab(kobj);
4389
4390 kfree(s);
4391}
4392
81819f0f
CL
4393static struct sysfs_ops slab_sysfs_ops = {
4394 .show = slab_attr_show,
4395 .store = slab_attr_store,
4396};
4397
4398static struct kobj_type slab_ktype = {
4399 .sysfs_ops = &slab_sysfs_ops,
151c602f 4400 .release = kmem_cache_release
81819f0f
CL
4401};
4402
4403static int uevent_filter(struct kset *kset, struct kobject *kobj)
4404{
4405 struct kobj_type *ktype = get_ktype(kobj);
4406
4407 if (ktype == &slab_ktype)
4408 return 1;
4409 return 0;
4410}
4411
9cd43611 4412static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4413 .filter = uevent_filter,
4414};
4415
27c3a314 4416static struct kset *slab_kset;
81819f0f
CL
4417
4418#define ID_STR_LENGTH 64
4419
4420/* Create a unique string id for a slab cache:
6446faa2
CL
4421 *
4422 * Format :[flags-]size
81819f0f
CL
4423 */
4424static char *create_unique_id(struct kmem_cache *s)
4425{
4426 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4427 char *p = name;
4428
4429 BUG_ON(!name);
4430
4431 *p++ = ':';
4432 /*
4433 * First flags affecting slabcache operations. We will only
4434 * get here for aliasable slabs so we do not need to support
4435 * too many flags. The flags here must cover all flags that
4436 * are matched during merging to guarantee that the id is
4437 * unique.
4438 */
4439 if (s->flags & SLAB_CACHE_DMA)
4440 *p++ = 'd';
4441 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4442 *p++ = 'a';
4443 if (s->flags & SLAB_DEBUG_FREE)
4444 *p++ = 'F';
5a896d9e
VN
4445 if (!(s->flags & SLAB_NOTRACK))
4446 *p++ = 't';
81819f0f
CL
4447 if (p != name + 1)
4448 *p++ = '-';
4449 p += sprintf(p, "%07d", s->size);
4450 BUG_ON(p > name + ID_STR_LENGTH - 1);
4451 return name;
4452}
4453
4454static int sysfs_slab_add(struct kmem_cache *s)
4455{
4456 int err;
4457 const char *name;
4458 int unmergeable;
4459
4460 if (slab_state < SYSFS)
4461 /* Defer until later */
4462 return 0;
4463
4464 unmergeable = slab_unmergeable(s);
4465 if (unmergeable) {
4466 /*
4467 * Slabcache can never be merged so we can use the name proper.
4468 * This is typically the case for debug situations. In that
4469 * case we can catch duplicate names easily.
4470 */
27c3a314 4471 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4472 name = s->name;
4473 } else {
4474 /*
4475 * Create a unique name for the slab as a target
4476 * for the symlinks.
4477 */
4478 name = create_unique_id(s);
4479 }
4480
27c3a314 4481 s->kobj.kset = slab_kset;
1eada11c
GKH
4482 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4483 if (err) {
4484 kobject_put(&s->kobj);
81819f0f 4485 return err;
1eada11c 4486 }
81819f0f
CL
4487
4488 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4489 if (err) {
4490 kobject_del(&s->kobj);
4491 kobject_put(&s->kobj);
81819f0f 4492 return err;
5788d8ad 4493 }
81819f0f
CL
4494 kobject_uevent(&s->kobj, KOBJ_ADD);
4495 if (!unmergeable) {
4496 /* Setup first alias */
4497 sysfs_slab_alias(s, s->name);
4498 kfree(name);
4499 }
4500 return 0;
4501}
4502
4503static void sysfs_slab_remove(struct kmem_cache *s)
4504{
4505 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4506 kobject_del(&s->kobj);
151c602f 4507 kobject_put(&s->kobj);
81819f0f
CL
4508}
4509
4510/*
4511 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4512 * available lest we lose that information.
81819f0f
CL
4513 */
4514struct saved_alias {
4515 struct kmem_cache *s;
4516 const char *name;
4517 struct saved_alias *next;
4518};
4519
5af328a5 4520static struct saved_alias *alias_list;
81819f0f
CL
4521
4522static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4523{
4524 struct saved_alias *al;
4525
4526 if (slab_state == SYSFS) {
4527 /*
4528 * If we have a leftover link then remove it.
4529 */
27c3a314
GKH
4530 sysfs_remove_link(&slab_kset->kobj, name);
4531 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4532 }
4533
4534 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4535 if (!al)
4536 return -ENOMEM;
4537
4538 al->s = s;
4539 al->name = name;
4540 al->next = alias_list;
4541 alias_list = al;
4542 return 0;
4543}
4544
4545static int __init slab_sysfs_init(void)
4546{
5b95a4ac 4547 struct kmem_cache *s;
81819f0f
CL
4548 int err;
4549
0ff21e46 4550 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4551 if (!slab_kset) {
81819f0f
CL
4552 printk(KERN_ERR "Cannot register slab subsystem.\n");
4553 return -ENOSYS;
4554 }
4555
26a7bd03
CL
4556 slab_state = SYSFS;
4557
5b95a4ac 4558 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4559 err = sysfs_slab_add(s);
5d540fb7
CL
4560 if (err)
4561 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4562 " to sysfs\n", s->name);
26a7bd03 4563 }
81819f0f
CL
4564
4565 while (alias_list) {
4566 struct saved_alias *al = alias_list;
4567
4568 alias_list = alias_list->next;
4569 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4570 if (err)
4571 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4572 " %s to sysfs\n", s->name);
81819f0f
CL
4573 kfree(al);
4574 }
4575
4576 resiliency_test();
4577 return 0;
4578}
4579
4580__initcall(slab_sysfs_init);
81819f0f 4581#endif
57ed3eda
PE
4582
4583/*
4584 * The /proc/slabinfo ABI
4585 */
158a9624 4586#ifdef CONFIG_SLABINFO
57ed3eda
PE
4587static void print_slabinfo_header(struct seq_file *m)
4588{
4589 seq_puts(m, "slabinfo - version: 2.1\n");
4590 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4591 "<objperslab> <pagesperslab>");
4592 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4593 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4594 seq_putc(m, '\n');
4595}
4596
4597static void *s_start(struct seq_file *m, loff_t *pos)
4598{
4599 loff_t n = *pos;
4600
4601 down_read(&slub_lock);
4602 if (!n)
4603 print_slabinfo_header(m);
4604
4605 return seq_list_start(&slab_caches, *pos);
4606}
4607
4608static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4609{
4610 return seq_list_next(p, &slab_caches, pos);
4611}
4612
4613static void s_stop(struct seq_file *m, void *p)
4614{
4615 up_read(&slub_lock);
4616}
4617
4618static int s_show(struct seq_file *m, void *p)
4619{
4620 unsigned long nr_partials = 0;
4621 unsigned long nr_slabs = 0;
4622 unsigned long nr_inuse = 0;
205ab99d
CL
4623 unsigned long nr_objs = 0;
4624 unsigned long nr_free = 0;
57ed3eda
PE
4625 struct kmem_cache *s;
4626 int node;
4627
4628 s = list_entry(p, struct kmem_cache, list);
4629
4630 for_each_online_node(node) {
4631 struct kmem_cache_node *n = get_node(s, node);
4632
4633 if (!n)
4634 continue;
4635
4636 nr_partials += n->nr_partial;
4637 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4638 nr_objs += atomic_long_read(&n->total_objects);
4639 nr_free += count_partial(n, count_free);
57ed3eda
PE
4640 }
4641
205ab99d 4642 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4643
4644 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4645 nr_objs, s->size, oo_objects(s->oo),
4646 (1 << oo_order(s->oo)));
57ed3eda
PE
4647 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4648 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4649 0UL);
4650 seq_putc(m, '\n');
4651 return 0;
4652}
4653
7b3c3a50 4654static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4655 .start = s_start,
4656 .next = s_next,
4657 .stop = s_stop,
4658 .show = s_show,
4659};
4660
7b3c3a50
AD
4661static int slabinfo_open(struct inode *inode, struct file *file)
4662{
4663 return seq_open(file, &slabinfo_op);
4664}
4665
4666static const struct file_operations proc_slabinfo_operations = {
4667 .open = slabinfo_open,
4668 .read = seq_read,
4669 .llseek = seq_lseek,
4670 .release = seq_release,
4671};
4672
4673static int __init slab_proc_init(void)
4674{
cf5d1131 4675 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4676 return 0;
4677}
4678module_init(slab_proc_init);
158a9624 4679#endif /* CONFIG_SLABINFO */