]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cgroup.c
cgroups: revert "cgroups: fix pid namespace bug"
[net-next-2.6.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
c6d57f33 26#include <linux/ctype.h>
ddbcc7e8
PM
27#include <linux/errno.h>
28#include <linux/fs.h>
29#include <linux/kernel.h>
30#include <linux/list.h>
31#include <linux/mm.h>
32#include <linux/mutex.h>
33#include <linux/mount.h>
34#include <linux/pagemap.h>
a424316c 35#include <linux/proc_fs.h>
ddbcc7e8
PM
36#include <linux/rcupdate.h>
37#include <linux/sched.h>
817929ec 38#include <linux/backing-dev.h>
ddbcc7e8
PM
39#include <linux/seq_file.h>
40#include <linux/slab.h>
41#include <linux/magic.h>
42#include <linux/spinlock.h>
43#include <linux/string.h>
bbcb81d0 44#include <linux/sort.h>
81a6a5cd 45#include <linux/kmod.h>
846c7bb0
BS
46#include <linux/delayacct.h>
47#include <linux/cgroupstats.h>
472b1053 48#include <linux/hash.h>
3f8206d4 49#include <linux/namei.h>
337eb00a 50#include <linux/smp_lock.h>
096b7fe0 51#include <linux/pid_namespace.h>
2c6ab6d2 52#include <linux/idr.h>
846c7bb0 53
ddbcc7e8
PM
54#include <asm/atomic.h>
55
81a6a5cd
PM
56static DEFINE_MUTEX(cgroup_mutex);
57
ddbcc7e8
PM
58/* Generate an array of cgroup subsystem pointers */
59#define SUBSYS(_x) &_x ## _subsys,
60
61static struct cgroup_subsys *subsys[] = {
62#include <linux/cgroup_subsys.h>
63};
64
c6d57f33
PM
65#define MAX_CGROUP_ROOT_NAMELEN 64
66
ddbcc7e8
PM
67/*
68 * A cgroupfs_root represents the root of a cgroup hierarchy,
69 * and may be associated with a superblock to form an active
70 * hierarchy
71 */
72struct cgroupfs_root {
73 struct super_block *sb;
74
75 /*
76 * The bitmask of subsystems intended to be attached to this
77 * hierarchy
78 */
79 unsigned long subsys_bits;
80
2c6ab6d2
PM
81 /* Unique id for this hierarchy. */
82 int hierarchy_id;
83
ddbcc7e8
PM
84 /* The bitmask of subsystems currently attached to this hierarchy */
85 unsigned long actual_subsys_bits;
86
87 /* A list running through the attached subsystems */
88 struct list_head subsys_list;
89
90 /* The root cgroup for this hierarchy */
91 struct cgroup top_cgroup;
92
93 /* Tracks how many cgroups are currently defined in hierarchy.*/
94 int number_of_cgroups;
95
e5f6a860 96 /* A list running through the active hierarchies */
ddbcc7e8
PM
97 struct list_head root_list;
98
99 /* Hierarchy-specific flags */
100 unsigned long flags;
81a6a5cd 101
e788e066 102 /* The path to use for release notifications. */
81a6a5cd 103 char release_agent_path[PATH_MAX];
c6d57f33
PM
104
105 /* The name for this hierarchy - may be empty */
106 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
107};
108
ddbcc7e8
PM
109/*
110 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
111 * subsystems that are otherwise unattached - it never has more than a
112 * single cgroup, and all tasks are part of that cgroup.
113 */
114static struct cgroupfs_root rootnode;
115
38460b48
KH
116/*
117 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
118 * cgroup_subsys->use_id != 0.
119 */
120#define CSS_ID_MAX (65535)
121struct css_id {
122 /*
123 * The css to which this ID points. This pointer is set to valid value
124 * after cgroup is populated. If cgroup is removed, this will be NULL.
125 * This pointer is expected to be RCU-safe because destroy()
126 * is called after synchronize_rcu(). But for safe use, css_is_removed()
127 * css_tryget() should be used for avoiding race.
128 */
129 struct cgroup_subsys_state *css;
130 /*
131 * ID of this css.
132 */
133 unsigned short id;
134 /*
135 * Depth in hierarchy which this ID belongs to.
136 */
137 unsigned short depth;
138 /*
139 * ID is freed by RCU. (and lookup routine is RCU safe.)
140 */
141 struct rcu_head rcu_head;
142 /*
143 * Hierarchy of CSS ID belongs to.
144 */
145 unsigned short stack[0]; /* Array of Length (depth+1) */
146};
147
148
ddbcc7e8
PM
149/* The list of hierarchy roots */
150
151static LIST_HEAD(roots);
817929ec 152static int root_count;
ddbcc7e8 153
2c6ab6d2
PM
154static DEFINE_IDA(hierarchy_ida);
155static int next_hierarchy_id;
156static DEFINE_SPINLOCK(hierarchy_id_lock);
157
ddbcc7e8
PM
158/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
159#define dummytop (&rootnode.top_cgroup)
160
161/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
162 * check for fork/exit handlers to call. This avoids us having to do
163 * extra work in the fork/exit path if none of the subsystems need to
164 * be called.
ddbcc7e8 165 */
8947f9d5 166static int need_forkexit_callback __read_mostly;
ddbcc7e8 167
ddbcc7e8 168/* convenient tests for these bits */
bd89aabc 169inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 170{
bd89aabc 171 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
172}
173
174/* bits in struct cgroupfs_root flags field */
175enum {
176 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
177};
178
e9685a03 179static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
180{
181 const int bits =
bd89aabc
PM
182 (1 << CGRP_RELEASABLE) |
183 (1 << CGRP_NOTIFY_ON_RELEASE);
184 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
185}
186
e9685a03 187static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 188{
bd89aabc 189 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
190}
191
ddbcc7e8
PM
192/*
193 * for_each_subsys() allows you to iterate on each subsystem attached to
194 * an active hierarchy
195 */
196#define for_each_subsys(_root, _ss) \
197list_for_each_entry(_ss, &_root->subsys_list, sibling)
198
e5f6a860
LZ
199/* for_each_active_root() allows you to iterate across the active hierarchies */
200#define for_each_active_root(_root) \
ddbcc7e8
PM
201list_for_each_entry(_root, &roots, root_list)
202
81a6a5cd
PM
203/* the list of cgroups eligible for automatic release. Protected by
204 * release_list_lock */
205static LIST_HEAD(release_list);
206static DEFINE_SPINLOCK(release_list_lock);
207static void cgroup_release_agent(struct work_struct *work);
208static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 209static void check_for_release(struct cgroup *cgrp);
81a6a5cd 210
817929ec
PM
211/* Link structure for associating css_set objects with cgroups */
212struct cg_cgroup_link {
213 /*
214 * List running through cg_cgroup_links associated with a
215 * cgroup, anchored on cgroup->css_sets
216 */
bd89aabc 217 struct list_head cgrp_link_list;
7717f7ba 218 struct cgroup *cgrp;
817929ec
PM
219 /*
220 * List running through cg_cgroup_links pointing at a
221 * single css_set object, anchored on css_set->cg_links
222 */
223 struct list_head cg_link_list;
224 struct css_set *cg;
225};
226
227/* The default css_set - used by init and its children prior to any
228 * hierarchies being mounted. It contains a pointer to the root state
229 * for each subsystem. Also used to anchor the list of css_sets. Not
230 * reference-counted, to improve performance when child cgroups
231 * haven't been created.
232 */
233
234static struct css_set init_css_set;
235static struct cg_cgroup_link init_css_set_link;
236
38460b48
KH
237static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
238
817929ec
PM
239/* css_set_lock protects the list of css_set objects, and the
240 * chain of tasks off each css_set. Nests outside task->alloc_lock
241 * due to cgroup_iter_start() */
242static DEFINE_RWLOCK(css_set_lock);
243static int css_set_count;
244
7717f7ba
PM
245/*
246 * hash table for cgroup groups. This improves the performance to find
247 * an existing css_set. This hash doesn't (currently) take into
248 * account cgroups in empty hierarchies.
249 */
472b1053
LZ
250#define CSS_SET_HASH_BITS 7
251#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
252static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
253
254static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
255{
256 int i;
257 int index;
258 unsigned long tmp = 0UL;
259
260 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
261 tmp += (unsigned long)css[i];
262 tmp = (tmp >> 16) ^ tmp;
263
264 index = hash_long(tmp, CSS_SET_HASH_BITS);
265
266 return &css_set_table[index];
267}
268
817929ec
PM
269/* We don't maintain the lists running through each css_set to its
270 * task until after the first call to cgroup_iter_start(). This
271 * reduces the fork()/exit() overhead for people who have cgroups
272 * compiled into their kernel but not actually in use */
8947f9d5 273static int use_task_css_set_links __read_mostly;
817929ec 274
2c6ab6d2 275static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 276{
71cbb949
KM
277 struct cg_cgroup_link *link;
278 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
279 /*
280 * Ensure that the refcount doesn't hit zero while any readers
281 * can see it. Similar to atomic_dec_and_lock(), but for an
282 * rwlock
283 */
284 if (atomic_add_unless(&cg->refcount, -1, 1))
285 return;
286 write_lock(&css_set_lock);
287 if (!atomic_dec_and_test(&cg->refcount)) {
288 write_unlock(&css_set_lock);
289 return;
290 }
81a6a5cd 291
2c6ab6d2
PM
292 /* This css_set is dead. unlink it and release cgroup refcounts */
293 hlist_del(&cg->hlist);
294 css_set_count--;
295
296 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
297 cg_link_list) {
298 struct cgroup *cgrp = link->cgrp;
299 list_del(&link->cg_link_list);
300 list_del(&link->cgrp_link_list);
bd89aabc
PM
301 if (atomic_dec_and_test(&cgrp->count) &&
302 notify_on_release(cgrp)) {
81a6a5cd 303 if (taskexit)
bd89aabc
PM
304 set_bit(CGRP_RELEASABLE, &cgrp->flags);
305 check_for_release(cgrp);
81a6a5cd 306 }
2c6ab6d2
PM
307
308 kfree(link);
81a6a5cd 309 }
2c6ab6d2
PM
310
311 write_unlock(&css_set_lock);
817929ec 312 kfree(cg);
b4f48b63
PM
313}
314
817929ec
PM
315/*
316 * refcounted get/put for css_set objects
317 */
318static inline void get_css_set(struct css_set *cg)
319{
146aa1bd 320 atomic_inc(&cg->refcount);
817929ec
PM
321}
322
323static inline void put_css_set(struct css_set *cg)
324{
146aa1bd 325 __put_css_set(cg, 0);
817929ec
PM
326}
327
81a6a5cd
PM
328static inline void put_css_set_taskexit(struct css_set *cg)
329{
146aa1bd 330 __put_css_set(cg, 1);
81a6a5cd
PM
331}
332
7717f7ba
PM
333/*
334 * compare_css_sets - helper function for find_existing_css_set().
335 * @cg: candidate css_set being tested
336 * @old_cg: existing css_set for a task
337 * @new_cgrp: cgroup that's being entered by the task
338 * @template: desired set of css pointers in css_set (pre-calculated)
339 *
340 * Returns true if "cg" matches "old_cg" except for the hierarchy
341 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
342 */
343static bool compare_css_sets(struct css_set *cg,
344 struct css_set *old_cg,
345 struct cgroup *new_cgrp,
346 struct cgroup_subsys_state *template[])
347{
348 struct list_head *l1, *l2;
349
350 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
351 /* Not all subsystems matched */
352 return false;
353 }
354
355 /*
356 * Compare cgroup pointers in order to distinguish between
357 * different cgroups in heirarchies with no subsystems. We
358 * could get by with just this check alone (and skip the
359 * memcmp above) but on most setups the memcmp check will
360 * avoid the need for this more expensive check on almost all
361 * candidates.
362 */
363
364 l1 = &cg->cg_links;
365 l2 = &old_cg->cg_links;
366 while (1) {
367 struct cg_cgroup_link *cgl1, *cgl2;
368 struct cgroup *cg1, *cg2;
369
370 l1 = l1->next;
371 l2 = l2->next;
372 /* See if we reached the end - both lists are equal length. */
373 if (l1 == &cg->cg_links) {
374 BUG_ON(l2 != &old_cg->cg_links);
375 break;
376 } else {
377 BUG_ON(l2 == &old_cg->cg_links);
378 }
379 /* Locate the cgroups associated with these links. */
380 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
381 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
382 cg1 = cgl1->cgrp;
383 cg2 = cgl2->cgrp;
384 /* Hierarchies should be linked in the same order. */
385 BUG_ON(cg1->root != cg2->root);
386
387 /*
388 * If this hierarchy is the hierarchy of the cgroup
389 * that's changing, then we need to check that this
390 * css_set points to the new cgroup; if it's any other
391 * hierarchy, then this css_set should point to the
392 * same cgroup as the old css_set.
393 */
394 if (cg1->root == new_cgrp->root) {
395 if (cg1 != new_cgrp)
396 return false;
397 } else {
398 if (cg1 != cg2)
399 return false;
400 }
401 }
402 return true;
403}
404
817929ec
PM
405/*
406 * find_existing_css_set() is a helper for
407 * find_css_set(), and checks to see whether an existing
472b1053 408 * css_set is suitable.
817929ec
PM
409 *
410 * oldcg: the cgroup group that we're using before the cgroup
411 * transition
412 *
bd89aabc 413 * cgrp: the cgroup that we're moving into
817929ec
PM
414 *
415 * template: location in which to build the desired set of subsystem
416 * state objects for the new cgroup group
417 */
817929ec
PM
418static struct css_set *find_existing_css_set(
419 struct css_set *oldcg,
bd89aabc 420 struct cgroup *cgrp,
817929ec 421 struct cgroup_subsys_state *template[])
b4f48b63
PM
422{
423 int i;
bd89aabc 424 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
425 struct hlist_head *hhead;
426 struct hlist_node *node;
427 struct css_set *cg;
817929ec
PM
428
429 /* Built the set of subsystem state objects that we want to
430 * see in the new css_set */
431 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 432 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
433 /* Subsystem is in this hierarchy. So we want
434 * the subsystem state from the new
435 * cgroup */
bd89aabc 436 template[i] = cgrp->subsys[i];
817929ec
PM
437 } else {
438 /* Subsystem is not in this hierarchy, so we
439 * don't want to change the subsystem state */
440 template[i] = oldcg->subsys[i];
441 }
442 }
443
472b1053
LZ
444 hhead = css_set_hash(template);
445 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
446 if (!compare_css_sets(cg, oldcg, cgrp, template))
447 continue;
448
449 /* This css_set matches what we need */
450 return cg;
472b1053 451 }
817929ec
PM
452
453 /* No existing cgroup group matched */
454 return NULL;
455}
456
36553434
LZ
457static void free_cg_links(struct list_head *tmp)
458{
459 struct cg_cgroup_link *link;
460 struct cg_cgroup_link *saved_link;
461
462 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
463 list_del(&link->cgrp_link_list);
464 kfree(link);
465 }
466}
467
817929ec
PM
468/*
469 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 470 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
471 * success or a negative error
472 */
817929ec
PM
473static int allocate_cg_links(int count, struct list_head *tmp)
474{
475 struct cg_cgroup_link *link;
476 int i;
477 INIT_LIST_HEAD(tmp);
478 for (i = 0; i < count; i++) {
479 link = kmalloc(sizeof(*link), GFP_KERNEL);
480 if (!link) {
36553434 481 free_cg_links(tmp);
817929ec
PM
482 return -ENOMEM;
483 }
bd89aabc 484 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
485 }
486 return 0;
487}
488
c12f65d4
LZ
489/**
490 * link_css_set - a helper function to link a css_set to a cgroup
491 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
492 * @cg: the css_set to be linked
493 * @cgrp: the destination cgroup
494 */
495static void link_css_set(struct list_head *tmp_cg_links,
496 struct css_set *cg, struct cgroup *cgrp)
497{
498 struct cg_cgroup_link *link;
499
500 BUG_ON(list_empty(tmp_cg_links));
501 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
502 cgrp_link_list);
503 link->cg = cg;
7717f7ba 504 link->cgrp = cgrp;
2c6ab6d2 505 atomic_inc(&cgrp->count);
c12f65d4 506 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
507 /*
508 * Always add links to the tail of the list so that the list
509 * is sorted by order of hierarchy creation
510 */
511 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
512}
513
817929ec
PM
514/*
515 * find_css_set() takes an existing cgroup group and a
516 * cgroup object, and returns a css_set object that's
517 * equivalent to the old group, but with the given cgroup
518 * substituted into the appropriate hierarchy. Must be called with
519 * cgroup_mutex held
520 */
817929ec 521static struct css_set *find_css_set(
bd89aabc 522 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
523{
524 struct css_set *res;
525 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
526
527 struct list_head tmp_cg_links;
817929ec 528
472b1053 529 struct hlist_head *hhead;
7717f7ba 530 struct cg_cgroup_link *link;
472b1053 531
817929ec
PM
532 /* First see if we already have a cgroup group that matches
533 * the desired set */
7e9abd89 534 read_lock(&css_set_lock);
bd89aabc 535 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
536 if (res)
537 get_css_set(res);
7e9abd89 538 read_unlock(&css_set_lock);
817929ec
PM
539
540 if (res)
541 return res;
542
543 res = kmalloc(sizeof(*res), GFP_KERNEL);
544 if (!res)
545 return NULL;
546
547 /* Allocate all the cg_cgroup_link objects that we'll need */
548 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
549 kfree(res);
550 return NULL;
551 }
552
146aa1bd 553 atomic_set(&res->refcount, 1);
817929ec
PM
554 INIT_LIST_HEAD(&res->cg_links);
555 INIT_LIST_HEAD(&res->tasks);
472b1053 556 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
557
558 /* Copy the set of subsystem state objects generated in
559 * find_existing_css_set() */
560 memcpy(res->subsys, template, sizeof(res->subsys));
561
562 write_lock(&css_set_lock);
563 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
564 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
565 struct cgroup *c = link->cgrp;
566 if (c->root == cgrp->root)
567 c = cgrp;
568 link_css_set(&tmp_cg_links, res, c);
569 }
817929ec
PM
570
571 BUG_ON(!list_empty(&tmp_cg_links));
572
817929ec 573 css_set_count++;
472b1053
LZ
574
575 /* Add this cgroup group to the hash table */
576 hhead = css_set_hash(res->subsys);
577 hlist_add_head(&res->hlist, hhead);
578
817929ec
PM
579 write_unlock(&css_set_lock);
580
581 return res;
b4f48b63
PM
582}
583
7717f7ba
PM
584/*
585 * Return the cgroup for "task" from the given hierarchy. Must be
586 * called with cgroup_mutex held.
587 */
588static struct cgroup *task_cgroup_from_root(struct task_struct *task,
589 struct cgroupfs_root *root)
590{
591 struct css_set *css;
592 struct cgroup *res = NULL;
593
594 BUG_ON(!mutex_is_locked(&cgroup_mutex));
595 read_lock(&css_set_lock);
596 /*
597 * No need to lock the task - since we hold cgroup_mutex the
598 * task can't change groups, so the only thing that can happen
599 * is that it exits and its css is set back to init_css_set.
600 */
601 css = task->cgroups;
602 if (css == &init_css_set) {
603 res = &root->top_cgroup;
604 } else {
605 struct cg_cgroup_link *link;
606 list_for_each_entry(link, &css->cg_links, cg_link_list) {
607 struct cgroup *c = link->cgrp;
608 if (c->root == root) {
609 res = c;
610 break;
611 }
612 }
613 }
614 read_unlock(&css_set_lock);
615 BUG_ON(!res);
616 return res;
617}
618
ddbcc7e8
PM
619/*
620 * There is one global cgroup mutex. We also require taking
621 * task_lock() when dereferencing a task's cgroup subsys pointers.
622 * See "The task_lock() exception", at the end of this comment.
623 *
624 * A task must hold cgroup_mutex to modify cgroups.
625 *
626 * Any task can increment and decrement the count field without lock.
627 * So in general, code holding cgroup_mutex can't rely on the count
628 * field not changing. However, if the count goes to zero, then only
956db3ca 629 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
630 * means that no tasks are currently attached, therefore there is no
631 * way a task attached to that cgroup can fork (the other way to
632 * increment the count). So code holding cgroup_mutex can safely
633 * assume that if the count is zero, it will stay zero. Similarly, if
634 * a task holds cgroup_mutex on a cgroup with zero count, it
635 * knows that the cgroup won't be removed, as cgroup_rmdir()
636 * needs that mutex.
637 *
ddbcc7e8
PM
638 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
639 * (usually) take cgroup_mutex. These are the two most performance
640 * critical pieces of code here. The exception occurs on cgroup_exit(),
641 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
642 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
643 * to the release agent with the name of the cgroup (path relative to
644 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
645 *
646 * A cgroup can only be deleted if both its 'count' of using tasks
647 * is zero, and its list of 'children' cgroups is empty. Since all
648 * tasks in the system use _some_ cgroup, and since there is always at
649 * least one task in the system (init, pid == 1), therefore, top_cgroup
650 * always has either children cgroups and/or using tasks. So we don't
651 * need a special hack to ensure that top_cgroup cannot be deleted.
652 *
653 * The task_lock() exception
654 *
655 * The need for this exception arises from the action of
956db3ca 656 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 657 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
658 * several performance critical places that need to reference
659 * task->cgroup without the expense of grabbing a system global
660 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 661 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
662 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
663 * the task_struct routinely used for such matters.
664 *
665 * P.S. One more locking exception. RCU is used to guard the
956db3ca 666 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
667 */
668
ddbcc7e8
PM
669/**
670 * cgroup_lock - lock out any changes to cgroup structures
671 *
672 */
ddbcc7e8
PM
673void cgroup_lock(void)
674{
675 mutex_lock(&cgroup_mutex);
676}
677
678/**
679 * cgroup_unlock - release lock on cgroup changes
680 *
681 * Undo the lock taken in a previous cgroup_lock() call.
682 */
ddbcc7e8
PM
683void cgroup_unlock(void)
684{
685 mutex_unlock(&cgroup_mutex);
686}
687
688/*
689 * A couple of forward declarations required, due to cyclic reference loop:
690 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
691 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
692 * -> cgroup_mkdir.
693 */
694
695static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
696static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 697static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 698static const struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
699static struct file_operations proc_cgroupstats_operations;
700
701static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 702 .name = "cgroup",
e4ad08fe 703 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 704};
ddbcc7e8 705
38460b48
KH
706static int alloc_css_id(struct cgroup_subsys *ss,
707 struct cgroup *parent, struct cgroup *child);
708
ddbcc7e8
PM
709static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
710{
711 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
712
713 if (inode) {
714 inode->i_mode = mode;
76aac0e9
DH
715 inode->i_uid = current_fsuid();
716 inode->i_gid = current_fsgid();
ddbcc7e8
PM
717 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
718 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
719 }
720 return inode;
721}
722
4fca88c8
KH
723/*
724 * Call subsys's pre_destroy handler.
725 * This is called before css refcnt check.
726 */
ec64f515 727static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
728{
729 struct cgroup_subsys *ss;
ec64f515
KH
730 int ret = 0;
731
4fca88c8 732 for_each_subsys(cgrp->root, ss)
ec64f515
KH
733 if (ss->pre_destroy) {
734 ret = ss->pre_destroy(ss, cgrp);
735 if (ret)
736 break;
737 }
738 return ret;
4fca88c8
KH
739}
740
a47295e6
PM
741static void free_cgroup_rcu(struct rcu_head *obj)
742{
743 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
744
745 kfree(cgrp);
746}
747
ddbcc7e8
PM
748static void cgroup_diput(struct dentry *dentry, struct inode *inode)
749{
750 /* is dentry a directory ? if so, kfree() associated cgroup */
751 if (S_ISDIR(inode->i_mode)) {
bd89aabc 752 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 753 struct cgroup_subsys *ss;
bd89aabc 754 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
755 /* It's possible for external users to be holding css
756 * reference counts on a cgroup; css_put() needs to
757 * be able to access the cgroup after decrementing
758 * the reference count in order to know if it needs to
759 * queue the cgroup to be handled by the release
760 * agent */
761 synchronize_rcu();
8dc4f3e1
PM
762
763 mutex_lock(&cgroup_mutex);
764 /*
765 * Release the subsystem state objects.
766 */
75139b82
LZ
767 for_each_subsys(cgrp->root, ss)
768 ss->destroy(ss, cgrp);
8dc4f3e1
PM
769
770 cgrp->root->number_of_cgroups--;
771 mutex_unlock(&cgroup_mutex);
772
a47295e6
PM
773 /*
774 * Drop the active superblock reference that we took when we
775 * created the cgroup
776 */
8dc4f3e1
PM
777 deactivate_super(cgrp->root->sb);
778
a47295e6 779 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
ddbcc7e8
PM
780 }
781 iput(inode);
782}
783
784static void remove_dir(struct dentry *d)
785{
786 struct dentry *parent = dget(d->d_parent);
787
788 d_delete(d);
789 simple_rmdir(parent->d_inode, d);
790 dput(parent);
791}
792
793static void cgroup_clear_directory(struct dentry *dentry)
794{
795 struct list_head *node;
796
797 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
798 spin_lock(&dcache_lock);
799 node = dentry->d_subdirs.next;
800 while (node != &dentry->d_subdirs) {
801 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
802 list_del_init(node);
803 if (d->d_inode) {
804 /* This should never be called on a cgroup
805 * directory with child cgroups */
806 BUG_ON(d->d_inode->i_mode & S_IFDIR);
807 d = dget_locked(d);
808 spin_unlock(&dcache_lock);
809 d_delete(d);
810 simple_unlink(dentry->d_inode, d);
811 dput(d);
812 spin_lock(&dcache_lock);
813 }
814 node = dentry->d_subdirs.next;
815 }
816 spin_unlock(&dcache_lock);
817}
818
819/*
820 * NOTE : the dentry must have been dget()'ed
821 */
822static void cgroup_d_remove_dir(struct dentry *dentry)
823{
824 cgroup_clear_directory(dentry);
825
826 spin_lock(&dcache_lock);
827 list_del_init(&dentry->d_u.d_child);
828 spin_unlock(&dcache_lock);
829 remove_dir(dentry);
830}
831
ec64f515
KH
832/*
833 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
834 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
835 * reference to css->refcnt. In general, this refcnt is expected to goes down
836 * to zero, soon.
837 *
88703267 838 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515
KH
839 */
840DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
841
88703267 842static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 843{
88703267 844 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
845 wake_up_all(&cgroup_rmdir_waitq);
846}
847
88703267
KH
848void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
849{
850 css_get(css);
851}
852
853void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
854{
855 cgroup_wakeup_rmdir_waiter(css->cgroup);
856 css_put(css);
857}
858
859
ddbcc7e8
PM
860static int rebind_subsystems(struct cgroupfs_root *root,
861 unsigned long final_bits)
862{
863 unsigned long added_bits, removed_bits;
bd89aabc 864 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
865 int i;
866
867 removed_bits = root->actual_subsys_bits & ~final_bits;
868 added_bits = final_bits & ~root->actual_subsys_bits;
869 /* Check that any added subsystems are currently free */
870 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 871 unsigned long bit = 1UL << i;
ddbcc7e8
PM
872 struct cgroup_subsys *ss = subsys[i];
873 if (!(bit & added_bits))
874 continue;
875 if (ss->root != &rootnode) {
876 /* Subsystem isn't free */
877 return -EBUSY;
878 }
879 }
880
881 /* Currently we don't handle adding/removing subsystems when
882 * any child cgroups exist. This is theoretically supportable
883 * but involves complex error handling, so it's being left until
884 * later */
307257cf 885 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
886 return -EBUSY;
887
888 /* Process each subsystem */
889 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
890 struct cgroup_subsys *ss = subsys[i];
891 unsigned long bit = 1UL << i;
892 if (bit & added_bits) {
893 /* We're binding this subsystem to this hierarchy */
bd89aabc 894 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
895 BUG_ON(!dummytop->subsys[i]);
896 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 897 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
898 cgrp->subsys[i] = dummytop->subsys[i];
899 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 900 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 901 ss->root = root;
ddbcc7e8 902 if (ss->bind)
bd89aabc 903 ss->bind(ss, cgrp);
999cd8a4 904 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
905 } else if (bit & removed_bits) {
906 /* We're removing this subsystem */
bd89aabc
PM
907 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
908 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 909 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
910 if (ss->bind)
911 ss->bind(ss, dummytop);
912 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 913 cgrp->subsys[i] = NULL;
b2aa30f7 914 subsys[i]->root = &rootnode;
33a68ac1 915 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 916 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
917 } else if (bit & final_bits) {
918 /* Subsystem state should already exist */
bd89aabc 919 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
920 } else {
921 /* Subsystem state shouldn't exist */
bd89aabc 922 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
923 }
924 }
925 root->subsys_bits = root->actual_subsys_bits = final_bits;
926 synchronize_rcu();
927
928 return 0;
929}
930
931static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
932{
933 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
934 struct cgroup_subsys *ss;
935
936 mutex_lock(&cgroup_mutex);
937 for_each_subsys(root, ss)
938 seq_printf(seq, ",%s", ss->name);
939 if (test_bit(ROOT_NOPREFIX, &root->flags))
940 seq_puts(seq, ",noprefix");
81a6a5cd
PM
941 if (strlen(root->release_agent_path))
942 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
c6d57f33
PM
943 if (strlen(root->name))
944 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
945 mutex_unlock(&cgroup_mutex);
946 return 0;
947}
948
949struct cgroup_sb_opts {
950 unsigned long subsys_bits;
951 unsigned long flags;
81a6a5cd 952 char *release_agent;
c6d57f33 953 char *name;
2c6ab6d2
PM
954 /* User explicitly requested empty subsystem */
955 bool none;
c6d57f33
PM
956
957 struct cgroupfs_root *new_root;
2c6ab6d2 958
ddbcc7e8
PM
959};
960
961/* Convert a hierarchy specifier into a bitmask of subsystems and
962 * flags. */
963static int parse_cgroupfs_options(char *data,
964 struct cgroup_sb_opts *opts)
965{
966 char *token, *o = data ?: "all";
f9ab5b5b
LZ
967 unsigned long mask = (unsigned long)-1;
968
969#ifdef CONFIG_CPUSETS
970 mask = ~(1UL << cpuset_subsys_id);
971#endif
ddbcc7e8 972
c6d57f33 973 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
974
975 while ((token = strsep(&o, ",")) != NULL) {
976 if (!*token)
977 return -EINVAL;
978 if (!strcmp(token, "all")) {
8bab8dde
PM
979 /* Add all non-disabled subsystems */
980 int i;
981 opts->subsys_bits = 0;
982 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
983 struct cgroup_subsys *ss = subsys[i];
984 if (!ss->disabled)
985 opts->subsys_bits |= 1ul << i;
986 }
2c6ab6d2
PM
987 } else if (!strcmp(token, "none")) {
988 /* Explicitly have no subsystems */
989 opts->none = true;
ddbcc7e8
PM
990 } else if (!strcmp(token, "noprefix")) {
991 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
992 } else if (!strncmp(token, "release_agent=", 14)) {
993 /* Specifying two release agents is forbidden */
994 if (opts->release_agent)
995 return -EINVAL;
c6d57f33
PM
996 opts->release_agent =
997 kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
81a6a5cd
PM
998 if (!opts->release_agent)
999 return -ENOMEM;
c6d57f33
PM
1000 } else if (!strncmp(token, "name=", 5)) {
1001 int i;
1002 const char *name = token + 5;
1003 /* Can't specify an empty name */
1004 if (!strlen(name))
1005 return -EINVAL;
1006 /* Must match [\w.-]+ */
1007 for (i = 0; i < strlen(name); i++) {
1008 char c = name[i];
1009 if (isalnum(c))
1010 continue;
1011 if ((c == '.') || (c == '-') || (c == '_'))
1012 continue;
1013 return -EINVAL;
1014 }
1015 /* Specifying two names is forbidden */
1016 if (opts->name)
1017 return -EINVAL;
1018 opts->name = kstrndup(name,
1019 MAX_CGROUP_ROOT_NAMELEN,
1020 GFP_KERNEL);
1021 if (!opts->name)
1022 return -ENOMEM;
ddbcc7e8
PM
1023 } else {
1024 struct cgroup_subsys *ss;
1025 int i;
1026 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1027 ss = subsys[i];
1028 if (!strcmp(token, ss->name)) {
8bab8dde
PM
1029 if (!ss->disabled)
1030 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1031 break;
1032 }
1033 }
1034 if (i == CGROUP_SUBSYS_COUNT)
1035 return -ENOENT;
1036 }
1037 }
1038
2c6ab6d2
PM
1039 /* Consistency checks */
1040
f9ab5b5b
LZ
1041 /*
1042 * Option noprefix was introduced just for backward compatibility
1043 * with the old cpuset, so we allow noprefix only if mounting just
1044 * the cpuset subsystem.
1045 */
1046 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1047 (opts->subsys_bits & mask))
1048 return -EINVAL;
1049
2c6ab6d2
PM
1050
1051 /* Can't specify "none" and some subsystems */
1052 if (opts->subsys_bits && opts->none)
1053 return -EINVAL;
1054
1055 /*
1056 * We either have to specify by name or by subsystems. (So all
1057 * empty hierarchies must have a name).
1058 */
c6d57f33 1059 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1060 return -EINVAL;
1061
1062 return 0;
1063}
1064
1065static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1066{
1067 int ret = 0;
1068 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1069 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1070 struct cgroup_sb_opts opts;
1071
337eb00a 1072 lock_kernel();
bd89aabc 1073 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1074 mutex_lock(&cgroup_mutex);
1075
1076 /* See what subsystems are wanted */
1077 ret = parse_cgroupfs_options(data, &opts);
1078 if (ret)
1079 goto out_unlock;
1080
1081 /* Don't allow flags to change at remount */
1082 if (opts.flags != root->flags) {
1083 ret = -EINVAL;
1084 goto out_unlock;
1085 }
1086
c6d57f33
PM
1087 /* Don't allow name to change at remount */
1088 if (opts.name && strcmp(opts.name, root->name)) {
1089 ret = -EINVAL;
1090 goto out_unlock;
1091 }
1092
ddbcc7e8 1093 ret = rebind_subsystems(root, opts.subsys_bits);
0670e08b
LZ
1094 if (ret)
1095 goto out_unlock;
ddbcc7e8
PM
1096
1097 /* (re)populate subsystem files */
0670e08b 1098 cgroup_populate_dir(cgrp);
ddbcc7e8 1099
81a6a5cd
PM
1100 if (opts.release_agent)
1101 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1102 out_unlock:
66bdc9cf 1103 kfree(opts.release_agent);
c6d57f33 1104 kfree(opts.name);
ddbcc7e8 1105 mutex_unlock(&cgroup_mutex);
bd89aabc 1106 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
337eb00a 1107 unlock_kernel();
ddbcc7e8
PM
1108 return ret;
1109}
1110
b87221de 1111static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1112 .statfs = simple_statfs,
1113 .drop_inode = generic_delete_inode,
1114 .show_options = cgroup_show_options,
1115 .remount_fs = cgroup_remount,
1116};
1117
cc31edce
PM
1118static void init_cgroup_housekeeping(struct cgroup *cgrp)
1119{
1120 INIT_LIST_HEAD(&cgrp->sibling);
1121 INIT_LIST_HEAD(&cgrp->children);
1122 INIT_LIST_HEAD(&cgrp->css_sets);
1123 INIT_LIST_HEAD(&cgrp->release_list);
1124 init_rwsem(&cgrp->pids_mutex);
1125}
c6d57f33 1126
ddbcc7e8
PM
1127static void init_cgroup_root(struct cgroupfs_root *root)
1128{
bd89aabc 1129 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1130 INIT_LIST_HEAD(&root->subsys_list);
1131 INIT_LIST_HEAD(&root->root_list);
1132 root->number_of_cgroups = 1;
bd89aabc
PM
1133 cgrp->root = root;
1134 cgrp->top_cgroup = cgrp;
cc31edce 1135 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1136}
1137
2c6ab6d2
PM
1138static bool init_root_id(struct cgroupfs_root *root)
1139{
1140 int ret = 0;
1141
1142 do {
1143 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1144 return false;
1145 spin_lock(&hierarchy_id_lock);
1146 /* Try to allocate the next unused ID */
1147 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1148 &root->hierarchy_id);
1149 if (ret == -ENOSPC)
1150 /* Try again starting from 0 */
1151 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1152 if (!ret) {
1153 next_hierarchy_id = root->hierarchy_id + 1;
1154 } else if (ret != -EAGAIN) {
1155 /* Can only get here if the 31-bit IDR is full ... */
1156 BUG_ON(ret);
1157 }
1158 spin_unlock(&hierarchy_id_lock);
1159 } while (ret);
1160 return true;
1161}
1162
ddbcc7e8
PM
1163static int cgroup_test_super(struct super_block *sb, void *data)
1164{
c6d57f33 1165 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1166 struct cgroupfs_root *root = sb->s_fs_info;
1167
c6d57f33
PM
1168 /* If we asked for a name then it must match */
1169 if (opts->name && strcmp(opts->name, root->name))
1170 return 0;
ddbcc7e8 1171
2c6ab6d2
PM
1172 /*
1173 * If we asked for subsystems (or explicitly for no
1174 * subsystems) then they must match
1175 */
1176 if ((opts->subsys_bits || opts->none)
1177 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1178 return 0;
1179
1180 return 1;
1181}
1182
c6d57f33
PM
1183static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1184{
1185 struct cgroupfs_root *root;
1186
2c6ab6d2 1187 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1188 return NULL;
1189
1190 root = kzalloc(sizeof(*root), GFP_KERNEL);
1191 if (!root)
1192 return ERR_PTR(-ENOMEM);
1193
2c6ab6d2
PM
1194 if (!init_root_id(root)) {
1195 kfree(root);
1196 return ERR_PTR(-ENOMEM);
1197 }
c6d57f33 1198 init_cgroup_root(root);
2c6ab6d2 1199
c6d57f33
PM
1200 root->subsys_bits = opts->subsys_bits;
1201 root->flags = opts->flags;
1202 if (opts->release_agent)
1203 strcpy(root->release_agent_path, opts->release_agent);
1204 if (opts->name)
1205 strcpy(root->name, opts->name);
1206 return root;
1207}
1208
2c6ab6d2
PM
1209static void cgroup_drop_root(struct cgroupfs_root *root)
1210{
1211 if (!root)
1212 return;
1213
1214 BUG_ON(!root->hierarchy_id);
1215 spin_lock(&hierarchy_id_lock);
1216 ida_remove(&hierarchy_ida, root->hierarchy_id);
1217 spin_unlock(&hierarchy_id_lock);
1218 kfree(root);
1219}
1220
ddbcc7e8
PM
1221static int cgroup_set_super(struct super_block *sb, void *data)
1222{
1223 int ret;
c6d57f33
PM
1224 struct cgroup_sb_opts *opts = data;
1225
1226 /* If we don't have a new root, we can't set up a new sb */
1227 if (!opts->new_root)
1228 return -EINVAL;
1229
2c6ab6d2 1230 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1231
1232 ret = set_anon_super(sb, NULL);
1233 if (ret)
1234 return ret;
1235
c6d57f33
PM
1236 sb->s_fs_info = opts->new_root;
1237 opts->new_root->sb = sb;
ddbcc7e8
PM
1238
1239 sb->s_blocksize = PAGE_CACHE_SIZE;
1240 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1241 sb->s_magic = CGROUP_SUPER_MAGIC;
1242 sb->s_op = &cgroup_ops;
1243
1244 return 0;
1245}
1246
1247static int cgroup_get_rootdir(struct super_block *sb)
1248{
1249 struct inode *inode =
1250 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1251 struct dentry *dentry;
1252
1253 if (!inode)
1254 return -ENOMEM;
1255
ddbcc7e8
PM
1256 inode->i_fop = &simple_dir_operations;
1257 inode->i_op = &cgroup_dir_inode_operations;
1258 /* directories start off with i_nlink == 2 (for "." entry) */
1259 inc_nlink(inode);
1260 dentry = d_alloc_root(inode);
1261 if (!dentry) {
1262 iput(inode);
1263 return -ENOMEM;
1264 }
1265 sb->s_root = dentry;
1266 return 0;
1267}
1268
1269static int cgroup_get_sb(struct file_system_type *fs_type,
1270 int flags, const char *unused_dev_name,
1271 void *data, struct vfsmount *mnt)
1272{
1273 struct cgroup_sb_opts opts;
c6d57f33 1274 struct cgroupfs_root *root;
ddbcc7e8
PM
1275 int ret = 0;
1276 struct super_block *sb;
c6d57f33 1277 struct cgroupfs_root *new_root;
ddbcc7e8
PM
1278
1279 /* First find the desired set of subsystems */
1280 ret = parse_cgroupfs_options(data, &opts);
c6d57f33
PM
1281 if (ret)
1282 goto out_err;
ddbcc7e8 1283
c6d57f33
PM
1284 /*
1285 * Allocate a new cgroup root. We may not need it if we're
1286 * reusing an existing hierarchy.
1287 */
1288 new_root = cgroup_root_from_opts(&opts);
1289 if (IS_ERR(new_root)) {
1290 ret = PTR_ERR(new_root);
1291 goto out_err;
81a6a5cd 1292 }
c6d57f33 1293 opts.new_root = new_root;
ddbcc7e8 1294
c6d57f33
PM
1295 /* Locate an existing or new sb for this hierarchy */
1296 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1297 if (IS_ERR(sb)) {
c6d57f33 1298 ret = PTR_ERR(sb);
2c6ab6d2 1299 cgroup_drop_root(opts.new_root);
c6d57f33 1300 goto out_err;
ddbcc7e8
PM
1301 }
1302
c6d57f33
PM
1303 root = sb->s_fs_info;
1304 BUG_ON(!root);
1305 if (root == opts.new_root) {
1306 /* We used the new root structure, so this is a new hierarchy */
1307 struct list_head tmp_cg_links;
c12f65d4 1308 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1309 struct inode *inode;
c6d57f33 1310 struct cgroupfs_root *existing_root;
28fd5dfc 1311 int i;
ddbcc7e8
PM
1312
1313 BUG_ON(sb->s_root != NULL);
1314
1315 ret = cgroup_get_rootdir(sb);
1316 if (ret)
1317 goto drop_new_super;
817929ec 1318 inode = sb->s_root->d_inode;
ddbcc7e8 1319
817929ec 1320 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1321 mutex_lock(&cgroup_mutex);
1322
c6d57f33
PM
1323 if (strlen(root->name)) {
1324 /* Check for name clashes with existing mounts */
1325 for_each_active_root(existing_root) {
1326 if (!strcmp(existing_root->name, root->name)) {
1327 ret = -EBUSY;
1328 mutex_unlock(&cgroup_mutex);
1329 mutex_unlock(&inode->i_mutex);
1330 goto drop_new_super;
1331 }
1332 }
1333 }
1334
817929ec
PM
1335 /*
1336 * We're accessing css_set_count without locking
1337 * css_set_lock here, but that's OK - it can only be
1338 * increased by someone holding cgroup_lock, and
1339 * that's us. The worst that can happen is that we
1340 * have some link structures left over
1341 */
1342 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1343 if (ret) {
1344 mutex_unlock(&cgroup_mutex);
1345 mutex_unlock(&inode->i_mutex);
1346 goto drop_new_super;
1347 }
1348
ddbcc7e8
PM
1349 ret = rebind_subsystems(root, root->subsys_bits);
1350 if (ret == -EBUSY) {
1351 mutex_unlock(&cgroup_mutex);
817929ec 1352 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1353 free_cg_links(&tmp_cg_links);
1354 goto drop_new_super;
ddbcc7e8
PM
1355 }
1356
1357 /* EBUSY should be the only error here */
1358 BUG_ON(ret);
1359
1360 list_add(&root->root_list, &roots);
817929ec 1361 root_count++;
ddbcc7e8 1362
c12f65d4 1363 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1364 root->top_cgroup.dentry = sb->s_root;
1365
817929ec
PM
1366 /* Link the top cgroup in this hierarchy into all
1367 * the css_set objects */
1368 write_lock(&css_set_lock);
28fd5dfc
LZ
1369 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1370 struct hlist_head *hhead = &css_set_table[i];
1371 struct hlist_node *node;
817929ec 1372 struct css_set *cg;
28fd5dfc 1373
c12f65d4
LZ
1374 hlist_for_each_entry(cg, node, hhead, hlist)
1375 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1376 }
817929ec
PM
1377 write_unlock(&css_set_lock);
1378
1379 free_cg_links(&tmp_cg_links);
1380
c12f65d4
LZ
1381 BUG_ON(!list_empty(&root_cgrp->sibling));
1382 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1383 BUG_ON(root->number_of_cgroups != 1);
1384
c12f65d4 1385 cgroup_populate_dir(root_cgrp);
ddbcc7e8 1386 mutex_unlock(&cgroup_mutex);
34f77a90 1387 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1388 } else {
1389 /*
1390 * We re-used an existing hierarchy - the new root (if
1391 * any) is not needed
1392 */
2c6ab6d2 1393 cgroup_drop_root(opts.new_root);
ddbcc7e8
PM
1394 }
1395
a3ec947c 1396 simple_set_mnt(mnt, sb);
c6d57f33
PM
1397 kfree(opts.release_agent);
1398 kfree(opts.name);
a3ec947c 1399 return 0;
ddbcc7e8
PM
1400
1401 drop_new_super:
6f5bbff9 1402 deactivate_locked_super(sb);
c6d57f33
PM
1403 out_err:
1404 kfree(opts.release_agent);
1405 kfree(opts.name);
1406
ddbcc7e8
PM
1407 return ret;
1408}
1409
1410static void cgroup_kill_sb(struct super_block *sb) {
1411 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1412 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1413 int ret;
71cbb949
KM
1414 struct cg_cgroup_link *link;
1415 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1416
1417 BUG_ON(!root);
1418
1419 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1420 BUG_ON(!list_empty(&cgrp->children));
1421 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1422
1423 mutex_lock(&cgroup_mutex);
1424
1425 /* Rebind all subsystems back to the default hierarchy */
1426 ret = rebind_subsystems(root, 0);
1427 /* Shouldn't be able to fail ... */
1428 BUG_ON(ret);
1429
817929ec
PM
1430 /*
1431 * Release all the links from css_sets to this hierarchy's
1432 * root cgroup
1433 */
1434 write_lock(&css_set_lock);
71cbb949
KM
1435
1436 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1437 cgrp_link_list) {
817929ec 1438 list_del(&link->cg_link_list);
bd89aabc 1439 list_del(&link->cgrp_link_list);
817929ec
PM
1440 kfree(link);
1441 }
1442 write_unlock(&css_set_lock);
1443
839ec545
PM
1444 if (!list_empty(&root->root_list)) {
1445 list_del(&root->root_list);
1446 root_count--;
1447 }
e5f6a860 1448
ddbcc7e8
PM
1449 mutex_unlock(&cgroup_mutex);
1450
ddbcc7e8 1451 kill_litter_super(sb);
2c6ab6d2 1452 cgroup_drop_root(root);
ddbcc7e8
PM
1453}
1454
1455static struct file_system_type cgroup_fs_type = {
1456 .name = "cgroup",
1457 .get_sb = cgroup_get_sb,
1458 .kill_sb = cgroup_kill_sb,
1459};
1460
bd89aabc 1461static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1462{
1463 return dentry->d_fsdata;
1464}
1465
1466static inline struct cftype *__d_cft(struct dentry *dentry)
1467{
1468 return dentry->d_fsdata;
1469}
1470
a043e3b2
LZ
1471/**
1472 * cgroup_path - generate the path of a cgroup
1473 * @cgrp: the cgroup in question
1474 * @buf: the buffer to write the path into
1475 * @buflen: the length of the buffer
1476 *
a47295e6
PM
1477 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1478 * reference. Writes path of cgroup into buf. Returns 0 on success,
1479 * -errno on error.
ddbcc7e8 1480 */
bd89aabc 1481int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1482{
1483 char *start;
a47295e6 1484 struct dentry *dentry = rcu_dereference(cgrp->dentry);
ddbcc7e8 1485
a47295e6 1486 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1487 /*
1488 * Inactive subsystems have no dentry for their root
1489 * cgroup
1490 */
1491 strcpy(buf, "/");
1492 return 0;
1493 }
1494
1495 start = buf + buflen;
1496
1497 *--start = '\0';
1498 for (;;) {
a47295e6 1499 int len = dentry->d_name.len;
ddbcc7e8
PM
1500 if ((start -= len) < buf)
1501 return -ENAMETOOLONG;
bd89aabc
PM
1502 memcpy(start, cgrp->dentry->d_name.name, len);
1503 cgrp = cgrp->parent;
1504 if (!cgrp)
ddbcc7e8 1505 break;
a47295e6 1506 dentry = rcu_dereference(cgrp->dentry);
bd89aabc 1507 if (!cgrp->parent)
ddbcc7e8
PM
1508 continue;
1509 if (--start < buf)
1510 return -ENAMETOOLONG;
1511 *start = '/';
1512 }
1513 memmove(buf, start, buf + buflen - start);
1514 return 0;
1515}
1516
a043e3b2
LZ
1517/**
1518 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1519 * @cgrp: the cgroup the task is attaching to
1520 * @tsk: the task to be attached
bbcb81d0 1521 *
a043e3b2
LZ
1522 * Call holding cgroup_mutex. May take task_lock of
1523 * the task 'tsk' during call.
bbcb81d0 1524 */
956db3ca 1525int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1526{
1527 int retval = 0;
1528 struct cgroup_subsys *ss;
bd89aabc 1529 struct cgroup *oldcgrp;
77efecd9 1530 struct css_set *cg;
817929ec 1531 struct css_set *newcg;
bd89aabc 1532 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1533
1534 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1535 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1536 if (cgrp == oldcgrp)
bbcb81d0
PM
1537 return 0;
1538
1539 for_each_subsys(root, ss) {
1540 if (ss->can_attach) {
bd89aabc 1541 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1542 if (retval)
bbcb81d0 1543 return retval;
bbcb81d0
PM
1544 }
1545 }
1546
77efecd9
LJ
1547 task_lock(tsk);
1548 cg = tsk->cgroups;
1549 get_css_set(cg);
1550 task_unlock(tsk);
817929ec
PM
1551 /*
1552 * Locate or allocate a new css_set for this task,
1553 * based on its final set of cgroups
1554 */
bd89aabc 1555 newcg = find_css_set(cg, cgrp);
77efecd9 1556 put_css_set(cg);
e18f6318 1557 if (!newcg)
817929ec 1558 return -ENOMEM;
817929ec 1559
bbcb81d0
PM
1560 task_lock(tsk);
1561 if (tsk->flags & PF_EXITING) {
1562 task_unlock(tsk);
817929ec 1563 put_css_set(newcg);
bbcb81d0
PM
1564 return -ESRCH;
1565 }
817929ec 1566 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1567 task_unlock(tsk);
1568
817929ec
PM
1569 /* Update the css_set linked lists if we're using them */
1570 write_lock(&css_set_lock);
1571 if (!list_empty(&tsk->cg_list)) {
1572 list_del(&tsk->cg_list);
1573 list_add(&tsk->cg_list, &newcg->tasks);
1574 }
1575 write_unlock(&css_set_lock);
1576
bbcb81d0 1577 for_each_subsys(root, ss) {
e18f6318 1578 if (ss->attach)
bd89aabc 1579 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1580 }
bd89aabc 1581 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1582 synchronize_rcu();
817929ec 1583 put_css_set(cg);
ec64f515
KH
1584
1585 /*
1586 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1587 * is no longer empty.
1588 */
88703267 1589 cgroup_wakeup_rmdir_waiter(cgrp);
bbcb81d0
PM
1590 return 0;
1591}
1592
1593/*
af351026
PM
1594 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1595 * held. May take task_lock of task
bbcb81d0 1596 */
af351026 1597static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1598{
bbcb81d0 1599 struct task_struct *tsk;
c69e8d9c 1600 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1601 int ret;
1602
bbcb81d0
PM
1603 if (pid) {
1604 rcu_read_lock();
73507f33 1605 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1606 if (!tsk || tsk->flags & PF_EXITING) {
1607 rcu_read_unlock();
1608 return -ESRCH;
1609 }
bbcb81d0 1610
c69e8d9c
DH
1611 tcred = __task_cred(tsk);
1612 if (cred->euid &&
1613 cred->euid != tcred->uid &&
1614 cred->euid != tcred->suid) {
1615 rcu_read_unlock();
bbcb81d0
PM
1616 return -EACCES;
1617 }
c69e8d9c
DH
1618 get_task_struct(tsk);
1619 rcu_read_unlock();
bbcb81d0
PM
1620 } else {
1621 tsk = current;
1622 get_task_struct(tsk);
1623 }
1624
956db3ca 1625 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1626 put_task_struct(tsk);
1627 return ret;
1628}
1629
af351026
PM
1630static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1631{
1632 int ret;
1633 if (!cgroup_lock_live_group(cgrp))
1634 return -ENODEV;
1635 ret = attach_task_by_pid(cgrp, pid);
1636 cgroup_unlock();
1637 return ret;
1638}
1639
ddbcc7e8 1640/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1641enum cgroup_filetype {
1642 FILE_ROOT,
1643 FILE_DIR,
1644 FILE_TASKLIST,
81a6a5cd 1645 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1646 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1647};
1648
e788e066
PM
1649/**
1650 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1651 * @cgrp: the cgroup to be checked for liveness
1652 *
84eea842
PM
1653 * On success, returns true; the lock should be later released with
1654 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1655 */
84eea842 1656bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1657{
1658 mutex_lock(&cgroup_mutex);
1659 if (cgroup_is_removed(cgrp)) {
1660 mutex_unlock(&cgroup_mutex);
1661 return false;
1662 }
1663 return true;
1664}
1665
1666static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1667 const char *buffer)
1668{
1669 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1670 if (!cgroup_lock_live_group(cgrp))
1671 return -ENODEV;
1672 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1673 cgroup_unlock();
e788e066
PM
1674 return 0;
1675}
1676
1677static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1678 struct seq_file *seq)
1679{
1680 if (!cgroup_lock_live_group(cgrp))
1681 return -ENODEV;
1682 seq_puts(seq, cgrp->root->release_agent_path);
1683 seq_putc(seq, '\n');
84eea842 1684 cgroup_unlock();
e788e066
PM
1685 return 0;
1686}
1687
84eea842
PM
1688/* A buffer size big enough for numbers or short strings */
1689#define CGROUP_LOCAL_BUFFER_SIZE 64
1690
e73d2c61 1691static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1692 struct file *file,
1693 const char __user *userbuf,
1694 size_t nbytes, loff_t *unused_ppos)
355e0c48 1695{
84eea842 1696 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1697 int retval = 0;
355e0c48
PM
1698 char *end;
1699
1700 if (!nbytes)
1701 return -EINVAL;
1702 if (nbytes >= sizeof(buffer))
1703 return -E2BIG;
1704 if (copy_from_user(buffer, userbuf, nbytes))
1705 return -EFAULT;
1706
1707 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1708 strstrip(buffer);
e73d2c61
PM
1709 if (cft->write_u64) {
1710 u64 val = simple_strtoull(buffer, &end, 0);
1711 if (*end)
1712 return -EINVAL;
1713 retval = cft->write_u64(cgrp, cft, val);
1714 } else {
1715 s64 val = simple_strtoll(buffer, &end, 0);
1716 if (*end)
1717 return -EINVAL;
1718 retval = cft->write_s64(cgrp, cft, val);
1719 }
355e0c48
PM
1720 if (!retval)
1721 retval = nbytes;
1722 return retval;
1723}
1724
db3b1497
PM
1725static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1726 struct file *file,
1727 const char __user *userbuf,
1728 size_t nbytes, loff_t *unused_ppos)
1729{
84eea842 1730 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1731 int retval = 0;
1732 size_t max_bytes = cft->max_write_len;
1733 char *buffer = local_buffer;
1734
1735 if (!max_bytes)
1736 max_bytes = sizeof(local_buffer) - 1;
1737 if (nbytes >= max_bytes)
1738 return -E2BIG;
1739 /* Allocate a dynamic buffer if we need one */
1740 if (nbytes >= sizeof(local_buffer)) {
1741 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1742 if (buffer == NULL)
1743 return -ENOMEM;
1744 }
5a3eb9f6
LZ
1745 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1746 retval = -EFAULT;
1747 goto out;
1748 }
db3b1497
PM
1749
1750 buffer[nbytes] = 0; /* nul-terminate */
1751 strstrip(buffer);
1752 retval = cft->write_string(cgrp, cft, buffer);
1753 if (!retval)
1754 retval = nbytes;
5a3eb9f6 1755out:
db3b1497
PM
1756 if (buffer != local_buffer)
1757 kfree(buffer);
1758 return retval;
1759}
1760
ddbcc7e8
PM
1761static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1762 size_t nbytes, loff_t *ppos)
1763{
1764 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1765 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1766
75139b82 1767 if (cgroup_is_removed(cgrp))
ddbcc7e8 1768 return -ENODEV;
355e0c48 1769 if (cft->write)
bd89aabc 1770 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1771 if (cft->write_u64 || cft->write_s64)
1772 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1773 if (cft->write_string)
1774 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1775 if (cft->trigger) {
1776 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1777 return ret ? ret : nbytes;
1778 }
355e0c48 1779 return -EINVAL;
ddbcc7e8
PM
1780}
1781
f4c753b7
PM
1782static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1783 struct file *file,
1784 char __user *buf, size_t nbytes,
1785 loff_t *ppos)
ddbcc7e8 1786{
84eea842 1787 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1788 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1789 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1790
1791 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1792}
1793
e73d2c61
PM
1794static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1795 struct file *file,
1796 char __user *buf, size_t nbytes,
1797 loff_t *ppos)
1798{
84eea842 1799 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1800 s64 val = cft->read_s64(cgrp, cft);
1801 int len = sprintf(tmp, "%lld\n", (long long) val);
1802
1803 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1804}
1805
ddbcc7e8
PM
1806static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1807 size_t nbytes, loff_t *ppos)
1808{
1809 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1810 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1811
75139b82 1812 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
1813 return -ENODEV;
1814
1815 if (cft->read)
bd89aabc 1816 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1817 if (cft->read_u64)
1818 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1819 if (cft->read_s64)
1820 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1821 return -EINVAL;
1822}
1823
91796569
PM
1824/*
1825 * seqfile ops/methods for returning structured data. Currently just
1826 * supports string->u64 maps, but can be extended in future.
1827 */
1828
1829struct cgroup_seqfile_state {
1830 struct cftype *cft;
1831 struct cgroup *cgroup;
1832};
1833
1834static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1835{
1836 struct seq_file *sf = cb->state;
1837 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1838}
1839
1840static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1841{
1842 struct cgroup_seqfile_state *state = m->private;
1843 struct cftype *cft = state->cft;
29486df3
SH
1844 if (cft->read_map) {
1845 struct cgroup_map_cb cb = {
1846 .fill = cgroup_map_add,
1847 .state = m,
1848 };
1849 return cft->read_map(state->cgroup, cft, &cb);
1850 }
1851 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1852}
1853
96930a63 1854static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
1855{
1856 struct seq_file *seq = file->private_data;
1857 kfree(seq->private);
1858 return single_release(inode, file);
1859}
1860
1861static struct file_operations cgroup_seqfile_operations = {
1862 .read = seq_read,
e788e066 1863 .write = cgroup_file_write,
91796569
PM
1864 .llseek = seq_lseek,
1865 .release = cgroup_seqfile_release,
1866};
1867
ddbcc7e8
PM
1868static int cgroup_file_open(struct inode *inode, struct file *file)
1869{
1870 int err;
1871 struct cftype *cft;
1872
1873 err = generic_file_open(inode, file);
1874 if (err)
1875 return err;
ddbcc7e8 1876 cft = __d_cft(file->f_dentry);
75139b82 1877
29486df3 1878 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1879 struct cgroup_seqfile_state *state =
1880 kzalloc(sizeof(*state), GFP_USER);
1881 if (!state)
1882 return -ENOMEM;
1883 state->cft = cft;
1884 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1885 file->f_op = &cgroup_seqfile_operations;
1886 err = single_open(file, cgroup_seqfile_show, state);
1887 if (err < 0)
1888 kfree(state);
1889 } else if (cft->open)
ddbcc7e8
PM
1890 err = cft->open(inode, file);
1891 else
1892 err = 0;
1893
1894 return err;
1895}
1896
1897static int cgroup_file_release(struct inode *inode, struct file *file)
1898{
1899 struct cftype *cft = __d_cft(file->f_dentry);
1900 if (cft->release)
1901 return cft->release(inode, file);
1902 return 0;
1903}
1904
1905/*
1906 * cgroup_rename - Only allow simple rename of directories in place.
1907 */
1908static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1909 struct inode *new_dir, struct dentry *new_dentry)
1910{
1911 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1912 return -ENOTDIR;
1913 if (new_dentry->d_inode)
1914 return -EEXIST;
1915 if (old_dir != new_dir)
1916 return -EIO;
1917 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1918}
1919
1920static struct file_operations cgroup_file_operations = {
1921 .read = cgroup_file_read,
1922 .write = cgroup_file_write,
1923 .llseek = generic_file_llseek,
1924 .open = cgroup_file_open,
1925 .release = cgroup_file_release,
1926};
1927
6e1d5dcc 1928static const struct inode_operations cgroup_dir_inode_operations = {
ddbcc7e8
PM
1929 .lookup = simple_lookup,
1930 .mkdir = cgroup_mkdir,
1931 .rmdir = cgroup_rmdir,
1932 .rename = cgroup_rename,
1933};
1934
099fca32 1935static int cgroup_create_file(struct dentry *dentry, mode_t mode,
ddbcc7e8
PM
1936 struct super_block *sb)
1937{
3ba13d17 1938 static const struct dentry_operations cgroup_dops = {
ddbcc7e8
PM
1939 .d_iput = cgroup_diput,
1940 };
1941
1942 struct inode *inode;
1943
1944 if (!dentry)
1945 return -ENOENT;
1946 if (dentry->d_inode)
1947 return -EEXIST;
1948
1949 inode = cgroup_new_inode(mode, sb);
1950 if (!inode)
1951 return -ENOMEM;
1952
1953 if (S_ISDIR(mode)) {
1954 inode->i_op = &cgroup_dir_inode_operations;
1955 inode->i_fop = &simple_dir_operations;
1956
1957 /* start off with i_nlink == 2 (for "." entry) */
1958 inc_nlink(inode);
1959
1960 /* start with the directory inode held, so that we can
1961 * populate it without racing with another mkdir */
817929ec 1962 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1963 } else if (S_ISREG(mode)) {
1964 inode->i_size = 0;
1965 inode->i_fop = &cgroup_file_operations;
1966 }
1967 dentry->d_op = &cgroup_dops;
1968 d_instantiate(dentry, inode);
1969 dget(dentry); /* Extra count - pin the dentry in core */
1970 return 0;
1971}
1972
1973/*
a043e3b2
LZ
1974 * cgroup_create_dir - create a directory for an object.
1975 * @cgrp: the cgroup we create the directory for. It must have a valid
1976 * ->parent field. And we are going to fill its ->dentry field.
1977 * @dentry: dentry of the new cgroup
1978 * @mode: mode to set on new directory.
ddbcc7e8 1979 */
bd89aabc 1980static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 1981 mode_t mode)
ddbcc7e8
PM
1982{
1983 struct dentry *parent;
1984 int error = 0;
1985
bd89aabc
PM
1986 parent = cgrp->parent->dentry;
1987 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1988 if (!error) {
bd89aabc 1989 dentry->d_fsdata = cgrp;
ddbcc7e8 1990 inc_nlink(parent->d_inode);
a47295e6 1991 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
1992 dget(dentry);
1993 }
1994 dput(dentry);
1995
1996 return error;
1997}
1998
099fca32
LZ
1999/**
2000 * cgroup_file_mode - deduce file mode of a control file
2001 * @cft: the control file in question
2002 *
2003 * returns cft->mode if ->mode is not 0
2004 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2005 * returns S_IRUGO if it has only a read handler
2006 * returns S_IWUSR if it has only a write hander
2007 */
2008static mode_t cgroup_file_mode(const struct cftype *cft)
2009{
2010 mode_t mode = 0;
2011
2012 if (cft->mode)
2013 return cft->mode;
2014
2015 if (cft->read || cft->read_u64 || cft->read_s64 ||
2016 cft->read_map || cft->read_seq_string)
2017 mode |= S_IRUGO;
2018
2019 if (cft->write || cft->write_u64 || cft->write_s64 ||
2020 cft->write_string || cft->trigger)
2021 mode |= S_IWUSR;
2022
2023 return mode;
2024}
2025
bd89aabc 2026int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2027 struct cgroup_subsys *subsys,
2028 const struct cftype *cft)
2029{
bd89aabc 2030 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2031 struct dentry *dentry;
2032 int error;
099fca32 2033 mode_t mode;
ddbcc7e8
PM
2034
2035 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2036 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2037 strcpy(name, subsys->name);
2038 strcat(name, ".");
2039 }
2040 strcat(name, cft->name);
2041 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2042 dentry = lookup_one_len(name, dir, strlen(name));
2043 if (!IS_ERR(dentry)) {
099fca32
LZ
2044 mode = cgroup_file_mode(cft);
2045 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2046 cgrp->root->sb);
ddbcc7e8
PM
2047 if (!error)
2048 dentry->d_fsdata = (void *)cft;
2049 dput(dentry);
2050 } else
2051 error = PTR_ERR(dentry);
2052 return error;
2053}
2054
bd89aabc 2055int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2056 struct cgroup_subsys *subsys,
2057 const struct cftype cft[],
2058 int count)
2059{
2060 int i, err;
2061 for (i = 0; i < count; i++) {
bd89aabc 2062 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2063 if (err)
2064 return err;
2065 }
2066 return 0;
2067}
2068
a043e3b2
LZ
2069/**
2070 * cgroup_task_count - count the number of tasks in a cgroup.
2071 * @cgrp: the cgroup in question
2072 *
2073 * Return the number of tasks in the cgroup.
2074 */
bd89aabc 2075int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2076{
2077 int count = 0;
71cbb949 2078 struct cg_cgroup_link *link;
817929ec
PM
2079
2080 read_lock(&css_set_lock);
71cbb949 2081 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2082 count += atomic_read(&link->cg->refcount);
817929ec
PM
2083 }
2084 read_unlock(&css_set_lock);
bbcb81d0
PM
2085 return count;
2086}
2087
817929ec
PM
2088/*
2089 * Advance a list_head iterator. The iterator should be positioned at
2090 * the start of a css_set
2091 */
bd89aabc 2092static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2093 struct cgroup_iter *it)
817929ec
PM
2094{
2095 struct list_head *l = it->cg_link;
2096 struct cg_cgroup_link *link;
2097 struct css_set *cg;
2098
2099 /* Advance to the next non-empty css_set */
2100 do {
2101 l = l->next;
bd89aabc 2102 if (l == &cgrp->css_sets) {
817929ec
PM
2103 it->cg_link = NULL;
2104 return;
2105 }
bd89aabc 2106 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2107 cg = link->cg;
2108 } while (list_empty(&cg->tasks));
2109 it->cg_link = l;
2110 it->task = cg->tasks.next;
2111}
2112
31a7df01
CW
2113/*
2114 * To reduce the fork() overhead for systems that are not actually
2115 * using their cgroups capability, we don't maintain the lists running
2116 * through each css_set to its tasks until we see the list actually
2117 * used - in other words after the first call to cgroup_iter_start().
2118 *
2119 * The tasklist_lock is not held here, as do_each_thread() and
2120 * while_each_thread() are protected by RCU.
2121 */
3df91fe3 2122static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2123{
2124 struct task_struct *p, *g;
2125 write_lock(&css_set_lock);
2126 use_task_css_set_links = 1;
2127 do_each_thread(g, p) {
2128 task_lock(p);
0e04388f
LZ
2129 /*
2130 * We should check if the process is exiting, otherwise
2131 * it will race with cgroup_exit() in that the list
2132 * entry won't be deleted though the process has exited.
2133 */
2134 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2135 list_add(&p->cg_list, &p->cgroups->tasks);
2136 task_unlock(p);
2137 } while_each_thread(g, p);
2138 write_unlock(&css_set_lock);
2139}
2140
bd89aabc 2141void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2142{
2143 /*
2144 * The first time anyone tries to iterate across a cgroup,
2145 * we need to enable the list linking each css_set to its
2146 * tasks, and fix up all existing tasks.
2147 */
31a7df01
CW
2148 if (!use_task_css_set_links)
2149 cgroup_enable_task_cg_lists();
2150
817929ec 2151 read_lock(&css_set_lock);
bd89aabc
PM
2152 it->cg_link = &cgrp->css_sets;
2153 cgroup_advance_iter(cgrp, it);
817929ec
PM
2154}
2155
bd89aabc 2156struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2157 struct cgroup_iter *it)
2158{
2159 struct task_struct *res;
2160 struct list_head *l = it->task;
2019f634 2161 struct cg_cgroup_link *link;
817929ec
PM
2162
2163 /* If the iterator cg is NULL, we have no tasks */
2164 if (!it->cg_link)
2165 return NULL;
2166 res = list_entry(l, struct task_struct, cg_list);
2167 /* Advance iterator to find next entry */
2168 l = l->next;
2019f634
LJ
2169 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2170 if (l == &link->cg->tasks) {
817929ec
PM
2171 /* We reached the end of this task list - move on to
2172 * the next cg_cgroup_link */
bd89aabc 2173 cgroup_advance_iter(cgrp, it);
817929ec
PM
2174 } else {
2175 it->task = l;
2176 }
2177 return res;
2178}
2179
bd89aabc 2180void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2181{
2182 read_unlock(&css_set_lock);
2183}
2184
31a7df01
CW
2185static inline int started_after_time(struct task_struct *t1,
2186 struct timespec *time,
2187 struct task_struct *t2)
2188{
2189 int start_diff = timespec_compare(&t1->start_time, time);
2190 if (start_diff > 0) {
2191 return 1;
2192 } else if (start_diff < 0) {
2193 return 0;
2194 } else {
2195 /*
2196 * Arbitrarily, if two processes started at the same
2197 * time, we'll say that the lower pointer value
2198 * started first. Note that t2 may have exited by now
2199 * so this may not be a valid pointer any longer, but
2200 * that's fine - it still serves to distinguish
2201 * between two tasks started (effectively) simultaneously.
2202 */
2203 return t1 > t2;
2204 }
2205}
2206
2207/*
2208 * This function is a callback from heap_insert() and is used to order
2209 * the heap.
2210 * In this case we order the heap in descending task start time.
2211 */
2212static inline int started_after(void *p1, void *p2)
2213{
2214 struct task_struct *t1 = p1;
2215 struct task_struct *t2 = p2;
2216 return started_after_time(t1, &t2->start_time, t2);
2217}
2218
2219/**
2220 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2221 * @scan: struct cgroup_scanner containing arguments for the scan
2222 *
2223 * Arguments include pointers to callback functions test_task() and
2224 * process_task().
2225 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2226 * and if it returns true, call process_task() for it also.
2227 * The test_task pointer may be NULL, meaning always true (select all tasks).
2228 * Effectively duplicates cgroup_iter_{start,next,end}()
2229 * but does not lock css_set_lock for the call to process_task().
2230 * The struct cgroup_scanner may be embedded in any structure of the caller's
2231 * creation.
2232 * It is guaranteed that process_task() will act on every task that
2233 * is a member of the cgroup for the duration of this call. This
2234 * function may or may not call process_task() for tasks that exit
2235 * or move to a different cgroup during the call, or are forked or
2236 * move into the cgroup during the call.
2237 *
2238 * Note that test_task() may be called with locks held, and may in some
2239 * situations be called multiple times for the same task, so it should
2240 * be cheap.
2241 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2242 * pre-allocated and will be used for heap operations (and its "gt" member will
2243 * be overwritten), else a temporary heap will be used (allocation of which
2244 * may cause this function to fail).
2245 */
2246int cgroup_scan_tasks(struct cgroup_scanner *scan)
2247{
2248 int retval, i;
2249 struct cgroup_iter it;
2250 struct task_struct *p, *dropped;
2251 /* Never dereference latest_task, since it's not refcounted */
2252 struct task_struct *latest_task = NULL;
2253 struct ptr_heap tmp_heap;
2254 struct ptr_heap *heap;
2255 struct timespec latest_time = { 0, 0 };
2256
2257 if (scan->heap) {
2258 /* The caller supplied our heap and pre-allocated its memory */
2259 heap = scan->heap;
2260 heap->gt = &started_after;
2261 } else {
2262 /* We need to allocate our own heap memory */
2263 heap = &tmp_heap;
2264 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2265 if (retval)
2266 /* cannot allocate the heap */
2267 return retval;
2268 }
2269
2270 again:
2271 /*
2272 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2273 * to determine which are of interest, and using the scanner's
2274 * "process_task" callback to process any of them that need an update.
2275 * Since we don't want to hold any locks during the task updates,
2276 * gather tasks to be processed in a heap structure.
2277 * The heap is sorted by descending task start time.
2278 * If the statically-sized heap fills up, we overflow tasks that
2279 * started later, and in future iterations only consider tasks that
2280 * started after the latest task in the previous pass. This
2281 * guarantees forward progress and that we don't miss any tasks.
2282 */
2283 heap->size = 0;
2284 cgroup_iter_start(scan->cg, &it);
2285 while ((p = cgroup_iter_next(scan->cg, &it))) {
2286 /*
2287 * Only affect tasks that qualify per the caller's callback,
2288 * if he provided one
2289 */
2290 if (scan->test_task && !scan->test_task(p, scan))
2291 continue;
2292 /*
2293 * Only process tasks that started after the last task
2294 * we processed
2295 */
2296 if (!started_after_time(p, &latest_time, latest_task))
2297 continue;
2298 dropped = heap_insert(heap, p);
2299 if (dropped == NULL) {
2300 /*
2301 * The new task was inserted; the heap wasn't
2302 * previously full
2303 */
2304 get_task_struct(p);
2305 } else if (dropped != p) {
2306 /*
2307 * The new task was inserted, and pushed out a
2308 * different task
2309 */
2310 get_task_struct(p);
2311 put_task_struct(dropped);
2312 }
2313 /*
2314 * Else the new task was newer than anything already in
2315 * the heap and wasn't inserted
2316 */
2317 }
2318 cgroup_iter_end(scan->cg, &it);
2319
2320 if (heap->size) {
2321 for (i = 0; i < heap->size; i++) {
4fe91d51 2322 struct task_struct *q = heap->ptrs[i];
31a7df01 2323 if (i == 0) {
4fe91d51
PJ
2324 latest_time = q->start_time;
2325 latest_task = q;
31a7df01
CW
2326 }
2327 /* Process the task per the caller's callback */
4fe91d51
PJ
2328 scan->process_task(q, scan);
2329 put_task_struct(q);
31a7df01
CW
2330 }
2331 /*
2332 * If we had to process any tasks at all, scan again
2333 * in case some of them were in the middle of forking
2334 * children that didn't get processed.
2335 * Not the most efficient way to do it, but it avoids
2336 * having to take callback_mutex in the fork path
2337 */
2338 goto again;
2339 }
2340 if (heap == &tmp_heap)
2341 heap_free(&tmp_heap);
2342 return 0;
2343}
2344
bbcb81d0
PM
2345/*
2346 * Stuff for reading the 'tasks' file.
2347 *
2348 * Reading this file can return large amounts of data if a cgroup has
2349 * *lots* of attached tasks. So it may need several calls to read(),
2350 * but we cannot guarantee that the information we produce is correct
2351 * unless we produce it entirely atomically.
2352 *
bbcb81d0 2353 */
bbcb81d0
PM
2354
2355/*
2356 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2357 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2358 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2359 * read section, so the css_set can't go away, and is
2360 * immutable after creation.
2361 */
bd89aabc 2362static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0 2363{
e7b80bb6 2364 int n = 0, pid;
817929ec
PM
2365 struct cgroup_iter it;
2366 struct task_struct *tsk;
bd89aabc
PM
2367 cgroup_iter_start(cgrp, &it);
2368 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2369 if (unlikely(n == npids))
2370 break;
e7b80bb6
G
2371 pid = task_pid_vnr(tsk);
2372 if (pid > 0)
2373 pidarray[n++] = pid;
817929ec 2374 }
bd89aabc 2375 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2376 return n;
2377}
2378
846c7bb0 2379/**
a043e3b2 2380 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2381 * @stats: cgroupstats to fill information into
2382 * @dentry: A dentry entry belonging to the cgroup for which stats have
2383 * been requested.
a043e3b2
LZ
2384 *
2385 * Build and fill cgroupstats so that taskstats can export it to user
2386 * space.
846c7bb0
BS
2387 */
2388int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2389{
2390 int ret = -EINVAL;
bd89aabc 2391 struct cgroup *cgrp;
846c7bb0
BS
2392 struct cgroup_iter it;
2393 struct task_struct *tsk;
33d283be 2394
846c7bb0 2395 /*
33d283be
LZ
2396 * Validate dentry by checking the superblock operations,
2397 * and make sure it's a directory.
846c7bb0 2398 */
33d283be
LZ
2399 if (dentry->d_sb->s_op != &cgroup_ops ||
2400 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2401 goto err;
2402
2403 ret = 0;
bd89aabc 2404 cgrp = dentry->d_fsdata;
846c7bb0 2405
bd89aabc
PM
2406 cgroup_iter_start(cgrp, &it);
2407 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2408 switch (tsk->state) {
2409 case TASK_RUNNING:
2410 stats->nr_running++;
2411 break;
2412 case TASK_INTERRUPTIBLE:
2413 stats->nr_sleeping++;
2414 break;
2415 case TASK_UNINTERRUPTIBLE:
2416 stats->nr_uninterruptible++;
2417 break;
2418 case TASK_STOPPED:
2419 stats->nr_stopped++;
2420 break;
2421 default:
2422 if (delayacct_is_task_waiting_on_io(tsk))
2423 stats->nr_io_wait++;
2424 break;
2425 }
2426 }
bd89aabc 2427 cgroup_iter_end(cgrp, &it);
846c7bb0 2428
846c7bb0
BS
2429err:
2430 return ret;
2431}
2432
bbcb81d0
PM
2433static int cmppid(const void *a, const void *b)
2434{
2435 return *(pid_t *)a - *(pid_t *)b;
2436}
2437
8f3ff208 2438
bbcb81d0 2439/*
cc31edce
PM
2440 * seq_file methods for the "tasks" file. The seq_file position is the
2441 * next pid to display; the seq_file iterator is a pointer to the pid
2442 * in the cgroup->tasks_pids array.
bbcb81d0 2443 */
cc31edce
PM
2444
2445static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2446{
cc31edce
PM
2447 /*
2448 * Initially we receive a position value that corresponds to
2449 * one more than the last pid shown (or 0 on the first call or
2450 * after a seek to the start). Use a binary-search to find the
2451 * next pid to display, if any
2452 */
8f3ff208 2453 struct cgroup *cgrp = s->private;
cc31edce
PM
2454 int index = 0, pid = *pos;
2455 int *iter;
2456
2457 down_read(&cgrp->pids_mutex);
2458 if (pid) {
8f3ff208 2459 int end = cgrp->pids_length;
20777766 2460
cc31edce
PM
2461 while (index < end) {
2462 int mid = (index + end) / 2;
8f3ff208 2463 if (cgrp->tasks_pids[mid] == pid) {
cc31edce
PM
2464 index = mid;
2465 break;
8f3ff208 2466 } else if (cgrp->tasks_pids[mid] <= pid)
cc31edce
PM
2467 index = mid + 1;
2468 else
2469 end = mid;
2470 }
2471 }
2472 /* If we're off the end of the array, we're done */
8f3ff208 2473 if (index >= cgrp->pids_length)
cc31edce
PM
2474 return NULL;
2475 /* Update the abstract position to be the actual pid that we found */
8f3ff208 2476 iter = cgrp->tasks_pids + index;
cc31edce
PM
2477 *pos = *iter;
2478 return iter;
2479}
2480
2481static void cgroup_tasks_stop(struct seq_file *s, void *v)
2482{
8f3ff208 2483 struct cgroup *cgrp = s->private;
cc31edce
PM
2484 up_read(&cgrp->pids_mutex);
2485}
2486
2487static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2488{
8f3ff208 2489 struct cgroup *cgrp = s->private;
cc31edce 2490 int *p = v;
8f3ff208 2491 int *end = cgrp->tasks_pids + cgrp->pids_length;
cc31edce
PM
2492
2493 /*
2494 * Advance to the next pid in the array. If this goes off the
2495 * end, we're done
2496 */
2497 p++;
2498 if (p >= end) {
2499 return NULL;
2500 } else {
2501 *pos = *p;
2502 return p;
2503 }
2504}
2505
2506static int cgroup_tasks_show(struct seq_file *s, void *v)
2507{
2508 return seq_printf(s, "%d\n", *(int *)v);
2509}
bbcb81d0 2510
88e9d34c 2511static const struct seq_operations cgroup_tasks_seq_operations = {
cc31edce
PM
2512 .start = cgroup_tasks_start,
2513 .stop = cgroup_tasks_stop,
2514 .next = cgroup_tasks_next,
2515 .show = cgroup_tasks_show,
2516};
2517
8f3ff208 2518static void release_cgroup_pid_array(struct cgroup *cgrp)
cc31edce
PM
2519{
2520 down_write(&cgrp->pids_mutex);
8f3ff208
PM
2521 BUG_ON(!cgrp->pids_use_count);
2522 if (!--cgrp->pids_use_count) {
2523 kfree(cgrp->tasks_pids);
2524 cgrp->tasks_pids = NULL;
2525 cgrp->pids_length = 0;
cc31edce
PM
2526 }
2527 up_write(&cgrp->pids_mutex);
bbcb81d0
PM
2528}
2529
cc31edce
PM
2530static int cgroup_tasks_release(struct inode *inode, struct file *file)
2531{
8f3ff208 2532 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
cc31edce
PM
2533
2534 if (!(file->f_mode & FMODE_READ))
2535 return 0;
2536
8f3ff208 2537 release_cgroup_pid_array(cgrp);
cc31edce
PM
2538 return seq_release(inode, file);
2539}
2540
2541static struct file_operations cgroup_tasks_operations = {
2542 .read = seq_read,
2543 .llseek = seq_lseek,
2544 .write = cgroup_file_write,
2545 .release = cgroup_tasks_release,
2546};
2547
bbcb81d0 2548/*
cc31edce 2549 * Handle an open on 'tasks' file. Prepare an array containing the
bbcb81d0 2550 * process id's of tasks currently attached to the cgroup being opened.
bbcb81d0 2551 */
cc31edce 2552
bbcb81d0
PM
2553static int cgroup_tasks_open(struct inode *unused, struct file *file)
2554{
bd89aabc 2555 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2556 pid_t *pidarray;
2557 int npids;
cc31edce 2558 int retval;
bbcb81d0 2559
cc31edce 2560 /* Nothing to do for write-only files */
bbcb81d0
PM
2561 if (!(file->f_mode & FMODE_READ))
2562 return 0;
2563
bbcb81d0
PM
2564 /*
2565 * If cgroup gets more users after we read count, we won't have
2566 * enough space - tough. This race is indistinguishable to the
2567 * caller from the case that the additional cgroup users didn't
2568 * show up until sometime later on.
2569 */
bd89aabc 2570 npids = cgroup_task_count(cgrp);
cc31edce
PM
2571 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2572 if (!pidarray)
2573 return -ENOMEM;
2574 npids = pid_array_load(pidarray, npids, cgrp);
2575 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
bbcb81d0 2576
cc31edce
PM
2577 /*
2578 * Store the array in the cgroup, freeing the old
2579 * array if necessary
2580 */
2581 down_write(&cgrp->pids_mutex);
8f3ff208
PM
2582 kfree(cgrp->tasks_pids);
2583 cgrp->tasks_pids = pidarray;
2584 cgrp->pids_length = npids;
2585 cgrp->pids_use_count++;
cc31edce
PM
2586 up_write(&cgrp->pids_mutex);
2587
2588 file->f_op = &cgroup_tasks_operations;
2589
2590 retval = seq_open(file, &cgroup_tasks_seq_operations);
2591 if (retval) {
8f3ff208 2592 release_cgroup_pid_array(cgrp);
cc31edce 2593 return retval;
bbcb81d0 2594 }
8f3ff208 2595 ((struct seq_file *)file->private_data)->private = cgrp;
bbcb81d0
PM
2596 return 0;
2597}
2598
bd89aabc 2599static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2600 struct cftype *cft)
2601{
bd89aabc 2602 return notify_on_release(cgrp);
81a6a5cd
PM
2603}
2604
6379c106
PM
2605static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2606 struct cftype *cft,
2607 u64 val)
2608{
2609 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2610 if (val)
2611 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2612 else
2613 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2614 return 0;
2615}
2616
bbcb81d0
PM
2617/*
2618 * for the common functions, 'private' gives the type of file
2619 */
81a6a5cd
PM
2620static struct cftype files[] = {
2621 {
2622 .name = "tasks",
2623 .open = cgroup_tasks_open,
af351026 2624 .write_u64 = cgroup_tasks_write,
81a6a5cd
PM
2625 .release = cgroup_tasks_release,
2626 .private = FILE_TASKLIST,
099fca32 2627 .mode = S_IRUGO | S_IWUSR,
81a6a5cd
PM
2628 },
2629
2630 {
2631 .name = "notify_on_release",
f4c753b7 2632 .read_u64 = cgroup_read_notify_on_release,
6379c106 2633 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd
PM
2634 .private = FILE_NOTIFY_ON_RELEASE,
2635 },
81a6a5cd
PM
2636};
2637
2638static struct cftype cft_release_agent = {
2639 .name = "release_agent",
e788e066
PM
2640 .read_seq_string = cgroup_release_agent_show,
2641 .write_string = cgroup_release_agent_write,
2642 .max_write_len = PATH_MAX,
81a6a5cd 2643 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2644};
2645
bd89aabc 2646static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2647{
2648 int err;
2649 struct cgroup_subsys *ss;
2650
2651 /* First clear out any existing files */
bd89aabc 2652 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2653
bd89aabc 2654 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2655 if (err < 0)
2656 return err;
2657
bd89aabc
PM
2658 if (cgrp == cgrp->top_cgroup) {
2659 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2660 return err;
2661 }
2662
bd89aabc
PM
2663 for_each_subsys(cgrp->root, ss) {
2664 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2665 return err;
2666 }
38460b48
KH
2667 /* This cgroup is ready now */
2668 for_each_subsys(cgrp->root, ss) {
2669 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2670 /*
2671 * Update id->css pointer and make this css visible from
2672 * CSS ID functions. This pointer will be dereferened
2673 * from RCU-read-side without locks.
2674 */
2675 if (css->id)
2676 rcu_assign_pointer(css->id->css, css);
2677 }
ddbcc7e8
PM
2678
2679 return 0;
2680}
2681
2682static void init_cgroup_css(struct cgroup_subsys_state *css,
2683 struct cgroup_subsys *ss,
bd89aabc 2684 struct cgroup *cgrp)
ddbcc7e8 2685{
bd89aabc 2686 css->cgroup = cgrp;
e7c5ec91 2687 atomic_set(&css->refcnt, 1);
ddbcc7e8 2688 css->flags = 0;
38460b48 2689 css->id = NULL;
bd89aabc 2690 if (cgrp == dummytop)
ddbcc7e8 2691 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2692 BUG_ON(cgrp->subsys[ss->subsys_id]);
2693 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2694}
2695
999cd8a4
PM
2696static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2697{
2698 /* We need to take each hierarchy_mutex in a consistent order */
2699 int i;
2700
2701 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2702 struct cgroup_subsys *ss = subsys[i];
2703 if (ss->root == root)
cfebe563 2704 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
2705 }
2706}
2707
2708static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2709{
2710 int i;
2711
2712 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2713 struct cgroup_subsys *ss = subsys[i];
2714 if (ss->root == root)
2715 mutex_unlock(&ss->hierarchy_mutex);
2716 }
2717}
2718
ddbcc7e8 2719/*
a043e3b2
LZ
2720 * cgroup_create - create a cgroup
2721 * @parent: cgroup that will be parent of the new cgroup
2722 * @dentry: dentry of the new cgroup
2723 * @mode: mode to set on new inode
ddbcc7e8 2724 *
a043e3b2 2725 * Must be called with the mutex on the parent inode held
ddbcc7e8 2726 */
ddbcc7e8 2727static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 2728 mode_t mode)
ddbcc7e8 2729{
bd89aabc 2730 struct cgroup *cgrp;
ddbcc7e8
PM
2731 struct cgroupfs_root *root = parent->root;
2732 int err = 0;
2733 struct cgroup_subsys *ss;
2734 struct super_block *sb = root->sb;
2735
bd89aabc
PM
2736 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2737 if (!cgrp)
ddbcc7e8
PM
2738 return -ENOMEM;
2739
2740 /* Grab a reference on the superblock so the hierarchy doesn't
2741 * get deleted on unmount if there are child cgroups. This
2742 * can be done outside cgroup_mutex, since the sb can't
2743 * disappear while someone has an open control file on the
2744 * fs */
2745 atomic_inc(&sb->s_active);
2746
2747 mutex_lock(&cgroup_mutex);
2748
cc31edce 2749 init_cgroup_housekeeping(cgrp);
ddbcc7e8 2750
bd89aabc
PM
2751 cgrp->parent = parent;
2752 cgrp->root = parent->root;
2753 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2754
b6abdb0e
LZ
2755 if (notify_on_release(parent))
2756 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2757
ddbcc7e8 2758 for_each_subsys(root, ss) {
bd89aabc 2759 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2760 if (IS_ERR(css)) {
2761 err = PTR_ERR(css);
2762 goto err_destroy;
2763 }
bd89aabc 2764 init_cgroup_css(css, ss, cgrp);
38460b48
KH
2765 if (ss->use_id)
2766 if (alloc_css_id(ss, parent, cgrp))
2767 goto err_destroy;
2768 /* At error, ->destroy() callback has to free assigned ID. */
ddbcc7e8
PM
2769 }
2770
999cd8a4 2771 cgroup_lock_hierarchy(root);
bd89aabc 2772 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 2773 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2774 root->number_of_cgroups++;
2775
bd89aabc 2776 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2777 if (err < 0)
2778 goto err_remove;
2779
2780 /* The cgroup directory was pre-locked for us */
bd89aabc 2781 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2782
bd89aabc 2783 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2784 /* If err < 0, we have a half-filled directory - oh well ;) */
2785
2786 mutex_unlock(&cgroup_mutex);
bd89aabc 2787 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2788
2789 return 0;
2790
2791 err_remove:
2792
baef99a0 2793 cgroup_lock_hierarchy(root);
bd89aabc 2794 list_del(&cgrp->sibling);
baef99a0 2795 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2796 root->number_of_cgroups--;
2797
2798 err_destroy:
2799
2800 for_each_subsys(root, ss) {
bd89aabc
PM
2801 if (cgrp->subsys[ss->subsys_id])
2802 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2803 }
2804
2805 mutex_unlock(&cgroup_mutex);
2806
2807 /* Release the reference count that we took on the superblock */
2808 deactivate_super(sb);
2809
bd89aabc 2810 kfree(cgrp);
ddbcc7e8
PM
2811 return err;
2812}
2813
2814static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2815{
2816 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2817
2818 /* the vfs holds inode->i_mutex already */
2819 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2820}
2821
55b6fd01 2822static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2823{
2824 /* Check the reference count on each subsystem. Since we
2825 * already established that there are no tasks in the
e7c5ec91 2826 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
2827 * be no outstanding references, so the subsystem is safe to
2828 * destroy. We scan across all subsystems rather than using
2829 * the per-hierarchy linked list of mounted subsystems since
2830 * we can be called via check_for_release() with no
2831 * synchronization other than RCU, and the subsystem linked
2832 * list isn't RCU-safe */
2833 int i;
2834 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2835 struct cgroup_subsys *ss = subsys[i];
2836 struct cgroup_subsys_state *css;
2837 /* Skip subsystems not in this hierarchy */
bd89aabc 2838 if (ss->root != cgrp->root)
81a6a5cd 2839 continue;
bd89aabc 2840 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2841 /* When called from check_for_release() it's possible
2842 * that by this point the cgroup has been removed
2843 * and the css deleted. But a false-positive doesn't
2844 * matter, since it can only happen if the cgroup
2845 * has been deleted and hence no longer needs the
2846 * release agent to be called anyway. */
e7c5ec91 2847 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 2848 return 1;
81a6a5cd
PM
2849 }
2850 return 0;
2851}
2852
e7c5ec91
PM
2853/*
2854 * Atomically mark all (or else none) of the cgroup's CSS objects as
2855 * CSS_REMOVED. Return true on success, or false if the cgroup has
2856 * busy subsystems. Call with cgroup_mutex held
2857 */
2858
2859static int cgroup_clear_css_refs(struct cgroup *cgrp)
2860{
2861 struct cgroup_subsys *ss;
2862 unsigned long flags;
2863 bool failed = false;
2864 local_irq_save(flags);
2865 for_each_subsys(cgrp->root, ss) {
2866 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2867 int refcnt;
804b3c28 2868 while (1) {
e7c5ec91
PM
2869 /* We can only remove a CSS with a refcnt==1 */
2870 refcnt = atomic_read(&css->refcnt);
2871 if (refcnt > 1) {
2872 failed = true;
2873 goto done;
2874 }
2875 BUG_ON(!refcnt);
2876 /*
2877 * Drop the refcnt to 0 while we check other
2878 * subsystems. This will cause any racing
2879 * css_tryget() to spin until we set the
2880 * CSS_REMOVED bits or abort
2881 */
804b3c28
PM
2882 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2883 break;
2884 cpu_relax();
2885 }
e7c5ec91
PM
2886 }
2887 done:
2888 for_each_subsys(cgrp->root, ss) {
2889 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2890 if (failed) {
2891 /*
2892 * Restore old refcnt if we previously managed
2893 * to clear it from 1 to 0
2894 */
2895 if (!atomic_read(&css->refcnt))
2896 atomic_set(&css->refcnt, 1);
2897 } else {
2898 /* Commit the fact that the CSS is removed */
2899 set_bit(CSS_REMOVED, &css->flags);
2900 }
2901 }
2902 local_irq_restore(flags);
2903 return !failed;
2904}
2905
ddbcc7e8
PM
2906static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2907{
bd89aabc 2908 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2909 struct dentry *d;
2910 struct cgroup *parent;
ec64f515
KH
2911 DEFINE_WAIT(wait);
2912 int ret;
ddbcc7e8
PM
2913
2914 /* the vfs holds both inode->i_mutex already */
ec64f515 2915again:
ddbcc7e8 2916 mutex_lock(&cgroup_mutex);
bd89aabc 2917 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2918 mutex_unlock(&cgroup_mutex);
2919 return -EBUSY;
2920 }
bd89aabc 2921 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2922 mutex_unlock(&cgroup_mutex);
2923 return -EBUSY;
2924 }
3fa59dfb 2925 mutex_unlock(&cgroup_mutex);
a043e3b2 2926
88703267
KH
2927 /*
2928 * In general, subsystem has no css->refcnt after pre_destroy(). But
2929 * in racy cases, subsystem may have to get css->refcnt after
2930 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
2931 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
2932 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
2933 * and subsystem's reference count handling. Please see css_get/put
2934 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
2935 */
2936 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2937
4fca88c8 2938 /*
a043e3b2
LZ
2939 * Call pre_destroy handlers of subsys. Notify subsystems
2940 * that rmdir() request comes.
4fca88c8 2941 */
ec64f515 2942 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
2943 if (ret) {
2944 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 2945 return ret;
88703267 2946 }
ddbcc7e8 2947
3fa59dfb
KH
2948 mutex_lock(&cgroup_mutex);
2949 parent = cgrp->parent;
ec64f515 2950 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 2951 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
2952 mutex_unlock(&cgroup_mutex);
2953 return -EBUSY;
2954 }
ec64f515 2955 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
2956 if (!cgroup_clear_css_refs(cgrp)) {
2957 mutex_unlock(&cgroup_mutex);
88703267
KH
2958 /*
2959 * Because someone may call cgroup_wakeup_rmdir_waiter() before
2960 * prepare_to_wait(), we need to check this flag.
2961 */
2962 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
2963 schedule();
ec64f515
KH
2964 finish_wait(&cgroup_rmdir_waitq, &wait);
2965 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2966 if (signal_pending(current))
2967 return -EINTR;
2968 goto again;
2969 }
2970 /* NO css_tryget() can success after here. */
2971 finish_wait(&cgroup_rmdir_waitq, &wait);
2972 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 2973
81a6a5cd 2974 spin_lock(&release_list_lock);
bd89aabc
PM
2975 set_bit(CGRP_REMOVED, &cgrp->flags);
2976 if (!list_empty(&cgrp->release_list))
2977 list_del(&cgrp->release_list);
81a6a5cd 2978 spin_unlock(&release_list_lock);
999cd8a4
PM
2979
2980 cgroup_lock_hierarchy(cgrp->root);
2981 /* delete this cgroup from parent->children */
bd89aabc 2982 list_del(&cgrp->sibling);
999cd8a4
PM
2983 cgroup_unlock_hierarchy(cgrp->root);
2984
bd89aabc
PM
2985 spin_lock(&cgrp->dentry->d_lock);
2986 d = dget(cgrp->dentry);
ddbcc7e8
PM
2987 spin_unlock(&d->d_lock);
2988
2989 cgroup_d_remove_dir(d);
2990 dput(d);
ddbcc7e8 2991
bd89aabc 2992 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2993 check_for_release(parent);
2994
ddbcc7e8 2995 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2996 return 0;
2997}
2998
06a11920 2999static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3000{
ddbcc7e8 3001 struct cgroup_subsys_state *css;
cfe36bde
DC
3002
3003 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
3004
3005 /* Create the top cgroup state for this subsystem */
33a68ac1 3006 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
3007 ss->root = &rootnode;
3008 css = ss->create(ss, dummytop);
3009 /* We don't handle early failures gracefully */
3010 BUG_ON(IS_ERR(css));
3011 init_cgroup_css(css, ss, dummytop);
3012
e8d55fde 3013 /* Update the init_css_set to contain a subsys
817929ec 3014 * pointer to this state - since the subsystem is
e8d55fde
LZ
3015 * newly registered, all tasks and hence the
3016 * init_css_set is in the subsystem's top cgroup. */
3017 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
3018
3019 need_forkexit_callback |= ss->fork || ss->exit;
3020
e8d55fde
LZ
3021 /* At system boot, before all subsystems have been
3022 * registered, no tasks have been forked, so we don't
3023 * need to invoke fork callbacks here. */
3024 BUG_ON(!list_empty(&init_task.tasks));
3025
999cd8a4 3026 mutex_init(&ss->hierarchy_mutex);
cfebe563 3027 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8
PM
3028 ss->active = 1;
3029}
3030
3031/**
a043e3b2
LZ
3032 * cgroup_init_early - cgroup initialization at system boot
3033 *
3034 * Initialize cgroups at system boot, and initialize any
3035 * subsystems that request early init.
ddbcc7e8
PM
3036 */
3037int __init cgroup_init_early(void)
3038{
3039 int i;
146aa1bd 3040 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
3041 INIT_LIST_HEAD(&init_css_set.cg_links);
3042 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3043 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3044 css_set_count = 1;
ddbcc7e8 3045 init_cgroup_root(&rootnode);
817929ec
PM
3046 root_count = 1;
3047 init_task.cgroups = &init_css_set;
3048
3049 init_css_set_link.cg = &init_css_set;
7717f7ba 3050 init_css_set_link.cgrp = dummytop;
bd89aabc 3051 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
3052 &rootnode.top_cgroup.css_sets);
3053 list_add(&init_css_set_link.cg_link_list,
3054 &init_css_set.cg_links);
ddbcc7e8 3055
472b1053
LZ
3056 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3057 INIT_HLIST_HEAD(&css_set_table[i]);
3058
ddbcc7e8
PM
3059 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3060 struct cgroup_subsys *ss = subsys[i];
3061
3062 BUG_ON(!ss->name);
3063 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3064 BUG_ON(!ss->create);
3065 BUG_ON(!ss->destroy);
3066 if (ss->subsys_id != i) {
cfe36bde 3067 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
3068 ss->name, ss->subsys_id);
3069 BUG();
3070 }
3071
3072 if (ss->early_init)
3073 cgroup_init_subsys(ss);
3074 }
3075 return 0;
3076}
3077
3078/**
a043e3b2
LZ
3079 * cgroup_init - cgroup initialization
3080 *
3081 * Register cgroup filesystem and /proc file, and initialize
3082 * any subsystems that didn't request early init.
ddbcc7e8
PM
3083 */
3084int __init cgroup_init(void)
3085{
3086 int err;
3087 int i;
472b1053 3088 struct hlist_head *hhead;
a424316c
PM
3089
3090 err = bdi_init(&cgroup_backing_dev_info);
3091 if (err)
3092 return err;
ddbcc7e8
PM
3093
3094 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3095 struct cgroup_subsys *ss = subsys[i];
3096 if (!ss->early_init)
3097 cgroup_init_subsys(ss);
38460b48
KH
3098 if (ss->use_id)
3099 cgroup_subsys_init_idr(ss);
ddbcc7e8
PM
3100 }
3101
472b1053
LZ
3102 /* Add init_css_set to the hash table */
3103 hhead = css_set_hash(init_css_set.subsys);
3104 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 3105 BUG_ON(!init_root_id(&rootnode));
ddbcc7e8
PM
3106 err = register_filesystem(&cgroup_fs_type);
3107 if (err < 0)
3108 goto out;
3109
46ae220b 3110 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 3111
ddbcc7e8 3112out:
a424316c
PM
3113 if (err)
3114 bdi_destroy(&cgroup_backing_dev_info);
3115
ddbcc7e8
PM
3116 return err;
3117}
b4f48b63 3118
a424316c
PM
3119/*
3120 * proc_cgroup_show()
3121 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3122 * - Used for /proc/<pid>/cgroup.
3123 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3124 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 3125 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
3126 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3127 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3128 * cgroup to top_cgroup.
3129 */
3130
3131/* TODO: Use a proper seq_file iterator */
3132static int proc_cgroup_show(struct seq_file *m, void *v)
3133{
3134 struct pid *pid;
3135 struct task_struct *tsk;
3136 char *buf;
3137 int retval;
3138 struct cgroupfs_root *root;
3139
3140 retval = -ENOMEM;
3141 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3142 if (!buf)
3143 goto out;
3144
3145 retval = -ESRCH;
3146 pid = m->private;
3147 tsk = get_pid_task(pid, PIDTYPE_PID);
3148 if (!tsk)
3149 goto out_free;
3150
3151 retval = 0;
3152
3153 mutex_lock(&cgroup_mutex);
3154
e5f6a860 3155 for_each_active_root(root) {
a424316c 3156 struct cgroup_subsys *ss;
bd89aabc 3157 struct cgroup *cgrp;
a424316c
PM
3158 int count = 0;
3159
2c6ab6d2 3160 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
3161 for_each_subsys(root, ss)
3162 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
3163 if (strlen(root->name))
3164 seq_printf(m, "%sname=%s", count ? "," : "",
3165 root->name);
a424316c 3166 seq_putc(m, ':');
7717f7ba 3167 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 3168 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
3169 if (retval < 0)
3170 goto out_unlock;
3171 seq_puts(m, buf);
3172 seq_putc(m, '\n');
3173 }
3174
3175out_unlock:
3176 mutex_unlock(&cgroup_mutex);
3177 put_task_struct(tsk);
3178out_free:
3179 kfree(buf);
3180out:
3181 return retval;
3182}
3183
3184static int cgroup_open(struct inode *inode, struct file *file)
3185{
3186 struct pid *pid = PROC_I(inode)->pid;
3187 return single_open(file, proc_cgroup_show, pid);
3188}
3189
3190struct file_operations proc_cgroup_operations = {
3191 .open = cgroup_open,
3192 .read = seq_read,
3193 .llseek = seq_lseek,
3194 .release = single_release,
3195};
3196
3197/* Display information about each subsystem and each hierarchy */
3198static int proc_cgroupstats_show(struct seq_file *m, void *v)
3199{
3200 int i;
a424316c 3201
8bab8dde 3202 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 3203 mutex_lock(&cgroup_mutex);
a424316c
PM
3204 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3205 struct cgroup_subsys *ss = subsys[i];
2c6ab6d2
PM
3206 seq_printf(m, "%s\t%d\t%d\t%d\n",
3207 ss->name, ss->root->hierarchy_id,
8bab8dde 3208 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
3209 }
3210 mutex_unlock(&cgroup_mutex);
3211 return 0;
3212}
3213
3214static int cgroupstats_open(struct inode *inode, struct file *file)
3215{
9dce07f1 3216 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
3217}
3218
3219static struct file_operations proc_cgroupstats_operations = {
3220 .open = cgroupstats_open,
3221 .read = seq_read,
3222 .llseek = seq_lseek,
3223 .release = single_release,
3224};
3225
b4f48b63
PM
3226/**
3227 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 3228 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
3229 *
3230 * Description: A task inherits its parent's cgroup at fork().
3231 *
3232 * A pointer to the shared css_set was automatically copied in
3233 * fork.c by dup_task_struct(). However, we ignore that copy, since
3234 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 3235 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
3236 * have already changed current->cgroups, allowing the previously
3237 * referenced cgroup group to be removed and freed.
b4f48b63
PM
3238 *
3239 * At the point that cgroup_fork() is called, 'current' is the parent
3240 * task, and the passed argument 'child' points to the child task.
3241 */
3242void cgroup_fork(struct task_struct *child)
3243{
817929ec
PM
3244 task_lock(current);
3245 child->cgroups = current->cgroups;
3246 get_css_set(child->cgroups);
3247 task_unlock(current);
3248 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
3249}
3250
3251/**
a043e3b2
LZ
3252 * cgroup_fork_callbacks - run fork callbacks
3253 * @child: the new task
3254 *
3255 * Called on a new task very soon before adding it to the
3256 * tasklist. No need to take any locks since no-one can
3257 * be operating on this task.
b4f48b63
PM
3258 */
3259void cgroup_fork_callbacks(struct task_struct *child)
3260{
3261 if (need_forkexit_callback) {
3262 int i;
3263 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3264 struct cgroup_subsys *ss = subsys[i];
3265 if (ss->fork)
3266 ss->fork(ss, child);
3267 }
3268 }
3269}
3270
817929ec 3271/**
a043e3b2
LZ
3272 * cgroup_post_fork - called on a new task after adding it to the task list
3273 * @child: the task in question
3274 *
3275 * Adds the task to the list running through its css_set if necessary.
3276 * Has to be after the task is visible on the task list in case we race
3277 * with the first call to cgroup_iter_start() - to guarantee that the
3278 * new task ends up on its list.
3279 */
817929ec
PM
3280void cgroup_post_fork(struct task_struct *child)
3281{
3282 if (use_task_css_set_links) {
3283 write_lock(&css_set_lock);
b12b533f 3284 task_lock(child);
817929ec
PM
3285 if (list_empty(&child->cg_list))
3286 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 3287 task_unlock(child);
817929ec
PM
3288 write_unlock(&css_set_lock);
3289 }
3290}
b4f48b63
PM
3291/**
3292 * cgroup_exit - detach cgroup from exiting task
3293 * @tsk: pointer to task_struct of exiting process
a043e3b2 3294 * @run_callback: run exit callbacks?
b4f48b63
PM
3295 *
3296 * Description: Detach cgroup from @tsk and release it.
3297 *
3298 * Note that cgroups marked notify_on_release force every task in
3299 * them to take the global cgroup_mutex mutex when exiting.
3300 * This could impact scaling on very large systems. Be reluctant to
3301 * use notify_on_release cgroups where very high task exit scaling
3302 * is required on large systems.
3303 *
3304 * the_top_cgroup_hack:
3305 *
3306 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3307 *
3308 * We call cgroup_exit() while the task is still competent to
3309 * handle notify_on_release(), then leave the task attached to the
3310 * root cgroup in each hierarchy for the remainder of its exit.
3311 *
3312 * To do this properly, we would increment the reference count on
3313 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3314 * code we would add a second cgroup function call, to drop that
3315 * reference. This would just create an unnecessary hot spot on
3316 * the top_cgroup reference count, to no avail.
3317 *
3318 * Normally, holding a reference to a cgroup without bumping its
3319 * count is unsafe. The cgroup could go away, or someone could
3320 * attach us to a different cgroup, decrementing the count on
3321 * the first cgroup that we never incremented. But in this case,
3322 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
3323 * which wards off any cgroup_attach_task() attempts, or task is a failed
3324 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
3325 */
3326void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3327{
3328 int i;
817929ec 3329 struct css_set *cg;
b4f48b63
PM
3330
3331 if (run_callbacks && need_forkexit_callback) {
3332 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3333 struct cgroup_subsys *ss = subsys[i];
3334 if (ss->exit)
3335 ss->exit(ss, tsk);
3336 }
3337 }
817929ec
PM
3338
3339 /*
3340 * Unlink from the css_set task list if necessary.
3341 * Optimistically check cg_list before taking
3342 * css_set_lock
3343 */
3344 if (!list_empty(&tsk->cg_list)) {
3345 write_lock(&css_set_lock);
3346 if (!list_empty(&tsk->cg_list))
3347 list_del(&tsk->cg_list);
3348 write_unlock(&css_set_lock);
3349 }
3350
b4f48b63
PM
3351 /* Reassign the task to the init_css_set. */
3352 task_lock(tsk);
817929ec
PM
3353 cg = tsk->cgroups;
3354 tsk->cgroups = &init_css_set;
b4f48b63 3355 task_unlock(tsk);
817929ec 3356 if (cg)
81a6a5cd 3357 put_css_set_taskexit(cg);
b4f48b63 3358}
697f4161
PM
3359
3360/**
a043e3b2
LZ
3361 * cgroup_clone - clone the cgroup the given subsystem is attached to
3362 * @tsk: the task to be moved
3363 * @subsys: the given subsystem
e885dcde 3364 * @nodename: the name for the new cgroup
a043e3b2
LZ
3365 *
3366 * Duplicate the current cgroup in the hierarchy that the given
3367 * subsystem is attached to, and move this task into the new
3368 * child.
697f4161 3369 */
e885dcde
SH
3370int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3371 char *nodename)
697f4161
PM
3372{
3373 struct dentry *dentry;
3374 int ret = 0;
697f4161
PM
3375 struct cgroup *parent, *child;
3376 struct inode *inode;
3377 struct css_set *cg;
3378 struct cgroupfs_root *root;
3379 struct cgroup_subsys *ss;
3380
3381 /* We shouldn't be called by an unregistered subsystem */
3382 BUG_ON(!subsys->active);
3383
3384 /* First figure out what hierarchy and cgroup we're dealing
3385 * with, and pin them so we can drop cgroup_mutex */
3386 mutex_lock(&cgroup_mutex);
3387 again:
3388 root = subsys->root;
3389 if (root == &rootnode) {
697f4161
PM
3390 mutex_unlock(&cgroup_mutex);
3391 return 0;
3392 }
697f4161 3393
697f4161 3394 /* Pin the hierarchy */
1404f065 3395 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
3396 /* We race with the final deactivate_super() */
3397 mutex_unlock(&cgroup_mutex);
3398 return 0;
3399 }
697f4161 3400
817929ec 3401 /* Keep the cgroup alive */
1404f065
LZ
3402 task_lock(tsk);
3403 parent = task_cgroup(tsk, subsys->subsys_id);
3404 cg = tsk->cgroups;
817929ec 3405 get_css_set(cg);
104cbd55 3406 task_unlock(tsk);
1404f065 3407
697f4161
PM
3408 mutex_unlock(&cgroup_mutex);
3409
3410 /* Now do the VFS work to create a cgroup */
3411 inode = parent->dentry->d_inode;
3412
3413 /* Hold the parent directory mutex across this operation to
3414 * stop anyone else deleting the new cgroup */
3415 mutex_lock(&inode->i_mutex);
3416 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3417 if (IS_ERR(dentry)) {
3418 printk(KERN_INFO
cfe36bde 3419 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
3420 PTR_ERR(dentry));
3421 ret = PTR_ERR(dentry);
3422 goto out_release;
3423 }
3424
3425 /* Create the cgroup directory, which also creates the cgroup */
75139b82 3426 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 3427 child = __d_cgrp(dentry);
697f4161
PM
3428 dput(dentry);
3429 if (ret) {
3430 printk(KERN_INFO
3431 "Failed to create cgroup %s: %d\n", nodename,
3432 ret);
3433 goto out_release;
3434 }
3435
697f4161
PM
3436 /* The cgroup now exists. Retake cgroup_mutex and check
3437 * that we're still in the same state that we thought we
3438 * were. */
3439 mutex_lock(&cgroup_mutex);
3440 if ((root != subsys->root) ||
3441 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3442 /* Aargh, we raced ... */
3443 mutex_unlock(&inode->i_mutex);
817929ec 3444 put_css_set(cg);
697f4161 3445
1404f065 3446 deactivate_super(root->sb);
697f4161
PM
3447 /* The cgroup is still accessible in the VFS, but
3448 * we're not going to try to rmdir() it at this
3449 * point. */
3450 printk(KERN_INFO
3451 "Race in cgroup_clone() - leaking cgroup %s\n",
3452 nodename);
3453 goto again;
3454 }
3455
3456 /* do any required auto-setup */
3457 for_each_subsys(root, ss) {
3458 if (ss->post_clone)
3459 ss->post_clone(ss, child);
3460 }
3461
3462 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 3463 ret = cgroup_attach_task(child, tsk);
697f4161
PM
3464 mutex_unlock(&cgroup_mutex);
3465
3466 out_release:
3467 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
3468
3469 mutex_lock(&cgroup_mutex);
817929ec 3470 put_css_set(cg);
81a6a5cd 3471 mutex_unlock(&cgroup_mutex);
1404f065 3472 deactivate_super(root->sb);
697f4161
PM
3473 return ret;
3474}
3475
a043e3b2 3476/**
313e924c 3477 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 3478 * @cgrp: the cgroup in question
313e924c 3479 * @task: the task in question
a043e3b2 3480 *
313e924c
GN
3481 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3482 * hierarchy.
697f4161
PM
3483 *
3484 * If we are sending in dummytop, then presumably we are creating
3485 * the top cgroup in the subsystem.
3486 *
3487 * Called only by the ns (nsproxy) cgroup.
3488 */
313e924c 3489int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
3490{
3491 int ret;
3492 struct cgroup *target;
697f4161 3493
bd89aabc 3494 if (cgrp == dummytop)
697f4161
PM
3495 return 1;
3496
7717f7ba 3497 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
3498 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3499 cgrp = cgrp->parent;
3500 ret = (cgrp == target);
697f4161
PM
3501 return ret;
3502}
81a6a5cd 3503
bd89aabc 3504static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3505{
3506 /* All of these checks rely on RCU to keep the cgroup
3507 * structure alive */
bd89aabc
PM
3508 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3509 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3510 /* Control Group is currently removeable. If it's not
3511 * already queued for a userspace notification, queue
3512 * it now */
3513 int need_schedule_work = 0;
3514 spin_lock(&release_list_lock);
bd89aabc
PM
3515 if (!cgroup_is_removed(cgrp) &&
3516 list_empty(&cgrp->release_list)) {
3517 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3518 need_schedule_work = 1;
3519 }
3520 spin_unlock(&release_list_lock);
3521 if (need_schedule_work)
3522 schedule_work(&release_agent_work);
3523 }
3524}
3525
3526void __css_put(struct cgroup_subsys_state *css)
3527{
bd89aabc 3528 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3529 rcu_read_lock();
ec64f515
KH
3530 if (atomic_dec_return(&css->refcnt) == 1) {
3531 if (notify_on_release(cgrp)) {
3532 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3533 check_for_release(cgrp);
3534 }
88703267 3535 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
3536 }
3537 rcu_read_unlock();
3538}
3539
3540/*
3541 * Notify userspace when a cgroup is released, by running the
3542 * configured release agent with the name of the cgroup (path
3543 * relative to the root of cgroup file system) as the argument.
3544 *
3545 * Most likely, this user command will try to rmdir this cgroup.
3546 *
3547 * This races with the possibility that some other task will be
3548 * attached to this cgroup before it is removed, or that some other
3549 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3550 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3551 * unused, and this cgroup will be reprieved from its death sentence,
3552 * to continue to serve a useful existence. Next time it's released,
3553 * we will get notified again, if it still has 'notify_on_release' set.
3554 *
3555 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3556 * means only wait until the task is successfully execve()'d. The
3557 * separate release agent task is forked by call_usermodehelper(),
3558 * then control in this thread returns here, without waiting for the
3559 * release agent task. We don't bother to wait because the caller of
3560 * this routine has no use for the exit status of the release agent
3561 * task, so no sense holding our caller up for that.
81a6a5cd 3562 */
81a6a5cd
PM
3563static void cgroup_release_agent(struct work_struct *work)
3564{
3565 BUG_ON(work != &release_agent_work);
3566 mutex_lock(&cgroup_mutex);
3567 spin_lock(&release_list_lock);
3568 while (!list_empty(&release_list)) {
3569 char *argv[3], *envp[3];
3570 int i;
e788e066 3571 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3572 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3573 struct cgroup,
3574 release_list);
bd89aabc 3575 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3576 spin_unlock(&release_list_lock);
3577 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3578 if (!pathbuf)
3579 goto continue_free;
3580 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3581 goto continue_free;
3582 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3583 if (!agentbuf)
3584 goto continue_free;
81a6a5cd
PM
3585
3586 i = 0;
e788e066
PM
3587 argv[i++] = agentbuf;
3588 argv[i++] = pathbuf;
81a6a5cd
PM
3589 argv[i] = NULL;
3590
3591 i = 0;
3592 /* minimal command environment */
3593 envp[i++] = "HOME=/";
3594 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3595 envp[i] = NULL;
3596
3597 /* Drop the lock while we invoke the usermode helper,
3598 * since the exec could involve hitting disk and hence
3599 * be a slow process */
3600 mutex_unlock(&cgroup_mutex);
3601 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3602 mutex_lock(&cgroup_mutex);
e788e066
PM
3603 continue_free:
3604 kfree(pathbuf);
3605 kfree(agentbuf);
81a6a5cd
PM
3606 spin_lock(&release_list_lock);
3607 }
3608 spin_unlock(&release_list_lock);
3609 mutex_unlock(&cgroup_mutex);
3610}
8bab8dde
PM
3611
3612static int __init cgroup_disable(char *str)
3613{
3614 int i;
3615 char *token;
3616
3617 while ((token = strsep(&str, ",")) != NULL) {
3618 if (!*token)
3619 continue;
3620
3621 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3622 struct cgroup_subsys *ss = subsys[i];
3623
3624 if (!strcmp(token, ss->name)) {
3625 ss->disabled = 1;
3626 printk(KERN_INFO "Disabling %s control group"
3627 " subsystem\n", ss->name);
3628 break;
3629 }
3630 }
3631 }
3632 return 1;
3633}
3634__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
3635
3636/*
3637 * Functons for CSS ID.
3638 */
3639
3640/*
3641 *To get ID other than 0, this should be called when !cgroup_is_removed().
3642 */
3643unsigned short css_id(struct cgroup_subsys_state *css)
3644{
3645 struct css_id *cssid = rcu_dereference(css->id);
3646
3647 if (cssid)
3648 return cssid->id;
3649 return 0;
3650}
3651
3652unsigned short css_depth(struct cgroup_subsys_state *css)
3653{
3654 struct css_id *cssid = rcu_dereference(css->id);
3655
3656 if (cssid)
3657 return cssid->depth;
3658 return 0;
3659}
3660
3661bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 3662 const struct cgroup_subsys_state *root)
38460b48
KH
3663{
3664 struct css_id *child_id = rcu_dereference(child->id);
3665 struct css_id *root_id = rcu_dereference(root->id);
3666
3667 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3668 return false;
3669 return child_id->stack[root_id->depth] == root_id->id;
3670}
3671
3672static void __free_css_id_cb(struct rcu_head *head)
3673{
3674 struct css_id *id;
3675
3676 id = container_of(head, struct css_id, rcu_head);
3677 kfree(id);
3678}
3679
3680void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3681{
3682 struct css_id *id = css->id;
3683 /* When this is called before css_id initialization, id can be NULL */
3684 if (!id)
3685 return;
3686
3687 BUG_ON(!ss->use_id);
3688
3689 rcu_assign_pointer(id->css, NULL);
3690 rcu_assign_pointer(css->id, NULL);
3691 spin_lock(&ss->id_lock);
3692 idr_remove(&ss->idr, id->id);
3693 spin_unlock(&ss->id_lock);
3694 call_rcu(&id->rcu_head, __free_css_id_cb);
3695}
3696
3697/*
3698 * This is called by init or create(). Then, calls to this function are
3699 * always serialized (By cgroup_mutex() at create()).
3700 */
3701
3702static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3703{
3704 struct css_id *newid;
3705 int myid, error, size;
3706
3707 BUG_ON(!ss->use_id);
3708
3709 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3710 newid = kzalloc(size, GFP_KERNEL);
3711 if (!newid)
3712 return ERR_PTR(-ENOMEM);
3713 /* get id */
3714 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3715 error = -ENOMEM;
3716 goto err_out;
3717 }
3718 spin_lock(&ss->id_lock);
3719 /* Don't use 0. allocates an ID of 1-65535 */
3720 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3721 spin_unlock(&ss->id_lock);
3722
3723 /* Returns error when there are no free spaces for new ID.*/
3724 if (error) {
3725 error = -ENOSPC;
3726 goto err_out;
3727 }
3728 if (myid > CSS_ID_MAX)
3729 goto remove_idr;
3730
3731 newid->id = myid;
3732 newid->depth = depth;
3733 return newid;
3734remove_idr:
3735 error = -ENOSPC;
3736 spin_lock(&ss->id_lock);
3737 idr_remove(&ss->idr, myid);
3738 spin_unlock(&ss->id_lock);
3739err_out:
3740 kfree(newid);
3741 return ERR_PTR(error);
3742
3743}
3744
3745static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3746{
3747 struct css_id *newid;
3748 struct cgroup_subsys_state *rootcss;
3749
3750 spin_lock_init(&ss->id_lock);
3751 idr_init(&ss->idr);
3752
3753 rootcss = init_css_set.subsys[ss->subsys_id];
3754 newid = get_new_cssid(ss, 0);
3755 if (IS_ERR(newid))
3756 return PTR_ERR(newid);
3757
3758 newid->stack[0] = newid->id;
3759 newid->css = rootcss;
3760 rootcss->id = newid;
3761 return 0;
3762}
3763
3764static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3765 struct cgroup *child)
3766{
3767 int subsys_id, i, depth = 0;
3768 struct cgroup_subsys_state *parent_css, *child_css;
3769 struct css_id *child_id, *parent_id = NULL;
3770
3771 subsys_id = ss->subsys_id;
3772 parent_css = parent->subsys[subsys_id];
3773 child_css = child->subsys[subsys_id];
3774 depth = css_depth(parent_css) + 1;
3775 parent_id = parent_css->id;
3776
3777 child_id = get_new_cssid(ss, depth);
3778 if (IS_ERR(child_id))
3779 return PTR_ERR(child_id);
3780
3781 for (i = 0; i < depth; i++)
3782 child_id->stack[i] = parent_id->stack[i];
3783 child_id->stack[depth] = child_id->id;
3784 /*
3785 * child_id->css pointer will be set after this cgroup is available
3786 * see cgroup_populate_dir()
3787 */
3788 rcu_assign_pointer(child_css->id, child_id);
3789
3790 return 0;
3791}
3792
3793/**
3794 * css_lookup - lookup css by id
3795 * @ss: cgroup subsys to be looked into.
3796 * @id: the id
3797 *
3798 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3799 * NULL if not. Should be called under rcu_read_lock()
3800 */
3801struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3802{
3803 struct css_id *cssid = NULL;
3804
3805 BUG_ON(!ss->use_id);
3806 cssid = idr_find(&ss->idr, id);
3807
3808 if (unlikely(!cssid))
3809 return NULL;
3810
3811 return rcu_dereference(cssid->css);
3812}
3813
3814/**
3815 * css_get_next - lookup next cgroup under specified hierarchy.
3816 * @ss: pointer to subsystem
3817 * @id: current position of iteration.
3818 * @root: pointer to css. search tree under this.
3819 * @foundid: position of found object.
3820 *
3821 * Search next css under the specified hierarchy of rootid. Calling under
3822 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3823 */
3824struct cgroup_subsys_state *
3825css_get_next(struct cgroup_subsys *ss, int id,
3826 struct cgroup_subsys_state *root, int *foundid)
3827{
3828 struct cgroup_subsys_state *ret = NULL;
3829 struct css_id *tmp;
3830 int tmpid;
3831 int rootid = css_id(root);
3832 int depth = css_depth(root);
3833
3834 if (!rootid)
3835 return NULL;
3836
3837 BUG_ON(!ss->use_id);
3838 /* fill start point for scan */
3839 tmpid = id;
3840 while (1) {
3841 /*
3842 * scan next entry from bitmap(tree), tmpid is updated after
3843 * idr_get_next().
3844 */
3845 spin_lock(&ss->id_lock);
3846 tmp = idr_get_next(&ss->idr, &tmpid);
3847 spin_unlock(&ss->id_lock);
3848
3849 if (!tmp)
3850 break;
3851 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3852 ret = rcu_dereference(tmp->css);
3853 if (ret) {
3854 *foundid = tmpid;
3855 break;
3856 }
3857 }
3858 /* continue to scan from next id */
3859 tmpid = tmpid + 1;
3860 }
3861 return ret;
3862}
3863
fe693435
PM
3864#ifdef CONFIG_CGROUP_DEBUG
3865static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
3866 struct cgroup *cont)
3867{
3868 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
3869
3870 if (!css)
3871 return ERR_PTR(-ENOMEM);
3872
3873 return css;
3874}
3875
3876static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
3877{
3878 kfree(cont->subsys[debug_subsys_id]);
3879}
3880
3881static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
3882{
3883 return atomic_read(&cont->count);
3884}
3885
3886static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
3887{
3888 return cgroup_task_count(cont);
3889}
3890
3891static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
3892{
3893 return (u64)(unsigned long)current->cgroups;
3894}
3895
3896static u64 current_css_set_refcount_read(struct cgroup *cont,
3897 struct cftype *cft)
3898{
3899 u64 count;
3900
3901 rcu_read_lock();
3902 count = atomic_read(&current->cgroups->refcount);
3903 rcu_read_unlock();
3904 return count;
3905}
3906
7717f7ba
PM
3907static int current_css_set_cg_links_read(struct cgroup *cont,
3908 struct cftype *cft,
3909 struct seq_file *seq)
3910{
3911 struct cg_cgroup_link *link;
3912 struct css_set *cg;
3913
3914 read_lock(&css_set_lock);
3915 rcu_read_lock();
3916 cg = rcu_dereference(current->cgroups);
3917 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
3918 struct cgroup *c = link->cgrp;
3919 const char *name;
3920
3921 if (c->dentry)
3922 name = c->dentry->d_name.name;
3923 else
3924 name = "?";
2c6ab6d2
PM
3925 seq_printf(seq, "Root %d group %s\n",
3926 c->root->hierarchy_id, name);
7717f7ba
PM
3927 }
3928 rcu_read_unlock();
3929 read_unlock(&css_set_lock);
3930 return 0;
3931}
3932
3933#define MAX_TASKS_SHOWN_PER_CSS 25
3934static int cgroup_css_links_read(struct cgroup *cont,
3935 struct cftype *cft,
3936 struct seq_file *seq)
3937{
3938 struct cg_cgroup_link *link;
3939
3940 read_lock(&css_set_lock);
3941 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
3942 struct css_set *cg = link->cg;
3943 struct task_struct *task;
3944 int count = 0;
3945 seq_printf(seq, "css_set %p\n", cg);
3946 list_for_each_entry(task, &cg->tasks, cg_list) {
3947 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
3948 seq_puts(seq, " ...\n");
3949 break;
3950 } else {
3951 seq_printf(seq, " task %d\n",
3952 task_pid_vnr(task));
3953 }
3954 }
3955 }
3956 read_unlock(&css_set_lock);
3957 return 0;
3958}
3959
fe693435
PM
3960static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
3961{
3962 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
3963}
3964
3965static struct cftype debug_files[] = {
3966 {
3967 .name = "cgroup_refcount",
3968 .read_u64 = cgroup_refcount_read,
3969 },
3970 {
3971 .name = "taskcount",
3972 .read_u64 = debug_taskcount_read,
3973 },
3974
3975 {
3976 .name = "current_css_set",
3977 .read_u64 = current_css_set_read,
3978 },
3979
3980 {
3981 .name = "current_css_set_refcount",
3982 .read_u64 = current_css_set_refcount_read,
3983 },
3984
7717f7ba
PM
3985 {
3986 .name = "current_css_set_cg_links",
3987 .read_seq_string = current_css_set_cg_links_read,
3988 },
3989
3990 {
3991 .name = "cgroup_css_links",
3992 .read_seq_string = cgroup_css_links_read,
3993 },
3994
fe693435
PM
3995 {
3996 .name = "releasable",
3997 .read_u64 = releasable_read,
3998 },
3999};
4000
4001static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4002{
4003 return cgroup_add_files(cont, ss, debug_files,
4004 ARRAY_SIZE(debug_files));
4005}
4006
4007struct cgroup_subsys debug_subsys = {
4008 .name = "debug",
4009 .create = debug_create,
4010 .destroy = debug_destroy,
4011 .populate = debug_populate,
4012 .subsys_id = debug_subsys_id,
4013};
4014#endif /* CONFIG_CGROUP_DEBUG */