]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cgroup.c
cgroup: fix possible memory leak
[net-next-2.6.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
472b1053 47#include <linux/hash.h>
3f8206d4 48#include <linux/namei.h>
846c7bb0 49
ddbcc7e8
PM
50#include <asm/atomic.h>
51
81a6a5cd
PM
52static DEFINE_MUTEX(cgroup_mutex);
53
ddbcc7e8
PM
54/* Generate an array of cgroup subsystem pointers */
55#define SUBSYS(_x) &_x ## _subsys,
56
57static struct cgroup_subsys *subsys[] = {
58#include <linux/cgroup_subsys.h>
59};
60
61/*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
87 /* A list running through the mounted hierarchies */
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
81a6a5cd 92
e788e066 93 /* The path to use for release notifications. */
81a6a5cd 94 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
95};
96
97
98/*
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
102 */
103static struct cgroupfs_root rootnode;
104
105/* The list of hierarchy roots */
106
107static LIST_HEAD(roots);
817929ec 108static int root_count;
ddbcc7e8
PM
109
110/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111#define dummytop (&rootnode.top_cgroup)
112
113/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
ddbcc7e8 117 */
8947f9d5 118static int need_forkexit_callback __read_mostly;
cf475ad2 119static int need_mm_owner_callback __read_mostly;
ddbcc7e8 120
ddbcc7e8 121/* convenient tests for these bits */
bd89aabc 122inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 123{
bd89aabc 124 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
125}
126
127/* bits in struct cgroupfs_root flags field */
128enum {
129 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
130};
131
e9685a03 132static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
133{
134 const int bits =
bd89aabc
PM
135 (1 << CGRP_RELEASABLE) |
136 (1 << CGRP_NOTIFY_ON_RELEASE);
137 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
138}
139
e9685a03 140static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 141{
bd89aabc 142 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
143}
144
ddbcc7e8
PM
145/*
146 * for_each_subsys() allows you to iterate on each subsystem attached to
147 * an active hierarchy
148 */
149#define for_each_subsys(_root, _ss) \
150list_for_each_entry(_ss, &_root->subsys_list, sibling)
151
152/* for_each_root() allows you to iterate across the active hierarchies */
153#define for_each_root(_root) \
154list_for_each_entry(_root, &roots, root_list)
155
81a6a5cd
PM
156/* the list of cgroups eligible for automatic release. Protected by
157 * release_list_lock */
158static LIST_HEAD(release_list);
159static DEFINE_SPINLOCK(release_list_lock);
160static void cgroup_release_agent(struct work_struct *work);
161static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 162static void check_for_release(struct cgroup *cgrp);
81a6a5cd 163
817929ec
PM
164/* Link structure for associating css_set objects with cgroups */
165struct cg_cgroup_link {
166 /*
167 * List running through cg_cgroup_links associated with a
168 * cgroup, anchored on cgroup->css_sets
169 */
bd89aabc 170 struct list_head cgrp_link_list;
817929ec
PM
171 /*
172 * List running through cg_cgroup_links pointing at a
173 * single css_set object, anchored on css_set->cg_links
174 */
175 struct list_head cg_link_list;
176 struct css_set *cg;
177};
178
179/* The default css_set - used by init and its children prior to any
180 * hierarchies being mounted. It contains a pointer to the root state
181 * for each subsystem. Also used to anchor the list of css_sets. Not
182 * reference-counted, to improve performance when child cgroups
183 * haven't been created.
184 */
185
186static struct css_set init_css_set;
187static struct cg_cgroup_link init_css_set_link;
188
189/* css_set_lock protects the list of css_set objects, and the
190 * chain of tasks off each css_set. Nests outside task->alloc_lock
191 * due to cgroup_iter_start() */
192static DEFINE_RWLOCK(css_set_lock);
193static int css_set_count;
194
472b1053
LZ
195/* hash table for cgroup groups. This improves the performance to
196 * find an existing css_set */
197#define CSS_SET_HASH_BITS 7
198#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
199static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
200
201static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
202{
203 int i;
204 int index;
205 unsigned long tmp = 0UL;
206
207 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
208 tmp += (unsigned long)css[i];
209 tmp = (tmp >> 16) ^ tmp;
210
211 index = hash_long(tmp, CSS_SET_HASH_BITS);
212
213 return &css_set_table[index];
214}
215
817929ec
PM
216/* We don't maintain the lists running through each css_set to its
217 * task until after the first call to cgroup_iter_start(). This
218 * reduces the fork()/exit() overhead for people who have cgroups
219 * compiled into their kernel but not actually in use */
8947f9d5 220static int use_task_css_set_links __read_mostly;
817929ec
PM
221
222/* When we create or destroy a css_set, the operation simply
223 * takes/releases a reference count on all the cgroups referenced
224 * by subsystems in this css_set. This can end up multiple-counting
225 * some cgroups, but that's OK - the ref-count is just a
226 * busy/not-busy indicator; ensuring that we only count each cgroup
227 * once would require taking a global lock to ensure that no
b4f48b63
PM
228 * subsystems moved between hierarchies while we were doing so.
229 *
230 * Possible TODO: decide at boot time based on the number of
231 * registered subsystems and the number of CPUs or NUMA nodes whether
232 * it's better for performance to ref-count every subsystem, or to
233 * take a global lock and only add one ref count to each hierarchy.
234 */
817929ec
PM
235
236/*
237 * unlink a css_set from the list and free it
238 */
81a6a5cd 239static void unlink_css_set(struct css_set *cg)
b4f48b63 240{
71cbb949
KM
241 struct cg_cgroup_link *link;
242 struct cg_cgroup_link *saved_link;
243
817929ec 244 write_lock(&css_set_lock);
472b1053 245 hlist_del(&cg->hlist);
817929ec 246 css_set_count--;
71cbb949
KM
247
248 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
249 cg_link_list) {
817929ec 250 list_del(&link->cg_link_list);
bd89aabc 251 list_del(&link->cgrp_link_list);
817929ec
PM
252 kfree(link);
253 }
71cbb949 254
817929ec 255 write_unlock(&css_set_lock);
81a6a5cd
PM
256}
257
258static void __release_css_set(struct kref *k, int taskexit)
259{
260 int i;
261 struct css_set *cg = container_of(k, struct css_set, ref);
262
263 unlink_css_set(cg);
264
265 rcu_read_lock();
266 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc
PM
267 struct cgroup *cgrp = cg->subsys[i]->cgroup;
268 if (atomic_dec_and_test(&cgrp->count) &&
269 notify_on_release(cgrp)) {
81a6a5cd 270 if (taskexit)
bd89aabc
PM
271 set_bit(CGRP_RELEASABLE, &cgrp->flags);
272 check_for_release(cgrp);
81a6a5cd
PM
273 }
274 }
275 rcu_read_unlock();
817929ec 276 kfree(cg);
b4f48b63
PM
277}
278
81a6a5cd
PM
279static void release_css_set(struct kref *k)
280{
281 __release_css_set(k, 0);
282}
283
284static void release_css_set_taskexit(struct kref *k)
285{
286 __release_css_set(k, 1);
287}
288
817929ec
PM
289/*
290 * refcounted get/put for css_set objects
291 */
292static inline void get_css_set(struct css_set *cg)
293{
294 kref_get(&cg->ref);
295}
296
297static inline void put_css_set(struct css_set *cg)
298{
299 kref_put(&cg->ref, release_css_set);
300}
301
81a6a5cd
PM
302static inline void put_css_set_taskexit(struct css_set *cg)
303{
304 kref_put(&cg->ref, release_css_set_taskexit);
305}
306
817929ec
PM
307/*
308 * find_existing_css_set() is a helper for
309 * find_css_set(), and checks to see whether an existing
472b1053 310 * css_set is suitable.
817929ec
PM
311 *
312 * oldcg: the cgroup group that we're using before the cgroup
313 * transition
314 *
bd89aabc 315 * cgrp: the cgroup that we're moving into
817929ec
PM
316 *
317 * template: location in which to build the desired set of subsystem
318 * state objects for the new cgroup group
319 */
817929ec
PM
320static struct css_set *find_existing_css_set(
321 struct css_set *oldcg,
bd89aabc 322 struct cgroup *cgrp,
817929ec 323 struct cgroup_subsys_state *template[])
b4f48b63
PM
324{
325 int i;
bd89aabc 326 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
327 struct hlist_head *hhead;
328 struct hlist_node *node;
329 struct css_set *cg;
817929ec
PM
330
331 /* Built the set of subsystem state objects that we want to
332 * see in the new css_set */
333 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 334 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
335 /* Subsystem is in this hierarchy. So we want
336 * the subsystem state from the new
337 * cgroup */
bd89aabc 338 template[i] = cgrp->subsys[i];
817929ec
PM
339 } else {
340 /* Subsystem is not in this hierarchy, so we
341 * don't want to change the subsystem state */
342 template[i] = oldcg->subsys[i];
343 }
344 }
345
472b1053
LZ
346 hhead = css_set_hash(template);
347 hlist_for_each_entry(cg, node, hhead, hlist) {
817929ec
PM
348 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
349 /* All subsystems matched */
350 return cg;
351 }
472b1053 352 }
817929ec
PM
353
354 /* No existing cgroup group matched */
355 return NULL;
356}
357
358/*
359 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 360 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
361 * success or a negative error
362 */
817929ec
PM
363static int allocate_cg_links(int count, struct list_head *tmp)
364{
365 struct cg_cgroup_link *link;
71cbb949 366 struct cg_cgroup_link *saved_link;
817929ec
PM
367 int i;
368 INIT_LIST_HEAD(tmp);
369 for (i = 0; i < count; i++) {
370 link = kmalloc(sizeof(*link), GFP_KERNEL);
371 if (!link) {
71cbb949
KM
372 list_for_each_entry_safe(link, saved_link, tmp,
373 cgrp_link_list) {
bd89aabc 374 list_del(&link->cgrp_link_list);
817929ec
PM
375 kfree(link);
376 }
377 return -ENOMEM;
378 }
bd89aabc 379 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
380 }
381 return 0;
382}
383
384static void free_cg_links(struct list_head *tmp)
385{
71cbb949
KM
386 struct cg_cgroup_link *link;
387 struct cg_cgroup_link *saved_link;
388
389 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
bd89aabc 390 list_del(&link->cgrp_link_list);
817929ec
PM
391 kfree(link);
392 }
393}
394
395/*
396 * find_css_set() takes an existing cgroup group and a
397 * cgroup object, and returns a css_set object that's
398 * equivalent to the old group, but with the given cgroup
399 * substituted into the appropriate hierarchy. Must be called with
400 * cgroup_mutex held
401 */
817929ec 402static struct css_set *find_css_set(
bd89aabc 403 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
404{
405 struct css_set *res;
406 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
407 int i;
408
409 struct list_head tmp_cg_links;
410 struct cg_cgroup_link *link;
411
472b1053
LZ
412 struct hlist_head *hhead;
413
817929ec
PM
414 /* First see if we already have a cgroup group that matches
415 * the desired set */
7e9abd89 416 read_lock(&css_set_lock);
bd89aabc 417 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
418 if (res)
419 get_css_set(res);
7e9abd89 420 read_unlock(&css_set_lock);
817929ec
PM
421
422 if (res)
423 return res;
424
425 res = kmalloc(sizeof(*res), GFP_KERNEL);
426 if (!res)
427 return NULL;
428
429 /* Allocate all the cg_cgroup_link objects that we'll need */
430 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
431 kfree(res);
432 return NULL;
433 }
434
435 kref_init(&res->ref);
436 INIT_LIST_HEAD(&res->cg_links);
437 INIT_LIST_HEAD(&res->tasks);
472b1053 438 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
439
440 /* Copy the set of subsystem state objects generated in
441 * find_existing_css_set() */
442 memcpy(res->subsys, template, sizeof(res->subsys));
443
444 write_lock(&css_set_lock);
445 /* Add reference counts and links from the new css_set. */
446 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 447 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 448 struct cgroup_subsys *ss = subsys[i];
bd89aabc 449 atomic_inc(&cgrp->count);
817929ec
PM
450 /*
451 * We want to add a link once per cgroup, so we
452 * only do it for the first subsystem in each
453 * hierarchy
454 */
455 if (ss->root->subsys_list.next == &ss->sibling) {
456 BUG_ON(list_empty(&tmp_cg_links));
457 link = list_entry(tmp_cg_links.next,
458 struct cg_cgroup_link,
bd89aabc
PM
459 cgrp_link_list);
460 list_del(&link->cgrp_link_list);
461 list_add(&link->cgrp_link_list, &cgrp->css_sets);
817929ec
PM
462 link->cg = res;
463 list_add(&link->cg_link_list, &res->cg_links);
464 }
465 }
466 if (list_empty(&rootnode.subsys_list)) {
467 link = list_entry(tmp_cg_links.next,
468 struct cg_cgroup_link,
bd89aabc
PM
469 cgrp_link_list);
470 list_del(&link->cgrp_link_list);
471 list_add(&link->cgrp_link_list, &dummytop->css_sets);
817929ec
PM
472 link->cg = res;
473 list_add(&link->cg_link_list, &res->cg_links);
474 }
475
476 BUG_ON(!list_empty(&tmp_cg_links));
477
817929ec 478 css_set_count++;
472b1053
LZ
479
480 /* Add this cgroup group to the hash table */
481 hhead = css_set_hash(res->subsys);
482 hlist_add_head(&res->hlist, hhead);
483
817929ec
PM
484 write_unlock(&css_set_lock);
485
486 return res;
b4f48b63
PM
487}
488
ddbcc7e8
PM
489/*
490 * There is one global cgroup mutex. We also require taking
491 * task_lock() when dereferencing a task's cgroup subsys pointers.
492 * See "The task_lock() exception", at the end of this comment.
493 *
494 * A task must hold cgroup_mutex to modify cgroups.
495 *
496 * Any task can increment and decrement the count field without lock.
497 * So in general, code holding cgroup_mutex can't rely on the count
498 * field not changing. However, if the count goes to zero, then only
956db3ca 499 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
500 * means that no tasks are currently attached, therefore there is no
501 * way a task attached to that cgroup can fork (the other way to
502 * increment the count). So code holding cgroup_mutex can safely
503 * assume that if the count is zero, it will stay zero. Similarly, if
504 * a task holds cgroup_mutex on a cgroup with zero count, it
505 * knows that the cgroup won't be removed, as cgroup_rmdir()
506 * needs that mutex.
507 *
ddbcc7e8
PM
508 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
509 * (usually) take cgroup_mutex. These are the two most performance
510 * critical pieces of code here. The exception occurs on cgroup_exit(),
511 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
512 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
513 * to the release agent with the name of the cgroup (path relative to
514 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
515 *
516 * A cgroup can only be deleted if both its 'count' of using tasks
517 * is zero, and its list of 'children' cgroups is empty. Since all
518 * tasks in the system use _some_ cgroup, and since there is always at
519 * least one task in the system (init, pid == 1), therefore, top_cgroup
520 * always has either children cgroups and/or using tasks. So we don't
521 * need a special hack to ensure that top_cgroup cannot be deleted.
522 *
523 * The task_lock() exception
524 *
525 * The need for this exception arises from the action of
956db3ca 526 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 527 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
528 * several performance critical places that need to reference
529 * task->cgroup without the expense of grabbing a system global
530 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 531 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
532 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
533 * the task_struct routinely used for such matters.
534 *
535 * P.S. One more locking exception. RCU is used to guard the
956db3ca 536 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
537 */
538
ddbcc7e8
PM
539/**
540 * cgroup_lock - lock out any changes to cgroup structures
541 *
542 */
ddbcc7e8
PM
543void cgroup_lock(void)
544{
545 mutex_lock(&cgroup_mutex);
546}
547
548/**
549 * cgroup_unlock - release lock on cgroup changes
550 *
551 * Undo the lock taken in a previous cgroup_lock() call.
552 */
ddbcc7e8
PM
553void cgroup_unlock(void)
554{
555 mutex_unlock(&cgroup_mutex);
556}
557
558/*
559 * A couple of forward declarations required, due to cyclic reference loop:
560 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
561 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
562 * -> cgroup_mkdir.
563 */
564
565static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
566static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 567static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 568static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
569static struct file_operations proc_cgroupstats_operations;
570
571static struct backing_dev_info cgroup_backing_dev_info = {
e4ad08fe 572 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 573};
ddbcc7e8
PM
574
575static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
576{
577 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
578
579 if (inode) {
580 inode->i_mode = mode;
581 inode->i_uid = current->fsuid;
582 inode->i_gid = current->fsgid;
583 inode->i_blocks = 0;
584 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
585 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
586 }
587 return inode;
588}
589
4fca88c8
KH
590/*
591 * Call subsys's pre_destroy handler.
592 * This is called before css refcnt check.
593 */
4fca88c8
KH
594static void cgroup_call_pre_destroy(struct cgroup *cgrp)
595{
596 struct cgroup_subsys *ss;
597 for_each_subsys(cgrp->root, ss)
598 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
599 ss->pre_destroy(ss, cgrp);
600 return;
601}
602
ddbcc7e8
PM
603static void cgroup_diput(struct dentry *dentry, struct inode *inode)
604{
605 /* is dentry a directory ? if so, kfree() associated cgroup */
606 if (S_ISDIR(inode->i_mode)) {
bd89aabc 607 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 608 struct cgroup_subsys *ss;
bd89aabc 609 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
610 /* It's possible for external users to be holding css
611 * reference counts on a cgroup; css_put() needs to
612 * be able to access the cgroup after decrementing
613 * the reference count in order to know if it needs to
614 * queue the cgroup to be handled by the release
615 * agent */
616 synchronize_rcu();
8dc4f3e1
PM
617
618 mutex_lock(&cgroup_mutex);
619 /*
620 * Release the subsystem state objects.
621 */
622 for_each_subsys(cgrp->root, ss) {
623 if (cgrp->subsys[ss->subsys_id])
624 ss->destroy(ss, cgrp);
625 }
626
627 cgrp->root->number_of_cgroups--;
628 mutex_unlock(&cgroup_mutex);
629
630 /* Drop the active superblock reference that we took when we
631 * created the cgroup */
632 deactivate_super(cgrp->root->sb);
633
bd89aabc 634 kfree(cgrp);
ddbcc7e8
PM
635 }
636 iput(inode);
637}
638
639static void remove_dir(struct dentry *d)
640{
641 struct dentry *parent = dget(d->d_parent);
642
643 d_delete(d);
644 simple_rmdir(parent->d_inode, d);
645 dput(parent);
646}
647
648static void cgroup_clear_directory(struct dentry *dentry)
649{
650 struct list_head *node;
651
652 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
653 spin_lock(&dcache_lock);
654 node = dentry->d_subdirs.next;
655 while (node != &dentry->d_subdirs) {
656 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
657 list_del_init(node);
658 if (d->d_inode) {
659 /* This should never be called on a cgroup
660 * directory with child cgroups */
661 BUG_ON(d->d_inode->i_mode & S_IFDIR);
662 d = dget_locked(d);
663 spin_unlock(&dcache_lock);
664 d_delete(d);
665 simple_unlink(dentry->d_inode, d);
666 dput(d);
667 spin_lock(&dcache_lock);
668 }
669 node = dentry->d_subdirs.next;
670 }
671 spin_unlock(&dcache_lock);
672}
673
674/*
675 * NOTE : the dentry must have been dget()'ed
676 */
677static void cgroup_d_remove_dir(struct dentry *dentry)
678{
679 cgroup_clear_directory(dentry);
680
681 spin_lock(&dcache_lock);
682 list_del_init(&dentry->d_u.d_child);
683 spin_unlock(&dcache_lock);
684 remove_dir(dentry);
685}
686
687static int rebind_subsystems(struct cgroupfs_root *root,
688 unsigned long final_bits)
689{
690 unsigned long added_bits, removed_bits;
bd89aabc 691 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
692 int i;
693
694 removed_bits = root->actual_subsys_bits & ~final_bits;
695 added_bits = final_bits & ~root->actual_subsys_bits;
696 /* Check that any added subsystems are currently free */
697 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 698 unsigned long bit = 1UL << i;
ddbcc7e8
PM
699 struct cgroup_subsys *ss = subsys[i];
700 if (!(bit & added_bits))
701 continue;
702 if (ss->root != &rootnode) {
703 /* Subsystem isn't free */
704 return -EBUSY;
705 }
706 }
707
708 /* Currently we don't handle adding/removing subsystems when
709 * any child cgroups exist. This is theoretically supportable
710 * but involves complex error handling, so it's being left until
711 * later */
bd89aabc 712 if (!list_empty(&cgrp->children))
ddbcc7e8
PM
713 return -EBUSY;
714
715 /* Process each subsystem */
716 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
717 struct cgroup_subsys *ss = subsys[i];
718 unsigned long bit = 1UL << i;
719 if (bit & added_bits) {
720 /* We're binding this subsystem to this hierarchy */
bd89aabc 721 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
722 BUG_ON(!dummytop->subsys[i]);
723 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
724 cgrp->subsys[i] = dummytop->subsys[i];
725 cgrp->subsys[i]->cgroup = cgrp;
ddbcc7e8
PM
726 list_add(&ss->sibling, &root->subsys_list);
727 rcu_assign_pointer(ss->root, root);
728 if (ss->bind)
bd89aabc 729 ss->bind(ss, cgrp);
ddbcc7e8
PM
730
731 } else if (bit & removed_bits) {
732 /* We're removing this subsystem */
bd89aabc
PM
733 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
734 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8
PM
735 if (ss->bind)
736 ss->bind(ss, dummytop);
737 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 738 cgrp->subsys[i] = NULL;
ddbcc7e8
PM
739 rcu_assign_pointer(subsys[i]->root, &rootnode);
740 list_del(&ss->sibling);
741 } else if (bit & final_bits) {
742 /* Subsystem state should already exist */
bd89aabc 743 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
744 } else {
745 /* Subsystem state shouldn't exist */
bd89aabc 746 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
747 }
748 }
749 root->subsys_bits = root->actual_subsys_bits = final_bits;
750 synchronize_rcu();
751
752 return 0;
753}
754
755static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
756{
757 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
758 struct cgroup_subsys *ss;
759
760 mutex_lock(&cgroup_mutex);
761 for_each_subsys(root, ss)
762 seq_printf(seq, ",%s", ss->name);
763 if (test_bit(ROOT_NOPREFIX, &root->flags))
764 seq_puts(seq, ",noprefix");
81a6a5cd
PM
765 if (strlen(root->release_agent_path))
766 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
767 mutex_unlock(&cgroup_mutex);
768 return 0;
769}
770
771struct cgroup_sb_opts {
772 unsigned long subsys_bits;
773 unsigned long flags;
81a6a5cd 774 char *release_agent;
ddbcc7e8
PM
775};
776
777/* Convert a hierarchy specifier into a bitmask of subsystems and
778 * flags. */
779static int parse_cgroupfs_options(char *data,
780 struct cgroup_sb_opts *opts)
781{
782 char *token, *o = data ?: "all";
783
784 opts->subsys_bits = 0;
785 opts->flags = 0;
81a6a5cd 786 opts->release_agent = NULL;
ddbcc7e8
PM
787
788 while ((token = strsep(&o, ",")) != NULL) {
789 if (!*token)
790 return -EINVAL;
791 if (!strcmp(token, "all")) {
8bab8dde
PM
792 /* Add all non-disabled subsystems */
793 int i;
794 opts->subsys_bits = 0;
795 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
796 struct cgroup_subsys *ss = subsys[i];
797 if (!ss->disabled)
798 opts->subsys_bits |= 1ul << i;
799 }
ddbcc7e8
PM
800 } else if (!strcmp(token, "noprefix")) {
801 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
802 } else if (!strncmp(token, "release_agent=", 14)) {
803 /* Specifying two release agents is forbidden */
804 if (opts->release_agent)
805 return -EINVAL;
806 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
807 if (!opts->release_agent)
808 return -ENOMEM;
809 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
810 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
811 } else {
812 struct cgroup_subsys *ss;
813 int i;
814 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
815 ss = subsys[i];
816 if (!strcmp(token, ss->name)) {
8bab8dde
PM
817 if (!ss->disabled)
818 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
819 break;
820 }
821 }
822 if (i == CGROUP_SUBSYS_COUNT)
823 return -ENOENT;
824 }
825 }
826
827 /* We can't have an empty hierarchy */
828 if (!opts->subsys_bits)
829 return -EINVAL;
830
831 return 0;
832}
833
834static int cgroup_remount(struct super_block *sb, int *flags, char *data)
835{
836 int ret = 0;
837 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 838 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
839 struct cgroup_sb_opts opts;
840
bd89aabc 841 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
842 mutex_lock(&cgroup_mutex);
843
844 /* See what subsystems are wanted */
845 ret = parse_cgroupfs_options(data, &opts);
846 if (ret)
847 goto out_unlock;
848
849 /* Don't allow flags to change at remount */
850 if (opts.flags != root->flags) {
851 ret = -EINVAL;
852 goto out_unlock;
853 }
854
855 ret = rebind_subsystems(root, opts.subsys_bits);
856
857 /* (re)populate subsystem files */
858 if (!ret)
bd89aabc 859 cgroup_populate_dir(cgrp);
ddbcc7e8 860
81a6a5cd
PM
861 if (opts.release_agent)
862 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 863 out_unlock:
81a6a5cd
PM
864 if (opts.release_agent)
865 kfree(opts.release_agent);
ddbcc7e8 866 mutex_unlock(&cgroup_mutex);
bd89aabc 867 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
868 return ret;
869}
870
871static struct super_operations cgroup_ops = {
872 .statfs = simple_statfs,
873 .drop_inode = generic_delete_inode,
874 .show_options = cgroup_show_options,
875 .remount_fs = cgroup_remount,
876};
877
878static void init_cgroup_root(struct cgroupfs_root *root)
879{
bd89aabc 880 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
881 INIT_LIST_HEAD(&root->subsys_list);
882 INIT_LIST_HEAD(&root->root_list);
883 root->number_of_cgroups = 1;
bd89aabc
PM
884 cgrp->root = root;
885 cgrp->top_cgroup = cgrp;
886 INIT_LIST_HEAD(&cgrp->sibling);
887 INIT_LIST_HEAD(&cgrp->children);
888 INIT_LIST_HEAD(&cgrp->css_sets);
889 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8
PM
890}
891
892static int cgroup_test_super(struct super_block *sb, void *data)
893{
894 struct cgroupfs_root *new = data;
895 struct cgroupfs_root *root = sb->s_fs_info;
896
897 /* First check subsystems */
898 if (new->subsys_bits != root->subsys_bits)
899 return 0;
900
901 /* Next check flags */
902 if (new->flags != root->flags)
903 return 0;
904
905 return 1;
906}
907
908static int cgroup_set_super(struct super_block *sb, void *data)
909{
910 int ret;
911 struct cgroupfs_root *root = data;
912
913 ret = set_anon_super(sb, NULL);
914 if (ret)
915 return ret;
916
917 sb->s_fs_info = root;
918 root->sb = sb;
919
920 sb->s_blocksize = PAGE_CACHE_SIZE;
921 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
922 sb->s_magic = CGROUP_SUPER_MAGIC;
923 sb->s_op = &cgroup_ops;
924
925 return 0;
926}
927
928static int cgroup_get_rootdir(struct super_block *sb)
929{
930 struct inode *inode =
931 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
932 struct dentry *dentry;
933
934 if (!inode)
935 return -ENOMEM;
936
ddbcc7e8
PM
937 inode->i_fop = &simple_dir_operations;
938 inode->i_op = &cgroup_dir_inode_operations;
939 /* directories start off with i_nlink == 2 (for "." entry) */
940 inc_nlink(inode);
941 dentry = d_alloc_root(inode);
942 if (!dentry) {
943 iput(inode);
944 return -ENOMEM;
945 }
946 sb->s_root = dentry;
947 return 0;
948}
949
950static int cgroup_get_sb(struct file_system_type *fs_type,
951 int flags, const char *unused_dev_name,
952 void *data, struct vfsmount *mnt)
953{
954 struct cgroup_sb_opts opts;
955 int ret = 0;
956 struct super_block *sb;
957 struct cgroupfs_root *root;
28fd5dfc 958 struct list_head tmp_cg_links;
817929ec 959 INIT_LIST_HEAD(&tmp_cg_links);
ddbcc7e8
PM
960
961 /* First find the desired set of subsystems */
962 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
963 if (ret) {
964 if (opts.release_agent)
965 kfree(opts.release_agent);
ddbcc7e8 966 return ret;
81a6a5cd 967 }
ddbcc7e8
PM
968
969 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738
LZ
970 if (!root) {
971 if (opts.release_agent)
972 kfree(opts.release_agent);
ddbcc7e8 973 return -ENOMEM;
f7770738 974 }
ddbcc7e8
PM
975
976 init_cgroup_root(root);
977 root->subsys_bits = opts.subsys_bits;
978 root->flags = opts.flags;
81a6a5cd
PM
979 if (opts.release_agent) {
980 strcpy(root->release_agent_path, opts.release_agent);
981 kfree(opts.release_agent);
982 }
ddbcc7e8
PM
983
984 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
985
986 if (IS_ERR(sb)) {
987 kfree(root);
988 return PTR_ERR(sb);
989 }
990
991 if (sb->s_fs_info != root) {
992 /* Reusing an existing superblock */
993 BUG_ON(sb->s_root == NULL);
994 kfree(root);
995 root = NULL;
996 } else {
997 /* New superblock */
bd89aabc 998 struct cgroup *cgrp = &root->top_cgroup;
817929ec 999 struct inode *inode;
28fd5dfc 1000 int i;
ddbcc7e8
PM
1001
1002 BUG_ON(sb->s_root != NULL);
1003
1004 ret = cgroup_get_rootdir(sb);
1005 if (ret)
1006 goto drop_new_super;
817929ec 1007 inode = sb->s_root->d_inode;
ddbcc7e8 1008
817929ec 1009 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1010 mutex_lock(&cgroup_mutex);
1011
817929ec
PM
1012 /*
1013 * We're accessing css_set_count without locking
1014 * css_set_lock here, but that's OK - it can only be
1015 * increased by someone holding cgroup_lock, and
1016 * that's us. The worst that can happen is that we
1017 * have some link structures left over
1018 */
1019 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1020 if (ret) {
1021 mutex_unlock(&cgroup_mutex);
1022 mutex_unlock(&inode->i_mutex);
1023 goto drop_new_super;
1024 }
1025
ddbcc7e8
PM
1026 ret = rebind_subsystems(root, root->subsys_bits);
1027 if (ret == -EBUSY) {
1028 mutex_unlock(&cgroup_mutex);
817929ec 1029 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1030 goto drop_new_super;
1031 }
1032
1033 /* EBUSY should be the only error here */
1034 BUG_ON(ret);
1035
1036 list_add(&root->root_list, &roots);
817929ec 1037 root_count++;
ddbcc7e8
PM
1038
1039 sb->s_root->d_fsdata = &root->top_cgroup;
1040 root->top_cgroup.dentry = sb->s_root;
1041
817929ec
PM
1042 /* Link the top cgroup in this hierarchy into all
1043 * the css_set objects */
1044 write_lock(&css_set_lock);
28fd5dfc
LZ
1045 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1046 struct hlist_head *hhead = &css_set_table[i];
1047 struct hlist_node *node;
817929ec 1048 struct css_set *cg;
28fd5dfc
LZ
1049
1050 hlist_for_each_entry(cg, node, hhead, hlist) {
1051 struct cg_cgroup_link *link;
1052
1053 BUG_ON(list_empty(&tmp_cg_links));
1054 link = list_entry(tmp_cg_links.next,
1055 struct cg_cgroup_link,
1056 cgrp_link_list);
1057 list_del(&link->cgrp_link_list);
1058 link->cg = cg;
1059 list_add(&link->cgrp_link_list,
1060 &root->top_cgroup.css_sets);
1061 list_add(&link->cg_link_list, &cg->cg_links);
1062 }
1063 }
817929ec
PM
1064 write_unlock(&css_set_lock);
1065
1066 free_cg_links(&tmp_cg_links);
1067
bd89aabc
PM
1068 BUG_ON(!list_empty(&cgrp->sibling));
1069 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1070 BUG_ON(root->number_of_cgroups != 1);
1071
bd89aabc 1072 cgroup_populate_dir(cgrp);
817929ec 1073 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1074 mutex_unlock(&cgroup_mutex);
1075 }
1076
1077 return simple_set_mnt(mnt, sb);
1078
1079 drop_new_super:
1080 up_write(&sb->s_umount);
1081 deactivate_super(sb);
817929ec 1082 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1083 return ret;
1084}
1085
1086static void cgroup_kill_sb(struct super_block *sb) {
1087 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1088 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1089 int ret;
71cbb949
KM
1090 struct cg_cgroup_link *link;
1091 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1092
1093 BUG_ON(!root);
1094
1095 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1096 BUG_ON(!list_empty(&cgrp->children));
1097 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1098
1099 mutex_lock(&cgroup_mutex);
1100
1101 /* Rebind all subsystems back to the default hierarchy */
1102 ret = rebind_subsystems(root, 0);
1103 /* Shouldn't be able to fail ... */
1104 BUG_ON(ret);
1105
817929ec
PM
1106 /*
1107 * Release all the links from css_sets to this hierarchy's
1108 * root cgroup
1109 */
1110 write_lock(&css_set_lock);
71cbb949
KM
1111
1112 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1113 cgrp_link_list) {
817929ec 1114 list_del(&link->cg_link_list);
bd89aabc 1115 list_del(&link->cgrp_link_list);
817929ec
PM
1116 kfree(link);
1117 }
1118 write_unlock(&css_set_lock);
1119
1120 if (!list_empty(&root->root_list)) {
ddbcc7e8 1121 list_del(&root->root_list);
817929ec
PM
1122 root_count--;
1123 }
ddbcc7e8
PM
1124 mutex_unlock(&cgroup_mutex);
1125
1126 kfree(root);
1127 kill_litter_super(sb);
1128}
1129
1130static struct file_system_type cgroup_fs_type = {
1131 .name = "cgroup",
1132 .get_sb = cgroup_get_sb,
1133 .kill_sb = cgroup_kill_sb,
1134};
1135
bd89aabc 1136static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1137{
1138 return dentry->d_fsdata;
1139}
1140
1141static inline struct cftype *__d_cft(struct dentry *dentry)
1142{
1143 return dentry->d_fsdata;
1144}
1145
a043e3b2
LZ
1146/**
1147 * cgroup_path - generate the path of a cgroup
1148 * @cgrp: the cgroup in question
1149 * @buf: the buffer to write the path into
1150 * @buflen: the length of the buffer
1151 *
1152 * Called with cgroup_mutex held. Writes path of cgroup into buf.
ddbcc7e8
PM
1153 * Returns 0 on success, -errno on error.
1154 */
bd89aabc 1155int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1156{
1157 char *start;
1158
bd89aabc 1159 if (cgrp == dummytop) {
ddbcc7e8
PM
1160 /*
1161 * Inactive subsystems have no dentry for their root
1162 * cgroup
1163 */
1164 strcpy(buf, "/");
1165 return 0;
1166 }
1167
1168 start = buf + buflen;
1169
1170 *--start = '\0';
1171 for (;;) {
bd89aabc 1172 int len = cgrp->dentry->d_name.len;
ddbcc7e8
PM
1173 if ((start -= len) < buf)
1174 return -ENAMETOOLONG;
bd89aabc
PM
1175 memcpy(start, cgrp->dentry->d_name.name, len);
1176 cgrp = cgrp->parent;
1177 if (!cgrp)
ddbcc7e8 1178 break;
bd89aabc 1179 if (!cgrp->parent)
ddbcc7e8
PM
1180 continue;
1181 if (--start < buf)
1182 return -ENAMETOOLONG;
1183 *start = '/';
1184 }
1185 memmove(buf, start, buf + buflen - start);
1186 return 0;
1187}
1188
bbcb81d0
PM
1189/*
1190 * Return the first subsystem attached to a cgroup's hierarchy, and
1191 * its subsystem id.
1192 */
1193
bd89aabc 1194static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1195 struct cgroup_subsys_state **css, int *subsys_id)
1196{
bd89aabc 1197 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1198 const struct cgroup_subsys *test_ss;
1199 BUG_ON(list_empty(&root->subsys_list));
1200 test_ss = list_entry(root->subsys_list.next,
1201 struct cgroup_subsys, sibling);
1202 if (css) {
bd89aabc 1203 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1204 BUG_ON(!*css);
1205 }
1206 if (subsys_id)
1207 *subsys_id = test_ss->subsys_id;
1208}
1209
a043e3b2
LZ
1210/**
1211 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1212 * @cgrp: the cgroup the task is attaching to
1213 * @tsk: the task to be attached
bbcb81d0 1214 *
a043e3b2
LZ
1215 * Call holding cgroup_mutex. May take task_lock of
1216 * the task 'tsk' during call.
bbcb81d0 1217 */
956db3ca 1218int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1219{
1220 int retval = 0;
1221 struct cgroup_subsys *ss;
bd89aabc 1222 struct cgroup *oldcgrp;
817929ec
PM
1223 struct css_set *cg = tsk->cgroups;
1224 struct css_set *newcg;
bd89aabc 1225 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1226 int subsys_id;
1227
bd89aabc 1228 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1229
1230 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1231 oldcgrp = task_cgroup(tsk, subsys_id);
1232 if (cgrp == oldcgrp)
bbcb81d0
PM
1233 return 0;
1234
1235 for_each_subsys(root, ss) {
1236 if (ss->can_attach) {
bd89aabc 1237 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1238 if (retval)
bbcb81d0 1239 return retval;
bbcb81d0
PM
1240 }
1241 }
1242
817929ec
PM
1243 /*
1244 * Locate or allocate a new css_set for this task,
1245 * based on its final set of cgroups
1246 */
bd89aabc 1247 newcg = find_css_set(cg, cgrp);
e18f6318 1248 if (!newcg)
817929ec 1249 return -ENOMEM;
817929ec 1250
bbcb81d0
PM
1251 task_lock(tsk);
1252 if (tsk->flags & PF_EXITING) {
1253 task_unlock(tsk);
817929ec 1254 put_css_set(newcg);
bbcb81d0
PM
1255 return -ESRCH;
1256 }
817929ec 1257 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1258 task_unlock(tsk);
1259
817929ec
PM
1260 /* Update the css_set linked lists if we're using them */
1261 write_lock(&css_set_lock);
1262 if (!list_empty(&tsk->cg_list)) {
1263 list_del(&tsk->cg_list);
1264 list_add(&tsk->cg_list, &newcg->tasks);
1265 }
1266 write_unlock(&css_set_lock);
1267
bbcb81d0 1268 for_each_subsys(root, ss) {
e18f6318 1269 if (ss->attach)
bd89aabc 1270 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1271 }
bd89aabc 1272 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1273 synchronize_rcu();
817929ec 1274 put_css_set(cg);
bbcb81d0
PM
1275 return 0;
1276}
1277
1278/*
af351026
PM
1279 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1280 * held. May take task_lock of task
bbcb81d0 1281 */
af351026 1282static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1283{
bbcb81d0
PM
1284 struct task_struct *tsk;
1285 int ret;
1286
bbcb81d0
PM
1287 if (pid) {
1288 rcu_read_lock();
73507f33 1289 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1290 if (!tsk || tsk->flags & PF_EXITING) {
1291 rcu_read_unlock();
1292 return -ESRCH;
1293 }
1294 get_task_struct(tsk);
1295 rcu_read_unlock();
1296
1297 if ((current->euid) && (current->euid != tsk->uid)
1298 && (current->euid != tsk->suid)) {
1299 put_task_struct(tsk);
1300 return -EACCES;
1301 }
1302 } else {
1303 tsk = current;
1304 get_task_struct(tsk);
1305 }
1306
956db3ca 1307 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1308 put_task_struct(tsk);
1309 return ret;
1310}
1311
af351026
PM
1312static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1313{
1314 int ret;
1315 if (!cgroup_lock_live_group(cgrp))
1316 return -ENODEV;
1317 ret = attach_task_by_pid(cgrp, pid);
1318 cgroup_unlock();
1319 return ret;
1320}
1321
ddbcc7e8 1322/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1323enum cgroup_filetype {
1324 FILE_ROOT,
1325 FILE_DIR,
1326 FILE_TASKLIST,
81a6a5cd 1327 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1328 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1329};
1330
e788e066
PM
1331/**
1332 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1333 * @cgrp: the cgroup to be checked for liveness
1334 *
84eea842
PM
1335 * On success, returns true; the lock should be later released with
1336 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1337 */
84eea842 1338bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1339{
1340 mutex_lock(&cgroup_mutex);
1341 if (cgroup_is_removed(cgrp)) {
1342 mutex_unlock(&cgroup_mutex);
1343 return false;
1344 }
1345 return true;
1346}
1347
1348static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1349 const char *buffer)
1350{
1351 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1352 if (!cgroup_lock_live_group(cgrp))
1353 return -ENODEV;
1354 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1355 cgroup_unlock();
e788e066
PM
1356 return 0;
1357}
1358
1359static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1360 struct seq_file *seq)
1361{
1362 if (!cgroup_lock_live_group(cgrp))
1363 return -ENODEV;
1364 seq_puts(seq, cgrp->root->release_agent_path);
1365 seq_putc(seq, '\n');
84eea842 1366 cgroup_unlock();
e788e066
PM
1367 return 0;
1368}
1369
84eea842
PM
1370/* A buffer size big enough for numbers or short strings */
1371#define CGROUP_LOCAL_BUFFER_SIZE 64
1372
e73d2c61 1373static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1374 struct file *file,
1375 const char __user *userbuf,
1376 size_t nbytes, loff_t *unused_ppos)
355e0c48 1377{
84eea842 1378 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1379 int retval = 0;
355e0c48
PM
1380 char *end;
1381
1382 if (!nbytes)
1383 return -EINVAL;
1384 if (nbytes >= sizeof(buffer))
1385 return -E2BIG;
1386 if (copy_from_user(buffer, userbuf, nbytes))
1387 return -EFAULT;
1388
1389 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1390 strstrip(buffer);
e73d2c61
PM
1391 if (cft->write_u64) {
1392 u64 val = simple_strtoull(buffer, &end, 0);
1393 if (*end)
1394 return -EINVAL;
1395 retval = cft->write_u64(cgrp, cft, val);
1396 } else {
1397 s64 val = simple_strtoll(buffer, &end, 0);
1398 if (*end)
1399 return -EINVAL;
1400 retval = cft->write_s64(cgrp, cft, val);
1401 }
355e0c48
PM
1402 if (!retval)
1403 retval = nbytes;
1404 return retval;
1405}
1406
db3b1497
PM
1407static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1408 struct file *file,
1409 const char __user *userbuf,
1410 size_t nbytes, loff_t *unused_ppos)
1411{
84eea842 1412 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1413 int retval = 0;
1414 size_t max_bytes = cft->max_write_len;
1415 char *buffer = local_buffer;
1416
1417 if (!max_bytes)
1418 max_bytes = sizeof(local_buffer) - 1;
1419 if (nbytes >= max_bytes)
1420 return -E2BIG;
1421 /* Allocate a dynamic buffer if we need one */
1422 if (nbytes >= sizeof(local_buffer)) {
1423 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1424 if (buffer == NULL)
1425 return -ENOMEM;
1426 }
5a3eb9f6
LZ
1427 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1428 retval = -EFAULT;
1429 goto out;
1430 }
db3b1497
PM
1431
1432 buffer[nbytes] = 0; /* nul-terminate */
1433 strstrip(buffer);
1434 retval = cft->write_string(cgrp, cft, buffer);
1435 if (!retval)
1436 retval = nbytes;
5a3eb9f6 1437out:
db3b1497
PM
1438 if (buffer != local_buffer)
1439 kfree(buffer);
1440 return retval;
1441}
1442
ddbcc7e8
PM
1443static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1444 size_t nbytes, loff_t *ppos)
1445{
1446 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1447 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1448
8dc4f3e1 1449 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8 1450 return -ENODEV;
355e0c48 1451 if (cft->write)
bd89aabc 1452 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1453 if (cft->write_u64 || cft->write_s64)
1454 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1455 if (cft->write_string)
1456 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1457 if (cft->trigger) {
1458 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1459 return ret ? ret : nbytes;
1460 }
355e0c48 1461 return -EINVAL;
ddbcc7e8
PM
1462}
1463
f4c753b7
PM
1464static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1465 struct file *file,
1466 char __user *buf, size_t nbytes,
1467 loff_t *ppos)
ddbcc7e8 1468{
84eea842 1469 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1470 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1471 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1472
1473 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1474}
1475
e73d2c61
PM
1476static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1477 struct file *file,
1478 char __user *buf, size_t nbytes,
1479 loff_t *ppos)
1480{
84eea842 1481 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1482 s64 val = cft->read_s64(cgrp, cft);
1483 int len = sprintf(tmp, "%lld\n", (long long) val);
1484
1485 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1486}
1487
ddbcc7e8
PM
1488static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1489 size_t nbytes, loff_t *ppos)
1490{
1491 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1492 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1493
8dc4f3e1 1494 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8
PM
1495 return -ENODEV;
1496
1497 if (cft->read)
bd89aabc 1498 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1499 if (cft->read_u64)
1500 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1501 if (cft->read_s64)
1502 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1503 return -EINVAL;
1504}
1505
91796569
PM
1506/*
1507 * seqfile ops/methods for returning structured data. Currently just
1508 * supports string->u64 maps, but can be extended in future.
1509 */
1510
1511struct cgroup_seqfile_state {
1512 struct cftype *cft;
1513 struct cgroup *cgroup;
1514};
1515
1516static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1517{
1518 struct seq_file *sf = cb->state;
1519 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1520}
1521
1522static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1523{
1524 struct cgroup_seqfile_state *state = m->private;
1525 struct cftype *cft = state->cft;
29486df3
SH
1526 if (cft->read_map) {
1527 struct cgroup_map_cb cb = {
1528 .fill = cgroup_map_add,
1529 .state = m,
1530 };
1531 return cft->read_map(state->cgroup, cft, &cb);
1532 }
1533 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1534}
1535
96930a63 1536static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
1537{
1538 struct seq_file *seq = file->private_data;
1539 kfree(seq->private);
1540 return single_release(inode, file);
1541}
1542
1543static struct file_operations cgroup_seqfile_operations = {
1544 .read = seq_read,
e788e066 1545 .write = cgroup_file_write,
91796569
PM
1546 .llseek = seq_lseek,
1547 .release = cgroup_seqfile_release,
1548};
1549
ddbcc7e8
PM
1550static int cgroup_file_open(struct inode *inode, struct file *file)
1551{
1552 int err;
1553 struct cftype *cft;
1554
1555 err = generic_file_open(inode, file);
1556 if (err)
1557 return err;
1558
1559 cft = __d_cft(file->f_dentry);
1560 if (!cft)
1561 return -ENODEV;
29486df3 1562 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1563 struct cgroup_seqfile_state *state =
1564 kzalloc(sizeof(*state), GFP_USER);
1565 if (!state)
1566 return -ENOMEM;
1567 state->cft = cft;
1568 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1569 file->f_op = &cgroup_seqfile_operations;
1570 err = single_open(file, cgroup_seqfile_show, state);
1571 if (err < 0)
1572 kfree(state);
1573 } else if (cft->open)
ddbcc7e8
PM
1574 err = cft->open(inode, file);
1575 else
1576 err = 0;
1577
1578 return err;
1579}
1580
1581static int cgroup_file_release(struct inode *inode, struct file *file)
1582{
1583 struct cftype *cft = __d_cft(file->f_dentry);
1584 if (cft->release)
1585 return cft->release(inode, file);
1586 return 0;
1587}
1588
1589/*
1590 * cgroup_rename - Only allow simple rename of directories in place.
1591 */
1592static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1593 struct inode *new_dir, struct dentry *new_dentry)
1594{
1595 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1596 return -ENOTDIR;
1597 if (new_dentry->d_inode)
1598 return -EEXIST;
1599 if (old_dir != new_dir)
1600 return -EIO;
1601 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1602}
1603
1604static struct file_operations cgroup_file_operations = {
1605 .read = cgroup_file_read,
1606 .write = cgroup_file_write,
1607 .llseek = generic_file_llseek,
1608 .open = cgroup_file_open,
1609 .release = cgroup_file_release,
1610};
1611
1612static struct inode_operations cgroup_dir_inode_operations = {
1613 .lookup = simple_lookup,
1614 .mkdir = cgroup_mkdir,
1615 .rmdir = cgroup_rmdir,
1616 .rename = cgroup_rename,
1617};
1618
1619static int cgroup_create_file(struct dentry *dentry, int mode,
1620 struct super_block *sb)
1621{
1622 static struct dentry_operations cgroup_dops = {
1623 .d_iput = cgroup_diput,
1624 };
1625
1626 struct inode *inode;
1627
1628 if (!dentry)
1629 return -ENOENT;
1630 if (dentry->d_inode)
1631 return -EEXIST;
1632
1633 inode = cgroup_new_inode(mode, sb);
1634 if (!inode)
1635 return -ENOMEM;
1636
1637 if (S_ISDIR(mode)) {
1638 inode->i_op = &cgroup_dir_inode_operations;
1639 inode->i_fop = &simple_dir_operations;
1640
1641 /* start off with i_nlink == 2 (for "." entry) */
1642 inc_nlink(inode);
1643
1644 /* start with the directory inode held, so that we can
1645 * populate it without racing with another mkdir */
817929ec 1646 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1647 } else if (S_ISREG(mode)) {
1648 inode->i_size = 0;
1649 inode->i_fop = &cgroup_file_operations;
1650 }
1651 dentry->d_op = &cgroup_dops;
1652 d_instantiate(dentry, inode);
1653 dget(dentry); /* Extra count - pin the dentry in core */
1654 return 0;
1655}
1656
1657/*
a043e3b2
LZ
1658 * cgroup_create_dir - create a directory for an object.
1659 * @cgrp: the cgroup we create the directory for. It must have a valid
1660 * ->parent field. And we are going to fill its ->dentry field.
1661 * @dentry: dentry of the new cgroup
1662 * @mode: mode to set on new directory.
ddbcc7e8 1663 */
bd89aabc 1664static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1665 int mode)
1666{
1667 struct dentry *parent;
1668 int error = 0;
1669
bd89aabc
PM
1670 parent = cgrp->parent->dentry;
1671 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1672 if (!error) {
bd89aabc 1673 dentry->d_fsdata = cgrp;
ddbcc7e8 1674 inc_nlink(parent->d_inode);
bd89aabc 1675 cgrp->dentry = dentry;
ddbcc7e8
PM
1676 dget(dentry);
1677 }
1678 dput(dentry);
1679
1680 return error;
1681}
1682
bd89aabc 1683int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1684 struct cgroup_subsys *subsys,
1685 const struct cftype *cft)
1686{
bd89aabc 1687 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1688 struct dentry *dentry;
1689 int error;
1690
1691 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1692 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1693 strcpy(name, subsys->name);
1694 strcat(name, ".");
1695 }
1696 strcat(name, cft->name);
1697 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1698 dentry = lookup_one_len(name, dir, strlen(name));
1699 if (!IS_ERR(dentry)) {
1700 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1701 cgrp->root->sb);
ddbcc7e8
PM
1702 if (!error)
1703 dentry->d_fsdata = (void *)cft;
1704 dput(dentry);
1705 } else
1706 error = PTR_ERR(dentry);
1707 return error;
1708}
1709
bd89aabc 1710int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1711 struct cgroup_subsys *subsys,
1712 const struct cftype cft[],
1713 int count)
1714{
1715 int i, err;
1716 for (i = 0; i < count; i++) {
bd89aabc 1717 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1718 if (err)
1719 return err;
1720 }
1721 return 0;
1722}
1723
a043e3b2
LZ
1724/**
1725 * cgroup_task_count - count the number of tasks in a cgroup.
1726 * @cgrp: the cgroup in question
1727 *
1728 * Return the number of tasks in the cgroup.
1729 */
bd89aabc 1730int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1731{
1732 int count = 0;
71cbb949 1733 struct cg_cgroup_link *link;
817929ec
PM
1734
1735 read_lock(&css_set_lock);
71cbb949 1736 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
817929ec 1737 count += atomic_read(&link->cg->ref.refcount);
817929ec
PM
1738 }
1739 read_unlock(&css_set_lock);
bbcb81d0
PM
1740 return count;
1741}
1742
817929ec
PM
1743/*
1744 * Advance a list_head iterator. The iterator should be positioned at
1745 * the start of a css_set
1746 */
bd89aabc 1747static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1748 struct cgroup_iter *it)
1749{
1750 struct list_head *l = it->cg_link;
1751 struct cg_cgroup_link *link;
1752 struct css_set *cg;
1753
1754 /* Advance to the next non-empty css_set */
1755 do {
1756 l = l->next;
bd89aabc 1757 if (l == &cgrp->css_sets) {
817929ec
PM
1758 it->cg_link = NULL;
1759 return;
1760 }
bd89aabc 1761 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1762 cg = link->cg;
1763 } while (list_empty(&cg->tasks));
1764 it->cg_link = l;
1765 it->task = cg->tasks.next;
1766}
1767
31a7df01
CW
1768/*
1769 * To reduce the fork() overhead for systems that are not actually
1770 * using their cgroups capability, we don't maintain the lists running
1771 * through each css_set to its tasks until we see the list actually
1772 * used - in other words after the first call to cgroup_iter_start().
1773 *
1774 * The tasklist_lock is not held here, as do_each_thread() and
1775 * while_each_thread() are protected by RCU.
1776 */
3df91fe3 1777static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1778{
1779 struct task_struct *p, *g;
1780 write_lock(&css_set_lock);
1781 use_task_css_set_links = 1;
1782 do_each_thread(g, p) {
1783 task_lock(p);
0e04388f
LZ
1784 /*
1785 * We should check if the process is exiting, otherwise
1786 * it will race with cgroup_exit() in that the list
1787 * entry won't be deleted though the process has exited.
1788 */
1789 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1790 list_add(&p->cg_list, &p->cgroups->tasks);
1791 task_unlock(p);
1792 } while_each_thread(g, p);
1793 write_unlock(&css_set_lock);
1794}
1795
bd89aabc 1796void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1797{
1798 /*
1799 * The first time anyone tries to iterate across a cgroup,
1800 * we need to enable the list linking each css_set to its
1801 * tasks, and fix up all existing tasks.
1802 */
31a7df01
CW
1803 if (!use_task_css_set_links)
1804 cgroup_enable_task_cg_lists();
1805
817929ec 1806 read_lock(&css_set_lock);
bd89aabc
PM
1807 it->cg_link = &cgrp->css_sets;
1808 cgroup_advance_iter(cgrp, it);
817929ec
PM
1809}
1810
bd89aabc 1811struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1812 struct cgroup_iter *it)
1813{
1814 struct task_struct *res;
1815 struct list_head *l = it->task;
1816
1817 /* If the iterator cg is NULL, we have no tasks */
1818 if (!it->cg_link)
1819 return NULL;
1820 res = list_entry(l, struct task_struct, cg_list);
1821 /* Advance iterator to find next entry */
1822 l = l->next;
1823 if (l == &res->cgroups->tasks) {
1824 /* We reached the end of this task list - move on to
1825 * the next cg_cgroup_link */
bd89aabc 1826 cgroup_advance_iter(cgrp, it);
817929ec
PM
1827 } else {
1828 it->task = l;
1829 }
1830 return res;
1831}
1832
bd89aabc 1833void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1834{
1835 read_unlock(&css_set_lock);
1836}
1837
31a7df01
CW
1838static inline int started_after_time(struct task_struct *t1,
1839 struct timespec *time,
1840 struct task_struct *t2)
1841{
1842 int start_diff = timespec_compare(&t1->start_time, time);
1843 if (start_diff > 0) {
1844 return 1;
1845 } else if (start_diff < 0) {
1846 return 0;
1847 } else {
1848 /*
1849 * Arbitrarily, if two processes started at the same
1850 * time, we'll say that the lower pointer value
1851 * started first. Note that t2 may have exited by now
1852 * so this may not be a valid pointer any longer, but
1853 * that's fine - it still serves to distinguish
1854 * between two tasks started (effectively) simultaneously.
1855 */
1856 return t1 > t2;
1857 }
1858}
1859
1860/*
1861 * This function is a callback from heap_insert() and is used to order
1862 * the heap.
1863 * In this case we order the heap in descending task start time.
1864 */
1865static inline int started_after(void *p1, void *p2)
1866{
1867 struct task_struct *t1 = p1;
1868 struct task_struct *t2 = p2;
1869 return started_after_time(t1, &t2->start_time, t2);
1870}
1871
1872/**
1873 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1874 * @scan: struct cgroup_scanner containing arguments for the scan
1875 *
1876 * Arguments include pointers to callback functions test_task() and
1877 * process_task().
1878 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1879 * and if it returns true, call process_task() for it also.
1880 * The test_task pointer may be NULL, meaning always true (select all tasks).
1881 * Effectively duplicates cgroup_iter_{start,next,end}()
1882 * but does not lock css_set_lock for the call to process_task().
1883 * The struct cgroup_scanner may be embedded in any structure of the caller's
1884 * creation.
1885 * It is guaranteed that process_task() will act on every task that
1886 * is a member of the cgroup for the duration of this call. This
1887 * function may or may not call process_task() for tasks that exit
1888 * or move to a different cgroup during the call, or are forked or
1889 * move into the cgroup during the call.
1890 *
1891 * Note that test_task() may be called with locks held, and may in some
1892 * situations be called multiple times for the same task, so it should
1893 * be cheap.
1894 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1895 * pre-allocated and will be used for heap operations (and its "gt" member will
1896 * be overwritten), else a temporary heap will be used (allocation of which
1897 * may cause this function to fail).
1898 */
1899int cgroup_scan_tasks(struct cgroup_scanner *scan)
1900{
1901 int retval, i;
1902 struct cgroup_iter it;
1903 struct task_struct *p, *dropped;
1904 /* Never dereference latest_task, since it's not refcounted */
1905 struct task_struct *latest_task = NULL;
1906 struct ptr_heap tmp_heap;
1907 struct ptr_heap *heap;
1908 struct timespec latest_time = { 0, 0 };
1909
1910 if (scan->heap) {
1911 /* The caller supplied our heap and pre-allocated its memory */
1912 heap = scan->heap;
1913 heap->gt = &started_after;
1914 } else {
1915 /* We need to allocate our own heap memory */
1916 heap = &tmp_heap;
1917 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1918 if (retval)
1919 /* cannot allocate the heap */
1920 return retval;
1921 }
1922
1923 again:
1924 /*
1925 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1926 * to determine which are of interest, and using the scanner's
1927 * "process_task" callback to process any of them that need an update.
1928 * Since we don't want to hold any locks during the task updates,
1929 * gather tasks to be processed in a heap structure.
1930 * The heap is sorted by descending task start time.
1931 * If the statically-sized heap fills up, we overflow tasks that
1932 * started later, and in future iterations only consider tasks that
1933 * started after the latest task in the previous pass. This
1934 * guarantees forward progress and that we don't miss any tasks.
1935 */
1936 heap->size = 0;
1937 cgroup_iter_start(scan->cg, &it);
1938 while ((p = cgroup_iter_next(scan->cg, &it))) {
1939 /*
1940 * Only affect tasks that qualify per the caller's callback,
1941 * if he provided one
1942 */
1943 if (scan->test_task && !scan->test_task(p, scan))
1944 continue;
1945 /*
1946 * Only process tasks that started after the last task
1947 * we processed
1948 */
1949 if (!started_after_time(p, &latest_time, latest_task))
1950 continue;
1951 dropped = heap_insert(heap, p);
1952 if (dropped == NULL) {
1953 /*
1954 * The new task was inserted; the heap wasn't
1955 * previously full
1956 */
1957 get_task_struct(p);
1958 } else if (dropped != p) {
1959 /*
1960 * The new task was inserted, and pushed out a
1961 * different task
1962 */
1963 get_task_struct(p);
1964 put_task_struct(dropped);
1965 }
1966 /*
1967 * Else the new task was newer than anything already in
1968 * the heap and wasn't inserted
1969 */
1970 }
1971 cgroup_iter_end(scan->cg, &it);
1972
1973 if (heap->size) {
1974 for (i = 0; i < heap->size; i++) {
4fe91d51 1975 struct task_struct *q = heap->ptrs[i];
31a7df01 1976 if (i == 0) {
4fe91d51
PJ
1977 latest_time = q->start_time;
1978 latest_task = q;
31a7df01
CW
1979 }
1980 /* Process the task per the caller's callback */
4fe91d51
PJ
1981 scan->process_task(q, scan);
1982 put_task_struct(q);
31a7df01
CW
1983 }
1984 /*
1985 * If we had to process any tasks at all, scan again
1986 * in case some of them were in the middle of forking
1987 * children that didn't get processed.
1988 * Not the most efficient way to do it, but it avoids
1989 * having to take callback_mutex in the fork path
1990 */
1991 goto again;
1992 }
1993 if (heap == &tmp_heap)
1994 heap_free(&tmp_heap);
1995 return 0;
1996}
1997
bbcb81d0
PM
1998/*
1999 * Stuff for reading the 'tasks' file.
2000 *
2001 * Reading this file can return large amounts of data if a cgroup has
2002 * *lots* of attached tasks. So it may need several calls to read(),
2003 * but we cannot guarantee that the information we produce is correct
2004 * unless we produce it entirely atomically.
2005 *
2006 * Upon tasks file open(), a struct ctr_struct is allocated, that
2007 * will have a pointer to an array (also allocated here). The struct
2008 * ctr_struct * is stored in file->private_data. Its resources will
2009 * be freed by release() when the file is closed. The array is used
2010 * to sprintf the PIDs and then used by read().
2011 */
2012struct ctr_struct {
2013 char *buf;
2014 int bufsz;
2015};
2016
2017/*
2018 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2019 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2020 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2021 * read section, so the css_set can't go away, and is
2022 * immutable after creation.
2023 */
bd89aabc 2024static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0
PM
2025{
2026 int n = 0;
817929ec
PM
2027 struct cgroup_iter it;
2028 struct task_struct *tsk;
bd89aabc
PM
2029 cgroup_iter_start(cgrp, &it);
2030 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2031 if (unlikely(n == npids))
2032 break;
73507f33 2033 pidarray[n++] = task_pid_vnr(tsk);
817929ec 2034 }
bd89aabc 2035 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2036 return n;
2037}
2038
846c7bb0 2039/**
a043e3b2 2040 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2041 * @stats: cgroupstats to fill information into
2042 * @dentry: A dentry entry belonging to the cgroup for which stats have
2043 * been requested.
a043e3b2
LZ
2044 *
2045 * Build and fill cgroupstats so that taskstats can export it to user
2046 * space.
846c7bb0
BS
2047 */
2048int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2049{
2050 int ret = -EINVAL;
bd89aabc 2051 struct cgroup *cgrp;
846c7bb0
BS
2052 struct cgroup_iter it;
2053 struct task_struct *tsk;
2054 /*
2055 * Validate dentry by checking the superblock operations
2056 */
2057 if (dentry->d_sb->s_op != &cgroup_ops)
2058 goto err;
2059
2060 ret = 0;
bd89aabc 2061 cgrp = dentry->d_fsdata;
846c7bb0
BS
2062 rcu_read_lock();
2063
bd89aabc
PM
2064 cgroup_iter_start(cgrp, &it);
2065 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2066 switch (tsk->state) {
2067 case TASK_RUNNING:
2068 stats->nr_running++;
2069 break;
2070 case TASK_INTERRUPTIBLE:
2071 stats->nr_sleeping++;
2072 break;
2073 case TASK_UNINTERRUPTIBLE:
2074 stats->nr_uninterruptible++;
2075 break;
2076 case TASK_STOPPED:
2077 stats->nr_stopped++;
2078 break;
2079 default:
2080 if (delayacct_is_task_waiting_on_io(tsk))
2081 stats->nr_io_wait++;
2082 break;
2083 }
2084 }
bd89aabc 2085 cgroup_iter_end(cgrp, &it);
846c7bb0
BS
2086
2087 rcu_read_unlock();
2088err:
2089 return ret;
2090}
2091
bbcb81d0
PM
2092static int cmppid(const void *a, const void *b)
2093{
2094 return *(pid_t *)a - *(pid_t *)b;
2095}
2096
2097/*
2098 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2099 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2100 * count 'cnt' of how many chars would be written if buf were large enough.
2101 */
2102static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2103{
2104 int cnt = 0;
2105 int i;
2106
2107 for (i = 0; i < npids; i++)
2108 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2109 return cnt;
2110}
2111
2112/*
2113 * Handle an open on 'tasks' file. Prepare a buffer listing the
2114 * process id's of tasks currently attached to the cgroup being opened.
2115 *
2116 * Does not require any specific cgroup mutexes, and does not take any.
2117 */
2118static int cgroup_tasks_open(struct inode *unused, struct file *file)
2119{
bd89aabc 2120 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2121 struct ctr_struct *ctr;
2122 pid_t *pidarray;
2123 int npids;
2124 char c;
2125
2126 if (!(file->f_mode & FMODE_READ))
2127 return 0;
2128
2129 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2130 if (!ctr)
2131 goto err0;
2132
2133 /*
2134 * If cgroup gets more users after we read count, we won't have
2135 * enough space - tough. This race is indistinguishable to the
2136 * caller from the case that the additional cgroup users didn't
2137 * show up until sometime later on.
2138 */
bd89aabc 2139 npids = cgroup_task_count(cgrp);
bbcb81d0
PM
2140 if (npids) {
2141 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2142 if (!pidarray)
2143 goto err1;
2144
bd89aabc 2145 npids = pid_array_load(pidarray, npids, cgrp);
bbcb81d0
PM
2146 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2147
2148 /* Call pid_array_to_buf() twice, first just to get bufsz */
2149 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2150 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2151 if (!ctr->buf)
2152 goto err2;
2153 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2154
2155 kfree(pidarray);
2156 } else {
9dce07f1 2157 ctr->buf = NULL;
bbcb81d0
PM
2158 ctr->bufsz = 0;
2159 }
2160 file->private_data = ctr;
2161 return 0;
2162
2163err2:
2164 kfree(pidarray);
2165err1:
2166 kfree(ctr);
2167err0:
2168 return -ENOMEM;
2169}
2170
bd89aabc 2171static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
bbcb81d0
PM
2172 struct cftype *cft,
2173 struct file *file, char __user *buf,
2174 size_t nbytes, loff_t *ppos)
2175{
2176 struct ctr_struct *ctr = file->private_data;
2177
2178 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2179}
2180
2181static int cgroup_tasks_release(struct inode *unused_inode,
2182 struct file *file)
2183{
2184 struct ctr_struct *ctr;
2185
2186 if (file->f_mode & FMODE_READ) {
2187 ctr = file->private_data;
2188 kfree(ctr->buf);
2189 kfree(ctr);
2190 }
2191 return 0;
2192}
2193
bd89aabc 2194static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2195 struct cftype *cft)
2196{
bd89aabc 2197 return notify_on_release(cgrp);
81a6a5cd
PM
2198}
2199
6379c106
PM
2200static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2201 struct cftype *cft,
2202 u64 val)
2203{
2204 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2205 if (val)
2206 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2207 else
2208 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2209 return 0;
2210}
2211
bbcb81d0
PM
2212/*
2213 * for the common functions, 'private' gives the type of file
2214 */
81a6a5cd
PM
2215static struct cftype files[] = {
2216 {
2217 .name = "tasks",
2218 .open = cgroup_tasks_open,
2219 .read = cgroup_tasks_read,
af351026 2220 .write_u64 = cgroup_tasks_write,
81a6a5cd
PM
2221 .release = cgroup_tasks_release,
2222 .private = FILE_TASKLIST,
2223 },
2224
2225 {
2226 .name = "notify_on_release",
f4c753b7 2227 .read_u64 = cgroup_read_notify_on_release,
6379c106 2228 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd
PM
2229 .private = FILE_NOTIFY_ON_RELEASE,
2230 },
81a6a5cd
PM
2231};
2232
2233static struct cftype cft_release_agent = {
2234 .name = "release_agent",
e788e066
PM
2235 .read_seq_string = cgroup_release_agent_show,
2236 .write_string = cgroup_release_agent_write,
2237 .max_write_len = PATH_MAX,
81a6a5cd 2238 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2239};
2240
bd89aabc 2241static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2242{
2243 int err;
2244 struct cgroup_subsys *ss;
2245
2246 /* First clear out any existing files */
bd89aabc 2247 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2248
bd89aabc 2249 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2250 if (err < 0)
2251 return err;
2252
bd89aabc
PM
2253 if (cgrp == cgrp->top_cgroup) {
2254 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2255 return err;
2256 }
2257
bd89aabc
PM
2258 for_each_subsys(cgrp->root, ss) {
2259 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2260 return err;
2261 }
2262
2263 return 0;
2264}
2265
2266static void init_cgroup_css(struct cgroup_subsys_state *css,
2267 struct cgroup_subsys *ss,
bd89aabc 2268 struct cgroup *cgrp)
ddbcc7e8 2269{
bd89aabc 2270 css->cgroup = cgrp;
ddbcc7e8
PM
2271 atomic_set(&css->refcnt, 0);
2272 css->flags = 0;
bd89aabc 2273 if (cgrp == dummytop)
ddbcc7e8 2274 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2275 BUG_ON(cgrp->subsys[ss->subsys_id]);
2276 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2277}
2278
2279/*
a043e3b2
LZ
2280 * cgroup_create - create a cgroup
2281 * @parent: cgroup that will be parent of the new cgroup
2282 * @dentry: dentry of the new cgroup
2283 * @mode: mode to set on new inode
ddbcc7e8 2284 *
a043e3b2 2285 * Must be called with the mutex on the parent inode held
ddbcc7e8 2286 */
ddbcc7e8
PM
2287static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2288 int mode)
2289{
bd89aabc 2290 struct cgroup *cgrp;
ddbcc7e8
PM
2291 struct cgroupfs_root *root = parent->root;
2292 int err = 0;
2293 struct cgroup_subsys *ss;
2294 struct super_block *sb = root->sb;
2295
bd89aabc
PM
2296 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2297 if (!cgrp)
ddbcc7e8
PM
2298 return -ENOMEM;
2299
2300 /* Grab a reference on the superblock so the hierarchy doesn't
2301 * get deleted on unmount if there are child cgroups. This
2302 * can be done outside cgroup_mutex, since the sb can't
2303 * disappear while someone has an open control file on the
2304 * fs */
2305 atomic_inc(&sb->s_active);
2306
2307 mutex_lock(&cgroup_mutex);
2308
bd89aabc
PM
2309 INIT_LIST_HEAD(&cgrp->sibling);
2310 INIT_LIST_HEAD(&cgrp->children);
2311 INIT_LIST_HEAD(&cgrp->css_sets);
2312 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8 2313
bd89aabc
PM
2314 cgrp->parent = parent;
2315 cgrp->root = parent->root;
2316 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2317
b6abdb0e
LZ
2318 if (notify_on_release(parent))
2319 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2320
ddbcc7e8 2321 for_each_subsys(root, ss) {
bd89aabc 2322 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2323 if (IS_ERR(css)) {
2324 err = PTR_ERR(css);
2325 goto err_destroy;
2326 }
bd89aabc 2327 init_cgroup_css(css, ss, cgrp);
ddbcc7e8
PM
2328 }
2329
bd89aabc 2330 list_add(&cgrp->sibling, &cgrp->parent->children);
ddbcc7e8
PM
2331 root->number_of_cgroups++;
2332
bd89aabc 2333 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2334 if (err < 0)
2335 goto err_remove;
2336
2337 /* The cgroup directory was pre-locked for us */
bd89aabc 2338 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2339
bd89aabc 2340 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2341 /* If err < 0, we have a half-filled directory - oh well ;) */
2342
2343 mutex_unlock(&cgroup_mutex);
bd89aabc 2344 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2345
2346 return 0;
2347
2348 err_remove:
2349
bd89aabc 2350 list_del(&cgrp->sibling);
ddbcc7e8
PM
2351 root->number_of_cgroups--;
2352
2353 err_destroy:
2354
2355 for_each_subsys(root, ss) {
bd89aabc
PM
2356 if (cgrp->subsys[ss->subsys_id])
2357 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2358 }
2359
2360 mutex_unlock(&cgroup_mutex);
2361
2362 /* Release the reference count that we took on the superblock */
2363 deactivate_super(sb);
2364
bd89aabc 2365 kfree(cgrp);
ddbcc7e8
PM
2366 return err;
2367}
2368
2369static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2370{
2371 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2372
2373 /* the vfs holds inode->i_mutex already */
2374 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2375}
2376
bd89aabc 2377static inline int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2378{
2379 /* Check the reference count on each subsystem. Since we
2380 * already established that there are no tasks in the
2381 * cgroup, if the css refcount is also 0, then there should
2382 * be no outstanding references, so the subsystem is safe to
2383 * destroy. We scan across all subsystems rather than using
2384 * the per-hierarchy linked list of mounted subsystems since
2385 * we can be called via check_for_release() with no
2386 * synchronization other than RCU, and the subsystem linked
2387 * list isn't RCU-safe */
2388 int i;
2389 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2390 struct cgroup_subsys *ss = subsys[i];
2391 struct cgroup_subsys_state *css;
2392 /* Skip subsystems not in this hierarchy */
bd89aabc 2393 if (ss->root != cgrp->root)
81a6a5cd 2394 continue;
bd89aabc 2395 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2396 /* When called from check_for_release() it's possible
2397 * that by this point the cgroup has been removed
2398 * and the css deleted. But a false-positive doesn't
2399 * matter, since it can only happen if the cgroup
2400 * has been deleted and hence no longer needs the
2401 * release agent to be called anyway. */
e18f6318 2402 if (css && atomic_read(&css->refcnt))
81a6a5cd 2403 return 1;
81a6a5cd
PM
2404 }
2405 return 0;
2406}
2407
ddbcc7e8
PM
2408static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2409{
bd89aabc 2410 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2411 struct dentry *d;
2412 struct cgroup *parent;
ddbcc7e8
PM
2413 struct super_block *sb;
2414 struct cgroupfs_root *root;
ddbcc7e8
PM
2415
2416 /* the vfs holds both inode->i_mutex already */
2417
2418 mutex_lock(&cgroup_mutex);
bd89aabc 2419 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2420 mutex_unlock(&cgroup_mutex);
2421 return -EBUSY;
2422 }
bd89aabc 2423 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2424 mutex_unlock(&cgroup_mutex);
2425 return -EBUSY;
2426 }
2427
bd89aabc
PM
2428 parent = cgrp->parent;
2429 root = cgrp->root;
ddbcc7e8 2430 sb = root->sb;
a043e3b2 2431
4fca88c8 2432 /*
a043e3b2
LZ
2433 * Call pre_destroy handlers of subsys. Notify subsystems
2434 * that rmdir() request comes.
4fca88c8
KH
2435 */
2436 cgroup_call_pre_destroy(cgrp);
ddbcc7e8 2437
bd89aabc 2438 if (cgroup_has_css_refs(cgrp)) {
ddbcc7e8
PM
2439 mutex_unlock(&cgroup_mutex);
2440 return -EBUSY;
2441 }
2442
81a6a5cd 2443 spin_lock(&release_list_lock);
bd89aabc
PM
2444 set_bit(CGRP_REMOVED, &cgrp->flags);
2445 if (!list_empty(&cgrp->release_list))
2446 list_del(&cgrp->release_list);
81a6a5cd 2447 spin_unlock(&release_list_lock);
ddbcc7e8 2448 /* delete my sibling from parent->children */
bd89aabc
PM
2449 list_del(&cgrp->sibling);
2450 spin_lock(&cgrp->dentry->d_lock);
2451 d = dget(cgrp->dentry);
2452 cgrp->dentry = NULL;
ddbcc7e8
PM
2453 spin_unlock(&d->d_lock);
2454
2455 cgroup_d_remove_dir(d);
2456 dput(d);
ddbcc7e8 2457
bd89aabc 2458 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2459 check_for_release(parent);
2460
ddbcc7e8 2461 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2462 return 0;
2463}
2464
06a11920 2465static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 2466{
ddbcc7e8 2467 struct cgroup_subsys_state *css;
cfe36bde
DC
2468
2469 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2470
2471 /* Create the top cgroup state for this subsystem */
2472 ss->root = &rootnode;
2473 css = ss->create(ss, dummytop);
2474 /* We don't handle early failures gracefully */
2475 BUG_ON(IS_ERR(css));
2476 init_cgroup_css(css, ss, dummytop);
2477
e8d55fde 2478 /* Update the init_css_set to contain a subsys
817929ec 2479 * pointer to this state - since the subsystem is
e8d55fde
LZ
2480 * newly registered, all tasks and hence the
2481 * init_css_set is in the subsystem's top cgroup. */
2482 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
2483
2484 need_forkexit_callback |= ss->fork || ss->exit;
cf475ad2 2485 need_mm_owner_callback |= !!ss->mm_owner_changed;
ddbcc7e8 2486
e8d55fde
LZ
2487 /* At system boot, before all subsystems have been
2488 * registered, no tasks have been forked, so we don't
2489 * need to invoke fork callbacks here. */
2490 BUG_ON(!list_empty(&init_task.tasks));
2491
ddbcc7e8
PM
2492 ss->active = 1;
2493}
2494
2495/**
a043e3b2
LZ
2496 * cgroup_init_early - cgroup initialization at system boot
2497 *
2498 * Initialize cgroups at system boot, and initialize any
2499 * subsystems that request early init.
ddbcc7e8
PM
2500 */
2501int __init cgroup_init_early(void)
2502{
2503 int i;
817929ec
PM
2504 kref_init(&init_css_set.ref);
2505 kref_get(&init_css_set.ref);
817929ec
PM
2506 INIT_LIST_HEAD(&init_css_set.cg_links);
2507 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 2508 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 2509 css_set_count = 1;
ddbcc7e8
PM
2510 init_cgroup_root(&rootnode);
2511 list_add(&rootnode.root_list, &roots);
817929ec
PM
2512 root_count = 1;
2513 init_task.cgroups = &init_css_set;
2514
2515 init_css_set_link.cg = &init_css_set;
bd89aabc 2516 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2517 &rootnode.top_cgroup.css_sets);
2518 list_add(&init_css_set_link.cg_link_list,
2519 &init_css_set.cg_links);
ddbcc7e8 2520
472b1053
LZ
2521 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2522 INIT_HLIST_HEAD(&css_set_table[i]);
2523
ddbcc7e8
PM
2524 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2525 struct cgroup_subsys *ss = subsys[i];
2526
2527 BUG_ON(!ss->name);
2528 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2529 BUG_ON(!ss->create);
2530 BUG_ON(!ss->destroy);
2531 if (ss->subsys_id != i) {
cfe36bde 2532 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2533 ss->name, ss->subsys_id);
2534 BUG();
2535 }
2536
2537 if (ss->early_init)
2538 cgroup_init_subsys(ss);
2539 }
2540 return 0;
2541}
2542
2543/**
a043e3b2
LZ
2544 * cgroup_init - cgroup initialization
2545 *
2546 * Register cgroup filesystem and /proc file, and initialize
2547 * any subsystems that didn't request early init.
ddbcc7e8
PM
2548 */
2549int __init cgroup_init(void)
2550{
2551 int err;
2552 int i;
472b1053 2553 struct hlist_head *hhead;
a424316c
PM
2554
2555 err = bdi_init(&cgroup_backing_dev_info);
2556 if (err)
2557 return err;
ddbcc7e8
PM
2558
2559 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2560 struct cgroup_subsys *ss = subsys[i];
2561 if (!ss->early_init)
2562 cgroup_init_subsys(ss);
2563 }
2564
472b1053
LZ
2565 /* Add init_css_set to the hash table */
2566 hhead = css_set_hash(init_css_set.subsys);
2567 hlist_add_head(&init_css_set.hlist, hhead);
2568
ddbcc7e8
PM
2569 err = register_filesystem(&cgroup_fs_type);
2570 if (err < 0)
2571 goto out;
2572
46ae220b 2573 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 2574
ddbcc7e8 2575out:
a424316c
PM
2576 if (err)
2577 bdi_destroy(&cgroup_backing_dev_info);
2578
ddbcc7e8
PM
2579 return err;
2580}
b4f48b63 2581
a424316c
PM
2582/*
2583 * proc_cgroup_show()
2584 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2585 * - Used for /proc/<pid>/cgroup.
2586 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2587 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2588 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2589 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2590 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2591 * cgroup to top_cgroup.
2592 */
2593
2594/* TODO: Use a proper seq_file iterator */
2595static int proc_cgroup_show(struct seq_file *m, void *v)
2596{
2597 struct pid *pid;
2598 struct task_struct *tsk;
2599 char *buf;
2600 int retval;
2601 struct cgroupfs_root *root;
2602
2603 retval = -ENOMEM;
2604 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2605 if (!buf)
2606 goto out;
2607
2608 retval = -ESRCH;
2609 pid = m->private;
2610 tsk = get_pid_task(pid, PIDTYPE_PID);
2611 if (!tsk)
2612 goto out_free;
2613
2614 retval = 0;
2615
2616 mutex_lock(&cgroup_mutex);
2617
2618 for_each_root(root) {
2619 struct cgroup_subsys *ss;
bd89aabc 2620 struct cgroup *cgrp;
a424316c
PM
2621 int subsys_id;
2622 int count = 0;
2623
2624 /* Skip this hierarchy if it has no active subsystems */
2625 if (!root->actual_subsys_bits)
2626 continue;
b6c3006d 2627 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2628 for_each_subsys(root, ss)
2629 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2630 seq_putc(m, ':');
2631 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2632 cgrp = task_cgroup(tsk, subsys_id);
2633 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2634 if (retval < 0)
2635 goto out_unlock;
2636 seq_puts(m, buf);
2637 seq_putc(m, '\n');
2638 }
2639
2640out_unlock:
2641 mutex_unlock(&cgroup_mutex);
2642 put_task_struct(tsk);
2643out_free:
2644 kfree(buf);
2645out:
2646 return retval;
2647}
2648
2649static int cgroup_open(struct inode *inode, struct file *file)
2650{
2651 struct pid *pid = PROC_I(inode)->pid;
2652 return single_open(file, proc_cgroup_show, pid);
2653}
2654
2655struct file_operations proc_cgroup_operations = {
2656 .open = cgroup_open,
2657 .read = seq_read,
2658 .llseek = seq_lseek,
2659 .release = single_release,
2660};
2661
2662/* Display information about each subsystem and each hierarchy */
2663static int proc_cgroupstats_show(struct seq_file *m, void *v)
2664{
2665 int i;
a424316c 2666
8bab8dde 2667 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2668 mutex_lock(&cgroup_mutex);
a424316c
PM
2669 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2670 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2671 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2672 ss->name, ss->root->subsys_bits,
8bab8dde 2673 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2674 }
2675 mutex_unlock(&cgroup_mutex);
2676 return 0;
2677}
2678
2679static int cgroupstats_open(struct inode *inode, struct file *file)
2680{
9dce07f1 2681 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2682}
2683
2684static struct file_operations proc_cgroupstats_operations = {
2685 .open = cgroupstats_open,
2686 .read = seq_read,
2687 .llseek = seq_lseek,
2688 .release = single_release,
2689};
2690
b4f48b63
PM
2691/**
2692 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2693 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2694 *
2695 * Description: A task inherits its parent's cgroup at fork().
2696 *
2697 * A pointer to the shared css_set was automatically copied in
2698 * fork.c by dup_task_struct(). However, we ignore that copy, since
2699 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2700 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2701 * have already changed current->cgroups, allowing the previously
2702 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2703 *
2704 * At the point that cgroup_fork() is called, 'current' is the parent
2705 * task, and the passed argument 'child' points to the child task.
2706 */
2707void cgroup_fork(struct task_struct *child)
2708{
817929ec
PM
2709 task_lock(current);
2710 child->cgroups = current->cgroups;
2711 get_css_set(child->cgroups);
2712 task_unlock(current);
2713 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2714}
2715
2716/**
a043e3b2
LZ
2717 * cgroup_fork_callbacks - run fork callbacks
2718 * @child: the new task
2719 *
2720 * Called on a new task very soon before adding it to the
2721 * tasklist. No need to take any locks since no-one can
2722 * be operating on this task.
b4f48b63
PM
2723 */
2724void cgroup_fork_callbacks(struct task_struct *child)
2725{
2726 if (need_forkexit_callback) {
2727 int i;
2728 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2729 struct cgroup_subsys *ss = subsys[i];
2730 if (ss->fork)
2731 ss->fork(ss, child);
2732 }
2733 }
2734}
2735
cf475ad2
BS
2736#ifdef CONFIG_MM_OWNER
2737/**
2738 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2739 * @p: the new owner
2740 *
2741 * Called on every change to mm->owner. mm_init_owner() does not
2742 * invoke this routine, since it assigns the mm->owner the first time
2743 * and does not change it.
2744 */
2745void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2746{
2747 struct cgroup *oldcgrp, *newcgrp;
2748
2749 if (need_mm_owner_callback) {
2750 int i;
2751 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2752 struct cgroup_subsys *ss = subsys[i];
2753 oldcgrp = task_cgroup(old, ss->subsys_id);
2754 newcgrp = task_cgroup(new, ss->subsys_id);
2755 if (oldcgrp == newcgrp)
2756 continue;
2757 if (ss->mm_owner_changed)
2758 ss->mm_owner_changed(ss, oldcgrp, newcgrp);
2759 }
2760 }
2761}
2762#endif /* CONFIG_MM_OWNER */
2763
817929ec 2764/**
a043e3b2
LZ
2765 * cgroup_post_fork - called on a new task after adding it to the task list
2766 * @child: the task in question
2767 *
2768 * Adds the task to the list running through its css_set if necessary.
2769 * Has to be after the task is visible on the task list in case we race
2770 * with the first call to cgroup_iter_start() - to guarantee that the
2771 * new task ends up on its list.
2772 */
817929ec
PM
2773void cgroup_post_fork(struct task_struct *child)
2774{
2775 if (use_task_css_set_links) {
2776 write_lock(&css_set_lock);
2777 if (list_empty(&child->cg_list))
2778 list_add(&child->cg_list, &child->cgroups->tasks);
2779 write_unlock(&css_set_lock);
2780 }
2781}
b4f48b63
PM
2782/**
2783 * cgroup_exit - detach cgroup from exiting task
2784 * @tsk: pointer to task_struct of exiting process
a043e3b2 2785 * @run_callback: run exit callbacks?
b4f48b63
PM
2786 *
2787 * Description: Detach cgroup from @tsk and release it.
2788 *
2789 * Note that cgroups marked notify_on_release force every task in
2790 * them to take the global cgroup_mutex mutex when exiting.
2791 * This could impact scaling on very large systems. Be reluctant to
2792 * use notify_on_release cgroups where very high task exit scaling
2793 * is required on large systems.
2794 *
2795 * the_top_cgroup_hack:
2796 *
2797 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2798 *
2799 * We call cgroup_exit() while the task is still competent to
2800 * handle notify_on_release(), then leave the task attached to the
2801 * root cgroup in each hierarchy for the remainder of its exit.
2802 *
2803 * To do this properly, we would increment the reference count on
2804 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2805 * code we would add a second cgroup function call, to drop that
2806 * reference. This would just create an unnecessary hot spot on
2807 * the top_cgroup reference count, to no avail.
2808 *
2809 * Normally, holding a reference to a cgroup without bumping its
2810 * count is unsafe. The cgroup could go away, or someone could
2811 * attach us to a different cgroup, decrementing the count on
2812 * the first cgroup that we never incremented. But in this case,
2813 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
2814 * which wards off any cgroup_attach_task() attempts, or task is a failed
2815 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
2816 */
2817void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2818{
2819 int i;
817929ec 2820 struct css_set *cg;
b4f48b63
PM
2821
2822 if (run_callbacks && need_forkexit_callback) {
2823 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2824 struct cgroup_subsys *ss = subsys[i];
2825 if (ss->exit)
2826 ss->exit(ss, tsk);
2827 }
2828 }
817929ec
PM
2829
2830 /*
2831 * Unlink from the css_set task list if necessary.
2832 * Optimistically check cg_list before taking
2833 * css_set_lock
2834 */
2835 if (!list_empty(&tsk->cg_list)) {
2836 write_lock(&css_set_lock);
2837 if (!list_empty(&tsk->cg_list))
2838 list_del(&tsk->cg_list);
2839 write_unlock(&css_set_lock);
2840 }
2841
b4f48b63
PM
2842 /* Reassign the task to the init_css_set. */
2843 task_lock(tsk);
817929ec
PM
2844 cg = tsk->cgroups;
2845 tsk->cgroups = &init_css_set;
b4f48b63 2846 task_unlock(tsk);
817929ec 2847 if (cg)
81a6a5cd 2848 put_css_set_taskexit(cg);
b4f48b63 2849}
697f4161
PM
2850
2851/**
a043e3b2
LZ
2852 * cgroup_clone - clone the cgroup the given subsystem is attached to
2853 * @tsk: the task to be moved
2854 * @subsys: the given subsystem
e885dcde 2855 * @nodename: the name for the new cgroup
a043e3b2
LZ
2856 *
2857 * Duplicate the current cgroup in the hierarchy that the given
2858 * subsystem is attached to, and move this task into the new
2859 * child.
697f4161 2860 */
e885dcde
SH
2861int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2862 char *nodename)
697f4161
PM
2863{
2864 struct dentry *dentry;
2865 int ret = 0;
697f4161
PM
2866 struct cgroup *parent, *child;
2867 struct inode *inode;
2868 struct css_set *cg;
2869 struct cgroupfs_root *root;
2870 struct cgroup_subsys *ss;
2871
2872 /* We shouldn't be called by an unregistered subsystem */
2873 BUG_ON(!subsys->active);
2874
2875 /* First figure out what hierarchy and cgroup we're dealing
2876 * with, and pin them so we can drop cgroup_mutex */
2877 mutex_lock(&cgroup_mutex);
2878 again:
2879 root = subsys->root;
2880 if (root == &rootnode) {
2881 printk(KERN_INFO
2882 "Not cloning cgroup for unused subsystem %s\n",
2883 subsys->name);
2884 mutex_unlock(&cgroup_mutex);
2885 return 0;
2886 }
817929ec 2887 cg = tsk->cgroups;
697f4161
PM
2888 parent = task_cgroup(tsk, subsys->subsys_id);
2889
697f4161
PM
2890 /* Pin the hierarchy */
2891 atomic_inc(&parent->root->sb->s_active);
2892
817929ec
PM
2893 /* Keep the cgroup alive */
2894 get_css_set(cg);
697f4161
PM
2895 mutex_unlock(&cgroup_mutex);
2896
2897 /* Now do the VFS work to create a cgroup */
2898 inode = parent->dentry->d_inode;
2899
2900 /* Hold the parent directory mutex across this operation to
2901 * stop anyone else deleting the new cgroup */
2902 mutex_lock(&inode->i_mutex);
2903 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2904 if (IS_ERR(dentry)) {
2905 printk(KERN_INFO
cfe36bde 2906 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
2907 PTR_ERR(dentry));
2908 ret = PTR_ERR(dentry);
2909 goto out_release;
2910 }
2911
2912 /* Create the cgroup directory, which also creates the cgroup */
2913 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
bd89aabc 2914 child = __d_cgrp(dentry);
697f4161
PM
2915 dput(dentry);
2916 if (ret) {
2917 printk(KERN_INFO
2918 "Failed to create cgroup %s: %d\n", nodename,
2919 ret);
2920 goto out_release;
2921 }
2922
2923 if (!child) {
2924 printk(KERN_INFO
2925 "Couldn't find new cgroup %s\n", nodename);
2926 ret = -ENOMEM;
2927 goto out_release;
2928 }
2929
2930 /* The cgroup now exists. Retake cgroup_mutex and check
2931 * that we're still in the same state that we thought we
2932 * were. */
2933 mutex_lock(&cgroup_mutex);
2934 if ((root != subsys->root) ||
2935 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2936 /* Aargh, we raced ... */
2937 mutex_unlock(&inode->i_mutex);
817929ec 2938 put_css_set(cg);
697f4161
PM
2939
2940 deactivate_super(parent->root->sb);
2941 /* The cgroup is still accessible in the VFS, but
2942 * we're not going to try to rmdir() it at this
2943 * point. */
2944 printk(KERN_INFO
2945 "Race in cgroup_clone() - leaking cgroup %s\n",
2946 nodename);
2947 goto again;
2948 }
2949
2950 /* do any required auto-setup */
2951 for_each_subsys(root, ss) {
2952 if (ss->post_clone)
2953 ss->post_clone(ss, child);
2954 }
2955
2956 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 2957 ret = cgroup_attach_task(child, tsk);
697f4161
PM
2958 mutex_unlock(&cgroup_mutex);
2959
2960 out_release:
2961 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
2962
2963 mutex_lock(&cgroup_mutex);
817929ec 2964 put_css_set(cg);
81a6a5cd 2965 mutex_unlock(&cgroup_mutex);
697f4161
PM
2966 deactivate_super(parent->root->sb);
2967 return ret;
2968}
2969
a043e3b2
LZ
2970/**
2971 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2972 * @cgrp: the cgroup in question
2973 *
2974 * See if @cgrp is a descendant of the current task's cgroup in
2975 * the appropriate hierarchy.
697f4161
PM
2976 *
2977 * If we are sending in dummytop, then presumably we are creating
2978 * the top cgroup in the subsystem.
2979 *
2980 * Called only by the ns (nsproxy) cgroup.
2981 */
bd89aabc 2982int cgroup_is_descendant(const struct cgroup *cgrp)
697f4161
PM
2983{
2984 int ret;
2985 struct cgroup *target;
2986 int subsys_id;
2987
bd89aabc 2988 if (cgrp == dummytop)
697f4161
PM
2989 return 1;
2990
bd89aabc 2991 get_first_subsys(cgrp, NULL, &subsys_id);
697f4161 2992 target = task_cgroup(current, subsys_id);
bd89aabc
PM
2993 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2994 cgrp = cgrp->parent;
2995 ret = (cgrp == target);
697f4161
PM
2996 return ret;
2997}
81a6a5cd 2998
bd89aabc 2999static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3000{
3001 /* All of these checks rely on RCU to keep the cgroup
3002 * structure alive */
bd89aabc
PM
3003 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3004 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3005 /* Control Group is currently removeable. If it's not
3006 * already queued for a userspace notification, queue
3007 * it now */
3008 int need_schedule_work = 0;
3009 spin_lock(&release_list_lock);
bd89aabc
PM
3010 if (!cgroup_is_removed(cgrp) &&
3011 list_empty(&cgrp->release_list)) {
3012 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3013 need_schedule_work = 1;
3014 }
3015 spin_unlock(&release_list_lock);
3016 if (need_schedule_work)
3017 schedule_work(&release_agent_work);
3018 }
3019}
3020
3021void __css_put(struct cgroup_subsys_state *css)
3022{
bd89aabc 3023 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3024 rcu_read_lock();
bd89aabc
PM
3025 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3026 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3027 check_for_release(cgrp);
81a6a5cd
PM
3028 }
3029 rcu_read_unlock();
3030}
3031
3032/*
3033 * Notify userspace when a cgroup is released, by running the
3034 * configured release agent with the name of the cgroup (path
3035 * relative to the root of cgroup file system) as the argument.
3036 *
3037 * Most likely, this user command will try to rmdir this cgroup.
3038 *
3039 * This races with the possibility that some other task will be
3040 * attached to this cgroup before it is removed, or that some other
3041 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3042 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3043 * unused, and this cgroup will be reprieved from its death sentence,
3044 * to continue to serve a useful existence. Next time it's released,
3045 * we will get notified again, if it still has 'notify_on_release' set.
3046 *
3047 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3048 * means only wait until the task is successfully execve()'d. The
3049 * separate release agent task is forked by call_usermodehelper(),
3050 * then control in this thread returns here, without waiting for the
3051 * release agent task. We don't bother to wait because the caller of
3052 * this routine has no use for the exit status of the release agent
3053 * task, so no sense holding our caller up for that.
81a6a5cd 3054 */
81a6a5cd
PM
3055static void cgroup_release_agent(struct work_struct *work)
3056{
3057 BUG_ON(work != &release_agent_work);
3058 mutex_lock(&cgroup_mutex);
3059 spin_lock(&release_list_lock);
3060 while (!list_empty(&release_list)) {
3061 char *argv[3], *envp[3];
3062 int i;
e788e066 3063 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3064 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3065 struct cgroup,
3066 release_list);
bd89aabc 3067 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3068 spin_unlock(&release_list_lock);
3069 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3070 if (!pathbuf)
3071 goto continue_free;
3072 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3073 goto continue_free;
3074 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3075 if (!agentbuf)
3076 goto continue_free;
81a6a5cd
PM
3077
3078 i = 0;
e788e066
PM
3079 argv[i++] = agentbuf;
3080 argv[i++] = pathbuf;
81a6a5cd
PM
3081 argv[i] = NULL;
3082
3083 i = 0;
3084 /* minimal command environment */
3085 envp[i++] = "HOME=/";
3086 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3087 envp[i] = NULL;
3088
3089 /* Drop the lock while we invoke the usermode helper,
3090 * since the exec could involve hitting disk and hence
3091 * be a slow process */
3092 mutex_unlock(&cgroup_mutex);
3093 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3094 mutex_lock(&cgroup_mutex);
e788e066
PM
3095 continue_free:
3096 kfree(pathbuf);
3097 kfree(agentbuf);
81a6a5cd
PM
3098 spin_lock(&release_list_lock);
3099 }
3100 spin_unlock(&release_list_lock);
3101 mutex_unlock(&cgroup_mutex);
3102}
8bab8dde
PM
3103
3104static int __init cgroup_disable(char *str)
3105{
3106 int i;
3107 char *token;
3108
3109 while ((token = strsep(&str, ",")) != NULL) {
3110 if (!*token)
3111 continue;
3112
3113 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3114 struct cgroup_subsys *ss = subsys[i];
3115
3116 if (!strcmp(token, ss->name)) {
3117 ss->disabled = 1;
3118 printk(KERN_INFO "Disabling %s control group"
3119 " subsystem\n", ss->name);
3120 break;
3121 }
3122 }
3123 }
3124 return 1;
3125}
3126__setup("cgroup_disable=", cgroup_disable);