]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cgroup.c
cgroup files: add write_string cgroup control file method
[net-next-2.6.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
472b1053 47#include <linux/hash.h>
846c7bb0 48
ddbcc7e8
PM
49#include <asm/atomic.h>
50
81a6a5cd
PM
51static DEFINE_MUTEX(cgroup_mutex);
52
ddbcc7e8
PM
53/* Generate an array of cgroup subsystem pointers */
54#define SUBSYS(_x) &_x ## _subsys,
55
56static struct cgroup_subsys *subsys[] = {
57#include <linux/cgroup_subsys.h>
58};
59
60/*
61 * A cgroupfs_root represents the root of a cgroup hierarchy,
62 * and may be associated with a superblock to form an active
63 * hierarchy
64 */
65struct cgroupfs_root {
66 struct super_block *sb;
67
68 /*
69 * The bitmask of subsystems intended to be attached to this
70 * hierarchy
71 */
72 unsigned long subsys_bits;
73
74 /* The bitmask of subsystems currently attached to this hierarchy */
75 unsigned long actual_subsys_bits;
76
77 /* A list running through the attached subsystems */
78 struct list_head subsys_list;
79
80 /* The root cgroup for this hierarchy */
81 struct cgroup top_cgroup;
82
83 /* Tracks how many cgroups are currently defined in hierarchy.*/
84 int number_of_cgroups;
85
86 /* A list running through the mounted hierarchies */
87 struct list_head root_list;
88
89 /* Hierarchy-specific flags */
90 unsigned long flags;
81a6a5cd
PM
91
92 /* The path to use for release notifications. No locking
93 * between setting and use - so if userspace updates this
94 * while child cgroups exist, you could miss a
95 * notification. We ensure that it's always a valid
96 * NUL-terminated string */
97 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
98};
99
100
101/*
102 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
103 * subsystems that are otherwise unattached - it never has more than a
104 * single cgroup, and all tasks are part of that cgroup.
105 */
106static struct cgroupfs_root rootnode;
107
108/* The list of hierarchy roots */
109
110static LIST_HEAD(roots);
817929ec 111static int root_count;
ddbcc7e8
PM
112
113/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
114#define dummytop (&rootnode.top_cgroup)
115
116/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
117 * check for fork/exit handlers to call. This avoids us having to do
118 * extra work in the fork/exit path if none of the subsystems need to
119 * be called.
ddbcc7e8 120 */
8947f9d5 121static int need_forkexit_callback __read_mostly;
cf475ad2 122static int need_mm_owner_callback __read_mostly;
ddbcc7e8 123
ddbcc7e8 124/* convenient tests for these bits */
bd89aabc 125inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 126{
bd89aabc 127 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
128}
129
130/* bits in struct cgroupfs_root flags field */
131enum {
132 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
133};
134
e9685a03 135static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
136{
137 const int bits =
bd89aabc
PM
138 (1 << CGRP_RELEASABLE) |
139 (1 << CGRP_NOTIFY_ON_RELEASE);
140 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
141}
142
e9685a03 143static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 144{
bd89aabc 145 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
146}
147
ddbcc7e8
PM
148/*
149 * for_each_subsys() allows you to iterate on each subsystem attached to
150 * an active hierarchy
151 */
152#define for_each_subsys(_root, _ss) \
153list_for_each_entry(_ss, &_root->subsys_list, sibling)
154
155/* for_each_root() allows you to iterate across the active hierarchies */
156#define for_each_root(_root) \
157list_for_each_entry(_root, &roots, root_list)
158
81a6a5cd
PM
159/* the list of cgroups eligible for automatic release. Protected by
160 * release_list_lock */
161static LIST_HEAD(release_list);
162static DEFINE_SPINLOCK(release_list_lock);
163static void cgroup_release_agent(struct work_struct *work);
164static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 165static void check_for_release(struct cgroup *cgrp);
81a6a5cd 166
817929ec
PM
167/* Link structure for associating css_set objects with cgroups */
168struct cg_cgroup_link {
169 /*
170 * List running through cg_cgroup_links associated with a
171 * cgroup, anchored on cgroup->css_sets
172 */
bd89aabc 173 struct list_head cgrp_link_list;
817929ec
PM
174 /*
175 * List running through cg_cgroup_links pointing at a
176 * single css_set object, anchored on css_set->cg_links
177 */
178 struct list_head cg_link_list;
179 struct css_set *cg;
180};
181
182/* The default css_set - used by init and its children prior to any
183 * hierarchies being mounted. It contains a pointer to the root state
184 * for each subsystem. Also used to anchor the list of css_sets. Not
185 * reference-counted, to improve performance when child cgroups
186 * haven't been created.
187 */
188
189static struct css_set init_css_set;
190static struct cg_cgroup_link init_css_set_link;
191
192/* css_set_lock protects the list of css_set objects, and the
193 * chain of tasks off each css_set. Nests outside task->alloc_lock
194 * due to cgroup_iter_start() */
195static DEFINE_RWLOCK(css_set_lock);
196static int css_set_count;
197
472b1053
LZ
198/* hash table for cgroup groups. This improves the performance to
199 * find an existing css_set */
200#define CSS_SET_HASH_BITS 7
201#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
202static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
203
204static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
205{
206 int i;
207 int index;
208 unsigned long tmp = 0UL;
209
210 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
211 tmp += (unsigned long)css[i];
212 tmp = (tmp >> 16) ^ tmp;
213
214 index = hash_long(tmp, CSS_SET_HASH_BITS);
215
216 return &css_set_table[index];
217}
218
817929ec
PM
219/* We don't maintain the lists running through each css_set to its
220 * task until after the first call to cgroup_iter_start(). This
221 * reduces the fork()/exit() overhead for people who have cgroups
222 * compiled into their kernel but not actually in use */
8947f9d5 223static int use_task_css_set_links __read_mostly;
817929ec
PM
224
225/* When we create or destroy a css_set, the operation simply
226 * takes/releases a reference count on all the cgroups referenced
227 * by subsystems in this css_set. This can end up multiple-counting
228 * some cgroups, but that's OK - the ref-count is just a
229 * busy/not-busy indicator; ensuring that we only count each cgroup
230 * once would require taking a global lock to ensure that no
b4f48b63
PM
231 * subsystems moved between hierarchies while we were doing so.
232 *
233 * Possible TODO: decide at boot time based on the number of
234 * registered subsystems and the number of CPUs or NUMA nodes whether
235 * it's better for performance to ref-count every subsystem, or to
236 * take a global lock and only add one ref count to each hierarchy.
237 */
817929ec
PM
238
239/*
240 * unlink a css_set from the list and free it
241 */
81a6a5cd 242static void unlink_css_set(struct css_set *cg)
b4f48b63 243{
71cbb949
KM
244 struct cg_cgroup_link *link;
245 struct cg_cgroup_link *saved_link;
246
817929ec 247 write_lock(&css_set_lock);
472b1053 248 hlist_del(&cg->hlist);
817929ec 249 css_set_count--;
71cbb949
KM
250
251 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
252 cg_link_list) {
817929ec 253 list_del(&link->cg_link_list);
bd89aabc 254 list_del(&link->cgrp_link_list);
817929ec
PM
255 kfree(link);
256 }
71cbb949 257
817929ec 258 write_unlock(&css_set_lock);
81a6a5cd
PM
259}
260
261static void __release_css_set(struct kref *k, int taskexit)
262{
263 int i;
264 struct css_set *cg = container_of(k, struct css_set, ref);
265
266 unlink_css_set(cg);
267
268 rcu_read_lock();
269 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc
PM
270 struct cgroup *cgrp = cg->subsys[i]->cgroup;
271 if (atomic_dec_and_test(&cgrp->count) &&
272 notify_on_release(cgrp)) {
81a6a5cd 273 if (taskexit)
bd89aabc
PM
274 set_bit(CGRP_RELEASABLE, &cgrp->flags);
275 check_for_release(cgrp);
81a6a5cd
PM
276 }
277 }
278 rcu_read_unlock();
817929ec 279 kfree(cg);
b4f48b63
PM
280}
281
81a6a5cd
PM
282static void release_css_set(struct kref *k)
283{
284 __release_css_set(k, 0);
285}
286
287static void release_css_set_taskexit(struct kref *k)
288{
289 __release_css_set(k, 1);
290}
291
817929ec
PM
292/*
293 * refcounted get/put for css_set objects
294 */
295static inline void get_css_set(struct css_set *cg)
296{
297 kref_get(&cg->ref);
298}
299
300static inline void put_css_set(struct css_set *cg)
301{
302 kref_put(&cg->ref, release_css_set);
303}
304
81a6a5cd
PM
305static inline void put_css_set_taskexit(struct css_set *cg)
306{
307 kref_put(&cg->ref, release_css_set_taskexit);
308}
309
817929ec
PM
310/*
311 * find_existing_css_set() is a helper for
312 * find_css_set(), and checks to see whether an existing
472b1053 313 * css_set is suitable.
817929ec
PM
314 *
315 * oldcg: the cgroup group that we're using before the cgroup
316 * transition
317 *
bd89aabc 318 * cgrp: the cgroup that we're moving into
817929ec
PM
319 *
320 * template: location in which to build the desired set of subsystem
321 * state objects for the new cgroup group
322 */
817929ec
PM
323static struct css_set *find_existing_css_set(
324 struct css_set *oldcg,
bd89aabc 325 struct cgroup *cgrp,
817929ec 326 struct cgroup_subsys_state *template[])
b4f48b63
PM
327{
328 int i;
bd89aabc 329 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
330 struct hlist_head *hhead;
331 struct hlist_node *node;
332 struct css_set *cg;
817929ec
PM
333
334 /* Built the set of subsystem state objects that we want to
335 * see in the new css_set */
336 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 337 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
338 /* Subsystem is in this hierarchy. So we want
339 * the subsystem state from the new
340 * cgroup */
bd89aabc 341 template[i] = cgrp->subsys[i];
817929ec
PM
342 } else {
343 /* Subsystem is not in this hierarchy, so we
344 * don't want to change the subsystem state */
345 template[i] = oldcg->subsys[i];
346 }
347 }
348
472b1053
LZ
349 hhead = css_set_hash(template);
350 hlist_for_each_entry(cg, node, hhead, hlist) {
817929ec
PM
351 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
352 /* All subsystems matched */
353 return cg;
354 }
472b1053 355 }
817929ec
PM
356
357 /* No existing cgroup group matched */
358 return NULL;
359}
360
361/*
362 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 363 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
364 * success or a negative error
365 */
817929ec
PM
366static int allocate_cg_links(int count, struct list_head *tmp)
367{
368 struct cg_cgroup_link *link;
71cbb949 369 struct cg_cgroup_link *saved_link;
817929ec
PM
370 int i;
371 INIT_LIST_HEAD(tmp);
372 for (i = 0; i < count; i++) {
373 link = kmalloc(sizeof(*link), GFP_KERNEL);
374 if (!link) {
71cbb949
KM
375 list_for_each_entry_safe(link, saved_link, tmp,
376 cgrp_link_list) {
bd89aabc 377 list_del(&link->cgrp_link_list);
817929ec
PM
378 kfree(link);
379 }
380 return -ENOMEM;
381 }
bd89aabc 382 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
383 }
384 return 0;
385}
386
387static void free_cg_links(struct list_head *tmp)
388{
71cbb949
KM
389 struct cg_cgroup_link *link;
390 struct cg_cgroup_link *saved_link;
391
392 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
bd89aabc 393 list_del(&link->cgrp_link_list);
817929ec
PM
394 kfree(link);
395 }
396}
397
398/*
399 * find_css_set() takes an existing cgroup group and a
400 * cgroup object, and returns a css_set object that's
401 * equivalent to the old group, but with the given cgroup
402 * substituted into the appropriate hierarchy. Must be called with
403 * cgroup_mutex held
404 */
817929ec 405static struct css_set *find_css_set(
bd89aabc 406 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
407{
408 struct css_set *res;
409 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
410 int i;
411
412 struct list_head tmp_cg_links;
413 struct cg_cgroup_link *link;
414
472b1053
LZ
415 struct hlist_head *hhead;
416
817929ec
PM
417 /* First see if we already have a cgroup group that matches
418 * the desired set */
7e9abd89 419 read_lock(&css_set_lock);
bd89aabc 420 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
421 if (res)
422 get_css_set(res);
7e9abd89 423 read_unlock(&css_set_lock);
817929ec
PM
424
425 if (res)
426 return res;
427
428 res = kmalloc(sizeof(*res), GFP_KERNEL);
429 if (!res)
430 return NULL;
431
432 /* Allocate all the cg_cgroup_link objects that we'll need */
433 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
434 kfree(res);
435 return NULL;
436 }
437
438 kref_init(&res->ref);
439 INIT_LIST_HEAD(&res->cg_links);
440 INIT_LIST_HEAD(&res->tasks);
472b1053 441 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
442
443 /* Copy the set of subsystem state objects generated in
444 * find_existing_css_set() */
445 memcpy(res->subsys, template, sizeof(res->subsys));
446
447 write_lock(&css_set_lock);
448 /* Add reference counts and links from the new css_set. */
449 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 450 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 451 struct cgroup_subsys *ss = subsys[i];
bd89aabc 452 atomic_inc(&cgrp->count);
817929ec
PM
453 /*
454 * We want to add a link once per cgroup, so we
455 * only do it for the first subsystem in each
456 * hierarchy
457 */
458 if (ss->root->subsys_list.next == &ss->sibling) {
459 BUG_ON(list_empty(&tmp_cg_links));
460 link = list_entry(tmp_cg_links.next,
461 struct cg_cgroup_link,
bd89aabc
PM
462 cgrp_link_list);
463 list_del(&link->cgrp_link_list);
464 list_add(&link->cgrp_link_list, &cgrp->css_sets);
817929ec
PM
465 link->cg = res;
466 list_add(&link->cg_link_list, &res->cg_links);
467 }
468 }
469 if (list_empty(&rootnode.subsys_list)) {
470 link = list_entry(tmp_cg_links.next,
471 struct cg_cgroup_link,
bd89aabc
PM
472 cgrp_link_list);
473 list_del(&link->cgrp_link_list);
474 list_add(&link->cgrp_link_list, &dummytop->css_sets);
817929ec
PM
475 link->cg = res;
476 list_add(&link->cg_link_list, &res->cg_links);
477 }
478
479 BUG_ON(!list_empty(&tmp_cg_links));
480
817929ec 481 css_set_count++;
472b1053
LZ
482
483 /* Add this cgroup group to the hash table */
484 hhead = css_set_hash(res->subsys);
485 hlist_add_head(&res->hlist, hhead);
486
817929ec
PM
487 write_unlock(&css_set_lock);
488
489 return res;
b4f48b63
PM
490}
491
ddbcc7e8
PM
492/*
493 * There is one global cgroup mutex. We also require taking
494 * task_lock() when dereferencing a task's cgroup subsys pointers.
495 * See "The task_lock() exception", at the end of this comment.
496 *
497 * A task must hold cgroup_mutex to modify cgroups.
498 *
499 * Any task can increment and decrement the count field without lock.
500 * So in general, code holding cgroup_mutex can't rely on the count
501 * field not changing. However, if the count goes to zero, then only
956db3ca 502 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
503 * means that no tasks are currently attached, therefore there is no
504 * way a task attached to that cgroup can fork (the other way to
505 * increment the count). So code holding cgroup_mutex can safely
506 * assume that if the count is zero, it will stay zero. Similarly, if
507 * a task holds cgroup_mutex on a cgroup with zero count, it
508 * knows that the cgroup won't be removed, as cgroup_rmdir()
509 * needs that mutex.
510 *
511 * The cgroup_common_file_write handler for operations that modify
512 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
513 * single threading all such cgroup modifications across the system.
514 *
515 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
516 * (usually) take cgroup_mutex. These are the two most performance
517 * critical pieces of code here. The exception occurs on cgroup_exit(),
518 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
519 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
520 * to the release agent with the name of the cgroup (path relative to
521 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
522 *
523 * A cgroup can only be deleted if both its 'count' of using tasks
524 * is zero, and its list of 'children' cgroups is empty. Since all
525 * tasks in the system use _some_ cgroup, and since there is always at
526 * least one task in the system (init, pid == 1), therefore, top_cgroup
527 * always has either children cgroups and/or using tasks. So we don't
528 * need a special hack to ensure that top_cgroup cannot be deleted.
529 *
530 * The task_lock() exception
531 *
532 * The need for this exception arises from the action of
956db3ca 533 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 534 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
535 * several performance critical places that need to reference
536 * task->cgroup without the expense of grabbing a system global
537 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 538 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
539 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
540 * the task_struct routinely used for such matters.
541 *
542 * P.S. One more locking exception. RCU is used to guard the
956db3ca 543 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
544 */
545
ddbcc7e8
PM
546/**
547 * cgroup_lock - lock out any changes to cgroup structures
548 *
549 */
ddbcc7e8
PM
550void cgroup_lock(void)
551{
552 mutex_lock(&cgroup_mutex);
553}
554
555/**
556 * cgroup_unlock - release lock on cgroup changes
557 *
558 * Undo the lock taken in a previous cgroup_lock() call.
559 */
ddbcc7e8
PM
560void cgroup_unlock(void)
561{
562 mutex_unlock(&cgroup_mutex);
563}
564
565/*
566 * A couple of forward declarations required, due to cyclic reference loop:
567 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
568 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
569 * -> cgroup_mkdir.
570 */
571
572static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
573static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 574static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 575static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
576static struct file_operations proc_cgroupstats_operations;
577
578static struct backing_dev_info cgroup_backing_dev_info = {
e4ad08fe 579 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 580};
ddbcc7e8
PM
581
582static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
583{
584 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
585
586 if (inode) {
587 inode->i_mode = mode;
588 inode->i_uid = current->fsuid;
589 inode->i_gid = current->fsgid;
590 inode->i_blocks = 0;
591 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
592 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
593 }
594 return inode;
595}
596
4fca88c8
KH
597/*
598 * Call subsys's pre_destroy handler.
599 * This is called before css refcnt check.
600 */
4fca88c8
KH
601static void cgroup_call_pre_destroy(struct cgroup *cgrp)
602{
603 struct cgroup_subsys *ss;
604 for_each_subsys(cgrp->root, ss)
605 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
606 ss->pre_destroy(ss, cgrp);
607 return;
608}
609
ddbcc7e8
PM
610static void cgroup_diput(struct dentry *dentry, struct inode *inode)
611{
612 /* is dentry a directory ? if so, kfree() associated cgroup */
613 if (S_ISDIR(inode->i_mode)) {
bd89aabc 614 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 615 struct cgroup_subsys *ss;
bd89aabc 616 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
617 /* It's possible for external users to be holding css
618 * reference counts on a cgroup; css_put() needs to
619 * be able to access the cgroup after decrementing
620 * the reference count in order to know if it needs to
621 * queue the cgroup to be handled by the release
622 * agent */
623 synchronize_rcu();
8dc4f3e1
PM
624
625 mutex_lock(&cgroup_mutex);
626 /*
627 * Release the subsystem state objects.
628 */
629 for_each_subsys(cgrp->root, ss) {
630 if (cgrp->subsys[ss->subsys_id])
631 ss->destroy(ss, cgrp);
632 }
633
634 cgrp->root->number_of_cgroups--;
635 mutex_unlock(&cgroup_mutex);
636
637 /* Drop the active superblock reference that we took when we
638 * created the cgroup */
639 deactivate_super(cgrp->root->sb);
640
bd89aabc 641 kfree(cgrp);
ddbcc7e8
PM
642 }
643 iput(inode);
644}
645
646static void remove_dir(struct dentry *d)
647{
648 struct dentry *parent = dget(d->d_parent);
649
650 d_delete(d);
651 simple_rmdir(parent->d_inode, d);
652 dput(parent);
653}
654
655static void cgroup_clear_directory(struct dentry *dentry)
656{
657 struct list_head *node;
658
659 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
660 spin_lock(&dcache_lock);
661 node = dentry->d_subdirs.next;
662 while (node != &dentry->d_subdirs) {
663 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
664 list_del_init(node);
665 if (d->d_inode) {
666 /* This should never be called on a cgroup
667 * directory with child cgroups */
668 BUG_ON(d->d_inode->i_mode & S_IFDIR);
669 d = dget_locked(d);
670 spin_unlock(&dcache_lock);
671 d_delete(d);
672 simple_unlink(dentry->d_inode, d);
673 dput(d);
674 spin_lock(&dcache_lock);
675 }
676 node = dentry->d_subdirs.next;
677 }
678 spin_unlock(&dcache_lock);
679}
680
681/*
682 * NOTE : the dentry must have been dget()'ed
683 */
684static void cgroup_d_remove_dir(struct dentry *dentry)
685{
686 cgroup_clear_directory(dentry);
687
688 spin_lock(&dcache_lock);
689 list_del_init(&dentry->d_u.d_child);
690 spin_unlock(&dcache_lock);
691 remove_dir(dentry);
692}
693
694static int rebind_subsystems(struct cgroupfs_root *root,
695 unsigned long final_bits)
696{
697 unsigned long added_bits, removed_bits;
bd89aabc 698 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
699 int i;
700
701 removed_bits = root->actual_subsys_bits & ~final_bits;
702 added_bits = final_bits & ~root->actual_subsys_bits;
703 /* Check that any added subsystems are currently free */
704 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 705 unsigned long bit = 1UL << i;
ddbcc7e8
PM
706 struct cgroup_subsys *ss = subsys[i];
707 if (!(bit & added_bits))
708 continue;
709 if (ss->root != &rootnode) {
710 /* Subsystem isn't free */
711 return -EBUSY;
712 }
713 }
714
715 /* Currently we don't handle adding/removing subsystems when
716 * any child cgroups exist. This is theoretically supportable
717 * but involves complex error handling, so it's being left until
718 * later */
bd89aabc 719 if (!list_empty(&cgrp->children))
ddbcc7e8
PM
720 return -EBUSY;
721
722 /* Process each subsystem */
723 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
724 struct cgroup_subsys *ss = subsys[i];
725 unsigned long bit = 1UL << i;
726 if (bit & added_bits) {
727 /* We're binding this subsystem to this hierarchy */
bd89aabc 728 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
729 BUG_ON(!dummytop->subsys[i]);
730 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
731 cgrp->subsys[i] = dummytop->subsys[i];
732 cgrp->subsys[i]->cgroup = cgrp;
ddbcc7e8
PM
733 list_add(&ss->sibling, &root->subsys_list);
734 rcu_assign_pointer(ss->root, root);
735 if (ss->bind)
bd89aabc 736 ss->bind(ss, cgrp);
ddbcc7e8
PM
737
738 } else if (bit & removed_bits) {
739 /* We're removing this subsystem */
bd89aabc
PM
740 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
741 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8
PM
742 if (ss->bind)
743 ss->bind(ss, dummytop);
744 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 745 cgrp->subsys[i] = NULL;
ddbcc7e8
PM
746 rcu_assign_pointer(subsys[i]->root, &rootnode);
747 list_del(&ss->sibling);
748 } else if (bit & final_bits) {
749 /* Subsystem state should already exist */
bd89aabc 750 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
751 } else {
752 /* Subsystem state shouldn't exist */
bd89aabc 753 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
754 }
755 }
756 root->subsys_bits = root->actual_subsys_bits = final_bits;
757 synchronize_rcu();
758
759 return 0;
760}
761
762static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
763{
764 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
765 struct cgroup_subsys *ss;
766
767 mutex_lock(&cgroup_mutex);
768 for_each_subsys(root, ss)
769 seq_printf(seq, ",%s", ss->name);
770 if (test_bit(ROOT_NOPREFIX, &root->flags))
771 seq_puts(seq, ",noprefix");
81a6a5cd
PM
772 if (strlen(root->release_agent_path))
773 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
774 mutex_unlock(&cgroup_mutex);
775 return 0;
776}
777
778struct cgroup_sb_opts {
779 unsigned long subsys_bits;
780 unsigned long flags;
81a6a5cd 781 char *release_agent;
ddbcc7e8
PM
782};
783
784/* Convert a hierarchy specifier into a bitmask of subsystems and
785 * flags. */
786static int parse_cgroupfs_options(char *data,
787 struct cgroup_sb_opts *opts)
788{
789 char *token, *o = data ?: "all";
790
791 opts->subsys_bits = 0;
792 opts->flags = 0;
81a6a5cd 793 opts->release_agent = NULL;
ddbcc7e8
PM
794
795 while ((token = strsep(&o, ",")) != NULL) {
796 if (!*token)
797 return -EINVAL;
798 if (!strcmp(token, "all")) {
8bab8dde
PM
799 /* Add all non-disabled subsystems */
800 int i;
801 opts->subsys_bits = 0;
802 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
803 struct cgroup_subsys *ss = subsys[i];
804 if (!ss->disabled)
805 opts->subsys_bits |= 1ul << i;
806 }
ddbcc7e8
PM
807 } else if (!strcmp(token, "noprefix")) {
808 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
809 } else if (!strncmp(token, "release_agent=", 14)) {
810 /* Specifying two release agents is forbidden */
811 if (opts->release_agent)
812 return -EINVAL;
813 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
814 if (!opts->release_agent)
815 return -ENOMEM;
816 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
817 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
818 } else {
819 struct cgroup_subsys *ss;
820 int i;
821 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
822 ss = subsys[i];
823 if (!strcmp(token, ss->name)) {
8bab8dde
PM
824 if (!ss->disabled)
825 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
826 break;
827 }
828 }
829 if (i == CGROUP_SUBSYS_COUNT)
830 return -ENOENT;
831 }
832 }
833
834 /* We can't have an empty hierarchy */
835 if (!opts->subsys_bits)
836 return -EINVAL;
837
838 return 0;
839}
840
841static int cgroup_remount(struct super_block *sb, int *flags, char *data)
842{
843 int ret = 0;
844 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 845 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
846 struct cgroup_sb_opts opts;
847
bd89aabc 848 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
849 mutex_lock(&cgroup_mutex);
850
851 /* See what subsystems are wanted */
852 ret = parse_cgroupfs_options(data, &opts);
853 if (ret)
854 goto out_unlock;
855
856 /* Don't allow flags to change at remount */
857 if (opts.flags != root->flags) {
858 ret = -EINVAL;
859 goto out_unlock;
860 }
861
862 ret = rebind_subsystems(root, opts.subsys_bits);
863
864 /* (re)populate subsystem files */
865 if (!ret)
bd89aabc 866 cgroup_populate_dir(cgrp);
ddbcc7e8 867
81a6a5cd
PM
868 if (opts.release_agent)
869 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 870 out_unlock:
81a6a5cd
PM
871 if (opts.release_agent)
872 kfree(opts.release_agent);
ddbcc7e8 873 mutex_unlock(&cgroup_mutex);
bd89aabc 874 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
875 return ret;
876}
877
878static struct super_operations cgroup_ops = {
879 .statfs = simple_statfs,
880 .drop_inode = generic_delete_inode,
881 .show_options = cgroup_show_options,
882 .remount_fs = cgroup_remount,
883};
884
885static void init_cgroup_root(struct cgroupfs_root *root)
886{
bd89aabc 887 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
888 INIT_LIST_HEAD(&root->subsys_list);
889 INIT_LIST_HEAD(&root->root_list);
890 root->number_of_cgroups = 1;
bd89aabc
PM
891 cgrp->root = root;
892 cgrp->top_cgroup = cgrp;
893 INIT_LIST_HEAD(&cgrp->sibling);
894 INIT_LIST_HEAD(&cgrp->children);
895 INIT_LIST_HEAD(&cgrp->css_sets);
896 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8
PM
897}
898
899static int cgroup_test_super(struct super_block *sb, void *data)
900{
901 struct cgroupfs_root *new = data;
902 struct cgroupfs_root *root = sb->s_fs_info;
903
904 /* First check subsystems */
905 if (new->subsys_bits != root->subsys_bits)
906 return 0;
907
908 /* Next check flags */
909 if (new->flags != root->flags)
910 return 0;
911
912 return 1;
913}
914
915static int cgroup_set_super(struct super_block *sb, void *data)
916{
917 int ret;
918 struct cgroupfs_root *root = data;
919
920 ret = set_anon_super(sb, NULL);
921 if (ret)
922 return ret;
923
924 sb->s_fs_info = root;
925 root->sb = sb;
926
927 sb->s_blocksize = PAGE_CACHE_SIZE;
928 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
929 sb->s_magic = CGROUP_SUPER_MAGIC;
930 sb->s_op = &cgroup_ops;
931
932 return 0;
933}
934
935static int cgroup_get_rootdir(struct super_block *sb)
936{
937 struct inode *inode =
938 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
939 struct dentry *dentry;
940
941 if (!inode)
942 return -ENOMEM;
943
ddbcc7e8
PM
944 inode->i_fop = &simple_dir_operations;
945 inode->i_op = &cgroup_dir_inode_operations;
946 /* directories start off with i_nlink == 2 (for "." entry) */
947 inc_nlink(inode);
948 dentry = d_alloc_root(inode);
949 if (!dentry) {
950 iput(inode);
951 return -ENOMEM;
952 }
953 sb->s_root = dentry;
954 return 0;
955}
956
957static int cgroup_get_sb(struct file_system_type *fs_type,
958 int flags, const char *unused_dev_name,
959 void *data, struct vfsmount *mnt)
960{
961 struct cgroup_sb_opts opts;
962 int ret = 0;
963 struct super_block *sb;
964 struct cgroupfs_root *root;
28fd5dfc 965 struct list_head tmp_cg_links;
817929ec 966 INIT_LIST_HEAD(&tmp_cg_links);
ddbcc7e8
PM
967
968 /* First find the desired set of subsystems */
969 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
970 if (ret) {
971 if (opts.release_agent)
972 kfree(opts.release_agent);
ddbcc7e8 973 return ret;
81a6a5cd 974 }
ddbcc7e8
PM
975
976 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738
LZ
977 if (!root) {
978 if (opts.release_agent)
979 kfree(opts.release_agent);
ddbcc7e8 980 return -ENOMEM;
f7770738 981 }
ddbcc7e8
PM
982
983 init_cgroup_root(root);
984 root->subsys_bits = opts.subsys_bits;
985 root->flags = opts.flags;
81a6a5cd
PM
986 if (opts.release_agent) {
987 strcpy(root->release_agent_path, opts.release_agent);
988 kfree(opts.release_agent);
989 }
ddbcc7e8
PM
990
991 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
992
993 if (IS_ERR(sb)) {
994 kfree(root);
995 return PTR_ERR(sb);
996 }
997
998 if (sb->s_fs_info != root) {
999 /* Reusing an existing superblock */
1000 BUG_ON(sb->s_root == NULL);
1001 kfree(root);
1002 root = NULL;
1003 } else {
1004 /* New superblock */
bd89aabc 1005 struct cgroup *cgrp = &root->top_cgroup;
817929ec 1006 struct inode *inode;
28fd5dfc 1007 int i;
ddbcc7e8
PM
1008
1009 BUG_ON(sb->s_root != NULL);
1010
1011 ret = cgroup_get_rootdir(sb);
1012 if (ret)
1013 goto drop_new_super;
817929ec 1014 inode = sb->s_root->d_inode;
ddbcc7e8 1015
817929ec 1016 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1017 mutex_lock(&cgroup_mutex);
1018
817929ec
PM
1019 /*
1020 * We're accessing css_set_count without locking
1021 * css_set_lock here, but that's OK - it can only be
1022 * increased by someone holding cgroup_lock, and
1023 * that's us. The worst that can happen is that we
1024 * have some link structures left over
1025 */
1026 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1027 if (ret) {
1028 mutex_unlock(&cgroup_mutex);
1029 mutex_unlock(&inode->i_mutex);
1030 goto drop_new_super;
1031 }
1032
ddbcc7e8
PM
1033 ret = rebind_subsystems(root, root->subsys_bits);
1034 if (ret == -EBUSY) {
1035 mutex_unlock(&cgroup_mutex);
817929ec 1036 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1037 goto drop_new_super;
1038 }
1039
1040 /* EBUSY should be the only error here */
1041 BUG_ON(ret);
1042
1043 list_add(&root->root_list, &roots);
817929ec 1044 root_count++;
ddbcc7e8
PM
1045
1046 sb->s_root->d_fsdata = &root->top_cgroup;
1047 root->top_cgroup.dentry = sb->s_root;
1048
817929ec
PM
1049 /* Link the top cgroup in this hierarchy into all
1050 * the css_set objects */
1051 write_lock(&css_set_lock);
28fd5dfc
LZ
1052 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1053 struct hlist_head *hhead = &css_set_table[i];
1054 struct hlist_node *node;
817929ec 1055 struct css_set *cg;
28fd5dfc
LZ
1056
1057 hlist_for_each_entry(cg, node, hhead, hlist) {
1058 struct cg_cgroup_link *link;
1059
1060 BUG_ON(list_empty(&tmp_cg_links));
1061 link = list_entry(tmp_cg_links.next,
1062 struct cg_cgroup_link,
1063 cgrp_link_list);
1064 list_del(&link->cgrp_link_list);
1065 link->cg = cg;
1066 list_add(&link->cgrp_link_list,
1067 &root->top_cgroup.css_sets);
1068 list_add(&link->cg_link_list, &cg->cg_links);
1069 }
1070 }
817929ec
PM
1071 write_unlock(&css_set_lock);
1072
1073 free_cg_links(&tmp_cg_links);
1074
bd89aabc
PM
1075 BUG_ON(!list_empty(&cgrp->sibling));
1076 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1077 BUG_ON(root->number_of_cgroups != 1);
1078
bd89aabc 1079 cgroup_populate_dir(cgrp);
817929ec 1080 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1081 mutex_unlock(&cgroup_mutex);
1082 }
1083
1084 return simple_set_mnt(mnt, sb);
1085
1086 drop_new_super:
1087 up_write(&sb->s_umount);
1088 deactivate_super(sb);
817929ec 1089 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1090 return ret;
1091}
1092
1093static void cgroup_kill_sb(struct super_block *sb) {
1094 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1095 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1096 int ret;
71cbb949
KM
1097 struct cg_cgroup_link *link;
1098 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1099
1100 BUG_ON(!root);
1101
1102 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1103 BUG_ON(!list_empty(&cgrp->children));
1104 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1105
1106 mutex_lock(&cgroup_mutex);
1107
1108 /* Rebind all subsystems back to the default hierarchy */
1109 ret = rebind_subsystems(root, 0);
1110 /* Shouldn't be able to fail ... */
1111 BUG_ON(ret);
1112
817929ec
PM
1113 /*
1114 * Release all the links from css_sets to this hierarchy's
1115 * root cgroup
1116 */
1117 write_lock(&css_set_lock);
71cbb949
KM
1118
1119 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1120 cgrp_link_list) {
817929ec 1121 list_del(&link->cg_link_list);
bd89aabc 1122 list_del(&link->cgrp_link_list);
817929ec
PM
1123 kfree(link);
1124 }
1125 write_unlock(&css_set_lock);
1126
1127 if (!list_empty(&root->root_list)) {
ddbcc7e8 1128 list_del(&root->root_list);
817929ec
PM
1129 root_count--;
1130 }
ddbcc7e8
PM
1131 mutex_unlock(&cgroup_mutex);
1132
1133 kfree(root);
1134 kill_litter_super(sb);
1135}
1136
1137static struct file_system_type cgroup_fs_type = {
1138 .name = "cgroup",
1139 .get_sb = cgroup_get_sb,
1140 .kill_sb = cgroup_kill_sb,
1141};
1142
bd89aabc 1143static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1144{
1145 return dentry->d_fsdata;
1146}
1147
1148static inline struct cftype *__d_cft(struct dentry *dentry)
1149{
1150 return dentry->d_fsdata;
1151}
1152
a043e3b2
LZ
1153/**
1154 * cgroup_path - generate the path of a cgroup
1155 * @cgrp: the cgroup in question
1156 * @buf: the buffer to write the path into
1157 * @buflen: the length of the buffer
1158 *
1159 * Called with cgroup_mutex held. Writes path of cgroup into buf.
ddbcc7e8
PM
1160 * Returns 0 on success, -errno on error.
1161 */
bd89aabc 1162int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1163{
1164 char *start;
1165
bd89aabc 1166 if (cgrp == dummytop) {
ddbcc7e8
PM
1167 /*
1168 * Inactive subsystems have no dentry for their root
1169 * cgroup
1170 */
1171 strcpy(buf, "/");
1172 return 0;
1173 }
1174
1175 start = buf + buflen;
1176
1177 *--start = '\0';
1178 for (;;) {
bd89aabc 1179 int len = cgrp->dentry->d_name.len;
ddbcc7e8
PM
1180 if ((start -= len) < buf)
1181 return -ENAMETOOLONG;
bd89aabc
PM
1182 memcpy(start, cgrp->dentry->d_name.name, len);
1183 cgrp = cgrp->parent;
1184 if (!cgrp)
ddbcc7e8 1185 break;
bd89aabc 1186 if (!cgrp->parent)
ddbcc7e8
PM
1187 continue;
1188 if (--start < buf)
1189 return -ENAMETOOLONG;
1190 *start = '/';
1191 }
1192 memmove(buf, start, buf + buflen - start);
1193 return 0;
1194}
1195
bbcb81d0
PM
1196/*
1197 * Return the first subsystem attached to a cgroup's hierarchy, and
1198 * its subsystem id.
1199 */
1200
bd89aabc 1201static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1202 struct cgroup_subsys_state **css, int *subsys_id)
1203{
bd89aabc 1204 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1205 const struct cgroup_subsys *test_ss;
1206 BUG_ON(list_empty(&root->subsys_list));
1207 test_ss = list_entry(root->subsys_list.next,
1208 struct cgroup_subsys, sibling);
1209 if (css) {
bd89aabc 1210 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1211 BUG_ON(!*css);
1212 }
1213 if (subsys_id)
1214 *subsys_id = test_ss->subsys_id;
1215}
1216
a043e3b2
LZ
1217/**
1218 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1219 * @cgrp: the cgroup the task is attaching to
1220 * @tsk: the task to be attached
bbcb81d0 1221 *
a043e3b2
LZ
1222 * Call holding cgroup_mutex. May take task_lock of
1223 * the task 'tsk' during call.
bbcb81d0 1224 */
956db3ca 1225int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1226{
1227 int retval = 0;
1228 struct cgroup_subsys *ss;
bd89aabc 1229 struct cgroup *oldcgrp;
817929ec
PM
1230 struct css_set *cg = tsk->cgroups;
1231 struct css_set *newcg;
bd89aabc 1232 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1233 int subsys_id;
1234
bd89aabc 1235 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1236
1237 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1238 oldcgrp = task_cgroup(tsk, subsys_id);
1239 if (cgrp == oldcgrp)
bbcb81d0
PM
1240 return 0;
1241
1242 for_each_subsys(root, ss) {
1243 if (ss->can_attach) {
bd89aabc 1244 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1245 if (retval)
bbcb81d0 1246 return retval;
bbcb81d0
PM
1247 }
1248 }
1249
817929ec
PM
1250 /*
1251 * Locate or allocate a new css_set for this task,
1252 * based on its final set of cgroups
1253 */
bd89aabc 1254 newcg = find_css_set(cg, cgrp);
e18f6318 1255 if (!newcg)
817929ec 1256 return -ENOMEM;
817929ec 1257
bbcb81d0
PM
1258 task_lock(tsk);
1259 if (tsk->flags & PF_EXITING) {
1260 task_unlock(tsk);
817929ec 1261 put_css_set(newcg);
bbcb81d0
PM
1262 return -ESRCH;
1263 }
817929ec 1264 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1265 task_unlock(tsk);
1266
817929ec
PM
1267 /* Update the css_set linked lists if we're using them */
1268 write_lock(&css_set_lock);
1269 if (!list_empty(&tsk->cg_list)) {
1270 list_del(&tsk->cg_list);
1271 list_add(&tsk->cg_list, &newcg->tasks);
1272 }
1273 write_unlock(&css_set_lock);
1274
bbcb81d0 1275 for_each_subsys(root, ss) {
e18f6318 1276 if (ss->attach)
bd89aabc 1277 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1278 }
bd89aabc 1279 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1280 synchronize_rcu();
817929ec 1281 put_css_set(cg);
bbcb81d0
PM
1282 return 0;
1283}
1284
1285/*
bd89aabc 1286 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
bbcb81d0
PM
1287 * cgroup_mutex, may take task_lock of task
1288 */
bd89aabc 1289static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
bbcb81d0
PM
1290{
1291 pid_t pid;
1292 struct task_struct *tsk;
1293 int ret;
1294
1295 if (sscanf(pidbuf, "%d", &pid) != 1)
1296 return -EIO;
1297
1298 if (pid) {
1299 rcu_read_lock();
73507f33 1300 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1301 if (!tsk || tsk->flags & PF_EXITING) {
1302 rcu_read_unlock();
1303 return -ESRCH;
1304 }
1305 get_task_struct(tsk);
1306 rcu_read_unlock();
1307
1308 if ((current->euid) && (current->euid != tsk->uid)
1309 && (current->euid != tsk->suid)) {
1310 put_task_struct(tsk);
1311 return -EACCES;
1312 }
1313 } else {
1314 tsk = current;
1315 get_task_struct(tsk);
1316 }
1317
956db3ca 1318 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1319 put_task_struct(tsk);
1320 return ret;
1321}
1322
ddbcc7e8 1323/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1324enum cgroup_filetype {
1325 FILE_ROOT,
1326 FILE_DIR,
1327 FILE_TASKLIST,
81a6a5cd 1328 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1329 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1330};
1331
e73d2c61 1332static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1333 struct file *file,
1334 const char __user *userbuf,
1335 size_t nbytes, loff_t *unused_ppos)
355e0c48
PM
1336{
1337 char buffer[64];
1338 int retval = 0;
355e0c48
PM
1339 char *end;
1340
1341 if (!nbytes)
1342 return -EINVAL;
1343 if (nbytes >= sizeof(buffer))
1344 return -E2BIG;
1345 if (copy_from_user(buffer, userbuf, nbytes))
1346 return -EFAULT;
1347
1348 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1349 strstrip(buffer);
e73d2c61
PM
1350 if (cft->write_u64) {
1351 u64 val = simple_strtoull(buffer, &end, 0);
1352 if (*end)
1353 return -EINVAL;
1354 retval = cft->write_u64(cgrp, cft, val);
1355 } else {
1356 s64 val = simple_strtoll(buffer, &end, 0);
1357 if (*end)
1358 return -EINVAL;
1359 retval = cft->write_s64(cgrp, cft, val);
1360 }
355e0c48
PM
1361 if (!retval)
1362 retval = nbytes;
1363 return retval;
1364}
1365
db3b1497
PM
1366static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1367 struct file *file,
1368 const char __user *userbuf,
1369 size_t nbytes, loff_t *unused_ppos)
1370{
1371 char local_buffer[64];
1372 int retval = 0;
1373 size_t max_bytes = cft->max_write_len;
1374 char *buffer = local_buffer;
1375
1376 if (!max_bytes)
1377 max_bytes = sizeof(local_buffer) - 1;
1378 if (nbytes >= max_bytes)
1379 return -E2BIG;
1380 /* Allocate a dynamic buffer if we need one */
1381 if (nbytes >= sizeof(local_buffer)) {
1382 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1383 if (buffer == NULL)
1384 return -ENOMEM;
1385 }
1386 if (nbytes && copy_from_user(buffer, userbuf, nbytes))
1387 return -EFAULT;
1388
1389 buffer[nbytes] = 0; /* nul-terminate */
1390 strstrip(buffer);
1391 retval = cft->write_string(cgrp, cft, buffer);
1392 if (!retval)
1393 retval = nbytes;
1394 if (buffer != local_buffer)
1395 kfree(buffer);
1396 return retval;
1397}
1398
bd89aabc 1399static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
bbcb81d0
PM
1400 struct cftype *cft,
1401 struct file *file,
1402 const char __user *userbuf,
1403 size_t nbytes, loff_t *unused_ppos)
1404{
1405 enum cgroup_filetype type = cft->private;
1406 char *buffer;
1407 int retval = 0;
1408
1409 if (nbytes >= PATH_MAX)
1410 return -E2BIG;
1411
1412 /* +1 for nul-terminator */
1413 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1414 if (buffer == NULL)
1415 return -ENOMEM;
1416
1417 if (copy_from_user(buffer, userbuf, nbytes)) {
1418 retval = -EFAULT;
1419 goto out1;
1420 }
1421 buffer[nbytes] = 0; /* nul-terminate */
622d42ca 1422 strstrip(buffer); /* strip -just- trailing whitespace */
bbcb81d0
PM
1423
1424 mutex_lock(&cgroup_mutex);
1425
8dc4f3e1
PM
1426 /*
1427 * This was already checked for in cgroup_file_write(), but
1428 * check again now we're holding cgroup_mutex.
1429 */
bd89aabc 1430 if (cgroup_is_removed(cgrp)) {
bbcb81d0
PM
1431 retval = -ENODEV;
1432 goto out2;
1433 }
1434
1435 switch (type) {
1436 case FILE_TASKLIST:
bd89aabc 1437 retval = attach_task_by_pid(cgrp, buffer);
bbcb81d0 1438 break;
81a6a5cd 1439 case FILE_NOTIFY_ON_RELEASE:
bd89aabc 1440 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
81a6a5cd 1441 if (simple_strtoul(buffer, NULL, 10) != 0)
bd89aabc 1442 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd 1443 else
bd89aabc 1444 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
1445 break;
1446 case FILE_RELEASE_AGENT:
622d42ca
PJ
1447 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1448 strcpy(cgrp->root->release_agent_path, buffer);
81a6a5cd 1449 break;
bbcb81d0
PM
1450 default:
1451 retval = -EINVAL;
1452 goto out2;
1453 }
1454
1455 if (retval == 0)
1456 retval = nbytes;
1457out2:
1458 mutex_unlock(&cgroup_mutex);
1459out1:
1460 kfree(buffer);
1461 return retval;
1462}
1463
ddbcc7e8
PM
1464static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1465 size_t nbytes, loff_t *ppos)
1466{
1467 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1468 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1469
8dc4f3e1 1470 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8 1471 return -ENODEV;
355e0c48 1472 if (cft->write)
bd89aabc 1473 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1474 if (cft->write_u64 || cft->write_s64)
1475 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1476 if (cft->write_string)
1477 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1478 if (cft->trigger) {
1479 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1480 return ret ? ret : nbytes;
1481 }
355e0c48 1482 return -EINVAL;
ddbcc7e8
PM
1483}
1484
f4c753b7
PM
1485static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1486 struct file *file,
1487 char __user *buf, size_t nbytes,
1488 loff_t *ppos)
ddbcc7e8
PM
1489{
1490 char tmp[64];
f4c753b7 1491 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1492 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1493
1494 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1495}
1496
e73d2c61
PM
1497static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1498 struct file *file,
1499 char __user *buf, size_t nbytes,
1500 loff_t *ppos)
1501{
1502 char tmp[64];
1503 s64 val = cft->read_s64(cgrp, cft);
1504 int len = sprintf(tmp, "%lld\n", (long long) val);
1505
1506 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1507}
1508
bd89aabc 1509static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
81a6a5cd
PM
1510 struct cftype *cft,
1511 struct file *file,
1512 char __user *buf,
1513 size_t nbytes, loff_t *ppos)
1514{
1515 enum cgroup_filetype type = cft->private;
1516 char *page;
1517 ssize_t retval = 0;
1518 char *s;
1519
1520 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1521 return -ENOMEM;
1522
1523 s = page;
1524
1525 switch (type) {
1526 case FILE_RELEASE_AGENT:
1527 {
1528 struct cgroupfs_root *root;
1529 size_t n;
1530 mutex_lock(&cgroup_mutex);
bd89aabc 1531 root = cgrp->root;
81a6a5cd
PM
1532 n = strnlen(root->release_agent_path,
1533 sizeof(root->release_agent_path));
1534 n = min(n, (size_t) PAGE_SIZE);
1535 strncpy(s, root->release_agent_path, n);
1536 mutex_unlock(&cgroup_mutex);
1537 s += n;
1538 break;
1539 }
1540 default:
1541 retval = -EINVAL;
1542 goto out;
1543 }
1544 *s++ = '\n';
1545
1546 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1547out:
1548 free_page((unsigned long)page);
1549 return retval;
1550}
1551
ddbcc7e8
PM
1552static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1553 size_t nbytes, loff_t *ppos)
1554{
1555 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1556 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1557
8dc4f3e1 1558 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8
PM
1559 return -ENODEV;
1560
1561 if (cft->read)
bd89aabc 1562 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1563 if (cft->read_u64)
1564 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1565 if (cft->read_s64)
1566 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1567 return -EINVAL;
1568}
1569
91796569
PM
1570/*
1571 * seqfile ops/methods for returning structured data. Currently just
1572 * supports string->u64 maps, but can be extended in future.
1573 */
1574
1575struct cgroup_seqfile_state {
1576 struct cftype *cft;
1577 struct cgroup *cgroup;
1578};
1579
1580static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1581{
1582 struct seq_file *sf = cb->state;
1583 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1584}
1585
1586static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1587{
1588 struct cgroup_seqfile_state *state = m->private;
1589 struct cftype *cft = state->cft;
29486df3
SH
1590 if (cft->read_map) {
1591 struct cgroup_map_cb cb = {
1592 .fill = cgroup_map_add,
1593 .state = m,
1594 };
1595 return cft->read_map(state->cgroup, cft, &cb);
1596 }
1597 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1598}
1599
1600int cgroup_seqfile_release(struct inode *inode, struct file *file)
1601{
1602 struct seq_file *seq = file->private_data;
1603 kfree(seq->private);
1604 return single_release(inode, file);
1605}
1606
1607static struct file_operations cgroup_seqfile_operations = {
1608 .read = seq_read,
1609 .llseek = seq_lseek,
1610 .release = cgroup_seqfile_release,
1611};
1612
ddbcc7e8
PM
1613static int cgroup_file_open(struct inode *inode, struct file *file)
1614{
1615 int err;
1616 struct cftype *cft;
1617
1618 err = generic_file_open(inode, file);
1619 if (err)
1620 return err;
1621
1622 cft = __d_cft(file->f_dentry);
1623 if (!cft)
1624 return -ENODEV;
29486df3 1625 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1626 struct cgroup_seqfile_state *state =
1627 kzalloc(sizeof(*state), GFP_USER);
1628 if (!state)
1629 return -ENOMEM;
1630 state->cft = cft;
1631 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1632 file->f_op = &cgroup_seqfile_operations;
1633 err = single_open(file, cgroup_seqfile_show, state);
1634 if (err < 0)
1635 kfree(state);
1636 } else if (cft->open)
ddbcc7e8
PM
1637 err = cft->open(inode, file);
1638 else
1639 err = 0;
1640
1641 return err;
1642}
1643
1644static int cgroup_file_release(struct inode *inode, struct file *file)
1645{
1646 struct cftype *cft = __d_cft(file->f_dentry);
1647 if (cft->release)
1648 return cft->release(inode, file);
1649 return 0;
1650}
1651
1652/*
1653 * cgroup_rename - Only allow simple rename of directories in place.
1654 */
1655static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1656 struct inode *new_dir, struct dentry *new_dentry)
1657{
1658 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1659 return -ENOTDIR;
1660 if (new_dentry->d_inode)
1661 return -EEXIST;
1662 if (old_dir != new_dir)
1663 return -EIO;
1664 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1665}
1666
1667static struct file_operations cgroup_file_operations = {
1668 .read = cgroup_file_read,
1669 .write = cgroup_file_write,
1670 .llseek = generic_file_llseek,
1671 .open = cgroup_file_open,
1672 .release = cgroup_file_release,
1673};
1674
1675static struct inode_operations cgroup_dir_inode_operations = {
1676 .lookup = simple_lookup,
1677 .mkdir = cgroup_mkdir,
1678 .rmdir = cgroup_rmdir,
1679 .rename = cgroup_rename,
1680};
1681
1682static int cgroup_create_file(struct dentry *dentry, int mode,
1683 struct super_block *sb)
1684{
1685 static struct dentry_operations cgroup_dops = {
1686 .d_iput = cgroup_diput,
1687 };
1688
1689 struct inode *inode;
1690
1691 if (!dentry)
1692 return -ENOENT;
1693 if (dentry->d_inode)
1694 return -EEXIST;
1695
1696 inode = cgroup_new_inode(mode, sb);
1697 if (!inode)
1698 return -ENOMEM;
1699
1700 if (S_ISDIR(mode)) {
1701 inode->i_op = &cgroup_dir_inode_operations;
1702 inode->i_fop = &simple_dir_operations;
1703
1704 /* start off with i_nlink == 2 (for "." entry) */
1705 inc_nlink(inode);
1706
1707 /* start with the directory inode held, so that we can
1708 * populate it without racing with another mkdir */
817929ec 1709 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1710 } else if (S_ISREG(mode)) {
1711 inode->i_size = 0;
1712 inode->i_fop = &cgroup_file_operations;
1713 }
1714 dentry->d_op = &cgroup_dops;
1715 d_instantiate(dentry, inode);
1716 dget(dentry); /* Extra count - pin the dentry in core */
1717 return 0;
1718}
1719
1720/*
a043e3b2
LZ
1721 * cgroup_create_dir - create a directory for an object.
1722 * @cgrp: the cgroup we create the directory for. It must have a valid
1723 * ->parent field. And we are going to fill its ->dentry field.
1724 * @dentry: dentry of the new cgroup
1725 * @mode: mode to set on new directory.
ddbcc7e8 1726 */
bd89aabc 1727static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1728 int mode)
1729{
1730 struct dentry *parent;
1731 int error = 0;
1732
bd89aabc
PM
1733 parent = cgrp->parent->dentry;
1734 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1735 if (!error) {
bd89aabc 1736 dentry->d_fsdata = cgrp;
ddbcc7e8 1737 inc_nlink(parent->d_inode);
bd89aabc 1738 cgrp->dentry = dentry;
ddbcc7e8
PM
1739 dget(dentry);
1740 }
1741 dput(dentry);
1742
1743 return error;
1744}
1745
bd89aabc 1746int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1747 struct cgroup_subsys *subsys,
1748 const struct cftype *cft)
1749{
bd89aabc 1750 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1751 struct dentry *dentry;
1752 int error;
1753
1754 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1755 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1756 strcpy(name, subsys->name);
1757 strcat(name, ".");
1758 }
1759 strcat(name, cft->name);
1760 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1761 dentry = lookup_one_len(name, dir, strlen(name));
1762 if (!IS_ERR(dentry)) {
1763 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1764 cgrp->root->sb);
ddbcc7e8
PM
1765 if (!error)
1766 dentry->d_fsdata = (void *)cft;
1767 dput(dentry);
1768 } else
1769 error = PTR_ERR(dentry);
1770 return error;
1771}
1772
bd89aabc 1773int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1774 struct cgroup_subsys *subsys,
1775 const struct cftype cft[],
1776 int count)
1777{
1778 int i, err;
1779 for (i = 0; i < count; i++) {
bd89aabc 1780 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1781 if (err)
1782 return err;
1783 }
1784 return 0;
1785}
1786
a043e3b2
LZ
1787/**
1788 * cgroup_task_count - count the number of tasks in a cgroup.
1789 * @cgrp: the cgroup in question
1790 *
1791 * Return the number of tasks in the cgroup.
1792 */
bd89aabc 1793int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1794{
1795 int count = 0;
71cbb949 1796 struct cg_cgroup_link *link;
817929ec
PM
1797
1798 read_lock(&css_set_lock);
71cbb949 1799 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
817929ec 1800 count += atomic_read(&link->cg->ref.refcount);
817929ec
PM
1801 }
1802 read_unlock(&css_set_lock);
bbcb81d0
PM
1803 return count;
1804}
1805
817929ec
PM
1806/*
1807 * Advance a list_head iterator. The iterator should be positioned at
1808 * the start of a css_set
1809 */
bd89aabc 1810static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1811 struct cgroup_iter *it)
1812{
1813 struct list_head *l = it->cg_link;
1814 struct cg_cgroup_link *link;
1815 struct css_set *cg;
1816
1817 /* Advance to the next non-empty css_set */
1818 do {
1819 l = l->next;
bd89aabc 1820 if (l == &cgrp->css_sets) {
817929ec
PM
1821 it->cg_link = NULL;
1822 return;
1823 }
bd89aabc 1824 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1825 cg = link->cg;
1826 } while (list_empty(&cg->tasks));
1827 it->cg_link = l;
1828 it->task = cg->tasks.next;
1829}
1830
31a7df01
CW
1831/*
1832 * To reduce the fork() overhead for systems that are not actually
1833 * using their cgroups capability, we don't maintain the lists running
1834 * through each css_set to its tasks until we see the list actually
1835 * used - in other words after the first call to cgroup_iter_start().
1836 *
1837 * The tasklist_lock is not held here, as do_each_thread() and
1838 * while_each_thread() are protected by RCU.
1839 */
3df91fe3 1840static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1841{
1842 struct task_struct *p, *g;
1843 write_lock(&css_set_lock);
1844 use_task_css_set_links = 1;
1845 do_each_thread(g, p) {
1846 task_lock(p);
0e04388f
LZ
1847 /*
1848 * We should check if the process is exiting, otherwise
1849 * it will race with cgroup_exit() in that the list
1850 * entry won't be deleted though the process has exited.
1851 */
1852 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1853 list_add(&p->cg_list, &p->cgroups->tasks);
1854 task_unlock(p);
1855 } while_each_thread(g, p);
1856 write_unlock(&css_set_lock);
1857}
1858
bd89aabc 1859void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1860{
1861 /*
1862 * The first time anyone tries to iterate across a cgroup,
1863 * we need to enable the list linking each css_set to its
1864 * tasks, and fix up all existing tasks.
1865 */
31a7df01
CW
1866 if (!use_task_css_set_links)
1867 cgroup_enable_task_cg_lists();
1868
817929ec 1869 read_lock(&css_set_lock);
bd89aabc
PM
1870 it->cg_link = &cgrp->css_sets;
1871 cgroup_advance_iter(cgrp, it);
817929ec
PM
1872}
1873
bd89aabc 1874struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1875 struct cgroup_iter *it)
1876{
1877 struct task_struct *res;
1878 struct list_head *l = it->task;
1879
1880 /* If the iterator cg is NULL, we have no tasks */
1881 if (!it->cg_link)
1882 return NULL;
1883 res = list_entry(l, struct task_struct, cg_list);
1884 /* Advance iterator to find next entry */
1885 l = l->next;
1886 if (l == &res->cgroups->tasks) {
1887 /* We reached the end of this task list - move on to
1888 * the next cg_cgroup_link */
bd89aabc 1889 cgroup_advance_iter(cgrp, it);
817929ec
PM
1890 } else {
1891 it->task = l;
1892 }
1893 return res;
1894}
1895
bd89aabc 1896void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1897{
1898 read_unlock(&css_set_lock);
1899}
1900
31a7df01
CW
1901static inline int started_after_time(struct task_struct *t1,
1902 struct timespec *time,
1903 struct task_struct *t2)
1904{
1905 int start_diff = timespec_compare(&t1->start_time, time);
1906 if (start_diff > 0) {
1907 return 1;
1908 } else if (start_diff < 0) {
1909 return 0;
1910 } else {
1911 /*
1912 * Arbitrarily, if two processes started at the same
1913 * time, we'll say that the lower pointer value
1914 * started first. Note that t2 may have exited by now
1915 * so this may not be a valid pointer any longer, but
1916 * that's fine - it still serves to distinguish
1917 * between two tasks started (effectively) simultaneously.
1918 */
1919 return t1 > t2;
1920 }
1921}
1922
1923/*
1924 * This function is a callback from heap_insert() and is used to order
1925 * the heap.
1926 * In this case we order the heap in descending task start time.
1927 */
1928static inline int started_after(void *p1, void *p2)
1929{
1930 struct task_struct *t1 = p1;
1931 struct task_struct *t2 = p2;
1932 return started_after_time(t1, &t2->start_time, t2);
1933}
1934
1935/**
1936 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1937 * @scan: struct cgroup_scanner containing arguments for the scan
1938 *
1939 * Arguments include pointers to callback functions test_task() and
1940 * process_task().
1941 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1942 * and if it returns true, call process_task() for it also.
1943 * The test_task pointer may be NULL, meaning always true (select all tasks).
1944 * Effectively duplicates cgroup_iter_{start,next,end}()
1945 * but does not lock css_set_lock for the call to process_task().
1946 * The struct cgroup_scanner may be embedded in any structure of the caller's
1947 * creation.
1948 * It is guaranteed that process_task() will act on every task that
1949 * is a member of the cgroup for the duration of this call. This
1950 * function may or may not call process_task() for tasks that exit
1951 * or move to a different cgroup during the call, or are forked or
1952 * move into the cgroup during the call.
1953 *
1954 * Note that test_task() may be called with locks held, and may in some
1955 * situations be called multiple times for the same task, so it should
1956 * be cheap.
1957 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1958 * pre-allocated and will be used for heap operations (and its "gt" member will
1959 * be overwritten), else a temporary heap will be used (allocation of which
1960 * may cause this function to fail).
1961 */
1962int cgroup_scan_tasks(struct cgroup_scanner *scan)
1963{
1964 int retval, i;
1965 struct cgroup_iter it;
1966 struct task_struct *p, *dropped;
1967 /* Never dereference latest_task, since it's not refcounted */
1968 struct task_struct *latest_task = NULL;
1969 struct ptr_heap tmp_heap;
1970 struct ptr_heap *heap;
1971 struct timespec latest_time = { 0, 0 };
1972
1973 if (scan->heap) {
1974 /* The caller supplied our heap and pre-allocated its memory */
1975 heap = scan->heap;
1976 heap->gt = &started_after;
1977 } else {
1978 /* We need to allocate our own heap memory */
1979 heap = &tmp_heap;
1980 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1981 if (retval)
1982 /* cannot allocate the heap */
1983 return retval;
1984 }
1985
1986 again:
1987 /*
1988 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1989 * to determine which are of interest, and using the scanner's
1990 * "process_task" callback to process any of them that need an update.
1991 * Since we don't want to hold any locks during the task updates,
1992 * gather tasks to be processed in a heap structure.
1993 * The heap is sorted by descending task start time.
1994 * If the statically-sized heap fills up, we overflow tasks that
1995 * started later, and in future iterations only consider tasks that
1996 * started after the latest task in the previous pass. This
1997 * guarantees forward progress and that we don't miss any tasks.
1998 */
1999 heap->size = 0;
2000 cgroup_iter_start(scan->cg, &it);
2001 while ((p = cgroup_iter_next(scan->cg, &it))) {
2002 /*
2003 * Only affect tasks that qualify per the caller's callback,
2004 * if he provided one
2005 */
2006 if (scan->test_task && !scan->test_task(p, scan))
2007 continue;
2008 /*
2009 * Only process tasks that started after the last task
2010 * we processed
2011 */
2012 if (!started_after_time(p, &latest_time, latest_task))
2013 continue;
2014 dropped = heap_insert(heap, p);
2015 if (dropped == NULL) {
2016 /*
2017 * The new task was inserted; the heap wasn't
2018 * previously full
2019 */
2020 get_task_struct(p);
2021 } else if (dropped != p) {
2022 /*
2023 * The new task was inserted, and pushed out a
2024 * different task
2025 */
2026 get_task_struct(p);
2027 put_task_struct(dropped);
2028 }
2029 /*
2030 * Else the new task was newer than anything already in
2031 * the heap and wasn't inserted
2032 */
2033 }
2034 cgroup_iter_end(scan->cg, &it);
2035
2036 if (heap->size) {
2037 for (i = 0; i < heap->size; i++) {
4fe91d51 2038 struct task_struct *q = heap->ptrs[i];
31a7df01 2039 if (i == 0) {
4fe91d51
PJ
2040 latest_time = q->start_time;
2041 latest_task = q;
31a7df01
CW
2042 }
2043 /* Process the task per the caller's callback */
4fe91d51
PJ
2044 scan->process_task(q, scan);
2045 put_task_struct(q);
31a7df01
CW
2046 }
2047 /*
2048 * If we had to process any tasks at all, scan again
2049 * in case some of them were in the middle of forking
2050 * children that didn't get processed.
2051 * Not the most efficient way to do it, but it avoids
2052 * having to take callback_mutex in the fork path
2053 */
2054 goto again;
2055 }
2056 if (heap == &tmp_heap)
2057 heap_free(&tmp_heap);
2058 return 0;
2059}
2060
bbcb81d0
PM
2061/*
2062 * Stuff for reading the 'tasks' file.
2063 *
2064 * Reading this file can return large amounts of data if a cgroup has
2065 * *lots* of attached tasks. So it may need several calls to read(),
2066 * but we cannot guarantee that the information we produce is correct
2067 * unless we produce it entirely atomically.
2068 *
2069 * Upon tasks file open(), a struct ctr_struct is allocated, that
2070 * will have a pointer to an array (also allocated here). The struct
2071 * ctr_struct * is stored in file->private_data. Its resources will
2072 * be freed by release() when the file is closed. The array is used
2073 * to sprintf the PIDs and then used by read().
2074 */
2075struct ctr_struct {
2076 char *buf;
2077 int bufsz;
2078};
2079
2080/*
2081 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2082 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2083 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2084 * read section, so the css_set can't go away, and is
2085 * immutable after creation.
2086 */
bd89aabc 2087static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0
PM
2088{
2089 int n = 0;
817929ec
PM
2090 struct cgroup_iter it;
2091 struct task_struct *tsk;
bd89aabc
PM
2092 cgroup_iter_start(cgrp, &it);
2093 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2094 if (unlikely(n == npids))
2095 break;
73507f33 2096 pidarray[n++] = task_pid_vnr(tsk);
817929ec 2097 }
bd89aabc 2098 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2099 return n;
2100}
2101
846c7bb0 2102/**
a043e3b2 2103 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2104 * @stats: cgroupstats to fill information into
2105 * @dentry: A dentry entry belonging to the cgroup for which stats have
2106 * been requested.
a043e3b2
LZ
2107 *
2108 * Build and fill cgroupstats so that taskstats can export it to user
2109 * space.
846c7bb0
BS
2110 */
2111int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2112{
2113 int ret = -EINVAL;
bd89aabc 2114 struct cgroup *cgrp;
846c7bb0
BS
2115 struct cgroup_iter it;
2116 struct task_struct *tsk;
2117 /*
2118 * Validate dentry by checking the superblock operations
2119 */
2120 if (dentry->d_sb->s_op != &cgroup_ops)
2121 goto err;
2122
2123 ret = 0;
bd89aabc 2124 cgrp = dentry->d_fsdata;
846c7bb0
BS
2125 rcu_read_lock();
2126
bd89aabc
PM
2127 cgroup_iter_start(cgrp, &it);
2128 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2129 switch (tsk->state) {
2130 case TASK_RUNNING:
2131 stats->nr_running++;
2132 break;
2133 case TASK_INTERRUPTIBLE:
2134 stats->nr_sleeping++;
2135 break;
2136 case TASK_UNINTERRUPTIBLE:
2137 stats->nr_uninterruptible++;
2138 break;
2139 case TASK_STOPPED:
2140 stats->nr_stopped++;
2141 break;
2142 default:
2143 if (delayacct_is_task_waiting_on_io(tsk))
2144 stats->nr_io_wait++;
2145 break;
2146 }
2147 }
bd89aabc 2148 cgroup_iter_end(cgrp, &it);
846c7bb0
BS
2149
2150 rcu_read_unlock();
2151err:
2152 return ret;
2153}
2154
bbcb81d0
PM
2155static int cmppid(const void *a, const void *b)
2156{
2157 return *(pid_t *)a - *(pid_t *)b;
2158}
2159
2160/*
2161 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2162 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2163 * count 'cnt' of how many chars would be written if buf were large enough.
2164 */
2165static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2166{
2167 int cnt = 0;
2168 int i;
2169
2170 for (i = 0; i < npids; i++)
2171 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2172 return cnt;
2173}
2174
2175/*
2176 * Handle an open on 'tasks' file. Prepare a buffer listing the
2177 * process id's of tasks currently attached to the cgroup being opened.
2178 *
2179 * Does not require any specific cgroup mutexes, and does not take any.
2180 */
2181static int cgroup_tasks_open(struct inode *unused, struct file *file)
2182{
bd89aabc 2183 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2184 struct ctr_struct *ctr;
2185 pid_t *pidarray;
2186 int npids;
2187 char c;
2188
2189 if (!(file->f_mode & FMODE_READ))
2190 return 0;
2191
2192 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2193 if (!ctr)
2194 goto err0;
2195
2196 /*
2197 * If cgroup gets more users after we read count, we won't have
2198 * enough space - tough. This race is indistinguishable to the
2199 * caller from the case that the additional cgroup users didn't
2200 * show up until sometime later on.
2201 */
bd89aabc 2202 npids = cgroup_task_count(cgrp);
bbcb81d0
PM
2203 if (npids) {
2204 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2205 if (!pidarray)
2206 goto err1;
2207
bd89aabc 2208 npids = pid_array_load(pidarray, npids, cgrp);
bbcb81d0
PM
2209 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2210
2211 /* Call pid_array_to_buf() twice, first just to get bufsz */
2212 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2213 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2214 if (!ctr->buf)
2215 goto err2;
2216 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2217
2218 kfree(pidarray);
2219 } else {
9dce07f1 2220 ctr->buf = NULL;
bbcb81d0
PM
2221 ctr->bufsz = 0;
2222 }
2223 file->private_data = ctr;
2224 return 0;
2225
2226err2:
2227 kfree(pidarray);
2228err1:
2229 kfree(ctr);
2230err0:
2231 return -ENOMEM;
2232}
2233
bd89aabc 2234static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
bbcb81d0
PM
2235 struct cftype *cft,
2236 struct file *file, char __user *buf,
2237 size_t nbytes, loff_t *ppos)
2238{
2239 struct ctr_struct *ctr = file->private_data;
2240
2241 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2242}
2243
2244static int cgroup_tasks_release(struct inode *unused_inode,
2245 struct file *file)
2246{
2247 struct ctr_struct *ctr;
2248
2249 if (file->f_mode & FMODE_READ) {
2250 ctr = file->private_data;
2251 kfree(ctr->buf);
2252 kfree(ctr);
2253 }
2254 return 0;
2255}
2256
bd89aabc 2257static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2258 struct cftype *cft)
2259{
bd89aabc 2260 return notify_on_release(cgrp);
81a6a5cd
PM
2261}
2262
bbcb81d0
PM
2263/*
2264 * for the common functions, 'private' gives the type of file
2265 */
81a6a5cd
PM
2266static struct cftype files[] = {
2267 {
2268 .name = "tasks",
2269 .open = cgroup_tasks_open,
2270 .read = cgroup_tasks_read,
2271 .write = cgroup_common_file_write,
2272 .release = cgroup_tasks_release,
2273 .private = FILE_TASKLIST,
2274 },
2275
2276 {
2277 .name = "notify_on_release",
f4c753b7 2278 .read_u64 = cgroup_read_notify_on_release,
81a6a5cd
PM
2279 .write = cgroup_common_file_write,
2280 .private = FILE_NOTIFY_ON_RELEASE,
2281 },
81a6a5cd
PM
2282};
2283
2284static struct cftype cft_release_agent = {
2285 .name = "release_agent",
2286 .read = cgroup_common_file_read,
bbcb81d0 2287 .write = cgroup_common_file_write,
81a6a5cd 2288 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2289};
2290
bd89aabc 2291static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2292{
2293 int err;
2294 struct cgroup_subsys *ss;
2295
2296 /* First clear out any existing files */
bd89aabc 2297 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2298
bd89aabc 2299 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2300 if (err < 0)
2301 return err;
2302
bd89aabc
PM
2303 if (cgrp == cgrp->top_cgroup) {
2304 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2305 return err;
2306 }
2307
bd89aabc
PM
2308 for_each_subsys(cgrp->root, ss) {
2309 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2310 return err;
2311 }
2312
2313 return 0;
2314}
2315
2316static void init_cgroup_css(struct cgroup_subsys_state *css,
2317 struct cgroup_subsys *ss,
bd89aabc 2318 struct cgroup *cgrp)
ddbcc7e8 2319{
bd89aabc 2320 css->cgroup = cgrp;
ddbcc7e8
PM
2321 atomic_set(&css->refcnt, 0);
2322 css->flags = 0;
bd89aabc 2323 if (cgrp == dummytop)
ddbcc7e8 2324 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2325 BUG_ON(cgrp->subsys[ss->subsys_id]);
2326 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2327}
2328
2329/*
a043e3b2
LZ
2330 * cgroup_create - create a cgroup
2331 * @parent: cgroup that will be parent of the new cgroup
2332 * @dentry: dentry of the new cgroup
2333 * @mode: mode to set on new inode
ddbcc7e8 2334 *
a043e3b2 2335 * Must be called with the mutex on the parent inode held
ddbcc7e8 2336 */
ddbcc7e8
PM
2337static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2338 int mode)
2339{
bd89aabc 2340 struct cgroup *cgrp;
ddbcc7e8
PM
2341 struct cgroupfs_root *root = parent->root;
2342 int err = 0;
2343 struct cgroup_subsys *ss;
2344 struct super_block *sb = root->sb;
2345
bd89aabc
PM
2346 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2347 if (!cgrp)
ddbcc7e8
PM
2348 return -ENOMEM;
2349
2350 /* Grab a reference on the superblock so the hierarchy doesn't
2351 * get deleted on unmount if there are child cgroups. This
2352 * can be done outside cgroup_mutex, since the sb can't
2353 * disappear while someone has an open control file on the
2354 * fs */
2355 atomic_inc(&sb->s_active);
2356
2357 mutex_lock(&cgroup_mutex);
2358
bd89aabc
PM
2359 INIT_LIST_HEAD(&cgrp->sibling);
2360 INIT_LIST_HEAD(&cgrp->children);
2361 INIT_LIST_HEAD(&cgrp->css_sets);
2362 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8 2363
bd89aabc
PM
2364 cgrp->parent = parent;
2365 cgrp->root = parent->root;
2366 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2367
b6abdb0e
LZ
2368 if (notify_on_release(parent))
2369 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2370
ddbcc7e8 2371 for_each_subsys(root, ss) {
bd89aabc 2372 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2373 if (IS_ERR(css)) {
2374 err = PTR_ERR(css);
2375 goto err_destroy;
2376 }
bd89aabc 2377 init_cgroup_css(css, ss, cgrp);
ddbcc7e8
PM
2378 }
2379
bd89aabc 2380 list_add(&cgrp->sibling, &cgrp->parent->children);
ddbcc7e8
PM
2381 root->number_of_cgroups++;
2382
bd89aabc 2383 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2384 if (err < 0)
2385 goto err_remove;
2386
2387 /* The cgroup directory was pre-locked for us */
bd89aabc 2388 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2389
bd89aabc 2390 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2391 /* If err < 0, we have a half-filled directory - oh well ;) */
2392
2393 mutex_unlock(&cgroup_mutex);
bd89aabc 2394 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2395
2396 return 0;
2397
2398 err_remove:
2399
bd89aabc 2400 list_del(&cgrp->sibling);
ddbcc7e8
PM
2401 root->number_of_cgroups--;
2402
2403 err_destroy:
2404
2405 for_each_subsys(root, ss) {
bd89aabc
PM
2406 if (cgrp->subsys[ss->subsys_id])
2407 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2408 }
2409
2410 mutex_unlock(&cgroup_mutex);
2411
2412 /* Release the reference count that we took on the superblock */
2413 deactivate_super(sb);
2414
bd89aabc 2415 kfree(cgrp);
ddbcc7e8
PM
2416 return err;
2417}
2418
2419static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2420{
2421 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2422
2423 /* the vfs holds inode->i_mutex already */
2424 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2425}
2426
bd89aabc 2427static inline int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2428{
2429 /* Check the reference count on each subsystem. Since we
2430 * already established that there are no tasks in the
2431 * cgroup, if the css refcount is also 0, then there should
2432 * be no outstanding references, so the subsystem is safe to
2433 * destroy. We scan across all subsystems rather than using
2434 * the per-hierarchy linked list of mounted subsystems since
2435 * we can be called via check_for_release() with no
2436 * synchronization other than RCU, and the subsystem linked
2437 * list isn't RCU-safe */
2438 int i;
2439 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2440 struct cgroup_subsys *ss = subsys[i];
2441 struct cgroup_subsys_state *css;
2442 /* Skip subsystems not in this hierarchy */
bd89aabc 2443 if (ss->root != cgrp->root)
81a6a5cd 2444 continue;
bd89aabc 2445 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2446 /* When called from check_for_release() it's possible
2447 * that by this point the cgroup has been removed
2448 * and the css deleted. But a false-positive doesn't
2449 * matter, since it can only happen if the cgroup
2450 * has been deleted and hence no longer needs the
2451 * release agent to be called anyway. */
e18f6318 2452 if (css && atomic_read(&css->refcnt))
81a6a5cd 2453 return 1;
81a6a5cd
PM
2454 }
2455 return 0;
2456}
2457
ddbcc7e8
PM
2458static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2459{
bd89aabc 2460 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2461 struct dentry *d;
2462 struct cgroup *parent;
ddbcc7e8
PM
2463 struct super_block *sb;
2464 struct cgroupfs_root *root;
ddbcc7e8
PM
2465
2466 /* the vfs holds both inode->i_mutex already */
2467
2468 mutex_lock(&cgroup_mutex);
bd89aabc 2469 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2470 mutex_unlock(&cgroup_mutex);
2471 return -EBUSY;
2472 }
bd89aabc 2473 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2474 mutex_unlock(&cgroup_mutex);
2475 return -EBUSY;
2476 }
2477
bd89aabc
PM
2478 parent = cgrp->parent;
2479 root = cgrp->root;
ddbcc7e8 2480 sb = root->sb;
a043e3b2 2481
4fca88c8 2482 /*
a043e3b2
LZ
2483 * Call pre_destroy handlers of subsys. Notify subsystems
2484 * that rmdir() request comes.
4fca88c8
KH
2485 */
2486 cgroup_call_pre_destroy(cgrp);
ddbcc7e8 2487
bd89aabc 2488 if (cgroup_has_css_refs(cgrp)) {
ddbcc7e8
PM
2489 mutex_unlock(&cgroup_mutex);
2490 return -EBUSY;
2491 }
2492
81a6a5cd 2493 spin_lock(&release_list_lock);
bd89aabc
PM
2494 set_bit(CGRP_REMOVED, &cgrp->flags);
2495 if (!list_empty(&cgrp->release_list))
2496 list_del(&cgrp->release_list);
81a6a5cd 2497 spin_unlock(&release_list_lock);
ddbcc7e8 2498 /* delete my sibling from parent->children */
bd89aabc
PM
2499 list_del(&cgrp->sibling);
2500 spin_lock(&cgrp->dentry->d_lock);
2501 d = dget(cgrp->dentry);
2502 cgrp->dentry = NULL;
ddbcc7e8
PM
2503 spin_unlock(&d->d_lock);
2504
2505 cgroup_d_remove_dir(d);
2506 dput(d);
ddbcc7e8 2507
bd89aabc 2508 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2509 check_for_release(parent);
2510
ddbcc7e8 2511 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2512 return 0;
2513}
2514
06a11920 2515static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 2516{
ddbcc7e8 2517 struct cgroup_subsys_state *css;
cfe36bde
DC
2518
2519 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2520
2521 /* Create the top cgroup state for this subsystem */
2522 ss->root = &rootnode;
2523 css = ss->create(ss, dummytop);
2524 /* We don't handle early failures gracefully */
2525 BUG_ON(IS_ERR(css));
2526 init_cgroup_css(css, ss, dummytop);
2527
e8d55fde 2528 /* Update the init_css_set to contain a subsys
817929ec 2529 * pointer to this state - since the subsystem is
e8d55fde
LZ
2530 * newly registered, all tasks and hence the
2531 * init_css_set is in the subsystem's top cgroup. */
2532 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
2533
2534 need_forkexit_callback |= ss->fork || ss->exit;
cf475ad2 2535 need_mm_owner_callback |= !!ss->mm_owner_changed;
ddbcc7e8 2536
e8d55fde
LZ
2537 /* At system boot, before all subsystems have been
2538 * registered, no tasks have been forked, so we don't
2539 * need to invoke fork callbacks here. */
2540 BUG_ON(!list_empty(&init_task.tasks));
2541
ddbcc7e8
PM
2542 ss->active = 1;
2543}
2544
2545/**
a043e3b2
LZ
2546 * cgroup_init_early - cgroup initialization at system boot
2547 *
2548 * Initialize cgroups at system boot, and initialize any
2549 * subsystems that request early init.
ddbcc7e8
PM
2550 */
2551int __init cgroup_init_early(void)
2552{
2553 int i;
817929ec
PM
2554 kref_init(&init_css_set.ref);
2555 kref_get(&init_css_set.ref);
817929ec
PM
2556 INIT_LIST_HEAD(&init_css_set.cg_links);
2557 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 2558 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 2559 css_set_count = 1;
ddbcc7e8
PM
2560 init_cgroup_root(&rootnode);
2561 list_add(&rootnode.root_list, &roots);
817929ec
PM
2562 root_count = 1;
2563 init_task.cgroups = &init_css_set;
2564
2565 init_css_set_link.cg = &init_css_set;
bd89aabc 2566 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2567 &rootnode.top_cgroup.css_sets);
2568 list_add(&init_css_set_link.cg_link_list,
2569 &init_css_set.cg_links);
ddbcc7e8 2570
472b1053
LZ
2571 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2572 INIT_HLIST_HEAD(&css_set_table[i]);
2573
ddbcc7e8
PM
2574 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2575 struct cgroup_subsys *ss = subsys[i];
2576
2577 BUG_ON(!ss->name);
2578 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2579 BUG_ON(!ss->create);
2580 BUG_ON(!ss->destroy);
2581 if (ss->subsys_id != i) {
cfe36bde 2582 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2583 ss->name, ss->subsys_id);
2584 BUG();
2585 }
2586
2587 if (ss->early_init)
2588 cgroup_init_subsys(ss);
2589 }
2590 return 0;
2591}
2592
2593/**
a043e3b2
LZ
2594 * cgroup_init - cgroup initialization
2595 *
2596 * Register cgroup filesystem and /proc file, and initialize
2597 * any subsystems that didn't request early init.
ddbcc7e8
PM
2598 */
2599int __init cgroup_init(void)
2600{
2601 int err;
2602 int i;
472b1053 2603 struct hlist_head *hhead;
a424316c
PM
2604
2605 err = bdi_init(&cgroup_backing_dev_info);
2606 if (err)
2607 return err;
ddbcc7e8
PM
2608
2609 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2610 struct cgroup_subsys *ss = subsys[i];
2611 if (!ss->early_init)
2612 cgroup_init_subsys(ss);
2613 }
2614
472b1053
LZ
2615 /* Add init_css_set to the hash table */
2616 hhead = css_set_hash(init_css_set.subsys);
2617 hlist_add_head(&init_css_set.hlist, hhead);
2618
ddbcc7e8
PM
2619 err = register_filesystem(&cgroup_fs_type);
2620 if (err < 0)
2621 goto out;
2622
46ae220b 2623 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 2624
ddbcc7e8 2625out:
a424316c
PM
2626 if (err)
2627 bdi_destroy(&cgroup_backing_dev_info);
2628
ddbcc7e8
PM
2629 return err;
2630}
b4f48b63 2631
a424316c
PM
2632/*
2633 * proc_cgroup_show()
2634 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2635 * - Used for /proc/<pid>/cgroup.
2636 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2637 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2638 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2639 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2640 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2641 * cgroup to top_cgroup.
2642 */
2643
2644/* TODO: Use a proper seq_file iterator */
2645static int proc_cgroup_show(struct seq_file *m, void *v)
2646{
2647 struct pid *pid;
2648 struct task_struct *tsk;
2649 char *buf;
2650 int retval;
2651 struct cgroupfs_root *root;
2652
2653 retval = -ENOMEM;
2654 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2655 if (!buf)
2656 goto out;
2657
2658 retval = -ESRCH;
2659 pid = m->private;
2660 tsk = get_pid_task(pid, PIDTYPE_PID);
2661 if (!tsk)
2662 goto out_free;
2663
2664 retval = 0;
2665
2666 mutex_lock(&cgroup_mutex);
2667
2668 for_each_root(root) {
2669 struct cgroup_subsys *ss;
bd89aabc 2670 struct cgroup *cgrp;
a424316c
PM
2671 int subsys_id;
2672 int count = 0;
2673
2674 /* Skip this hierarchy if it has no active subsystems */
2675 if (!root->actual_subsys_bits)
2676 continue;
b6c3006d 2677 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2678 for_each_subsys(root, ss)
2679 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2680 seq_putc(m, ':');
2681 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2682 cgrp = task_cgroup(tsk, subsys_id);
2683 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2684 if (retval < 0)
2685 goto out_unlock;
2686 seq_puts(m, buf);
2687 seq_putc(m, '\n');
2688 }
2689
2690out_unlock:
2691 mutex_unlock(&cgroup_mutex);
2692 put_task_struct(tsk);
2693out_free:
2694 kfree(buf);
2695out:
2696 return retval;
2697}
2698
2699static int cgroup_open(struct inode *inode, struct file *file)
2700{
2701 struct pid *pid = PROC_I(inode)->pid;
2702 return single_open(file, proc_cgroup_show, pid);
2703}
2704
2705struct file_operations proc_cgroup_operations = {
2706 .open = cgroup_open,
2707 .read = seq_read,
2708 .llseek = seq_lseek,
2709 .release = single_release,
2710};
2711
2712/* Display information about each subsystem and each hierarchy */
2713static int proc_cgroupstats_show(struct seq_file *m, void *v)
2714{
2715 int i;
a424316c 2716
8bab8dde 2717 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2718 mutex_lock(&cgroup_mutex);
a424316c
PM
2719 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2720 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2721 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2722 ss->name, ss->root->subsys_bits,
8bab8dde 2723 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2724 }
2725 mutex_unlock(&cgroup_mutex);
2726 return 0;
2727}
2728
2729static int cgroupstats_open(struct inode *inode, struct file *file)
2730{
9dce07f1 2731 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2732}
2733
2734static struct file_operations proc_cgroupstats_operations = {
2735 .open = cgroupstats_open,
2736 .read = seq_read,
2737 .llseek = seq_lseek,
2738 .release = single_release,
2739};
2740
b4f48b63
PM
2741/**
2742 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2743 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2744 *
2745 * Description: A task inherits its parent's cgroup at fork().
2746 *
2747 * A pointer to the shared css_set was automatically copied in
2748 * fork.c by dup_task_struct(). However, we ignore that copy, since
2749 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2750 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2751 * have already changed current->cgroups, allowing the previously
2752 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2753 *
2754 * At the point that cgroup_fork() is called, 'current' is the parent
2755 * task, and the passed argument 'child' points to the child task.
2756 */
2757void cgroup_fork(struct task_struct *child)
2758{
817929ec
PM
2759 task_lock(current);
2760 child->cgroups = current->cgroups;
2761 get_css_set(child->cgroups);
2762 task_unlock(current);
2763 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2764}
2765
2766/**
a043e3b2
LZ
2767 * cgroup_fork_callbacks - run fork callbacks
2768 * @child: the new task
2769 *
2770 * Called on a new task very soon before adding it to the
2771 * tasklist. No need to take any locks since no-one can
2772 * be operating on this task.
b4f48b63
PM
2773 */
2774void cgroup_fork_callbacks(struct task_struct *child)
2775{
2776 if (need_forkexit_callback) {
2777 int i;
2778 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2779 struct cgroup_subsys *ss = subsys[i];
2780 if (ss->fork)
2781 ss->fork(ss, child);
2782 }
2783 }
2784}
2785
cf475ad2
BS
2786#ifdef CONFIG_MM_OWNER
2787/**
2788 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2789 * @p: the new owner
2790 *
2791 * Called on every change to mm->owner. mm_init_owner() does not
2792 * invoke this routine, since it assigns the mm->owner the first time
2793 * and does not change it.
2794 */
2795void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2796{
2797 struct cgroup *oldcgrp, *newcgrp;
2798
2799 if (need_mm_owner_callback) {
2800 int i;
2801 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2802 struct cgroup_subsys *ss = subsys[i];
2803 oldcgrp = task_cgroup(old, ss->subsys_id);
2804 newcgrp = task_cgroup(new, ss->subsys_id);
2805 if (oldcgrp == newcgrp)
2806 continue;
2807 if (ss->mm_owner_changed)
2808 ss->mm_owner_changed(ss, oldcgrp, newcgrp);
2809 }
2810 }
2811}
2812#endif /* CONFIG_MM_OWNER */
2813
817929ec 2814/**
a043e3b2
LZ
2815 * cgroup_post_fork - called on a new task after adding it to the task list
2816 * @child: the task in question
2817 *
2818 * Adds the task to the list running through its css_set if necessary.
2819 * Has to be after the task is visible on the task list in case we race
2820 * with the first call to cgroup_iter_start() - to guarantee that the
2821 * new task ends up on its list.
2822 */
817929ec
PM
2823void cgroup_post_fork(struct task_struct *child)
2824{
2825 if (use_task_css_set_links) {
2826 write_lock(&css_set_lock);
2827 if (list_empty(&child->cg_list))
2828 list_add(&child->cg_list, &child->cgroups->tasks);
2829 write_unlock(&css_set_lock);
2830 }
2831}
b4f48b63
PM
2832/**
2833 * cgroup_exit - detach cgroup from exiting task
2834 * @tsk: pointer to task_struct of exiting process
a043e3b2 2835 * @run_callback: run exit callbacks?
b4f48b63
PM
2836 *
2837 * Description: Detach cgroup from @tsk and release it.
2838 *
2839 * Note that cgroups marked notify_on_release force every task in
2840 * them to take the global cgroup_mutex mutex when exiting.
2841 * This could impact scaling on very large systems. Be reluctant to
2842 * use notify_on_release cgroups where very high task exit scaling
2843 * is required on large systems.
2844 *
2845 * the_top_cgroup_hack:
2846 *
2847 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2848 *
2849 * We call cgroup_exit() while the task is still competent to
2850 * handle notify_on_release(), then leave the task attached to the
2851 * root cgroup in each hierarchy for the remainder of its exit.
2852 *
2853 * To do this properly, we would increment the reference count on
2854 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2855 * code we would add a second cgroup function call, to drop that
2856 * reference. This would just create an unnecessary hot spot on
2857 * the top_cgroup reference count, to no avail.
2858 *
2859 * Normally, holding a reference to a cgroup without bumping its
2860 * count is unsafe. The cgroup could go away, or someone could
2861 * attach us to a different cgroup, decrementing the count on
2862 * the first cgroup that we never incremented. But in this case,
2863 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
2864 * which wards off any cgroup_attach_task() attempts, or task is a failed
2865 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
2866 */
2867void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2868{
2869 int i;
817929ec 2870 struct css_set *cg;
b4f48b63
PM
2871
2872 if (run_callbacks && need_forkexit_callback) {
2873 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2874 struct cgroup_subsys *ss = subsys[i];
2875 if (ss->exit)
2876 ss->exit(ss, tsk);
2877 }
2878 }
817929ec
PM
2879
2880 /*
2881 * Unlink from the css_set task list if necessary.
2882 * Optimistically check cg_list before taking
2883 * css_set_lock
2884 */
2885 if (!list_empty(&tsk->cg_list)) {
2886 write_lock(&css_set_lock);
2887 if (!list_empty(&tsk->cg_list))
2888 list_del(&tsk->cg_list);
2889 write_unlock(&css_set_lock);
2890 }
2891
b4f48b63
PM
2892 /* Reassign the task to the init_css_set. */
2893 task_lock(tsk);
817929ec
PM
2894 cg = tsk->cgroups;
2895 tsk->cgroups = &init_css_set;
b4f48b63 2896 task_unlock(tsk);
817929ec 2897 if (cg)
81a6a5cd 2898 put_css_set_taskexit(cg);
b4f48b63 2899}
697f4161
PM
2900
2901/**
a043e3b2
LZ
2902 * cgroup_clone - clone the cgroup the given subsystem is attached to
2903 * @tsk: the task to be moved
2904 * @subsys: the given subsystem
2905 *
2906 * Duplicate the current cgroup in the hierarchy that the given
2907 * subsystem is attached to, and move this task into the new
2908 * child.
697f4161
PM
2909 */
2910int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2911{
2912 struct dentry *dentry;
2913 int ret = 0;
2914 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2915 struct cgroup *parent, *child;
2916 struct inode *inode;
2917 struct css_set *cg;
2918 struct cgroupfs_root *root;
2919 struct cgroup_subsys *ss;
2920
2921 /* We shouldn't be called by an unregistered subsystem */
2922 BUG_ON(!subsys->active);
2923
2924 /* First figure out what hierarchy and cgroup we're dealing
2925 * with, and pin them so we can drop cgroup_mutex */
2926 mutex_lock(&cgroup_mutex);
2927 again:
2928 root = subsys->root;
2929 if (root == &rootnode) {
2930 printk(KERN_INFO
2931 "Not cloning cgroup for unused subsystem %s\n",
2932 subsys->name);
2933 mutex_unlock(&cgroup_mutex);
2934 return 0;
2935 }
817929ec 2936 cg = tsk->cgroups;
697f4161
PM
2937 parent = task_cgroup(tsk, subsys->subsys_id);
2938
5c02b575 2939 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);
697f4161
PM
2940
2941 /* Pin the hierarchy */
2942 atomic_inc(&parent->root->sb->s_active);
2943
817929ec
PM
2944 /* Keep the cgroup alive */
2945 get_css_set(cg);
697f4161
PM
2946 mutex_unlock(&cgroup_mutex);
2947
2948 /* Now do the VFS work to create a cgroup */
2949 inode = parent->dentry->d_inode;
2950
2951 /* Hold the parent directory mutex across this operation to
2952 * stop anyone else deleting the new cgroup */
2953 mutex_lock(&inode->i_mutex);
2954 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2955 if (IS_ERR(dentry)) {
2956 printk(KERN_INFO
cfe36bde 2957 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
2958 PTR_ERR(dentry));
2959 ret = PTR_ERR(dentry);
2960 goto out_release;
2961 }
2962
2963 /* Create the cgroup directory, which also creates the cgroup */
2964 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
bd89aabc 2965 child = __d_cgrp(dentry);
697f4161
PM
2966 dput(dentry);
2967 if (ret) {
2968 printk(KERN_INFO
2969 "Failed to create cgroup %s: %d\n", nodename,
2970 ret);
2971 goto out_release;
2972 }
2973
2974 if (!child) {
2975 printk(KERN_INFO
2976 "Couldn't find new cgroup %s\n", nodename);
2977 ret = -ENOMEM;
2978 goto out_release;
2979 }
2980
2981 /* The cgroup now exists. Retake cgroup_mutex and check
2982 * that we're still in the same state that we thought we
2983 * were. */
2984 mutex_lock(&cgroup_mutex);
2985 if ((root != subsys->root) ||
2986 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2987 /* Aargh, we raced ... */
2988 mutex_unlock(&inode->i_mutex);
817929ec 2989 put_css_set(cg);
697f4161
PM
2990
2991 deactivate_super(parent->root->sb);
2992 /* The cgroup is still accessible in the VFS, but
2993 * we're not going to try to rmdir() it at this
2994 * point. */
2995 printk(KERN_INFO
2996 "Race in cgroup_clone() - leaking cgroup %s\n",
2997 nodename);
2998 goto again;
2999 }
3000
3001 /* do any required auto-setup */
3002 for_each_subsys(root, ss) {
3003 if (ss->post_clone)
3004 ss->post_clone(ss, child);
3005 }
3006
3007 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 3008 ret = cgroup_attach_task(child, tsk);
697f4161
PM
3009 mutex_unlock(&cgroup_mutex);
3010
3011 out_release:
3012 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
3013
3014 mutex_lock(&cgroup_mutex);
817929ec 3015 put_css_set(cg);
81a6a5cd 3016 mutex_unlock(&cgroup_mutex);
697f4161
PM
3017 deactivate_super(parent->root->sb);
3018 return ret;
3019}
3020
a043e3b2
LZ
3021/**
3022 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
3023 * @cgrp: the cgroup in question
3024 *
3025 * See if @cgrp is a descendant of the current task's cgroup in
3026 * the appropriate hierarchy.
697f4161
PM
3027 *
3028 * If we are sending in dummytop, then presumably we are creating
3029 * the top cgroup in the subsystem.
3030 *
3031 * Called only by the ns (nsproxy) cgroup.
3032 */
bd89aabc 3033int cgroup_is_descendant(const struct cgroup *cgrp)
697f4161
PM
3034{
3035 int ret;
3036 struct cgroup *target;
3037 int subsys_id;
3038
bd89aabc 3039 if (cgrp == dummytop)
697f4161
PM
3040 return 1;
3041
bd89aabc 3042 get_first_subsys(cgrp, NULL, &subsys_id);
697f4161 3043 target = task_cgroup(current, subsys_id);
bd89aabc
PM
3044 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3045 cgrp = cgrp->parent;
3046 ret = (cgrp == target);
697f4161
PM
3047 return ret;
3048}
81a6a5cd 3049
bd89aabc 3050static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3051{
3052 /* All of these checks rely on RCU to keep the cgroup
3053 * structure alive */
bd89aabc
PM
3054 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3055 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3056 /* Control Group is currently removeable. If it's not
3057 * already queued for a userspace notification, queue
3058 * it now */
3059 int need_schedule_work = 0;
3060 spin_lock(&release_list_lock);
bd89aabc
PM
3061 if (!cgroup_is_removed(cgrp) &&
3062 list_empty(&cgrp->release_list)) {
3063 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3064 need_schedule_work = 1;
3065 }
3066 spin_unlock(&release_list_lock);
3067 if (need_schedule_work)
3068 schedule_work(&release_agent_work);
3069 }
3070}
3071
3072void __css_put(struct cgroup_subsys_state *css)
3073{
bd89aabc 3074 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3075 rcu_read_lock();
bd89aabc
PM
3076 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3077 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3078 check_for_release(cgrp);
81a6a5cd
PM
3079 }
3080 rcu_read_unlock();
3081}
3082
3083/*
3084 * Notify userspace when a cgroup is released, by running the
3085 * configured release agent with the name of the cgroup (path
3086 * relative to the root of cgroup file system) as the argument.
3087 *
3088 * Most likely, this user command will try to rmdir this cgroup.
3089 *
3090 * This races with the possibility that some other task will be
3091 * attached to this cgroup before it is removed, or that some other
3092 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3093 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3094 * unused, and this cgroup will be reprieved from its death sentence,
3095 * to continue to serve a useful existence. Next time it's released,
3096 * we will get notified again, if it still has 'notify_on_release' set.
3097 *
3098 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3099 * means only wait until the task is successfully execve()'d. The
3100 * separate release agent task is forked by call_usermodehelper(),
3101 * then control in this thread returns here, without waiting for the
3102 * release agent task. We don't bother to wait because the caller of
3103 * this routine has no use for the exit status of the release agent
3104 * task, so no sense holding our caller up for that.
81a6a5cd 3105 */
81a6a5cd
PM
3106static void cgroup_release_agent(struct work_struct *work)
3107{
3108 BUG_ON(work != &release_agent_work);
3109 mutex_lock(&cgroup_mutex);
3110 spin_lock(&release_list_lock);
3111 while (!list_empty(&release_list)) {
3112 char *argv[3], *envp[3];
3113 int i;
3114 char *pathbuf;
bd89aabc 3115 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3116 struct cgroup,
3117 release_list);
bd89aabc 3118 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3119 spin_unlock(&release_list_lock);
3120 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3121 if (!pathbuf) {
3122 spin_lock(&release_list_lock);
3123 continue;
3124 }
3125
bd89aabc 3126 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
81a6a5cd
PM
3127 kfree(pathbuf);
3128 spin_lock(&release_list_lock);
3129 continue;
3130 }
3131
3132 i = 0;
bd89aabc 3133 argv[i++] = cgrp->root->release_agent_path;
81a6a5cd
PM
3134 argv[i++] = (char *)pathbuf;
3135 argv[i] = NULL;
3136
3137 i = 0;
3138 /* minimal command environment */
3139 envp[i++] = "HOME=/";
3140 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3141 envp[i] = NULL;
3142
3143 /* Drop the lock while we invoke the usermode helper,
3144 * since the exec could involve hitting disk and hence
3145 * be a slow process */
3146 mutex_unlock(&cgroup_mutex);
3147 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3148 kfree(pathbuf);
3149 mutex_lock(&cgroup_mutex);
3150 spin_lock(&release_list_lock);
3151 }
3152 spin_unlock(&release_list_lock);
3153 mutex_unlock(&cgroup_mutex);
3154}
8bab8dde
PM
3155
3156static int __init cgroup_disable(char *str)
3157{
3158 int i;
3159 char *token;
3160
3161 while ((token = strsep(&str, ",")) != NULL) {
3162 if (!*token)
3163 continue;
3164
3165 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3166 struct cgroup_subsys *ss = subsys[i];
3167
3168 if (!strcmp(token, ss->name)) {
3169 ss->disabled = 1;
3170 printk(KERN_INFO "Disabling %s control group"
3171 " subsystem\n", ss->name);
3172 break;
3173 }
3174 }
3175 }
3176 return 1;
3177}
3178__setup("cgroup_disable=", cgroup_disable);