]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cgroup.c
cgroups: more documentation for remount and release_agent
[net-next-2.6.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
472b1053 47#include <linux/hash.h>
3f8206d4 48#include <linux/namei.h>
846c7bb0 49
ddbcc7e8
PM
50#include <asm/atomic.h>
51
81a6a5cd
PM
52static DEFINE_MUTEX(cgroup_mutex);
53
ddbcc7e8
PM
54/* Generate an array of cgroup subsystem pointers */
55#define SUBSYS(_x) &_x ## _subsys,
56
57static struct cgroup_subsys *subsys[] = {
58#include <linux/cgroup_subsys.h>
59};
60
61/*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
e5f6a860 87 /* A list running through the active hierarchies */
ddbcc7e8
PM
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
81a6a5cd 92
e788e066 93 /* The path to use for release notifications. */
81a6a5cd 94 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
95};
96
ddbcc7e8
PM
97/*
98 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
99 * subsystems that are otherwise unattached - it never has more than a
100 * single cgroup, and all tasks are part of that cgroup.
101 */
102static struct cgroupfs_root rootnode;
103
38460b48
KH
104/*
105 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
106 * cgroup_subsys->use_id != 0.
107 */
108#define CSS_ID_MAX (65535)
109struct css_id {
110 /*
111 * The css to which this ID points. This pointer is set to valid value
112 * after cgroup is populated. If cgroup is removed, this will be NULL.
113 * This pointer is expected to be RCU-safe because destroy()
114 * is called after synchronize_rcu(). But for safe use, css_is_removed()
115 * css_tryget() should be used for avoiding race.
116 */
117 struct cgroup_subsys_state *css;
118 /*
119 * ID of this css.
120 */
121 unsigned short id;
122 /*
123 * Depth in hierarchy which this ID belongs to.
124 */
125 unsigned short depth;
126 /*
127 * ID is freed by RCU. (and lookup routine is RCU safe.)
128 */
129 struct rcu_head rcu_head;
130 /*
131 * Hierarchy of CSS ID belongs to.
132 */
133 unsigned short stack[0]; /* Array of Length (depth+1) */
134};
135
136
ddbcc7e8
PM
137/* The list of hierarchy roots */
138
139static LIST_HEAD(roots);
817929ec 140static int root_count;
ddbcc7e8
PM
141
142/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
143#define dummytop (&rootnode.top_cgroup)
144
145/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
146 * check for fork/exit handlers to call. This avoids us having to do
147 * extra work in the fork/exit path if none of the subsystems need to
148 * be called.
ddbcc7e8 149 */
8947f9d5 150static int need_forkexit_callback __read_mostly;
ddbcc7e8 151
ddbcc7e8 152/* convenient tests for these bits */
bd89aabc 153inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 154{
bd89aabc 155 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
156}
157
158/* bits in struct cgroupfs_root flags field */
159enum {
160 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
161};
162
e9685a03 163static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
164{
165 const int bits =
bd89aabc
PM
166 (1 << CGRP_RELEASABLE) |
167 (1 << CGRP_NOTIFY_ON_RELEASE);
168 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
169}
170
e9685a03 171static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 172{
bd89aabc 173 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
174}
175
ddbcc7e8
PM
176/*
177 * for_each_subsys() allows you to iterate on each subsystem attached to
178 * an active hierarchy
179 */
180#define for_each_subsys(_root, _ss) \
181list_for_each_entry(_ss, &_root->subsys_list, sibling)
182
e5f6a860
LZ
183/* for_each_active_root() allows you to iterate across the active hierarchies */
184#define for_each_active_root(_root) \
ddbcc7e8
PM
185list_for_each_entry(_root, &roots, root_list)
186
81a6a5cd
PM
187/* the list of cgroups eligible for automatic release. Protected by
188 * release_list_lock */
189static LIST_HEAD(release_list);
190static DEFINE_SPINLOCK(release_list_lock);
191static void cgroup_release_agent(struct work_struct *work);
192static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 193static void check_for_release(struct cgroup *cgrp);
81a6a5cd 194
817929ec
PM
195/* Link structure for associating css_set objects with cgroups */
196struct cg_cgroup_link {
197 /*
198 * List running through cg_cgroup_links associated with a
199 * cgroup, anchored on cgroup->css_sets
200 */
bd89aabc 201 struct list_head cgrp_link_list;
817929ec
PM
202 /*
203 * List running through cg_cgroup_links pointing at a
204 * single css_set object, anchored on css_set->cg_links
205 */
206 struct list_head cg_link_list;
207 struct css_set *cg;
208};
209
210/* The default css_set - used by init and its children prior to any
211 * hierarchies being mounted. It contains a pointer to the root state
212 * for each subsystem. Also used to anchor the list of css_sets. Not
213 * reference-counted, to improve performance when child cgroups
214 * haven't been created.
215 */
216
217static struct css_set init_css_set;
218static struct cg_cgroup_link init_css_set_link;
219
38460b48
KH
220static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
221
817929ec
PM
222/* css_set_lock protects the list of css_set objects, and the
223 * chain of tasks off each css_set. Nests outside task->alloc_lock
224 * due to cgroup_iter_start() */
225static DEFINE_RWLOCK(css_set_lock);
226static int css_set_count;
227
472b1053
LZ
228/* hash table for cgroup groups. This improves the performance to
229 * find an existing css_set */
230#define CSS_SET_HASH_BITS 7
231#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
232static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
233
234static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
235{
236 int i;
237 int index;
238 unsigned long tmp = 0UL;
239
240 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
241 tmp += (unsigned long)css[i];
242 tmp = (tmp >> 16) ^ tmp;
243
244 index = hash_long(tmp, CSS_SET_HASH_BITS);
245
246 return &css_set_table[index];
247}
248
817929ec
PM
249/* We don't maintain the lists running through each css_set to its
250 * task until after the first call to cgroup_iter_start(). This
251 * reduces the fork()/exit() overhead for people who have cgroups
252 * compiled into their kernel but not actually in use */
8947f9d5 253static int use_task_css_set_links __read_mostly;
817929ec
PM
254
255/* When we create or destroy a css_set, the operation simply
256 * takes/releases a reference count on all the cgroups referenced
257 * by subsystems in this css_set. This can end up multiple-counting
258 * some cgroups, but that's OK - the ref-count is just a
259 * busy/not-busy indicator; ensuring that we only count each cgroup
260 * once would require taking a global lock to ensure that no
b4f48b63
PM
261 * subsystems moved between hierarchies while we were doing so.
262 *
263 * Possible TODO: decide at boot time based on the number of
264 * registered subsystems and the number of CPUs or NUMA nodes whether
265 * it's better for performance to ref-count every subsystem, or to
266 * take a global lock and only add one ref count to each hierarchy.
267 */
817929ec
PM
268
269/*
270 * unlink a css_set from the list and free it
271 */
81a6a5cd 272static void unlink_css_set(struct css_set *cg)
b4f48b63 273{
71cbb949
KM
274 struct cg_cgroup_link *link;
275 struct cg_cgroup_link *saved_link;
276
472b1053 277 hlist_del(&cg->hlist);
817929ec 278 css_set_count--;
71cbb949
KM
279
280 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
281 cg_link_list) {
817929ec 282 list_del(&link->cg_link_list);
bd89aabc 283 list_del(&link->cgrp_link_list);
817929ec
PM
284 kfree(link);
285 }
81a6a5cd
PM
286}
287
146aa1bd 288static void __put_css_set(struct css_set *cg, int taskexit)
81a6a5cd
PM
289{
290 int i;
146aa1bd
LJ
291 /*
292 * Ensure that the refcount doesn't hit zero while any readers
293 * can see it. Similar to atomic_dec_and_lock(), but for an
294 * rwlock
295 */
296 if (atomic_add_unless(&cg->refcount, -1, 1))
297 return;
298 write_lock(&css_set_lock);
299 if (!atomic_dec_and_test(&cg->refcount)) {
300 write_unlock(&css_set_lock);
301 return;
302 }
81a6a5cd 303 unlink_css_set(cg);
146aa1bd 304 write_unlock(&css_set_lock);
81a6a5cd
PM
305
306 rcu_read_lock();
307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a47295e6 308 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
bd89aabc
PM
309 if (atomic_dec_and_test(&cgrp->count) &&
310 notify_on_release(cgrp)) {
81a6a5cd 311 if (taskexit)
bd89aabc
PM
312 set_bit(CGRP_RELEASABLE, &cgrp->flags);
313 check_for_release(cgrp);
81a6a5cd
PM
314 }
315 }
316 rcu_read_unlock();
817929ec 317 kfree(cg);
b4f48b63
PM
318}
319
817929ec
PM
320/*
321 * refcounted get/put for css_set objects
322 */
323static inline void get_css_set(struct css_set *cg)
324{
146aa1bd 325 atomic_inc(&cg->refcount);
817929ec
PM
326}
327
328static inline void put_css_set(struct css_set *cg)
329{
146aa1bd 330 __put_css_set(cg, 0);
817929ec
PM
331}
332
81a6a5cd
PM
333static inline void put_css_set_taskexit(struct css_set *cg)
334{
146aa1bd 335 __put_css_set(cg, 1);
81a6a5cd
PM
336}
337
817929ec
PM
338/*
339 * find_existing_css_set() is a helper for
340 * find_css_set(), and checks to see whether an existing
472b1053 341 * css_set is suitable.
817929ec
PM
342 *
343 * oldcg: the cgroup group that we're using before the cgroup
344 * transition
345 *
bd89aabc 346 * cgrp: the cgroup that we're moving into
817929ec
PM
347 *
348 * template: location in which to build the desired set of subsystem
349 * state objects for the new cgroup group
350 */
817929ec
PM
351static struct css_set *find_existing_css_set(
352 struct css_set *oldcg,
bd89aabc 353 struct cgroup *cgrp,
817929ec 354 struct cgroup_subsys_state *template[])
b4f48b63
PM
355{
356 int i;
bd89aabc 357 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
358 struct hlist_head *hhead;
359 struct hlist_node *node;
360 struct css_set *cg;
817929ec
PM
361
362 /* Built the set of subsystem state objects that we want to
363 * see in the new css_set */
364 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 365 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
366 /* Subsystem is in this hierarchy. So we want
367 * the subsystem state from the new
368 * cgroup */
bd89aabc 369 template[i] = cgrp->subsys[i];
817929ec
PM
370 } else {
371 /* Subsystem is not in this hierarchy, so we
372 * don't want to change the subsystem state */
373 template[i] = oldcg->subsys[i];
374 }
375 }
376
472b1053
LZ
377 hhead = css_set_hash(template);
378 hlist_for_each_entry(cg, node, hhead, hlist) {
817929ec
PM
379 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
380 /* All subsystems matched */
381 return cg;
382 }
472b1053 383 }
817929ec
PM
384
385 /* No existing cgroup group matched */
386 return NULL;
387}
388
36553434
LZ
389static void free_cg_links(struct list_head *tmp)
390{
391 struct cg_cgroup_link *link;
392 struct cg_cgroup_link *saved_link;
393
394 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
395 list_del(&link->cgrp_link_list);
396 kfree(link);
397 }
398}
399
817929ec
PM
400/*
401 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 402 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
403 * success or a negative error
404 */
817929ec
PM
405static int allocate_cg_links(int count, struct list_head *tmp)
406{
407 struct cg_cgroup_link *link;
408 int i;
409 INIT_LIST_HEAD(tmp);
410 for (i = 0; i < count; i++) {
411 link = kmalloc(sizeof(*link), GFP_KERNEL);
412 if (!link) {
36553434 413 free_cg_links(tmp);
817929ec
PM
414 return -ENOMEM;
415 }
bd89aabc 416 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
417 }
418 return 0;
419}
420
c12f65d4
LZ
421/**
422 * link_css_set - a helper function to link a css_set to a cgroup
423 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
424 * @cg: the css_set to be linked
425 * @cgrp: the destination cgroup
426 */
427static void link_css_set(struct list_head *tmp_cg_links,
428 struct css_set *cg, struct cgroup *cgrp)
429{
430 struct cg_cgroup_link *link;
431
432 BUG_ON(list_empty(tmp_cg_links));
433 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
434 cgrp_link_list);
435 link->cg = cg;
436 list_move(&link->cgrp_link_list, &cgrp->css_sets);
437 list_add(&link->cg_link_list, &cg->cg_links);
438}
439
817929ec
PM
440/*
441 * find_css_set() takes an existing cgroup group and a
442 * cgroup object, and returns a css_set object that's
443 * equivalent to the old group, but with the given cgroup
444 * substituted into the appropriate hierarchy. Must be called with
445 * cgroup_mutex held
446 */
817929ec 447static struct css_set *find_css_set(
bd89aabc 448 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
449{
450 struct css_set *res;
451 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
452 int i;
453
454 struct list_head tmp_cg_links;
817929ec 455
472b1053
LZ
456 struct hlist_head *hhead;
457
817929ec
PM
458 /* First see if we already have a cgroup group that matches
459 * the desired set */
7e9abd89 460 read_lock(&css_set_lock);
bd89aabc 461 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
462 if (res)
463 get_css_set(res);
7e9abd89 464 read_unlock(&css_set_lock);
817929ec
PM
465
466 if (res)
467 return res;
468
469 res = kmalloc(sizeof(*res), GFP_KERNEL);
470 if (!res)
471 return NULL;
472
473 /* Allocate all the cg_cgroup_link objects that we'll need */
474 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
475 kfree(res);
476 return NULL;
477 }
478
146aa1bd 479 atomic_set(&res->refcount, 1);
817929ec
PM
480 INIT_LIST_HEAD(&res->cg_links);
481 INIT_LIST_HEAD(&res->tasks);
472b1053 482 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
483
484 /* Copy the set of subsystem state objects generated in
485 * find_existing_css_set() */
486 memcpy(res->subsys, template, sizeof(res->subsys));
487
488 write_lock(&css_set_lock);
489 /* Add reference counts and links from the new css_set. */
490 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 491 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 492 struct cgroup_subsys *ss = subsys[i];
bd89aabc 493 atomic_inc(&cgrp->count);
817929ec
PM
494 /*
495 * We want to add a link once per cgroup, so we
496 * only do it for the first subsystem in each
497 * hierarchy
498 */
c12f65d4
LZ
499 if (ss->root->subsys_list.next == &ss->sibling)
500 link_css_set(&tmp_cg_links, res, cgrp);
817929ec 501 }
c12f65d4
LZ
502 if (list_empty(&rootnode.subsys_list))
503 link_css_set(&tmp_cg_links, res, dummytop);
817929ec
PM
504
505 BUG_ON(!list_empty(&tmp_cg_links));
506
817929ec 507 css_set_count++;
472b1053
LZ
508
509 /* Add this cgroup group to the hash table */
510 hhead = css_set_hash(res->subsys);
511 hlist_add_head(&res->hlist, hhead);
512
817929ec
PM
513 write_unlock(&css_set_lock);
514
515 return res;
b4f48b63
PM
516}
517
ddbcc7e8
PM
518/*
519 * There is one global cgroup mutex. We also require taking
520 * task_lock() when dereferencing a task's cgroup subsys pointers.
521 * See "The task_lock() exception", at the end of this comment.
522 *
523 * A task must hold cgroup_mutex to modify cgroups.
524 *
525 * Any task can increment and decrement the count field without lock.
526 * So in general, code holding cgroup_mutex can't rely on the count
527 * field not changing. However, if the count goes to zero, then only
956db3ca 528 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
529 * means that no tasks are currently attached, therefore there is no
530 * way a task attached to that cgroup can fork (the other way to
531 * increment the count). So code holding cgroup_mutex can safely
532 * assume that if the count is zero, it will stay zero. Similarly, if
533 * a task holds cgroup_mutex on a cgroup with zero count, it
534 * knows that the cgroup won't be removed, as cgroup_rmdir()
535 * needs that mutex.
536 *
ddbcc7e8
PM
537 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
538 * (usually) take cgroup_mutex. These are the two most performance
539 * critical pieces of code here. The exception occurs on cgroup_exit(),
540 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
541 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
542 * to the release agent with the name of the cgroup (path relative to
543 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
544 *
545 * A cgroup can only be deleted if both its 'count' of using tasks
546 * is zero, and its list of 'children' cgroups is empty. Since all
547 * tasks in the system use _some_ cgroup, and since there is always at
548 * least one task in the system (init, pid == 1), therefore, top_cgroup
549 * always has either children cgroups and/or using tasks. So we don't
550 * need a special hack to ensure that top_cgroup cannot be deleted.
551 *
552 * The task_lock() exception
553 *
554 * The need for this exception arises from the action of
956db3ca 555 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 556 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
557 * several performance critical places that need to reference
558 * task->cgroup without the expense of grabbing a system global
559 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 560 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
561 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
562 * the task_struct routinely used for such matters.
563 *
564 * P.S. One more locking exception. RCU is used to guard the
956db3ca 565 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
566 */
567
ddbcc7e8
PM
568/**
569 * cgroup_lock - lock out any changes to cgroup structures
570 *
571 */
ddbcc7e8
PM
572void cgroup_lock(void)
573{
574 mutex_lock(&cgroup_mutex);
575}
576
577/**
578 * cgroup_unlock - release lock on cgroup changes
579 *
580 * Undo the lock taken in a previous cgroup_lock() call.
581 */
ddbcc7e8
PM
582void cgroup_unlock(void)
583{
584 mutex_unlock(&cgroup_mutex);
585}
586
587/*
588 * A couple of forward declarations required, due to cyclic reference loop:
589 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
590 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
591 * -> cgroup_mkdir.
592 */
593
594static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
595static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 596static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 597static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
598static struct file_operations proc_cgroupstats_operations;
599
600static struct backing_dev_info cgroup_backing_dev_info = {
e4ad08fe 601 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 602};
ddbcc7e8 603
38460b48
KH
604static int alloc_css_id(struct cgroup_subsys *ss,
605 struct cgroup *parent, struct cgroup *child);
606
ddbcc7e8
PM
607static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
608{
609 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
610
611 if (inode) {
612 inode->i_mode = mode;
76aac0e9
DH
613 inode->i_uid = current_fsuid();
614 inode->i_gid = current_fsgid();
ddbcc7e8
PM
615 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
616 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
617 }
618 return inode;
619}
620
4fca88c8
KH
621/*
622 * Call subsys's pre_destroy handler.
623 * This is called before css refcnt check.
624 */
ec64f515 625static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
626{
627 struct cgroup_subsys *ss;
ec64f515
KH
628 int ret = 0;
629
4fca88c8 630 for_each_subsys(cgrp->root, ss)
ec64f515
KH
631 if (ss->pre_destroy) {
632 ret = ss->pre_destroy(ss, cgrp);
633 if (ret)
634 break;
635 }
636 return ret;
4fca88c8
KH
637}
638
a47295e6
PM
639static void free_cgroup_rcu(struct rcu_head *obj)
640{
641 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
642
643 kfree(cgrp);
644}
645
ddbcc7e8
PM
646static void cgroup_diput(struct dentry *dentry, struct inode *inode)
647{
648 /* is dentry a directory ? if so, kfree() associated cgroup */
649 if (S_ISDIR(inode->i_mode)) {
bd89aabc 650 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 651 struct cgroup_subsys *ss;
bd89aabc 652 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
653 /* It's possible for external users to be holding css
654 * reference counts on a cgroup; css_put() needs to
655 * be able to access the cgroup after decrementing
656 * the reference count in order to know if it needs to
657 * queue the cgroup to be handled by the release
658 * agent */
659 synchronize_rcu();
8dc4f3e1
PM
660
661 mutex_lock(&cgroup_mutex);
662 /*
663 * Release the subsystem state objects.
664 */
75139b82
LZ
665 for_each_subsys(cgrp->root, ss)
666 ss->destroy(ss, cgrp);
8dc4f3e1
PM
667
668 cgrp->root->number_of_cgroups--;
669 mutex_unlock(&cgroup_mutex);
670
a47295e6
PM
671 /*
672 * Drop the active superblock reference that we took when we
673 * created the cgroup
674 */
8dc4f3e1
PM
675 deactivate_super(cgrp->root->sb);
676
a47295e6 677 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
ddbcc7e8
PM
678 }
679 iput(inode);
680}
681
682static void remove_dir(struct dentry *d)
683{
684 struct dentry *parent = dget(d->d_parent);
685
686 d_delete(d);
687 simple_rmdir(parent->d_inode, d);
688 dput(parent);
689}
690
691static void cgroup_clear_directory(struct dentry *dentry)
692{
693 struct list_head *node;
694
695 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
696 spin_lock(&dcache_lock);
697 node = dentry->d_subdirs.next;
698 while (node != &dentry->d_subdirs) {
699 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
700 list_del_init(node);
701 if (d->d_inode) {
702 /* This should never be called on a cgroup
703 * directory with child cgroups */
704 BUG_ON(d->d_inode->i_mode & S_IFDIR);
705 d = dget_locked(d);
706 spin_unlock(&dcache_lock);
707 d_delete(d);
708 simple_unlink(dentry->d_inode, d);
709 dput(d);
710 spin_lock(&dcache_lock);
711 }
712 node = dentry->d_subdirs.next;
713 }
714 spin_unlock(&dcache_lock);
715}
716
717/*
718 * NOTE : the dentry must have been dget()'ed
719 */
720static void cgroup_d_remove_dir(struct dentry *dentry)
721{
722 cgroup_clear_directory(dentry);
723
724 spin_lock(&dcache_lock);
725 list_del_init(&dentry->d_u.d_child);
726 spin_unlock(&dcache_lock);
727 remove_dir(dentry);
728}
729
ec64f515
KH
730/*
731 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
732 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
733 * reference to css->refcnt. In general, this refcnt is expected to goes down
734 * to zero, soon.
735 *
736 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
737 */
738DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
739
740static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
741{
742 if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
743 wake_up_all(&cgroup_rmdir_waitq);
744}
745
ddbcc7e8
PM
746static int rebind_subsystems(struct cgroupfs_root *root,
747 unsigned long final_bits)
748{
749 unsigned long added_bits, removed_bits;
bd89aabc 750 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
751 int i;
752
753 removed_bits = root->actual_subsys_bits & ~final_bits;
754 added_bits = final_bits & ~root->actual_subsys_bits;
755 /* Check that any added subsystems are currently free */
756 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 757 unsigned long bit = 1UL << i;
ddbcc7e8
PM
758 struct cgroup_subsys *ss = subsys[i];
759 if (!(bit & added_bits))
760 continue;
761 if (ss->root != &rootnode) {
762 /* Subsystem isn't free */
763 return -EBUSY;
764 }
765 }
766
767 /* Currently we don't handle adding/removing subsystems when
768 * any child cgroups exist. This is theoretically supportable
769 * but involves complex error handling, so it's being left until
770 * later */
307257cf 771 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
772 return -EBUSY;
773
774 /* Process each subsystem */
775 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
776 struct cgroup_subsys *ss = subsys[i];
777 unsigned long bit = 1UL << i;
778 if (bit & added_bits) {
779 /* We're binding this subsystem to this hierarchy */
bd89aabc 780 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
781 BUG_ON(!dummytop->subsys[i]);
782 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 783 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
784 cgrp->subsys[i] = dummytop->subsys[i];
785 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 786 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 787 ss->root = root;
ddbcc7e8 788 if (ss->bind)
bd89aabc 789 ss->bind(ss, cgrp);
999cd8a4 790 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
791 } else if (bit & removed_bits) {
792 /* We're removing this subsystem */
bd89aabc
PM
793 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
794 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 795 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
796 if (ss->bind)
797 ss->bind(ss, dummytop);
798 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 799 cgrp->subsys[i] = NULL;
b2aa30f7 800 subsys[i]->root = &rootnode;
33a68ac1 801 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 802 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
803 } else if (bit & final_bits) {
804 /* Subsystem state should already exist */
bd89aabc 805 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
806 } else {
807 /* Subsystem state shouldn't exist */
bd89aabc 808 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
809 }
810 }
811 root->subsys_bits = root->actual_subsys_bits = final_bits;
812 synchronize_rcu();
813
814 return 0;
815}
816
817static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
818{
819 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
820 struct cgroup_subsys *ss;
821
822 mutex_lock(&cgroup_mutex);
823 for_each_subsys(root, ss)
824 seq_printf(seq, ",%s", ss->name);
825 if (test_bit(ROOT_NOPREFIX, &root->flags))
826 seq_puts(seq, ",noprefix");
81a6a5cd
PM
827 if (strlen(root->release_agent_path))
828 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
829 mutex_unlock(&cgroup_mutex);
830 return 0;
831}
832
833struct cgroup_sb_opts {
834 unsigned long subsys_bits;
835 unsigned long flags;
81a6a5cd 836 char *release_agent;
ddbcc7e8
PM
837};
838
839/* Convert a hierarchy specifier into a bitmask of subsystems and
840 * flags. */
841static int parse_cgroupfs_options(char *data,
842 struct cgroup_sb_opts *opts)
843{
844 char *token, *o = data ?: "all";
845
846 opts->subsys_bits = 0;
847 opts->flags = 0;
81a6a5cd 848 opts->release_agent = NULL;
ddbcc7e8
PM
849
850 while ((token = strsep(&o, ",")) != NULL) {
851 if (!*token)
852 return -EINVAL;
853 if (!strcmp(token, "all")) {
8bab8dde
PM
854 /* Add all non-disabled subsystems */
855 int i;
856 opts->subsys_bits = 0;
857 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
858 struct cgroup_subsys *ss = subsys[i];
859 if (!ss->disabled)
860 opts->subsys_bits |= 1ul << i;
861 }
ddbcc7e8
PM
862 } else if (!strcmp(token, "noprefix")) {
863 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
864 } else if (!strncmp(token, "release_agent=", 14)) {
865 /* Specifying two release agents is forbidden */
866 if (opts->release_agent)
867 return -EINVAL;
868 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
869 if (!opts->release_agent)
870 return -ENOMEM;
871 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
872 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
873 } else {
874 struct cgroup_subsys *ss;
875 int i;
876 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
877 ss = subsys[i];
878 if (!strcmp(token, ss->name)) {
8bab8dde
PM
879 if (!ss->disabled)
880 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
881 break;
882 }
883 }
884 if (i == CGROUP_SUBSYS_COUNT)
885 return -ENOENT;
886 }
887 }
888
889 /* We can't have an empty hierarchy */
890 if (!opts->subsys_bits)
891 return -EINVAL;
892
893 return 0;
894}
895
896static int cgroup_remount(struct super_block *sb, int *flags, char *data)
897{
898 int ret = 0;
899 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 900 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
901 struct cgroup_sb_opts opts;
902
bd89aabc 903 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
904 mutex_lock(&cgroup_mutex);
905
906 /* See what subsystems are wanted */
907 ret = parse_cgroupfs_options(data, &opts);
908 if (ret)
909 goto out_unlock;
910
911 /* Don't allow flags to change at remount */
912 if (opts.flags != root->flags) {
913 ret = -EINVAL;
914 goto out_unlock;
915 }
916
917 ret = rebind_subsystems(root, opts.subsys_bits);
918
919 /* (re)populate subsystem files */
920 if (!ret)
bd89aabc 921 cgroup_populate_dir(cgrp);
ddbcc7e8 922
81a6a5cd
PM
923 if (opts.release_agent)
924 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 925 out_unlock:
66bdc9cf 926 kfree(opts.release_agent);
ddbcc7e8 927 mutex_unlock(&cgroup_mutex);
bd89aabc 928 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
929 return ret;
930}
931
932static struct super_operations cgroup_ops = {
933 .statfs = simple_statfs,
934 .drop_inode = generic_delete_inode,
935 .show_options = cgroup_show_options,
936 .remount_fs = cgroup_remount,
937};
938
cc31edce
PM
939static void init_cgroup_housekeeping(struct cgroup *cgrp)
940{
941 INIT_LIST_HEAD(&cgrp->sibling);
942 INIT_LIST_HEAD(&cgrp->children);
943 INIT_LIST_HEAD(&cgrp->css_sets);
944 INIT_LIST_HEAD(&cgrp->release_list);
945 init_rwsem(&cgrp->pids_mutex);
946}
ddbcc7e8
PM
947static void init_cgroup_root(struct cgroupfs_root *root)
948{
bd89aabc 949 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
950 INIT_LIST_HEAD(&root->subsys_list);
951 INIT_LIST_HEAD(&root->root_list);
952 root->number_of_cgroups = 1;
bd89aabc
PM
953 cgrp->root = root;
954 cgrp->top_cgroup = cgrp;
cc31edce 955 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
956}
957
958static int cgroup_test_super(struct super_block *sb, void *data)
959{
960 struct cgroupfs_root *new = data;
961 struct cgroupfs_root *root = sb->s_fs_info;
962
963 /* First check subsystems */
964 if (new->subsys_bits != root->subsys_bits)
965 return 0;
966
967 /* Next check flags */
968 if (new->flags != root->flags)
969 return 0;
970
971 return 1;
972}
973
974static int cgroup_set_super(struct super_block *sb, void *data)
975{
976 int ret;
977 struct cgroupfs_root *root = data;
978
979 ret = set_anon_super(sb, NULL);
980 if (ret)
981 return ret;
982
983 sb->s_fs_info = root;
984 root->sb = sb;
985
986 sb->s_blocksize = PAGE_CACHE_SIZE;
987 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
988 sb->s_magic = CGROUP_SUPER_MAGIC;
989 sb->s_op = &cgroup_ops;
990
991 return 0;
992}
993
994static int cgroup_get_rootdir(struct super_block *sb)
995{
996 struct inode *inode =
997 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
998 struct dentry *dentry;
999
1000 if (!inode)
1001 return -ENOMEM;
1002
ddbcc7e8
PM
1003 inode->i_fop = &simple_dir_operations;
1004 inode->i_op = &cgroup_dir_inode_operations;
1005 /* directories start off with i_nlink == 2 (for "." entry) */
1006 inc_nlink(inode);
1007 dentry = d_alloc_root(inode);
1008 if (!dentry) {
1009 iput(inode);
1010 return -ENOMEM;
1011 }
1012 sb->s_root = dentry;
1013 return 0;
1014}
1015
1016static int cgroup_get_sb(struct file_system_type *fs_type,
1017 int flags, const char *unused_dev_name,
1018 void *data, struct vfsmount *mnt)
1019{
1020 struct cgroup_sb_opts opts;
1021 int ret = 0;
1022 struct super_block *sb;
1023 struct cgroupfs_root *root;
28fd5dfc 1024 struct list_head tmp_cg_links;
ddbcc7e8
PM
1025
1026 /* First find the desired set of subsystems */
1027 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd 1028 if (ret) {
66bdc9cf 1029 kfree(opts.release_agent);
ddbcc7e8 1030 return ret;
81a6a5cd 1031 }
ddbcc7e8
PM
1032
1033 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738 1034 if (!root) {
66bdc9cf 1035 kfree(opts.release_agent);
ddbcc7e8 1036 return -ENOMEM;
f7770738 1037 }
ddbcc7e8
PM
1038
1039 init_cgroup_root(root);
1040 root->subsys_bits = opts.subsys_bits;
1041 root->flags = opts.flags;
81a6a5cd
PM
1042 if (opts.release_agent) {
1043 strcpy(root->release_agent_path, opts.release_agent);
1044 kfree(opts.release_agent);
1045 }
ddbcc7e8
PM
1046
1047 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
1048
1049 if (IS_ERR(sb)) {
1050 kfree(root);
1051 return PTR_ERR(sb);
1052 }
1053
1054 if (sb->s_fs_info != root) {
1055 /* Reusing an existing superblock */
1056 BUG_ON(sb->s_root == NULL);
1057 kfree(root);
1058 root = NULL;
1059 } else {
1060 /* New superblock */
c12f65d4 1061 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1062 struct inode *inode;
28fd5dfc 1063 int i;
ddbcc7e8
PM
1064
1065 BUG_ON(sb->s_root != NULL);
1066
1067 ret = cgroup_get_rootdir(sb);
1068 if (ret)
1069 goto drop_new_super;
817929ec 1070 inode = sb->s_root->d_inode;
ddbcc7e8 1071
817929ec 1072 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1073 mutex_lock(&cgroup_mutex);
1074
817929ec
PM
1075 /*
1076 * We're accessing css_set_count without locking
1077 * css_set_lock here, but that's OK - it can only be
1078 * increased by someone holding cgroup_lock, and
1079 * that's us. The worst that can happen is that we
1080 * have some link structures left over
1081 */
1082 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1083 if (ret) {
1084 mutex_unlock(&cgroup_mutex);
1085 mutex_unlock(&inode->i_mutex);
1086 goto drop_new_super;
1087 }
1088
ddbcc7e8
PM
1089 ret = rebind_subsystems(root, root->subsys_bits);
1090 if (ret == -EBUSY) {
1091 mutex_unlock(&cgroup_mutex);
817929ec 1092 mutex_unlock(&inode->i_mutex);
20ca9b3f 1093 goto free_cg_links;
ddbcc7e8
PM
1094 }
1095
1096 /* EBUSY should be the only error here */
1097 BUG_ON(ret);
1098
1099 list_add(&root->root_list, &roots);
817929ec 1100 root_count++;
ddbcc7e8 1101
c12f65d4 1102 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1103 root->top_cgroup.dentry = sb->s_root;
1104
817929ec
PM
1105 /* Link the top cgroup in this hierarchy into all
1106 * the css_set objects */
1107 write_lock(&css_set_lock);
28fd5dfc
LZ
1108 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1109 struct hlist_head *hhead = &css_set_table[i];
1110 struct hlist_node *node;
817929ec 1111 struct css_set *cg;
28fd5dfc 1112
c12f65d4
LZ
1113 hlist_for_each_entry(cg, node, hhead, hlist)
1114 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1115 }
817929ec
PM
1116 write_unlock(&css_set_lock);
1117
1118 free_cg_links(&tmp_cg_links);
1119
c12f65d4
LZ
1120 BUG_ON(!list_empty(&root_cgrp->sibling));
1121 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1122 BUG_ON(root->number_of_cgroups != 1);
1123
c12f65d4 1124 cgroup_populate_dir(root_cgrp);
817929ec 1125 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1126 mutex_unlock(&cgroup_mutex);
1127 }
1128
a3ec947c
SB
1129 simple_set_mnt(mnt, sb);
1130 return 0;
ddbcc7e8 1131
20ca9b3f
LZ
1132 free_cg_links:
1133 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1134 drop_new_super:
1135 up_write(&sb->s_umount);
1136 deactivate_super(sb);
1137 return ret;
1138}
1139
1140static void cgroup_kill_sb(struct super_block *sb) {
1141 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1142 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1143 int ret;
71cbb949
KM
1144 struct cg_cgroup_link *link;
1145 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1146
1147 BUG_ON(!root);
1148
1149 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1150 BUG_ON(!list_empty(&cgrp->children));
1151 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1152
1153 mutex_lock(&cgroup_mutex);
1154
1155 /* Rebind all subsystems back to the default hierarchy */
1156 ret = rebind_subsystems(root, 0);
1157 /* Shouldn't be able to fail ... */
1158 BUG_ON(ret);
1159
817929ec
PM
1160 /*
1161 * Release all the links from css_sets to this hierarchy's
1162 * root cgroup
1163 */
1164 write_lock(&css_set_lock);
71cbb949
KM
1165
1166 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1167 cgrp_link_list) {
817929ec 1168 list_del(&link->cg_link_list);
bd89aabc 1169 list_del(&link->cgrp_link_list);
817929ec
PM
1170 kfree(link);
1171 }
1172 write_unlock(&css_set_lock);
1173
839ec545
PM
1174 if (!list_empty(&root->root_list)) {
1175 list_del(&root->root_list);
1176 root_count--;
1177 }
e5f6a860 1178
ddbcc7e8
PM
1179 mutex_unlock(&cgroup_mutex);
1180
ddbcc7e8 1181 kill_litter_super(sb);
67e055d1 1182 kfree(root);
ddbcc7e8
PM
1183}
1184
1185static struct file_system_type cgroup_fs_type = {
1186 .name = "cgroup",
1187 .get_sb = cgroup_get_sb,
1188 .kill_sb = cgroup_kill_sb,
1189};
1190
bd89aabc 1191static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1192{
1193 return dentry->d_fsdata;
1194}
1195
1196static inline struct cftype *__d_cft(struct dentry *dentry)
1197{
1198 return dentry->d_fsdata;
1199}
1200
a043e3b2
LZ
1201/**
1202 * cgroup_path - generate the path of a cgroup
1203 * @cgrp: the cgroup in question
1204 * @buf: the buffer to write the path into
1205 * @buflen: the length of the buffer
1206 *
a47295e6
PM
1207 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1208 * reference. Writes path of cgroup into buf. Returns 0 on success,
1209 * -errno on error.
ddbcc7e8 1210 */
bd89aabc 1211int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1212{
1213 char *start;
a47295e6 1214 struct dentry *dentry = rcu_dereference(cgrp->dentry);
ddbcc7e8 1215
a47295e6 1216 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1217 /*
1218 * Inactive subsystems have no dentry for their root
1219 * cgroup
1220 */
1221 strcpy(buf, "/");
1222 return 0;
1223 }
1224
1225 start = buf + buflen;
1226
1227 *--start = '\0';
1228 for (;;) {
a47295e6 1229 int len = dentry->d_name.len;
ddbcc7e8
PM
1230 if ((start -= len) < buf)
1231 return -ENAMETOOLONG;
bd89aabc
PM
1232 memcpy(start, cgrp->dentry->d_name.name, len);
1233 cgrp = cgrp->parent;
1234 if (!cgrp)
ddbcc7e8 1235 break;
a47295e6 1236 dentry = rcu_dereference(cgrp->dentry);
bd89aabc 1237 if (!cgrp->parent)
ddbcc7e8
PM
1238 continue;
1239 if (--start < buf)
1240 return -ENAMETOOLONG;
1241 *start = '/';
1242 }
1243 memmove(buf, start, buf + buflen - start);
1244 return 0;
1245}
1246
bbcb81d0
PM
1247/*
1248 * Return the first subsystem attached to a cgroup's hierarchy, and
1249 * its subsystem id.
1250 */
1251
bd89aabc 1252static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1253 struct cgroup_subsys_state **css, int *subsys_id)
1254{
bd89aabc 1255 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1256 const struct cgroup_subsys *test_ss;
1257 BUG_ON(list_empty(&root->subsys_list));
1258 test_ss = list_entry(root->subsys_list.next,
1259 struct cgroup_subsys, sibling);
1260 if (css) {
bd89aabc 1261 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1262 BUG_ON(!*css);
1263 }
1264 if (subsys_id)
1265 *subsys_id = test_ss->subsys_id;
1266}
1267
a043e3b2
LZ
1268/**
1269 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1270 * @cgrp: the cgroup the task is attaching to
1271 * @tsk: the task to be attached
bbcb81d0 1272 *
a043e3b2
LZ
1273 * Call holding cgroup_mutex. May take task_lock of
1274 * the task 'tsk' during call.
bbcb81d0 1275 */
956db3ca 1276int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1277{
1278 int retval = 0;
1279 struct cgroup_subsys *ss;
bd89aabc 1280 struct cgroup *oldcgrp;
77efecd9 1281 struct css_set *cg;
817929ec 1282 struct css_set *newcg;
bd89aabc 1283 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1284 int subsys_id;
1285
bd89aabc 1286 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1287
1288 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1289 oldcgrp = task_cgroup(tsk, subsys_id);
1290 if (cgrp == oldcgrp)
bbcb81d0
PM
1291 return 0;
1292
1293 for_each_subsys(root, ss) {
1294 if (ss->can_attach) {
bd89aabc 1295 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1296 if (retval)
bbcb81d0 1297 return retval;
bbcb81d0
PM
1298 }
1299 }
1300
77efecd9
LJ
1301 task_lock(tsk);
1302 cg = tsk->cgroups;
1303 get_css_set(cg);
1304 task_unlock(tsk);
817929ec
PM
1305 /*
1306 * Locate or allocate a new css_set for this task,
1307 * based on its final set of cgroups
1308 */
bd89aabc 1309 newcg = find_css_set(cg, cgrp);
77efecd9 1310 put_css_set(cg);
e18f6318 1311 if (!newcg)
817929ec 1312 return -ENOMEM;
817929ec 1313
bbcb81d0
PM
1314 task_lock(tsk);
1315 if (tsk->flags & PF_EXITING) {
1316 task_unlock(tsk);
817929ec 1317 put_css_set(newcg);
bbcb81d0
PM
1318 return -ESRCH;
1319 }
817929ec 1320 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1321 task_unlock(tsk);
1322
817929ec
PM
1323 /* Update the css_set linked lists if we're using them */
1324 write_lock(&css_set_lock);
1325 if (!list_empty(&tsk->cg_list)) {
1326 list_del(&tsk->cg_list);
1327 list_add(&tsk->cg_list, &newcg->tasks);
1328 }
1329 write_unlock(&css_set_lock);
1330
bbcb81d0 1331 for_each_subsys(root, ss) {
e18f6318 1332 if (ss->attach)
bd89aabc 1333 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1334 }
bd89aabc 1335 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1336 synchronize_rcu();
817929ec 1337 put_css_set(cg);
ec64f515
KH
1338
1339 /*
1340 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1341 * is no longer empty.
1342 */
1343 cgroup_wakeup_rmdir_waiters(cgrp);
bbcb81d0
PM
1344 return 0;
1345}
1346
1347/*
af351026
PM
1348 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1349 * held. May take task_lock of task
bbcb81d0 1350 */
af351026 1351static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1352{
bbcb81d0 1353 struct task_struct *tsk;
c69e8d9c 1354 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1355 int ret;
1356
bbcb81d0
PM
1357 if (pid) {
1358 rcu_read_lock();
73507f33 1359 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1360 if (!tsk || tsk->flags & PF_EXITING) {
1361 rcu_read_unlock();
1362 return -ESRCH;
1363 }
bbcb81d0 1364
c69e8d9c
DH
1365 tcred = __task_cred(tsk);
1366 if (cred->euid &&
1367 cred->euid != tcred->uid &&
1368 cred->euid != tcred->suid) {
1369 rcu_read_unlock();
bbcb81d0
PM
1370 return -EACCES;
1371 }
c69e8d9c
DH
1372 get_task_struct(tsk);
1373 rcu_read_unlock();
bbcb81d0
PM
1374 } else {
1375 tsk = current;
1376 get_task_struct(tsk);
1377 }
1378
956db3ca 1379 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1380 put_task_struct(tsk);
1381 return ret;
1382}
1383
af351026
PM
1384static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1385{
1386 int ret;
1387 if (!cgroup_lock_live_group(cgrp))
1388 return -ENODEV;
1389 ret = attach_task_by_pid(cgrp, pid);
1390 cgroup_unlock();
1391 return ret;
1392}
1393
ddbcc7e8 1394/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1395enum cgroup_filetype {
1396 FILE_ROOT,
1397 FILE_DIR,
1398 FILE_TASKLIST,
81a6a5cd 1399 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1400 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1401};
1402
e788e066
PM
1403/**
1404 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1405 * @cgrp: the cgroup to be checked for liveness
1406 *
84eea842
PM
1407 * On success, returns true; the lock should be later released with
1408 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1409 */
84eea842 1410bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1411{
1412 mutex_lock(&cgroup_mutex);
1413 if (cgroup_is_removed(cgrp)) {
1414 mutex_unlock(&cgroup_mutex);
1415 return false;
1416 }
1417 return true;
1418}
1419
1420static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1421 const char *buffer)
1422{
1423 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1424 if (!cgroup_lock_live_group(cgrp))
1425 return -ENODEV;
1426 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1427 cgroup_unlock();
e788e066
PM
1428 return 0;
1429}
1430
1431static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1432 struct seq_file *seq)
1433{
1434 if (!cgroup_lock_live_group(cgrp))
1435 return -ENODEV;
1436 seq_puts(seq, cgrp->root->release_agent_path);
1437 seq_putc(seq, '\n');
84eea842 1438 cgroup_unlock();
e788e066
PM
1439 return 0;
1440}
1441
84eea842
PM
1442/* A buffer size big enough for numbers or short strings */
1443#define CGROUP_LOCAL_BUFFER_SIZE 64
1444
e73d2c61 1445static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1446 struct file *file,
1447 const char __user *userbuf,
1448 size_t nbytes, loff_t *unused_ppos)
355e0c48 1449{
84eea842 1450 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1451 int retval = 0;
355e0c48
PM
1452 char *end;
1453
1454 if (!nbytes)
1455 return -EINVAL;
1456 if (nbytes >= sizeof(buffer))
1457 return -E2BIG;
1458 if (copy_from_user(buffer, userbuf, nbytes))
1459 return -EFAULT;
1460
1461 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1462 strstrip(buffer);
e73d2c61
PM
1463 if (cft->write_u64) {
1464 u64 val = simple_strtoull(buffer, &end, 0);
1465 if (*end)
1466 return -EINVAL;
1467 retval = cft->write_u64(cgrp, cft, val);
1468 } else {
1469 s64 val = simple_strtoll(buffer, &end, 0);
1470 if (*end)
1471 return -EINVAL;
1472 retval = cft->write_s64(cgrp, cft, val);
1473 }
355e0c48
PM
1474 if (!retval)
1475 retval = nbytes;
1476 return retval;
1477}
1478
db3b1497
PM
1479static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1480 struct file *file,
1481 const char __user *userbuf,
1482 size_t nbytes, loff_t *unused_ppos)
1483{
84eea842 1484 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1485 int retval = 0;
1486 size_t max_bytes = cft->max_write_len;
1487 char *buffer = local_buffer;
1488
1489 if (!max_bytes)
1490 max_bytes = sizeof(local_buffer) - 1;
1491 if (nbytes >= max_bytes)
1492 return -E2BIG;
1493 /* Allocate a dynamic buffer if we need one */
1494 if (nbytes >= sizeof(local_buffer)) {
1495 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1496 if (buffer == NULL)
1497 return -ENOMEM;
1498 }
5a3eb9f6
LZ
1499 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1500 retval = -EFAULT;
1501 goto out;
1502 }
db3b1497
PM
1503
1504 buffer[nbytes] = 0; /* nul-terminate */
1505 strstrip(buffer);
1506 retval = cft->write_string(cgrp, cft, buffer);
1507 if (!retval)
1508 retval = nbytes;
5a3eb9f6 1509out:
db3b1497
PM
1510 if (buffer != local_buffer)
1511 kfree(buffer);
1512 return retval;
1513}
1514
ddbcc7e8
PM
1515static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1516 size_t nbytes, loff_t *ppos)
1517{
1518 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1519 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1520
75139b82 1521 if (cgroup_is_removed(cgrp))
ddbcc7e8 1522 return -ENODEV;
355e0c48 1523 if (cft->write)
bd89aabc 1524 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1525 if (cft->write_u64 || cft->write_s64)
1526 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1527 if (cft->write_string)
1528 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1529 if (cft->trigger) {
1530 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1531 return ret ? ret : nbytes;
1532 }
355e0c48 1533 return -EINVAL;
ddbcc7e8
PM
1534}
1535
f4c753b7
PM
1536static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1537 struct file *file,
1538 char __user *buf, size_t nbytes,
1539 loff_t *ppos)
ddbcc7e8 1540{
84eea842 1541 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1542 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1543 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1544
1545 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1546}
1547
e73d2c61
PM
1548static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1549 struct file *file,
1550 char __user *buf, size_t nbytes,
1551 loff_t *ppos)
1552{
84eea842 1553 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1554 s64 val = cft->read_s64(cgrp, cft);
1555 int len = sprintf(tmp, "%lld\n", (long long) val);
1556
1557 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1558}
1559
ddbcc7e8
PM
1560static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1561 size_t nbytes, loff_t *ppos)
1562{
1563 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1564 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1565
75139b82 1566 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
1567 return -ENODEV;
1568
1569 if (cft->read)
bd89aabc 1570 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1571 if (cft->read_u64)
1572 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1573 if (cft->read_s64)
1574 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1575 return -EINVAL;
1576}
1577
91796569
PM
1578/*
1579 * seqfile ops/methods for returning structured data. Currently just
1580 * supports string->u64 maps, but can be extended in future.
1581 */
1582
1583struct cgroup_seqfile_state {
1584 struct cftype *cft;
1585 struct cgroup *cgroup;
1586};
1587
1588static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1589{
1590 struct seq_file *sf = cb->state;
1591 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1592}
1593
1594static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1595{
1596 struct cgroup_seqfile_state *state = m->private;
1597 struct cftype *cft = state->cft;
29486df3
SH
1598 if (cft->read_map) {
1599 struct cgroup_map_cb cb = {
1600 .fill = cgroup_map_add,
1601 .state = m,
1602 };
1603 return cft->read_map(state->cgroup, cft, &cb);
1604 }
1605 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1606}
1607
96930a63 1608static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
1609{
1610 struct seq_file *seq = file->private_data;
1611 kfree(seq->private);
1612 return single_release(inode, file);
1613}
1614
1615static struct file_operations cgroup_seqfile_operations = {
1616 .read = seq_read,
e788e066 1617 .write = cgroup_file_write,
91796569
PM
1618 .llseek = seq_lseek,
1619 .release = cgroup_seqfile_release,
1620};
1621
ddbcc7e8
PM
1622static int cgroup_file_open(struct inode *inode, struct file *file)
1623{
1624 int err;
1625 struct cftype *cft;
1626
1627 err = generic_file_open(inode, file);
1628 if (err)
1629 return err;
ddbcc7e8 1630 cft = __d_cft(file->f_dentry);
75139b82 1631
29486df3 1632 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1633 struct cgroup_seqfile_state *state =
1634 kzalloc(sizeof(*state), GFP_USER);
1635 if (!state)
1636 return -ENOMEM;
1637 state->cft = cft;
1638 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1639 file->f_op = &cgroup_seqfile_operations;
1640 err = single_open(file, cgroup_seqfile_show, state);
1641 if (err < 0)
1642 kfree(state);
1643 } else if (cft->open)
ddbcc7e8
PM
1644 err = cft->open(inode, file);
1645 else
1646 err = 0;
1647
1648 return err;
1649}
1650
1651static int cgroup_file_release(struct inode *inode, struct file *file)
1652{
1653 struct cftype *cft = __d_cft(file->f_dentry);
1654 if (cft->release)
1655 return cft->release(inode, file);
1656 return 0;
1657}
1658
1659/*
1660 * cgroup_rename - Only allow simple rename of directories in place.
1661 */
1662static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1663 struct inode *new_dir, struct dentry *new_dentry)
1664{
1665 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1666 return -ENOTDIR;
1667 if (new_dentry->d_inode)
1668 return -EEXIST;
1669 if (old_dir != new_dir)
1670 return -EIO;
1671 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1672}
1673
1674static struct file_operations cgroup_file_operations = {
1675 .read = cgroup_file_read,
1676 .write = cgroup_file_write,
1677 .llseek = generic_file_llseek,
1678 .open = cgroup_file_open,
1679 .release = cgroup_file_release,
1680};
1681
1682static struct inode_operations cgroup_dir_inode_operations = {
1683 .lookup = simple_lookup,
1684 .mkdir = cgroup_mkdir,
1685 .rmdir = cgroup_rmdir,
1686 .rename = cgroup_rename,
1687};
1688
1689static int cgroup_create_file(struct dentry *dentry, int mode,
1690 struct super_block *sb)
1691{
3ba13d17 1692 static const struct dentry_operations cgroup_dops = {
ddbcc7e8
PM
1693 .d_iput = cgroup_diput,
1694 };
1695
1696 struct inode *inode;
1697
1698 if (!dentry)
1699 return -ENOENT;
1700 if (dentry->d_inode)
1701 return -EEXIST;
1702
1703 inode = cgroup_new_inode(mode, sb);
1704 if (!inode)
1705 return -ENOMEM;
1706
1707 if (S_ISDIR(mode)) {
1708 inode->i_op = &cgroup_dir_inode_operations;
1709 inode->i_fop = &simple_dir_operations;
1710
1711 /* start off with i_nlink == 2 (for "." entry) */
1712 inc_nlink(inode);
1713
1714 /* start with the directory inode held, so that we can
1715 * populate it without racing with another mkdir */
817929ec 1716 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1717 } else if (S_ISREG(mode)) {
1718 inode->i_size = 0;
1719 inode->i_fop = &cgroup_file_operations;
1720 }
1721 dentry->d_op = &cgroup_dops;
1722 d_instantiate(dentry, inode);
1723 dget(dentry); /* Extra count - pin the dentry in core */
1724 return 0;
1725}
1726
1727/*
a043e3b2
LZ
1728 * cgroup_create_dir - create a directory for an object.
1729 * @cgrp: the cgroup we create the directory for. It must have a valid
1730 * ->parent field. And we are going to fill its ->dentry field.
1731 * @dentry: dentry of the new cgroup
1732 * @mode: mode to set on new directory.
ddbcc7e8 1733 */
bd89aabc 1734static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1735 int mode)
1736{
1737 struct dentry *parent;
1738 int error = 0;
1739
bd89aabc
PM
1740 parent = cgrp->parent->dentry;
1741 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1742 if (!error) {
bd89aabc 1743 dentry->d_fsdata = cgrp;
ddbcc7e8 1744 inc_nlink(parent->d_inode);
a47295e6 1745 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
1746 dget(dentry);
1747 }
1748 dput(dentry);
1749
1750 return error;
1751}
1752
bd89aabc 1753int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1754 struct cgroup_subsys *subsys,
1755 const struct cftype *cft)
1756{
bd89aabc 1757 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1758 struct dentry *dentry;
1759 int error;
1760
1761 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1762 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1763 strcpy(name, subsys->name);
1764 strcat(name, ".");
1765 }
1766 strcat(name, cft->name);
1767 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1768 dentry = lookup_one_len(name, dir, strlen(name));
1769 if (!IS_ERR(dentry)) {
1770 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1771 cgrp->root->sb);
ddbcc7e8
PM
1772 if (!error)
1773 dentry->d_fsdata = (void *)cft;
1774 dput(dentry);
1775 } else
1776 error = PTR_ERR(dentry);
1777 return error;
1778}
1779
bd89aabc 1780int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1781 struct cgroup_subsys *subsys,
1782 const struct cftype cft[],
1783 int count)
1784{
1785 int i, err;
1786 for (i = 0; i < count; i++) {
bd89aabc 1787 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1788 if (err)
1789 return err;
1790 }
1791 return 0;
1792}
1793
a043e3b2
LZ
1794/**
1795 * cgroup_task_count - count the number of tasks in a cgroup.
1796 * @cgrp: the cgroup in question
1797 *
1798 * Return the number of tasks in the cgroup.
1799 */
bd89aabc 1800int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1801{
1802 int count = 0;
71cbb949 1803 struct cg_cgroup_link *link;
817929ec
PM
1804
1805 read_lock(&css_set_lock);
71cbb949 1806 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 1807 count += atomic_read(&link->cg->refcount);
817929ec
PM
1808 }
1809 read_unlock(&css_set_lock);
bbcb81d0
PM
1810 return count;
1811}
1812
817929ec
PM
1813/*
1814 * Advance a list_head iterator. The iterator should be positioned at
1815 * the start of a css_set
1816 */
bd89aabc 1817static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1818 struct cgroup_iter *it)
1819{
1820 struct list_head *l = it->cg_link;
1821 struct cg_cgroup_link *link;
1822 struct css_set *cg;
1823
1824 /* Advance to the next non-empty css_set */
1825 do {
1826 l = l->next;
bd89aabc 1827 if (l == &cgrp->css_sets) {
817929ec
PM
1828 it->cg_link = NULL;
1829 return;
1830 }
bd89aabc 1831 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1832 cg = link->cg;
1833 } while (list_empty(&cg->tasks));
1834 it->cg_link = l;
1835 it->task = cg->tasks.next;
1836}
1837
31a7df01
CW
1838/*
1839 * To reduce the fork() overhead for systems that are not actually
1840 * using their cgroups capability, we don't maintain the lists running
1841 * through each css_set to its tasks until we see the list actually
1842 * used - in other words after the first call to cgroup_iter_start().
1843 *
1844 * The tasklist_lock is not held here, as do_each_thread() and
1845 * while_each_thread() are protected by RCU.
1846 */
3df91fe3 1847static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1848{
1849 struct task_struct *p, *g;
1850 write_lock(&css_set_lock);
1851 use_task_css_set_links = 1;
1852 do_each_thread(g, p) {
1853 task_lock(p);
0e04388f
LZ
1854 /*
1855 * We should check if the process is exiting, otherwise
1856 * it will race with cgroup_exit() in that the list
1857 * entry won't be deleted though the process has exited.
1858 */
1859 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1860 list_add(&p->cg_list, &p->cgroups->tasks);
1861 task_unlock(p);
1862 } while_each_thread(g, p);
1863 write_unlock(&css_set_lock);
1864}
1865
bd89aabc 1866void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1867{
1868 /*
1869 * The first time anyone tries to iterate across a cgroup,
1870 * we need to enable the list linking each css_set to its
1871 * tasks, and fix up all existing tasks.
1872 */
31a7df01
CW
1873 if (!use_task_css_set_links)
1874 cgroup_enable_task_cg_lists();
1875
817929ec 1876 read_lock(&css_set_lock);
bd89aabc
PM
1877 it->cg_link = &cgrp->css_sets;
1878 cgroup_advance_iter(cgrp, it);
817929ec
PM
1879}
1880
bd89aabc 1881struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1882 struct cgroup_iter *it)
1883{
1884 struct task_struct *res;
1885 struct list_head *l = it->task;
2019f634 1886 struct cg_cgroup_link *link;
817929ec
PM
1887
1888 /* If the iterator cg is NULL, we have no tasks */
1889 if (!it->cg_link)
1890 return NULL;
1891 res = list_entry(l, struct task_struct, cg_list);
1892 /* Advance iterator to find next entry */
1893 l = l->next;
2019f634
LJ
1894 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1895 if (l == &link->cg->tasks) {
817929ec
PM
1896 /* We reached the end of this task list - move on to
1897 * the next cg_cgroup_link */
bd89aabc 1898 cgroup_advance_iter(cgrp, it);
817929ec
PM
1899 } else {
1900 it->task = l;
1901 }
1902 return res;
1903}
1904
bd89aabc 1905void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1906{
1907 read_unlock(&css_set_lock);
1908}
1909
31a7df01
CW
1910static inline int started_after_time(struct task_struct *t1,
1911 struct timespec *time,
1912 struct task_struct *t2)
1913{
1914 int start_diff = timespec_compare(&t1->start_time, time);
1915 if (start_diff > 0) {
1916 return 1;
1917 } else if (start_diff < 0) {
1918 return 0;
1919 } else {
1920 /*
1921 * Arbitrarily, if two processes started at the same
1922 * time, we'll say that the lower pointer value
1923 * started first. Note that t2 may have exited by now
1924 * so this may not be a valid pointer any longer, but
1925 * that's fine - it still serves to distinguish
1926 * between two tasks started (effectively) simultaneously.
1927 */
1928 return t1 > t2;
1929 }
1930}
1931
1932/*
1933 * This function is a callback from heap_insert() and is used to order
1934 * the heap.
1935 * In this case we order the heap in descending task start time.
1936 */
1937static inline int started_after(void *p1, void *p2)
1938{
1939 struct task_struct *t1 = p1;
1940 struct task_struct *t2 = p2;
1941 return started_after_time(t1, &t2->start_time, t2);
1942}
1943
1944/**
1945 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1946 * @scan: struct cgroup_scanner containing arguments for the scan
1947 *
1948 * Arguments include pointers to callback functions test_task() and
1949 * process_task().
1950 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1951 * and if it returns true, call process_task() for it also.
1952 * The test_task pointer may be NULL, meaning always true (select all tasks).
1953 * Effectively duplicates cgroup_iter_{start,next,end}()
1954 * but does not lock css_set_lock for the call to process_task().
1955 * The struct cgroup_scanner may be embedded in any structure of the caller's
1956 * creation.
1957 * It is guaranteed that process_task() will act on every task that
1958 * is a member of the cgroup for the duration of this call. This
1959 * function may or may not call process_task() for tasks that exit
1960 * or move to a different cgroup during the call, or are forked or
1961 * move into the cgroup during the call.
1962 *
1963 * Note that test_task() may be called with locks held, and may in some
1964 * situations be called multiple times for the same task, so it should
1965 * be cheap.
1966 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1967 * pre-allocated and will be used for heap operations (and its "gt" member will
1968 * be overwritten), else a temporary heap will be used (allocation of which
1969 * may cause this function to fail).
1970 */
1971int cgroup_scan_tasks(struct cgroup_scanner *scan)
1972{
1973 int retval, i;
1974 struct cgroup_iter it;
1975 struct task_struct *p, *dropped;
1976 /* Never dereference latest_task, since it's not refcounted */
1977 struct task_struct *latest_task = NULL;
1978 struct ptr_heap tmp_heap;
1979 struct ptr_heap *heap;
1980 struct timespec latest_time = { 0, 0 };
1981
1982 if (scan->heap) {
1983 /* The caller supplied our heap and pre-allocated its memory */
1984 heap = scan->heap;
1985 heap->gt = &started_after;
1986 } else {
1987 /* We need to allocate our own heap memory */
1988 heap = &tmp_heap;
1989 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1990 if (retval)
1991 /* cannot allocate the heap */
1992 return retval;
1993 }
1994
1995 again:
1996 /*
1997 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1998 * to determine which are of interest, and using the scanner's
1999 * "process_task" callback to process any of them that need an update.
2000 * Since we don't want to hold any locks during the task updates,
2001 * gather tasks to be processed in a heap structure.
2002 * The heap is sorted by descending task start time.
2003 * If the statically-sized heap fills up, we overflow tasks that
2004 * started later, and in future iterations only consider tasks that
2005 * started after the latest task in the previous pass. This
2006 * guarantees forward progress and that we don't miss any tasks.
2007 */
2008 heap->size = 0;
2009 cgroup_iter_start(scan->cg, &it);
2010 while ((p = cgroup_iter_next(scan->cg, &it))) {
2011 /*
2012 * Only affect tasks that qualify per the caller's callback,
2013 * if he provided one
2014 */
2015 if (scan->test_task && !scan->test_task(p, scan))
2016 continue;
2017 /*
2018 * Only process tasks that started after the last task
2019 * we processed
2020 */
2021 if (!started_after_time(p, &latest_time, latest_task))
2022 continue;
2023 dropped = heap_insert(heap, p);
2024 if (dropped == NULL) {
2025 /*
2026 * The new task was inserted; the heap wasn't
2027 * previously full
2028 */
2029 get_task_struct(p);
2030 } else if (dropped != p) {
2031 /*
2032 * The new task was inserted, and pushed out a
2033 * different task
2034 */
2035 get_task_struct(p);
2036 put_task_struct(dropped);
2037 }
2038 /*
2039 * Else the new task was newer than anything already in
2040 * the heap and wasn't inserted
2041 */
2042 }
2043 cgroup_iter_end(scan->cg, &it);
2044
2045 if (heap->size) {
2046 for (i = 0; i < heap->size; i++) {
4fe91d51 2047 struct task_struct *q = heap->ptrs[i];
31a7df01 2048 if (i == 0) {
4fe91d51
PJ
2049 latest_time = q->start_time;
2050 latest_task = q;
31a7df01
CW
2051 }
2052 /* Process the task per the caller's callback */
4fe91d51
PJ
2053 scan->process_task(q, scan);
2054 put_task_struct(q);
31a7df01
CW
2055 }
2056 /*
2057 * If we had to process any tasks at all, scan again
2058 * in case some of them were in the middle of forking
2059 * children that didn't get processed.
2060 * Not the most efficient way to do it, but it avoids
2061 * having to take callback_mutex in the fork path
2062 */
2063 goto again;
2064 }
2065 if (heap == &tmp_heap)
2066 heap_free(&tmp_heap);
2067 return 0;
2068}
2069
bbcb81d0
PM
2070/*
2071 * Stuff for reading the 'tasks' file.
2072 *
2073 * Reading this file can return large amounts of data if a cgroup has
2074 * *lots* of attached tasks. So it may need several calls to read(),
2075 * but we cannot guarantee that the information we produce is correct
2076 * unless we produce it entirely atomically.
2077 *
bbcb81d0 2078 */
bbcb81d0
PM
2079
2080/*
2081 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2082 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2083 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2084 * read section, so the css_set can't go away, and is
2085 * immutable after creation.
2086 */
bd89aabc 2087static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0 2088{
e7b80bb6 2089 int n = 0, pid;
817929ec
PM
2090 struct cgroup_iter it;
2091 struct task_struct *tsk;
bd89aabc
PM
2092 cgroup_iter_start(cgrp, &it);
2093 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2094 if (unlikely(n == npids))
2095 break;
e7b80bb6
G
2096 pid = task_pid_vnr(tsk);
2097 if (pid > 0)
2098 pidarray[n++] = pid;
817929ec 2099 }
bd89aabc 2100 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2101 return n;
2102}
2103
846c7bb0 2104/**
a043e3b2 2105 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2106 * @stats: cgroupstats to fill information into
2107 * @dentry: A dentry entry belonging to the cgroup for which stats have
2108 * been requested.
a043e3b2
LZ
2109 *
2110 * Build and fill cgroupstats so that taskstats can export it to user
2111 * space.
846c7bb0
BS
2112 */
2113int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2114{
2115 int ret = -EINVAL;
bd89aabc 2116 struct cgroup *cgrp;
846c7bb0
BS
2117 struct cgroup_iter it;
2118 struct task_struct *tsk;
33d283be 2119
846c7bb0 2120 /*
33d283be
LZ
2121 * Validate dentry by checking the superblock operations,
2122 * and make sure it's a directory.
846c7bb0 2123 */
33d283be
LZ
2124 if (dentry->d_sb->s_op != &cgroup_ops ||
2125 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2126 goto err;
2127
2128 ret = 0;
bd89aabc 2129 cgrp = dentry->d_fsdata;
846c7bb0 2130
bd89aabc
PM
2131 cgroup_iter_start(cgrp, &it);
2132 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2133 switch (tsk->state) {
2134 case TASK_RUNNING:
2135 stats->nr_running++;
2136 break;
2137 case TASK_INTERRUPTIBLE:
2138 stats->nr_sleeping++;
2139 break;
2140 case TASK_UNINTERRUPTIBLE:
2141 stats->nr_uninterruptible++;
2142 break;
2143 case TASK_STOPPED:
2144 stats->nr_stopped++;
2145 break;
2146 default:
2147 if (delayacct_is_task_waiting_on_io(tsk))
2148 stats->nr_io_wait++;
2149 break;
2150 }
2151 }
bd89aabc 2152 cgroup_iter_end(cgrp, &it);
846c7bb0 2153
846c7bb0
BS
2154err:
2155 return ret;
2156}
2157
bbcb81d0
PM
2158static int cmppid(const void *a, const void *b)
2159{
2160 return *(pid_t *)a - *(pid_t *)b;
2161}
2162
cc31edce 2163
bbcb81d0 2164/*
cc31edce
PM
2165 * seq_file methods for the "tasks" file. The seq_file position is the
2166 * next pid to display; the seq_file iterator is a pointer to the pid
2167 * in the cgroup->tasks_pids array.
bbcb81d0 2168 */
cc31edce
PM
2169
2170static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2171{
cc31edce
PM
2172 /*
2173 * Initially we receive a position value that corresponds to
2174 * one more than the last pid shown (or 0 on the first call or
2175 * after a seek to the start). Use a binary-search to find the
2176 * next pid to display, if any
2177 */
2178 struct cgroup *cgrp = s->private;
2179 int index = 0, pid = *pos;
2180 int *iter;
2181
2182 down_read(&cgrp->pids_mutex);
2183 if (pid) {
2184 int end = cgrp->pids_length;
20777766 2185
cc31edce
PM
2186 while (index < end) {
2187 int mid = (index + end) / 2;
2188 if (cgrp->tasks_pids[mid] == pid) {
2189 index = mid;
2190 break;
2191 } else if (cgrp->tasks_pids[mid] <= pid)
2192 index = mid + 1;
2193 else
2194 end = mid;
2195 }
2196 }
2197 /* If we're off the end of the array, we're done */
2198 if (index >= cgrp->pids_length)
2199 return NULL;
2200 /* Update the abstract position to be the actual pid that we found */
2201 iter = cgrp->tasks_pids + index;
2202 *pos = *iter;
2203 return iter;
2204}
2205
2206static void cgroup_tasks_stop(struct seq_file *s, void *v)
2207{
2208 struct cgroup *cgrp = s->private;
2209 up_read(&cgrp->pids_mutex);
2210}
2211
2212static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2213{
2214 struct cgroup *cgrp = s->private;
2215 int *p = v;
2216 int *end = cgrp->tasks_pids + cgrp->pids_length;
2217
2218 /*
2219 * Advance to the next pid in the array. If this goes off the
2220 * end, we're done
2221 */
2222 p++;
2223 if (p >= end) {
2224 return NULL;
2225 } else {
2226 *pos = *p;
2227 return p;
2228 }
2229}
2230
2231static int cgroup_tasks_show(struct seq_file *s, void *v)
2232{
2233 return seq_printf(s, "%d\n", *(int *)v);
2234}
bbcb81d0 2235
cc31edce
PM
2236static struct seq_operations cgroup_tasks_seq_operations = {
2237 .start = cgroup_tasks_start,
2238 .stop = cgroup_tasks_stop,
2239 .next = cgroup_tasks_next,
2240 .show = cgroup_tasks_show,
2241};
2242
2243static void release_cgroup_pid_array(struct cgroup *cgrp)
2244{
2245 down_write(&cgrp->pids_mutex);
2246 BUG_ON(!cgrp->pids_use_count);
2247 if (!--cgrp->pids_use_count) {
2248 kfree(cgrp->tasks_pids);
2249 cgrp->tasks_pids = NULL;
2250 cgrp->pids_length = 0;
2251 }
2252 up_write(&cgrp->pids_mutex);
bbcb81d0
PM
2253}
2254
cc31edce
PM
2255static int cgroup_tasks_release(struct inode *inode, struct file *file)
2256{
2257 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2258
2259 if (!(file->f_mode & FMODE_READ))
2260 return 0;
2261
2262 release_cgroup_pid_array(cgrp);
2263 return seq_release(inode, file);
2264}
2265
2266static struct file_operations cgroup_tasks_operations = {
2267 .read = seq_read,
2268 .llseek = seq_lseek,
2269 .write = cgroup_file_write,
2270 .release = cgroup_tasks_release,
2271};
2272
bbcb81d0 2273/*
cc31edce 2274 * Handle an open on 'tasks' file. Prepare an array containing the
bbcb81d0 2275 * process id's of tasks currently attached to the cgroup being opened.
bbcb81d0 2276 */
cc31edce 2277
bbcb81d0
PM
2278static int cgroup_tasks_open(struct inode *unused, struct file *file)
2279{
bd89aabc 2280 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2281 pid_t *pidarray;
2282 int npids;
cc31edce 2283 int retval;
bbcb81d0 2284
cc31edce 2285 /* Nothing to do for write-only files */
bbcb81d0
PM
2286 if (!(file->f_mode & FMODE_READ))
2287 return 0;
2288
bbcb81d0
PM
2289 /*
2290 * If cgroup gets more users after we read count, we won't have
2291 * enough space - tough. This race is indistinguishable to the
2292 * caller from the case that the additional cgroup users didn't
2293 * show up until sometime later on.
2294 */
bd89aabc 2295 npids = cgroup_task_count(cgrp);
cc31edce
PM
2296 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2297 if (!pidarray)
2298 return -ENOMEM;
2299 npids = pid_array_load(pidarray, npids, cgrp);
2300 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
bbcb81d0 2301
cc31edce
PM
2302 /*
2303 * Store the array in the cgroup, freeing the old
2304 * array if necessary
2305 */
2306 down_write(&cgrp->pids_mutex);
2307 kfree(cgrp->tasks_pids);
2308 cgrp->tasks_pids = pidarray;
2309 cgrp->pids_length = npids;
2310 cgrp->pids_use_count++;
2311 up_write(&cgrp->pids_mutex);
2312
2313 file->f_op = &cgroup_tasks_operations;
2314
2315 retval = seq_open(file, &cgroup_tasks_seq_operations);
2316 if (retval) {
2317 release_cgroup_pid_array(cgrp);
2318 return retval;
bbcb81d0 2319 }
cc31edce 2320 ((struct seq_file *)file->private_data)->private = cgrp;
bbcb81d0
PM
2321 return 0;
2322}
2323
bd89aabc 2324static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2325 struct cftype *cft)
2326{
bd89aabc 2327 return notify_on_release(cgrp);
81a6a5cd
PM
2328}
2329
6379c106
PM
2330static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2331 struct cftype *cft,
2332 u64 val)
2333{
2334 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2335 if (val)
2336 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2337 else
2338 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2339 return 0;
2340}
2341
bbcb81d0
PM
2342/*
2343 * for the common functions, 'private' gives the type of file
2344 */
81a6a5cd
PM
2345static struct cftype files[] = {
2346 {
2347 .name = "tasks",
2348 .open = cgroup_tasks_open,
af351026 2349 .write_u64 = cgroup_tasks_write,
81a6a5cd
PM
2350 .release = cgroup_tasks_release,
2351 .private = FILE_TASKLIST,
2352 },
2353
2354 {
2355 .name = "notify_on_release",
f4c753b7 2356 .read_u64 = cgroup_read_notify_on_release,
6379c106 2357 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd
PM
2358 .private = FILE_NOTIFY_ON_RELEASE,
2359 },
81a6a5cd
PM
2360};
2361
2362static struct cftype cft_release_agent = {
2363 .name = "release_agent",
e788e066
PM
2364 .read_seq_string = cgroup_release_agent_show,
2365 .write_string = cgroup_release_agent_write,
2366 .max_write_len = PATH_MAX,
81a6a5cd 2367 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2368};
2369
bd89aabc 2370static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2371{
2372 int err;
2373 struct cgroup_subsys *ss;
2374
2375 /* First clear out any existing files */
bd89aabc 2376 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2377
bd89aabc 2378 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2379 if (err < 0)
2380 return err;
2381
bd89aabc
PM
2382 if (cgrp == cgrp->top_cgroup) {
2383 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2384 return err;
2385 }
2386
bd89aabc
PM
2387 for_each_subsys(cgrp->root, ss) {
2388 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2389 return err;
2390 }
38460b48
KH
2391 /* This cgroup is ready now */
2392 for_each_subsys(cgrp->root, ss) {
2393 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2394 /*
2395 * Update id->css pointer and make this css visible from
2396 * CSS ID functions. This pointer will be dereferened
2397 * from RCU-read-side without locks.
2398 */
2399 if (css->id)
2400 rcu_assign_pointer(css->id->css, css);
2401 }
ddbcc7e8
PM
2402
2403 return 0;
2404}
2405
2406static void init_cgroup_css(struct cgroup_subsys_state *css,
2407 struct cgroup_subsys *ss,
bd89aabc 2408 struct cgroup *cgrp)
ddbcc7e8 2409{
bd89aabc 2410 css->cgroup = cgrp;
e7c5ec91 2411 atomic_set(&css->refcnt, 1);
ddbcc7e8 2412 css->flags = 0;
38460b48 2413 css->id = NULL;
bd89aabc 2414 if (cgrp == dummytop)
ddbcc7e8 2415 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2416 BUG_ON(cgrp->subsys[ss->subsys_id]);
2417 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2418}
2419
999cd8a4
PM
2420static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2421{
2422 /* We need to take each hierarchy_mutex in a consistent order */
2423 int i;
2424
2425 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2426 struct cgroup_subsys *ss = subsys[i];
2427 if (ss->root == root)
cfebe563 2428 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
2429 }
2430}
2431
2432static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2433{
2434 int i;
2435
2436 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2437 struct cgroup_subsys *ss = subsys[i];
2438 if (ss->root == root)
2439 mutex_unlock(&ss->hierarchy_mutex);
2440 }
2441}
2442
ddbcc7e8 2443/*
a043e3b2
LZ
2444 * cgroup_create - create a cgroup
2445 * @parent: cgroup that will be parent of the new cgroup
2446 * @dentry: dentry of the new cgroup
2447 * @mode: mode to set on new inode
ddbcc7e8 2448 *
a043e3b2 2449 * Must be called with the mutex on the parent inode held
ddbcc7e8 2450 */
ddbcc7e8
PM
2451static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2452 int mode)
2453{
bd89aabc 2454 struct cgroup *cgrp;
ddbcc7e8
PM
2455 struct cgroupfs_root *root = parent->root;
2456 int err = 0;
2457 struct cgroup_subsys *ss;
2458 struct super_block *sb = root->sb;
2459
bd89aabc
PM
2460 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2461 if (!cgrp)
ddbcc7e8
PM
2462 return -ENOMEM;
2463
2464 /* Grab a reference on the superblock so the hierarchy doesn't
2465 * get deleted on unmount if there are child cgroups. This
2466 * can be done outside cgroup_mutex, since the sb can't
2467 * disappear while someone has an open control file on the
2468 * fs */
2469 atomic_inc(&sb->s_active);
2470
2471 mutex_lock(&cgroup_mutex);
2472
cc31edce 2473 init_cgroup_housekeeping(cgrp);
ddbcc7e8 2474
bd89aabc
PM
2475 cgrp->parent = parent;
2476 cgrp->root = parent->root;
2477 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2478
b6abdb0e
LZ
2479 if (notify_on_release(parent))
2480 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2481
ddbcc7e8 2482 for_each_subsys(root, ss) {
bd89aabc 2483 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2484 if (IS_ERR(css)) {
2485 err = PTR_ERR(css);
2486 goto err_destroy;
2487 }
bd89aabc 2488 init_cgroup_css(css, ss, cgrp);
38460b48
KH
2489 if (ss->use_id)
2490 if (alloc_css_id(ss, parent, cgrp))
2491 goto err_destroy;
2492 /* At error, ->destroy() callback has to free assigned ID. */
ddbcc7e8
PM
2493 }
2494
999cd8a4 2495 cgroup_lock_hierarchy(root);
bd89aabc 2496 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 2497 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2498 root->number_of_cgroups++;
2499
bd89aabc 2500 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2501 if (err < 0)
2502 goto err_remove;
2503
2504 /* The cgroup directory was pre-locked for us */
bd89aabc 2505 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2506
bd89aabc 2507 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2508 /* If err < 0, we have a half-filled directory - oh well ;) */
2509
2510 mutex_unlock(&cgroup_mutex);
bd89aabc 2511 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2512
2513 return 0;
2514
2515 err_remove:
2516
baef99a0 2517 cgroup_lock_hierarchy(root);
bd89aabc 2518 list_del(&cgrp->sibling);
baef99a0 2519 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2520 root->number_of_cgroups--;
2521
2522 err_destroy:
2523
2524 for_each_subsys(root, ss) {
bd89aabc
PM
2525 if (cgrp->subsys[ss->subsys_id])
2526 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2527 }
2528
2529 mutex_unlock(&cgroup_mutex);
2530
2531 /* Release the reference count that we took on the superblock */
2532 deactivate_super(sb);
2533
bd89aabc 2534 kfree(cgrp);
ddbcc7e8
PM
2535 return err;
2536}
2537
2538static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2539{
2540 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2541
2542 /* the vfs holds inode->i_mutex already */
2543 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2544}
2545
55b6fd01 2546static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2547{
2548 /* Check the reference count on each subsystem. Since we
2549 * already established that there are no tasks in the
e7c5ec91 2550 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
2551 * be no outstanding references, so the subsystem is safe to
2552 * destroy. We scan across all subsystems rather than using
2553 * the per-hierarchy linked list of mounted subsystems since
2554 * we can be called via check_for_release() with no
2555 * synchronization other than RCU, and the subsystem linked
2556 * list isn't RCU-safe */
2557 int i;
2558 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2559 struct cgroup_subsys *ss = subsys[i];
2560 struct cgroup_subsys_state *css;
2561 /* Skip subsystems not in this hierarchy */
bd89aabc 2562 if (ss->root != cgrp->root)
81a6a5cd 2563 continue;
bd89aabc 2564 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2565 /* When called from check_for_release() it's possible
2566 * that by this point the cgroup has been removed
2567 * and the css deleted. But a false-positive doesn't
2568 * matter, since it can only happen if the cgroup
2569 * has been deleted and hence no longer needs the
2570 * release agent to be called anyway. */
e7c5ec91 2571 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 2572 return 1;
81a6a5cd
PM
2573 }
2574 return 0;
2575}
2576
e7c5ec91
PM
2577/*
2578 * Atomically mark all (or else none) of the cgroup's CSS objects as
2579 * CSS_REMOVED. Return true on success, or false if the cgroup has
2580 * busy subsystems. Call with cgroup_mutex held
2581 */
2582
2583static int cgroup_clear_css_refs(struct cgroup *cgrp)
2584{
2585 struct cgroup_subsys *ss;
2586 unsigned long flags;
2587 bool failed = false;
2588 local_irq_save(flags);
2589 for_each_subsys(cgrp->root, ss) {
2590 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2591 int refcnt;
804b3c28 2592 while (1) {
e7c5ec91
PM
2593 /* We can only remove a CSS with a refcnt==1 */
2594 refcnt = atomic_read(&css->refcnt);
2595 if (refcnt > 1) {
2596 failed = true;
2597 goto done;
2598 }
2599 BUG_ON(!refcnt);
2600 /*
2601 * Drop the refcnt to 0 while we check other
2602 * subsystems. This will cause any racing
2603 * css_tryget() to spin until we set the
2604 * CSS_REMOVED bits or abort
2605 */
804b3c28
PM
2606 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2607 break;
2608 cpu_relax();
2609 }
e7c5ec91
PM
2610 }
2611 done:
2612 for_each_subsys(cgrp->root, ss) {
2613 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2614 if (failed) {
2615 /*
2616 * Restore old refcnt if we previously managed
2617 * to clear it from 1 to 0
2618 */
2619 if (!atomic_read(&css->refcnt))
2620 atomic_set(&css->refcnt, 1);
2621 } else {
2622 /* Commit the fact that the CSS is removed */
2623 set_bit(CSS_REMOVED, &css->flags);
2624 }
2625 }
2626 local_irq_restore(flags);
2627 return !failed;
2628}
2629
ddbcc7e8
PM
2630static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2631{
bd89aabc 2632 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2633 struct dentry *d;
2634 struct cgroup *parent;
ec64f515
KH
2635 DEFINE_WAIT(wait);
2636 int ret;
ddbcc7e8
PM
2637
2638 /* the vfs holds both inode->i_mutex already */
ec64f515 2639again:
ddbcc7e8 2640 mutex_lock(&cgroup_mutex);
bd89aabc 2641 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2642 mutex_unlock(&cgroup_mutex);
2643 return -EBUSY;
2644 }
bd89aabc 2645 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2646 mutex_unlock(&cgroup_mutex);
2647 return -EBUSY;
2648 }
3fa59dfb 2649 mutex_unlock(&cgroup_mutex);
a043e3b2 2650
4fca88c8 2651 /*
a043e3b2
LZ
2652 * Call pre_destroy handlers of subsys. Notify subsystems
2653 * that rmdir() request comes.
4fca88c8 2654 */
ec64f515
KH
2655 ret = cgroup_call_pre_destroy(cgrp);
2656 if (ret)
2657 return ret;
ddbcc7e8 2658
3fa59dfb
KH
2659 mutex_lock(&cgroup_mutex);
2660 parent = cgrp->parent;
ec64f515 2661 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
ddbcc7e8
PM
2662 mutex_unlock(&cgroup_mutex);
2663 return -EBUSY;
2664 }
ec64f515
KH
2665 /*
2666 * css_put/get is provided for subsys to grab refcnt to css. In typical
2667 * case, subsystem has no reference after pre_destroy(). But, under
2668 * hierarchy management, some *temporal* refcnt can be hold.
2669 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
2670 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
2671 * is called when css_put() is called and refcnt goes down to 0.
2672 */
2673 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2674 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
2675
2676 if (!cgroup_clear_css_refs(cgrp)) {
2677 mutex_unlock(&cgroup_mutex);
2678 schedule();
2679 finish_wait(&cgroup_rmdir_waitq, &wait);
2680 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2681 if (signal_pending(current))
2682 return -EINTR;
2683 goto again;
2684 }
2685 /* NO css_tryget() can success after here. */
2686 finish_wait(&cgroup_rmdir_waitq, &wait);
2687 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 2688
81a6a5cd 2689 spin_lock(&release_list_lock);
bd89aabc
PM
2690 set_bit(CGRP_REMOVED, &cgrp->flags);
2691 if (!list_empty(&cgrp->release_list))
2692 list_del(&cgrp->release_list);
81a6a5cd 2693 spin_unlock(&release_list_lock);
999cd8a4
PM
2694
2695 cgroup_lock_hierarchy(cgrp->root);
2696 /* delete this cgroup from parent->children */
bd89aabc 2697 list_del(&cgrp->sibling);
999cd8a4
PM
2698 cgroup_unlock_hierarchy(cgrp->root);
2699
bd89aabc
PM
2700 spin_lock(&cgrp->dentry->d_lock);
2701 d = dget(cgrp->dentry);
ddbcc7e8
PM
2702 spin_unlock(&d->d_lock);
2703
2704 cgroup_d_remove_dir(d);
2705 dput(d);
ddbcc7e8 2706
bd89aabc 2707 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2708 check_for_release(parent);
2709
ddbcc7e8 2710 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2711 return 0;
2712}
2713
06a11920 2714static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 2715{
ddbcc7e8 2716 struct cgroup_subsys_state *css;
cfe36bde
DC
2717
2718 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2719
2720 /* Create the top cgroup state for this subsystem */
33a68ac1 2721 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
2722 ss->root = &rootnode;
2723 css = ss->create(ss, dummytop);
2724 /* We don't handle early failures gracefully */
2725 BUG_ON(IS_ERR(css));
2726 init_cgroup_css(css, ss, dummytop);
2727
e8d55fde 2728 /* Update the init_css_set to contain a subsys
817929ec 2729 * pointer to this state - since the subsystem is
e8d55fde
LZ
2730 * newly registered, all tasks and hence the
2731 * init_css_set is in the subsystem's top cgroup. */
2732 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
2733
2734 need_forkexit_callback |= ss->fork || ss->exit;
2735
e8d55fde
LZ
2736 /* At system boot, before all subsystems have been
2737 * registered, no tasks have been forked, so we don't
2738 * need to invoke fork callbacks here. */
2739 BUG_ON(!list_empty(&init_task.tasks));
2740
999cd8a4 2741 mutex_init(&ss->hierarchy_mutex);
cfebe563 2742 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8
PM
2743 ss->active = 1;
2744}
2745
2746/**
a043e3b2
LZ
2747 * cgroup_init_early - cgroup initialization at system boot
2748 *
2749 * Initialize cgroups at system boot, and initialize any
2750 * subsystems that request early init.
ddbcc7e8
PM
2751 */
2752int __init cgroup_init_early(void)
2753{
2754 int i;
146aa1bd 2755 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
2756 INIT_LIST_HEAD(&init_css_set.cg_links);
2757 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 2758 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 2759 css_set_count = 1;
ddbcc7e8 2760 init_cgroup_root(&rootnode);
817929ec
PM
2761 root_count = 1;
2762 init_task.cgroups = &init_css_set;
2763
2764 init_css_set_link.cg = &init_css_set;
bd89aabc 2765 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2766 &rootnode.top_cgroup.css_sets);
2767 list_add(&init_css_set_link.cg_link_list,
2768 &init_css_set.cg_links);
ddbcc7e8 2769
472b1053
LZ
2770 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2771 INIT_HLIST_HEAD(&css_set_table[i]);
2772
ddbcc7e8
PM
2773 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2774 struct cgroup_subsys *ss = subsys[i];
2775
2776 BUG_ON(!ss->name);
2777 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2778 BUG_ON(!ss->create);
2779 BUG_ON(!ss->destroy);
2780 if (ss->subsys_id != i) {
cfe36bde 2781 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2782 ss->name, ss->subsys_id);
2783 BUG();
2784 }
2785
2786 if (ss->early_init)
2787 cgroup_init_subsys(ss);
2788 }
2789 return 0;
2790}
2791
2792/**
a043e3b2
LZ
2793 * cgroup_init - cgroup initialization
2794 *
2795 * Register cgroup filesystem and /proc file, and initialize
2796 * any subsystems that didn't request early init.
ddbcc7e8
PM
2797 */
2798int __init cgroup_init(void)
2799{
2800 int err;
2801 int i;
472b1053 2802 struct hlist_head *hhead;
a424316c
PM
2803
2804 err = bdi_init(&cgroup_backing_dev_info);
2805 if (err)
2806 return err;
ddbcc7e8
PM
2807
2808 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2809 struct cgroup_subsys *ss = subsys[i];
2810 if (!ss->early_init)
2811 cgroup_init_subsys(ss);
38460b48
KH
2812 if (ss->use_id)
2813 cgroup_subsys_init_idr(ss);
ddbcc7e8
PM
2814 }
2815
472b1053
LZ
2816 /* Add init_css_set to the hash table */
2817 hhead = css_set_hash(init_css_set.subsys);
2818 hlist_add_head(&init_css_set.hlist, hhead);
2819
ddbcc7e8
PM
2820 err = register_filesystem(&cgroup_fs_type);
2821 if (err < 0)
2822 goto out;
2823
46ae220b 2824 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 2825
ddbcc7e8 2826out:
a424316c
PM
2827 if (err)
2828 bdi_destroy(&cgroup_backing_dev_info);
2829
ddbcc7e8
PM
2830 return err;
2831}
b4f48b63 2832
a424316c
PM
2833/*
2834 * proc_cgroup_show()
2835 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2836 * - Used for /proc/<pid>/cgroup.
2837 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2838 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2839 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2840 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2841 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2842 * cgroup to top_cgroup.
2843 */
2844
2845/* TODO: Use a proper seq_file iterator */
2846static int proc_cgroup_show(struct seq_file *m, void *v)
2847{
2848 struct pid *pid;
2849 struct task_struct *tsk;
2850 char *buf;
2851 int retval;
2852 struct cgroupfs_root *root;
2853
2854 retval = -ENOMEM;
2855 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2856 if (!buf)
2857 goto out;
2858
2859 retval = -ESRCH;
2860 pid = m->private;
2861 tsk = get_pid_task(pid, PIDTYPE_PID);
2862 if (!tsk)
2863 goto out_free;
2864
2865 retval = 0;
2866
2867 mutex_lock(&cgroup_mutex);
2868
e5f6a860 2869 for_each_active_root(root) {
a424316c 2870 struct cgroup_subsys *ss;
bd89aabc 2871 struct cgroup *cgrp;
a424316c
PM
2872 int subsys_id;
2873 int count = 0;
2874
b6c3006d 2875 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2876 for_each_subsys(root, ss)
2877 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2878 seq_putc(m, ':');
2879 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2880 cgrp = task_cgroup(tsk, subsys_id);
2881 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2882 if (retval < 0)
2883 goto out_unlock;
2884 seq_puts(m, buf);
2885 seq_putc(m, '\n');
2886 }
2887
2888out_unlock:
2889 mutex_unlock(&cgroup_mutex);
2890 put_task_struct(tsk);
2891out_free:
2892 kfree(buf);
2893out:
2894 return retval;
2895}
2896
2897static int cgroup_open(struct inode *inode, struct file *file)
2898{
2899 struct pid *pid = PROC_I(inode)->pid;
2900 return single_open(file, proc_cgroup_show, pid);
2901}
2902
2903struct file_operations proc_cgroup_operations = {
2904 .open = cgroup_open,
2905 .read = seq_read,
2906 .llseek = seq_lseek,
2907 .release = single_release,
2908};
2909
2910/* Display information about each subsystem and each hierarchy */
2911static int proc_cgroupstats_show(struct seq_file *m, void *v)
2912{
2913 int i;
a424316c 2914
8bab8dde 2915 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2916 mutex_lock(&cgroup_mutex);
a424316c
PM
2917 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2918 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2919 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2920 ss->name, ss->root->subsys_bits,
8bab8dde 2921 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2922 }
2923 mutex_unlock(&cgroup_mutex);
2924 return 0;
2925}
2926
2927static int cgroupstats_open(struct inode *inode, struct file *file)
2928{
9dce07f1 2929 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2930}
2931
2932static struct file_operations proc_cgroupstats_operations = {
2933 .open = cgroupstats_open,
2934 .read = seq_read,
2935 .llseek = seq_lseek,
2936 .release = single_release,
2937};
2938
b4f48b63
PM
2939/**
2940 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2941 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2942 *
2943 * Description: A task inherits its parent's cgroup at fork().
2944 *
2945 * A pointer to the shared css_set was automatically copied in
2946 * fork.c by dup_task_struct(). However, we ignore that copy, since
2947 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2948 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2949 * have already changed current->cgroups, allowing the previously
2950 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2951 *
2952 * At the point that cgroup_fork() is called, 'current' is the parent
2953 * task, and the passed argument 'child' points to the child task.
2954 */
2955void cgroup_fork(struct task_struct *child)
2956{
817929ec
PM
2957 task_lock(current);
2958 child->cgroups = current->cgroups;
2959 get_css_set(child->cgroups);
2960 task_unlock(current);
2961 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2962}
2963
2964/**
a043e3b2
LZ
2965 * cgroup_fork_callbacks - run fork callbacks
2966 * @child: the new task
2967 *
2968 * Called on a new task very soon before adding it to the
2969 * tasklist. No need to take any locks since no-one can
2970 * be operating on this task.
b4f48b63
PM
2971 */
2972void cgroup_fork_callbacks(struct task_struct *child)
2973{
2974 if (need_forkexit_callback) {
2975 int i;
2976 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2977 struct cgroup_subsys *ss = subsys[i];
2978 if (ss->fork)
2979 ss->fork(ss, child);
2980 }
2981 }
2982}
2983
817929ec 2984/**
a043e3b2
LZ
2985 * cgroup_post_fork - called on a new task after adding it to the task list
2986 * @child: the task in question
2987 *
2988 * Adds the task to the list running through its css_set if necessary.
2989 * Has to be after the task is visible on the task list in case we race
2990 * with the first call to cgroup_iter_start() - to guarantee that the
2991 * new task ends up on its list.
2992 */
817929ec
PM
2993void cgroup_post_fork(struct task_struct *child)
2994{
2995 if (use_task_css_set_links) {
2996 write_lock(&css_set_lock);
b12b533f 2997 task_lock(child);
817929ec
PM
2998 if (list_empty(&child->cg_list))
2999 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 3000 task_unlock(child);
817929ec
PM
3001 write_unlock(&css_set_lock);
3002 }
3003}
b4f48b63
PM
3004/**
3005 * cgroup_exit - detach cgroup from exiting task
3006 * @tsk: pointer to task_struct of exiting process
a043e3b2 3007 * @run_callback: run exit callbacks?
b4f48b63
PM
3008 *
3009 * Description: Detach cgroup from @tsk and release it.
3010 *
3011 * Note that cgroups marked notify_on_release force every task in
3012 * them to take the global cgroup_mutex mutex when exiting.
3013 * This could impact scaling on very large systems. Be reluctant to
3014 * use notify_on_release cgroups where very high task exit scaling
3015 * is required on large systems.
3016 *
3017 * the_top_cgroup_hack:
3018 *
3019 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3020 *
3021 * We call cgroup_exit() while the task is still competent to
3022 * handle notify_on_release(), then leave the task attached to the
3023 * root cgroup in each hierarchy for the remainder of its exit.
3024 *
3025 * To do this properly, we would increment the reference count on
3026 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3027 * code we would add a second cgroup function call, to drop that
3028 * reference. This would just create an unnecessary hot spot on
3029 * the top_cgroup reference count, to no avail.
3030 *
3031 * Normally, holding a reference to a cgroup without bumping its
3032 * count is unsafe. The cgroup could go away, or someone could
3033 * attach us to a different cgroup, decrementing the count on
3034 * the first cgroup that we never incremented. But in this case,
3035 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
3036 * which wards off any cgroup_attach_task() attempts, or task is a failed
3037 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
3038 */
3039void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3040{
3041 int i;
817929ec 3042 struct css_set *cg;
b4f48b63
PM
3043
3044 if (run_callbacks && need_forkexit_callback) {
3045 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3046 struct cgroup_subsys *ss = subsys[i];
3047 if (ss->exit)
3048 ss->exit(ss, tsk);
3049 }
3050 }
817929ec
PM
3051
3052 /*
3053 * Unlink from the css_set task list if necessary.
3054 * Optimistically check cg_list before taking
3055 * css_set_lock
3056 */
3057 if (!list_empty(&tsk->cg_list)) {
3058 write_lock(&css_set_lock);
3059 if (!list_empty(&tsk->cg_list))
3060 list_del(&tsk->cg_list);
3061 write_unlock(&css_set_lock);
3062 }
3063
b4f48b63
PM
3064 /* Reassign the task to the init_css_set. */
3065 task_lock(tsk);
817929ec
PM
3066 cg = tsk->cgroups;
3067 tsk->cgroups = &init_css_set;
b4f48b63 3068 task_unlock(tsk);
817929ec 3069 if (cg)
81a6a5cd 3070 put_css_set_taskexit(cg);
b4f48b63 3071}
697f4161
PM
3072
3073/**
a043e3b2
LZ
3074 * cgroup_clone - clone the cgroup the given subsystem is attached to
3075 * @tsk: the task to be moved
3076 * @subsys: the given subsystem
e885dcde 3077 * @nodename: the name for the new cgroup
a043e3b2
LZ
3078 *
3079 * Duplicate the current cgroup in the hierarchy that the given
3080 * subsystem is attached to, and move this task into the new
3081 * child.
697f4161 3082 */
e885dcde
SH
3083int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3084 char *nodename)
697f4161
PM
3085{
3086 struct dentry *dentry;
3087 int ret = 0;
697f4161
PM
3088 struct cgroup *parent, *child;
3089 struct inode *inode;
3090 struct css_set *cg;
3091 struct cgroupfs_root *root;
3092 struct cgroup_subsys *ss;
3093
3094 /* We shouldn't be called by an unregistered subsystem */
3095 BUG_ON(!subsys->active);
3096
3097 /* First figure out what hierarchy and cgroup we're dealing
3098 * with, and pin them so we can drop cgroup_mutex */
3099 mutex_lock(&cgroup_mutex);
3100 again:
3101 root = subsys->root;
3102 if (root == &rootnode) {
697f4161
PM
3103 mutex_unlock(&cgroup_mutex);
3104 return 0;
3105 }
697f4161 3106
697f4161 3107 /* Pin the hierarchy */
1404f065 3108 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
3109 /* We race with the final deactivate_super() */
3110 mutex_unlock(&cgroup_mutex);
3111 return 0;
3112 }
697f4161 3113
817929ec 3114 /* Keep the cgroup alive */
1404f065
LZ
3115 task_lock(tsk);
3116 parent = task_cgroup(tsk, subsys->subsys_id);
3117 cg = tsk->cgroups;
817929ec 3118 get_css_set(cg);
104cbd55 3119 task_unlock(tsk);
1404f065 3120
697f4161
PM
3121 mutex_unlock(&cgroup_mutex);
3122
3123 /* Now do the VFS work to create a cgroup */
3124 inode = parent->dentry->d_inode;
3125
3126 /* Hold the parent directory mutex across this operation to
3127 * stop anyone else deleting the new cgroup */
3128 mutex_lock(&inode->i_mutex);
3129 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3130 if (IS_ERR(dentry)) {
3131 printk(KERN_INFO
cfe36bde 3132 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
3133 PTR_ERR(dentry));
3134 ret = PTR_ERR(dentry);
3135 goto out_release;
3136 }
3137
3138 /* Create the cgroup directory, which also creates the cgroup */
75139b82 3139 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 3140 child = __d_cgrp(dentry);
697f4161
PM
3141 dput(dentry);
3142 if (ret) {
3143 printk(KERN_INFO
3144 "Failed to create cgroup %s: %d\n", nodename,
3145 ret);
3146 goto out_release;
3147 }
3148
697f4161
PM
3149 /* The cgroup now exists. Retake cgroup_mutex and check
3150 * that we're still in the same state that we thought we
3151 * were. */
3152 mutex_lock(&cgroup_mutex);
3153 if ((root != subsys->root) ||
3154 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3155 /* Aargh, we raced ... */
3156 mutex_unlock(&inode->i_mutex);
817929ec 3157 put_css_set(cg);
697f4161 3158
1404f065 3159 deactivate_super(root->sb);
697f4161
PM
3160 /* The cgroup is still accessible in the VFS, but
3161 * we're not going to try to rmdir() it at this
3162 * point. */
3163 printk(KERN_INFO
3164 "Race in cgroup_clone() - leaking cgroup %s\n",
3165 nodename);
3166 goto again;
3167 }
3168
3169 /* do any required auto-setup */
3170 for_each_subsys(root, ss) {
3171 if (ss->post_clone)
3172 ss->post_clone(ss, child);
3173 }
3174
3175 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 3176 ret = cgroup_attach_task(child, tsk);
697f4161
PM
3177 mutex_unlock(&cgroup_mutex);
3178
3179 out_release:
3180 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
3181
3182 mutex_lock(&cgroup_mutex);
817929ec 3183 put_css_set(cg);
81a6a5cd 3184 mutex_unlock(&cgroup_mutex);
1404f065 3185 deactivate_super(root->sb);
697f4161
PM
3186 return ret;
3187}
3188
a043e3b2 3189/**
313e924c 3190 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 3191 * @cgrp: the cgroup in question
313e924c 3192 * @task: the task in question
a043e3b2 3193 *
313e924c
GN
3194 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3195 * hierarchy.
697f4161
PM
3196 *
3197 * If we are sending in dummytop, then presumably we are creating
3198 * the top cgroup in the subsystem.
3199 *
3200 * Called only by the ns (nsproxy) cgroup.
3201 */
313e924c 3202int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
3203{
3204 int ret;
3205 struct cgroup *target;
3206 int subsys_id;
3207
bd89aabc 3208 if (cgrp == dummytop)
697f4161
PM
3209 return 1;
3210
bd89aabc 3211 get_first_subsys(cgrp, NULL, &subsys_id);
313e924c 3212 target = task_cgroup(task, subsys_id);
bd89aabc
PM
3213 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3214 cgrp = cgrp->parent;
3215 ret = (cgrp == target);
697f4161
PM
3216 return ret;
3217}
81a6a5cd 3218
bd89aabc 3219static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3220{
3221 /* All of these checks rely on RCU to keep the cgroup
3222 * structure alive */
bd89aabc
PM
3223 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3224 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3225 /* Control Group is currently removeable. If it's not
3226 * already queued for a userspace notification, queue
3227 * it now */
3228 int need_schedule_work = 0;
3229 spin_lock(&release_list_lock);
bd89aabc
PM
3230 if (!cgroup_is_removed(cgrp) &&
3231 list_empty(&cgrp->release_list)) {
3232 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3233 need_schedule_work = 1;
3234 }
3235 spin_unlock(&release_list_lock);
3236 if (need_schedule_work)
3237 schedule_work(&release_agent_work);
3238 }
3239}
3240
3241void __css_put(struct cgroup_subsys_state *css)
3242{
bd89aabc 3243 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3244 rcu_read_lock();
ec64f515
KH
3245 if (atomic_dec_return(&css->refcnt) == 1) {
3246 if (notify_on_release(cgrp)) {
3247 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3248 check_for_release(cgrp);
3249 }
3250 cgroup_wakeup_rmdir_waiters(cgrp);
81a6a5cd
PM
3251 }
3252 rcu_read_unlock();
3253}
3254
3255/*
3256 * Notify userspace when a cgroup is released, by running the
3257 * configured release agent with the name of the cgroup (path
3258 * relative to the root of cgroup file system) as the argument.
3259 *
3260 * Most likely, this user command will try to rmdir this cgroup.
3261 *
3262 * This races with the possibility that some other task will be
3263 * attached to this cgroup before it is removed, or that some other
3264 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3265 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3266 * unused, and this cgroup will be reprieved from its death sentence,
3267 * to continue to serve a useful existence. Next time it's released,
3268 * we will get notified again, if it still has 'notify_on_release' set.
3269 *
3270 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3271 * means only wait until the task is successfully execve()'d. The
3272 * separate release agent task is forked by call_usermodehelper(),
3273 * then control in this thread returns here, without waiting for the
3274 * release agent task. We don't bother to wait because the caller of
3275 * this routine has no use for the exit status of the release agent
3276 * task, so no sense holding our caller up for that.
81a6a5cd 3277 */
81a6a5cd
PM
3278static void cgroup_release_agent(struct work_struct *work)
3279{
3280 BUG_ON(work != &release_agent_work);
3281 mutex_lock(&cgroup_mutex);
3282 spin_lock(&release_list_lock);
3283 while (!list_empty(&release_list)) {
3284 char *argv[3], *envp[3];
3285 int i;
e788e066 3286 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3287 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3288 struct cgroup,
3289 release_list);
bd89aabc 3290 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3291 spin_unlock(&release_list_lock);
3292 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3293 if (!pathbuf)
3294 goto continue_free;
3295 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3296 goto continue_free;
3297 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3298 if (!agentbuf)
3299 goto continue_free;
81a6a5cd
PM
3300
3301 i = 0;
e788e066
PM
3302 argv[i++] = agentbuf;
3303 argv[i++] = pathbuf;
81a6a5cd
PM
3304 argv[i] = NULL;
3305
3306 i = 0;
3307 /* minimal command environment */
3308 envp[i++] = "HOME=/";
3309 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3310 envp[i] = NULL;
3311
3312 /* Drop the lock while we invoke the usermode helper,
3313 * since the exec could involve hitting disk and hence
3314 * be a slow process */
3315 mutex_unlock(&cgroup_mutex);
3316 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3317 mutex_lock(&cgroup_mutex);
e788e066
PM
3318 continue_free:
3319 kfree(pathbuf);
3320 kfree(agentbuf);
81a6a5cd
PM
3321 spin_lock(&release_list_lock);
3322 }
3323 spin_unlock(&release_list_lock);
3324 mutex_unlock(&cgroup_mutex);
3325}
8bab8dde
PM
3326
3327static int __init cgroup_disable(char *str)
3328{
3329 int i;
3330 char *token;
3331
3332 while ((token = strsep(&str, ",")) != NULL) {
3333 if (!*token)
3334 continue;
3335
3336 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3337 struct cgroup_subsys *ss = subsys[i];
3338
3339 if (!strcmp(token, ss->name)) {
3340 ss->disabled = 1;
3341 printk(KERN_INFO "Disabling %s control group"
3342 " subsystem\n", ss->name);
3343 break;
3344 }
3345 }
3346 }
3347 return 1;
3348}
3349__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
3350
3351/*
3352 * Functons for CSS ID.
3353 */
3354
3355/*
3356 *To get ID other than 0, this should be called when !cgroup_is_removed().
3357 */
3358unsigned short css_id(struct cgroup_subsys_state *css)
3359{
3360 struct css_id *cssid = rcu_dereference(css->id);
3361
3362 if (cssid)
3363 return cssid->id;
3364 return 0;
3365}
3366
3367unsigned short css_depth(struct cgroup_subsys_state *css)
3368{
3369 struct css_id *cssid = rcu_dereference(css->id);
3370
3371 if (cssid)
3372 return cssid->depth;
3373 return 0;
3374}
3375
3376bool css_is_ancestor(struct cgroup_subsys_state *child,
3377 struct cgroup_subsys_state *root)
3378{
3379 struct css_id *child_id = rcu_dereference(child->id);
3380 struct css_id *root_id = rcu_dereference(root->id);
3381
3382 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3383 return false;
3384 return child_id->stack[root_id->depth] == root_id->id;
3385}
3386
3387static void __free_css_id_cb(struct rcu_head *head)
3388{
3389 struct css_id *id;
3390
3391 id = container_of(head, struct css_id, rcu_head);
3392 kfree(id);
3393}
3394
3395void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3396{
3397 struct css_id *id = css->id;
3398 /* When this is called before css_id initialization, id can be NULL */
3399 if (!id)
3400 return;
3401
3402 BUG_ON(!ss->use_id);
3403
3404 rcu_assign_pointer(id->css, NULL);
3405 rcu_assign_pointer(css->id, NULL);
3406 spin_lock(&ss->id_lock);
3407 idr_remove(&ss->idr, id->id);
3408 spin_unlock(&ss->id_lock);
3409 call_rcu(&id->rcu_head, __free_css_id_cb);
3410}
3411
3412/*
3413 * This is called by init or create(). Then, calls to this function are
3414 * always serialized (By cgroup_mutex() at create()).
3415 */
3416
3417static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3418{
3419 struct css_id *newid;
3420 int myid, error, size;
3421
3422 BUG_ON(!ss->use_id);
3423
3424 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3425 newid = kzalloc(size, GFP_KERNEL);
3426 if (!newid)
3427 return ERR_PTR(-ENOMEM);
3428 /* get id */
3429 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3430 error = -ENOMEM;
3431 goto err_out;
3432 }
3433 spin_lock(&ss->id_lock);
3434 /* Don't use 0. allocates an ID of 1-65535 */
3435 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3436 spin_unlock(&ss->id_lock);
3437
3438 /* Returns error when there are no free spaces for new ID.*/
3439 if (error) {
3440 error = -ENOSPC;
3441 goto err_out;
3442 }
3443 if (myid > CSS_ID_MAX)
3444 goto remove_idr;
3445
3446 newid->id = myid;
3447 newid->depth = depth;
3448 return newid;
3449remove_idr:
3450 error = -ENOSPC;
3451 spin_lock(&ss->id_lock);
3452 idr_remove(&ss->idr, myid);
3453 spin_unlock(&ss->id_lock);
3454err_out:
3455 kfree(newid);
3456 return ERR_PTR(error);
3457
3458}
3459
3460static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3461{
3462 struct css_id *newid;
3463 struct cgroup_subsys_state *rootcss;
3464
3465 spin_lock_init(&ss->id_lock);
3466 idr_init(&ss->idr);
3467
3468 rootcss = init_css_set.subsys[ss->subsys_id];
3469 newid = get_new_cssid(ss, 0);
3470 if (IS_ERR(newid))
3471 return PTR_ERR(newid);
3472
3473 newid->stack[0] = newid->id;
3474 newid->css = rootcss;
3475 rootcss->id = newid;
3476 return 0;
3477}
3478
3479static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3480 struct cgroup *child)
3481{
3482 int subsys_id, i, depth = 0;
3483 struct cgroup_subsys_state *parent_css, *child_css;
3484 struct css_id *child_id, *parent_id = NULL;
3485
3486 subsys_id = ss->subsys_id;
3487 parent_css = parent->subsys[subsys_id];
3488 child_css = child->subsys[subsys_id];
3489 depth = css_depth(parent_css) + 1;
3490 parent_id = parent_css->id;
3491
3492 child_id = get_new_cssid(ss, depth);
3493 if (IS_ERR(child_id))
3494 return PTR_ERR(child_id);
3495
3496 for (i = 0; i < depth; i++)
3497 child_id->stack[i] = parent_id->stack[i];
3498 child_id->stack[depth] = child_id->id;
3499 /*
3500 * child_id->css pointer will be set after this cgroup is available
3501 * see cgroup_populate_dir()
3502 */
3503 rcu_assign_pointer(child_css->id, child_id);
3504
3505 return 0;
3506}
3507
3508/**
3509 * css_lookup - lookup css by id
3510 * @ss: cgroup subsys to be looked into.
3511 * @id: the id
3512 *
3513 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3514 * NULL if not. Should be called under rcu_read_lock()
3515 */
3516struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3517{
3518 struct css_id *cssid = NULL;
3519
3520 BUG_ON(!ss->use_id);
3521 cssid = idr_find(&ss->idr, id);
3522
3523 if (unlikely(!cssid))
3524 return NULL;
3525
3526 return rcu_dereference(cssid->css);
3527}
3528
3529/**
3530 * css_get_next - lookup next cgroup under specified hierarchy.
3531 * @ss: pointer to subsystem
3532 * @id: current position of iteration.
3533 * @root: pointer to css. search tree under this.
3534 * @foundid: position of found object.
3535 *
3536 * Search next css under the specified hierarchy of rootid. Calling under
3537 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3538 */
3539struct cgroup_subsys_state *
3540css_get_next(struct cgroup_subsys *ss, int id,
3541 struct cgroup_subsys_state *root, int *foundid)
3542{
3543 struct cgroup_subsys_state *ret = NULL;
3544 struct css_id *tmp;
3545 int tmpid;
3546 int rootid = css_id(root);
3547 int depth = css_depth(root);
3548
3549 if (!rootid)
3550 return NULL;
3551
3552 BUG_ON(!ss->use_id);
3553 /* fill start point for scan */
3554 tmpid = id;
3555 while (1) {
3556 /*
3557 * scan next entry from bitmap(tree), tmpid is updated after
3558 * idr_get_next().
3559 */
3560 spin_lock(&ss->id_lock);
3561 tmp = idr_get_next(&ss->idr, &tmpid);
3562 spin_unlock(&ss->id_lock);
3563
3564 if (!tmp)
3565 break;
3566 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3567 ret = rcu_dereference(tmp->css);
3568 if (ret) {
3569 *foundid = tmpid;
3570 break;
3571 }
3572 }
3573 /* continue to scan from next id */
3574 tmpid = tmpid + 1;
3575 }
3576 return ret;
3577}
3578