]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cgroup.c
ptrace: cleanup arch_ptrace() on MIPS
[net-next-2.6.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
c6d57f33 30#include <linux/ctype.h>
ddbcc7e8
PM
31#include <linux/errno.h>
32#include <linux/fs.h>
33#include <linux/kernel.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/mutex.h>
37#include <linux/mount.h>
38#include <linux/pagemap.h>
a424316c 39#include <linux/proc_fs.h>
ddbcc7e8
PM
40#include <linux/rcupdate.h>
41#include <linux/sched.h>
817929ec 42#include <linux/backing-dev.h>
ddbcc7e8
PM
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
bbcb81d0 48#include <linux/sort.h>
81a6a5cd 49#include <linux/kmod.h>
e6a1105b 50#include <linux/module.h>
846c7bb0
BS
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
472b1053 53#include <linux/hash.h>
3f8206d4 54#include <linux/namei.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
58#include <linux/eventfd.h>
59#include <linux/poll.h>
846c7bb0 60
ddbcc7e8
PM
61#include <asm/atomic.h>
62
81a6a5cd
PM
63static DEFINE_MUTEX(cgroup_mutex);
64
aae8aab4
BB
65/*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
ddbcc7e8 71#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 72static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
73#include <linux/cgroup_subsys.h>
74};
75
c6d57f33
PM
76#define MAX_CGROUP_ROOT_NAMELEN 64
77
ddbcc7e8
PM
78/*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
2c6ab6d2
PM
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
ddbcc7e8
PM
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
e5f6a860 107 /* A list running through the active hierarchies */
ddbcc7e8
PM
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
81a6a5cd 112
e788e066 113 /* The path to use for release notifications. */
81a6a5cd 114 char release_agent_path[PATH_MAX];
c6d57f33
PM
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
118};
119
ddbcc7e8
PM
120/*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125static struct cgroupfs_root rootnode;
126
38460b48
KH
127/*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131#define CSS_ID_MAX (65535)
132struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
2c392b8c 140 struct cgroup_subsys_state __rcu *css;
38460b48
KH
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157};
158
0dea1168
KS
159/*
160 * cgroup_event represents events which userspace want to recieve.
161 */
162struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187};
38460b48 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
191static LIST_HEAD(roots);
817929ec 192static int root_count;
ddbcc7e8 193
2c6ab6d2
PM
194static DEFINE_IDA(hierarchy_ida);
195static int next_hierarchy_id;
196static DEFINE_SPINLOCK(hierarchy_id_lock);
197
ddbcc7e8
PM
198/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199#define dummytop (&rootnode.top_cgroup)
200
201/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
ddbcc7e8 205 */
8947f9d5 206static int need_forkexit_callback __read_mostly;
ddbcc7e8 207
d11c563d
PM
208#ifdef CONFIG_PROVE_LOCKING
209int cgroup_lock_is_held(void)
210{
211 return lockdep_is_held(&cgroup_mutex);
212}
213#else /* #ifdef CONFIG_PROVE_LOCKING */
214int cgroup_lock_is_held(void)
215{
216 return mutex_is_locked(&cgroup_mutex);
217}
218#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
ddbcc7e8 222/* convenient tests for these bits */
bd89aabc 223inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 224{
bd89aabc 225 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
226}
227
228/* bits in struct cgroupfs_root flags field */
229enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231};
232
e9685a03 233static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
234{
235 const int bits =
bd89aabc
PM
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
239}
240
e9685a03 241static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 242{
bd89aabc 243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
244}
245
97978e6d
DL
246static int clone_children(const struct cgroup *cgrp)
247{
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249}
250
ddbcc7e8
PM
251/*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255#define for_each_subsys(_root, _ss) \
256list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
e5f6a860
LZ
258/* for_each_active_root() allows you to iterate across the active hierarchies */
259#define for_each_active_root(_root) \
ddbcc7e8
PM
260list_for_each_entry(_root, &roots, root_list)
261
81a6a5cd
PM
262/* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264static LIST_HEAD(release_list);
265static DEFINE_SPINLOCK(release_list_lock);
266static void cgroup_release_agent(struct work_struct *work);
267static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 268static void check_for_release(struct cgroup *cgrp);
81a6a5cd 269
817929ec
PM
270/* Link structure for associating css_set objects with cgroups */
271struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
bd89aabc 276 struct list_head cgrp_link_list;
7717f7ba 277 struct cgroup *cgrp;
817929ec
PM
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284};
285
286/* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293static struct css_set init_css_set;
294static struct cg_cgroup_link init_css_set_link;
295
e6a1105b
BB
296static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
38460b48 298
817929ec
PM
299/* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302static DEFINE_RWLOCK(css_set_lock);
303static int css_set_count;
304
7717f7ba
PM
305/*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
472b1053
LZ
310#define CSS_SET_HASH_BITS 7
311#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
314static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315{
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327}
328
c378369d
BB
329static void free_css_set_rcu(struct rcu_head *obj)
330{
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
333}
334
817929ec
PM
335/* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
8947f9d5 339static int use_task_css_set_links __read_mostly;
817929ec 340
2c6ab6d2 341static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 342{
71cbb949
KM
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
345 /*
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
349 */
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
356 }
81a6a5cd 357
2c6ab6d2
PM
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
361
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
bd89aabc
PM
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
81a6a5cd 369 if (taskexit)
bd89aabc
PM
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
81a6a5cd 372 }
2c6ab6d2
PM
373
374 kfree(link);
81a6a5cd 375 }
2c6ab6d2
PM
376
377 write_unlock(&css_set_lock);
c378369d 378 call_rcu(&cg->rcu_head, free_css_set_rcu);
b4f48b63
PM
379}
380
817929ec
PM
381/*
382 * refcounted get/put for css_set objects
383 */
384static inline void get_css_set(struct css_set *cg)
385{
146aa1bd 386 atomic_inc(&cg->refcount);
817929ec
PM
387}
388
389static inline void put_css_set(struct css_set *cg)
390{
146aa1bd 391 __put_css_set(cg, 0);
817929ec
PM
392}
393
81a6a5cd
PM
394static inline void put_css_set_taskexit(struct css_set *cg)
395{
146aa1bd 396 __put_css_set(cg, 1);
81a6a5cd
PM
397}
398
7717f7ba
PM
399/*
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
405 *
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
408 */
409static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
413{
414 struct list_head *l1, *l2;
415
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
419 }
420
421 /*
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
428 */
429
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
435
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
444 }
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
452
453 /*
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
459 */
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
466 }
467 }
468 return true;
469}
470
817929ec
PM
471/*
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
472b1053 474 * css_set is suitable.
817929ec
PM
475 *
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
478 *
bd89aabc 479 * cgrp: the cgroup that we're moving into
817929ec
PM
480 *
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
483 */
817929ec
PM
484static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
bd89aabc 486 struct cgroup *cgrp,
817929ec 487 struct cgroup_subsys_state *template[])
b4f48b63
PM
488{
489 int i;
bd89aabc 490 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
817929ec 494
aae8aab4
BB
495 /*
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
499 */
817929ec 500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 501 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
bd89aabc 505 template[i] = cgrp->subsys[i];
817929ec
PM
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
510 }
511 }
512
472b1053
LZ
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
517
518 /* This css_set matches what we need */
519 return cg;
472b1053 520 }
817929ec
PM
521
522 /* No existing cgroup group matched */
523 return NULL;
524}
525
36553434
LZ
526static void free_cg_links(struct list_head *tmp)
527{
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
530
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
534 }
535}
536
817929ec
PM
537/*
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
540 * success or a negative error
541 */
817929ec
PM
542static int allocate_cg_links(int count, struct list_head *tmp)
543{
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
36553434 550 free_cg_links(tmp);
817929ec
PM
551 return -ENOMEM;
552 }
bd89aabc 553 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
554 }
555 return 0;
556}
557
c12f65d4
LZ
558/**
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
563 */
564static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
566{
567 struct cg_cgroup_link *link;
568
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
7717f7ba 573 link->cgrp = cgrp;
2c6ab6d2 574 atomic_inc(&cgrp->count);
c12f65d4 575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
576 /*
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
579 */
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
581}
582
817929ec
PM
583/*
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
589 */
817929ec 590static struct css_set *find_css_set(
bd89aabc 591 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
592{
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
595
596 struct list_head tmp_cg_links;
817929ec 597
472b1053 598 struct hlist_head *hhead;
7717f7ba 599 struct cg_cgroup_link *link;
472b1053 600
817929ec
PM
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
7e9abd89 603 read_lock(&css_set_lock);
bd89aabc 604 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
605 if (res)
606 get_css_set(res);
7e9abd89 607 read_unlock(&css_set_lock);
817929ec
PM
608
609 if (res)
610 return res;
611
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
615
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
620 }
621
146aa1bd 622 atomic_set(&res->refcount, 1);
817929ec
PM
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
472b1053 625 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
626
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
630
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
638 }
817929ec
PM
639
640 BUG_ON(!list_empty(&tmp_cg_links));
641
817929ec 642 css_set_count++;
472b1053
LZ
643
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
647
817929ec
PM
648 write_unlock(&css_set_lock);
649
650 return res;
b4f48b63
PM
651}
652
7717f7ba
PM
653/*
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
656 */
657static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
659{
660 struct css_set *css;
661 struct cgroup *res = NULL;
662
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
665 /*
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
669 */
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
680 }
681 }
682 }
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
686}
687
ddbcc7e8
PM
688/*
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
692 *
693 * A task must hold cgroup_mutex to modify cgroups.
694 *
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
956db3ca 698 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
706 *
ddbcc7e8
PM
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
714 *
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
721 *
722 * The task_lock() exception
723 *
724 * The need for this exception arises from the action of
956db3ca 725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 726 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
733 *
734 * P.S. One more locking exception. RCU is used to guard the
956db3ca 735 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
736 */
737
ddbcc7e8
PM
738/**
739 * cgroup_lock - lock out any changes to cgroup structures
740 *
741 */
ddbcc7e8
PM
742void cgroup_lock(void)
743{
744 mutex_lock(&cgroup_mutex);
745}
67523c48 746EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
747
748/**
749 * cgroup_unlock - release lock on cgroup changes
750 *
751 * Undo the lock taken in a previous cgroup_lock() call.
752 */
ddbcc7e8
PM
753void cgroup_unlock(void)
754{
755 mutex_unlock(&cgroup_mutex);
756}
67523c48 757EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
758
759/*
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
764 */
765
766static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 768static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 769static const struct inode_operations cgroup_dir_inode_operations;
828c0950 770static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
771
772static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 773 .name = "cgroup",
e4ad08fe 774 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 775};
ddbcc7e8 776
38460b48
KH
777static int alloc_css_id(struct cgroup_subsys *ss,
778 struct cgroup *parent, struct cgroup *child);
779
ddbcc7e8
PM
780static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
781{
782 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
783
784 if (inode) {
85fe4025 785 inode->i_ino = get_next_ino();
ddbcc7e8 786 inode->i_mode = mode;
76aac0e9
DH
787 inode->i_uid = current_fsuid();
788 inode->i_gid = current_fsgid();
ddbcc7e8
PM
789 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
790 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
791 }
792 return inode;
793}
794
4fca88c8
KH
795/*
796 * Call subsys's pre_destroy handler.
797 * This is called before css refcnt check.
798 */
ec64f515 799static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
800{
801 struct cgroup_subsys *ss;
ec64f515
KH
802 int ret = 0;
803
4fca88c8 804 for_each_subsys(cgrp->root, ss)
ec64f515
KH
805 if (ss->pre_destroy) {
806 ret = ss->pre_destroy(ss, cgrp);
807 if (ret)
4ab78683 808 break;
ec64f515 809 }
0dea1168 810
ec64f515 811 return ret;
4fca88c8
KH
812}
813
a47295e6
PM
814static void free_cgroup_rcu(struct rcu_head *obj)
815{
816 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
817
818 kfree(cgrp);
819}
820
ddbcc7e8
PM
821static void cgroup_diput(struct dentry *dentry, struct inode *inode)
822{
823 /* is dentry a directory ? if so, kfree() associated cgroup */
824 if (S_ISDIR(inode->i_mode)) {
bd89aabc 825 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 826 struct cgroup_subsys *ss;
bd89aabc 827 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
828 /* It's possible for external users to be holding css
829 * reference counts on a cgroup; css_put() needs to
830 * be able to access the cgroup after decrementing
831 * the reference count in order to know if it needs to
832 * queue the cgroup to be handled by the release
833 * agent */
834 synchronize_rcu();
8dc4f3e1
PM
835
836 mutex_lock(&cgroup_mutex);
837 /*
838 * Release the subsystem state objects.
839 */
75139b82
LZ
840 for_each_subsys(cgrp->root, ss)
841 ss->destroy(ss, cgrp);
8dc4f3e1
PM
842
843 cgrp->root->number_of_cgroups--;
844 mutex_unlock(&cgroup_mutex);
845
a47295e6
PM
846 /*
847 * Drop the active superblock reference that we took when we
848 * created the cgroup
849 */
8dc4f3e1
PM
850 deactivate_super(cgrp->root->sb);
851
72a8cb30
BB
852 /*
853 * if we're getting rid of the cgroup, refcount should ensure
854 * that there are no pidlists left.
855 */
856 BUG_ON(!list_empty(&cgrp->pidlists));
857
a47295e6 858 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
ddbcc7e8
PM
859 }
860 iput(inode);
861}
862
863static void remove_dir(struct dentry *d)
864{
865 struct dentry *parent = dget(d->d_parent);
866
867 d_delete(d);
868 simple_rmdir(parent->d_inode, d);
869 dput(parent);
870}
871
872static void cgroup_clear_directory(struct dentry *dentry)
873{
874 struct list_head *node;
875
876 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
877 spin_lock(&dcache_lock);
878 node = dentry->d_subdirs.next;
879 while (node != &dentry->d_subdirs) {
880 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
881 list_del_init(node);
882 if (d->d_inode) {
883 /* This should never be called on a cgroup
884 * directory with child cgroups */
885 BUG_ON(d->d_inode->i_mode & S_IFDIR);
886 d = dget_locked(d);
887 spin_unlock(&dcache_lock);
888 d_delete(d);
889 simple_unlink(dentry->d_inode, d);
890 dput(d);
891 spin_lock(&dcache_lock);
892 }
893 node = dentry->d_subdirs.next;
894 }
895 spin_unlock(&dcache_lock);
896}
897
898/*
899 * NOTE : the dentry must have been dget()'ed
900 */
901static void cgroup_d_remove_dir(struct dentry *dentry)
902{
903 cgroup_clear_directory(dentry);
904
905 spin_lock(&dcache_lock);
906 list_del_init(&dentry->d_u.d_child);
907 spin_unlock(&dcache_lock);
908 remove_dir(dentry);
909}
910
ec64f515
KH
911/*
912 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
913 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
914 * reference to css->refcnt. In general, this refcnt is expected to goes down
915 * to zero, soon.
916 *
88703267 917 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515
KH
918 */
919DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
920
88703267 921static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 922{
88703267 923 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
924 wake_up_all(&cgroup_rmdir_waitq);
925}
926
88703267
KH
927void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
928{
929 css_get(css);
930}
931
932void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
933{
934 cgroup_wakeup_rmdir_waiter(css->cgroup);
935 css_put(css);
936}
937
aae8aab4 938/*
cf5d5941
BB
939 * Call with cgroup_mutex held. Drops reference counts on modules, including
940 * any duplicate ones that parse_cgroupfs_options took. If this function
941 * returns an error, no reference counts are touched.
aae8aab4 942 */
ddbcc7e8
PM
943static int rebind_subsystems(struct cgroupfs_root *root,
944 unsigned long final_bits)
945{
946 unsigned long added_bits, removed_bits;
bd89aabc 947 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
948 int i;
949
aae8aab4
BB
950 BUG_ON(!mutex_is_locked(&cgroup_mutex));
951
ddbcc7e8
PM
952 removed_bits = root->actual_subsys_bits & ~final_bits;
953 added_bits = final_bits & ~root->actual_subsys_bits;
954 /* Check that any added subsystems are currently free */
955 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 956 unsigned long bit = 1UL << i;
ddbcc7e8
PM
957 struct cgroup_subsys *ss = subsys[i];
958 if (!(bit & added_bits))
959 continue;
aae8aab4
BB
960 /*
961 * Nobody should tell us to do a subsys that doesn't exist:
962 * parse_cgroupfs_options should catch that case and refcounts
963 * ensure that subsystems won't disappear once selected.
964 */
965 BUG_ON(ss == NULL);
ddbcc7e8
PM
966 if (ss->root != &rootnode) {
967 /* Subsystem isn't free */
968 return -EBUSY;
969 }
970 }
971
972 /* Currently we don't handle adding/removing subsystems when
973 * any child cgroups exist. This is theoretically supportable
974 * but involves complex error handling, so it's being left until
975 * later */
307257cf 976 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
977 return -EBUSY;
978
979 /* Process each subsystem */
980 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
981 struct cgroup_subsys *ss = subsys[i];
982 unsigned long bit = 1UL << i;
983 if (bit & added_bits) {
984 /* We're binding this subsystem to this hierarchy */
aae8aab4 985 BUG_ON(ss == NULL);
bd89aabc 986 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
987 BUG_ON(!dummytop->subsys[i]);
988 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 989 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
990 cgrp->subsys[i] = dummytop->subsys[i];
991 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 992 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 993 ss->root = root;
ddbcc7e8 994 if (ss->bind)
bd89aabc 995 ss->bind(ss, cgrp);
999cd8a4 996 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 997 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
998 } else if (bit & removed_bits) {
999 /* We're removing this subsystem */
aae8aab4 1000 BUG_ON(ss == NULL);
bd89aabc
PM
1001 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1002 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1003 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
1004 if (ss->bind)
1005 ss->bind(ss, dummytop);
1006 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1007 cgrp->subsys[i] = NULL;
b2aa30f7 1008 subsys[i]->root = &rootnode;
33a68ac1 1009 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1010 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1011 /* subsystem is now free - drop reference on module */
1012 module_put(ss->module);
ddbcc7e8
PM
1013 } else if (bit & final_bits) {
1014 /* Subsystem state should already exist */
aae8aab4 1015 BUG_ON(ss == NULL);
bd89aabc 1016 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1017 /*
1018 * a refcount was taken, but we already had one, so
1019 * drop the extra reference.
1020 */
1021 module_put(ss->module);
1022#ifdef CONFIG_MODULE_UNLOAD
1023 BUG_ON(ss->module && !module_refcount(ss->module));
1024#endif
ddbcc7e8
PM
1025 } else {
1026 /* Subsystem state shouldn't exist */
bd89aabc 1027 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1028 }
1029 }
1030 root->subsys_bits = root->actual_subsys_bits = final_bits;
1031 synchronize_rcu();
1032
1033 return 0;
1034}
1035
1036static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1037{
1038 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1039 struct cgroup_subsys *ss;
1040
1041 mutex_lock(&cgroup_mutex);
1042 for_each_subsys(root, ss)
1043 seq_printf(seq, ",%s", ss->name);
1044 if (test_bit(ROOT_NOPREFIX, &root->flags))
1045 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1046 if (strlen(root->release_agent_path))
1047 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1048 if (clone_children(&root->top_cgroup))
1049 seq_puts(seq, ",clone_children");
c6d57f33
PM
1050 if (strlen(root->name))
1051 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1052 mutex_unlock(&cgroup_mutex);
1053 return 0;
1054}
1055
1056struct cgroup_sb_opts {
1057 unsigned long subsys_bits;
1058 unsigned long flags;
81a6a5cd 1059 char *release_agent;
97978e6d 1060 bool clone_children;
c6d57f33 1061 char *name;
2c6ab6d2
PM
1062 /* User explicitly requested empty subsystem */
1063 bool none;
c6d57f33
PM
1064
1065 struct cgroupfs_root *new_root;
2c6ab6d2 1066
ddbcc7e8
PM
1067};
1068
aae8aab4
BB
1069/*
1070 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1071 * with cgroup_mutex held to protect the subsys[] array. This function takes
1072 * refcounts on subsystems to be used, unless it returns error, in which case
1073 * no refcounts are taken.
aae8aab4 1074 */
cf5d5941 1075static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1076{
32a8cf23
DL
1077 char *token, *o = data;
1078 bool all_ss = false, one_ss = false;
f9ab5b5b 1079 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1080 int i;
1081 bool module_pin_failed = false;
f9ab5b5b 1082
aae8aab4
BB
1083 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1084
f9ab5b5b
LZ
1085#ifdef CONFIG_CPUSETS
1086 mask = ~(1UL << cpuset_subsys_id);
1087#endif
ddbcc7e8 1088
c6d57f33 1089 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1090
1091 while ((token = strsep(&o, ",")) != NULL) {
1092 if (!*token)
1093 return -EINVAL;
32a8cf23 1094 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1095 /* Explicitly have no subsystems */
1096 opts->none = true;
32a8cf23
DL
1097 continue;
1098 }
1099 if (!strcmp(token, "all")) {
1100 /* Mutually exclusive option 'all' + subsystem name */
1101 if (one_ss)
1102 return -EINVAL;
1103 all_ss = true;
1104 continue;
1105 }
1106 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1107 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1108 continue;
1109 }
1110 if (!strcmp(token, "clone_children")) {
97978e6d 1111 opts->clone_children = true;
32a8cf23
DL
1112 continue;
1113 }
1114 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1115 /* Specifying two release agents is forbidden */
1116 if (opts->release_agent)
1117 return -EINVAL;
c6d57f33 1118 opts->release_agent =
e400c285 1119 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1120 if (!opts->release_agent)
1121 return -ENOMEM;
32a8cf23
DL
1122 continue;
1123 }
1124 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1125 const char *name = token + 5;
1126 /* Can't specify an empty name */
1127 if (!strlen(name))
1128 return -EINVAL;
1129 /* Must match [\w.-]+ */
1130 for (i = 0; i < strlen(name); i++) {
1131 char c = name[i];
1132 if (isalnum(c))
1133 continue;
1134 if ((c == '.') || (c == '-') || (c == '_'))
1135 continue;
1136 return -EINVAL;
1137 }
1138 /* Specifying two names is forbidden */
1139 if (opts->name)
1140 return -EINVAL;
1141 opts->name = kstrndup(name,
e400c285 1142 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1143 GFP_KERNEL);
1144 if (!opts->name)
1145 return -ENOMEM;
32a8cf23
DL
1146
1147 continue;
1148 }
1149
1150 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1151 struct cgroup_subsys *ss = subsys[i];
1152 if (ss == NULL)
1153 continue;
1154 if (strcmp(token, ss->name))
1155 continue;
1156 if (ss->disabled)
1157 continue;
1158
1159 /* Mutually exclusive option 'all' + subsystem name */
1160 if (all_ss)
1161 return -EINVAL;
1162 set_bit(i, &opts->subsys_bits);
1163 one_ss = true;
1164
1165 break;
1166 }
1167 if (i == CGROUP_SUBSYS_COUNT)
1168 return -ENOENT;
1169 }
1170
1171 /*
1172 * If the 'all' option was specified select all the subsystems,
1173 * otherwise 'all, 'none' and a subsystem name options were not
1174 * specified, let's default to 'all'
1175 */
1176 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1177 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1178 struct cgroup_subsys *ss = subsys[i];
1179 if (ss == NULL)
1180 continue;
1181 if (ss->disabled)
1182 continue;
1183 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1184 }
1185 }
1186
2c6ab6d2
PM
1187 /* Consistency checks */
1188
f9ab5b5b
LZ
1189 /*
1190 * Option noprefix was introduced just for backward compatibility
1191 * with the old cpuset, so we allow noprefix only if mounting just
1192 * the cpuset subsystem.
1193 */
1194 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1195 (opts->subsys_bits & mask))
1196 return -EINVAL;
1197
2c6ab6d2
PM
1198
1199 /* Can't specify "none" and some subsystems */
1200 if (opts->subsys_bits && opts->none)
1201 return -EINVAL;
1202
1203 /*
1204 * We either have to specify by name or by subsystems. (So all
1205 * empty hierarchies must have a name).
1206 */
c6d57f33 1207 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1208 return -EINVAL;
1209
cf5d5941
BB
1210 /*
1211 * Grab references on all the modules we'll need, so the subsystems
1212 * don't dance around before rebind_subsystems attaches them. This may
1213 * take duplicate reference counts on a subsystem that's already used,
1214 * but rebind_subsystems handles this case.
1215 */
1216 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1217 unsigned long bit = 1UL << i;
1218
1219 if (!(bit & opts->subsys_bits))
1220 continue;
1221 if (!try_module_get(subsys[i]->module)) {
1222 module_pin_failed = true;
1223 break;
1224 }
1225 }
1226 if (module_pin_failed) {
1227 /*
1228 * oops, one of the modules was going away. this means that we
1229 * raced with a module_delete call, and to the user this is
1230 * essentially a "subsystem doesn't exist" case.
1231 */
1232 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1233 /* drop refcounts only on the ones we took */
1234 unsigned long bit = 1UL << i;
1235
1236 if (!(bit & opts->subsys_bits))
1237 continue;
1238 module_put(subsys[i]->module);
1239 }
1240 return -ENOENT;
1241 }
1242
ddbcc7e8
PM
1243 return 0;
1244}
1245
cf5d5941
BB
1246static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1247{
1248 int i;
1249 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1250 unsigned long bit = 1UL << i;
1251
1252 if (!(bit & subsys_bits))
1253 continue;
1254 module_put(subsys[i]->module);
1255 }
1256}
1257
ddbcc7e8
PM
1258static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1259{
1260 int ret = 0;
1261 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1262 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1263 struct cgroup_sb_opts opts;
1264
bd89aabc 1265 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1266 mutex_lock(&cgroup_mutex);
1267
1268 /* See what subsystems are wanted */
1269 ret = parse_cgroupfs_options(data, &opts);
1270 if (ret)
1271 goto out_unlock;
1272
cf5d5941
BB
1273 /* Don't allow flags or name to change at remount */
1274 if (opts.flags != root->flags ||
1275 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1276 ret = -EINVAL;
cf5d5941 1277 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1278 goto out_unlock;
1279 }
1280
ddbcc7e8 1281 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1282 if (ret) {
1283 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1284 goto out_unlock;
cf5d5941 1285 }
ddbcc7e8
PM
1286
1287 /* (re)populate subsystem files */
0670e08b 1288 cgroup_populate_dir(cgrp);
ddbcc7e8 1289
81a6a5cd
PM
1290 if (opts.release_agent)
1291 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1292 out_unlock:
66bdc9cf 1293 kfree(opts.release_agent);
c6d57f33 1294 kfree(opts.name);
ddbcc7e8 1295 mutex_unlock(&cgroup_mutex);
bd89aabc 1296 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1297 return ret;
1298}
1299
b87221de 1300static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1301 .statfs = simple_statfs,
1302 .drop_inode = generic_delete_inode,
1303 .show_options = cgroup_show_options,
1304 .remount_fs = cgroup_remount,
1305};
1306
cc31edce
PM
1307static void init_cgroup_housekeeping(struct cgroup *cgrp)
1308{
1309 INIT_LIST_HEAD(&cgrp->sibling);
1310 INIT_LIST_HEAD(&cgrp->children);
1311 INIT_LIST_HEAD(&cgrp->css_sets);
1312 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1313 INIT_LIST_HEAD(&cgrp->pidlists);
1314 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1315 INIT_LIST_HEAD(&cgrp->event_list);
1316 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1317}
c6d57f33 1318
ddbcc7e8
PM
1319static void init_cgroup_root(struct cgroupfs_root *root)
1320{
bd89aabc 1321 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1322 INIT_LIST_HEAD(&root->subsys_list);
1323 INIT_LIST_HEAD(&root->root_list);
1324 root->number_of_cgroups = 1;
bd89aabc
PM
1325 cgrp->root = root;
1326 cgrp->top_cgroup = cgrp;
cc31edce 1327 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1328}
1329
2c6ab6d2
PM
1330static bool init_root_id(struct cgroupfs_root *root)
1331{
1332 int ret = 0;
1333
1334 do {
1335 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1336 return false;
1337 spin_lock(&hierarchy_id_lock);
1338 /* Try to allocate the next unused ID */
1339 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1340 &root->hierarchy_id);
1341 if (ret == -ENOSPC)
1342 /* Try again starting from 0 */
1343 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1344 if (!ret) {
1345 next_hierarchy_id = root->hierarchy_id + 1;
1346 } else if (ret != -EAGAIN) {
1347 /* Can only get here if the 31-bit IDR is full ... */
1348 BUG_ON(ret);
1349 }
1350 spin_unlock(&hierarchy_id_lock);
1351 } while (ret);
1352 return true;
1353}
1354
ddbcc7e8
PM
1355static int cgroup_test_super(struct super_block *sb, void *data)
1356{
c6d57f33 1357 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1358 struct cgroupfs_root *root = sb->s_fs_info;
1359
c6d57f33
PM
1360 /* If we asked for a name then it must match */
1361 if (opts->name && strcmp(opts->name, root->name))
1362 return 0;
ddbcc7e8 1363
2c6ab6d2
PM
1364 /*
1365 * If we asked for subsystems (or explicitly for no
1366 * subsystems) then they must match
1367 */
1368 if ((opts->subsys_bits || opts->none)
1369 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1370 return 0;
1371
1372 return 1;
1373}
1374
c6d57f33
PM
1375static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1376{
1377 struct cgroupfs_root *root;
1378
2c6ab6d2 1379 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1380 return NULL;
1381
1382 root = kzalloc(sizeof(*root), GFP_KERNEL);
1383 if (!root)
1384 return ERR_PTR(-ENOMEM);
1385
2c6ab6d2
PM
1386 if (!init_root_id(root)) {
1387 kfree(root);
1388 return ERR_PTR(-ENOMEM);
1389 }
c6d57f33 1390 init_cgroup_root(root);
2c6ab6d2 1391
c6d57f33
PM
1392 root->subsys_bits = opts->subsys_bits;
1393 root->flags = opts->flags;
1394 if (opts->release_agent)
1395 strcpy(root->release_agent_path, opts->release_agent);
1396 if (opts->name)
1397 strcpy(root->name, opts->name);
97978e6d
DL
1398 if (opts->clone_children)
1399 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1400 return root;
1401}
1402
2c6ab6d2
PM
1403static void cgroup_drop_root(struct cgroupfs_root *root)
1404{
1405 if (!root)
1406 return;
1407
1408 BUG_ON(!root->hierarchy_id);
1409 spin_lock(&hierarchy_id_lock);
1410 ida_remove(&hierarchy_ida, root->hierarchy_id);
1411 spin_unlock(&hierarchy_id_lock);
1412 kfree(root);
1413}
1414
ddbcc7e8
PM
1415static int cgroup_set_super(struct super_block *sb, void *data)
1416{
1417 int ret;
c6d57f33
PM
1418 struct cgroup_sb_opts *opts = data;
1419
1420 /* If we don't have a new root, we can't set up a new sb */
1421 if (!opts->new_root)
1422 return -EINVAL;
1423
2c6ab6d2 1424 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1425
1426 ret = set_anon_super(sb, NULL);
1427 if (ret)
1428 return ret;
1429
c6d57f33
PM
1430 sb->s_fs_info = opts->new_root;
1431 opts->new_root->sb = sb;
ddbcc7e8
PM
1432
1433 sb->s_blocksize = PAGE_CACHE_SIZE;
1434 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1435 sb->s_magic = CGROUP_SUPER_MAGIC;
1436 sb->s_op = &cgroup_ops;
1437
1438 return 0;
1439}
1440
1441static int cgroup_get_rootdir(struct super_block *sb)
1442{
1443 struct inode *inode =
1444 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1445 struct dentry *dentry;
1446
1447 if (!inode)
1448 return -ENOMEM;
1449
ddbcc7e8
PM
1450 inode->i_fop = &simple_dir_operations;
1451 inode->i_op = &cgroup_dir_inode_operations;
1452 /* directories start off with i_nlink == 2 (for "." entry) */
1453 inc_nlink(inode);
1454 dentry = d_alloc_root(inode);
1455 if (!dentry) {
1456 iput(inode);
1457 return -ENOMEM;
1458 }
1459 sb->s_root = dentry;
1460 return 0;
1461}
1462
1463static int cgroup_get_sb(struct file_system_type *fs_type,
1464 int flags, const char *unused_dev_name,
1465 void *data, struct vfsmount *mnt)
1466{
1467 struct cgroup_sb_opts opts;
c6d57f33 1468 struct cgroupfs_root *root;
ddbcc7e8
PM
1469 int ret = 0;
1470 struct super_block *sb;
c6d57f33 1471 struct cgroupfs_root *new_root;
ddbcc7e8
PM
1472
1473 /* First find the desired set of subsystems */
aae8aab4 1474 mutex_lock(&cgroup_mutex);
ddbcc7e8 1475 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1476 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1477 if (ret)
1478 goto out_err;
ddbcc7e8 1479
c6d57f33
PM
1480 /*
1481 * Allocate a new cgroup root. We may not need it if we're
1482 * reusing an existing hierarchy.
1483 */
1484 new_root = cgroup_root_from_opts(&opts);
1485 if (IS_ERR(new_root)) {
1486 ret = PTR_ERR(new_root);
cf5d5941 1487 goto drop_modules;
81a6a5cd 1488 }
c6d57f33 1489 opts.new_root = new_root;
ddbcc7e8 1490
c6d57f33
PM
1491 /* Locate an existing or new sb for this hierarchy */
1492 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1493 if (IS_ERR(sb)) {
c6d57f33 1494 ret = PTR_ERR(sb);
2c6ab6d2 1495 cgroup_drop_root(opts.new_root);
cf5d5941 1496 goto drop_modules;
ddbcc7e8
PM
1497 }
1498
c6d57f33
PM
1499 root = sb->s_fs_info;
1500 BUG_ON(!root);
1501 if (root == opts.new_root) {
1502 /* We used the new root structure, so this is a new hierarchy */
1503 struct list_head tmp_cg_links;
c12f65d4 1504 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1505 struct inode *inode;
c6d57f33 1506 struct cgroupfs_root *existing_root;
28fd5dfc 1507 int i;
ddbcc7e8
PM
1508
1509 BUG_ON(sb->s_root != NULL);
1510
1511 ret = cgroup_get_rootdir(sb);
1512 if (ret)
1513 goto drop_new_super;
817929ec 1514 inode = sb->s_root->d_inode;
ddbcc7e8 1515
817929ec 1516 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1517 mutex_lock(&cgroup_mutex);
1518
c6d57f33
PM
1519 if (strlen(root->name)) {
1520 /* Check for name clashes with existing mounts */
1521 for_each_active_root(existing_root) {
1522 if (!strcmp(existing_root->name, root->name)) {
1523 ret = -EBUSY;
1524 mutex_unlock(&cgroup_mutex);
1525 mutex_unlock(&inode->i_mutex);
1526 goto drop_new_super;
1527 }
1528 }
1529 }
1530
817929ec
PM
1531 /*
1532 * We're accessing css_set_count without locking
1533 * css_set_lock here, but that's OK - it can only be
1534 * increased by someone holding cgroup_lock, and
1535 * that's us. The worst that can happen is that we
1536 * have some link structures left over
1537 */
1538 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1539 if (ret) {
1540 mutex_unlock(&cgroup_mutex);
1541 mutex_unlock(&inode->i_mutex);
1542 goto drop_new_super;
1543 }
1544
ddbcc7e8
PM
1545 ret = rebind_subsystems(root, root->subsys_bits);
1546 if (ret == -EBUSY) {
1547 mutex_unlock(&cgroup_mutex);
817929ec 1548 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1549 free_cg_links(&tmp_cg_links);
1550 goto drop_new_super;
ddbcc7e8 1551 }
cf5d5941
BB
1552 /*
1553 * There must be no failure case after here, since rebinding
1554 * takes care of subsystems' refcounts, which are explicitly
1555 * dropped in the failure exit path.
1556 */
ddbcc7e8
PM
1557
1558 /* EBUSY should be the only error here */
1559 BUG_ON(ret);
1560
1561 list_add(&root->root_list, &roots);
817929ec 1562 root_count++;
ddbcc7e8 1563
c12f65d4 1564 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1565 root->top_cgroup.dentry = sb->s_root;
1566
817929ec
PM
1567 /* Link the top cgroup in this hierarchy into all
1568 * the css_set objects */
1569 write_lock(&css_set_lock);
28fd5dfc
LZ
1570 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1571 struct hlist_head *hhead = &css_set_table[i];
1572 struct hlist_node *node;
817929ec 1573 struct css_set *cg;
28fd5dfc 1574
c12f65d4
LZ
1575 hlist_for_each_entry(cg, node, hhead, hlist)
1576 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1577 }
817929ec
PM
1578 write_unlock(&css_set_lock);
1579
1580 free_cg_links(&tmp_cg_links);
1581
c12f65d4
LZ
1582 BUG_ON(!list_empty(&root_cgrp->sibling));
1583 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1584 BUG_ON(root->number_of_cgroups != 1);
1585
c12f65d4 1586 cgroup_populate_dir(root_cgrp);
ddbcc7e8 1587 mutex_unlock(&cgroup_mutex);
34f77a90 1588 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1589 } else {
1590 /*
1591 * We re-used an existing hierarchy - the new root (if
1592 * any) is not needed
1593 */
2c6ab6d2 1594 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1595 /* no subsys rebinding, so refcounts don't change */
1596 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1597 }
1598
a3ec947c 1599 simple_set_mnt(mnt, sb);
c6d57f33
PM
1600 kfree(opts.release_agent);
1601 kfree(opts.name);
a3ec947c 1602 return 0;
ddbcc7e8
PM
1603
1604 drop_new_super:
6f5bbff9 1605 deactivate_locked_super(sb);
cf5d5941
BB
1606 drop_modules:
1607 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1608 out_err:
1609 kfree(opts.release_agent);
1610 kfree(opts.name);
ddbcc7e8
PM
1611 return ret;
1612}
1613
1614static void cgroup_kill_sb(struct super_block *sb) {
1615 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1616 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1617 int ret;
71cbb949
KM
1618 struct cg_cgroup_link *link;
1619 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1620
1621 BUG_ON(!root);
1622
1623 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1624 BUG_ON(!list_empty(&cgrp->children));
1625 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1626
1627 mutex_lock(&cgroup_mutex);
1628
1629 /* Rebind all subsystems back to the default hierarchy */
1630 ret = rebind_subsystems(root, 0);
1631 /* Shouldn't be able to fail ... */
1632 BUG_ON(ret);
1633
817929ec
PM
1634 /*
1635 * Release all the links from css_sets to this hierarchy's
1636 * root cgroup
1637 */
1638 write_lock(&css_set_lock);
71cbb949
KM
1639
1640 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1641 cgrp_link_list) {
817929ec 1642 list_del(&link->cg_link_list);
bd89aabc 1643 list_del(&link->cgrp_link_list);
817929ec
PM
1644 kfree(link);
1645 }
1646 write_unlock(&css_set_lock);
1647
839ec545
PM
1648 if (!list_empty(&root->root_list)) {
1649 list_del(&root->root_list);
1650 root_count--;
1651 }
e5f6a860 1652
ddbcc7e8
PM
1653 mutex_unlock(&cgroup_mutex);
1654
ddbcc7e8 1655 kill_litter_super(sb);
2c6ab6d2 1656 cgroup_drop_root(root);
ddbcc7e8
PM
1657}
1658
1659static struct file_system_type cgroup_fs_type = {
1660 .name = "cgroup",
1661 .get_sb = cgroup_get_sb,
1662 .kill_sb = cgroup_kill_sb,
1663};
1664
676db4af
GKH
1665static struct kobject *cgroup_kobj;
1666
bd89aabc 1667static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1668{
1669 return dentry->d_fsdata;
1670}
1671
1672static inline struct cftype *__d_cft(struct dentry *dentry)
1673{
1674 return dentry->d_fsdata;
1675}
1676
a043e3b2
LZ
1677/**
1678 * cgroup_path - generate the path of a cgroup
1679 * @cgrp: the cgroup in question
1680 * @buf: the buffer to write the path into
1681 * @buflen: the length of the buffer
1682 *
a47295e6
PM
1683 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1684 * reference. Writes path of cgroup into buf. Returns 0 on success,
1685 * -errno on error.
ddbcc7e8 1686 */
bd89aabc 1687int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1688{
1689 char *start;
9a9686b6
LZ
1690 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1691 rcu_read_lock_held() ||
1692 cgroup_lock_is_held());
ddbcc7e8 1693
a47295e6 1694 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1695 /*
1696 * Inactive subsystems have no dentry for their root
1697 * cgroup
1698 */
1699 strcpy(buf, "/");
1700 return 0;
1701 }
1702
1703 start = buf + buflen;
1704
1705 *--start = '\0';
1706 for (;;) {
a47295e6 1707 int len = dentry->d_name.len;
9a9686b6 1708
ddbcc7e8
PM
1709 if ((start -= len) < buf)
1710 return -ENAMETOOLONG;
9a9686b6 1711 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1712 cgrp = cgrp->parent;
1713 if (!cgrp)
ddbcc7e8 1714 break;
9a9686b6
LZ
1715
1716 dentry = rcu_dereference_check(cgrp->dentry,
1717 rcu_read_lock_held() ||
1718 cgroup_lock_is_held());
bd89aabc 1719 if (!cgrp->parent)
ddbcc7e8
PM
1720 continue;
1721 if (--start < buf)
1722 return -ENAMETOOLONG;
1723 *start = '/';
1724 }
1725 memmove(buf, start, buf + buflen - start);
1726 return 0;
1727}
67523c48 1728EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1729
a043e3b2
LZ
1730/**
1731 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1732 * @cgrp: the cgroup the task is attaching to
1733 * @tsk: the task to be attached
bbcb81d0 1734 *
a043e3b2
LZ
1735 * Call holding cgroup_mutex. May take task_lock of
1736 * the task 'tsk' during call.
bbcb81d0 1737 */
956db3ca 1738int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1739{
1740 int retval = 0;
2468c723 1741 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1742 struct cgroup *oldcgrp;
77efecd9 1743 struct css_set *cg;
817929ec 1744 struct css_set *newcg;
bd89aabc 1745 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1746
1747 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1748 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1749 if (cgrp == oldcgrp)
bbcb81d0
PM
1750 return 0;
1751
1752 for_each_subsys(root, ss) {
1753 if (ss->can_attach) {
be367d09 1754 retval = ss->can_attach(ss, cgrp, tsk, false);
2468c723
DN
1755 if (retval) {
1756 /*
1757 * Remember on which subsystem the can_attach()
1758 * failed, so that we only call cancel_attach()
1759 * against the subsystems whose can_attach()
1760 * succeeded. (See below)
1761 */
1762 failed_ss = ss;
1763 goto out;
1764 }
bbcb81d0
PM
1765 }
1766 }
1767
77efecd9
LJ
1768 task_lock(tsk);
1769 cg = tsk->cgroups;
1770 get_css_set(cg);
1771 task_unlock(tsk);
817929ec
PM
1772 /*
1773 * Locate or allocate a new css_set for this task,
1774 * based on its final set of cgroups
1775 */
bd89aabc 1776 newcg = find_css_set(cg, cgrp);
77efecd9 1777 put_css_set(cg);
2468c723
DN
1778 if (!newcg) {
1779 retval = -ENOMEM;
1780 goto out;
1781 }
817929ec 1782
bbcb81d0
PM
1783 task_lock(tsk);
1784 if (tsk->flags & PF_EXITING) {
1785 task_unlock(tsk);
817929ec 1786 put_css_set(newcg);
2468c723
DN
1787 retval = -ESRCH;
1788 goto out;
bbcb81d0 1789 }
817929ec 1790 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1791 task_unlock(tsk);
1792
817929ec
PM
1793 /* Update the css_set linked lists if we're using them */
1794 write_lock(&css_set_lock);
1795 if (!list_empty(&tsk->cg_list)) {
1796 list_del(&tsk->cg_list);
1797 list_add(&tsk->cg_list, &newcg->tasks);
1798 }
1799 write_unlock(&css_set_lock);
1800
bbcb81d0 1801 for_each_subsys(root, ss) {
e18f6318 1802 if (ss->attach)
be367d09 1803 ss->attach(ss, cgrp, oldcgrp, tsk, false);
bbcb81d0 1804 }
bd89aabc 1805 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1806 synchronize_rcu();
817929ec 1807 put_css_set(cg);
ec64f515
KH
1808
1809 /*
1810 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1811 * is no longer empty.
1812 */
88703267 1813 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1814out:
1815 if (retval) {
1816 for_each_subsys(root, ss) {
1817 if (ss == failed_ss)
1818 /*
1819 * This subsystem was the one that failed the
1820 * can_attach() check earlier, so we don't need
1821 * to call cancel_attach() against it or any
1822 * remaining subsystems.
1823 */
1824 break;
1825 if (ss->cancel_attach)
1826 ss->cancel_attach(ss, cgrp, tsk, false);
1827 }
1828 }
1829 return retval;
bbcb81d0
PM
1830}
1831
d7926ee3 1832/**
31583bb0
MT
1833 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1834 * @from: attach to all cgroups of a given task
d7926ee3
SS
1835 * @tsk: the task to be attached
1836 */
31583bb0 1837int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1838{
1839 struct cgroupfs_root *root;
d7926ee3
SS
1840 int retval = 0;
1841
1842 cgroup_lock();
1843 for_each_active_root(root) {
31583bb0
MT
1844 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1845
1846 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1847 if (retval)
1848 break;
1849 }
1850 cgroup_unlock();
1851
1852 return retval;
1853}
31583bb0 1854EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1855
bbcb81d0 1856/*
af351026
PM
1857 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1858 * held. May take task_lock of task
bbcb81d0 1859 */
af351026 1860static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1861{
bbcb81d0 1862 struct task_struct *tsk;
c69e8d9c 1863 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1864 int ret;
1865
bbcb81d0
PM
1866 if (pid) {
1867 rcu_read_lock();
73507f33 1868 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1869 if (!tsk || tsk->flags & PF_EXITING) {
1870 rcu_read_unlock();
1871 return -ESRCH;
1872 }
bbcb81d0 1873
c69e8d9c
DH
1874 tcred = __task_cred(tsk);
1875 if (cred->euid &&
1876 cred->euid != tcred->uid &&
1877 cred->euid != tcred->suid) {
1878 rcu_read_unlock();
bbcb81d0
PM
1879 return -EACCES;
1880 }
c69e8d9c
DH
1881 get_task_struct(tsk);
1882 rcu_read_unlock();
bbcb81d0
PM
1883 } else {
1884 tsk = current;
1885 get_task_struct(tsk);
1886 }
1887
956db3ca 1888 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1889 put_task_struct(tsk);
1890 return ret;
1891}
1892
af351026
PM
1893static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1894{
1895 int ret;
1896 if (!cgroup_lock_live_group(cgrp))
1897 return -ENODEV;
1898 ret = attach_task_by_pid(cgrp, pid);
1899 cgroup_unlock();
1900 return ret;
1901}
1902
e788e066
PM
1903/**
1904 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1905 * @cgrp: the cgroup to be checked for liveness
1906 *
84eea842
PM
1907 * On success, returns true; the lock should be later released with
1908 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1909 */
84eea842 1910bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1911{
1912 mutex_lock(&cgroup_mutex);
1913 if (cgroup_is_removed(cgrp)) {
1914 mutex_unlock(&cgroup_mutex);
1915 return false;
1916 }
1917 return true;
1918}
67523c48 1919EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
1920
1921static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1922 const char *buffer)
1923{
1924 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
1925 if (strlen(buffer) >= PATH_MAX)
1926 return -EINVAL;
e788e066
PM
1927 if (!cgroup_lock_live_group(cgrp))
1928 return -ENODEV;
1929 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1930 cgroup_unlock();
e788e066
PM
1931 return 0;
1932}
1933
1934static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1935 struct seq_file *seq)
1936{
1937 if (!cgroup_lock_live_group(cgrp))
1938 return -ENODEV;
1939 seq_puts(seq, cgrp->root->release_agent_path);
1940 seq_putc(seq, '\n');
84eea842 1941 cgroup_unlock();
e788e066
PM
1942 return 0;
1943}
1944
84eea842
PM
1945/* A buffer size big enough for numbers or short strings */
1946#define CGROUP_LOCAL_BUFFER_SIZE 64
1947
e73d2c61 1948static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1949 struct file *file,
1950 const char __user *userbuf,
1951 size_t nbytes, loff_t *unused_ppos)
355e0c48 1952{
84eea842 1953 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1954 int retval = 0;
355e0c48
PM
1955 char *end;
1956
1957 if (!nbytes)
1958 return -EINVAL;
1959 if (nbytes >= sizeof(buffer))
1960 return -E2BIG;
1961 if (copy_from_user(buffer, userbuf, nbytes))
1962 return -EFAULT;
1963
1964 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 1965 if (cft->write_u64) {
478988d3 1966 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
1967 if (*end)
1968 return -EINVAL;
1969 retval = cft->write_u64(cgrp, cft, val);
1970 } else {
478988d3 1971 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
1972 if (*end)
1973 return -EINVAL;
1974 retval = cft->write_s64(cgrp, cft, val);
1975 }
355e0c48
PM
1976 if (!retval)
1977 retval = nbytes;
1978 return retval;
1979}
1980
db3b1497
PM
1981static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1982 struct file *file,
1983 const char __user *userbuf,
1984 size_t nbytes, loff_t *unused_ppos)
1985{
84eea842 1986 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1987 int retval = 0;
1988 size_t max_bytes = cft->max_write_len;
1989 char *buffer = local_buffer;
1990
1991 if (!max_bytes)
1992 max_bytes = sizeof(local_buffer) - 1;
1993 if (nbytes >= max_bytes)
1994 return -E2BIG;
1995 /* Allocate a dynamic buffer if we need one */
1996 if (nbytes >= sizeof(local_buffer)) {
1997 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1998 if (buffer == NULL)
1999 return -ENOMEM;
2000 }
5a3eb9f6
LZ
2001 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2002 retval = -EFAULT;
2003 goto out;
2004 }
db3b1497
PM
2005
2006 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2007 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2008 if (!retval)
2009 retval = nbytes;
5a3eb9f6 2010out:
db3b1497
PM
2011 if (buffer != local_buffer)
2012 kfree(buffer);
2013 return retval;
2014}
2015
ddbcc7e8
PM
2016static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2017 size_t nbytes, loff_t *ppos)
2018{
2019 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2020 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2021
75139b82 2022 if (cgroup_is_removed(cgrp))
ddbcc7e8 2023 return -ENODEV;
355e0c48 2024 if (cft->write)
bd89aabc 2025 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2026 if (cft->write_u64 || cft->write_s64)
2027 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2028 if (cft->write_string)
2029 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2030 if (cft->trigger) {
2031 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2032 return ret ? ret : nbytes;
2033 }
355e0c48 2034 return -EINVAL;
ddbcc7e8
PM
2035}
2036
f4c753b7
PM
2037static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2038 struct file *file,
2039 char __user *buf, size_t nbytes,
2040 loff_t *ppos)
ddbcc7e8 2041{
84eea842 2042 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2043 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2044 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2045
2046 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2047}
2048
e73d2c61
PM
2049static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2050 struct file *file,
2051 char __user *buf, size_t nbytes,
2052 loff_t *ppos)
2053{
84eea842 2054 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2055 s64 val = cft->read_s64(cgrp, cft);
2056 int len = sprintf(tmp, "%lld\n", (long long) val);
2057
2058 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2059}
2060
ddbcc7e8
PM
2061static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2062 size_t nbytes, loff_t *ppos)
2063{
2064 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2065 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2066
75139b82 2067 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2068 return -ENODEV;
2069
2070 if (cft->read)
bd89aabc 2071 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2072 if (cft->read_u64)
2073 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2074 if (cft->read_s64)
2075 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2076 return -EINVAL;
2077}
2078
91796569
PM
2079/*
2080 * seqfile ops/methods for returning structured data. Currently just
2081 * supports string->u64 maps, but can be extended in future.
2082 */
2083
2084struct cgroup_seqfile_state {
2085 struct cftype *cft;
2086 struct cgroup *cgroup;
2087};
2088
2089static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2090{
2091 struct seq_file *sf = cb->state;
2092 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2093}
2094
2095static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2096{
2097 struct cgroup_seqfile_state *state = m->private;
2098 struct cftype *cft = state->cft;
29486df3
SH
2099 if (cft->read_map) {
2100 struct cgroup_map_cb cb = {
2101 .fill = cgroup_map_add,
2102 .state = m,
2103 };
2104 return cft->read_map(state->cgroup, cft, &cb);
2105 }
2106 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2107}
2108
96930a63 2109static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2110{
2111 struct seq_file *seq = file->private_data;
2112 kfree(seq->private);
2113 return single_release(inode, file);
2114}
2115
828c0950 2116static const struct file_operations cgroup_seqfile_operations = {
91796569 2117 .read = seq_read,
e788e066 2118 .write = cgroup_file_write,
91796569
PM
2119 .llseek = seq_lseek,
2120 .release = cgroup_seqfile_release,
2121};
2122
ddbcc7e8
PM
2123static int cgroup_file_open(struct inode *inode, struct file *file)
2124{
2125 int err;
2126 struct cftype *cft;
2127
2128 err = generic_file_open(inode, file);
2129 if (err)
2130 return err;
ddbcc7e8 2131 cft = __d_cft(file->f_dentry);
75139b82 2132
29486df3 2133 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2134 struct cgroup_seqfile_state *state =
2135 kzalloc(sizeof(*state), GFP_USER);
2136 if (!state)
2137 return -ENOMEM;
2138 state->cft = cft;
2139 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2140 file->f_op = &cgroup_seqfile_operations;
2141 err = single_open(file, cgroup_seqfile_show, state);
2142 if (err < 0)
2143 kfree(state);
2144 } else if (cft->open)
ddbcc7e8
PM
2145 err = cft->open(inode, file);
2146 else
2147 err = 0;
2148
2149 return err;
2150}
2151
2152static int cgroup_file_release(struct inode *inode, struct file *file)
2153{
2154 struct cftype *cft = __d_cft(file->f_dentry);
2155 if (cft->release)
2156 return cft->release(inode, file);
2157 return 0;
2158}
2159
2160/*
2161 * cgroup_rename - Only allow simple rename of directories in place.
2162 */
2163static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2164 struct inode *new_dir, struct dentry *new_dentry)
2165{
2166 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2167 return -ENOTDIR;
2168 if (new_dentry->d_inode)
2169 return -EEXIST;
2170 if (old_dir != new_dir)
2171 return -EIO;
2172 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2173}
2174
828c0950 2175static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2176 .read = cgroup_file_read,
2177 .write = cgroup_file_write,
2178 .llseek = generic_file_llseek,
2179 .open = cgroup_file_open,
2180 .release = cgroup_file_release,
2181};
2182
6e1d5dcc 2183static const struct inode_operations cgroup_dir_inode_operations = {
ddbcc7e8
PM
2184 .lookup = simple_lookup,
2185 .mkdir = cgroup_mkdir,
2186 .rmdir = cgroup_rmdir,
2187 .rename = cgroup_rename,
2188};
2189
0dea1168
KS
2190/*
2191 * Check if a file is a control file
2192 */
2193static inline struct cftype *__file_cft(struct file *file)
2194{
2195 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2196 return ERR_PTR(-EINVAL);
2197 return __d_cft(file->f_dentry);
2198}
2199
099fca32 2200static int cgroup_create_file(struct dentry *dentry, mode_t mode,
ddbcc7e8
PM
2201 struct super_block *sb)
2202{
3ba13d17 2203 static const struct dentry_operations cgroup_dops = {
ddbcc7e8
PM
2204 .d_iput = cgroup_diput,
2205 };
2206
2207 struct inode *inode;
2208
2209 if (!dentry)
2210 return -ENOENT;
2211 if (dentry->d_inode)
2212 return -EEXIST;
2213
2214 inode = cgroup_new_inode(mode, sb);
2215 if (!inode)
2216 return -ENOMEM;
2217
2218 if (S_ISDIR(mode)) {
2219 inode->i_op = &cgroup_dir_inode_operations;
2220 inode->i_fop = &simple_dir_operations;
2221
2222 /* start off with i_nlink == 2 (for "." entry) */
2223 inc_nlink(inode);
2224
2225 /* start with the directory inode held, so that we can
2226 * populate it without racing with another mkdir */
817929ec 2227 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2228 } else if (S_ISREG(mode)) {
2229 inode->i_size = 0;
2230 inode->i_fop = &cgroup_file_operations;
2231 }
2232 dentry->d_op = &cgroup_dops;
2233 d_instantiate(dentry, inode);
2234 dget(dentry); /* Extra count - pin the dentry in core */
2235 return 0;
2236}
2237
2238/*
a043e3b2
LZ
2239 * cgroup_create_dir - create a directory for an object.
2240 * @cgrp: the cgroup we create the directory for. It must have a valid
2241 * ->parent field. And we are going to fill its ->dentry field.
2242 * @dentry: dentry of the new cgroup
2243 * @mode: mode to set on new directory.
ddbcc7e8 2244 */
bd89aabc 2245static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 2246 mode_t mode)
ddbcc7e8
PM
2247{
2248 struct dentry *parent;
2249 int error = 0;
2250
bd89aabc
PM
2251 parent = cgrp->parent->dentry;
2252 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2253 if (!error) {
bd89aabc 2254 dentry->d_fsdata = cgrp;
ddbcc7e8 2255 inc_nlink(parent->d_inode);
a47295e6 2256 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2257 dget(dentry);
2258 }
2259 dput(dentry);
2260
2261 return error;
2262}
2263
099fca32
LZ
2264/**
2265 * cgroup_file_mode - deduce file mode of a control file
2266 * @cft: the control file in question
2267 *
2268 * returns cft->mode if ->mode is not 0
2269 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2270 * returns S_IRUGO if it has only a read handler
2271 * returns S_IWUSR if it has only a write hander
2272 */
2273static mode_t cgroup_file_mode(const struct cftype *cft)
2274{
2275 mode_t mode = 0;
2276
2277 if (cft->mode)
2278 return cft->mode;
2279
2280 if (cft->read || cft->read_u64 || cft->read_s64 ||
2281 cft->read_map || cft->read_seq_string)
2282 mode |= S_IRUGO;
2283
2284 if (cft->write || cft->write_u64 || cft->write_s64 ||
2285 cft->write_string || cft->trigger)
2286 mode |= S_IWUSR;
2287
2288 return mode;
2289}
2290
bd89aabc 2291int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2292 struct cgroup_subsys *subsys,
2293 const struct cftype *cft)
2294{
bd89aabc 2295 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2296 struct dentry *dentry;
2297 int error;
099fca32 2298 mode_t mode;
ddbcc7e8
PM
2299
2300 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2301 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2302 strcpy(name, subsys->name);
2303 strcat(name, ".");
2304 }
2305 strcat(name, cft->name);
2306 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2307 dentry = lookup_one_len(name, dir, strlen(name));
2308 if (!IS_ERR(dentry)) {
099fca32
LZ
2309 mode = cgroup_file_mode(cft);
2310 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2311 cgrp->root->sb);
ddbcc7e8
PM
2312 if (!error)
2313 dentry->d_fsdata = (void *)cft;
2314 dput(dentry);
2315 } else
2316 error = PTR_ERR(dentry);
2317 return error;
2318}
e6a1105b 2319EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2320
bd89aabc 2321int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2322 struct cgroup_subsys *subsys,
2323 const struct cftype cft[],
2324 int count)
2325{
2326 int i, err;
2327 for (i = 0; i < count; i++) {
bd89aabc 2328 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2329 if (err)
2330 return err;
2331 }
2332 return 0;
2333}
e6a1105b 2334EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2335
a043e3b2
LZ
2336/**
2337 * cgroup_task_count - count the number of tasks in a cgroup.
2338 * @cgrp: the cgroup in question
2339 *
2340 * Return the number of tasks in the cgroup.
2341 */
bd89aabc 2342int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2343{
2344 int count = 0;
71cbb949 2345 struct cg_cgroup_link *link;
817929ec
PM
2346
2347 read_lock(&css_set_lock);
71cbb949 2348 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2349 count += atomic_read(&link->cg->refcount);
817929ec
PM
2350 }
2351 read_unlock(&css_set_lock);
bbcb81d0
PM
2352 return count;
2353}
2354
817929ec
PM
2355/*
2356 * Advance a list_head iterator. The iterator should be positioned at
2357 * the start of a css_set
2358 */
bd89aabc 2359static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2360 struct cgroup_iter *it)
817929ec
PM
2361{
2362 struct list_head *l = it->cg_link;
2363 struct cg_cgroup_link *link;
2364 struct css_set *cg;
2365
2366 /* Advance to the next non-empty css_set */
2367 do {
2368 l = l->next;
bd89aabc 2369 if (l == &cgrp->css_sets) {
817929ec
PM
2370 it->cg_link = NULL;
2371 return;
2372 }
bd89aabc 2373 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2374 cg = link->cg;
2375 } while (list_empty(&cg->tasks));
2376 it->cg_link = l;
2377 it->task = cg->tasks.next;
2378}
2379
31a7df01
CW
2380/*
2381 * To reduce the fork() overhead for systems that are not actually
2382 * using their cgroups capability, we don't maintain the lists running
2383 * through each css_set to its tasks until we see the list actually
2384 * used - in other words after the first call to cgroup_iter_start().
2385 *
2386 * The tasklist_lock is not held here, as do_each_thread() and
2387 * while_each_thread() are protected by RCU.
2388 */
3df91fe3 2389static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2390{
2391 struct task_struct *p, *g;
2392 write_lock(&css_set_lock);
2393 use_task_css_set_links = 1;
2394 do_each_thread(g, p) {
2395 task_lock(p);
0e04388f
LZ
2396 /*
2397 * We should check if the process is exiting, otherwise
2398 * it will race with cgroup_exit() in that the list
2399 * entry won't be deleted though the process has exited.
2400 */
2401 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2402 list_add(&p->cg_list, &p->cgroups->tasks);
2403 task_unlock(p);
2404 } while_each_thread(g, p);
2405 write_unlock(&css_set_lock);
2406}
2407
bd89aabc 2408void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2409{
2410 /*
2411 * The first time anyone tries to iterate across a cgroup,
2412 * we need to enable the list linking each css_set to its
2413 * tasks, and fix up all existing tasks.
2414 */
31a7df01
CW
2415 if (!use_task_css_set_links)
2416 cgroup_enable_task_cg_lists();
2417
817929ec 2418 read_lock(&css_set_lock);
bd89aabc
PM
2419 it->cg_link = &cgrp->css_sets;
2420 cgroup_advance_iter(cgrp, it);
817929ec
PM
2421}
2422
bd89aabc 2423struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2424 struct cgroup_iter *it)
2425{
2426 struct task_struct *res;
2427 struct list_head *l = it->task;
2019f634 2428 struct cg_cgroup_link *link;
817929ec
PM
2429
2430 /* If the iterator cg is NULL, we have no tasks */
2431 if (!it->cg_link)
2432 return NULL;
2433 res = list_entry(l, struct task_struct, cg_list);
2434 /* Advance iterator to find next entry */
2435 l = l->next;
2019f634
LJ
2436 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2437 if (l == &link->cg->tasks) {
817929ec
PM
2438 /* We reached the end of this task list - move on to
2439 * the next cg_cgroup_link */
bd89aabc 2440 cgroup_advance_iter(cgrp, it);
817929ec
PM
2441 } else {
2442 it->task = l;
2443 }
2444 return res;
2445}
2446
bd89aabc 2447void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2448{
2449 read_unlock(&css_set_lock);
2450}
2451
31a7df01
CW
2452static inline int started_after_time(struct task_struct *t1,
2453 struct timespec *time,
2454 struct task_struct *t2)
2455{
2456 int start_diff = timespec_compare(&t1->start_time, time);
2457 if (start_diff > 0) {
2458 return 1;
2459 } else if (start_diff < 0) {
2460 return 0;
2461 } else {
2462 /*
2463 * Arbitrarily, if two processes started at the same
2464 * time, we'll say that the lower pointer value
2465 * started first. Note that t2 may have exited by now
2466 * so this may not be a valid pointer any longer, but
2467 * that's fine - it still serves to distinguish
2468 * between two tasks started (effectively) simultaneously.
2469 */
2470 return t1 > t2;
2471 }
2472}
2473
2474/*
2475 * This function is a callback from heap_insert() and is used to order
2476 * the heap.
2477 * In this case we order the heap in descending task start time.
2478 */
2479static inline int started_after(void *p1, void *p2)
2480{
2481 struct task_struct *t1 = p1;
2482 struct task_struct *t2 = p2;
2483 return started_after_time(t1, &t2->start_time, t2);
2484}
2485
2486/**
2487 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2488 * @scan: struct cgroup_scanner containing arguments for the scan
2489 *
2490 * Arguments include pointers to callback functions test_task() and
2491 * process_task().
2492 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2493 * and if it returns true, call process_task() for it also.
2494 * The test_task pointer may be NULL, meaning always true (select all tasks).
2495 * Effectively duplicates cgroup_iter_{start,next,end}()
2496 * but does not lock css_set_lock for the call to process_task().
2497 * The struct cgroup_scanner may be embedded in any structure of the caller's
2498 * creation.
2499 * It is guaranteed that process_task() will act on every task that
2500 * is a member of the cgroup for the duration of this call. This
2501 * function may or may not call process_task() for tasks that exit
2502 * or move to a different cgroup during the call, or are forked or
2503 * move into the cgroup during the call.
2504 *
2505 * Note that test_task() may be called with locks held, and may in some
2506 * situations be called multiple times for the same task, so it should
2507 * be cheap.
2508 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2509 * pre-allocated and will be used for heap operations (and its "gt" member will
2510 * be overwritten), else a temporary heap will be used (allocation of which
2511 * may cause this function to fail).
2512 */
2513int cgroup_scan_tasks(struct cgroup_scanner *scan)
2514{
2515 int retval, i;
2516 struct cgroup_iter it;
2517 struct task_struct *p, *dropped;
2518 /* Never dereference latest_task, since it's not refcounted */
2519 struct task_struct *latest_task = NULL;
2520 struct ptr_heap tmp_heap;
2521 struct ptr_heap *heap;
2522 struct timespec latest_time = { 0, 0 };
2523
2524 if (scan->heap) {
2525 /* The caller supplied our heap and pre-allocated its memory */
2526 heap = scan->heap;
2527 heap->gt = &started_after;
2528 } else {
2529 /* We need to allocate our own heap memory */
2530 heap = &tmp_heap;
2531 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2532 if (retval)
2533 /* cannot allocate the heap */
2534 return retval;
2535 }
2536
2537 again:
2538 /*
2539 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2540 * to determine which are of interest, and using the scanner's
2541 * "process_task" callback to process any of them that need an update.
2542 * Since we don't want to hold any locks during the task updates,
2543 * gather tasks to be processed in a heap structure.
2544 * The heap is sorted by descending task start time.
2545 * If the statically-sized heap fills up, we overflow tasks that
2546 * started later, and in future iterations only consider tasks that
2547 * started after the latest task in the previous pass. This
2548 * guarantees forward progress and that we don't miss any tasks.
2549 */
2550 heap->size = 0;
2551 cgroup_iter_start(scan->cg, &it);
2552 while ((p = cgroup_iter_next(scan->cg, &it))) {
2553 /*
2554 * Only affect tasks that qualify per the caller's callback,
2555 * if he provided one
2556 */
2557 if (scan->test_task && !scan->test_task(p, scan))
2558 continue;
2559 /*
2560 * Only process tasks that started after the last task
2561 * we processed
2562 */
2563 if (!started_after_time(p, &latest_time, latest_task))
2564 continue;
2565 dropped = heap_insert(heap, p);
2566 if (dropped == NULL) {
2567 /*
2568 * The new task was inserted; the heap wasn't
2569 * previously full
2570 */
2571 get_task_struct(p);
2572 } else if (dropped != p) {
2573 /*
2574 * The new task was inserted, and pushed out a
2575 * different task
2576 */
2577 get_task_struct(p);
2578 put_task_struct(dropped);
2579 }
2580 /*
2581 * Else the new task was newer than anything already in
2582 * the heap and wasn't inserted
2583 */
2584 }
2585 cgroup_iter_end(scan->cg, &it);
2586
2587 if (heap->size) {
2588 for (i = 0; i < heap->size; i++) {
4fe91d51 2589 struct task_struct *q = heap->ptrs[i];
31a7df01 2590 if (i == 0) {
4fe91d51
PJ
2591 latest_time = q->start_time;
2592 latest_task = q;
31a7df01
CW
2593 }
2594 /* Process the task per the caller's callback */
4fe91d51
PJ
2595 scan->process_task(q, scan);
2596 put_task_struct(q);
31a7df01
CW
2597 }
2598 /*
2599 * If we had to process any tasks at all, scan again
2600 * in case some of them were in the middle of forking
2601 * children that didn't get processed.
2602 * Not the most efficient way to do it, but it avoids
2603 * having to take callback_mutex in the fork path
2604 */
2605 goto again;
2606 }
2607 if (heap == &tmp_heap)
2608 heap_free(&tmp_heap);
2609 return 0;
2610}
2611
bbcb81d0 2612/*
102a775e 2613 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2614 *
2615 * Reading this file can return large amounts of data if a cgroup has
2616 * *lots* of attached tasks. So it may need several calls to read(),
2617 * but we cannot guarantee that the information we produce is correct
2618 * unless we produce it entirely atomically.
2619 *
bbcb81d0 2620 */
bbcb81d0 2621
d1d9fd33
BB
2622/*
2623 * The following two functions "fix" the issue where there are more pids
2624 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2625 * TODO: replace with a kernel-wide solution to this problem
2626 */
2627#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2628static void *pidlist_allocate(int count)
2629{
2630 if (PIDLIST_TOO_LARGE(count))
2631 return vmalloc(count * sizeof(pid_t));
2632 else
2633 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2634}
2635static void pidlist_free(void *p)
2636{
2637 if (is_vmalloc_addr(p))
2638 vfree(p);
2639 else
2640 kfree(p);
2641}
2642static void *pidlist_resize(void *p, int newcount)
2643{
2644 void *newlist;
2645 /* note: if new alloc fails, old p will still be valid either way */
2646 if (is_vmalloc_addr(p)) {
2647 newlist = vmalloc(newcount * sizeof(pid_t));
2648 if (!newlist)
2649 return NULL;
2650 memcpy(newlist, p, newcount * sizeof(pid_t));
2651 vfree(p);
2652 } else {
2653 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2654 }
2655 return newlist;
2656}
2657
bbcb81d0 2658/*
102a775e
BB
2659 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2660 * If the new stripped list is sufficiently smaller and there's enough memory
2661 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2662 * number of unique elements.
bbcb81d0 2663 */
102a775e
BB
2664/* is the size difference enough that we should re-allocate the array? */
2665#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2666static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 2667{
102a775e
BB
2668 int src, dest = 1;
2669 pid_t *list = *p;
2670 pid_t *newlist;
2671
2672 /*
2673 * we presume the 0th element is unique, so i starts at 1. trivial
2674 * edge cases first; no work needs to be done for either
2675 */
2676 if (length == 0 || length == 1)
2677 return length;
2678 /* src and dest walk down the list; dest counts unique elements */
2679 for (src = 1; src < length; src++) {
2680 /* find next unique element */
2681 while (list[src] == list[src-1]) {
2682 src++;
2683 if (src == length)
2684 goto after;
2685 }
2686 /* dest always points to where the next unique element goes */
2687 list[dest] = list[src];
2688 dest++;
2689 }
2690after:
2691 /*
2692 * if the length difference is large enough, we want to allocate a
2693 * smaller buffer to save memory. if this fails due to out of memory,
2694 * we'll just stay with what we've got.
2695 */
2696 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 2697 newlist = pidlist_resize(list, dest);
102a775e
BB
2698 if (newlist)
2699 *p = newlist;
2700 }
2701 return dest;
2702}
2703
2704static int cmppid(const void *a, const void *b)
2705{
2706 return *(pid_t *)a - *(pid_t *)b;
2707}
2708
72a8cb30
BB
2709/*
2710 * find the appropriate pidlist for our purpose (given procs vs tasks)
2711 * returns with the lock on that pidlist already held, and takes care
2712 * of the use count, or returns NULL with no locks held if we're out of
2713 * memory.
2714 */
2715static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2716 enum cgroup_filetype type)
2717{
2718 struct cgroup_pidlist *l;
2719 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
2720 struct pid_namespace *ns = current->nsproxy->pid_ns;
2721
72a8cb30
BB
2722 /*
2723 * We can't drop the pidlist_mutex before taking the l->mutex in case
2724 * the last ref-holder is trying to remove l from the list at the same
2725 * time. Holding the pidlist_mutex precludes somebody taking whichever
2726 * list we find out from under us - compare release_pid_array().
2727 */
2728 mutex_lock(&cgrp->pidlist_mutex);
2729 list_for_each_entry(l, &cgrp->pidlists, links) {
2730 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
2731 /* make sure l doesn't vanish out from under us */
2732 down_write(&l->mutex);
2733 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
2734 return l;
2735 }
2736 }
2737 /* entry not found; create a new one */
2738 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2739 if (!l) {
2740 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
2741 return l;
2742 }
2743 init_rwsem(&l->mutex);
2744 down_write(&l->mutex);
2745 l->key.type = type;
b70cc5fd 2746 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
2747 l->use_count = 0; /* don't increment here */
2748 l->list = NULL;
2749 l->owner = cgrp;
2750 list_add(&l->links, &cgrp->pidlists);
2751 mutex_unlock(&cgrp->pidlist_mutex);
2752 return l;
2753}
2754
102a775e
BB
2755/*
2756 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2757 */
72a8cb30
BB
2758static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2759 struct cgroup_pidlist **lp)
102a775e
BB
2760{
2761 pid_t *array;
2762 int length;
2763 int pid, n = 0; /* used for populating the array */
817929ec
PM
2764 struct cgroup_iter it;
2765 struct task_struct *tsk;
102a775e
BB
2766 struct cgroup_pidlist *l;
2767
2768 /*
2769 * If cgroup gets more users after we read count, we won't have
2770 * enough space - tough. This race is indistinguishable to the
2771 * caller from the case that the additional cgroup users didn't
2772 * show up until sometime later on.
2773 */
2774 length = cgroup_task_count(cgrp);
d1d9fd33 2775 array = pidlist_allocate(length);
102a775e
BB
2776 if (!array)
2777 return -ENOMEM;
2778 /* now, populate the array */
bd89aabc
PM
2779 cgroup_iter_start(cgrp, &it);
2780 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 2781 if (unlikely(n == length))
817929ec 2782 break;
102a775e 2783 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2784 if (type == CGROUP_FILE_PROCS)
2785 pid = task_tgid_vnr(tsk);
2786 else
2787 pid = task_pid_vnr(tsk);
102a775e
BB
2788 if (pid > 0) /* make sure to only use valid results */
2789 array[n++] = pid;
817929ec 2790 }
bd89aabc 2791 cgroup_iter_end(cgrp, &it);
102a775e
BB
2792 length = n;
2793 /* now sort & (if procs) strip out duplicates */
2794 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2795 if (type == CGROUP_FILE_PROCS)
102a775e 2796 length = pidlist_uniq(&array, length);
72a8cb30
BB
2797 l = cgroup_pidlist_find(cgrp, type);
2798 if (!l) {
d1d9fd33 2799 pidlist_free(array);
72a8cb30 2800 return -ENOMEM;
102a775e 2801 }
72a8cb30 2802 /* store array, freeing old if necessary - lock already held */
d1d9fd33 2803 pidlist_free(l->list);
102a775e
BB
2804 l->list = array;
2805 l->length = length;
2806 l->use_count++;
2807 up_write(&l->mutex);
72a8cb30 2808 *lp = l;
102a775e 2809 return 0;
bbcb81d0
PM
2810}
2811
846c7bb0 2812/**
a043e3b2 2813 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2814 * @stats: cgroupstats to fill information into
2815 * @dentry: A dentry entry belonging to the cgroup for which stats have
2816 * been requested.
a043e3b2
LZ
2817 *
2818 * Build and fill cgroupstats so that taskstats can export it to user
2819 * space.
846c7bb0
BS
2820 */
2821int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2822{
2823 int ret = -EINVAL;
bd89aabc 2824 struct cgroup *cgrp;
846c7bb0
BS
2825 struct cgroup_iter it;
2826 struct task_struct *tsk;
33d283be 2827
846c7bb0 2828 /*
33d283be
LZ
2829 * Validate dentry by checking the superblock operations,
2830 * and make sure it's a directory.
846c7bb0 2831 */
33d283be
LZ
2832 if (dentry->d_sb->s_op != &cgroup_ops ||
2833 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2834 goto err;
2835
2836 ret = 0;
bd89aabc 2837 cgrp = dentry->d_fsdata;
846c7bb0 2838
bd89aabc
PM
2839 cgroup_iter_start(cgrp, &it);
2840 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2841 switch (tsk->state) {
2842 case TASK_RUNNING:
2843 stats->nr_running++;
2844 break;
2845 case TASK_INTERRUPTIBLE:
2846 stats->nr_sleeping++;
2847 break;
2848 case TASK_UNINTERRUPTIBLE:
2849 stats->nr_uninterruptible++;
2850 break;
2851 case TASK_STOPPED:
2852 stats->nr_stopped++;
2853 break;
2854 default:
2855 if (delayacct_is_task_waiting_on_io(tsk))
2856 stats->nr_io_wait++;
2857 break;
2858 }
2859 }
bd89aabc 2860 cgroup_iter_end(cgrp, &it);
846c7bb0 2861
846c7bb0
BS
2862err:
2863 return ret;
2864}
2865
8f3ff208 2866
bbcb81d0 2867/*
102a775e 2868 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 2869 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 2870 * in the cgroup->l->list array.
bbcb81d0 2871 */
cc31edce 2872
102a775e 2873static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2874{
cc31edce
PM
2875 /*
2876 * Initially we receive a position value that corresponds to
2877 * one more than the last pid shown (or 0 on the first call or
2878 * after a seek to the start). Use a binary-search to find the
2879 * next pid to display, if any
2880 */
102a775e 2881 struct cgroup_pidlist *l = s->private;
cc31edce
PM
2882 int index = 0, pid = *pos;
2883 int *iter;
2884
102a775e 2885 down_read(&l->mutex);
cc31edce 2886 if (pid) {
102a775e 2887 int end = l->length;
20777766 2888
cc31edce
PM
2889 while (index < end) {
2890 int mid = (index + end) / 2;
102a775e 2891 if (l->list[mid] == pid) {
cc31edce
PM
2892 index = mid;
2893 break;
102a775e 2894 } else if (l->list[mid] <= pid)
cc31edce
PM
2895 index = mid + 1;
2896 else
2897 end = mid;
2898 }
2899 }
2900 /* If we're off the end of the array, we're done */
102a775e 2901 if (index >= l->length)
cc31edce
PM
2902 return NULL;
2903 /* Update the abstract position to be the actual pid that we found */
102a775e 2904 iter = l->list + index;
cc31edce
PM
2905 *pos = *iter;
2906 return iter;
2907}
2908
102a775e 2909static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 2910{
102a775e
BB
2911 struct cgroup_pidlist *l = s->private;
2912 up_read(&l->mutex);
cc31edce
PM
2913}
2914
102a775e 2915static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 2916{
102a775e
BB
2917 struct cgroup_pidlist *l = s->private;
2918 pid_t *p = v;
2919 pid_t *end = l->list + l->length;
cc31edce
PM
2920 /*
2921 * Advance to the next pid in the array. If this goes off the
2922 * end, we're done
2923 */
2924 p++;
2925 if (p >= end) {
2926 return NULL;
2927 } else {
2928 *pos = *p;
2929 return p;
2930 }
2931}
2932
102a775e 2933static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
2934{
2935 return seq_printf(s, "%d\n", *(int *)v);
2936}
bbcb81d0 2937
102a775e
BB
2938/*
2939 * seq_operations functions for iterating on pidlists through seq_file -
2940 * independent of whether it's tasks or procs
2941 */
2942static const struct seq_operations cgroup_pidlist_seq_operations = {
2943 .start = cgroup_pidlist_start,
2944 .stop = cgroup_pidlist_stop,
2945 .next = cgroup_pidlist_next,
2946 .show = cgroup_pidlist_show,
cc31edce
PM
2947};
2948
102a775e 2949static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 2950{
72a8cb30
BB
2951 /*
2952 * the case where we're the last user of this particular pidlist will
2953 * have us remove it from the cgroup's list, which entails taking the
2954 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2955 * pidlist_mutex, we have to take pidlist_mutex first.
2956 */
2957 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
2958 down_write(&l->mutex);
2959 BUG_ON(!l->use_count);
2960 if (!--l->use_count) {
72a8cb30
BB
2961 /* we're the last user if refcount is 0; remove and free */
2962 list_del(&l->links);
2963 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 2964 pidlist_free(l->list);
72a8cb30
BB
2965 put_pid_ns(l->key.ns);
2966 up_write(&l->mutex);
2967 kfree(l);
2968 return;
cc31edce 2969 }
72a8cb30 2970 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 2971 up_write(&l->mutex);
bbcb81d0
PM
2972}
2973
102a775e 2974static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 2975{
102a775e 2976 struct cgroup_pidlist *l;
cc31edce
PM
2977 if (!(file->f_mode & FMODE_READ))
2978 return 0;
102a775e
BB
2979 /*
2980 * the seq_file will only be initialized if the file was opened for
2981 * reading; hence we check if it's not null only in that case.
2982 */
2983 l = ((struct seq_file *)file->private_data)->private;
2984 cgroup_release_pid_array(l);
cc31edce
PM
2985 return seq_release(inode, file);
2986}
2987
102a775e 2988static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
2989 .read = seq_read,
2990 .llseek = seq_lseek,
2991 .write = cgroup_file_write,
102a775e 2992 .release = cgroup_pidlist_release,
cc31edce
PM
2993};
2994
bbcb81d0 2995/*
102a775e
BB
2996 * The following functions handle opens on a file that displays a pidlist
2997 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2998 * in the cgroup.
bbcb81d0 2999 */
102a775e 3000/* helper function for the two below it */
72a8cb30 3001static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3002{
bd89aabc 3003 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3004 struct cgroup_pidlist *l;
cc31edce 3005 int retval;
bbcb81d0 3006
cc31edce 3007 /* Nothing to do for write-only files */
bbcb81d0
PM
3008 if (!(file->f_mode & FMODE_READ))
3009 return 0;
3010
102a775e 3011 /* have the array populated */
72a8cb30 3012 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3013 if (retval)
3014 return retval;
3015 /* configure file information */
3016 file->f_op = &cgroup_pidlist_operations;
cc31edce 3017
102a775e 3018 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3019 if (retval) {
102a775e 3020 cgroup_release_pid_array(l);
cc31edce 3021 return retval;
bbcb81d0 3022 }
102a775e 3023 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3024 return 0;
3025}
102a775e
BB
3026static int cgroup_tasks_open(struct inode *unused, struct file *file)
3027{
72a8cb30 3028 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3029}
3030static int cgroup_procs_open(struct inode *unused, struct file *file)
3031{
72a8cb30 3032 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3033}
bbcb81d0 3034
bd89aabc 3035static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3036 struct cftype *cft)
3037{
bd89aabc 3038 return notify_on_release(cgrp);
81a6a5cd
PM
3039}
3040
6379c106
PM
3041static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3042 struct cftype *cft,
3043 u64 val)
3044{
3045 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3046 if (val)
3047 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3048 else
3049 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3050 return 0;
3051}
3052
0dea1168
KS
3053/*
3054 * Unregister event and free resources.
3055 *
3056 * Gets called from workqueue.
3057 */
3058static void cgroup_event_remove(struct work_struct *work)
3059{
3060 struct cgroup_event *event = container_of(work, struct cgroup_event,
3061 remove);
3062 struct cgroup *cgrp = event->cgrp;
3063
0dea1168
KS
3064 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3065
3066 eventfd_ctx_put(event->eventfd);
0dea1168 3067 kfree(event);
a0a4db54 3068 dput(cgrp->dentry);
0dea1168
KS
3069}
3070
3071/*
3072 * Gets called on POLLHUP on eventfd when user closes it.
3073 *
3074 * Called with wqh->lock held and interrupts disabled.
3075 */
3076static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3077 int sync, void *key)
3078{
3079 struct cgroup_event *event = container_of(wait,
3080 struct cgroup_event, wait);
3081 struct cgroup *cgrp = event->cgrp;
3082 unsigned long flags = (unsigned long)key;
3083
3084 if (flags & POLLHUP) {
a93d2f17 3085 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3086 spin_lock(&cgrp->event_list_lock);
3087 list_del(&event->list);
3088 spin_unlock(&cgrp->event_list_lock);
3089 /*
3090 * We are in atomic context, but cgroup_event_remove() may
3091 * sleep, so we have to call it in workqueue.
3092 */
3093 schedule_work(&event->remove);
3094 }
3095
3096 return 0;
3097}
3098
3099static void cgroup_event_ptable_queue_proc(struct file *file,
3100 wait_queue_head_t *wqh, poll_table *pt)
3101{
3102 struct cgroup_event *event = container_of(pt,
3103 struct cgroup_event, pt);
3104
3105 event->wqh = wqh;
3106 add_wait_queue(wqh, &event->wait);
3107}
3108
3109/*
3110 * Parse input and register new cgroup event handler.
3111 *
3112 * Input must be in format '<event_fd> <control_fd> <args>'.
3113 * Interpretation of args is defined by control file implementation.
3114 */
3115static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3116 const char *buffer)
3117{
3118 struct cgroup_event *event = NULL;
3119 unsigned int efd, cfd;
3120 struct file *efile = NULL;
3121 struct file *cfile = NULL;
3122 char *endp;
3123 int ret;
3124
3125 efd = simple_strtoul(buffer, &endp, 10);
3126 if (*endp != ' ')
3127 return -EINVAL;
3128 buffer = endp + 1;
3129
3130 cfd = simple_strtoul(buffer, &endp, 10);
3131 if ((*endp != ' ') && (*endp != '\0'))
3132 return -EINVAL;
3133 buffer = endp + 1;
3134
3135 event = kzalloc(sizeof(*event), GFP_KERNEL);
3136 if (!event)
3137 return -ENOMEM;
3138 event->cgrp = cgrp;
3139 INIT_LIST_HEAD(&event->list);
3140 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3141 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3142 INIT_WORK(&event->remove, cgroup_event_remove);
3143
3144 efile = eventfd_fget(efd);
3145 if (IS_ERR(efile)) {
3146 ret = PTR_ERR(efile);
3147 goto fail;
3148 }
3149
3150 event->eventfd = eventfd_ctx_fileget(efile);
3151 if (IS_ERR(event->eventfd)) {
3152 ret = PTR_ERR(event->eventfd);
3153 goto fail;
3154 }
3155
3156 cfile = fget(cfd);
3157 if (!cfile) {
3158 ret = -EBADF;
3159 goto fail;
3160 }
3161
3162 /* the process need read permission on control file */
3163 ret = file_permission(cfile, MAY_READ);
3164 if (ret < 0)
3165 goto fail;
3166
3167 event->cft = __file_cft(cfile);
3168 if (IS_ERR(event->cft)) {
3169 ret = PTR_ERR(event->cft);
3170 goto fail;
3171 }
3172
3173 if (!event->cft->register_event || !event->cft->unregister_event) {
3174 ret = -EINVAL;
3175 goto fail;
3176 }
3177
3178 ret = event->cft->register_event(cgrp, event->cft,
3179 event->eventfd, buffer);
3180 if (ret)
3181 goto fail;
3182
3183 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3184 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3185 ret = 0;
3186 goto fail;
3187 }
3188
a0a4db54
KS
3189 /*
3190 * Events should be removed after rmdir of cgroup directory, but before
3191 * destroying subsystem state objects. Let's take reference to cgroup
3192 * directory dentry to do that.
3193 */
3194 dget(cgrp->dentry);
3195
0dea1168
KS
3196 spin_lock(&cgrp->event_list_lock);
3197 list_add(&event->list, &cgrp->event_list);
3198 spin_unlock(&cgrp->event_list_lock);
3199
3200 fput(cfile);
3201 fput(efile);
3202
3203 return 0;
3204
3205fail:
3206 if (cfile)
3207 fput(cfile);
3208
3209 if (event && event->eventfd && !IS_ERR(event->eventfd))
3210 eventfd_ctx_put(event->eventfd);
3211
3212 if (!IS_ERR_OR_NULL(efile))
3213 fput(efile);
3214
3215 kfree(event);
3216
3217 return ret;
3218}
3219
97978e6d
DL
3220static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3221 struct cftype *cft)
3222{
3223 return clone_children(cgrp);
3224}
3225
3226static int cgroup_clone_children_write(struct cgroup *cgrp,
3227 struct cftype *cft,
3228 u64 val)
3229{
3230 if (val)
3231 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3232 else
3233 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3234 return 0;
3235}
3236
bbcb81d0
PM
3237/*
3238 * for the common functions, 'private' gives the type of file
3239 */
102a775e
BB
3240/* for hysterical raisins, we can't put this on the older files */
3241#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3242static struct cftype files[] = {
3243 {
3244 .name = "tasks",
3245 .open = cgroup_tasks_open,
af351026 3246 .write_u64 = cgroup_tasks_write,
102a775e 3247 .release = cgroup_pidlist_release,
099fca32 3248 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3249 },
102a775e
BB
3250 {
3251 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3252 .open = cgroup_procs_open,
3253 /* .write_u64 = cgroup_procs_write, TODO */
3254 .release = cgroup_pidlist_release,
3255 .mode = S_IRUGO,
3256 },
81a6a5cd
PM
3257 {
3258 .name = "notify_on_release",
f4c753b7 3259 .read_u64 = cgroup_read_notify_on_release,
6379c106 3260 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3261 },
0dea1168
KS
3262 {
3263 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3264 .write_string = cgroup_write_event_control,
3265 .mode = S_IWUGO,
3266 },
97978e6d
DL
3267 {
3268 .name = "cgroup.clone_children",
3269 .read_u64 = cgroup_clone_children_read,
3270 .write_u64 = cgroup_clone_children_write,
3271 },
81a6a5cd
PM
3272};
3273
3274static struct cftype cft_release_agent = {
3275 .name = "release_agent",
e788e066
PM
3276 .read_seq_string = cgroup_release_agent_show,
3277 .write_string = cgroup_release_agent_write,
3278 .max_write_len = PATH_MAX,
bbcb81d0
PM
3279};
3280
bd89aabc 3281static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3282{
3283 int err;
3284 struct cgroup_subsys *ss;
3285
3286 /* First clear out any existing files */
bd89aabc 3287 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 3288
bd89aabc 3289 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3290 if (err < 0)
3291 return err;
3292
bd89aabc
PM
3293 if (cgrp == cgrp->top_cgroup) {
3294 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3295 return err;
3296 }
3297
bd89aabc
PM
3298 for_each_subsys(cgrp->root, ss) {
3299 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3300 return err;
3301 }
38460b48
KH
3302 /* This cgroup is ready now */
3303 for_each_subsys(cgrp->root, ss) {
3304 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3305 /*
3306 * Update id->css pointer and make this css visible from
3307 * CSS ID functions. This pointer will be dereferened
3308 * from RCU-read-side without locks.
3309 */
3310 if (css->id)
3311 rcu_assign_pointer(css->id->css, css);
3312 }
ddbcc7e8
PM
3313
3314 return 0;
3315}
3316
3317static void init_cgroup_css(struct cgroup_subsys_state *css,
3318 struct cgroup_subsys *ss,
bd89aabc 3319 struct cgroup *cgrp)
ddbcc7e8 3320{
bd89aabc 3321 css->cgroup = cgrp;
e7c5ec91 3322 atomic_set(&css->refcnt, 1);
ddbcc7e8 3323 css->flags = 0;
38460b48 3324 css->id = NULL;
bd89aabc 3325 if (cgrp == dummytop)
ddbcc7e8 3326 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3327 BUG_ON(cgrp->subsys[ss->subsys_id]);
3328 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3329}
3330
999cd8a4
PM
3331static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3332{
3333 /* We need to take each hierarchy_mutex in a consistent order */
3334 int i;
3335
aae8aab4
BB
3336 /*
3337 * No worry about a race with rebind_subsystems that might mess up the
3338 * locking order, since both parties are under cgroup_mutex.
3339 */
999cd8a4
PM
3340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3341 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3342 if (ss == NULL)
3343 continue;
999cd8a4 3344 if (ss->root == root)
cfebe563 3345 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3346 }
3347}
3348
3349static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3350{
3351 int i;
3352
3353 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3354 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3355 if (ss == NULL)
3356 continue;
999cd8a4
PM
3357 if (ss->root == root)
3358 mutex_unlock(&ss->hierarchy_mutex);
3359 }
3360}
3361
ddbcc7e8 3362/*
a043e3b2
LZ
3363 * cgroup_create - create a cgroup
3364 * @parent: cgroup that will be parent of the new cgroup
3365 * @dentry: dentry of the new cgroup
3366 * @mode: mode to set on new inode
ddbcc7e8 3367 *
a043e3b2 3368 * Must be called with the mutex on the parent inode held
ddbcc7e8 3369 */
ddbcc7e8 3370static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 3371 mode_t mode)
ddbcc7e8 3372{
bd89aabc 3373 struct cgroup *cgrp;
ddbcc7e8
PM
3374 struct cgroupfs_root *root = parent->root;
3375 int err = 0;
3376 struct cgroup_subsys *ss;
3377 struct super_block *sb = root->sb;
3378
bd89aabc
PM
3379 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3380 if (!cgrp)
ddbcc7e8
PM
3381 return -ENOMEM;
3382
3383 /* Grab a reference on the superblock so the hierarchy doesn't
3384 * get deleted on unmount if there are child cgroups. This
3385 * can be done outside cgroup_mutex, since the sb can't
3386 * disappear while someone has an open control file on the
3387 * fs */
3388 atomic_inc(&sb->s_active);
3389
3390 mutex_lock(&cgroup_mutex);
3391
cc31edce 3392 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3393
bd89aabc
PM
3394 cgrp->parent = parent;
3395 cgrp->root = parent->root;
3396 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3397
b6abdb0e
LZ
3398 if (notify_on_release(parent))
3399 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3400
97978e6d
DL
3401 if (clone_children(parent))
3402 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3403
ddbcc7e8 3404 for_each_subsys(root, ss) {
bd89aabc 3405 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
4528fd05 3406
ddbcc7e8
PM
3407 if (IS_ERR(css)) {
3408 err = PTR_ERR(css);
3409 goto err_destroy;
3410 }
bd89aabc 3411 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3412 if (ss->use_id) {
3413 err = alloc_css_id(ss, parent, cgrp);
3414 if (err)
38460b48 3415 goto err_destroy;
4528fd05 3416 }
38460b48 3417 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d
DL
3418 if (clone_children(parent) && ss->post_clone)
3419 ss->post_clone(ss, cgrp);
ddbcc7e8
PM
3420 }
3421
999cd8a4 3422 cgroup_lock_hierarchy(root);
bd89aabc 3423 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3424 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3425 root->number_of_cgroups++;
3426
bd89aabc 3427 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3428 if (err < 0)
3429 goto err_remove;
3430
3431 /* The cgroup directory was pre-locked for us */
bd89aabc 3432 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3433
bd89aabc 3434 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3435 /* If err < 0, we have a half-filled directory - oh well ;) */
3436
3437 mutex_unlock(&cgroup_mutex);
bd89aabc 3438 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3439
3440 return 0;
3441
3442 err_remove:
3443
baef99a0 3444 cgroup_lock_hierarchy(root);
bd89aabc 3445 list_del(&cgrp->sibling);
baef99a0 3446 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3447 root->number_of_cgroups--;
3448
3449 err_destroy:
3450
3451 for_each_subsys(root, ss) {
bd89aabc
PM
3452 if (cgrp->subsys[ss->subsys_id])
3453 ss->destroy(ss, cgrp);
ddbcc7e8
PM
3454 }
3455
3456 mutex_unlock(&cgroup_mutex);
3457
3458 /* Release the reference count that we took on the superblock */
3459 deactivate_super(sb);
3460
bd89aabc 3461 kfree(cgrp);
ddbcc7e8
PM
3462 return err;
3463}
3464
3465static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3466{
3467 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3468
3469 /* the vfs holds inode->i_mutex already */
3470 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3471}
3472
55b6fd01 3473static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3474{
3475 /* Check the reference count on each subsystem. Since we
3476 * already established that there are no tasks in the
e7c5ec91 3477 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3478 * be no outstanding references, so the subsystem is safe to
3479 * destroy. We scan across all subsystems rather than using
3480 * the per-hierarchy linked list of mounted subsystems since
3481 * we can be called via check_for_release() with no
3482 * synchronization other than RCU, and the subsystem linked
3483 * list isn't RCU-safe */
3484 int i;
aae8aab4
BB
3485 /*
3486 * We won't need to lock the subsys array, because the subsystems
3487 * we're concerned about aren't going anywhere since our cgroup root
3488 * has a reference on them.
3489 */
81a6a5cd
PM
3490 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3491 struct cgroup_subsys *ss = subsys[i];
3492 struct cgroup_subsys_state *css;
aae8aab4
BB
3493 /* Skip subsystems not present or not in this hierarchy */
3494 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3495 continue;
bd89aabc 3496 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3497 /* When called from check_for_release() it's possible
3498 * that by this point the cgroup has been removed
3499 * and the css deleted. But a false-positive doesn't
3500 * matter, since it can only happen if the cgroup
3501 * has been deleted and hence no longer needs the
3502 * release agent to be called anyway. */
e7c5ec91 3503 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3504 return 1;
81a6a5cd
PM
3505 }
3506 return 0;
3507}
3508
e7c5ec91
PM
3509/*
3510 * Atomically mark all (or else none) of the cgroup's CSS objects as
3511 * CSS_REMOVED. Return true on success, or false if the cgroup has
3512 * busy subsystems. Call with cgroup_mutex held
3513 */
3514
3515static int cgroup_clear_css_refs(struct cgroup *cgrp)
3516{
3517 struct cgroup_subsys *ss;
3518 unsigned long flags;
3519 bool failed = false;
3520 local_irq_save(flags);
3521 for_each_subsys(cgrp->root, ss) {
3522 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3523 int refcnt;
804b3c28 3524 while (1) {
e7c5ec91
PM
3525 /* We can only remove a CSS with a refcnt==1 */
3526 refcnt = atomic_read(&css->refcnt);
3527 if (refcnt > 1) {
3528 failed = true;
3529 goto done;
3530 }
3531 BUG_ON(!refcnt);
3532 /*
3533 * Drop the refcnt to 0 while we check other
3534 * subsystems. This will cause any racing
3535 * css_tryget() to spin until we set the
3536 * CSS_REMOVED bits or abort
3537 */
804b3c28
PM
3538 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3539 break;
3540 cpu_relax();
3541 }
e7c5ec91
PM
3542 }
3543 done:
3544 for_each_subsys(cgrp->root, ss) {
3545 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3546 if (failed) {
3547 /*
3548 * Restore old refcnt if we previously managed
3549 * to clear it from 1 to 0
3550 */
3551 if (!atomic_read(&css->refcnt))
3552 atomic_set(&css->refcnt, 1);
3553 } else {
3554 /* Commit the fact that the CSS is removed */
3555 set_bit(CSS_REMOVED, &css->flags);
3556 }
3557 }
3558 local_irq_restore(flags);
3559 return !failed;
3560}
3561
ddbcc7e8
PM
3562static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3563{
bd89aabc 3564 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3565 struct dentry *d;
3566 struct cgroup *parent;
ec64f515 3567 DEFINE_WAIT(wait);
4ab78683 3568 struct cgroup_event *event, *tmp;
ec64f515 3569 int ret;
ddbcc7e8
PM
3570
3571 /* the vfs holds both inode->i_mutex already */
ec64f515 3572again:
ddbcc7e8 3573 mutex_lock(&cgroup_mutex);
bd89aabc 3574 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3575 mutex_unlock(&cgroup_mutex);
3576 return -EBUSY;
3577 }
bd89aabc 3578 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3579 mutex_unlock(&cgroup_mutex);
3580 return -EBUSY;
3581 }
3fa59dfb 3582 mutex_unlock(&cgroup_mutex);
a043e3b2 3583
88703267
KH
3584 /*
3585 * In general, subsystem has no css->refcnt after pre_destroy(). But
3586 * in racy cases, subsystem may have to get css->refcnt after
3587 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3588 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3589 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3590 * and subsystem's reference count handling. Please see css_get/put
3591 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3592 */
3593 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3594
4fca88c8 3595 /*
a043e3b2
LZ
3596 * Call pre_destroy handlers of subsys. Notify subsystems
3597 * that rmdir() request comes.
4fca88c8 3598 */
ec64f515 3599 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
3600 if (ret) {
3601 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 3602 return ret;
88703267 3603 }
ddbcc7e8 3604
3fa59dfb
KH
3605 mutex_lock(&cgroup_mutex);
3606 parent = cgrp->parent;
ec64f515 3607 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 3608 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
3609 mutex_unlock(&cgroup_mutex);
3610 return -EBUSY;
3611 }
ec64f515 3612 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
3613 if (!cgroup_clear_css_refs(cgrp)) {
3614 mutex_unlock(&cgroup_mutex);
88703267
KH
3615 /*
3616 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3617 * prepare_to_wait(), we need to check this flag.
3618 */
3619 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3620 schedule();
ec64f515
KH
3621 finish_wait(&cgroup_rmdir_waitq, &wait);
3622 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3623 if (signal_pending(current))
3624 return -EINTR;
3625 goto again;
3626 }
3627 /* NO css_tryget() can success after here. */
3628 finish_wait(&cgroup_rmdir_waitq, &wait);
3629 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 3630
81a6a5cd 3631 spin_lock(&release_list_lock);
bd89aabc
PM
3632 set_bit(CGRP_REMOVED, &cgrp->flags);
3633 if (!list_empty(&cgrp->release_list))
3634 list_del(&cgrp->release_list);
81a6a5cd 3635 spin_unlock(&release_list_lock);
999cd8a4
PM
3636
3637 cgroup_lock_hierarchy(cgrp->root);
3638 /* delete this cgroup from parent->children */
bd89aabc 3639 list_del(&cgrp->sibling);
999cd8a4
PM
3640 cgroup_unlock_hierarchy(cgrp->root);
3641
bd89aabc
PM
3642 spin_lock(&cgrp->dentry->d_lock);
3643 d = dget(cgrp->dentry);
ddbcc7e8
PM
3644 spin_unlock(&d->d_lock);
3645
3646 cgroup_d_remove_dir(d);
3647 dput(d);
ddbcc7e8 3648
bd89aabc 3649 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
3650 check_for_release(parent);
3651
4ab78683
KS
3652 /*
3653 * Unregister events and notify userspace.
3654 * Notify userspace about cgroup removing only after rmdir of cgroup
3655 * directory to avoid race between userspace and kernelspace
3656 */
3657 spin_lock(&cgrp->event_list_lock);
3658 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3659 list_del(&event->list);
3660 remove_wait_queue(event->wqh, &event->wait);
3661 eventfd_signal(event->eventfd, 1);
3662 schedule_work(&event->remove);
3663 }
3664 spin_unlock(&cgrp->event_list_lock);
3665
ddbcc7e8 3666 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
3667 return 0;
3668}
3669
06a11920 3670static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3671{
ddbcc7e8 3672 struct cgroup_subsys_state *css;
cfe36bde
DC
3673
3674 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
3675
3676 /* Create the top cgroup state for this subsystem */
33a68ac1 3677 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
3678 ss->root = &rootnode;
3679 css = ss->create(ss, dummytop);
3680 /* We don't handle early failures gracefully */
3681 BUG_ON(IS_ERR(css));
3682 init_cgroup_css(css, ss, dummytop);
3683
e8d55fde 3684 /* Update the init_css_set to contain a subsys
817929ec 3685 * pointer to this state - since the subsystem is
e8d55fde
LZ
3686 * newly registered, all tasks and hence the
3687 * init_css_set is in the subsystem's top cgroup. */
3688 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
3689
3690 need_forkexit_callback |= ss->fork || ss->exit;
3691
e8d55fde
LZ
3692 /* At system boot, before all subsystems have been
3693 * registered, no tasks have been forked, so we don't
3694 * need to invoke fork callbacks here. */
3695 BUG_ON(!list_empty(&init_task.tasks));
3696
999cd8a4 3697 mutex_init(&ss->hierarchy_mutex);
cfebe563 3698 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 3699 ss->active = 1;
e6a1105b
BB
3700
3701 /* this function shouldn't be used with modular subsystems, since they
3702 * need to register a subsys_id, among other things */
3703 BUG_ON(ss->module);
3704}
3705
3706/**
3707 * cgroup_load_subsys: load and register a modular subsystem at runtime
3708 * @ss: the subsystem to load
3709 *
3710 * This function should be called in a modular subsystem's initcall. If the
88393161 3711 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
3712 * up for use. If the subsystem is built-in anyway, work is delegated to the
3713 * simpler cgroup_init_subsys.
3714 */
3715int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3716{
3717 int i;
3718 struct cgroup_subsys_state *css;
3719
3720 /* check name and function validity */
3721 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3722 ss->create == NULL || ss->destroy == NULL)
3723 return -EINVAL;
3724
3725 /*
3726 * we don't support callbacks in modular subsystems. this check is
3727 * before the ss->module check for consistency; a subsystem that could
3728 * be a module should still have no callbacks even if the user isn't
3729 * compiling it as one.
3730 */
3731 if (ss->fork || ss->exit)
3732 return -EINVAL;
3733
3734 /*
3735 * an optionally modular subsystem is built-in: we want to do nothing,
3736 * since cgroup_init_subsys will have already taken care of it.
3737 */
3738 if (ss->module == NULL) {
3739 /* a few sanity checks */
3740 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3741 BUG_ON(subsys[ss->subsys_id] != ss);
3742 return 0;
3743 }
3744
3745 /*
3746 * need to register a subsys id before anything else - for example,
3747 * init_cgroup_css needs it.
3748 */
3749 mutex_lock(&cgroup_mutex);
3750 /* find the first empty slot in the array */
3751 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3752 if (subsys[i] == NULL)
3753 break;
3754 }
3755 if (i == CGROUP_SUBSYS_COUNT) {
3756 /* maximum number of subsystems already registered! */
3757 mutex_unlock(&cgroup_mutex);
3758 return -EBUSY;
3759 }
3760 /* assign ourselves the subsys_id */
3761 ss->subsys_id = i;
3762 subsys[i] = ss;
3763
3764 /*
3765 * no ss->create seems to need anything important in the ss struct, so
3766 * this can happen first (i.e. before the rootnode attachment).
3767 */
3768 css = ss->create(ss, dummytop);
3769 if (IS_ERR(css)) {
3770 /* failure case - need to deassign the subsys[] slot. */
3771 subsys[i] = NULL;
3772 mutex_unlock(&cgroup_mutex);
3773 return PTR_ERR(css);
3774 }
3775
3776 list_add(&ss->sibling, &rootnode.subsys_list);
3777 ss->root = &rootnode;
3778
3779 /* our new subsystem will be attached to the dummy hierarchy. */
3780 init_cgroup_css(css, ss, dummytop);
3781 /* init_idr must be after init_cgroup_css because it sets css->id. */
3782 if (ss->use_id) {
3783 int ret = cgroup_init_idr(ss, css);
3784 if (ret) {
3785 dummytop->subsys[ss->subsys_id] = NULL;
3786 ss->destroy(ss, dummytop);
3787 subsys[i] = NULL;
3788 mutex_unlock(&cgroup_mutex);
3789 return ret;
3790 }
3791 }
3792
3793 /*
3794 * Now we need to entangle the css into the existing css_sets. unlike
3795 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3796 * will need a new pointer to it; done by iterating the css_set_table.
3797 * furthermore, modifying the existing css_sets will corrupt the hash
3798 * table state, so each changed css_set will need its hash recomputed.
3799 * this is all done under the css_set_lock.
3800 */
3801 write_lock(&css_set_lock);
3802 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3803 struct css_set *cg;
3804 struct hlist_node *node, *tmp;
3805 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3806
3807 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3808 /* skip entries that we already rehashed */
3809 if (cg->subsys[ss->subsys_id])
3810 continue;
3811 /* remove existing entry */
3812 hlist_del(&cg->hlist);
3813 /* set new value */
3814 cg->subsys[ss->subsys_id] = css;
3815 /* recompute hash and restore entry */
3816 new_bucket = css_set_hash(cg->subsys);
3817 hlist_add_head(&cg->hlist, new_bucket);
3818 }
3819 }
3820 write_unlock(&css_set_lock);
3821
3822 mutex_init(&ss->hierarchy_mutex);
3823 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3824 ss->active = 1;
3825
e6a1105b
BB
3826 /* success! */
3827 mutex_unlock(&cgroup_mutex);
3828 return 0;
ddbcc7e8 3829}
e6a1105b 3830EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 3831
cf5d5941
BB
3832/**
3833 * cgroup_unload_subsys: unload a modular subsystem
3834 * @ss: the subsystem to unload
3835 *
3836 * This function should be called in a modular subsystem's exitcall. When this
3837 * function is invoked, the refcount on the subsystem's module will be 0, so
3838 * the subsystem will not be attached to any hierarchy.
3839 */
3840void cgroup_unload_subsys(struct cgroup_subsys *ss)
3841{
3842 struct cg_cgroup_link *link;
3843 struct hlist_head *hhead;
3844
3845 BUG_ON(ss->module == NULL);
3846
3847 /*
3848 * we shouldn't be called if the subsystem is in use, and the use of
3849 * try_module_get in parse_cgroupfs_options should ensure that it
3850 * doesn't start being used while we're killing it off.
3851 */
3852 BUG_ON(ss->root != &rootnode);
3853
3854 mutex_lock(&cgroup_mutex);
3855 /* deassign the subsys_id */
3856 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3857 subsys[ss->subsys_id] = NULL;
3858
3859 /* remove subsystem from rootnode's list of subsystems */
3860 list_del(&ss->sibling);
3861
3862 /*
3863 * disentangle the css from all css_sets attached to the dummytop. as
3864 * in loading, we need to pay our respects to the hashtable gods.
3865 */
3866 write_lock(&css_set_lock);
3867 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3868 struct css_set *cg = link->cg;
3869
3870 hlist_del(&cg->hlist);
3871 BUG_ON(!cg->subsys[ss->subsys_id]);
3872 cg->subsys[ss->subsys_id] = NULL;
3873 hhead = css_set_hash(cg->subsys);
3874 hlist_add_head(&cg->hlist, hhead);
3875 }
3876 write_unlock(&css_set_lock);
3877
3878 /*
3879 * remove subsystem's css from the dummytop and free it - need to free
3880 * before marking as null because ss->destroy needs the cgrp->subsys
3881 * pointer to find their state. note that this also takes care of
3882 * freeing the css_id.
3883 */
3884 ss->destroy(ss, dummytop);
3885 dummytop->subsys[ss->subsys_id] = NULL;
3886
3887 mutex_unlock(&cgroup_mutex);
3888}
3889EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3890
ddbcc7e8 3891/**
a043e3b2
LZ
3892 * cgroup_init_early - cgroup initialization at system boot
3893 *
3894 * Initialize cgroups at system boot, and initialize any
3895 * subsystems that request early init.
ddbcc7e8
PM
3896 */
3897int __init cgroup_init_early(void)
3898{
3899 int i;
146aa1bd 3900 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
3901 INIT_LIST_HEAD(&init_css_set.cg_links);
3902 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3903 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3904 css_set_count = 1;
ddbcc7e8 3905 init_cgroup_root(&rootnode);
817929ec
PM
3906 root_count = 1;
3907 init_task.cgroups = &init_css_set;
3908
3909 init_css_set_link.cg = &init_css_set;
7717f7ba 3910 init_css_set_link.cgrp = dummytop;
bd89aabc 3911 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
3912 &rootnode.top_cgroup.css_sets);
3913 list_add(&init_css_set_link.cg_link_list,
3914 &init_css_set.cg_links);
ddbcc7e8 3915
472b1053
LZ
3916 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3917 INIT_HLIST_HEAD(&css_set_table[i]);
3918
aae8aab4
BB
3919 /* at bootup time, we don't worry about modular subsystems */
3920 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
3921 struct cgroup_subsys *ss = subsys[i];
3922
3923 BUG_ON(!ss->name);
3924 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3925 BUG_ON(!ss->create);
3926 BUG_ON(!ss->destroy);
3927 if (ss->subsys_id != i) {
cfe36bde 3928 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
3929 ss->name, ss->subsys_id);
3930 BUG();
3931 }
3932
3933 if (ss->early_init)
3934 cgroup_init_subsys(ss);
3935 }
3936 return 0;
3937}
3938
3939/**
a043e3b2
LZ
3940 * cgroup_init - cgroup initialization
3941 *
3942 * Register cgroup filesystem and /proc file, and initialize
3943 * any subsystems that didn't request early init.
ddbcc7e8
PM
3944 */
3945int __init cgroup_init(void)
3946{
3947 int err;
3948 int i;
472b1053 3949 struct hlist_head *hhead;
a424316c
PM
3950
3951 err = bdi_init(&cgroup_backing_dev_info);
3952 if (err)
3953 return err;
ddbcc7e8 3954
aae8aab4
BB
3955 /* at bootup time, we don't worry about modular subsystems */
3956 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
3957 struct cgroup_subsys *ss = subsys[i];
3958 if (!ss->early_init)
3959 cgroup_init_subsys(ss);
38460b48 3960 if (ss->use_id)
e6a1105b 3961 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
3962 }
3963
472b1053
LZ
3964 /* Add init_css_set to the hash table */
3965 hhead = css_set_hash(init_css_set.subsys);
3966 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 3967 BUG_ON(!init_root_id(&rootnode));
676db4af
GKH
3968
3969 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3970 if (!cgroup_kobj) {
3971 err = -ENOMEM;
3972 goto out;
3973 }
3974
ddbcc7e8 3975 err = register_filesystem(&cgroup_fs_type);
676db4af
GKH
3976 if (err < 0) {
3977 kobject_put(cgroup_kobj);
ddbcc7e8 3978 goto out;
676db4af 3979 }
ddbcc7e8 3980
46ae220b 3981 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 3982
ddbcc7e8 3983out:
a424316c
PM
3984 if (err)
3985 bdi_destroy(&cgroup_backing_dev_info);
3986
ddbcc7e8
PM
3987 return err;
3988}
b4f48b63 3989
a424316c
PM
3990/*
3991 * proc_cgroup_show()
3992 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3993 * - Used for /proc/<pid>/cgroup.
3994 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3995 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 3996 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
3997 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3998 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3999 * cgroup to top_cgroup.
4000 */
4001
4002/* TODO: Use a proper seq_file iterator */
4003static int proc_cgroup_show(struct seq_file *m, void *v)
4004{
4005 struct pid *pid;
4006 struct task_struct *tsk;
4007 char *buf;
4008 int retval;
4009 struct cgroupfs_root *root;
4010
4011 retval = -ENOMEM;
4012 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4013 if (!buf)
4014 goto out;
4015
4016 retval = -ESRCH;
4017 pid = m->private;
4018 tsk = get_pid_task(pid, PIDTYPE_PID);
4019 if (!tsk)
4020 goto out_free;
4021
4022 retval = 0;
4023
4024 mutex_lock(&cgroup_mutex);
4025
e5f6a860 4026 for_each_active_root(root) {
a424316c 4027 struct cgroup_subsys *ss;
bd89aabc 4028 struct cgroup *cgrp;
a424316c
PM
4029 int count = 0;
4030
2c6ab6d2 4031 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4032 for_each_subsys(root, ss)
4033 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4034 if (strlen(root->name))
4035 seq_printf(m, "%sname=%s", count ? "," : "",
4036 root->name);
a424316c 4037 seq_putc(m, ':');
7717f7ba 4038 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4039 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4040 if (retval < 0)
4041 goto out_unlock;
4042 seq_puts(m, buf);
4043 seq_putc(m, '\n');
4044 }
4045
4046out_unlock:
4047 mutex_unlock(&cgroup_mutex);
4048 put_task_struct(tsk);
4049out_free:
4050 kfree(buf);
4051out:
4052 return retval;
4053}
4054
4055static int cgroup_open(struct inode *inode, struct file *file)
4056{
4057 struct pid *pid = PROC_I(inode)->pid;
4058 return single_open(file, proc_cgroup_show, pid);
4059}
4060
828c0950 4061const struct file_operations proc_cgroup_operations = {
a424316c
PM
4062 .open = cgroup_open,
4063 .read = seq_read,
4064 .llseek = seq_lseek,
4065 .release = single_release,
4066};
4067
4068/* Display information about each subsystem and each hierarchy */
4069static int proc_cgroupstats_show(struct seq_file *m, void *v)
4070{
4071 int i;
a424316c 4072
8bab8dde 4073 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4074 /*
4075 * ideally we don't want subsystems moving around while we do this.
4076 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4077 * subsys/hierarchy state.
4078 */
a424316c 4079 mutex_lock(&cgroup_mutex);
a424316c
PM
4080 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4081 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4082 if (ss == NULL)
4083 continue;
2c6ab6d2
PM
4084 seq_printf(m, "%s\t%d\t%d\t%d\n",
4085 ss->name, ss->root->hierarchy_id,
8bab8dde 4086 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4087 }
4088 mutex_unlock(&cgroup_mutex);
4089 return 0;
4090}
4091
4092static int cgroupstats_open(struct inode *inode, struct file *file)
4093{
9dce07f1 4094 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4095}
4096
828c0950 4097static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4098 .open = cgroupstats_open,
4099 .read = seq_read,
4100 .llseek = seq_lseek,
4101 .release = single_release,
4102};
4103
b4f48b63
PM
4104/**
4105 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4106 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4107 *
4108 * Description: A task inherits its parent's cgroup at fork().
4109 *
4110 * A pointer to the shared css_set was automatically copied in
4111 * fork.c by dup_task_struct(). However, we ignore that copy, since
4112 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 4113 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
4114 * have already changed current->cgroups, allowing the previously
4115 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4116 *
4117 * At the point that cgroup_fork() is called, 'current' is the parent
4118 * task, and the passed argument 'child' points to the child task.
4119 */
4120void cgroup_fork(struct task_struct *child)
4121{
817929ec
PM
4122 task_lock(current);
4123 child->cgroups = current->cgroups;
4124 get_css_set(child->cgroups);
4125 task_unlock(current);
4126 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4127}
4128
4129/**
a043e3b2
LZ
4130 * cgroup_fork_callbacks - run fork callbacks
4131 * @child: the new task
4132 *
4133 * Called on a new task very soon before adding it to the
4134 * tasklist. No need to take any locks since no-one can
4135 * be operating on this task.
b4f48b63
PM
4136 */
4137void cgroup_fork_callbacks(struct task_struct *child)
4138{
4139 if (need_forkexit_callback) {
4140 int i;
aae8aab4
BB
4141 /*
4142 * forkexit callbacks are only supported for builtin
4143 * subsystems, and the builtin section of the subsys array is
4144 * immutable, so we don't need to lock the subsys array here.
4145 */
4146 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4147 struct cgroup_subsys *ss = subsys[i];
4148 if (ss->fork)
4149 ss->fork(ss, child);
4150 }
4151 }
4152}
4153
817929ec 4154/**
a043e3b2
LZ
4155 * cgroup_post_fork - called on a new task after adding it to the task list
4156 * @child: the task in question
4157 *
4158 * Adds the task to the list running through its css_set if necessary.
4159 * Has to be after the task is visible on the task list in case we race
4160 * with the first call to cgroup_iter_start() - to guarantee that the
4161 * new task ends up on its list.
4162 */
817929ec
PM
4163void cgroup_post_fork(struct task_struct *child)
4164{
4165 if (use_task_css_set_links) {
4166 write_lock(&css_set_lock);
b12b533f 4167 task_lock(child);
817929ec
PM
4168 if (list_empty(&child->cg_list))
4169 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 4170 task_unlock(child);
817929ec
PM
4171 write_unlock(&css_set_lock);
4172 }
4173}
b4f48b63
PM
4174/**
4175 * cgroup_exit - detach cgroup from exiting task
4176 * @tsk: pointer to task_struct of exiting process
a043e3b2 4177 * @run_callback: run exit callbacks?
b4f48b63
PM
4178 *
4179 * Description: Detach cgroup from @tsk and release it.
4180 *
4181 * Note that cgroups marked notify_on_release force every task in
4182 * them to take the global cgroup_mutex mutex when exiting.
4183 * This could impact scaling on very large systems. Be reluctant to
4184 * use notify_on_release cgroups where very high task exit scaling
4185 * is required on large systems.
4186 *
4187 * the_top_cgroup_hack:
4188 *
4189 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4190 *
4191 * We call cgroup_exit() while the task is still competent to
4192 * handle notify_on_release(), then leave the task attached to the
4193 * root cgroup in each hierarchy for the remainder of its exit.
4194 *
4195 * To do this properly, we would increment the reference count on
4196 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4197 * code we would add a second cgroup function call, to drop that
4198 * reference. This would just create an unnecessary hot spot on
4199 * the top_cgroup reference count, to no avail.
4200 *
4201 * Normally, holding a reference to a cgroup without bumping its
4202 * count is unsafe. The cgroup could go away, or someone could
4203 * attach us to a different cgroup, decrementing the count on
4204 * the first cgroup that we never incremented. But in this case,
4205 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4206 * which wards off any cgroup_attach_task() attempts, or task is a failed
4207 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4208 */
4209void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4210{
4211 int i;
817929ec 4212 struct css_set *cg;
b4f48b63
PM
4213
4214 if (run_callbacks && need_forkexit_callback) {
aae8aab4
BB
4215 /*
4216 * modular subsystems can't use callbacks, so no need to lock
4217 * the subsys array
4218 */
4219 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4220 struct cgroup_subsys *ss = subsys[i];
4221 if (ss->exit)
4222 ss->exit(ss, tsk);
4223 }
4224 }
817929ec
PM
4225
4226 /*
4227 * Unlink from the css_set task list if necessary.
4228 * Optimistically check cg_list before taking
4229 * css_set_lock
4230 */
4231 if (!list_empty(&tsk->cg_list)) {
4232 write_lock(&css_set_lock);
4233 if (!list_empty(&tsk->cg_list))
4234 list_del(&tsk->cg_list);
4235 write_unlock(&css_set_lock);
4236 }
4237
b4f48b63
PM
4238 /* Reassign the task to the init_css_set. */
4239 task_lock(tsk);
817929ec
PM
4240 cg = tsk->cgroups;
4241 tsk->cgroups = &init_css_set;
b4f48b63 4242 task_unlock(tsk);
817929ec 4243 if (cg)
81a6a5cd 4244 put_css_set_taskexit(cg);
b4f48b63 4245}
697f4161
PM
4246
4247/**
a043e3b2
LZ
4248 * cgroup_clone - clone the cgroup the given subsystem is attached to
4249 * @tsk: the task to be moved
4250 * @subsys: the given subsystem
e885dcde 4251 * @nodename: the name for the new cgroup
a043e3b2
LZ
4252 *
4253 * Duplicate the current cgroup in the hierarchy that the given
4254 * subsystem is attached to, and move this task into the new
4255 * child.
697f4161 4256 */
e885dcde
SH
4257int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4258 char *nodename)
697f4161
PM
4259{
4260 struct dentry *dentry;
4261 int ret = 0;
697f4161
PM
4262 struct cgroup *parent, *child;
4263 struct inode *inode;
4264 struct css_set *cg;
4265 struct cgroupfs_root *root;
4266 struct cgroup_subsys *ss;
4267
4268 /* We shouldn't be called by an unregistered subsystem */
4269 BUG_ON(!subsys->active);
4270
4271 /* First figure out what hierarchy and cgroup we're dealing
4272 * with, and pin them so we can drop cgroup_mutex */
4273 mutex_lock(&cgroup_mutex);
4274 again:
4275 root = subsys->root;
4276 if (root == &rootnode) {
697f4161
PM
4277 mutex_unlock(&cgroup_mutex);
4278 return 0;
4279 }
697f4161 4280
697f4161 4281 /* Pin the hierarchy */
1404f065 4282 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
4283 /* We race with the final deactivate_super() */
4284 mutex_unlock(&cgroup_mutex);
4285 return 0;
4286 }
697f4161 4287
817929ec 4288 /* Keep the cgroup alive */
1404f065
LZ
4289 task_lock(tsk);
4290 parent = task_cgroup(tsk, subsys->subsys_id);
4291 cg = tsk->cgroups;
817929ec 4292 get_css_set(cg);
104cbd55 4293 task_unlock(tsk);
1404f065 4294
697f4161
PM
4295 mutex_unlock(&cgroup_mutex);
4296
4297 /* Now do the VFS work to create a cgroup */
4298 inode = parent->dentry->d_inode;
4299
4300 /* Hold the parent directory mutex across this operation to
4301 * stop anyone else deleting the new cgroup */
4302 mutex_lock(&inode->i_mutex);
4303 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4304 if (IS_ERR(dentry)) {
4305 printk(KERN_INFO
cfe36bde 4306 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
4307 PTR_ERR(dentry));
4308 ret = PTR_ERR(dentry);
4309 goto out_release;
4310 }
4311
4312 /* Create the cgroup directory, which also creates the cgroup */
75139b82 4313 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 4314 child = __d_cgrp(dentry);
697f4161
PM
4315 dput(dentry);
4316 if (ret) {
4317 printk(KERN_INFO
4318 "Failed to create cgroup %s: %d\n", nodename,
4319 ret);
4320 goto out_release;
4321 }
4322
697f4161
PM
4323 /* The cgroup now exists. Retake cgroup_mutex and check
4324 * that we're still in the same state that we thought we
4325 * were. */
4326 mutex_lock(&cgroup_mutex);
4327 if ((root != subsys->root) ||
4328 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4329 /* Aargh, we raced ... */
4330 mutex_unlock(&inode->i_mutex);
817929ec 4331 put_css_set(cg);
697f4161 4332
1404f065 4333 deactivate_super(root->sb);
697f4161
PM
4334 /* The cgroup is still accessible in the VFS, but
4335 * we're not going to try to rmdir() it at this
4336 * point. */
4337 printk(KERN_INFO
4338 "Race in cgroup_clone() - leaking cgroup %s\n",
4339 nodename);
4340 goto again;
4341 }
4342
4343 /* do any required auto-setup */
4344 for_each_subsys(root, ss) {
4345 if (ss->post_clone)
4346 ss->post_clone(ss, child);
4347 }
4348
4349 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 4350 ret = cgroup_attach_task(child, tsk);
697f4161
PM
4351 mutex_unlock(&cgroup_mutex);
4352
4353 out_release:
4354 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
4355
4356 mutex_lock(&cgroup_mutex);
817929ec 4357 put_css_set(cg);
81a6a5cd 4358 mutex_unlock(&cgroup_mutex);
1404f065 4359 deactivate_super(root->sb);
697f4161
PM
4360 return ret;
4361}
4362
a043e3b2 4363/**
313e924c 4364 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4365 * @cgrp: the cgroup in question
313e924c 4366 * @task: the task in question
a043e3b2 4367 *
313e924c
GN
4368 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4369 * hierarchy.
697f4161
PM
4370 *
4371 * If we are sending in dummytop, then presumably we are creating
4372 * the top cgroup in the subsystem.
4373 *
4374 * Called only by the ns (nsproxy) cgroup.
4375 */
313e924c 4376int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4377{
4378 int ret;
4379 struct cgroup *target;
697f4161 4380
bd89aabc 4381 if (cgrp == dummytop)
697f4161
PM
4382 return 1;
4383
7717f7ba 4384 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4385 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4386 cgrp = cgrp->parent;
4387 ret = (cgrp == target);
697f4161
PM
4388 return ret;
4389}
81a6a5cd 4390
bd89aabc 4391static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4392{
4393 /* All of these checks rely on RCU to keep the cgroup
4394 * structure alive */
bd89aabc
PM
4395 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4396 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4397 /* Control Group is currently removeable. If it's not
4398 * already queued for a userspace notification, queue
4399 * it now */
4400 int need_schedule_work = 0;
4401 spin_lock(&release_list_lock);
bd89aabc
PM
4402 if (!cgroup_is_removed(cgrp) &&
4403 list_empty(&cgrp->release_list)) {
4404 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4405 need_schedule_work = 1;
4406 }
4407 spin_unlock(&release_list_lock);
4408 if (need_schedule_work)
4409 schedule_work(&release_agent_work);
4410 }
4411}
4412
d7b9fff7
DN
4413/* Caller must verify that the css is not for root cgroup */
4414void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4415{
bd89aabc 4416 struct cgroup *cgrp = css->cgroup;
3dece834 4417 int val;
81a6a5cd 4418 rcu_read_lock();
d7b9fff7 4419 val = atomic_sub_return(count, &css->refcnt);
3dece834 4420 if (val == 1) {
ec64f515
KH
4421 if (notify_on_release(cgrp)) {
4422 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4423 check_for_release(cgrp);
4424 }
88703267 4425 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4426 }
4427 rcu_read_unlock();
3dece834 4428 WARN_ON_ONCE(val < 1);
81a6a5cd 4429}
67523c48 4430EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4431
4432/*
4433 * Notify userspace when a cgroup is released, by running the
4434 * configured release agent with the name of the cgroup (path
4435 * relative to the root of cgroup file system) as the argument.
4436 *
4437 * Most likely, this user command will try to rmdir this cgroup.
4438 *
4439 * This races with the possibility that some other task will be
4440 * attached to this cgroup before it is removed, or that some other
4441 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4442 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4443 * unused, and this cgroup will be reprieved from its death sentence,
4444 * to continue to serve a useful existence. Next time it's released,
4445 * we will get notified again, if it still has 'notify_on_release' set.
4446 *
4447 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4448 * means only wait until the task is successfully execve()'d. The
4449 * separate release agent task is forked by call_usermodehelper(),
4450 * then control in this thread returns here, without waiting for the
4451 * release agent task. We don't bother to wait because the caller of
4452 * this routine has no use for the exit status of the release agent
4453 * task, so no sense holding our caller up for that.
81a6a5cd 4454 */
81a6a5cd
PM
4455static void cgroup_release_agent(struct work_struct *work)
4456{
4457 BUG_ON(work != &release_agent_work);
4458 mutex_lock(&cgroup_mutex);
4459 spin_lock(&release_list_lock);
4460 while (!list_empty(&release_list)) {
4461 char *argv[3], *envp[3];
4462 int i;
e788e066 4463 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4464 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4465 struct cgroup,
4466 release_list);
bd89aabc 4467 list_del_init(&cgrp->release_list);
81a6a5cd
PM
4468 spin_unlock(&release_list_lock);
4469 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4470 if (!pathbuf)
4471 goto continue_free;
4472 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4473 goto continue_free;
4474 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4475 if (!agentbuf)
4476 goto continue_free;
81a6a5cd
PM
4477
4478 i = 0;
e788e066
PM
4479 argv[i++] = agentbuf;
4480 argv[i++] = pathbuf;
81a6a5cd
PM
4481 argv[i] = NULL;
4482
4483 i = 0;
4484 /* minimal command environment */
4485 envp[i++] = "HOME=/";
4486 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4487 envp[i] = NULL;
4488
4489 /* Drop the lock while we invoke the usermode helper,
4490 * since the exec could involve hitting disk and hence
4491 * be a slow process */
4492 mutex_unlock(&cgroup_mutex);
4493 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4494 mutex_lock(&cgroup_mutex);
e788e066
PM
4495 continue_free:
4496 kfree(pathbuf);
4497 kfree(agentbuf);
81a6a5cd
PM
4498 spin_lock(&release_list_lock);
4499 }
4500 spin_unlock(&release_list_lock);
4501 mutex_unlock(&cgroup_mutex);
4502}
8bab8dde
PM
4503
4504static int __init cgroup_disable(char *str)
4505{
4506 int i;
4507 char *token;
4508
4509 while ((token = strsep(&str, ",")) != NULL) {
4510 if (!*token)
4511 continue;
aae8aab4
BB
4512 /*
4513 * cgroup_disable, being at boot time, can't know about module
4514 * subsystems, so we don't worry about them.
4515 */
4516 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4517 struct cgroup_subsys *ss = subsys[i];
4518
4519 if (!strcmp(token, ss->name)) {
4520 ss->disabled = 1;
4521 printk(KERN_INFO "Disabling %s control group"
4522 " subsystem\n", ss->name);
4523 break;
4524 }
4525 }
4526 }
4527 return 1;
4528}
4529__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4530
4531/*
4532 * Functons for CSS ID.
4533 */
4534
4535/*
4536 *To get ID other than 0, this should be called when !cgroup_is_removed().
4537 */
4538unsigned short css_id(struct cgroup_subsys_state *css)
4539{
7f0f1546
KH
4540 struct css_id *cssid;
4541
4542 /*
4543 * This css_id() can return correct value when somone has refcnt
4544 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4545 * it's unchanged until freed.
4546 */
4547 cssid = rcu_dereference_check(css->id,
4548 rcu_read_lock_held() || atomic_read(&css->refcnt));
38460b48
KH
4549
4550 if (cssid)
4551 return cssid->id;
4552 return 0;
4553}
67523c48 4554EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4555
4556unsigned short css_depth(struct cgroup_subsys_state *css)
4557{
7f0f1546
KH
4558 struct css_id *cssid;
4559
4560 cssid = rcu_dereference_check(css->id,
4561 rcu_read_lock_held() || atomic_read(&css->refcnt));
38460b48
KH
4562
4563 if (cssid)
4564 return cssid->depth;
4565 return 0;
4566}
67523c48 4567EXPORT_SYMBOL_GPL(css_depth);
38460b48 4568
747388d7
KH
4569/**
4570 * css_is_ancestor - test "root" css is an ancestor of "child"
4571 * @child: the css to be tested.
4572 * @root: the css supporsed to be an ancestor of the child.
4573 *
4574 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4575 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4576 * But, considering usual usage, the csses should be valid objects after test.
4577 * Assuming that the caller will do some action to the child if this returns
4578 * returns true, the caller must take "child";s reference count.
4579 * If "child" is valid object and this returns true, "root" is valid, too.
4580 */
4581
38460b48 4582bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4583 const struct cgroup_subsys_state *root)
38460b48 4584{
747388d7
KH
4585 struct css_id *child_id;
4586 struct css_id *root_id;
4587 bool ret = true;
38460b48 4588
747388d7
KH
4589 rcu_read_lock();
4590 child_id = rcu_dereference(child->id);
4591 root_id = rcu_dereference(root->id);
4592 if (!child_id
4593 || !root_id
4594 || (child_id->depth < root_id->depth)
4595 || (child_id->stack[root_id->depth] != root_id->id))
4596 ret = false;
4597 rcu_read_unlock();
4598 return ret;
38460b48
KH
4599}
4600
4601static void __free_css_id_cb(struct rcu_head *head)
4602{
4603 struct css_id *id;
4604
4605 id = container_of(head, struct css_id, rcu_head);
4606 kfree(id);
4607}
4608
4609void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4610{
4611 struct css_id *id = css->id;
4612 /* When this is called before css_id initialization, id can be NULL */
4613 if (!id)
4614 return;
4615
4616 BUG_ON(!ss->use_id);
4617
4618 rcu_assign_pointer(id->css, NULL);
4619 rcu_assign_pointer(css->id, NULL);
4620 spin_lock(&ss->id_lock);
4621 idr_remove(&ss->idr, id->id);
4622 spin_unlock(&ss->id_lock);
4623 call_rcu(&id->rcu_head, __free_css_id_cb);
4624}
67523c48 4625EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4626
4627/*
4628 * This is called by init or create(). Then, calls to this function are
4629 * always serialized (By cgroup_mutex() at create()).
4630 */
4631
4632static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4633{
4634 struct css_id *newid;
4635 int myid, error, size;
4636
4637 BUG_ON(!ss->use_id);
4638
4639 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4640 newid = kzalloc(size, GFP_KERNEL);
4641 if (!newid)
4642 return ERR_PTR(-ENOMEM);
4643 /* get id */
4644 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4645 error = -ENOMEM;
4646 goto err_out;
4647 }
4648 spin_lock(&ss->id_lock);
4649 /* Don't use 0. allocates an ID of 1-65535 */
4650 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4651 spin_unlock(&ss->id_lock);
4652
4653 /* Returns error when there are no free spaces for new ID.*/
4654 if (error) {
4655 error = -ENOSPC;
4656 goto err_out;
4657 }
4658 if (myid > CSS_ID_MAX)
4659 goto remove_idr;
4660
4661 newid->id = myid;
4662 newid->depth = depth;
4663 return newid;
4664remove_idr:
4665 error = -ENOSPC;
4666 spin_lock(&ss->id_lock);
4667 idr_remove(&ss->idr, myid);
4668 spin_unlock(&ss->id_lock);
4669err_out:
4670 kfree(newid);
4671 return ERR_PTR(error);
4672
4673}
4674
e6a1105b
BB
4675static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4676 struct cgroup_subsys_state *rootcss)
38460b48
KH
4677{
4678 struct css_id *newid;
38460b48
KH
4679
4680 spin_lock_init(&ss->id_lock);
4681 idr_init(&ss->idr);
4682
38460b48
KH
4683 newid = get_new_cssid(ss, 0);
4684 if (IS_ERR(newid))
4685 return PTR_ERR(newid);
4686
4687 newid->stack[0] = newid->id;
4688 newid->css = rootcss;
4689 rootcss->id = newid;
4690 return 0;
4691}
4692
4693static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4694 struct cgroup *child)
4695{
4696 int subsys_id, i, depth = 0;
4697 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 4698 struct css_id *child_id, *parent_id;
38460b48
KH
4699
4700 subsys_id = ss->subsys_id;
4701 parent_css = parent->subsys[subsys_id];
4702 child_css = child->subsys[subsys_id];
38460b48 4703 parent_id = parent_css->id;
94b3dd0f 4704 depth = parent_id->depth + 1;
38460b48
KH
4705
4706 child_id = get_new_cssid(ss, depth);
4707 if (IS_ERR(child_id))
4708 return PTR_ERR(child_id);
4709
4710 for (i = 0; i < depth; i++)
4711 child_id->stack[i] = parent_id->stack[i];
4712 child_id->stack[depth] = child_id->id;
4713 /*
4714 * child_id->css pointer will be set after this cgroup is available
4715 * see cgroup_populate_dir()
4716 */
4717 rcu_assign_pointer(child_css->id, child_id);
4718
4719 return 0;
4720}
4721
4722/**
4723 * css_lookup - lookup css by id
4724 * @ss: cgroup subsys to be looked into.
4725 * @id: the id
4726 *
4727 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4728 * NULL if not. Should be called under rcu_read_lock()
4729 */
4730struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4731{
4732 struct css_id *cssid = NULL;
4733
4734 BUG_ON(!ss->use_id);
4735 cssid = idr_find(&ss->idr, id);
4736
4737 if (unlikely(!cssid))
4738 return NULL;
4739
4740 return rcu_dereference(cssid->css);
4741}
67523c48 4742EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
4743
4744/**
4745 * css_get_next - lookup next cgroup under specified hierarchy.
4746 * @ss: pointer to subsystem
4747 * @id: current position of iteration.
4748 * @root: pointer to css. search tree under this.
4749 * @foundid: position of found object.
4750 *
4751 * Search next css under the specified hierarchy of rootid. Calling under
4752 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4753 */
4754struct cgroup_subsys_state *
4755css_get_next(struct cgroup_subsys *ss, int id,
4756 struct cgroup_subsys_state *root, int *foundid)
4757{
4758 struct cgroup_subsys_state *ret = NULL;
4759 struct css_id *tmp;
4760 int tmpid;
4761 int rootid = css_id(root);
4762 int depth = css_depth(root);
4763
4764 if (!rootid)
4765 return NULL;
4766
4767 BUG_ON(!ss->use_id);
4768 /* fill start point for scan */
4769 tmpid = id;
4770 while (1) {
4771 /*
4772 * scan next entry from bitmap(tree), tmpid is updated after
4773 * idr_get_next().
4774 */
4775 spin_lock(&ss->id_lock);
4776 tmp = idr_get_next(&ss->idr, &tmpid);
4777 spin_unlock(&ss->id_lock);
4778
4779 if (!tmp)
4780 break;
4781 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4782 ret = rcu_dereference(tmp->css);
4783 if (ret) {
4784 *foundid = tmpid;
4785 break;
4786 }
4787 }
4788 /* continue to scan from next id */
4789 tmpid = tmpid + 1;
4790 }
4791 return ret;
4792}
4793
fe693435
PM
4794#ifdef CONFIG_CGROUP_DEBUG
4795static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4796 struct cgroup *cont)
4797{
4798 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4799
4800 if (!css)
4801 return ERR_PTR(-ENOMEM);
4802
4803 return css;
4804}
4805
4806static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4807{
4808 kfree(cont->subsys[debug_subsys_id]);
4809}
4810
4811static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4812{
4813 return atomic_read(&cont->count);
4814}
4815
4816static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4817{
4818 return cgroup_task_count(cont);
4819}
4820
4821static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4822{
4823 return (u64)(unsigned long)current->cgroups;
4824}
4825
4826static u64 current_css_set_refcount_read(struct cgroup *cont,
4827 struct cftype *cft)
4828{
4829 u64 count;
4830
4831 rcu_read_lock();
4832 count = atomic_read(&current->cgroups->refcount);
4833 rcu_read_unlock();
4834 return count;
4835}
4836
7717f7ba
PM
4837static int current_css_set_cg_links_read(struct cgroup *cont,
4838 struct cftype *cft,
4839 struct seq_file *seq)
4840{
4841 struct cg_cgroup_link *link;
4842 struct css_set *cg;
4843
4844 read_lock(&css_set_lock);
4845 rcu_read_lock();
4846 cg = rcu_dereference(current->cgroups);
4847 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4848 struct cgroup *c = link->cgrp;
4849 const char *name;
4850
4851 if (c->dentry)
4852 name = c->dentry->d_name.name;
4853 else
4854 name = "?";
2c6ab6d2
PM
4855 seq_printf(seq, "Root %d group %s\n",
4856 c->root->hierarchy_id, name);
7717f7ba
PM
4857 }
4858 rcu_read_unlock();
4859 read_unlock(&css_set_lock);
4860 return 0;
4861}
4862
4863#define MAX_TASKS_SHOWN_PER_CSS 25
4864static int cgroup_css_links_read(struct cgroup *cont,
4865 struct cftype *cft,
4866 struct seq_file *seq)
4867{
4868 struct cg_cgroup_link *link;
4869
4870 read_lock(&css_set_lock);
4871 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4872 struct css_set *cg = link->cg;
4873 struct task_struct *task;
4874 int count = 0;
4875 seq_printf(seq, "css_set %p\n", cg);
4876 list_for_each_entry(task, &cg->tasks, cg_list) {
4877 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4878 seq_puts(seq, " ...\n");
4879 break;
4880 } else {
4881 seq_printf(seq, " task %d\n",
4882 task_pid_vnr(task));
4883 }
4884 }
4885 }
4886 read_unlock(&css_set_lock);
4887 return 0;
4888}
4889
fe693435
PM
4890static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4891{
4892 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4893}
4894
4895static struct cftype debug_files[] = {
4896 {
4897 .name = "cgroup_refcount",
4898 .read_u64 = cgroup_refcount_read,
4899 },
4900 {
4901 .name = "taskcount",
4902 .read_u64 = debug_taskcount_read,
4903 },
4904
4905 {
4906 .name = "current_css_set",
4907 .read_u64 = current_css_set_read,
4908 },
4909
4910 {
4911 .name = "current_css_set_refcount",
4912 .read_u64 = current_css_set_refcount_read,
4913 },
4914
7717f7ba
PM
4915 {
4916 .name = "current_css_set_cg_links",
4917 .read_seq_string = current_css_set_cg_links_read,
4918 },
4919
4920 {
4921 .name = "cgroup_css_links",
4922 .read_seq_string = cgroup_css_links_read,
4923 },
4924
fe693435
PM
4925 {
4926 .name = "releasable",
4927 .read_u64 = releasable_read,
4928 },
4929};
4930
4931static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4932{
4933 return cgroup_add_files(cont, ss, debug_files,
4934 ARRAY_SIZE(debug_files));
4935}
4936
4937struct cgroup_subsys debug_subsys = {
4938 .name = "debug",
4939 .create = debug_create,
4940 .destroy = debug_destroy,
4941 .populate = debug_populate,
4942 .subsys_id = debug_subsys_id,
4943};
4944#endif /* CONFIG_CGROUP_DEBUG */