]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cgroup.c
cgroup simplify space stripping
[net-next-2.6.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
47
ddbcc7e8
PM
48#include <asm/atomic.h>
49
81a6a5cd
PM
50static DEFINE_MUTEX(cgroup_mutex);
51
ddbcc7e8
PM
52/* Generate an array of cgroup subsystem pointers */
53#define SUBSYS(_x) &_x ## _subsys,
54
55static struct cgroup_subsys *subsys[] = {
56#include <linux/cgroup_subsys.h>
57};
58
59/*
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
63 */
64struct cgroupfs_root {
65 struct super_block *sb;
66
67 /*
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
70 */
71 unsigned long subsys_bits;
72
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
75
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
78
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
81
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
84
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
87
88 /* Hierarchy-specific flags */
89 unsigned long flags;
81a6a5cd
PM
90
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
97};
98
99
100/*
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
104 */
105static struct cgroupfs_root rootnode;
106
107/* The list of hierarchy roots */
108
109static LIST_HEAD(roots);
817929ec 110static int root_count;
ddbcc7e8
PM
111
112/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113#define dummytop (&rootnode.top_cgroup)
114
115/* This flag indicates whether tasks in the fork and exit paths should
116 * take callback_mutex and check for fork/exit handlers to call. This
117 * avoids us having to do extra work in the fork/exit path if none of the
118 * subsystems need to be called.
119 */
120static int need_forkexit_callback;
121
122/* bits in struct cgroup flags field */
123enum {
81a6a5cd 124 /* Control Group is dead */
bd89aabc 125 CGRP_REMOVED,
81a6a5cd 126 /* Control Group has previously had a child cgroup or a task,
bd89aabc
PM
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
81a6a5cd 129 /* Control Group requires release notifications to userspace */
bd89aabc 130 CGRP_NOTIFY_ON_RELEASE,
ddbcc7e8
PM
131};
132
133/* convenient tests for these bits */
bd89aabc 134inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 135{
bd89aabc 136 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
137}
138
139/* bits in struct cgroupfs_root flags field */
140enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
142};
143
bd89aabc 144inline int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
145{
146 const int bits =
bd89aabc
PM
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
150}
151
bd89aabc 152inline int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 153{
bd89aabc 154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
155}
156
ddbcc7e8
PM
157/*
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
160 */
161#define for_each_subsys(_root, _ss) \
162list_for_each_entry(_ss, &_root->subsys_list, sibling)
163
164/* for_each_root() allows you to iterate across the active hierarchies */
165#define for_each_root(_root) \
166list_for_each_entry(_root, &roots, root_list)
167
81a6a5cd
PM
168/* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170static LIST_HEAD(release_list);
171static DEFINE_SPINLOCK(release_list_lock);
172static void cgroup_release_agent(struct work_struct *work);
173static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 174static void check_for_release(struct cgroup *cgrp);
81a6a5cd 175
817929ec
PM
176/* Link structure for associating css_set objects with cgroups */
177struct cg_cgroup_link {
178 /*
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
181 */
bd89aabc 182 struct list_head cgrp_link_list;
817929ec
PM
183 /*
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
186 */
187 struct list_head cg_link_list;
188 struct css_set *cg;
189};
190
191/* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
196 */
197
198static struct css_set init_css_set;
199static struct cg_cgroup_link init_css_set_link;
200
201/* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204static DEFINE_RWLOCK(css_set_lock);
205static int css_set_count;
206
207/* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211static int use_task_css_set_links;
212
213/* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
b4f48b63
PM
219 * subsystems moved between hierarchies while we were doing so.
220 *
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
225 */
817929ec
PM
226
227/*
228 * unlink a css_set from the list and free it
229 */
81a6a5cd 230static void unlink_css_set(struct css_set *cg)
b4f48b63 231{
817929ec
PM
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
bd89aabc 240 list_del(&link->cgrp_link_list);
817929ec
PM
241 kfree(link);
242 }
243 write_unlock(&css_set_lock);
81a6a5cd
PM
244}
245
246static void __release_css_set(struct kref *k, int taskexit)
247{
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
250
251 unlink_css_set(cg);
252
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc
PM
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
81a6a5cd 258 if (taskexit)
bd89aabc
PM
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
81a6a5cd
PM
261 }
262 }
263 rcu_read_unlock();
817929ec 264 kfree(cg);
b4f48b63
PM
265}
266
81a6a5cd
PM
267static void release_css_set(struct kref *k)
268{
269 __release_css_set(k, 0);
270}
271
272static void release_css_set_taskexit(struct kref *k)
273{
274 __release_css_set(k, 1);
275}
276
817929ec
PM
277/*
278 * refcounted get/put for css_set objects
279 */
280static inline void get_css_set(struct css_set *cg)
281{
282 kref_get(&cg->ref);
283}
284
285static inline void put_css_set(struct css_set *cg)
286{
287 kref_put(&cg->ref, release_css_set);
288}
289
81a6a5cd
PM
290static inline void put_css_set_taskexit(struct css_set *cg)
291{
292 kref_put(&cg->ref, release_css_set_taskexit);
293}
294
817929ec
PM
295/*
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
301 *
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
304 *
bd89aabc 305 * cgrp: the cgroup that we're moving into
817929ec
PM
306 *
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
309 */
310
311static struct css_set *find_existing_css_set(
312 struct css_set *oldcg,
bd89aabc 313 struct cgroup *cgrp,
817929ec 314 struct cgroup_subsys_state *template[])
b4f48b63
PM
315{
316 int i;
bd89aabc 317 struct cgroupfs_root *root = cgrp->root;
817929ec
PM
318 struct list_head *l = &init_css_set.list;
319
320 /* Built the set of subsystem state objects that we want to
321 * see in the new css_set */
322 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
323 if (root->subsys_bits & (1ull << i)) {
324 /* Subsystem is in this hierarchy. So we want
325 * the subsystem state from the new
326 * cgroup */
bd89aabc 327 template[i] = cgrp->subsys[i];
817929ec
PM
328 } else {
329 /* Subsystem is not in this hierarchy, so we
330 * don't want to change the subsystem state */
331 template[i] = oldcg->subsys[i];
332 }
333 }
334
335 /* Look through existing cgroup groups to find one to reuse */
336 do {
337 struct css_set *cg =
338 list_entry(l, struct css_set, list);
339
340 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
341 /* All subsystems matched */
342 return cg;
343 }
344 /* Try the next cgroup group */
345 l = l->next;
346 } while (l != &init_css_set.list);
347
348 /* No existing cgroup group matched */
349 return NULL;
350}
351
352/*
353 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 354 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
355 * success or a negative error
356 */
357
358static int allocate_cg_links(int count, struct list_head *tmp)
359{
360 struct cg_cgroup_link *link;
361 int i;
362 INIT_LIST_HEAD(tmp);
363 for (i = 0; i < count; i++) {
364 link = kmalloc(sizeof(*link), GFP_KERNEL);
365 if (!link) {
366 while (!list_empty(tmp)) {
367 link = list_entry(tmp->next,
368 struct cg_cgroup_link,
bd89aabc
PM
369 cgrp_link_list);
370 list_del(&link->cgrp_link_list);
817929ec
PM
371 kfree(link);
372 }
373 return -ENOMEM;
374 }
bd89aabc 375 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
376 }
377 return 0;
378}
379
380static void free_cg_links(struct list_head *tmp)
381{
382 while (!list_empty(tmp)) {
383 struct cg_cgroup_link *link;
384 link = list_entry(tmp->next,
385 struct cg_cgroup_link,
bd89aabc
PM
386 cgrp_link_list);
387 list_del(&link->cgrp_link_list);
817929ec
PM
388 kfree(link);
389 }
390}
391
392/*
393 * find_css_set() takes an existing cgroup group and a
394 * cgroup object, and returns a css_set object that's
395 * equivalent to the old group, but with the given cgroup
396 * substituted into the appropriate hierarchy. Must be called with
397 * cgroup_mutex held
398 */
399
400static struct css_set *find_css_set(
bd89aabc 401 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
402{
403 struct css_set *res;
404 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
405 int i;
406
407 struct list_head tmp_cg_links;
408 struct cg_cgroup_link *link;
409
410 /* First see if we already have a cgroup group that matches
411 * the desired set */
412 write_lock(&css_set_lock);
bd89aabc 413 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
414 if (res)
415 get_css_set(res);
416 write_unlock(&css_set_lock);
417
418 if (res)
419 return res;
420
421 res = kmalloc(sizeof(*res), GFP_KERNEL);
422 if (!res)
423 return NULL;
424
425 /* Allocate all the cg_cgroup_link objects that we'll need */
426 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
427 kfree(res);
428 return NULL;
429 }
430
431 kref_init(&res->ref);
432 INIT_LIST_HEAD(&res->cg_links);
433 INIT_LIST_HEAD(&res->tasks);
434
435 /* Copy the set of subsystem state objects generated in
436 * find_existing_css_set() */
437 memcpy(res->subsys, template, sizeof(res->subsys));
438
439 write_lock(&css_set_lock);
440 /* Add reference counts and links from the new css_set. */
441 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 442 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 443 struct cgroup_subsys *ss = subsys[i];
bd89aabc 444 atomic_inc(&cgrp->count);
817929ec
PM
445 /*
446 * We want to add a link once per cgroup, so we
447 * only do it for the first subsystem in each
448 * hierarchy
449 */
450 if (ss->root->subsys_list.next == &ss->sibling) {
451 BUG_ON(list_empty(&tmp_cg_links));
452 link = list_entry(tmp_cg_links.next,
453 struct cg_cgroup_link,
bd89aabc
PM
454 cgrp_link_list);
455 list_del(&link->cgrp_link_list);
456 list_add(&link->cgrp_link_list, &cgrp->css_sets);
817929ec
PM
457 link->cg = res;
458 list_add(&link->cg_link_list, &res->cg_links);
459 }
460 }
461 if (list_empty(&rootnode.subsys_list)) {
462 link = list_entry(tmp_cg_links.next,
463 struct cg_cgroup_link,
bd89aabc
PM
464 cgrp_link_list);
465 list_del(&link->cgrp_link_list);
466 list_add(&link->cgrp_link_list, &dummytop->css_sets);
817929ec
PM
467 link->cg = res;
468 list_add(&link->cg_link_list, &res->cg_links);
469 }
470
471 BUG_ON(!list_empty(&tmp_cg_links));
472
473 /* Link this cgroup group into the list */
474 list_add(&res->list, &init_css_set.list);
475 css_set_count++;
476 INIT_LIST_HEAD(&res->tasks);
477 write_unlock(&css_set_lock);
478
479 return res;
b4f48b63
PM
480}
481
ddbcc7e8
PM
482/*
483 * There is one global cgroup mutex. We also require taking
484 * task_lock() when dereferencing a task's cgroup subsys pointers.
485 * See "The task_lock() exception", at the end of this comment.
486 *
487 * A task must hold cgroup_mutex to modify cgroups.
488 *
489 * Any task can increment and decrement the count field without lock.
490 * So in general, code holding cgroup_mutex can't rely on the count
491 * field not changing. However, if the count goes to zero, then only
492 * attach_task() can increment it again. Because a count of zero
493 * means that no tasks are currently attached, therefore there is no
494 * way a task attached to that cgroup can fork (the other way to
495 * increment the count). So code holding cgroup_mutex can safely
496 * assume that if the count is zero, it will stay zero. Similarly, if
497 * a task holds cgroup_mutex on a cgroup with zero count, it
498 * knows that the cgroup won't be removed, as cgroup_rmdir()
499 * needs that mutex.
500 *
501 * The cgroup_common_file_write handler for operations that modify
502 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
503 * single threading all such cgroup modifications across the system.
504 *
505 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
506 * (usually) take cgroup_mutex. These are the two most performance
507 * critical pieces of code here. The exception occurs on cgroup_exit(),
508 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
509 * is taken, and if the cgroup count is zero, a usermode call made
510 * to /sbin/cgroup_release_agent with the name of the cgroup (path
511 * relative to the root of cgroup file system) as the argument.
512 *
513 * A cgroup can only be deleted if both its 'count' of using tasks
514 * is zero, and its list of 'children' cgroups is empty. Since all
515 * tasks in the system use _some_ cgroup, and since there is always at
516 * least one task in the system (init, pid == 1), therefore, top_cgroup
517 * always has either children cgroups and/or using tasks. So we don't
518 * need a special hack to ensure that top_cgroup cannot be deleted.
519 *
520 * The task_lock() exception
521 *
522 * The need for this exception arises from the action of
523 * attach_task(), which overwrites one tasks cgroup pointer with
524 * another. It does so using cgroup_mutexe, however there are
525 * several performance critical places that need to reference
526 * task->cgroup without the expense of grabbing a system global
527 * mutex. Therefore except as noted below, when dereferencing or, as
528 * in attach_task(), modifying a task'ss cgroup pointer we use
529 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
530 * the task_struct routinely used for such matters.
531 *
532 * P.S. One more locking exception. RCU is used to guard the
533 * update of a tasks cgroup pointer by attach_task()
534 */
535
ddbcc7e8
PM
536/**
537 * cgroup_lock - lock out any changes to cgroup structures
538 *
539 */
540
541void cgroup_lock(void)
542{
543 mutex_lock(&cgroup_mutex);
544}
545
546/**
547 * cgroup_unlock - release lock on cgroup changes
548 *
549 * Undo the lock taken in a previous cgroup_lock() call.
550 */
551
552void cgroup_unlock(void)
553{
554 mutex_unlock(&cgroup_mutex);
555}
556
557/*
558 * A couple of forward declarations required, due to cyclic reference loop:
559 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
560 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
561 * -> cgroup_mkdir.
562 */
563
564static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
565static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 566static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 567static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
568static struct file_operations proc_cgroupstats_operations;
569
570static struct backing_dev_info cgroup_backing_dev_info = {
571 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
572};
ddbcc7e8
PM
573
574static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
575{
576 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
577
578 if (inode) {
579 inode->i_mode = mode;
580 inode->i_uid = current->fsuid;
581 inode->i_gid = current->fsgid;
582 inode->i_blocks = 0;
583 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
584 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
585 }
586 return inode;
587}
588
589static void cgroup_diput(struct dentry *dentry, struct inode *inode)
590{
591 /* is dentry a directory ? if so, kfree() associated cgroup */
592 if (S_ISDIR(inode->i_mode)) {
bd89aabc
PM
593 struct cgroup *cgrp = dentry->d_fsdata;
594 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
595 /* It's possible for external users to be holding css
596 * reference counts on a cgroup; css_put() needs to
597 * be able to access the cgroup after decrementing
598 * the reference count in order to know if it needs to
599 * queue the cgroup to be handled by the release
600 * agent */
601 synchronize_rcu();
bd89aabc 602 kfree(cgrp);
ddbcc7e8
PM
603 }
604 iput(inode);
605}
606
607static void remove_dir(struct dentry *d)
608{
609 struct dentry *parent = dget(d->d_parent);
610
611 d_delete(d);
612 simple_rmdir(parent->d_inode, d);
613 dput(parent);
614}
615
616static void cgroup_clear_directory(struct dentry *dentry)
617{
618 struct list_head *node;
619
620 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
621 spin_lock(&dcache_lock);
622 node = dentry->d_subdirs.next;
623 while (node != &dentry->d_subdirs) {
624 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
625 list_del_init(node);
626 if (d->d_inode) {
627 /* This should never be called on a cgroup
628 * directory with child cgroups */
629 BUG_ON(d->d_inode->i_mode & S_IFDIR);
630 d = dget_locked(d);
631 spin_unlock(&dcache_lock);
632 d_delete(d);
633 simple_unlink(dentry->d_inode, d);
634 dput(d);
635 spin_lock(&dcache_lock);
636 }
637 node = dentry->d_subdirs.next;
638 }
639 spin_unlock(&dcache_lock);
640}
641
642/*
643 * NOTE : the dentry must have been dget()'ed
644 */
645static void cgroup_d_remove_dir(struct dentry *dentry)
646{
647 cgroup_clear_directory(dentry);
648
649 spin_lock(&dcache_lock);
650 list_del_init(&dentry->d_u.d_child);
651 spin_unlock(&dcache_lock);
652 remove_dir(dentry);
653}
654
655static int rebind_subsystems(struct cgroupfs_root *root,
656 unsigned long final_bits)
657{
658 unsigned long added_bits, removed_bits;
bd89aabc 659 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
660 int i;
661
662 removed_bits = root->actual_subsys_bits & ~final_bits;
663 added_bits = final_bits & ~root->actual_subsys_bits;
664 /* Check that any added subsystems are currently free */
665 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
666 unsigned long long bit = 1ull << i;
667 struct cgroup_subsys *ss = subsys[i];
668 if (!(bit & added_bits))
669 continue;
670 if (ss->root != &rootnode) {
671 /* Subsystem isn't free */
672 return -EBUSY;
673 }
674 }
675
676 /* Currently we don't handle adding/removing subsystems when
677 * any child cgroups exist. This is theoretically supportable
678 * but involves complex error handling, so it's being left until
679 * later */
bd89aabc 680 if (!list_empty(&cgrp->children))
ddbcc7e8
PM
681 return -EBUSY;
682
683 /* Process each subsystem */
684 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
685 struct cgroup_subsys *ss = subsys[i];
686 unsigned long bit = 1UL << i;
687 if (bit & added_bits) {
688 /* We're binding this subsystem to this hierarchy */
bd89aabc 689 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
690 BUG_ON(!dummytop->subsys[i]);
691 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
692 cgrp->subsys[i] = dummytop->subsys[i];
693 cgrp->subsys[i]->cgroup = cgrp;
ddbcc7e8
PM
694 list_add(&ss->sibling, &root->subsys_list);
695 rcu_assign_pointer(ss->root, root);
696 if (ss->bind)
bd89aabc 697 ss->bind(ss, cgrp);
ddbcc7e8
PM
698
699 } else if (bit & removed_bits) {
700 /* We're removing this subsystem */
bd89aabc
PM
701 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
702 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8
PM
703 if (ss->bind)
704 ss->bind(ss, dummytop);
705 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 706 cgrp->subsys[i] = NULL;
ddbcc7e8
PM
707 rcu_assign_pointer(subsys[i]->root, &rootnode);
708 list_del(&ss->sibling);
709 } else if (bit & final_bits) {
710 /* Subsystem state should already exist */
bd89aabc 711 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
712 } else {
713 /* Subsystem state shouldn't exist */
bd89aabc 714 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
715 }
716 }
717 root->subsys_bits = root->actual_subsys_bits = final_bits;
718 synchronize_rcu();
719
720 return 0;
721}
722
723static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
724{
725 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
726 struct cgroup_subsys *ss;
727
728 mutex_lock(&cgroup_mutex);
729 for_each_subsys(root, ss)
730 seq_printf(seq, ",%s", ss->name);
731 if (test_bit(ROOT_NOPREFIX, &root->flags))
732 seq_puts(seq, ",noprefix");
81a6a5cd
PM
733 if (strlen(root->release_agent_path))
734 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
735 mutex_unlock(&cgroup_mutex);
736 return 0;
737}
738
739struct cgroup_sb_opts {
740 unsigned long subsys_bits;
741 unsigned long flags;
81a6a5cd 742 char *release_agent;
ddbcc7e8
PM
743};
744
745/* Convert a hierarchy specifier into a bitmask of subsystems and
746 * flags. */
747static int parse_cgroupfs_options(char *data,
748 struct cgroup_sb_opts *opts)
749{
750 char *token, *o = data ?: "all";
751
752 opts->subsys_bits = 0;
753 opts->flags = 0;
81a6a5cd 754 opts->release_agent = NULL;
ddbcc7e8
PM
755
756 while ((token = strsep(&o, ",")) != NULL) {
757 if (!*token)
758 return -EINVAL;
759 if (!strcmp(token, "all")) {
760 opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
761 } else if (!strcmp(token, "noprefix")) {
762 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
763 } else if (!strncmp(token, "release_agent=", 14)) {
764 /* Specifying two release agents is forbidden */
765 if (opts->release_agent)
766 return -EINVAL;
767 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
768 if (!opts->release_agent)
769 return -ENOMEM;
770 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
771 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
772 } else {
773 struct cgroup_subsys *ss;
774 int i;
775 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
776 ss = subsys[i];
777 if (!strcmp(token, ss->name)) {
778 set_bit(i, &opts->subsys_bits);
779 break;
780 }
781 }
782 if (i == CGROUP_SUBSYS_COUNT)
783 return -ENOENT;
784 }
785 }
786
787 /* We can't have an empty hierarchy */
788 if (!opts->subsys_bits)
789 return -EINVAL;
790
791 return 0;
792}
793
794static int cgroup_remount(struct super_block *sb, int *flags, char *data)
795{
796 int ret = 0;
797 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 798 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
799 struct cgroup_sb_opts opts;
800
bd89aabc 801 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
802 mutex_lock(&cgroup_mutex);
803
804 /* See what subsystems are wanted */
805 ret = parse_cgroupfs_options(data, &opts);
806 if (ret)
807 goto out_unlock;
808
809 /* Don't allow flags to change at remount */
810 if (opts.flags != root->flags) {
811 ret = -EINVAL;
812 goto out_unlock;
813 }
814
815 ret = rebind_subsystems(root, opts.subsys_bits);
816
817 /* (re)populate subsystem files */
818 if (!ret)
bd89aabc 819 cgroup_populate_dir(cgrp);
ddbcc7e8 820
81a6a5cd
PM
821 if (opts.release_agent)
822 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 823 out_unlock:
81a6a5cd
PM
824 if (opts.release_agent)
825 kfree(opts.release_agent);
ddbcc7e8 826 mutex_unlock(&cgroup_mutex);
bd89aabc 827 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
828 return ret;
829}
830
831static struct super_operations cgroup_ops = {
832 .statfs = simple_statfs,
833 .drop_inode = generic_delete_inode,
834 .show_options = cgroup_show_options,
835 .remount_fs = cgroup_remount,
836};
837
838static void init_cgroup_root(struct cgroupfs_root *root)
839{
bd89aabc 840 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
841 INIT_LIST_HEAD(&root->subsys_list);
842 INIT_LIST_HEAD(&root->root_list);
843 root->number_of_cgroups = 1;
bd89aabc
PM
844 cgrp->root = root;
845 cgrp->top_cgroup = cgrp;
846 INIT_LIST_HEAD(&cgrp->sibling);
847 INIT_LIST_HEAD(&cgrp->children);
848 INIT_LIST_HEAD(&cgrp->css_sets);
849 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8
PM
850}
851
852static int cgroup_test_super(struct super_block *sb, void *data)
853{
854 struct cgroupfs_root *new = data;
855 struct cgroupfs_root *root = sb->s_fs_info;
856
857 /* First check subsystems */
858 if (new->subsys_bits != root->subsys_bits)
859 return 0;
860
861 /* Next check flags */
862 if (new->flags != root->flags)
863 return 0;
864
865 return 1;
866}
867
868static int cgroup_set_super(struct super_block *sb, void *data)
869{
870 int ret;
871 struct cgroupfs_root *root = data;
872
873 ret = set_anon_super(sb, NULL);
874 if (ret)
875 return ret;
876
877 sb->s_fs_info = root;
878 root->sb = sb;
879
880 sb->s_blocksize = PAGE_CACHE_SIZE;
881 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
882 sb->s_magic = CGROUP_SUPER_MAGIC;
883 sb->s_op = &cgroup_ops;
884
885 return 0;
886}
887
888static int cgroup_get_rootdir(struct super_block *sb)
889{
890 struct inode *inode =
891 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
892 struct dentry *dentry;
893
894 if (!inode)
895 return -ENOMEM;
896
897 inode->i_op = &simple_dir_inode_operations;
898 inode->i_fop = &simple_dir_operations;
899 inode->i_op = &cgroup_dir_inode_operations;
900 /* directories start off with i_nlink == 2 (for "." entry) */
901 inc_nlink(inode);
902 dentry = d_alloc_root(inode);
903 if (!dentry) {
904 iput(inode);
905 return -ENOMEM;
906 }
907 sb->s_root = dentry;
908 return 0;
909}
910
911static int cgroup_get_sb(struct file_system_type *fs_type,
912 int flags, const char *unused_dev_name,
913 void *data, struct vfsmount *mnt)
914{
915 struct cgroup_sb_opts opts;
916 int ret = 0;
917 struct super_block *sb;
918 struct cgroupfs_root *root;
817929ec
PM
919 struct list_head tmp_cg_links, *l;
920 INIT_LIST_HEAD(&tmp_cg_links);
ddbcc7e8
PM
921
922 /* First find the desired set of subsystems */
923 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
924 if (ret) {
925 if (opts.release_agent)
926 kfree(opts.release_agent);
ddbcc7e8 927 return ret;
81a6a5cd 928 }
ddbcc7e8
PM
929
930 root = kzalloc(sizeof(*root), GFP_KERNEL);
931 if (!root)
932 return -ENOMEM;
933
934 init_cgroup_root(root);
935 root->subsys_bits = opts.subsys_bits;
936 root->flags = opts.flags;
81a6a5cd
PM
937 if (opts.release_agent) {
938 strcpy(root->release_agent_path, opts.release_agent);
939 kfree(opts.release_agent);
940 }
ddbcc7e8
PM
941
942 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
943
944 if (IS_ERR(sb)) {
945 kfree(root);
946 return PTR_ERR(sb);
947 }
948
949 if (sb->s_fs_info != root) {
950 /* Reusing an existing superblock */
951 BUG_ON(sb->s_root == NULL);
952 kfree(root);
953 root = NULL;
954 } else {
955 /* New superblock */
bd89aabc 956 struct cgroup *cgrp = &root->top_cgroup;
817929ec 957 struct inode *inode;
ddbcc7e8
PM
958
959 BUG_ON(sb->s_root != NULL);
960
961 ret = cgroup_get_rootdir(sb);
962 if (ret)
963 goto drop_new_super;
817929ec 964 inode = sb->s_root->d_inode;
ddbcc7e8 965
817929ec 966 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
967 mutex_lock(&cgroup_mutex);
968
817929ec
PM
969 /*
970 * We're accessing css_set_count without locking
971 * css_set_lock here, but that's OK - it can only be
972 * increased by someone holding cgroup_lock, and
973 * that's us. The worst that can happen is that we
974 * have some link structures left over
975 */
976 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
977 if (ret) {
978 mutex_unlock(&cgroup_mutex);
979 mutex_unlock(&inode->i_mutex);
980 goto drop_new_super;
981 }
982
ddbcc7e8
PM
983 ret = rebind_subsystems(root, root->subsys_bits);
984 if (ret == -EBUSY) {
985 mutex_unlock(&cgroup_mutex);
817929ec 986 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
987 goto drop_new_super;
988 }
989
990 /* EBUSY should be the only error here */
991 BUG_ON(ret);
992
993 list_add(&root->root_list, &roots);
817929ec 994 root_count++;
ddbcc7e8
PM
995
996 sb->s_root->d_fsdata = &root->top_cgroup;
997 root->top_cgroup.dentry = sb->s_root;
998
817929ec
PM
999 /* Link the top cgroup in this hierarchy into all
1000 * the css_set objects */
1001 write_lock(&css_set_lock);
1002 l = &init_css_set.list;
1003 do {
1004 struct css_set *cg;
1005 struct cg_cgroup_link *link;
1006 cg = list_entry(l, struct css_set, list);
1007 BUG_ON(list_empty(&tmp_cg_links));
1008 link = list_entry(tmp_cg_links.next,
1009 struct cg_cgroup_link,
bd89aabc
PM
1010 cgrp_link_list);
1011 list_del(&link->cgrp_link_list);
817929ec 1012 link->cg = cg;
bd89aabc 1013 list_add(&link->cgrp_link_list,
817929ec
PM
1014 &root->top_cgroup.css_sets);
1015 list_add(&link->cg_link_list, &cg->cg_links);
1016 l = l->next;
1017 } while (l != &init_css_set.list);
1018 write_unlock(&css_set_lock);
1019
1020 free_cg_links(&tmp_cg_links);
1021
bd89aabc
PM
1022 BUG_ON(!list_empty(&cgrp->sibling));
1023 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1024 BUG_ON(root->number_of_cgroups != 1);
1025
bd89aabc 1026 cgroup_populate_dir(cgrp);
817929ec 1027 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1028 mutex_unlock(&cgroup_mutex);
1029 }
1030
1031 return simple_set_mnt(mnt, sb);
1032
1033 drop_new_super:
1034 up_write(&sb->s_umount);
1035 deactivate_super(sb);
817929ec 1036 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1037 return ret;
1038}
1039
1040static void cgroup_kill_sb(struct super_block *sb) {
1041 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1042 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1043 int ret;
1044
1045 BUG_ON(!root);
1046
1047 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1048 BUG_ON(!list_empty(&cgrp->children));
1049 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1050
1051 mutex_lock(&cgroup_mutex);
1052
1053 /* Rebind all subsystems back to the default hierarchy */
1054 ret = rebind_subsystems(root, 0);
1055 /* Shouldn't be able to fail ... */
1056 BUG_ON(ret);
1057
817929ec
PM
1058 /*
1059 * Release all the links from css_sets to this hierarchy's
1060 * root cgroup
1061 */
1062 write_lock(&css_set_lock);
bd89aabc 1063 while (!list_empty(&cgrp->css_sets)) {
817929ec 1064 struct cg_cgroup_link *link;
bd89aabc
PM
1065 link = list_entry(cgrp->css_sets.next,
1066 struct cg_cgroup_link, cgrp_link_list);
817929ec 1067 list_del(&link->cg_link_list);
bd89aabc 1068 list_del(&link->cgrp_link_list);
817929ec
PM
1069 kfree(link);
1070 }
1071 write_unlock(&css_set_lock);
1072
1073 if (!list_empty(&root->root_list)) {
ddbcc7e8 1074 list_del(&root->root_list);
817929ec
PM
1075 root_count--;
1076 }
ddbcc7e8
PM
1077 mutex_unlock(&cgroup_mutex);
1078
1079 kfree(root);
1080 kill_litter_super(sb);
1081}
1082
1083static struct file_system_type cgroup_fs_type = {
1084 .name = "cgroup",
1085 .get_sb = cgroup_get_sb,
1086 .kill_sb = cgroup_kill_sb,
1087};
1088
bd89aabc 1089static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1090{
1091 return dentry->d_fsdata;
1092}
1093
1094static inline struct cftype *__d_cft(struct dentry *dentry)
1095{
1096 return dentry->d_fsdata;
1097}
1098
1099/*
1100 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1101 * Returns 0 on success, -errno on error.
1102 */
bd89aabc 1103int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1104{
1105 char *start;
1106
bd89aabc 1107 if (cgrp == dummytop) {
ddbcc7e8
PM
1108 /*
1109 * Inactive subsystems have no dentry for their root
1110 * cgroup
1111 */
1112 strcpy(buf, "/");
1113 return 0;
1114 }
1115
1116 start = buf + buflen;
1117
1118 *--start = '\0';
1119 for (;;) {
bd89aabc 1120 int len = cgrp->dentry->d_name.len;
ddbcc7e8
PM
1121 if ((start -= len) < buf)
1122 return -ENAMETOOLONG;
bd89aabc
PM
1123 memcpy(start, cgrp->dentry->d_name.name, len);
1124 cgrp = cgrp->parent;
1125 if (!cgrp)
ddbcc7e8 1126 break;
bd89aabc 1127 if (!cgrp->parent)
ddbcc7e8
PM
1128 continue;
1129 if (--start < buf)
1130 return -ENAMETOOLONG;
1131 *start = '/';
1132 }
1133 memmove(buf, start, buf + buflen - start);
1134 return 0;
1135}
1136
bbcb81d0
PM
1137/*
1138 * Return the first subsystem attached to a cgroup's hierarchy, and
1139 * its subsystem id.
1140 */
1141
bd89aabc 1142static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1143 struct cgroup_subsys_state **css, int *subsys_id)
1144{
bd89aabc 1145 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1146 const struct cgroup_subsys *test_ss;
1147 BUG_ON(list_empty(&root->subsys_list));
1148 test_ss = list_entry(root->subsys_list.next,
1149 struct cgroup_subsys, sibling);
1150 if (css) {
bd89aabc 1151 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1152 BUG_ON(!*css);
1153 }
1154 if (subsys_id)
1155 *subsys_id = test_ss->subsys_id;
1156}
1157
1158/*
bd89aabc 1159 * Attach task 'tsk' to cgroup 'cgrp'
bbcb81d0
PM
1160 *
1161 * Call holding cgroup_mutex. May take task_lock of
1162 * the task 'pid' during call.
1163 */
bd89aabc 1164static int attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1165{
1166 int retval = 0;
1167 struct cgroup_subsys *ss;
bd89aabc 1168 struct cgroup *oldcgrp;
817929ec
PM
1169 struct css_set *cg = tsk->cgroups;
1170 struct css_set *newcg;
bd89aabc 1171 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1172 int subsys_id;
1173
bd89aabc 1174 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1175
1176 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1177 oldcgrp = task_cgroup(tsk, subsys_id);
1178 if (cgrp == oldcgrp)
bbcb81d0
PM
1179 return 0;
1180
1181 for_each_subsys(root, ss) {
1182 if (ss->can_attach) {
bd89aabc 1183 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1184 if (retval)
bbcb81d0 1185 return retval;
bbcb81d0
PM
1186 }
1187 }
1188
817929ec
PM
1189 /*
1190 * Locate or allocate a new css_set for this task,
1191 * based on its final set of cgroups
1192 */
bd89aabc 1193 newcg = find_css_set(cg, cgrp);
e18f6318 1194 if (!newcg)
817929ec 1195 return -ENOMEM;
817929ec 1196
bbcb81d0
PM
1197 task_lock(tsk);
1198 if (tsk->flags & PF_EXITING) {
1199 task_unlock(tsk);
817929ec 1200 put_css_set(newcg);
bbcb81d0
PM
1201 return -ESRCH;
1202 }
817929ec 1203 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1204 task_unlock(tsk);
1205
817929ec
PM
1206 /* Update the css_set linked lists if we're using them */
1207 write_lock(&css_set_lock);
1208 if (!list_empty(&tsk->cg_list)) {
1209 list_del(&tsk->cg_list);
1210 list_add(&tsk->cg_list, &newcg->tasks);
1211 }
1212 write_unlock(&css_set_lock);
1213
bbcb81d0 1214 for_each_subsys(root, ss) {
e18f6318 1215 if (ss->attach)
bd89aabc 1216 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1217 }
bd89aabc 1218 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1219 synchronize_rcu();
817929ec 1220 put_css_set(cg);
bbcb81d0
PM
1221 return 0;
1222}
1223
1224/*
bd89aabc 1225 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
bbcb81d0
PM
1226 * cgroup_mutex, may take task_lock of task
1227 */
bd89aabc 1228static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
bbcb81d0
PM
1229{
1230 pid_t pid;
1231 struct task_struct *tsk;
1232 int ret;
1233
1234 if (sscanf(pidbuf, "%d", &pid) != 1)
1235 return -EIO;
1236
1237 if (pid) {
1238 rcu_read_lock();
1239 tsk = find_task_by_pid(pid);
1240 if (!tsk || tsk->flags & PF_EXITING) {
1241 rcu_read_unlock();
1242 return -ESRCH;
1243 }
1244 get_task_struct(tsk);
1245 rcu_read_unlock();
1246
1247 if ((current->euid) && (current->euid != tsk->uid)
1248 && (current->euid != tsk->suid)) {
1249 put_task_struct(tsk);
1250 return -EACCES;
1251 }
1252 } else {
1253 tsk = current;
1254 get_task_struct(tsk);
1255 }
1256
bd89aabc 1257 ret = attach_task(cgrp, tsk);
bbcb81d0
PM
1258 put_task_struct(tsk);
1259 return ret;
1260}
1261
ddbcc7e8
PM
1262/* The various types of files and directories in a cgroup file system */
1263
1264enum cgroup_filetype {
1265 FILE_ROOT,
1266 FILE_DIR,
1267 FILE_TASKLIST,
81a6a5cd
PM
1268 FILE_NOTIFY_ON_RELEASE,
1269 FILE_RELEASABLE,
1270 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1271};
1272
bd89aabc 1273static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
355e0c48
PM
1274 struct file *file,
1275 const char __user *userbuf,
1276 size_t nbytes, loff_t *unused_ppos)
1277{
1278 char buffer[64];
1279 int retval = 0;
1280 u64 val;
1281 char *end;
1282
1283 if (!nbytes)
1284 return -EINVAL;
1285 if (nbytes >= sizeof(buffer))
1286 return -E2BIG;
1287 if (copy_from_user(buffer, userbuf, nbytes))
1288 return -EFAULT;
1289
1290 buffer[nbytes] = 0; /* nul-terminate */
1291
1292 /* strip newline if necessary */
1293 if (nbytes && (buffer[nbytes-1] == '\n'))
1294 buffer[nbytes-1] = 0;
1295 val = simple_strtoull(buffer, &end, 0);
1296 if (*end)
1297 return -EINVAL;
1298
1299 /* Pass to subsystem */
bd89aabc 1300 retval = cft->write_uint(cgrp, cft, val);
355e0c48
PM
1301 if (!retval)
1302 retval = nbytes;
1303 return retval;
1304}
1305
bd89aabc 1306static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
bbcb81d0
PM
1307 struct cftype *cft,
1308 struct file *file,
1309 const char __user *userbuf,
1310 size_t nbytes, loff_t *unused_ppos)
1311{
1312 enum cgroup_filetype type = cft->private;
1313 char *buffer;
1314 int retval = 0;
1315
1316 if (nbytes >= PATH_MAX)
1317 return -E2BIG;
1318
1319 /* +1 for nul-terminator */
1320 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1321 if (buffer == NULL)
1322 return -ENOMEM;
1323
1324 if (copy_from_user(buffer, userbuf, nbytes)) {
1325 retval = -EFAULT;
1326 goto out1;
1327 }
1328 buffer[nbytes] = 0; /* nul-terminate */
622d42ca 1329 strstrip(buffer); /* strip -just- trailing whitespace */
bbcb81d0
PM
1330
1331 mutex_lock(&cgroup_mutex);
1332
bd89aabc 1333 if (cgroup_is_removed(cgrp)) {
bbcb81d0
PM
1334 retval = -ENODEV;
1335 goto out2;
1336 }
1337
1338 switch (type) {
1339 case FILE_TASKLIST:
bd89aabc 1340 retval = attach_task_by_pid(cgrp, buffer);
bbcb81d0 1341 break;
81a6a5cd 1342 case FILE_NOTIFY_ON_RELEASE:
bd89aabc 1343 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
81a6a5cd 1344 if (simple_strtoul(buffer, NULL, 10) != 0)
bd89aabc 1345 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd 1346 else
bd89aabc 1347 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
1348 break;
1349 case FILE_RELEASE_AGENT:
622d42ca
PJ
1350 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1351 strcpy(cgrp->root->release_agent_path, buffer);
81a6a5cd 1352 break;
bbcb81d0
PM
1353 default:
1354 retval = -EINVAL;
1355 goto out2;
1356 }
1357
1358 if (retval == 0)
1359 retval = nbytes;
1360out2:
1361 mutex_unlock(&cgroup_mutex);
1362out1:
1363 kfree(buffer);
1364 return retval;
1365}
1366
ddbcc7e8
PM
1367static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1368 size_t nbytes, loff_t *ppos)
1369{
1370 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1371 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8
PM
1372
1373 if (!cft)
1374 return -ENODEV;
355e0c48 1375 if (cft->write)
bd89aabc 1376 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
355e0c48 1377 if (cft->write_uint)
bd89aabc 1378 return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
355e0c48 1379 return -EINVAL;
ddbcc7e8
PM
1380}
1381
bd89aabc 1382static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
ddbcc7e8
PM
1383 struct file *file,
1384 char __user *buf, size_t nbytes,
1385 loff_t *ppos)
1386{
1387 char tmp[64];
bd89aabc 1388 u64 val = cft->read_uint(cgrp, cft);
ddbcc7e8
PM
1389 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1390
1391 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1392}
1393
bd89aabc 1394static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
81a6a5cd
PM
1395 struct cftype *cft,
1396 struct file *file,
1397 char __user *buf,
1398 size_t nbytes, loff_t *ppos)
1399{
1400 enum cgroup_filetype type = cft->private;
1401 char *page;
1402 ssize_t retval = 0;
1403 char *s;
1404
1405 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1406 return -ENOMEM;
1407
1408 s = page;
1409
1410 switch (type) {
1411 case FILE_RELEASE_AGENT:
1412 {
1413 struct cgroupfs_root *root;
1414 size_t n;
1415 mutex_lock(&cgroup_mutex);
bd89aabc 1416 root = cgrp->root;
81a6a5cd
PM
1417 n = strnlen(root->release_agent_path,
1418 sizeof(root->release_agent_path));
1419 n = min(n, (size_t) PAGE_SIZE);
1420 strncpy(s, root->release_agent_path, n);
1421 mutex_unlock(&cgroup_mutex);
1422 s += n;
1423 break;
1424 }
1425 default:
1426 retval = -EINVAL;
1427 goto out;
1428 }
1429 *s++ = '\n';
1430
1431 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1432out:
1433 free_page((unsigned long)page);
1434 return retval;
1435}
1436
ddbcc7e8
PM
1437static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1438 size_t nbytes, loff_t *ppos)
1439{
1440 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1441 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8
PM
1442
1443 if (!cft)
1444 return -ENODEV;
1445
1446 if (cft->read)
bd89aabc 1447 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8 1448 if (cft->read_uint)
bd89aabc 1449 return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1450 return -EINVAL;
1451}
1452
1453static int cgroup_file_open(struct inode *inode, struct file *file)
1454{
1455 int err;
1456 struct cftype *cft;
1457
1458 err = generic_file_open(inode, file);
1459 if (err)
1460 return err;
1461
1462 cft = __d_cft(file->f_dentry);
1463 if (!cft)
1464 return -ENODEV;
1465 if (cft->open)
1466 err = cft->open(inode, file);
1467 else
1468 err = 0;
1469
1470 return err;
1471}
1472
1473static int cgroup_file_release(struct inode *inode, struct file *file)
1474{
1475 struct cftype *cft = __d_cft(file->f_dentry);
1476 if (cft->release)
1477 return cft->release(inode, file);
1478 return 0;
1479}
1480
1481/*
1482 * cgroup_rename - Only allow simple rename of directories in place.
1483 */
1484static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1485 struct inode *new_dir, struct dentry *new_dentry)
1486{
1487 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1488 return -ENOTDIR;
1489 if (new_dentry->d_inode)
1490 return -EEXIST;
1491 if (old_dir != new_dir)
1492 return -EIO;
1493 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1494}
1495
1496static struct file_operations cgroup_file_operations = {
1497 .read = cgroup_file_read,
1498 .write = cgroup_file_write,
1499 .llseek = generic_file_llseek,
1500 .open = cgroup_file_open,
1501 .release = cgroup_file_release,
1502};
1503
1504static struct inode_operations cgroup_dir_inode_operations = {
1505 .lookup = simple_lookup,
1506 .mkdir = cgroup_mkdir,
1507 .rmdir = cgroup_rmdir,
1508 .rename = cgroup_rename,
1509};
1510
1511static int cgroup_create_file(struct dentry *dentry, int mode,
1512 struct super_block *sb)
1513{
1514 static struct dentry_operations cgroup_dops = {
1515 .d_iput = cgroup_diput,
1516 };
1517
1518 struct inode *inode;
1519
1520 if (!dentry)
1521 return -ENOENT;
1522 if (dentry->d_inode)
1523 return -EEXIST;
1524
1525 inode = cgroup_new_inode(mode, sb);
1526 if (!inode)
1527 return -ENOMEM;
1528
1529 if (S_ISDIR(mode)) {
1530 inode->i_op = &cgroup_dir_inode_operations;
1531 inode->i_fop = &simple_dir_operations;
1532
1533 /* start off with i_nlink == 2 (for "." entry) */
1534 inc_nlink(inode);
1535
1536 /* start with the directory inode held, so that we can
1537 * populate it without racing with another mkdir */
817929ec 1538 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1539 } else if (S_ISREG(mode)) {
1540 inode->i_size = 0;
1541 inode->i_fop = &cgroup_file_operations;
1542 }
1543 dentry->d_op = &cgroup_dops;
1544 d_instantiate(dentry, inode);
1545 dget(dentry); /* Extra count - pin the dentry in core */
1546 return 0;
1547}
1548
1549/*
1550 * cgroup_create_dir - create a directory for an object.
bd89aabc 1551 * cgrp: the cgroup we create the directory for.
ddbcc7e8
PM
1552 * It must have a valid ->parent field
1553 * And we are going to fill its ->dentry field.
bd89aabc 1554 * dentry: dentry of the new cgroup
ddbcc7e8
PM
1555 * mode: mode to set on new directory.
1556 */
bd89aabc 1557static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1558 int mode)
1559{
1560 struct dentry *parent;
1561 int error = 0;
1562
bd89aabc
PM
1563 parent = cgrp->parent->dentry;
1564 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1565 if (!error) {
bd89aabc 1566 dentry->d_fsdata = cgrp;
ddbcc7e8 1567 inc_nlink(parent->d_inode);
bd89aabc 1568 cgrp->dentry = dentry;
ddbcc7e8
PM
1569 dget(dentry);
1570 }
1571 dput(dentry);
1572
1573 return error;
1574}
1575
bd89aabc 1576int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1577 struct cgroup_subsys *subsys,
1578 const struct cftype *cft)
1579{
bd89aabc 1580 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1581 struct dentry *dentry;
1582 int error;
1583
1584 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1585 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1586 strcpy(name, subsys->name);
1587 strcat(name, ".");
1588 }
1589 strcat(name, cft->name);
1590 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1591 dentry = lookup_one_len(name, dir, strlen(name));
1592 if (!IS_ERR(dentry)) {
1593 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1594 cgrp->root->sb);
ddbcc7e8
PM
1595 if (!error)
1596 dentry->d_fsdata = (void *)cft;
1597 dput(dentry);
1598 } else
1599 error = PTR_ERR(dentry);
1600 return error;
1601}
1602
bd89aabc 1603int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1604 struct cgroup_subsys *subsys,
1605 const struct cftype cft[],
1606 int count)
1607{
1608 int i, err;
1609 for (i = 0; i < count; i++) {
bd89aabc 1610 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1611 if (err)
1612 return err;
1613 }
1614 return 0;
1615}
1616
817929ec
PM
1617/* Count the number of tasks in a cgroup. */
1618
bd89aabc 1619int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1620{
1621 int count = 0;
817929ec
PM
1622 struct list_head *l;
1623
1624 read_lock(&css_set_lock);
bd89aabc
PM
1625 l = cgrp->css_sets.next;
1626 while (l != &cgrp->css_sets) {
817929ec 1627 struct cg_cgroup_link *link =
bd89aabc 1628 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1629 count += atomic_read(&link->cg->ref.refcount);
1630 l = l->next;
1631 }
1632 read_unlock(&css_set_lock);
bbcb81d0
PM
1633 return count;
1634}
1635
817929ec
PM
1636/*
1637 * Advance a list_head iterator. The iterator should be positioned at
1638 * the start of a css_set
1639 */
bd89aabc 1640static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1641 struct cgroup_iter *it)
1642{
1643 struct list_head *l = it->cg_link;
1644 struct cg_cgroup_link *link;
1645 struct css_set *cg;
1646
1647 /* Advance to the next non-empty css_set */
1648 do {
1649 l = l->next;
bd89aabc 1650 if (l == &cgrp->css_sets) {
817929ec
PM
1651 it->cg_link = NULL;
1652 return;
1653 }
bd89aabc 1654 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1655 cg = link->cg;
1656 } while (list_empty(&cg->tasks));
1657 it->cg_link = l;
1658 it->task = cg->tasks.next;
1659}
1660
bd89aabc 1661void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1662{
1663 /*
1664 * The first time anyone tries to iterate across a cgroup,
1665 * we need to enable the list linking each css_set to its
1666 * tasks, and fix up all existing tasks.
1667 */
1668 if (!use_task_css_set_links) {
1669 struct task_struct *p, *g;
1670 write_lock(&css_set_lock);
1671 use_task_css_set_links = 1;
1672 do_each_thread(g, p) {
1673 task_lock(p);
1674 if (list_empty(&p->cg_list))
1675 list_add(&p->cg_list, &p->cgroups->tasks);
1676 task_unlock(p);
1677 } while_each_thread(g, p);
1678 write_unlock(&css_set_lock);
1679 }
1680 read_lock(&css_set_lock);
bd89aabc
PM
1681 it->cg_link = &cgrp->css_sets;
1682 cgroup_advance_iter(cgrp, it);
817929ec
PM
1683}
1684
bd89aabc 1685struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1686 struct cgroup_iter *it)
1687{
1688 struct task_struct *res;
1689 struct list_head *l = it->task;
1690
1691 /* If the iterator cg is NULL, we have no tasks */
1692 if (!it->cg_link)
1693 return NULL;
1694 res = list_entry(l, struct task_struct, cg_list);
1695 /* Advance iterator to find next entry */
1696 l = l->next;
1697 if (l == &res->cgroups->tasks) {
1698 /* We reached the end of this task list - move on to
1699 * the next cg_cgroup_link */
bd89aabc 1700 cgroup_advance_iter(cgrp, it);
817929ec
PM
1701 } else {
1702 it->task = l;
1703 }
1704 return res;
1705}
1706
bd89aabc 1707void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1708{
1709 read_unlock(&css_set_lock);
1710}
1711
bbcb81d0
PM
1712/*
1713 * Stuff for reading the 'tasks' file.
1714 *
1715 * Reading this file can return large amounts of data if a cgroup has
1716 * *lots* of attached tasks. So it may need several calls to read(),
1717 * but we cannot guarantee that the information we produce is correct
1718 * unless we produce it entirely atomically.
1719 *
1720 * Upon tasks file open(), a struct ctr_struct is allocated, that
1721 * will have a pointer to an array (also allocated here). The struct
1722 * ctr_struct * is stored in file->private_data. Its resources will
1723 * be freed by release() when the file is closed. The array is used
1724 * to sprintf the PIDs and then used by read().
1725 */
1726struct ctr_struct {
1727 char *buf;
1728 int bufsz;
1729};
1730
1731/*
1732 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 1733 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
1734 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1735 * read section, so the css_set can't go away, and is
1736 * immutable after creation.
1737 */
bd89aabc 1738static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0
PM
1739{
1740 int n = 0;
817929ec
PM
1741 struct cgroup_iter it;
1742 struct task_struct *tsk;
bd89aabc
PM
1743 cgroup_iter_start(cgrp, &it);
1744 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
1745 if (unlikely(n == npids))
1746 break;
69cccb88 1747 pidarray[n++] = task_pid_nr(tsk);
817929ec 1748 }
bd89aabc 1749 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
1750 return n;
1751}
1752
846c7bb0
BS
1753/**
1754 * Build and fill cgroupstats so that taskstats can export it to user
1755 * space.
1756 *
1757 * @stats: cgroupstats to fill information into
1758 * @dentry: A dentry entry belonging to the cgroup for which stats have
1759 * been requested.
1760 */
1761int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1762{
1763 int ret = -EINVAL;
bd89aabc 1764 struct cgroup *cgrp;
846c7bb0
BS
1765 struct cgroup_iter it;
1766 struct task_struct *tsk;
1767 /*
1768 * Validate dentry by checking the superblock operations
1769 */
1770 if (dentry->d_sb->s_op != &cgroup_ops)
1771 goto err;
1772
1773 ret = 0;
bd89aabc 1774 cgrp = dentry->d_fsdata;
846c7bb0
BS
1775 rcu_read_lock();
1776
bd89aabc
PM
1777 cgroup_iter_start(cgrp, &it);
1778 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
1779 switch (tsk->state) {
1780 case TASK_RUNNING:
1781 stats->nr_running++;
1782 break;
1783 case TASK_INTERRUPTIBLE:
1784 stats->nr_sleeping++;
1785 break;
1786 case TASK_UNINTERRUPTIBLE:
1787 stats->nr_uninterruptible++;
1788 break;
1789 case TASK_STOPPED:
1790 stats->nr_stopped++;
1791 break;
1792 default:
1793 if (delayacct_is_task_waiting_on_io(tsk))
1794 stats->nr_io_wait++;
1795 break;
1796 }
1797 }
bd89aabc 1798 cgroup_iter_end(cgrp, &it);
846c7bb0
BS
1799
1800 rcu_read_unlock();
1801err:
1802 return ret;
1803}
1804
bbcb81d0
PM
1805static int cmppid(const void *a, const void *b)
1806{
1807 return *(pid_t *)a - *(pid_t *)b;
1808}
1809
1810/*
1811 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1812 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1813 * count 'cnt' of how many chars would be written if buf were large enough.
1814 */
1815static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1816{
1817 int cnt = 0;
1818 int i;
1819
1820 for (i = 0; i < npids; i++)
1821 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1822 return cnt;
1823}
1824
1825/*
1826 * Handle an open on 'tasks' file. Prepare a buffer listing the
1827 * process id's of tasks currently attached to the cgroup being opened.
1828 *
1829 * Does not require any specific cgroup mutexes, and does not take any.
1830 */
1831static int cgroup_tasks_open(struct inode *unused, struct file *file)
1832{
bd89aabc 1833 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
1834 struct ctr_struct *ctr;
1835 pid_t *pidarray;
1836 int npids;
1837 char c;
1838
1839 if (!(file->f_mode & FMODE_READ))
1840 return 0;
1841
1842 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1843 if (!ctr)
1844 goto err0;
1845
1846 /*
1847 * If cgroup gets more users after we read count, we won't have
1848 * enough space - tough. This race is indistinguishable to the
1849 * caller from the case that the additional cgroup users didn't
1850 * show up until sometime later on.
1851 */
bd89aabc 1852 npids = cgroup_task_count(cgrp);
bbcb81d0
PM
1853 if (npids) {
1854 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1855 if (!pidarray)
1856 goto err1;
1857
bd89aabc 1858 npids = pid_array_load(pidarray, npids, cgrp);
bbcb81d0
PM
1859 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1860
1861 /* Call pid_array_to_buf() twice, first just to get bufsz */
1862 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1863 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1864 if (!ctr->buf)
1865 goto err2;
1866 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1867
1868 kfree(pidarray);
1869 } else {
1870 ctr->buf = 0;
1871 ctr->bufsz = 0;
1872 }
1873 file->private_data = ctr;
1874 return 0;
1875
1876err2:
1877 kfree(pidarray);
1878err1:
1879 kfree(ctr);
1880err0:
1881 return -ENOMEM;
1882}
1883
bd89aabc 1884static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
bbcb81d0
PM
1885 struct cftype *cft,
1886 struct file *file, char __user *buf,
1887 size_t nbytes, loff_t *ppos)
1888{
1889 struct ctr_struct *ctr = file->private_data;
1890
1891 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1892}
1893
1894static int cgroup_tasks_release(struct inode *unused_inode,
1895 struct file *file)
1896{
1897 struct ctr_struct *ctr;
1898
1899 if (file->f_mode & FMODE_READ) {
1900 ctr = file->private_data;
1901 kfree(ctr->buf);
1902 kfree(ctr);
1903 }
1904 return 0;
1905}
1906
bd89aabc 1907static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
1908 struct cftype *cft)
1909{
bd89aabc 1910 return notify_on_release(cgrp);
81a6a5cd
PM
1911}
1912
bd89aabc 1913static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
81a6a5cd 1914{
bd89aabc 1915 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
81a6a5cd
PM
1916}
1917
bbcb81d0
PM
1918/*
1919 * for the common functions, 'private' gives the type of file
1920 */
81a6a5cd
PM
1921static struct cftype files[] = {
1922 {
1923 .name = "tasks",
1924 .open = cgroup_tasks_open,
1925 .read = cgroup_tasks_read,
1926 .write = cgroup_common_file_write,
1927 .release = cgroup_tasks_release,
1928 .private = FILE_TASKLIST,
1929 },
1930
1931 {
1932 .name = "notify_on_release",
1933 .read_uint = cgroup_read_notify_on_release,
1934 .write = cgroup_common_file_write,
1935 .private = FILE_NOTIFY_ON_RELEASE,
1936 },
1937
1938 {
1939 .name = "releasable",
1940 .read_uint = cgroup_read_releasable,
1941 .private = FILE_RELEASABLE,
1942 }
1943};
1944
1945static struct cftype cft_release_agent = {
1946 .name = "release_agent",
1947 .read = cgroup_common_file_read,
bbcb81d0 1948 .write = cgroup_common_file_write,
81a6a5cd 1949 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
1950};
1951
bd89aabc 1952static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
1953{
1954 int err;
1955 struct cgroup_subsys *ss;
1956
1957 /* First clear out any existing files */
bd89aabc 1958 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 1959
bd89aabc 1960 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
1961 if (err < 0)
1962 return err;
1963
bd89aabc
PM
1964 if (cgrp == cgrp->top_cgroup) {
1965 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
1966 return err;
1967 }
1968
bd89aabc
PM
1969 for_each_subsys(cgrp->root, ss) {
1970 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
1971 return err;
1972 }
1973
1974 return 0;
1975}
1976
1977static void init_cgroup_css(struct cgroup_subsys_state *css,
1978 struct cgroup_subsys *ss,
bd89aabc 1979 struct cgroup *cgrp)
ddbcc7e8 1980{
bd89aabc 1981 css->cgroup = cgrp;
ddbcc7e8
PM
1982 atomic_set(&css->refcnt, 0);
1983 css->flags = 0;
bd89aabc 1984 if (cgrp == dummytop)
ddbcc7e8 1985 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
1986 BUG_ON(cgrp->subsys[ss->subsys_id]);
1987 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
1988}
1989
1990/*
1991 * cgroup_create - create a cgroup
1992 * parent: cgroup that will be parent of the new cgroup.
1993 * name: name of the new cgroup. Will be strcpy'ed.
1994 * mode: mode to set on new inode
1995 *
1996 * Must be called with the mutex on the parent inode held
1997 */
1998
1999static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2000 int mode)
2001{
bd89aabc 2002 struct cgroup *cgrp;
ddbcc7e8
PM
2003 struct cgroupfs_root *root = parent->root;
2004 int err = 0;
2005 struct cgroup_subsys *ss;
2006 struct super_block *sb = root->sb;
2007
bd89aabc
PM
2008 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2009 if (!cgrp)
ddbcc7e8
PM
2010 return -ENOMEM;
2011
2012 /* Grab a reference on the superblock so the hierarchy doesn't
2013 * get deleted on unmount if there are child cgroups. This
2014 * can be done outside cgroup_mutex, since the sb can't
2015 * disappear while someone has an open control file on the
2016 * fs */
2017 atomic_inc(&sb->s_active);
2018
2019 mutex_lock(&cgroup_mutex);
2020
bd89aabc
PM
2021 cgrp->flags = 0;
2022 INIT_LIST_HEAD(&cgrp->sibling);
2023 INIT_LIST_HEAD(&cgrp->children);
2024 INIT_LIST_HEAD(&cgrp->css_sets);
2025 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8 2026
bd89aabc
PM
2027 cgrp->parent = parent;
2028 cgrp->root = parent->root;
2029 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8
PM
2030
2031 for_each_subsys(root, ss) {
bd89aabc 2032 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2033 if (IS_ERR(css)) {
2034 err = PTR_ERR(css);
2035 goto err_destroy;
2036 }
bd89aabc 2037 init_cgroup_css(css, ss, cgrp);
ddbcc7e8
PM
2038 }
2039
bd89aabc 2040 list_add(&cgrp->sibling, &cgrp->parent->children);
ddbcc7e8
PM
2041 root->number_of_cgroups++;
2042
bd89aabc 2043 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2044 if (err < 0)
2045 goto err_remove;
2046
2047 /* The cgroup directory was pre-locked for us */
bd89aabc 2048 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2049
bd89aabc 2050 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2051 /* If err < 0, we have a half-filled directory - oh well ;) */
2052
2053 mutex_unlock(&cgroup_mutex);
bd89aabc 2054 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2055
2056 return 0;
2057
2058 err_remove:
2059
bd89aabc 2060 list_del(&cgrp->sibling);
ddbcc7e8
PM
2061 root->number_of_cgroups--;
2062
2063 err_destroy:
2064
2065 for_each_subsys(root, ss) {
bd89aabc
PM
2066 if (cgrp->subsys[ss->subsys_id])
2067 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2068 }
2069
2070 mutex_unlock(&cgroup_mutex);
2071
2072 /* Release the reference count that we took on the superblock */
2073 deactivate_super(sb);
2074
bd89aabc 2075 kfree(cgrp);
ddbcc7e8
PM
2076 return err;
2077}
2078
2079static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2080{
2081 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2082
2083 /* the vfs holds inode->i_mutex already */
2084 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2085}
2086
bd89aabc 2087static inline int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2088{
2089 /* Check the reference count on each subsystem. Since we
2090 * already established that there are no tasks in the
2091 * cgroup, if the css refcount is also 0, then there should
2092 * be no outstanding references, so the subsystem is safe to
2093 * destroy. We scan across all subsystems rather than using
2094 * the per-hierarchy linked list of mounted subsystems since
2095 * we can be called via check_for_release() with no
2096 * synchronization other than RCU, and the subsystem linked
2097 * list isn't RCU-safe */
2098 int i;
2099 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2100 struct cgroup_subsys *ss = subsys[i];
2101 struct cgroup_subsys_state *css;
2102 /* Skip subsystems not in this hierarchy */
bd89aabc 2103 if (ss->root != cgrp->root)
81a6a5cd 2104 continue;
bd89aabc 2105 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2106 /* When called from check_for_release() it's possible
2107 * that by this point the cgroup has been removed
2108 * and the css deleted. But a false-positive doesn't
2109 * matter, since it can only happen if the cgroup
2110 * has been deleted and hence no longer needs the
2111 * release agent to be called anyway. */
e18f6318 2112 if (css && atomic_read(&css->refcnt))
81a6a5cd 2113 return 1;
81a6a5cd
PM
2114 }
2115 return 0;
2116}
2117
ddbcc7e8
PM
2118static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2119{
bd89aabc 2120 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2121 struct dentry *d;
2122 struct cgroup *parent;
2123 struct cgroup_subsys *ss;
2124 struct super_block *sb;
2125 struct cgroupfs_root *root;
ddbcc7e8
PM
2126
2127 /* the vfs holds both inode->i_mutex already */
2128
2129 mutex_lock(&cgroup_mutex);
bd89aabc 2130 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2131 mutex_unlock(&cgroup_mutex);
2132 return -EBUSY;
2133 }
bd89aabc 2134 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2135 mutex_unlock(&cgroup_mutex);
2136 return -EBUSY;
2137 }
2138
bd89aabc
PM
2139 parent = cgrp->parent;
2140 root = cgrp->root;
ddbcc7e8
PM
2141 sb = root->sb;
2142
bd89aabc 2143 if (cgroup_has_css_refs(cgrp)) {
ddbcc7e8
PM
2144 mutex_unlock(&cgroup_mutex);
2145 return -EBUSY;
2146 }
2147
2148 for_each_subsys(root, ss) {
bd89aabc
PM
2149 if (cgrp->subsys[ss->subsys_id])
2150 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2151 }
2152
81a6a5cd 2153 spin_lock(&release_list_lock);
bd89aabc
PM
2154 set_bit(CGRP_REMOVED, &cgrp->flags);
2155 if (!list_empty(&cgrp->release_list))
2156 list_del(&cgrp->release_list);
81a6a5cd 2157 spin_unlock(&release_list_lock);
ddbcc7e8 2158 /* delete my sibling from parent->children */
bd89aabc
PM
2159 list_del(&cgrp->sibling);
2160 spin_lock(&cgrp->dentry->d_lock);
2161 d = dget(cgrp->dentry);
2162 cgrp->dentry = NULL;
ddbcc7e8
PM
2163 spin_unlock(&d->d_lock);
2164
2165 cgroup_d_remove_dir(d);
2166 dput(d);
2167 root->number_of_cgroups--;
2168
bd89aabc 2169 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2170 check_for_release(parent);
2171
ddbcc7e8
PM
2172 mutex_unlock(&cgroup_mutex);
2173 /* Drop the active superblock reference that we took when we
2174 * created the cgroup */
2175 deactivate_super(sb);
2176 return 0;
2177}
2178
2179static void cgroup_init_subsys(struct cgroup_subsys *ss)
2180{
ddbcc7e8 2181 struct cgroup_subsys_state *css;
817929ec 2182 struct list_head *l;
cfe36bde
DC
2183
2184 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2185
2186 /* Create the top cgroup state for this subsystem */
2187 ss->root = &rootnode;
2188 css = ss->create(ss, dummytop);
2189 /* We don't handle early failures gracefully */
2190 BUG_ON(IS_ERR(css));
2191 init_cgroup_css(css, ss, dummytop);
2192
817929ec
PM
2193 /* Update all cgroup groups to contain a subsys
2194 * pointer to this state - since the subsystem is
2195 * newly registered, all tasks and hence all cgroup
2196 * groups are in the subsystem's top cgroup. */
2197 write_lock(&css_set_lock);
2198 l = &init_css_set.list;
2199 do {
2200 struct css_set *cg =
2201 list_entry(l, struct css_set, list);
2202 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2203 l = l->next;
2204 } while (l != &init_css_set.list);
2205 write_unlock(&css_set_lock);
ddbcc7e8
PM
2206
2207 /* If this subsystem requested that it be notified with fork
2208 * events, we should send it one now for every process in the
2209 * system */
81a6a5cd
PM
2210 if (ss->fork) {
2211 struct task_struct *g, *p;
2212
2213 read_lock(&tasklist_lock);
2214 do_each_thread(g, p) {
2215 ss->fork(ss, p);
2216 } while_each_thread(g, p);
2217 read_unlock(&tasklist_lock);
2218 }
ddbcc7e8
PM
2219
2220 need_forkexit_callback |= ss->fork || ss->exit;
2221
2222 ss->active = 1;
2223}
2224
2225/**
2226 * cgroup_init_early - initialize cgroups at system boot, and
2227 * initialize any subsystems that request early init.
2228 */
2229int __init cgroup_init_early(void)
2230{
2231 int i;
817929ec
PM
2232 kref_init(&init_css_set.ref);
2233 kref_get(&init_css_set.ref);
2234 INIT_LIST_HEAD(&init_css_set.list);
2235 INIT_LIST_HEAD(&init_css_set.cg_links);
2236 INIT_LIST_HEAD(&init_css_set.tasks);
2237 css_set_count = 1;
ddbcc7e8
PM
2238 init_cgroup_root(&rootnode);
2239 list_add(&rootnode.root_list, &roots);
817929ec
PM
2240 root_count = 1;
2241 init_task.cgroups = &init_css_set;
2242
2243 init_css_set_link.cg = &init_css_set;
bd89aabc 2244 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2245 &rootnode.top_cgroup.css_sets);
2246 list_add(&init_css_set_link.cg_link_list,
2247 &init_css_set.cg_links);
ddbcc7e8
PM
2248
2249 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2250 struct cgroup_subsys *ss = subsys[i];
2251
2252 BUG_ON(!ss->name);
2253 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2254 BUG_ON(!ss->create);
2255 BUG_ON(!ss->destroy);
2256 if (ss->subsys_id != i) {
cfe36bde 2257 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2258 ss->name, ss->subsys_id);
2259 BUG();
2260 }
2261
2262 if (ss->early_init)
2263 cgroup_init_subsys(ss);
2264 }
2265 return 0;
2266}
2267
2268/**
2269 * cgroup_init - register cgroup filesystem and /proc file, and
2270 * initialize any subsystems that didn't request early init.
2271 */
2272int __init cgroup_init(void)
2273{
2274 int err;
2275 int i;
a424316c
PM
2276 struct proc_dir_entry *entry;
2277
2278 err = bdi_init(&cgroup_backing_dev_info);
2279 if (err)
2280 return err;
ddbcc7e8
PM
2281
2282 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2283 struct cgroup_subsys *ss = subsys[i];
2284 if (!ss->early_init)
2285 cgroup_init_subsys(ss);
2286 }
2287
2288 err = register_filesystem(&cgroup_fs_type);
2289 if (err < 0)
2290 goto out;
2291
a424316c
PM
2292 entry = create_proc_entry("cgroups", 0, NULL);
2293 if (entry)
2294 entry->proc_fops = &proc_cgroupstats_operations;
2295
ddbcc7e8 2296out:
a424316c
PM
2297 if (err)
2298 bdi_destroy(&cgroup_backing_dev_info);
2299
ddbcc7e8
PM
2300 return err;
2301}
b4f48b63 2302
a424316c
PM
2303/*
2304 * proc_cgroup_show()
2305 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2306 * - Used for /proc/<pid>/cgroup.
2307 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2308 * doesn't really matter if tsk->cgroup changes after we read it,
2309 * and we take cgroup_mutex, keeping attach_task() from changing it
2310 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2311 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2312 * cgroup to top_cgroup.
2313 */
2314
2315/* TODO: Use a proper seq_file iterator */
2316static int proc_cgroup_show(struct seq_file *m, void *v)
2317{
2318 struct pid *pid;
2319 struct task_struct *tsk;
2320 char *buf;
2321 int retval;
2322 struct cgroupfs_root *root;
2323
2324 retval = -ENOMEM;
2325 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2326 if (!buf)
2327 goto out;
2328
2329 retval = -ESRCH;
2330 pid = m->private;
2331 tsk = get_pid_task(pid, PIDTYPE_PID);
2332 if (!tsk)
2333 goto out_free;
2334
2335 retval = 0;
2336
2337 mutex_lock(&cgroup_mutex);
2338
2339 for_each_root(root) {
2340 struct cgroup_subsys *ss;
bd89aabc 2341 struct cgroup *cgrp;
a424316c
PM
2342 int subsys_id;
2343 int count = 0;
2344
2345 /* Skip this hierarchy if it has no active subsystems */
2346 if (!root->actual_subsys_bits)
2347 continue;
2348 for_each_subsys(root, ss)
2349 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2350 seq_putc(m, ':');
2351 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2352 cgrp = task_cgroup(tsk, subsys_id);
2353 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2354 if (retval < 0)
2355 goto out_unlock;
2356 seq_puts(m, buf);
2357 seq_putc(m, '\n');
2358 }
2359
2360out_unlock:
2361 mutex_unlock(&cgroup_mutex);
2362 put_task_struct(tsk);
2363out_free:
2364 kfree(buf);
2365out:
2366 return retval;
2367}
2368
2369static int cgroup_open(struct inode *inode, struct file *file)
2370{
2371 struct pid *pid = PROC_I(inode)->pid;
2372 return single_open(file, proc_cgroup_show, pid);
2373}
2374
2375struct file_operations proc_cgroup_operations = {
2376 .open = cgroup_open,
2377 .read = seq_read,
2378 .llseek = seq_lseek,
2379 .release = single_release,
2380};
2381
2382/* Display information about each subsystem and each hierarchy */
2383static int proc_cgroupstats_show(struct seq_file *m, void *v)
2384{
2385 int i;
a424316c 2386
817929ec 2387 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
a424316c 2388 mutex_lock(&cgroup_mutex);
a424316c
PM
2389 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2390 struct cgroup_subsys *ss = subsys[i];
817929ec
PM
2391 seq_printf(m, "%s\t%lu\t%d\n",
2392 ss->name, ss->root->subsys_bits,
2393 ss->root->number_of_cgroups);
a424316c
PM
2394 }
2395 mutex_unlock(&cgroup_mutex);
2396 return 0;
2397}
2398
2399static int cgroupstats_open(struct inode *inode, struct file *file)
2400{
2401 return single_open(file, proc_cgroupstats_show, 0);
2402}
2403
2404static struct file_operations proc_cgroupstats_operations = {
2405 .open = cgroupstats_open,
2406 .read = seq_read,
2407 .llseek = seq_lseek,
2408 .release = single_release,
2409};
2410
b4f48b63
PM
2411/**
2412 * cgroup_fork - attach newly forked task to its parents cgroup.
2413 * @tsk: pointer to task_struct of forking parent process.
2414 *
2415 * Description: A task inherits its parent's cgroup at fork().
2416 *
2417 * A pointer to the shared css_set was automatically copied in
2418 * fork.c by dup_task_struct(). However, we ignore that copy, since
2419 * it was not made under the protection of RCU or cgroup_mutex, so
2420 * might no longer be a valid cgroup pointer. attach_task() might
817929ec
PM
2421 * have already changed current->cgroups, allowing the previously
2422 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2423 *
2424 * At the point that cgroup_fork() is called, 'current' is the parent
2425 * task, and the passed argument 'child' points to the child task.
2426 */
2427void cgroup_fork(struct task_struct *child)
2428{
817929ec
PM
2429 task_lock(current);
2430 child->cgroups = current->cgroups;
2431 get_css_set(child->cgroups);
2432 task_unlock(current);
2433 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2434}
2435
2436/**
2437 * cgroup_fork_callbacks - called on a new task very soon before
2438 * adding it to the tasklist. No need to take any locks since no-one
2439 * can be operating on this task
2440 */
2441void cgroup_fork_callbacks(struct task_struct *child)
2442{
2443 if (need_forkexit_callback) {
2444 int i;
2445 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2446 struct cgroup_subsys *ss = subsys[i];
2447 if (ss->fork)
2448 ss->fork(ss, child);
2449 }
2450 }
2451}
2452
817929ec
PM
2453/**
2454 * cgroup_post_fork - called on a new task after adding it to the
2455 * task list. Adds the task to the list running through its css_set
2456 * if necessary. Has to be after the task is visible on the task list
2457 * in case we race with the first call to cgroup_iter_start() - to
2458 * guarantee that the new task ends up on its list. */
2459void cgroup_post_fork(struct task_struct *child)
2460{
2461 if (use_task_css_set_links) {
2462 write_lock(&css_set_lock);
2463 if (list_empty(&child->cg_list))
2464 list_add(&child->cg_list, &child->cgroups->tasks);
2465 write_unlock(&css_set_lock);
2466 }
2467}
b4f48b63
PM
2468/**
2469 * cgroup_exit - detach cgroup from exiting task
2470 * @tsk: pointer to task_struct of exiting process
2471 *
2472 * Description: Detach cgroup from @tsk and release it.
2473 *
2474 * Note that cgroups marked notify_on_release force every task in
2475 * them to take the global cgroup_mutex mutex when exiting.
2476 * This could impact scaling on very large systems. Be reluctant to
2477 * use notify_on_release cgroups where very high task exit scaling
2478 * is required on large systems.
2479 *
2480 * the_top_cgroup_hack:
2481 *
2482 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2483 *
2484 * We call cgroup_exit() while the task is still competent to
2485 * handle notify_on_release(), then leave the task attached to the
2486 * root cgroup in each hierarchy for the remainder of its exit.
2487 *
2488 * To do this properly, we would increment the reference count on
2489 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2490 * code we would add a second cgroup function call, to drop that
2491 * reference. This would just create an unnecessary hot spot on
2492 * the top_cgroup reference count, to no avail.
2493 *
2494 * Normally, holding a reference to a cgroup without bumping its
2495 * count is unsafe. The cgroup could go away, or someone could
2496 * attach us to a different cgroup, decrementing the count on
2497 * the first cgroup that we never incremented. But in this case,
2498 * top_cgroup isn't going away, and either task has PF_EXITING set,
2499 * which wards off any attach_task() attempts, or task is a failed
2500 * fork, never visible to attach_task.
2501 *
2502 */
2503void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2504{
2505 int i;
817929ec 2506 struct css_set *cg;
b4f48b63
PM
2507
2508 if (run_callbacks && need_forkexit_callback) {
2509 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2510 struct cgroup_subsys *ss = subsys[i];
2511 if (ss->exit)
2512 ss->exit(ss, tsk);
2513 }
2514 }
817929ec
PM
2515
2516 /*
2517 * Unlink from the css_set task list if necessary.
2518 * Optimistically check cg_list before taking
2519 * css_set_lock
2520 */
2521 if (!list_empty(&tsk->cg_list)) {
2522 write_lock(&css_set_lock);
2523 if (!list_empty(&tsk->cg_list))
2524 list_del(&tsk->cg_list);
2525 write_unlock(&css_set_lock);
2526 }
2527
b4f48b63
PM
2528 /* Reassign the task to the init_css_set. */
2529 task_lock(tsk);
817929ec
PM
2530 cg = tsk->cgroups;
2531 tsk->cgroups = &init_css_set;
b4f48b63 2532 task_unlock(tsk);
817929ec 2533 if (cg)
81a6a5cd 2534 put_css_set_taskexit(cg);
b4f48b63 2535}
697f4161
PM
2536
2537/**
2538 * cgroup_clone - duplicate the current cgroup in the hierarchy
2539 * that the given subsystem is attached to, and move this task into
2540 * the new child
2541 */
2542int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2543{
2544 struct dentry *dentry;
2545 int ret = 0;
2546 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2547 struct cgroup *parent, *child;
2548 struct inode *inode;
2549 struct css_set *cg;
2550 struct cgroupfs_root *root;
2551 struct cgroup_subsys *ss;
2552
2553 /* We shouldn't be called by an unregistered subsystem */
2554 BUG_ON(!subsys->active);
2555
2556 /* First figure out what hierarchy and cgroup we're dealing
2557 * with, and pin them so we can drop cgroup_mutex */
2558 mutex_lock(&cgroup_mutex);
2559 again:
2560 root = subsys->root;
2561 if (root == &rootnode) {
2562 printk(KERN_INFO
2563 "Not cloning cgroup for unused subsystem %s\n",
2564 subsys->name);
2565 mutex_unlock(&cgroup_mutex);
2566 return 0;
2567 }
817929ec 2568 cg = tsk->cgroups;
697f4161
PM
2569 parent = task_cgroup(tsk, subsys->subsys_id);
2570
2571 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2572
2573 /* Pin the hierarchy */
2574 atomic_inc(&parent->root->sb->s_active);
2575
817929ec
PM
2576 /* Keep the cgroup alive */
2577 get_css_set(cg);
697f4161
PM
2578 mutex_unlock(&cgroup_mutex);
2579
2580 /* Now do the VFS work to create a cgroup */
2581 inode = parent->dentry->d_inode;
2582
2583 /* Hold the parent directory mutex across this operation to
2584 * stop anyone else deleting the new cgroup */
2585 mutex_lock(&inode->i_mutex);
2586 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2587 if (IS_ERR(dentry)) {
2588 printk(KERN_INFO
cfe36bde 2589 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
2590 PTR_ERR(dentry));
2591 ret = PTR_ERR(dentry);
2592 goto out_release;
2593 }
2594
2595 /* Create the cgroup directory, which also creates the cgroup */
2596 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
bd89aabc 2597 child = __d_cgrp(dentry);
697f4161
PM
2598 dput(dentry);
2599 if (ret) {
2600 printk(KERN_INFO
2601 "Failed to create cgroup %s: %d\n", nodename,
2602 ret);
2603 goto out_release;
2604 }
2605
2606 if (!child) {
2607 printk(KERN_INFO
2608 "Couldn't find new cgroup %s\n", nodename);
2609 ret = -ENOMEM;
2610 goto out_release;
2611 }
2612
2613 /* The cgroup now exists. Retake cgroup_mutex and check
2614 * that we're still in the same state that we thought we
2615 * were. */
2616 mutex_lock(&cgroup_mutex);
2617 if ((root != subsys->root) ||
2618 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2619 /* Aargh, we raced ... */
2620 mutex_unlock(&inode->i_mutex);
817929ec 2621 put_css_set(cg);
697f4161
PM
2622
2623 deactivate_super(parent->root->sb);
2624 /* The cgroup is still accessible in the VFS, but
2625 * we're not going to try to rmdir() it at this
2626 * point. */
2627 printk(KERN_INFO
2628 "Race in cgroup_clone() - leaking cgroup %s\n",
2629 nodename);
2630 goto again;
2631 }
2632
2633 /* do any required auto-setup */
2634 for_each_subsys(root, ss) {
2635 if (ss->post_clone)
2636 ss->post_clone(ss, child);
2637 }
2638
2639 /* All seems fine. Finish by moving the task into the new cgroup */
2640 ret = attach_task(child, tsk);
2641 mutex_unlock(&cgroup_mutex);
2642
2643 out_release:
2644 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
2645
2646 mutex_lock(&cgroup_mutex);
817929ec 2647 put_css_set(cg);
81a6a5cd 2648 mutex_unlock(&cgroup_mutex);
697f4161
PM
2649 deactivate_super(parent->root->sb);
2650 return ret;
2651}
2652
2653/*
bd89aabc 2654 * See if "cgrp" is a descendant of the current task's cgroup in
697f4161
PM
2655 * the appropriate hierarchy
2656 *
2657 * If we are sending in dummytop, then presumably we are creating
2658 * the top cgroup in the subsystem.
2659 *
2660 * Called only by the ns (nsproxy) cgroup.
2661 */
bd89aabc 2662int cgroup_is_descendant(const struct cgroup *cgrp)
697f4161
PM
2663{
2664 int ret;
2665 struct cgroup *target;
2666 int subsys_id;
2667
bd89aabc 2668 if (cgrp == dummytop)
697f4161
PM
2669 return 1;
2670
bd89aabc 2671 get_first_subsys(cgrp, NULL, &subsys_id);
697f4161 2672 target = task_cgroup(current, subsys_id);
bd89aabc
PM
2673 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2674 cgrp = cgrp->parent;
2675 ret = (cgrp == target);
697f4161
PM
2676 return ret;
2677}
81a6a5cd 2678
bd89aabc 2679static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
2680{
2681 /* All of these checks rely on RCU to keep the cgroup
2682 * structure alive */
bd89aabc
PM
2683 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2684 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
2685 /* Control Group is currently removeable. If it's not
2686 * already queued for a userspace notification, queue
2687 * it now */
2688 int need_schedule_work = 0;
2689 spin_lock(&release_list_lock);
bd89aabc
PM
2690 if (!cgroup_is_removed(cgrp) &&
2691 list_empty(&cgrp->release_list)) {
2692 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
2693 need_schedule_work = 1;
2694 }
2695 spin_unlock(&release_list_lock);
2696 if (need_schedule_work)
2697 schedule_work(&release_agent_work);
2698 }
2699}
2700
2701void __css_put(struct cgroup_subsys_state *css)
2702{
bd89aabc 2703 struct cgroup *cgrp = css->cgroup;
81a6a5cd 2704 rcu_read_lock();
bd89aabc
PM
2705 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2706 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2707 check_for_release(cgrp);
81a6a5cd
PM
2708 }
2709 rcu_read_unlock();
2710}
2711
2712/*
2713 * Notify userspace when a cgroup is released, by running the
2714 * configured release agent with the name of the cgroup (path
2715 * relative to the root of cgroup file system) as the argument.
2716 *
2717 * Most likely, this user command will try to rmdir this cgroup.
2718 *
2719 * This races with the possibility that some other task will be
2720 * attached to this cgroup before it is removed, or that some other
2721 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2722 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2723 * unused, and this cgroup will be reprieved from its death sentence,
2724 * to continue to serve a useful existence. Next time it's released,
2725 * we will get notified again, if it still has 'notify_on_release' set.
2726 *
2727 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2728 * means only wait until the task is successfully execve()'d. The
2729 * separate release agent task is forked by call_usermodehelper(),
2730 * then control in this thread returns here, without waiting for the
2731 * release agent task. We don't bother to wait because the caller of
2732 * this routine has no use for the exit status of the release agent
2733 * task, so no sense holding our caller up for that.
2734 *
2735 */
2736
2737static void cgroup_release_agent(struct work_struct *work)
2738{
2739 BUG_ON(work != &release_agent_work);
2740 mutex_lock(&cgroup_mutex);
2741 spin_lock(&release_list_lock);
2742 while (!list_empty(&release_list)) {
2743 char *argv[3], *envp[3];
2744 int i;
2745 char *pathbuf;
bd89aabc 2746 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
2747 struct cgroup,
2748 release_list);
bd89aabc 2749 list_del_init(&cgrp->release_list);
81a6a5cd
PM
2750 spin_unlock(&release_list_lock);
2751 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2752 if (!pathbuf) {
2753 spin_lock(&release_list_lock);
2754 continue;
2755 }
2756
bd89aabc 2757 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
81a6a5cd
PM
2758 kfree(pathbuf);
2759 spin_lock(&release_list_lock);
2760 continue;
2761 }
2762
2763 i = 0;
bd89aabc 2764 argv[i++] = cgrp->root->release_agent_path;
81a6a5cd
PM
2765 argv[i++] = (char *)pathbuf;
2766 argv[i] = NULL;
2767
2768 i = 0;
2769 /* minimal command environment */
2770 envp[i++] = "HOME=/";
2771 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2772 envp[i] = NULL;
2773
2774 /* Drop the lock while we invoke the usermode helper,
2775 * since the exec could involve hitting disk and hence
2776 * be a slow process */
2777 mutex_unlock(&cgroup_mutex);
2778 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2779 kfree(pathbuf);
2780 mutex_lock(&cgroup_mutex);
2781 spin_lock(&release_list_lock);
2782 }
2783 spin_unlock(&release_list_lock);
2784 mutex_unlock(&cgroup_mutex);
2785}