]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched_fair.c
cfq: fix the log message after dispatched a request
[net-next-2.6.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
54fdc581
FC
269static inline int entity_before(struct sched_entity *a,
270 struct sched_entity *b)
271{
272 return (s64)(a->vruntime - b->vruntime) < 0;
273}
274
0702e3eb 275static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 276{
30cfdcfc 277 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
278}
279
1af5f730
PZ
280static void update_min_vruntime(struct cfs_rq *cfs_rq)
281{
282 u64 vruntime = cfs_rq->min_vruntime;
283
284 if (cfs_rq->curr)
285 vruntime = cfs_rq->curr->vruntime;
286
287 if (cfs_rq->rb_leftmost) {
288 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
289 struct sched_entity,
290 run_node);
291
e17036da 292 if (!cfs_rq->curr)
1af5f730
PZ
293 vruntime = se->vruntime;
294 else
295 vruntime = min_vruntime(vruntime, se->vruntime);
296 }
297
298 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
299}
300
bf0f6f24
IM
301/*
302 * Enqueue an entity into the rb-tree:
303 */
0702e3eb 304static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
305{
306 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
307 struct rb_node *parent = NULL;
308 struct sched_entity *entry;
9014623c 309 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
310 int leftmost = 1;
311
312 /*
313 * Find the right place in the rbtree:
314 */
315 while (*link) {
316 parent = *link;
317 entry = rb_entry(parent, struct sched_entity, run_node);
318 /*
319 * We dont care about collisions. Nodes with
320 * the same key stay together.
321 */
9014623c 322 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
323 link = &parent->rb_left;
324 } else {
325 link = &parent->rb_right;
326 leftmost = 0;
327 }
328 }
329
330 /*
331 * Maintain a cache of leftmost tree entries (it is frequently
332 * used):
333 */
1af5f730 334 if (leftmost)
57cb499d 335 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
336
337 rb_link_node(&se->run_node, parent, link);
338 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
339}
340
0702e3eb 341static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 342{
3fe69747
PZ
343 if (cfs_rq->rb_leftmost == &se->run_node) {
344 struct rb_node *next_node;
3fe69747
PZ
345
346 next_node = rb_next(&se->run_node);
347 cfs_rq->rb_leftmost = next_node;
3fe69747 348 }
e9acbff6 349
bf0f6f24 350 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
351}
352
bf0f6f24
IM
353static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
354{
f4b6755f
PZ
355 struct rb_node *left = cfs_rq->rb_leftmost;
356
357 if (!left)
358 return NULL;
359
360 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
361}
362
f4b6755f 363static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 364{
7eee3e67 365 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 366
70eee74b
BS
367 if (!last)
368 return NULL;
7eee3e67
IM
369
370 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
371}
372
bf0f6f24
IM
373/**************************************************************
374 * Scheduling class statistics methods:
375 */
376
b2be5e96
PZ
377#ifdef CONFIG_SCHED_DEBUG
378int sched_nr_latency_handler(struct ctl_table *table, int write,
379 struct file *filp, void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381{
382 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
383
384 if (ret || !write)
385 return ret;
386
387 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
388 sysctl_sched_min_granularity);
389
390 return 0;
391}
392#endif
647e7cac 393
a7be37ac 394/*
f9c0b095 395 * delta /= w
a7be37ac
PZ
396 */
397static inline unsigned long
398calc_delta_fair(unsigned long delta, struct sched_entity *se)
399{
f9c0b095
PZ
400 if (unlikely(se->load.weight != NICE_0_LOAD))
401 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
402
403 return delta;
404}
405
647e7cac
IM
406/*
407 * The idea is to set a period in which each task runs once.
408 *
409 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
410 * this period because otherwise the slices get too small.
411 *
412 * p = (nr <= nl) ? l : l*nr/nl
413 */
4d78e7b6
PZ
414static u64 __sched_period(unsigned long nr_running)
415{
416 u64 period = sysctl_sched_latency;
b2be5e96 417 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
418
419 if (unlikely(nr_running > nr_latency)) {
4bf0b771 420 period = sysctl_sched_min_granularity;
4d78e7b6 421 period *= nr_running;
4d78e7b6
PZ
422 }
423
424 return period;
425}
426
647e7cac
IM
427/*
428 * We calculate the wall-time slice from the period by taking a part
429 * proportional to the weight.
430 *
f9c0b095 431 * s = p*P[w/rw]
647e7cac 432 */
6d0f0ebd 433static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 434{
0a582440 435 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 436
0a582440 437 for_each_sched_entity(se) {
6272d68c 438 struct load_weight *load;
3104bf03 439 struct load_weight lw;
6272d68c
LM
440
441 cfs_rq = cfs_rq_of(se);
442 load = &cfs_rq->load;
f9c0b095 443
0a582440 444 if (unlikely(!se->on_rq)) {
3104bf03 445 lw = cfs_rq->load;
0a582440
MG
446
447 update_load_add(&lw, se->load.weight);
448 load = &lw;
449 }
450 slice = calc_delta_mine(slice, se->load.weight, load);
451 }
452 return slice;
bf0f6f24
IM
453}
454
647e7cac 455/*
ac884dec 456 * We calculate the vruntime slice of a to be inserted task
647e7cac 457 *
f9c0b095 458 * vs = s/w
647e7cac 459 */
f9c0b095 460static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 461{
f9c0b095 462 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
463}
464
bf0f6f24
IM
465/*
466 * Update the current task's runtime statistics. Skip current tasks that
467 * are not in our scheduling class.
468 */
469static inline void
8ebc91d9
IM
470__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
471 unsigned long delta_exec)
bf0f6f24 472{
bbdba7c0 473 unsigned long delta_exec_weighted;
bf0f6f24 474
8179ca23 475 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
476
477 curr->sum_exec_runtime += delta_exec;
7a62eabc 478 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 479 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 480 curr->vruntime += delta_exec_weighted;
1af5f730 481 update_min_vruntime(cfs_rq);
bf0f6f24
IM
482}
483
b7cc0896 484static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 485{
429d43bc 486 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 487 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
488 unsigned long delta_exec;
489
490 if (unlikely(!curr))
491 return;
492
493 /*
494 * Get the amount of time the current task was running
495 * since the last time we changed load (this cannot
496 * overflow on 32 bits):
497 */
8ebc91d9 498 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
499 if (!delta_exec)
500 return;
bf0f6f24 501
8ebc91d9
IM
502 __update_curr(cfs_rq, curr, delta_exec);
503 curr->exec_start = now;
d842de87
SV
504
505 if (entity_is_task(curr)) {
506 struct task_struct *curtask = task_of(curr);
507
508 cpuacct_charge(curtask, delta_exec);
f06febc9 509 account_group_exec_runtime(curtask, delta_exec);
d842de87 510 }
bf0f6f24
IM
511}
512
513static inline void
5870db5b 514update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
d281918d 516 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
517}
518
bf0f6f24
IM
519/*
520 * Task is being enqueued - update stats:
521 */
d2417e5a 522static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
bf0f6f24
IM
524 /*
525 * Are we enqueueing a waiting task? (for current tasks
526 * a dequeue/enqueue event is a NOP)
527 */
429d43bc 528 if (se != cfs_rq->curr)
5870db5b 529 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
530}
531
bf0f6f24 532static void
9ef0a961 533update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 534{
bbdba7c0
IM
535 schedstat_set(se->wait_max, max(se->wait_max,
536 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
537 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 540 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
541}
542
543static inline void
19b6a2e3 544update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 545{
bf0f6f24
IM
546 /*
547 * Mark the end of the wait period if dequeueing a
548 * waiting task:
549 */
429d43bc 550 if (se != cfs_rq->curr)
9ef0a961 551 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
552}
553
554/*
555 * We are picking a new current task - update its stats:
556 */
557static inline void
79303e9e 558update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
559{
560 /*
561 * We are starting a new run period:
562 */
d281918d 563 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
564}
565
bf0f6f24
IM
566/**************************************************
567 * Scheduling class queueing methods:
568 */
569
c09595f6
PZ
570#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
571static void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574 cfs_rq->task_weight += weight;
575}
576#else
577static inline void
578add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
579{
580}
581#endif
582
30cfdcfc
DA
583static void
584account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
585{
586 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
587 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 589 if (entity_is_task(se)) {
c09595f6 590 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
591 list_add(&se->group_node, &cfs_rq->tasks);
592 }
30cfdcfc
DA
593 cfs_rq->nr_running++;
594 se->on_rq = 1;
595}
596
597static void
598account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599{
600 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
601 if (!parent_entity(se))
602 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 603 if (entity_is_task(se)) {
c09595f6 604 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
605 list_del_init(&se->group_node);
606 }
30cfdcfc
DA
607 cfs_rq->nr_running--;
608 se->on_rq = 0;
609}
610
2396af69 611static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 612{
bf0f6f24 613#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
614 struct task_struct *tsk = NULL;
615
616 if (entity_is_task(se))
617 tsk = task_of(se);
618
bf0f6f24 619 if (se->sleep_start) {
d281918d 620 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
621
622 if ((s64)delta < 0)
623 delta = 0;
624
625 if (unlikely(delta > se->sleep_max))
626 se->sleep_max = delta;
627
628 se->sleep_start = 0;
629 se->sum_sleep_runtime += delta;
9745512c 630
e414314c
PZ
631 if (tsk)
632 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
633 }
634 if (se->block_start) {
d281918d 635 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->block_max))
641 se->block_max = delta;
642
643 se->block_start = 0;
644 se->sum_sleep_runtime += delta;
30084fbd 645
e414314c
PZ
646 if (tsk) {
647 /*
648 * Blocking time is in units of nanosecs, so shift by
649 * 20 to get a milliseconds-range estimation of the
650 * amount of time that the task spent sleeping:
651 */
652 if (unlikely(prof_on == SLEEP_PROFILING)) {
653 profile_hits(SLEEP_PROFILING,
654 (void *)get_wchan(tsk),
655 delta >> 20);
656 }
657 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 658 }
bf0f6f24
IM
659 }
660#endif
661}
662
ddc97297
PZ
663static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
664{
665#ifdef CONFIG_SCHED_DEBUG
666 s64 d = se->vruntime - cfs_rq->min_vruntime;
667
668 if (d < 0)
669 d = -d;
670
671 if (d > 3*sysctl_sched_latency)
672 schedstat_inc(cfs_rq, nr_spread_over);
673#endif
674}
675
aeb73b04
PZ
676static void
677place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
678{
1af5f730 679 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 680
2cb8600e
PZ
681 /*
682 * The 'current' period is already promised to the current tasks,
683 * however the extra weight of the new task will slow them down a
684 * little, place the new task so that it fits in the slot that
685 * stays open at the end.
686 */
94dfb5e7 687 if (initial && sched_feat(START_DEBIT))
f9c0b095 688 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 689
8465e792 690 if (!initial) {
2cb8600e 691 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
692 if (sched_feat(NEW_FAIR_SLEEPERS)) {
693 unsigned long thresh = sysctl_sched_latency;
694
695 /*
6bc912b7
PZ
696 * Convert the sleeper threshold into virtual time.
697 * SCHED_IDLE is a special sub-class. We care about
698 * fairness only relative to other SCHED_IDLE tasks,
699 * all of which have the same weight.
a7be37ac 700 */
6bc912b7 701 if (sched_feat(NORMALIZED_SLEEPER) &&
d07387b4
PT
702 (!entity_is_task(se) ||
703 task_of(se)->policy != SCHED_IDLE))
a7be37ac
PZ
704 thresh = calc_delta_fair(thresh, se);
705
706 vruntime -= thresh;
707 }
94359f05 708
2cb8600e
PZ
709 /* ensure we never gain time by being placed backwards. */
710 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
711 }
712
67e9fb2a 713 se->vruntime = vruntime;
aeb73b04
PZ
714}
715
bf0f6f24 716static void
83b699ed 717enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
718{
719 /*
a2a2d680 720 * Update run-time statistics of the 'current'.
bf0f6f24 721 */
b7cc0896 722 update_curr(cfs_rq);
a992241d 723 account_entity_enqueue(cfs_rq, se);
bf0f6f24 724
e9acbff6 725 if (wakeup) {
aeb73b04 726 place_entity(cfs_rq, se, 0);
2396af69 727 enqueue_sleeper(cfs_rq, se);
e9acbff6 728 }
bf0f6f24 729
d2417e5a 730 update_stats_enqueue(cfs_rq, se);
ddc97297 731 check_spread(cfs_rq, se);
83b699ed
SV
732 if (se != cfs_rq->curr)
733 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
734}
735
a571bbea 736static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
737{
738 if (cfs_rq->last == se)
739 cfs_rq->last = NULL;
740
741 if (cfs_rq->next == se)
742 cfs_rq->next = NULL;
743}
744
a571bbea
PZ
745static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
746{
747 for_each_sched_entity(se)
748 __clear_buddies(cfs_rq_of(se), se);
749}
750
bf0f6f24 751static void
525c2716 752dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 753{
a2a2d680
DA
754 /*
755 * Update run-time statistics of the 'current'.
756 */
757 update_curr(cfs_rq);
758
19b6a2e3 759 update_stats_dequeue(cfs_rq, se);
db36cc7d 760 if (sleep) {
67e9fb2a 761#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
762 if (entity_is_task(se)) {
763 struct task_struct *tsk = task_of(se);
764
765 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 766 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 767 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 768 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 769 }
db36cc7d 770#endif
67e9fb2a
PZ
771 }
772
2002c695 773 clear_buddies(cfs_rq, se);
4793241b 774
83b699ed 775 if (se != cfs_rq->curr)
30cfdcfc
DA
776 __dequeue_entity(cfs_rq, se);
777 account_entity_dequeue(cfs_rq, se);
1af5f730 778 update_min_vruntime(cfs_rq);
bf0f6f24
IM
779}
780
781/*
782 * Preempt the current task with a newly woken task if needed:
783 */
7c92e54f 784static void
2e09bf55 785check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 786{
11697830
PZ
787 unsigned long ideal_runtime, delta_exec;
788
6d0f0ebd 789 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 790 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 791 if (delta_exec > ideal_runtime) {
bf0f6f24 792 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
793 /*
794 * The current task ran long enough, ensure it doesn't get
795 * re-elected due to buddy favours.
796 */
797 clear_buddies(cfs_rq, curr);
798 }
bf0f6f24
IM
799}
800
83b699ed 801static void
8494f412 802set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 803{
83b699ed
SV
804 /* 'current' is not kept within the tree. */
805 if (se->on_rq) {
806 /*
807 * Any task has to be enqueued before it get to execute on
808 * a CPU. So account for the time it spent waiting on the
809 * runqueue.
810 */
811 update_stats_wait_end(cfs_rq, se);
812 __dequeue_entity(cfs_rq, se);
813 }
814
79303e9e 815 update_stats_curr_start(cfs_rq, se);
429d43bc 816 cfs_rq->curr = se;
eba1ed4b
IM
817#ifdef CONFIG_SCHEDSTATS
818 /*
819 * Track our maximum slice length, if the CPU's load is at
820 * least twice that of our own weight (i.e. dont track it
821 * when there are only lesser-weight tasks around):
822 */
495eca49 823 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
824 se->slice_max = max(se->slice_max,
825 se->sum_exec_runtime - se->prev_sum_exec_runtime);
826 }
827#endif
4a55b450 828 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
829}
830
3f3a4904
PZ
831static int
832wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
833
f4b6755f 834static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 835{
f4b6755f
PZ
836 struct sched_entity *se = __pick_next_entity(cfs_rq);
837
4793241b
PZ
838 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
839 return cfs_rq->next;
aa2ac252 840
4793241b
PZ
841 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
842 return cfs_rq->last;
843
844 return se;
aa2ac252
PZ
845}
846
ab6cde26 847static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
848{
849 /*
850 * If still on the runqueue then deactivate_task()
851 * was not called and update_curr() has to be done:
852 */
853 if (prev->on_rq)
b7cc0896 854 update_curr(cfs_rq);
bf0f6f24 855
ddc97297 856 check_spread(cfs_rq, prev);
30cfdcfc 857 if (prev->on_rq) {
5870db5b 858 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
859 /* Put 'current' back into the tree. */
860 __enqueue_entity(cfs_rq, prev);
861 }
429d43bc 862 cfs_rq->curr = NULL;
bf0f6f24
IM
863}
864
8f4d37ec
PZ
865static void
866entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 867{
bf0f6f24 868 /*
30cfdcfc 869 * Update run-time statistics of the 'current'.
bf0f6f24 870 */
30cfdcfc 871 update_curr(cfs_rq);
bf0f6f24 872
8f4d37ec
PZ
873#ifdef CONFIG_SCHED_HRTICK
874 /*
875 * queued ticks are scheduled to match the slice, so don't bother
876 * validating it and just reschedule.
877 */
983ed7a6
HH
878 if (queued) {
879 resched_task(rq_of(cfs_rq)->curr);
880 return;
881 }
8f4d37ec
PZ
882 /*
883 * don't let the period tick interfere with the hrtick preemption
884 */
885 if (!sched_feat(DOUBLE_TICK) &&
886 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
887 return;
888#endif
889
ce6c1311 890 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 891 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
892}
893
894/**************************************************
895 * CFS operations on tasks:
896 */
897
8f4d37ec
PZ
898#ifdef CONFIG_SCHED_HRTICK
899static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
900{
8f4d37ec
PZ
901 struct sched_entity *se = &p->se;
902 struct cfs_rq *cfs_rq = cfs_rq_of(se);
903
904 WARN_ON(task_rq(p) != rq);
905
906 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
907 u64 slice = sched_slice(cfs_rq, se);
908 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
909 s64 delta = slice - ran;
910
911 if (delta < 0) {
912 if (rq->curr == p)
913 resched_task(p);
914 return;
915 }
916
917 /*
918 * Don't schedule slices shorter than 10000ns, that just
919 * doesn't make sense. Rely on vruntime for fairness.
920 */
31656519 921 if (rq->curr != p)
157124c1 922 delta = max_t(s64, 10000LL, delta);
8f4d37ec 923
31656519 924 hrtick_start(rq, delta);
8f4d37ec
PZ
925 }
926}
a4c2f00f
PZ
927
928/*
929 * called from enqueue/dequeue and updates the hrtick when the
930 * current task is from our class and nr_running is low enough
931 * to matter.
932 */
933static void hrtick_update(struct rq *rq)
934{
935 struct task_struct *curr = rq->curr;
936
937 if (curr->sched_class != &fair_sched_class)
938 return;
939
940 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
941 hrtick_start_fair(rq, curr);
942}
55e12e5e 943#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
944static inline void
945hrtick_start_fair(struct rq *rq, struct task_struct *p)
946{
947}
a4c2f00f
PZ
948
949static inline void hrtick_update(struct rq *rq)
950{
951}
8f4d37ec
PZ
952#endif
953
bf0f6f24
IM
954/*
955 * The enqueue_task method is called before nr_running is
956 * increased. Here we update the fair scheduling stats and
957 * then put the task into the rbtree:
958 */
fd390f6a 959static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
960{
961 struct cfs_rq *cfs_rq;
62fb1851 962 struct sched_entity *se = &p->se;
bf0f6f24
IM
963
964 for_each_sched_entity(se) {
62fb1851 965 if (se->on_rq)
bf0f6f24
IM
966 break;
967 cfs_rq = cfs_rq_of(se);
83b699ed 968 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 969 wakeup = 1;
bf0f6f24 970 }
8f4d37ec 971
a4c2f00f 972 hrtick_update(rq);
bf0f6f24
IM
973}
974
975/*
976 * The dequeue_task method is called before nr_running is
977 * decreased. We remove the task from the rbtree and
978 * update the fair scheduling stats:
979 */
f02231e5 980static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
981{
982 struct cfs_rq *cfs_rq;
62fb1851 983 struct sched_entity *se = &p->se;
bf0f6f24
IM
984
985 for_each_sched_entity(se) {
986 cfs_rq = cfs_rq_of(se);
525c2716 987 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 988 /* Don't dequeue parent if it has other entities besides us */
62fb1851 989 if (cfs_rq->load.weight)
bf0f6f24 990 break;
b9fa3df3 991 sleep = 1;
bf0f6f24 992 }
8f4d37ec 993
a4c2f00f 994 hrtick_update(rq);
bf0f6f24
IM
995}
996
997/*
1799e35d
IM
998 * sched_yield() support is very simple - we dequeue and enqueue.
999 *
1000 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1001 */
4530d7ab 1002static void yield_task_fair(struct rq *rq)
bf0f6f24 1003{
db292ca3
IM
1004 struct task_struct *curr = rq->curr;
1005 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1006 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1007
1008 /*
1799e35d
IM
1009 * Are we the only task in the tree?
1010 */
1011 if (unlikely(cfs_rq->nr_running == 1))
1012 return;
1013
2002c695
PZ
1014 clear_buddies(cfs_rq, se);
1015
db292ca3 1016 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1017 update_rq_clock(rq);
1799e35d 1018 /*
a2a2d680 1019 * Update run-time statistics of the 'current'.
1799e35d 1020 */
2b1e315d 1021 update_curr(cfs_rq);
1799e35d
IM
1022
1023 return;
1024 }
1025 /*
1026 * Find the rightmost entry in the rbtree:
bf0f6f24 1027 */
2b1e315d 1028 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1029 /*
1030 * Already in the rightmost position?
1031 */
54fdc581 1032 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1033 return;
1034
1035 /*
1036 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1037 * Upon rescheduling, sched_class::put_prev_task() will place
1038 * 'current' within the tree based on its new key value.
1799e35d 1039 */
30cfdcfc 1040 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1041}
1042
e7693a36
GH
1043/*
1044 * wake_idle() will wake a task on an idle cpu if task->cpu is
1045 * not idle and an idle cpu is available. The span of cpus to
1046 * search starts with cpus closest then further out as needed,
1047 * so we always favor a closer, idle cpu.
e761b772 1048 * Domains may include CPUs that are not usable for migration,
96f874e2 1049 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1050 *
1051 * Returns the CPU we should wake onto.
1052 */
1053#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1054static int wake_idle(int cpu, struct task_struct *p)
1055{
e7693a36
GH
1056 struct sched_domain *sd;
1057 int i;
7eb52dfa
VS
1058 unsigned int chosen_wakeup_cpu;
1059 int this_cpu;
1060
1061 /*
1062 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1063 * are idle and this is not a kernel thread and this task's affinity
1064 * allows it to be moved to preferred cpu, then just move!
1065 */
1066
1067 this_cpu = smp_processor_id();
1068 chosen_wakeup_cpu =
1069 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1070
1071 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1072 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1073 p->mm && !(p->flags & PF_KTHREAD) &&
1074 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1075 return chosen_wakeup_cpu;
e7693a36
GH
1076
1077 /*
1078 * If it is idle, then it is the best cpu to run this task.
1079 *
1080 * This cpu is also the best, if it has more than one task already.
1081 * Siblings must be also busy(in most cases) as they didn't already
1082 * pickup the extra load from this cpu and hence we need not check
1083 * sibling runqueue info. This will avoid the checks and cache miss
1084 * penalities associated with that.
1085 */
104f6454 1086 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1087 return cpu;
1088
1089 for_each_domain(cpu, sd) {
1d3504fc
HS
1090 if ((sd->flags & SD_WAKE_IDLE)
1091 || ((sd->flags & SD_WAKE_IDLE_FAR)
1092 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1093 for_each_cpu_and(i, sched_domain_span(sd),
1094 &p->cpus_allowed) {
1095 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1096 if (i != task_cpu(p)) {
1097 schedstat_inc(p,
1098 se.nr_wakeups_idle);
1099 }
1100 return i;
1101 }
1102 }
1103 } else {
1104 break;
1105 }
1106 }
1107 return cpu;
1108}
55e12e5e 1109#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1110static inline int wake_idle(int cpu, struct task_struct *p)
1111{
1112 return cpu;
1113}
1114#endif
1115
1116#ifdef CONFIG_SMP
098fb9db 1117
bb3469ac 1118#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1119/*
1120 * effective_load() calculates the load change as seen from the root_task_group
1121 *
1122 * Adding load to a group doesn't make a group heavier, but can cause movement
1123 * of group shares between cpus. Assuming the shares were perfectly aligned one
1124 * can calculate the shift in shares.
1125 *
1126 * The problem is that perfectly aligning the shares is rather expensive, hence
1127 * we try to avoid doing that too often - see update_shares(), which ratelimits
1128 * this change.
1129 *
1130 * We compensate this by not only taking the current delta into account, but
1131 * also considering the delta between when the shares were last adjusted and
1132 * now.
1133 *
1134 * We still saw a performance dip, some tracing learned us that between
1135 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1136 * significantly. Therefore try to bias the error in direction of failing
1137 * the affine wakeup.
1138 *
1139 */
f1d239f7
PZ
1140static long effective_load(struct task_group *tg, int cpu,
1141 long wl, long wg)
bb3469ac 1142{
4be9daaa 1143 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1144
1145 if (!tg->parent)
1146 return wl;
1147
f5bfb7d9
PZ
1148 /*
1149 * By not taking the decrease of shares on the other cpu into
1150 * account our error leans towards reducing the affine wakeups.
1151 */
1152 if (!wl && sched_feat(ASYM_EFF_LOAD))
1153 return wl;
1154
4be9daaa 1155 for_each_sched_entity(se) {
cb5ef42a 1156 long S, rw, s, a, b;
940959e9
PZ
1157 long more_w;
1158
1159 /*
1160 * Instead of using this increment, also add the difference
1161 * between when the shares were last updated and now.
1162 */
1163 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1164 wl += more_w;
1165 wg += more_w;
4be9daaa
PZ
1166
1167 S = se->my_q->tg->shares;
1168 s = se->my_q->shares;
f1d239f7 1169 rw = se->my_q->rq_weight;
bb3469ac 1170
cb5ef42a
PZ
1171 a = S*(rw + wl);
1172 b = S*rw + s*wg;
4be9daaa 1173
940959e9
PZ
1174 wl = s*(a-b);
1175
1176 if (likely(b))
1177 wl /= b;
1178
83378269
PZ
1179 /*
1180 * Assume the group is already running and will
1181 * thus already be accounted for in the weight.
1182 *
1183 * That is, moving shares between CPUs, does not
1184 * alter the group weight.
1185 */
4be9daaa 1186 wg = 0;
4be9daaa 1187 }
bb3469ac 1188
4be9daaa 1189 return wl;
bb3469ac 1190}
4be9daaa 1191
bb3469ac 1192#else
4be9daaa 1193
83378269
PZ
1194static inline unsigned long effective_load(struct task_group *tg, int cpu,
1195 unsigned long wl, unsigned long wg)
4be9daaa 1196{
83378269 1197 return wl;
bb3469ac 1198}
4be9daaa 1199
bb3469ac
PZ
1200#endif
1201
098fb9db 1202static int
64b9e029 1203wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1204 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1205 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1206 unsigned int imbalance)
1207{
fc631c82
PZ
1208 struct task_struct *curr = this_rq->curr;
1209 struct task_group *tg;
098fb9db
IM
1210 unsigned long tl = this_load;
1211 unsigned long tl_per_task;
83378269 1212 unsigned long weight;
b3137bc8 1213 int balanced;
098fb9db 1214
b3137bc8 1215 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1216 return 0;
1217
fc631c82
PZ
1218 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1219 p->se.avg_overlap > sysctl_sched_migration_cost))
1220 sync = 0;
1221
b3137bc8
MG
1222 /*
1223 * If sync wakeup then subtract the (maximum possible)
1224 * effect of the currently running task from the load
1225 * of the current CPU:
1226 */
83378269
PZ
1227 if (sync) {
1228 tg = task_group(current);
1229 weight = current->se.load.weight;
1230
1231 tl += effective_load(tg, this_cpu, -weight, -weight);
1232 load += effective_load(tg, prev_cpu, 0, -weight);
1233 }
b3137bc8 1234
83378269
PZ
1235 tg = task_group(p);
1236 weight = p->se.load.weight;
b3137bc8 1237
83378269
PZ
1238 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1239 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1240
098fb9db 1241 /*
4ae7d5ce
IM
1242 * If the currently running task will sleep within
1243 * a reasonable amount of time then attract this newly
1244 * woken task:
098fb9db 1245 */
2fb7635c
PZ
1246 if (sync && balanced)
1247 return 1;
098fb9db
IM
1248
1249 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1250 tl_per_task = cpu_avg_load_per_task(this_cpu);
1251
64b9e029
AA
1252 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1253 tl_per_task)) {
098fb9db
IM
1254 /*
1255 * This domain has SD_WAKE_AFFINE and
1256 * p is cache cold in this domain, and
1257 * there is no bad imbalance.
1258 */
1259 schedstat_inc(this_sd, ttwu_move_affine);
1260 schedstat_inc(p, se.nr_wakeups_affine);
1261
1262 return 1;
1263 }
1264 return 0;
1265}
1266
e7693a36
GH
1267static int select_task_rq_fair(struct task_struct *p, int sync)
1268{
e7693a36 1269 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1270 int prev_cpu, this_cpu, new_cpu;
098fb9db 1271 unsigned long load, this_load;
64b9e029 1272 struct rq *this_rq;
098fb9db 1273 unsigned int imbalance;
098fb9db 1274 int idx;
e7693a36 1275
ac192d39 1276 prev_cpu = task_cpu(p);
ac192d39 1277 this_cpu = smp_processor_id();
4ae7d5ce 1278 this_rq = cpu_rq(this_cpu);
ac192d39 1279 new_cpu = prev_cpu;
e7693a36 1280
64b9e029
AA
1281 if (prev_cpu == this_cpu)
1282 goto out;
ac192d39
IM
1283 /*
1284 * 'this_sd' is the first domain that both
1285 * this_cpu and prev_cpu are present in:
1286 */
e7693a36 1287 for_each_domain(this_cpu, sd) {
758b2cdc 1288 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1289 this_sd = sd;
1290 break;
1291 }
1292 }
1293
96f874e2 1294 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1295 goto out;
e7693a36
GH
1296
1297 /*
1298 * Check for affine wakeup and passive balancing possibilities.
1299 */
098fb9db 1300 if (!this_sd)
f4827386 1301 goto out;
e7693a36 1302
098fb9db
IM
1303 idx = this_sd->wake_idx;
1304
1305 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1306
ac192d39 1307 load = source_load(prev_cpu, idx);
098fb9db
IM
1308 this_load = target_load(this_cpu, idx);
1309
64b9e029 1310 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1311 load, this_load, imbalance))
1312 return this_cpu;
1313
098fb9db
IM
1314 /*
1315 * Start passive balancing when half the imbalance_pct
1316 * limit is reached.
1317 */
1318 if (this_sd->flags & SD_WAKE_BALANCE) {
1319 if (imbalance*this_load <= 100*load) {
1320 schedstat_inc(this_sd, ttwu_move_balance);
1321 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1322 return this_cpu;
e7693a36
GH
1323 }
1324 }
1325
f4827386 1326out:
e7693a36
GH
1327 return wake_idle(new_cpu, p);
1328}
1329#endif /* CONFIG_SMP */
1330
e52fb7c0
PZ
1331/*
1332 * Adaptive granularity
1333 *
1334 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1335 * with the limit of wakeup_gran -- when it never does a wakeup.
1336 *
1337 * So the smaller avg_wakeup is the faster we want this task to preempt,
1338 * but we don't want to treat the preemptee unfairly and therefore allow it
1339 * to run for at least the amount of time we'd like to run.
1340 *
1341 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1342 *
1343 * NOTE: we use *nr_running to scale with load, this nicely matches the
1344 * degrading latency on load.
1345 */
1346static unsigned long
1347adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1348{
1349 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1350 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1351 u64 gran = 0;
1352
1353 if (this_run < expected_wakeup)
1354 gran = expected_wakeup - this_run;
1355
1356 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1357}
1358
1359static unsigned long
1360wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1361{
1362 unsigned long gran = sysctl_sched_wakeup_granularity;
1363
e52fb7c0
PZ
1364 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1365 gran = adaptive_gran(curr, se);
1366
0bbd3336 1367 /*
e52fb7c0
PZ
1368 * Since its curr running now, convert the gran from real-time
1369 * to virtual-time in his units.
0bbd3336 1370 */
e52fb7c0
PZ
1371 if (sched_feat(ASYM_GRAN)) {
1372 /*
1373 * By using 'se' instead of 'curr' we penalize light tasks, so
1374 * they get preempted easier. That is, if 'se' < 'curr' then
1375 * the resulting gran will be larger, therefore penalizing the
1376 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1377 * be smaller, again penalizing the lighter task.
1378 *
1379 * This is especially important for buddies when the leftmost
1380 * task is higher priority than the buddy.
1381 */
1382 if (unlikely(se->load.weight != NICE_0_LOAD))
1383 gran = calc_delta_fair(gran, se);
1384 } else {
1385 if (unlikely(curr->load.weight != NICE_0_LOAD))
1386 gran = calc_delta_fair(gran, curr);
1387 }
0bbd3336
PZ
1388
1389 return gran;
1390}
1391
464b7527
PZ
1392/*
1393 * Should 'se' preempt 'curr'.
1394 *
1395 * |s1
1396 * |s2
1397 * |s3
1398 * g
1399 * |<--->|c
1400 *
1401 * w(c, s1) = -1
1402 * w(c, s2) = 0
1403 * w(c, s3) = 1
1404 *
1405 */
1406static int
1407wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1408{
1409 s64 gran, vdiff = curr->vruntime - se->vruntime;
1410
1411 if (vdiff <= 0)
1412 return -1;
1413
e52fb7c0 1414 gran = wakeup_gran(curr, se);
464b7527
PZ
1415 if (vdiff > gran)
1416 return 1;
1417
1418 return 0;
1419}
1420
02479099
PZ
1421static void set_last_buddy(struct sched_entity *se)
1422{
6bc912b7
PZ
1423 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1424 for_each_sched_entity(se)
1425 cfs_rq_of(se)->last = se;
1426 }
02479099
PZ
1427}
1428
1429static void set_next_buddy(struct sched_entity *se)
1430{
6bc912b7
PZ
1431 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1432 for_each_sched_entity(se)
1433 cfs_rq_of(se)->next = se;
1434 }
02479099
PZ
1435}
1436
bf0f6f24
IM
1437/*
1438 * Preempt the current task with a newly woken task if needed:
1439 */
15afe09b 1440static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1441{
1442 struct task_struct *curr = rq->curr;
8651a86c 1443 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1444 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1445
03e89e45 1446 update_curr(cfs_rq);
4793241b 1447
03e89e45 1448 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1449 resched_task(curr);
1450 return;
1451 }
aa2ac252 1452
d95f98d0
PZ
1453 if (unlikely(p->sched_class != &fair_sched_class))
1454 return;
1455
4ae7d5ce
IM
1456 if (unlikely(se == pse))
1457 return;
1458
4793241b
PZ
1459 /*
1460 * Only set the backward buddy when the current task is still on the
1461 * rq. This can happen when a wakeup gets interleaved with schedule on
1462 * the ->pre_schedule() or idle_balance() point, either of which can
1463 * drop the rq lock.
1464 *
1465 * Also, during early boot the idle thread is in the fair class, for
1466 * obvious reasons its a bad idea to schedule back to the idle thread.
1467 */
1468 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1469 set_last_buddy(se);
1470 set_next_buddy(pse);
57fdc26d 1471
aec0a514
BR
1472 /*
1473 * We can come here with TIF_NEED_RESCHED already set from new task
1474 * wake up path.
1475 */
1476 if (test_tsk_need_resched(curr))
1477 return;
1478
91c234b4 1479 /*
6bc912b7 1480 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1481 * the tick):
1482 */
6bc912b7 1483 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1484 return;
bf0f6f24 1485
6bc912b7
PZ
1486 /* Idle tasks are by definition preempted by everybody. */
1487 if (unlikely(curr->policy == SCHED_IDLE)) {
1488 resched_task(curr);
91c234b4 1489 return;
6bc912b7 1490 }
bf0f6f24 1491
77d9cc44
IM
1492 if (!sched_feat(WAKEUP_PREEMPT))
1493 return;
8651a86c 1494
fc631c82
PZ
1495 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1496 (se->avg_overlap < sysctl_sched_migration_cost &&
1497 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1498 resched_task(curr);
1499 return;
1500 }
1501
464b7527
PZ
1502 find_matching_se(&se, &pse);
1503
002f128b 1504 BUG_ON(!pse);
464b7527 1505
002f128b
PT
1506 if (wakeup_preempt_entity(se, pse) == 1)
1507 resched_task(curr);
bf0f6f24
IM
1508}
1509
fb8d4724 1510static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1511{
8f4d37ec 1512 struct task_struct *p;
bf0f6f24
IM
1513 struct cfs_rq *cfs_rq = &rq->cfs;
1514 struct sched_entity *se;
1515
1516 if (unlikely(!cfs_rq->nr_running))
1517 return NULL;
1518
1519 do {
9948f4b2 1520 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1521 /*
1522 * If se was a buddy, clear it so that it will have to earn
1523 * the favour again.
1524 */
a571bbea 1525 __clear_buddies(cfs_rq, se);
f4b6755f 1526 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1527 cfs_rq = group_cfs_rq(se);
1528 } while (cfs_rq);
1529
8f4d37ec
PZ
1530 p = task_of(se);
1531 hrtick_start_fair(rq, p);
1532
1533 return p;
bf0f6f24
IM
1534}
1535
1536/*
1537 * Account for a descheduled task:
1538 */
31ee529c 1539static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1540{
1541 struct sched_entity *se = &prev->se;
1542 struct cfs_rq *cfs_rq;
1543
1544 for_each_sched_entity(se) {
1545 cfs_rq = cfs_rq_of(se);
ab6cde26 1546 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1547 }
1548}
1549
681f3e68 1550#ifdef CONFIG_SMP
bf0f6f24
IM
1551/**************************************************
1552 * Fair scheduling class load-balancing methods:
1553 */
1554
1555/*
1556 * Load-balancing iterator. Note: while the runqueue stays locked
1557 * during the whole iteration, the current task might be
1558 * dequeued so the iterator has to be dequeue-safe. Here we
1559 * achieve that by always pre-iterating before returning
1560 * the current task:
1561 */
a9957449 1562static struct task_struct *
4a55bd5e 1563__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1564{
354d60c2
DG
1565 struct task_struct *p = NULL;
1566 struct sched_entity *se;
bf0f6f24 1567
77ae6513
MG
1568 if (next == &cfs_rq->tasks)
1569 return NULL;
1570
b87f1724
BR
1571 se = list_entry(next, struct sched_entity, group_node);
1572 p = task_of(se);
1573 cfs_rq->balance_iterator = next->next;
77ae6513 1574
bf0f6f24
IM
1575 return p;
1576}
1577
1578static struct task_struct *load_balance_start_fair(void *arg)
1579{
1580 struct cfs_rq *cfs_rq = arg;
1581
4a55bd5e 1582 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1583}
1584
1585static struct task_struct *load_balance_next_fair(void *arg)
1586{
1587 struct cfs_rq *cfs_rq = arg;
1588
4a55bd5e 1589 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1590}
1591
c09595f6
PZ
1592static unsigned long
1593__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1594 unsigned long max_load_move, struct sched_domain *sd,
1595 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1596 struct cfs_rq *cfs_rq)
62fb1851 1597{
c09595f6 1598 struct rq_iterator cfs_rq_iterator;
62fb1851 1599
c09595f6
PZ
1600 cfs_rq_iterator.start = load_balance_start_fair;
1601 cfs_rq_iterator.next = load_balance_next_fair;
1602 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1603
c09595f6
PZ
1604 return balance_tasks(this_rq, this_cpu, busiest,
1605 max_load_move, sd, idle, all_pinned,
1606 this_best_prio, &cfs_rq_iterator);
62fb1851 1607}
62fb1851 1608
c09595f6 1609#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1610static unsigned long
bf0f6f24 1611load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1612 unsigned long max_load_move,
a4ac01c3
PW
1613 struct sched_domain *sd, enum cpu_idle_type idle,
1614 int *all_pinned, int *this_best_prio)
bf0f6f24 1615{
bf0f6f24 1616 long rem_load_move = max_load_move;
c09595f6
PZ
1617 int busiest_cpu = cpu_of(busiest);
1618 struct task_group *tg;
18d95a28 1619
c09595f6 1620 rcu_read_lock();
c8cba857 1621 update_h_load(busiest_cpu);
18d95a28 1622
caea8a03 1623 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1624 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1625 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1626 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1627 u64 rem_load, moved_load;
18d95a28 1628
c09595f6
PZ
1629 /*
1630 * empty group
1631 */
c8cba857 1632 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1633 continue;
1634
243e0e7b
SV
1635 rem_load = (u64)rem_load_move * busiest_weight;
1636 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1637
c09595f6 1638 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1639 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1640 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1641
c09595f6 1642 if (!moved_load)
bf0f6f24
IM
1643 continue;
1644
42a3ac7d 1645 moved_load *= busiest_h_load;
243e0e7b 1646 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1647
c09595f6
PZ
1648 rem_load_move -= moved_load;
1649 if (rem_load_move < 0)
bf0f6f24
IM
1650 break;
1651 }
c09595f6 1652 rcu_read_unlock();
bf0f6f24 1653
43010659 1654 return max_load_move - rem_load_move;
bf0f6f24 1655}
c09595f6
PZ
1656#else
1657static unsigned long
1658load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1659 unsigned long max_load_move,
1660 struct sched_domain *sd, enum cpu_idle_type idle,
1661 int *all_pinned, int *this_best_prio)
1662{
1663 return __load_balance_fair(this_rq, this_cpu, busiest,
1664 max_load_move, sd, idle, all_pinned,
1665 this_best_prio, &busiest->cfs);
1666}
1667#endif
bf0f6f24 1668
e1d1484f
PW
1669static int
1670move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1671 struct sched_domain *sd, enum cpu_idle_type idle)
1672{
1673 struct cfs_rq *busy_cfs_rq;
1674 struct rq_iterator cfs_rq_iterator;
1675
1676 cfs_rq_iterator.start = load_balance_start_fair;
1677 cfs_rq_iterator.next = load_balance_next_fair;
1678
1679 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1680 /*
1681 * pass busy_cfs_rq argument into
1682 * load_balance_[start|next]_fair iterators
1683 */
1684 cfs_rq_iterator.arg = busy_cfs_rq;
1685 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1686 &cfs_rq_iterator))
1687 return 1;
1688 }
1689
1690 return 0;
1691}
55e12e5e 1692#endif /* CONFIG_SMP */
e1d1484f 1693
bf0f6f24
IM
1694/*
1695 * scheduler tick hitting a task of our scheduling class:
1696 */
8f4d37ec 1697static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1698{
1699 struct cfs_rq *cfs_rq;
1700 struct sched_entity *se = &curr->se;
1701
1702 for_each_sched_entity(se) {
1703 cfs_rq = cfs_rq_of(se);
8f4d37ec 1704 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1705 }
1706}
1707
1708/*
1709 * Share the fairness runtime between parent and child, thus the
1710 * total amount of pressure for CPU stays equal - new tasks
1711 * get a chance to run but frequent forkers are not allowed to
1712 * monopolize the CPU. Note: the parent runqueue is locked,
1713 * the child is not running yet.
1714 */
ee0827d8 1715static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1716{
1717 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1718 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1719 int this_cpu = smp_processor_id();
bf0f6f24
IM
1720
1721 sched_info_queued(p);
1722
7109c442 1723 update_curr(cfs_rq);
aeb73b04 1724 place_entity(cfs_rq, se, 1);
4d78e7b6 1725
3c90e6e9 1726 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1727 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1728 curr && entity_before(curr, se)) {
87fefa38 1729 /*
edcb60a3
IM
1730 * Upon rescheduling, sched_class::put_prev_task() will place
1731 * 'current' within the tree based on its new key value.
1732 */
4d78e7b6 1733 swap(curr->vruntime, se->vruntime);
aec0a514 1734 resched_task(rq->curr);
4d78e7b6 1735 }
bf0f6f24 1736
b9dca1e0 1737 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1738}
1739
cb469845
SR
1740/*
1741 * Priority of the task has changed. Check to see if we preempt
1742 * the current task.
1743 */
1744static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1745 int oldprio, int running)
1746{
1747 /*
1748 * Reschedule if we are currently running on this runqueue and
1749 * our priority decreased, or if we are not currently running on
1750 * this runqueue and our priority is higher than the current's
1751 */
1752 if (running) {
1753 if (p->prio > oldprio)
1754 resched_task(rq->curr);
1755 } else
15afe09b 1756 check_preempt_curr(rq, p, 0);
cb469845
SR
1757}
1758
1759/*
1760 * We switched to the sched_fair class.
1761 */
1762static void switched_to_fair(struct rq *rq, struct task_struct *p,
1763 int running)
1764{
1765 /*
1766 * We were most likely switched from sched_rt, so
1767 * kick off the schedule if running, otherwise just see
1768 * if we can still preempt the current task.
1769 */
1770 if (running)
1771 resched_task(rq->curr);
1772 else
15afe09b 1773 check_preempt_curr(rq, p, 0);
cb469845
SR
1774}
1775
83b699ed
SV
1776/* Account for a task changing its policy or group.
1777 *
1778 * This routine is mostly called to set cfs_rq->curr field when a task
1779 * migrates between groups/classes.
1780 */
1781static void set_curr_task_fair(struct rq *rq)
1782{
1783 struct sched_entity *se = &rq->curr->se;
1784
1785 for_each_sched_entity(se)
1786 set_next_entity(cfs_rq_of(se), se);
1787}
1788
810b3817
PZ
1789#ifdef CONFIG_FAIR_GROUP_SCHED
1790static void moved_group_fair(struct task_struct *p)
1791{
1792 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1793
1794 update_curr(cfs_rq);
1795 place_entity(cfs_rq, &p->se, 1);
1796}
1797#endif
1798
bf0f6f24
IM
1799/*
1800 * All the scheduling class methods:
1801 */
5522d5d5
IM
1802static const struct sched_class fair_sched_class = {
1803 .next = &idle_sched_class,
bf0f6f24
IM
1804 .enqueue_task = enqueue_task_fair,
1805 .dequeue_task = dequeue_task_fair,
1806 .yield_task = yield_task_fair,
1807
2e09bf55 1808 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1809
1810 .pick_next_task = pick_next_task_fair,
1811 .put_prev_task = put_prev_task_fair,
1812
681f3e68 1813#ifdef CONFIG_SMP
4ce72a2c
LZ
1814 .select_task_rq = select_task_rq_fair,
1815
bf0f6f24 1816 .load_balance = load_balance_fair,
e1d1484f 1817 .move_one_task = move_one_task_fair,
681f3e68 1818#endif
bf0f6f24 1819
83b699ed 1820 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1821 .task_tick = task_tick_fair,
1822 .task_new = task_new_fair,
cb469845
SR
1823
1824 .prio_changed = prio_changed_fair,
1825 .switched_to = switched_to_fair,
810b3817
PZ
1826
1827#ifdef CONFIG_FAIR_GROUP_SCHED
1828 .moved_group = moved_group_fair,
1829#endif
bf0f6f24
IM
1830};
1831
1832#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1833static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1834{
bf0f6f24
IM
1835 struct cfs_rq *cfs_rq;
1836
5973e5b9 1837 rcu_read_lock();
c3b64f1e 1838 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1839 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1840 rcu_read_unlock();
bf0f6f24
IM
1841}
1842#endif