]> bbs.cooldavid.org Git - net-next-2.6.git/blob - security/selinux/ss/policydb.c
97fb0cf0eb6955f5b68a0e57a8791ad819d126ca
[net-next-2.6.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *      This program is free software; you can redistribute it and/or modify
24  *      it under the terms of the GNU General Public License as published by
25  *      the Free Software Foundation, version 2.
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40
41 #define _DEBUG_HASHES
42
43 #ifdef DEBUG_HASHES
44 static const char *symtab_name[SYM_NUM] = {
45         "common prefixes",
46         "classes",
47         "roles",
48         "types",
49         "users",
50         "bools",
51         "levels",
52         "categories",
53 };
54 #endif
55
56 static unsigned int symtab_sizes[SYM_NUM] = {
57         2,
58         32,
59         16,
60         512,
61         128,
62         16,
63         16,
64         16,
65 };
66
67 struct policydb_compat_info {
68         int version;
69         int sym_num;
70         int ocon_num;
71 };
72
73 /* These need to be updated if SYM_NUM or OCON_NUM changes */
74 static struct policydb_compat_info policydb_compat[] = {
75         {
76                 .version        = POLICYDB_VERSION_BASE,
77                 .sym_num        = SYM_NUM - 3,
78                 .ocon_num       = OCON_NUM - 1,
79         },
80         {
81                 .version        = POLICYDB_VERSION_BOOL,
82                 .sym_num        = SYM_NUM - 2,
83                 .ocon_num       = OCON_NUM - 1,
84         },
85         {
86                 .version        = POLICYDB_VERSION_IPV6,
87                 .sym_num        = SYM_NUM - 2,
88                 .ocon_num       = OCON_NUM,
89         },
90         {
91                 .version        = POLICYDB_VERSION_NLCLASS,
92                 .sym_num        = SYM_NUM - 2,
93                 .ocon_num       = OCON_NUM,
94         },
95         {
96                 .version        = POLICYDB_VERSION_MLS,
97                 .sym_num        = SYM_NUM,
98                 .ocon_num       = OCON_NUM,
99         },
100         {
101                 .version        = POLICYDB_VERSION_AVTAB,
102                 .sym_num        = SYM_NUM,
103                 .ocon_num       = OCON_NUM,
104         },
105         {
106                 .version        = POLICYDB_VERSION_RANGETRANS,
107                 .sym_num        = SYM_NUM,
108                 .ocon_num       = OCON_NUM,
109         },
110         {
111                 .version        = POLICYDB_VERSION_POLCAP,
112                 .sym_num        = SYM_NUM,
113                 .ocon_num       = OCON_NUM,
114         },
115         {
116                 .version        = POLICYDB_VERSION_PERMISSIVE,
117                 .sym_num        = SYM_NUM,
118                 .ocon_num       = OCON_NUM,
119         },
120         {
121                 .version        = POLICYDB_VERSION_BOUNDARY,
122                 .sym_num        = SYM_NUM,
123                 .ocon_num       = OCON_NUM,
124         },
125 };
126
127 static struct policydb_compat_info *policydb_lookup_compat(int version)
128 {
129         int i;
130         struct policydb_compat_info *info = NULL;
131
132         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
133                 if (policydb_compat[i].version == version) {
134                         info = &policydb_compat[i];
135                         break;
136                 }
137         }
138         return info;
139 }
140
141 /*
142  * Initialize the role table.
143  */
144 static int roles_init(struct policydb *p)
145 {
146         char *key = NULL;
147         int rc;
148         struct role_datum *role;
149
150         role = kzalloc(sizeof(*role), GFP_KERNEL);
151         if (!role) {
152                 rc = -ENOMEM;
153                 goto out;
154         }
155         role->value = ++p->p_roles.nprim;
156         if (role->value != OBJECT_R_VAL) {
157                 rc = -EINVAL;
158                 goto out_free_role;
159         }
160         key = kstrdup(OBJECT_R, GFP_KERNEL);
161         if (!key) {
162                 rc = -ENOMEM;
163                 goto out_free_role;
164         }
165         rc = hashtab_insert(p->p_roles.table, key, role);
166         if (rc)
167                 goto out_free_key;
168 out:
169         return rc;
170
171 out_free_key:
172         kfree(key);
173 out_free_role:
174         kfree(role);
175         goto out;
176 }
177
178 static u32 rangetr_hash(struct hashtab *h, const void *k)
179 {
180         const struct range_trans *key = k;
181         return (key->source_type + (key->target_type << 3) +
182                 (key->target_class << 5)) & (h->size - 1);
183 }
184
185 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
186 {
187         const struct range_trans *key1 = k1, *key2 = k2;
188         int v;
189
190         v = key1->source_type - key2->source_type;
191         if (v)
192                 return v;
193
194         v = key1->target_type - key2->target_type;
195         if (v)
196                 return v;
197
198         v = key1->target_class - key2->target_class;
199
200         return v;
201 }
202
203 /*
204  * Initialize a policy database structure.
205  */
206 static int policydb_init(struct policydb *p)
207 {
208         int i, rc;
209
210         memset(p, 0, sizeof(*p));
211
212         for (i = 0; i < SYM_NUM; i++) {
213                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
214                 if (rc)
215                         goto out_free_symtab;
216         }
217
218         rc = avtab_init(&p->te_avtab);
219         if (rc)
220                 goto out_free_symtab;
221
222         rc = roles_init(p);
223         if (rc)
224                 goto out_free_symtab;
225
226         rc = cond_policydb_init(p);
227         if (rc)
228                 goto out_free_symtab;
229
230         p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
231         if (!p->range_tr)
232                 goto out_free_symtab;
233
234         ebitmap_init(&p->policycaps);
235         ebitmap_init(&p->permissive_map);
236
237 out:
238         return rc;
239
240 out_free_symtab:
241         for (i = 0; i < SYM_NUM; i++)
242                 hashtab_destroy(p->symtab[i].table);
243         goto out;
244 }
245
246 /*
247  * The following *_index functions are used to
248  * define the val_to_name and val_to_struct arrays
249  * in a policy database structure.  The val_to_name
250  * arrays are used when converting security context
251  * structures into string representations.  The
252  * val_to_struct arrays are used when the attributes
253  * of a class, role, or user are needed.
254  */
255
256 static int common_index(void *key, void *datum, void *datap)
257 {
258         struct policydb *p;
259         struct common_datum *comdatum;
260
261         comdatum = datum;
262         p = datap;
263         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
264                 return -EINVAL;
265         p->p_common_val_to_name[comdatum->value - 1] = key;
266         return 0;
267 }
268
269 static int class_index(void *key, void *datum, void *datap)
270 {
271         struct policydb *p;
272         struct class_datum *cladatum;
273
274         cladatum = datum;
275         p = datap;
276         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
277                 return -EINVAL;
278         p->p_class_val_to_name[cladatum->value - 1] = key;
279         p->class_val_to_struct[cladatum->value - 1] = cladatum;
280         return 0;
281 }
282
283 static int role_index(void *key, void *datum, void *datap)
284 {
285         struct policydb *p;
286         struct role_datum *role;
287
288         role = datum;
289         p = datap;
290         if (!role->value
291             || role->value > p->p_roles.nprim
292             || role->bounds > p->p_roles.nprim)
293                 return -EINVAL;
294         p->p_role_val_to_name[role->value - 1] = key;
295         p->role_val_to_struct[role->value - 1] = role;
296         return 0;
297 }
298
299 static int type_index(void *key, void *datum, void *datap)
300 {
301         struct policydb *p;
302         struct type_datum *typdatum;
303
304         typdatum = datum;
305         p = datap;
306
307         if (typdatum->primary) {
308                 if (!typdatum->value
309                     || typdatum->value > p->p_types.nprim
310                     || typdatum->bounds > p->p_types.nprim)
311                         return -EINVAL;
312                 p->p_type_val_to_name[typdatum->value - 1] = key;
313                 p->type_val_to_struct[typdatum->value - 1] = typdatum;
314         }
315
316         return 0;
317 }
318
319 static int user_index(void *key, void *datum, void *datap)
320 {
321         struct policydb *p;
322         struct user_datum *usrdatum;
323
324         usrdatum = datum;
325         p = datap;
326         if (!usrdatum->value
327             || usrdatum->value > p->p_users.nprim
328             || usrdatum->bounds > p->p_users.nprim)
329                 return -EINVAL;
330         p->p_user_val_to_name[usrdatum->value - 1] = key;
331         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
332         return 0;
333 }
334
335 static int sens_index(void *key, void *datum, void *datap)
336 {
337         struct policydb *p;
338         struct level_datum *levdatum;
339
340         levdatum = datum;
341         p = datap;
342
343         if (!levdatum->isalias) {
344                 if (!levdatum->level->sens ||
345                     levdatum->level->sens > p->p_levels.nprim)
346                         return -EINVAL;
347                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
348         }
349
350         return 0;
351 }
352
353 static int cat_index(void *key, void *datum, void *datap)
354 {
355         struct policydb *p;
356         struct cat_datum *catdatum;
357
358         catdatum = datum;
359         p = datap;
360
361         if (!catdatum->isalias) {
362                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
363                         return -EINVAL;
364                 p->p_cat_val_to_name[catdatum->value - 1] = key;
365         }
366
367         return 0;
368 }
369
370 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
371 {
372         common_index,
373         class_index,
374         role_index,
375         type_index,
376         user_index,
377         cond_index_bool,
378         sens_index,
379         cat_index,
380 };
381
382 /*
383  * Define the common val_to_name array and the class
384  * val_to_name and val_to_struct arrays in a policy
385  * database structure.
386  *
387  * Caller must clean up upon failure.
388  */
389 static int policydb_index_classes(struct policydb *p)
390 {
391         int rc;
392
393         p->p_common_val_to_name =
394                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
395         if (!p->p_common_val_to_name) {
396                 rc = -ENOMEM;
397                 goto out;
398         }
399
400         rc = hashtab_map(p->p_commons.table, common_index, p);
401         if (rc)
402                 goto out;
403
404         p->class_val_to_struct =
405                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
406         if (!p->class_val_to_struct) {
407                 rc = -ENOMEM;
408                 goto out;
409         }
410
411         p->p_class_val_to_name =
412                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
413         if (!p->p_class_val_to_name) {
414                 rc = -ENOMEM;
415                 goto out;
416         }
417
418         rc = hashtab_map(p->p_classes.table, class_index, p);
419 out:
420         return rc;
421 }
422
423 #ifdef DEBUG_HASHES
424 static void symtab_hash_eval(struct symtab *s)
425 {
426         int i;
427
428         for (i = 0; i < SYM_NUM; i++) {
429                 struct hashtab *h = s[i].table;
430                 struct hashtab_info info;
431
432                 hashtab_stat(h, &info);
433                 printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
434                        "longest chain length %d\n", symtab_name[i], h->nel,
435                        info.slots_used, h->size, info.max_chain_len);
436         }
437 }
438
439 static void rangetr_hash_eval(struct hashtab *h)
440 {
441         struct hashtab_info info;
442
443         hashtab_stat(h, &info);
444         printk(KERN_DEBUG "SELinux: rangetr:  %d entries and %d/%d buckets used, "
445                "longest chain length %d\n", h->nel,
446                info.slots_used, h->size, info.max_chain_len);
447 }
448 #else
449 static inline void rangetr_hash_eval(struct hashtab *h)
450 {
451 }
452 #endif
453
454 /*
455  * Define the other val_to_name and val_to_struct arrays
456  * in a policy database structure.
457  *
458  * Caller must clean up on failure.
459  */
460 static int policydb_index_others(struct policydb *p)
461 {
462         int i, rc = 0;
463
464         printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
465                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
466         if (p->mls_enabled)
467                 printk(", %d sens, %d cats", p->p_levels.nprim,
468                        p->p_cats.nprim);
469         printk("\n");
470
471         printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
472                p->p_classes.nprim, p->te_avtab.nel);
473
474 #ifdef DEBUG_HASHES
475         avtab_hash_eval(&p->te_avtab, "rules");
476         symtab_hash_eval(p->symtab);
477 #endif
478
479         p->role_val_to_struct =
480                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
481                         GFP_KERNEL);
482         if (!p->role_val_to_struct) {
483                 rc = -ENOMEM;
484                 goto out;
485         }
486
487         p->user_val_to_struct =
488                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
489                         GFP_KERNEL);
490         if (!p->user_val_to_struct) {
491                 rc = -ENOMEM;
492                 goto out;
493         }
494
495         p->type_val_to_struct =
496                 kmalloc(p->p_types.nprim * sizeof(*(p->type_val_to_struct)),
497                         GFP_KERNEL);
498         if (!p->type_val_to_struct) {
499                 rc = -ENOMEM;
500                 goto out;
501         }
502
503         if (cond_init_bool_indexes(p)) {
504                 rc = -ENOMEM;
505                 goto out;
506         }
507
508         for (i = SYM_ROLES; i < SYM_NUM; i++) {
509                 p->sym_val_to_name[i] =
510                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
511                 if (!p->sym_val_to_name[i]) {
512                         rc = -ENOMEM;
513                         goto out;
514                 }
515                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
516                 if (rc)
517                         goto out;
518         }
519
520 out:
521         return rc;
522 }
523
524 /*
525  * The following *_destroy functions are used to
526  * free any memory allocated for each kind of
527  * symbol data in the policy database.
528  */
529
530 static int perm_destroy(void *key, void *datum, void *p)
531 {
532         kfree(key);
533         kfree(datum);
534         return 0;
535 }
536
537 static int common_destroy(void *key, void *datum, void *p)
538 {
539         struct common_datum *comdatum;
540
541         kfree(key);
542         comdatum = datum;
543         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
544         hashtab_destroy(comdatum->permissions.table);
545         kfree(datum);
546         return 0;
547 }
548
549 static int cls_destroy(void *key, void *datum, void *p)
550 {
551         struct class_datum *cladatum;
552         struct constraint_node *constraint, *ctemp;
553         struct constraint_expr *e, *etmp;
554
555         kfree(key);
556         cladatum = datum;
557         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
558         hashtab_destroy(cladatum->permissions.table);
559         constraint = cladatum->constraints;
560         while (constraint) {
561                 e = constraint->expr;
562                 while (e) {
563                         ebitmap_destroy(&e->names);
564                         etmp = e;
565                         e = e->next;
566                         kfree(etmp);
567                 }
568                 ctemp = constraint;
569                 constraint = constraint->next;
570                 kfree(ctemp);
571         }
572
573         constraint = cladatum->validatetrans;
574         while (constraint) {
575                 e = constraint->expr;
576                 while (e) {
577                         ebitmap_destroy(&e->names);
578                         etmp = e;
579                         e = e->next;
580                         kfree(etmp);
581                 }
582                 ctemp = constraint;
583                 constraint = constraint->next;
584                 kfree(ctemp);
585         }
586
587         kfree(cladatum->comkey);
588         kfree(datum);
589         return 0;
590 }
591
592 static int role_destroy(void *key, void *datum, void *p)
593 {
594         struct role_datum *role;
595
596         kfree(key);
597         role = datum;
598         ebitmap_destroy(&role->dominates);
599         ebitmap_destroy(&role->types);
600         kfree(datum);
601         return 0;
602 }
603
604 static int type_destroy(void *key, void *datum, void *p)
605 {
606         kfree(key);
607         kfree(datum);
608         return 0;
609 }
610
611 static int user_destroy(void *key, void *datum, void *p)
612 {
613         struct user_datum *usrdatum;
614
615         kfree(key);
616         usrdatum = datum;
617         ebitmap_destroy(&usrdatum->roles);
618         ebitmap_destroy(&usrdatum->range.level[0].cat);
619         ebitmap_destroy(&usrdatum->range.level[1].cat);
620         ebitmap_destroy(&usrdatum->dfltlevel.cat);
621         kfree(datum);
622         return 0;
623 }
624
625 static int sens_destroy(void *key, void *datum, void *p)
626 {
627         struct level_datum *levdatum;
628
629         kfree(key);
630         levdatum = datum;
631         ebitmap_destroy(&levdatum->level->cat);
632         kfree(levdatum->level);
633         kfree(datum);
634         return 0;
635 }
636
637 static int cat_destroy(void *key, void *datum, void *p)
638 {
639         kfree(key);
640         kfree(datum);
641         return 0;
642 }
643
644 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
645 {
646         common_destroy,
647         cls_destroy,
648         role_destroy,
649         type_destroy,
650         user_destroy,
651         cond_destroy_bool,
652         sens_destroy,
653         cat_destroy,
654 };
655
656 static int range_tr_destroy(void *key, void *datum, void *p)
657 {
658         struct mls_range *rt = datum;
659         kfree(key);
660         ebitmap_destroy(&rt->level[0].cat);
661         ebitmap_destroy(&rt->level[1].cat);
662         kfree(datum);
663         cond_resched();
664         return 0;
665 }
666
667 static void ocontext_destroy(struct ocontext *c, int i)
668 {
669         if (!c)
670                 return;
671
672         context_destroy(&c->context[0]);
673         context_destroy(&c->context[1]);
674         if (i == OCON_ISID || i == OCON_FS ||
675             i == OCON_NETIF || i == OCON_FSUSE)
676                 kfree(c->u.name);
677         kfree(c);
678 }
679
680 /*
681  * Free any memory allocated by a policy database structure.
682  */
683 void policydb_destroy(struct policydb *p)
684 {
685         struct ocontext *c, *ctmp;
686         struct genfs *g, *gtmp;
687         int i;
688         struct role_allow *ra, *lra = NULL;
689         struct role_trans *tr, *ltr = NULL;
690
691         for (i = 0; i < SYM_NUM; i++) {
692                 cond_resched();
693                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
694                 hashtab_destroy(p->symtab[i].table);
695         }
696
697         for (i = 0; i < SYM_NUM; i++)
698                 kfree(p->sym_val_to_name[i]);
699
700         kfree(p->class_val_to_struct);
701         kfree(p->role_val_to_struct);
702         kfree(p->user_val_to_struct);
703         kfree(p->type_val_to_struct);
704
705         avtab_destroy(&p->te_avtab);
706
707         for (i = 0; i < OCON_NUM; i++) {
708                 cond_resched();
709                 c = p->ocontexts[i];
710                 while (c) {
711                         ctmp = c;
712                         c = c->next;
713                         ocontext_destroy(ctmp, i);
714                 }
715                 p->ocontexts[i] = NULL;
716         }
717
718         g = p->genfs;
719         while (g) {
720                 cond_resched();
721                 kfree(g->fstype);
722                 c = g->head;
723                 while (c) {
724                         ctmp = c;
725                         c = c->next;
726                         ocontext_destroy(ctmp, OCON_FSUSE);
727                 }
728                 gtmp = g;
729                 g = g->next;
730                 kfree(gtmp);
731         }
732         p->genfs = NULL;
733
734         cond_policydb_destroy(p);
735
736         for (tr = p->role_tr; tr; tr = tr->next) {
737                 cond_resched();
738                 kfree(ltr);
739                 ltr = tr;
740         }
741         kfree(ltr);
742
743         for (ra = p->role_allow; ra; ra = ra->next) {
744                 cond_resched();
745                 kfree(lra);
746                 lra = ra;
747         }
748         kfree(lra);
749
750         hashtab_map(p->range_tr, range_tr_destroy, NULL);
751         hashtab_destroy(p->range_tr);
752
753         if (p->type_attr_map_array) {
754                 for (i = 0; i < p->p_types.nprim; i++) {
755                         struct ebitmap *e;
756
757                         e = flex_array_get(p->type_attr_map_array, i);
758                         if (!e)
759                                 continue;
760                         ebitmap_destroy(e);
761                 }
762                 flex_array_free(p->type_attr_map_array);
763         }
764         ebitmap_destroy(&p->policycaps);
765         ebitmap_destroy(&p->permissive_map);
766
767         return;
768 }
769
770 /*
771  * Load the initial SIDs specified in a policy database
772  * structure into a SID table.
773  */
774 int policydb_load_isids(struct policydb *p, struct sidtab *s)
775 {
776         struct ocontext *head, *c;
777         int rc;
778
779         rc = sidtab_init(s);
780         if (rc) {
781                 printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
782                 goto out;
783         }
784
785         head = p->ocontexts[OCON_ISID];
786         for (c = head; c; c = c->next) {
787                 if (!c->context[0].user) {
788                         printk(KERN_ERR "SELinux:  SID %s was never "
789                                "defined.\n", c->u.name);
790                         rc = -EINVAL;
791                         goto out;
792                 }
793                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
794                         printk(KERN_ERR "SELinux:  unable to load initial "
795                                "SID %s.\n", c->u.name);
796                         rc = -EINVAL;
797                         goto out;
798                 }
799         }
800 out:
801         return rc;
802 }
803
804 int policydb_class_isvalid(struct policydb *p, unsigned int class)
805 {
806         if (!class || class > p->p_classes.nprim)
807                 return 0;
808         return 1;
809 }
810
811 int policydb_role_isvalid(struct policydb *p, unsigned int role)
812 {
813         if (!role || role > p->p_roles.nprim)
814                 return 0;
815         return 1;
816 }
817
818 int policydb_type_isvalid(struct policydb *p, unsigned int type)
819 {
820         if (!type || type > p->p_types.nprim)
821                 return 0;
822         return 1;
823 }
824
825 /*
826  * Return 1 if the fields in the security context
827  * structure `c' are valid.  Return 0 otherwise.
828  */
829 int policydb_context_isvalid(struct policydb *p, struct context *c)
830 {
831         struct role_datum *role;
832         struct user_datum *usrdatum;
833
834         if (!c->role || c->role > p->p_roles.nprim)
835                 return 0;
836
837         if (!c->user || c->user > p->p_users.nprim)
838                 return 0;
839
840         if (!c->type || c->type > p->p_types.nprim)
841                 return 0;
842
843         if (c->role != OBJECT_R_VAL) {
844                 /*
845                  * Role must be authorized for the type.
846                  */
847                 role = p->role_val_to_struct[c->role - 1];
848                 if (!ebitmap_get_bit(&role->types,
849                                      c->type - 1))
850                         /* role may not be associated with type */
851                         return 0;
852
853                 /*
854                  * User must be authorized for the role.
855                  */
856                 usrdatum = p->user_val_to_struct[c->user - 1];
857                 if (!usrdatum)
858                         return 0;
859
860                 if (!ebitmap_get_bit(&usrdatum->roles,
861                                      c->role - 1))
862                         /* user may not be associated with role */
863                         return 0;
864         }
865
866         if (!mls_context_isvalid(p, c))
867                 return 0;
868
869         return 1;
870 }
871
872 /*
873  * Read a MLS range structure from a policydb binary
874  * representation file.
875  */
876 static int mls_read_range_helper(struct mls_range *r, void *fp)
877 {
878         __le32 buf[2];
879         u32 items;
880         int rc;
881
882         rc = next_entry(buf, fp, sizeof(u32));
883         if (rc < 0)
884                 goto out;
885
886         items = le32_to_cpu(buf[0]);
887         if (items > ARRAY_SIZE(buf)) {
888                 printk(KERN_ERR "SELinux: mls:  range overflow\n");
889                 rc = -EINVAL;
890                 goto out;
891         }
892         rc = next_entry(buf, fp, sizeof(u32) * items);
893         if (rc < 0) {
894                 printk(KERN_ERR "SELinux: mls:  truncated range\n");
895                 goto out;
896         }
897         r->level[0].sens = le32_to_cpu(buf[0]);
898         if (items > 1)
899                 r->level[1].sens = le32_to_cpu(buf[1]);
900         else
901                 r->level[1].sens = r->level[0].sens;
902
903         rc = ebitmap_read(&r->level[0].cat, fp);
904         if (rc) {
905                 printk(KERN_ERR "SELinux: mls:  error reading low "
906                        "categories\n");
907                 goto out;
908         }
909         if (items > 1) {
910                 rc = ebitmap_read(&r->level[1].cat, fp);
911                 if (rc) {
912                         printk(KERN_ERR "SELinux: mls:  error reading high "
913                                "categories\n");
914                         goto bad_high;
915                 }
916         } else {
917                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
918                 if (rc) {
919                         printk(KERN_ERR "SELinux: mls:  out of memory\n");
920                         goto bad_high;
921                 }
922         }
923
924         rc = 0;
925 out:
926         return rc;
927 bad_high:
928         ebitmap_destroy(&r->level[0].cat);
929         goto out;
930 }
931
932 /*
933  * Read and validate a security context structure
934  * from a policydb binary representation file.
935  */
936 static int context_read_and_validate(struct context *c,
937                                      struct policydb *p,
938                                      void *fp)
939 {
940         __le32 buf[3];
941         int rc;
942
943         rc = next_entry(buf, fp, sizeof buf);
944         if (rc < 0) {
945                 printk(KERN_ERR "SELinux: context truncated\n");
946                 goto out;
947         }
948         c->user = le32_to_cpu(buf[0]);
949         c->role = le32_to_cpu(buf[1]);
950         c->type = le32_to_cpu(buf[2]);
951         if (p->policyvers >= POLICYDB_VERSION_MLS) {
952                 if (mls_read_range_helper(&c->range, fp)) {
953                         printk(KERN_ERR "SELinux: error reading MLS range of "
954                                "context\n");
955                         rc = -EINVAL;
956                         goto out;
957                 }
958         }
959
960         if (!policydb_context_isvalid(p, c)) {
961                 printk(KERN_ERR "SELinux:  invalid security context\n");
962                 context_destroy(c);
963                 rc = -EINVAL;
964         }
965 out:
966         return rc;
967 }
968
969 /*
970  * The following *_read functions are used to
971  * read the symbol data from a policy database
972  * binary representation file.
973  */
974
975 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
976 {
977         char *key = NULL;
978         struct perm_datum *perdatum;
979         int rc;
980         __le32 buf[2];
981         u32 len;
982
983         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
984         if (!perdatum) {
985                 rc = -ENOMEM;
986                 goto out;
987         }
988
989         rc = next_entry(buf, fp, sizeof buf);
990         if (rc < 0)
991                 goto bad;
992
993         len = le32_to_cpu(buf[0]);
994         perdatum->value = le32_to_cpu(buf[1]);
995
996         key = kmalloc(len + 1, GFP_KERNEL);
997         if (!key) {
998                 rc = -ENOMEM;
999                 goto bad;
1000         }
1001         rc = next_entry(key, fp, len);
1002         if (rc < 0)
1003                 goto bad;
1004         key[len] = '\0';
1005
1006         rc = hashtab_insert(h, key, perdatum);
1007         if (rc)
1008                 goto bad;
1009 out:
1010         return rc;
1011 bad:
1012         perm_destroy(key, perdatum, NULL);
1013         goto out;
1014 }
1015
1016 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1017 {
1018         char *key = NULL;
1019         struct common_datum *comdatum;
1020         __le32 buf[4];
1021         u32 len, nel;
1022         int i, rc;
1023
1024         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1025         if (!comdatum) {
1026                 rc = -ENOMEM;
1027                 goto out;
1028         }
1029
1030         rc = next_entry(buf, fp, sizeof buf);
1031         if (rc < 0)
1032                 goto bad;
1033
1034         len = le32_to_cpu(buf[0]);
1035         comdatum->value = le32_to_cpu(buf[1]);
1036
1037         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1038         if (rc)
1039                 goto bad;
1040         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1041         nel = le32_to_cpu(buf[3]);
1042
1043         key = kmalloc(len + 1, GFP_KERNEL);
1044         if (!key) {
1045                 rc = -ENOMEM;
1046                 goto bad;
1047         }
1048         rc = next_entry(key, fp, len);
1049         if (rc < 0)
1050                 goto bad;
1051         key[len] = '\0';
1052
1053         for (i = 0; i < nel; i++) {
1054                 rc = perm_read(p, comdatum->permissions.table, fp);
1055                 if (rc)
1056                         goto bad;
1057         }
1058
1059         rc = hashtab_insert(h, key, comdatum);
1060         if (rc)
1061                 goto bad;
1062 out:
1063         return rc;
1064 bad:
1065         common_destroy(key, comdatum, NULL);
1066         goto out;
1067 }
1068
1069 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1070                             int allowxtarget, void *fp)
1071 {
1072         struct constraint_node *c, *lc;
1073         struct constraint_expr *e, *le;
1074         __le32 buf[3];
1075         u32 nexpr;
1076         int rc, i, j, depth;
1077
1078         lc = NULL;
1079         for (i = 0; i < ncons; i++) {
1080                 c = kzalloc(sizeof(*c), GFP_KERNEL);
1081                 if (!c)
1082                         return -ENOMEM;
1083
1084                 if (lc)
1085                         lc->next = c;
1086                 else
1087                         *nodep = c;
1088
1089                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1090                 if (rc < 0)
1091                         return rc;
1092                 c->permissions = le32_to_cpu(buf[0]);
1093                 nexpr = le32_to_cpu(buf[1]);
1094                 le = NULL;
1095                 depth = -1;
1096                 for (j = 0; j < nexpr; j++) {
1097                         e = kzalloc(sizeof(*e), GFP_KERNEL);
1098                         if (!e)
1099                                 return -ENOMEM;
1100
1101                         if (le)
1102                                 le->next = e;
1103                         else
1104                                 c->expr = e;
1105
1106                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1107                         if (rc < 0)
1108                                 return rc;
1109                         e->expr_type = le32_to_cpu(buf[0]);
1110                         e->attr = le32_to_cpu(buf[1]);
1111                         e->op = le32_to_cpu(buf[2]);
1112
1113                         switch (e->expr_type) {
1114                         case CEXPR_NOT:
1115                                 if (depth < 0)
1116                                         return -EINVAL;
1117                                 break;
1118                         case CEXPR_AND:
1119                         case CEXPR_OR:
1120                                 if (depth < 1)
1121                                         return -EINVAL;
1122                                 depth--;
1123                                 break;
1124                         case CEXPR_ATTR:
1125                                 if (depth == (CEXPR_MAXDEPTH - 1))
1126                                         return -EINVAL;
1127                                 depth++;
1128                                 break;
1129                         case CEXPR_NAMES:
1130                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1131                                         return -EINVAL;
1132                                 if (depth == (CEXPR_MAXDEPTH - 1))
1133                                         return -EINVAL;
1134                                 depth++;
1135                                 if (ebitmap_read(&e->names, fp))
1136                                         return -EINVAL;
1137                                 break;
1138                         default:
1139                                 return -EINVAL;
1140                         }
1141                         le = e;
1142                 }
1143                 if (depth != 0)
1144                         return -EINVAL;
1145                 lc = c;
1146         }
1147
1148         return 0;
1149 }
1150
1151 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1152 {
1153         char *key = NULL;
1154         struct class_datum *cladatum;
1155         __le32 buf[6];
1156         u32 len, len2, ncons, nel;
1157         int i, rc;
1158
1159         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1160         if (!cladatum) {
1161                 rc = -ENOMEM;
1162                 goto out;
1163         }
1164
1165         rc = next_entry(buf, fp, sizeof(u32)*6);
1166         if (rc < 0)
1167                 goto bad;
1168
1169         len = le32_to_cpu(buf[0]);
1170         len2 = le32_to_cpu(buf[1]);
1171         cladatum->value = le32_to_cpu(buf[2]);
1172
1173         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1174         if (rc)
1175                 goto bad;
1176         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1177         nel = le32_to_cpu(buf[4]);
1178
1179         ncons = le32_to_cpu(buf[5]);
1180
1181         key = kmalloc(len + 1, GFP_KERNEL);
1182         if (!key) {
1183                 rc = -ENOMEM;
1184                 goto bad;
1185         }
1186         rc = next_entry(key, fp, len);
1187         if (rc < 0)
1188                 goto bad;
1189         key[len] = '\0';
1190
1191         if (len2) {
1192                 cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1193                 if (!cladatum->comkey) {
1194                         rc = -ENOMEM;
1195                         goto bad;
1196                 }
1197                 rc = next_entry(cladatum->comkey, fp, len2);
1198                 if (rc < 0)
1199                         goto bad;
1200                 cladatum->comkey[len2] = '\0';
1201
1202                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1203                                                     cladatum->comkey);
1204                 if (!cladatum->comdatum) {
1205                         printk(KERN_ERR "SELinux:  unknown common %s\n",
1206                                cladatum->comkey);
1207                         rc = -EINVAL;
1208                         goto bad;
1209                 }
1210         }
1211         for (i = 0; i < nel; i++) {
1212                 rc = perm_read(p, cladatum->permissions.table, fp);
1213                 if (rc)
1214                         goto bad;
1215         }
1216
1217         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1218         if (rc)
1219                 goto bad;
1220
1221         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1222                 /* grab the validatetrans rules */
1223                 rc = next_entry(buf, fp, sizeof(u32));
1224                 if (rc < 0)
1225                         goto bad;
1226                 ncons = le32_to_cpu(buf[0]);
1227                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1228                 if (rc)
1229                         goto bad;
1230         }
1231
1232         rc = hashtab_insert(h, key, cladatum);
1233         if (rc)
1234                 goto bad;
1235
1236         rc = 0;
1237 out:
1238         return rc;
1239 bad:
1240         cls_destroy(key, cladatum, NULL);
1241         goto out;
1242 }
1243
1244 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1245 {
1246         char *key = NULL;
1247         struct role_datum *role;
1248         int rc, to_read = 2;
1249         __le32 buf[3];
1250         u32 len;
1251
1252         role = kzalloc(sizeof(*role), GFP_KERNEL);
1253         if (!role) {
1254                 rc = -ENOMEM;
1255                 goto out;
1256         }
1257
1258         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1259                 to_read = 3;
1260
1261         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1262         if (rc < 0)
1263                 goto bad;
1264
1265         len = le32_to_cpu(buf[0]);
1266         role->value = le32_to_cpu(buf[1]);
1267         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1268                 role->bounds = le32_to_cpu(buf[2]);
1269
1270         key = kmalloc(len + 1, GFP_KERNEL);
1271         if (!key) {
1272                 rc = -ENOMEM;
1273                 goto bad;
1274         }
1275         rc = next_entry(key, fp, len);
1276         if (rc < 0)
1277                 goto bad;
1278         key[len] = '\0';
1279
1280         rc = ebitmap_read(&role->dominates, fp);
1281         if (rc)
1282                 goto bad;
1283
1284         rc = ebitmap_read(&role->types, fp);
1285         if (rc)
1286                 goto bad;
1287
1288         if (strcmp(key, OBJECT_R) == 0) {
1289                 if (role->value != OBJECT_R_VAL) {
1290                         printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1291                                OBJECT_R, role->value);
1292                         rc = -EINVAL;
1293                         goto bad;
1294                 }
1295                 rc = 0;
1296                 goto bad;
1297         }
1298
1299         rc = hashtab_insert(h, key, role);
1300         if (rc)
1301                 goto bad;
1302 out:
1303         return rc;
1304 bad:
1305         role_destroy(key, role, NULL);
1306         goto out;
1307 }
1308
1309 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1310 {
1311         char *key = NULL;
1312         struct type_datum *typdatum;
1313         int rc, to_read = 3;
1314         __le32 buf[4];
1315         u32 len;
1316
1317         typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1318         if (!typdatum) {
1319                 rc = -ENOMEM;
1320                 return rc;
1321         }
1322
1323         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1324                 to_read = 4;
1325
1326         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1327         if (rc < 0)
1328                 goto bad;
1329
1330         len = le32_to_cpu(buf[0]);
1331         typdatum->value = le32_to_cpu(buf[1]);
1332         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1333                 u32 prop = le32_to_cpu(buf[2]);
1334
1335                 if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1336                         typdatum->primary = 1;
1337                 if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1338                         typdatum->attribute = 1;
1339
1340                 typdatum->bounds = le32_to_cpu(buf[3]);
1341         } else {
1342                 typdatum->primary = le32_to_cpu(buf[2]);
1343         }
1344
1345         key = kmalloc(len + 1, GFP_KERNEL);
1346         if (!key) {
1347                 rc = -ENOMEM;
1348                 goto bad;
1349         }
1350         rc = next_entry(key, fp, len);
1351         if (rc < 0)
1352                 goto bad;
1353         key[len] = '\0';
1354
1355         rc = hashtab_insert(h, key, typdatum);
1356         if (rc)
1357                 goto bad;
1358 out:
1359         return rc;
1360 bad:
1361         type_destroy(key, typdatum, NULL);
1362         goto out;
1363 }
1364
1365
1366 /*
1367  * Read a MLS level structure from a policydb binary
1368  * representation file.
1369  */
1370 static int mls_read_level(struct mls_level *lp, void *fp)
1371 {
1372         __le32 buf[1];
1373         int rc;
1374
1375         memset(lp, 0, sizeof(*lp));
1376
1377         rc = next_entry(buf, fp, sizeof buf);
1378         if (rc < 0) {
1379                 printk(KERN_ERR "SELinux: mls: truncated level\n");
1380                 goto bad;
1381         }
1382         lp->sens = le32_to_cpu(buf[0]);
1383
1384         if (ebitmap_read(&lp->cat, fp)) {
1385                 printk(KERN_ERR "SELinux: mls:  error reading level "
1386                        "categories\n");
1387                 goto bad;
1388         }
1389
1390         return 0;
1391
1392 bad:
1393         return -EINVAL;
1394 }
1395
1396 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1397 {
1398         char *key = NULL;
1399         struct user_datum *usrdatum;
1400         int rc, to_read = 2;
1401         __le32 buf[3];
1402         u32 len;
1403
1404         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1405         if (!usrdatum) {
1406                 rc = -ENOMEM;
1407                 goto out;
1408         }
1409
1410         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1411                 to_read = 3;
1412
1413         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1414         if (rc < 0)
1415                 goto bad;
1416
1417         len = le32_to_cpu(buf[0]);
1418         usrdatum->value = le32_to_cpu(buf[1]);
1419         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1420                 usrdatum->bounds = le32_to_cpu(buf[2]);
1421
1422         key = kmalloc(len + 1, GFP_KERNEL);
1423         if (!key) {
1424                 rc = -ENOMEM;
1425                 goto bad;
1426         }
1427         rc = next_entry(key, fp, len);
1428         if (rc < 0)
1429                 goto bad;
1430         key[len] = '\0';
1431
1432         rc = ebitmap_read(&usrdatum->roles, fp);
1433         if (rc)
1434                 goto bad;
1435
1436         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1437                 rc = mls_read_range_helper(&usrdatum->range, fp);
1438                 if (rc)
1439                         goto bad;
1440                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1441                 if (rc)
1442                         goto bad;
1443         }
1444
1445         rc = hashtab_insert(h, key, usrdatum);
1446         if (rc)
1447                 goto bad;
1448 out:
1449         return rc;
1450 bad:
1451         user_destroy(key, usrdatum, NULL);
1452         goto out;
1453 }
1454
1455 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1456 {
1457         char *key = NULL;
1458         struct level_datum *levdatum;
1459         int rc;
1460         __le32 buf[2];
1461         u32 len;
1462
1463         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1464         if (!levdatum) {
1465                 rc = -ENOMEM;
1466                 goto out;
1467         }
1468
1469         rc = next_entry(buf, fp, sizeof buf);
1470         if (rc < 0)
1471                 goto bad;
1472
1473         len = le32_to_cpu(buf[0]);
1474         levdatum->isalias = le32_to_cpu(buf[1]);
1475
1476         key = kmalloc(len + 1, GFP_ATOMIC);
1477         if (!key) {
1478                 rc = -ENOMEM;
1479                 goto bad;
1480         }
1481         rc = next_entry(key, fp, len);
1482         if (rc < 0)
1483                 goto bad;
1484         key[len] = '\0';
1485
1486         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1487         if (!levdatum->level) {
1488                 rc = -ENOMEM;
1489                 goto bad;
1490         }
1491         if (mls_read_level(levdatum->level, fp)) {
1492                 rc = -EINVAL;
1493                 goto bad;
1494         }
1495
1496         rc = hashtab_insert(h, key, levdatum);
1497         if (rc)
1498                 goto bad;
1499 out:
1500         return rc;
1501 bad:
1502         sens_destroy(key, levdatum, NULL);
1503         goto out;
1504 }
1505
1506 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1507 {
1508         char *key = NULL;
1509         struct cat_datum *catdatum;
1510         int rc;
1511         __le32 buf[3];
1512         u32 len;
1513
1514         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1515         if (!catdatum) {
1516                 rc = -ENOMEM;
1517                 goto out;
1518         }
1519
1520         rc = next_entry(buf, fp, sizeof buf);
1521         if (rc < 0)
1522                 goto bad;
1523
1524         len = le32_to_cpu(buf[0]);
1525         catdatum->value = le32_to_cpu(buf[1]);
1526         catdatum->isalias = le32_to_cpu(buf[2]);
1527
1528         key = kmalloc(len + 1, GFP_ATOMIC);
1529         if (!key) {
1530                 rc = -ENOMEM;
1531                 goto bad;
1532         }
1533         rc = next_entry(key, fp, len);
1534         if (rc < 0)
1535                 goto bad;
1536         key[len] = '\0';
1537
1538         rc = hashtab_insert(h, key, catdatum);
1539         if (rc)
1540                 goto bad;
1541 out:
1542         return rc;
1543
1544 bad:
1545         cat_destroy(key, catdatum, NULL);
1546         goto out;
1547 }
1548
1549 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1550 {
1551         common_read,
1552         class_read,
1553         role_read,
1554         type_read,
1555         user_read,
1556         cond_read_bool,
1557         sens_read,
1558         cat_read,
1559 };
1560
1561 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1562 {
1563         struct user_datum *upper, *user;
1564         struct policydb *p = datap;
1565         int depth = 0;
1566
1567         upper = user = datum;
1568         while (upper->bounds) {
1569                 struct ebitmap_node *node;
1570                 unsigned long bit;
1571
1572                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1573                         printk(KERN_ERR "SELinux: user %s: "
1574                                "too deep or looped boundary",
1575                                (char *) key);
1576                         return -EINVAL;
1577                 }
1578
1579                 upper = p->user_val_to_struct[upper->bounds - 1];
1580                 ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1581                         if (ebitmap_get_bit(&upper->roles, bit))
1582                                 continue;
1583
1584                         printk(KERN_ERR
1585                                "SELinux: boundary violated policy: "
1586                                "user=%s role=%s bounds=%s\n",
1587                                p->p_user_val_to_name[user->value - 1],
1588                                p->p_role_val_to_name[bit],
1589                                p->p_user_val_to_name[upper->value - 1]);
1590
1591                         return -EINVAL;
1592                 }
1593         }
1594
1595         return 0;
1596 }
1597
1598 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1599 {
1600         struct role_datum *upper, *role;
1601         struct policydb *p = datap;
1602         int depth = 0;
1603
1604         upper = role = datum;
1605         while (upper->bounds) {
1606                 struct ebitmap_node *node;
1607                 unsigned long bit;
1608
1609                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1610                         printk(KERN_ERR "SELinux: role %s: "
1611                                "too deep or looped bounds\n",
1612                                (char *) key);
1613                         return -EINVAL;
1614                 }
1615
1616                 upper = p->role_val_to_struct[upper->bounds - 1];
1617                 ebitmap_for_each_positive_bit(&role->types, node, bit) {
1618                         if (ebitmap_get_bit(&upper->types, bit))
1619                                 continue;
1620
1621                         printk(KERN_ERR
1622                                "SELinux: boundary violated policy: "
1623                                "role=%s type=%s bounds=%s\n",
1624                                p->p_role_val_to_name[role->value - 1],
1625                                p->p_type_val_to_name[bit],
1626                                p->p_role_val_to_name[upper->value - 1]);
1627
1628                         return -EINVAL;
1629                 }
1630         }
1631
1632         return 0;
1633 }
1634
1635 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1636 {
1637         struct type_datum *upper;
1638         struct policydb *p = datap;
1639         int depth = 0;
1640
1641         upper = datum;
1642         while (upper->bounds) {
1643                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1644                         printk(KERN_ERR "SELinux: type %s: "
1645                                "too deep or looped boundary\n",
1646                                (char *) key);
1647                         return -EINVAL;
1648                 }
1649
1650                 upper = p->type_val_to_struct[upper->bounds - 1];
1651                 if (upper->attribute) {
1652                         printk(KERN_ERR "SELinux: type %s: "
1653                                "bounded by attribute %s",
1654                                (char *) key,
1655                                p->p_type_val_to_name[upper->value - 1]);
1656                         return -EINVAL;
1657                 }
1658         }
1659
1660         return 0;
1661 }
1662
1663 static int policydb_bounds_sanity_check(struct policydb *p)
1664 {
1665         int rc;
1666
1667         if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1668                 return 0;
1669
1670         rc = hashtab_map(p->p_users.table,
1671                          user_bounds_sanity_check, p);
1672         if (rc)
1673                 return rc;
1674
1675         rc = hashtab_map(p->p_roles.table,
1676                          role_bounds_sanity_check, p);
1677         if (rc)
1678                 return rc;
1679
1680         rc = hashtab_map(p->p_types.table,
1681                          type_bounds_sanity_check, p);
1682         if (rc)
1683                 return rc;
1684
1685         return 0;
1686 }
1687
1688 extern int ss_initialized;
1689
1690 u16 string_to_security_class(struct policydb *p, const char *name)
1691 {
1692         struct class_datum *cladatum;
1693
1694         cladatum = hashtab_search(p->p_classes.table, name);
1695         if (!cladatum)
1696                 return 0;
1697
1698         return cladatum->value;
1699 }
1700
1701 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1702 {
1703         struct class_datum *cladatum;
1704         struct perm_datum *perdatum = NULL;
1705         struct common_datum *comdatum;
1706
1707         if (!tclass || tclass > p->p_classes.nprim)
1708                 return 0;
1709
1710         cladatum = p->class_val_to_struct[tclass-1];
1711         comdatum = cladatum->comdatum;
1712         if (comdatum)
1713                 perdatum = hashtab_search(comdatum->permissions.table,
1714                                           name);
1715         if (!perdatum)
1716                 perdatum = hashtab_search(cladatum->permissions.table,
1717                                           name);
1718         if (!perdatum)
1719                 return 0;
1720
1721         return 1U << (perdatum->value-1);
1722 }
1723
1724 static int range_read(struct policydb *p, void *fp)
1725 {
1726         struct range_trans *rt = NULL;
1727         struct mls_range *r = NULL;
1728         int i, rc;
1729         __le32 buf[2];
1730         u32 nel;
1731
1732         if (p->policyvers < POLICYDB_VERSION_MLS)
1733                 return 0;
1734
1735         rc = next_entry(buf, fp, sizeof(u32));
1736         if (rc)
1737                 goto out;
1738
1739         nel = le32_to_cpu(buf[0]);
1740         for (i = 0; i < nel; i++) {
1741                 rc = -ENOMEM;
1742                 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1743                 if (!rt)
1744                         goto out;
1745
1746                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1747                 if (rc)
1748                         goto out;
1749
1750                 rt->source_type = le32_to_cpu(buf[0]);
1751                 rt->target_type = le32_to_cpu(buf[1]);
1752                 if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1753                         rc = next_entry(buf, fp, sizeof(u32));
1754                         if (rc)
1755                                 goto out;
1756                         rt->target_class = le32_to_cpu(buf[0]);
1757                 } else
1758                         rt->target_class = p->process_class;
1759
1760                 rc = -EINVAL;
1761                 if (!policydb_type_isvalid(p, rt->source_type) ||
1762                     !policydb_type_isvalid(p, rt->target_type) ||
1763                     !policydb_class_isvalid(p, rt->target_class))
1764                         goto out;
1765
1766                 rc = -ENOMEM;
1767                 r = kzalloc(sizeof(*r), GFP_KERNEL);
1768                 if (!r)
1769                         goto out;
1770
1771                 rc = mls_read_range_helper(r, fp);
1772                 if (rc)
1773                         goto out;
1774
1775                 rc = -EINVAL;
1776                 if (!mls_range_isvalid(p, r)) {
1777                         printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1778                         goto out;
1779                 }
1780
1781                 rc = hashtab_insert(p->range_tr, rt, r);
1782                 if (rc)
1783                         goto out;
1784
1785                 rt = NULL;
1786                 r = NULL;
1787         }
1788         rangetr_hash_eval(p->range_tr);
1789         rc = 0;
1790 out:
1791         kfree(rt);
1792         kfree(r);
1793         return rc;
1794 }
1795
1796 static int genfs_read(struct policydb *p, void *fp)
1797 {
1798         int i, j, rc;
1799         u32 nel, nel2, len, len2;
1800         __le32 buf[1];
1801         struct ocontext *l, *c;
1802         struct ocontext *newc = NULL;
1803         struct genfs *genfs_p, *genfs;
1804         struct genfs *newgenfs = NULL;
1805
1806         rc = next_entry(buf, fp, sizeof(u32));
1807         if (rc)
1808                 goto out;
1809         nel = le32_to_cpu(buf[0]);
1810
1811         for (i = 0; i < nel; i++) {
1812                 rc = next_entry(buf, fp, sizeof(u32));
1813                 if (rc)
1814                         goto out;
1815                 len = le32_to_cpu(buf[0]);
1816
1817                 rc = -ENOMEM;
1818                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1819                 if (!newgenfs)
1820                         goto out;
1821
1822                 rc = -ENOMEM;
1823                 newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1824                 if (!newgenfs->fstype)
1825                         goto out;
1826
1827                 rc = next_entry(newgenfs->fstype, fp, len);
1828                 if (rc)
1829                         goto out;
1830
1831                 newgenfs->fstype[len] = 0;
1832
1833                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1834                      genfs_p = genfs, genfs = genfs->next) {
1835                         rc = -EINVAL;
1836                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1837                                 printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1838                                        newgenfs->fstype);
1839                                 goto out;
1840                         }
1841                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1842                                 break;
1843                 }
1844                 newgenfs->next = genfs;
1845                 if (genfs_p)
1846                         genfs_p->next = newgenfs;
1847                 else
1848                         p->genfs = newgenfs;
1849                 genfs = newgenfs;
1850                 newgenfs = NULL;
1851
1852                 rc = next_entry(buf, fp, sizeof(u32));
1853                 if (rc)
1854                         goto out;
1855
1856                 nel2 = le32_to_cpu(buf[0]);
1857                 for (j = 0; j < nel2; j++) {
1858                         rc = next_entry(buf, fp, sizeof(u32));
1859                         if (rc)
1860                                 goto out;
1861                         len = le32_to_cpu(buf[0]);
1862
1863                         rc = -ENOMEM;
1864                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1865                         if (!newc)
1866                                 goto out;
1867
1868                         rc = -ENOMEM;
1869                         newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1870                         if (!newc->u.name)
1871                                 goto out;
1872
1873                         rc = next_entry(newc->u.name, fp, len);
1874                         if (rc)
1875                                 goto out;
1876                         newc->u.name[len] = 0;
1877
1878                         rc = next_entry(buf, fp, sizeof(u32));
1879                         if (rc)
1880                                 goto out;
1881
1882                         newc->v.sclass = le32_to_cpu(buf[0]);
1883                         rc = context_read_and_validate(&newc->context[0], p, fp);
1884                         if (rc)
1885                                 goto out;
1886
1887                         for (l = NULL, c = genfs->head; c;
1888                              l = c, c = c->next) {
1889                                 rc = -EINVAL;
1890                                 if (!strcmp(newc->u.name, c->u.name) &&
1891                                     (!c->v.sclass || !newc->v.sclass ||
1892                                      newc->v.sclass == c->v.sclass)) {
1893                                         printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
1894                                                genfs->fstype, c->u.name);
1895                                         goto out;
1896                                 }
1897                                 len = strlen(newc->u.name);
1898                                 len2 = strlen(c->u.name);
1899                                 if (len > len2)
1900                                         break;
1901                         }
1902
1903                         newc->next = c;
1904                         if (l)
1905                                 l->next = newc;
1906                         else
1907                                 genfs->head = newc;
1908                         newc = NULL;
1909                 }
1910         }
1911         rc = 0;
1912 out:
1913         if (newgenfs)
1914                 kfree(newgenfs->fstype);
1915         kfree(newgenfs);
1916         ocontext_destroy(newc, OCON_FSUSE);
1917
1918         return rc;
1919 }
1920
1921 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
1922                          void *fp)
1923 {
1924         int i, j, rc;
1925         u32 nel, len;
1926         __le32 buf[3];
1927         struct ocontext *l, *c;
1928         u32 nodebuf[8];
1929
1930         for (i = 0; i < info->ocon_num; i++) {
1931                 rc = next_entry(buf, fp, sizeof(u32));
1932                 if (rc)
1933                         goto out;
1934                 nel = le32_to_cpu(buf[0]);
1935
1936                 l = NULL;
1937                 for (j = 0; j < nel; j++) {
1938                         rc = -ENOMEM;
1939                         c = kzalloc(sizeof(*c), GFP_KERNEL);
1940                         if (!c)
1941                                 goto out;
1942                         if (l)
1943                                 l->next = c;
1944                         else
1945                                 p->ocontexts[i] = c;
1946                         l = c;
1947
1948                         switch (i) {
1949                         case OCON_ISID:
1950                                 rc = next_entry(buf, fp, sizeof(u32));
1951                                 if (rc)
1952                                         goto out;
1953
1954                                 c->sid[0] = le32_to_cpu(buf[0]);
1955                                 rc = context_read_and_validate(&c->context[0], p, fp);
1956                                 if (rc)
1957                                         goto out;
1958                                 break;
1959                         case OCON_FS:
1960                         case OCON_NETIF:
1961                                 rc = next_entry(buf, fp, sizeof(u32));
1962                                 if (rc)
1963                                         goto out;
1964                                 len = le32_to_cpu(buf[0]);
1965
1966                                 rc = -ENOMEM;
1967                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
1968                                 if (!c->u.name)
1969                                         goto out;
1970
1971                                 rc = next_entry(c->u.name, fp, len);
1972                                 if (rc)
1973                                         goto out;
1974
1975                                 c->u.name[len] = 0;
1976                                 rc = context_read_and_validate(&c->context[0], p, fp);
1977                                 if (rc)
1978                                         goto out;
1979                                 rc = context_read_and_validate(&c->context[1], p, fp);
1980                                 if (rc)
1981                                         goto out;
1982                                 break;
1983                         case OCON_PORT:
1984                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1985                                 if (rc)
1986                                         goto out;
1987                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1988                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1989                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1990                                 rc = context_read_and_validate(&c->context[0], p, fp);
1991                                 if (rc)
1992                                         goto out;
1993                                 break;
1994                         case OCON_NODE:
1995                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
1996                                 if (rc)
1997                                         goto out;
1998                                 c->u.node.addr = nodebuf[0]; /* network order */
1999                                 c->u.node.mask = nodebuf[1]; /* network order */
2000                                 rc = context_read_and_validate(&c->context[0], p, fp);
2001                                 if (rc)
2002                                         goto out;
2003                                 break;
2004                         case OCON_FSUSE:
2005                                 rc = next_entry(buf, fp, sizeof(u32)*2);
2006                                 if (rc)
2007                                         goto out;
2008
2009                                 rc = -EINVAL;
2010                                 c->v.behavior = le32_to_cpu(buf[0]);
2011                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
2012                                         goto out;
2013
2014                                 rc = -ENOMEM;
2015                                 len = le32_to_cpu(buf[1]);
2016                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
2017                                 if (!c->u.name)
2018                                         goto out;
2019
2020                                 rc = next_entry(c->u.name, fp, len);
2021                                 if (rc)
2022                                         goto out;
2023                                 c->u.name[len] = 0;
2024                                 rc = context_read_and_validate(&c->context[0], p, fp);
2025                                 if (rc)
2026                                         goto out;
2027                                 break;
2028                         case OCON_NODE6: {
2029                                 int k;
2030
2031                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2032                                 if (rc)
2033                                         goto out;
2034                                 for (k = 0; k < 4; k++)
2035                                         c->u.node6.addr[k] = nodebuf[k];
2036                                 for (k = 0; k < 4; k++)
2037                                         c->u.node6.mask[k] = nodebuf[k+4];
2038                                 rc = context_read_and_validate(&c->context[0], p, fp);
2039                                 if (rc)
2040                                         goto out;
2041                                 break;
2042                         }
2043                         }
2044                 }
2045         }
2046         rc = 0;
2047 out:
2048         return rc;
2049 }
2050
2051 /*
2052  * Read the configuration data from a policy database binary
2053  * representation file into a policy database structure.
2054  */
2055 int policydb_read(struct policydb *p, void *fp)
2056 {
2057         struct role_allow *ra, *lra;
2058         struct role_trans *tr, *ltr;
2059         int i, j, rc;
2060         __le32 buf[4];
2061         u32 len, nprim, nel;
2062
2063         char *policydb_str;
2064         struct policydb_compat_info *info;
2065
2066         rc = policydb_init(p);
2067         if (rc)
2068                 goto out;
2069
2070         /* Read the magic number and string length. */
2071         rc = next_entry(buf, fp, sizeof(u32) * 2);
2072         if (rc < 0)
2073                 goto bad;
2074
2075         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2076                 printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2077                        "not match expected magic number 0x%x\n",
2078                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2079                 goto bad;
2080         }
2081
2082         len = le32_to_cpu(buf[1]);
2083         if (len != strlen(POLICYDB_STRING)) {
2084                 printk(KERN_ERR "SELinux:  policydb string length %d does not "
2085                        "match expected length %Zu\n",
2086                        len, strlen(POLICYDB_STRING));
2087                 goto bad;
2088         }
2089         policydb_str = kmalloc(len + 1, GFP_KERNEL);
2090         if (!policydb_str) {
2091                 printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2092                        "string of length %d\n", len);
2093                 rc = -ENOMEM;
2094                 goto bad;
2095         }
2096         rc = next_entry(policydb_str, fp, len);
2097         if (rc < 0) {
2098                 printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2099                 kfree(policydb_str);
2100                 goto bad;
2101         }
2102         policydb_str[len] = '\0';
2103         if (strcmp(policydb_str, POLICYDB_STRING)) {
2104                 printk(KERN_ERR "SELinux:  policydb string %s does not match "
2105                        "my string %s\n", policydb_str, POLICYDB_STRING);
2106                 kfree(policydb_str);
2107                 goto bad;
2108         }
2109         /* Done with policydb_str. */
2110         kfree(policydb_str);
2111         policydb_str = NULL;
2112
2113         /* Read the version and table sizes. */
2114         rc = next_entry(buf, fp, sizeof(u32)*4);
2115         if (rc < 0)
2116                 goto bad;
2117
2118         p->policyvers = le32_to_cpu(buf[0]);
2119         if (p->policyvers < POLICYDB_VERSION_MIN ||
2120             p->policyvers > POLICYDB_VERSION_MAX) {
2121                 printk(KERN_ERR "SELinux:  policydb version %d does not match "
2122                        "my version range %d-%d\n",
2123                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2124                 goto bad;
2125         }
2126
2127         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2128                 p->mls_enabled = 1;
2129
2130                 if (p->policyvers < POLICYDB_VERSION_MLS) {
2131                         printk(KERN_ERR "SELinux: security policydb version %d "
2132                                 "(MLS) not backwards compatible\n",
2133                                 p->policyvers);
2134                         goto bad;
2135                 }
2136         }
2137         p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2138         p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2139
2140         if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
2141             ebitmap_read(&p->policycaps, fp) != 0)
2142                 goto bad;
2143
2144         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE &&
2145             ebitmap_read(&p->permissive_map, fp) != 0)
2146                 goto bad;
2147
2148         info = policydb_lookup_compat(p->policyvers);
2149         if (!info) {
2150                 printk(KERN_ERR "SELinux:  unable to find policy compat info "
2151                        "for version %d\n", p->policyvers);
2152                 goto bad;
2153         }
2154
2155         if (le32_to_cpu(buf[2]) != info->sym_num ||
2156                 le32_to_cpu(buf[3]) != info->ocon_num) {
2157                 printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2158                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2159                         le32_to_cpu(buf[3]),
2160                        info->sym_num, info->ocon_num);
2161                 goto bad;
2162         }
2163
2164         for (i = 0; i < info->sym_num; i++) {
2165                 rc = next_entry(buf, fp, sizeof(u32)*2);
2166                 if (rc < 0)
2167                         goto bad;
2168                 nprim = le32_to_cpu(buf[0]);
2169                 nel = le32_to_cpu(buf[1]);
2170                 for (j = 0; j < nel; j++) {
2171                         rc = read_f[i](p, p->symtab[i].table, fp);
2172                         if (rc)
2173                                 goto bad;
2174                 }
2175
2176                 p->symtab[i].nprim = nprim;
2177         }
2178
2179         rc = avtab_read(&p->te_avtab, fp, p);
2180         if (rc)
2181                 goto bad;
2182
2183         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2184                 rc = cond_read_list(p, fp);
2185                 if (rc)
2186                         goto bad;
2187         }
2188
2189         rc = next_entry(buf, fp, sizeof(u32));
2190         if (rc < 0)
2191                 goto bad;
2192         nel = le32_to_cpu(buf[0]);
2193         ltr = NULL;
2194         for (i = 0; i < nel; i++) {
2195                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2196                 if (!tr) {
2197                         rc = -ENOMEM;
2198                         goto bad;
2199                 }
2200                 if (ltr)
2201                         ltr->next = tr;
2202                 else
2203                         p->role_tr = tr;
2204                 rc = next_entry(buf, fp, sizeof(u32)*3);
2205                 if (rc < 0)
2206                         goto bad;
2207                 tr->role = le32_to_cpu(buf[0]);
2208                 tr->type = le32_to_cpu(buf[1]);
2209                 tr->new_role = le32_to_cpu(buf[2]);
2210                 if (!policydb_role_isvalid(p, tr->role) ||
2211                     !policydb_type_isvalid(p, tr->type) ||
2212                     !policydb_role_isvalid(p, tr->new_role)) {
2213                         rc = -EINVAL;
2214                         goto bad;
2215                 }
2216                 ltr = tr;
2217         }
2218
2219         rc = next_entry(buf, fp, sizeof(u32));
2220         if (rc < 0)
2221                 goto bad;
2222         nel = le32_to_cpu(buf[0]);
2223         lra = NULL;
2224         for (i = 0; i < nel; i++) {
2225                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2226                 if (!ra) {
2227                         rc = -ENOMEM;
2228                         goto bad;
2229                 }
2230                 if (lra)
2231                         lra->next = ra;
2232                 else
2233                         p->role_allow = ra;
2234                 rc = next_entry(buf, fp, sizeof(u32)*2);
2235                 if (rc < 0)
2236                         goto bad;
2237                 ra->role = le32_to_cpu(buf[0]);
2238                 ra->new_role = le32_to_cpu(buf[1]);
2239                 if (!policydb_role_isvalid(p, ra->role) ||
2240                     !policydb_role_isvalid(p, ra->new_role)) {
2241                         rc = -EINVAL;
2242                         goto bad;
2243                 }
2244                 lra = ra;
2245         }
2246
2247         rc = policydb_index_classes(p);
2248         if (rc)
2249                 goto bad;
2250
2251         rc = policydb_index_others(p);
2252         if (rc)
2253                 goto bad;
2254
2255         p->process_class = string_to_security_class(p, "process");
2256         if (!p->process_class)
2257                 goto bad;
2258         p->process_trans_perms = string_to_av_perm(p, p->process_class,
2259                                                    "transition");
2260         p->process_trans_perms |= string_to_av_perm(p, p->process_class,
2261                                                     "dyntransition");
2262         if (!p->process_trans_perms)
2263                 goto bad;
2264
2265         rc = ocontext_read(p, info, fp);
2266         if (rc)
2267                 goto bad;
2268
2269         rc = genfs_read(p, fp);
2270         if (rc)
2271                 goto bad;
2272
2273         rc = range_read(p, fp);
2274         if (rc)
2275                 goto bad;
2276
2277         rc = -ENOMEM;
2278         p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2279                                                   p->p_types.nprim,
2280                                                   GFP_KERNEL | __GFP_ZERO);
2281         if (!p->type_attr_map_array)
2282                 goto bad;
2283
2284         /* preallocate so we don't have to worry about the put ever failing */
2285         rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim - 1,
2286                                  GFP_KERNEL | __GFP_ZERO);
2287         if (rc)
2288                 goto bad;
2289
2290         for (i = 0; i < p->p_types.nprim; i++) {
2291                 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2292
2293                 BUG_ON(!e);
2294                 ebitmap_init(e);
2295                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2296                         rc = ebitmap_read(e, fp);
2297                         if (rc)
2298                                 goto bad;
2299                 }
2300                 /* add the type itself as the degenerate case */
2301                 rc = ebitmap_set_bit(e, i, 1);
2302                 if (rc)
2303                         goto bad;
2304         }
2305
2306         rc = policydb_bounds_sanity_check(p);
2307         if (rc)
2308                 goto bad;
2309
2310         rc = 0;
2311 out:
2312         return rc;
2313 bad:
2314         if (!rc)
2315                 rc = -EINVAL;
2316         policydb_destroy(p);
2317         goto out;
2318 }