]> bbs.cooldavid.org Git - net-next-2.6.git/blob - security/selinux/hooks.c
security: make LSMs explicitly mask off permissions
[net-next-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define NUM_SEL_MNT_OPTS 5
91
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern struct security_operations *security_ops;
94
95 /* SECMARK reference count */
96 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
97
98 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
99 int selinux_enforcing;
100
101 static int __init enforcing_setup(char *str)
102 {
103         unsigned long enforcing;
104         if (!strict_strtoul(str, 0, &enforcing))
105                 selinux_enforcing = enforcing ? 1 : 0;
106         return 1;
107 }
108 __setup("enforcing=", enforcing_setup);
109 #endif
110
111 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
112 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
113
114 static int __init selinux_enabled_setup(char *str)
115 {
116         unsigned long enabled;
117         if (!strict_strtoul(str, 0, &enabled))
118                 selinux_enabled = enabled ? 1 : 0;
119         return 1;
120 }
121 __setup("selinux=", selinux_enabled_setup);
122 #else
123 int selinux_enabled = 1;
124 #endif
125
126 static struct kmem_cache *sel_inode_cache;
127
128 /**
129  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
130  *
131  * Description:
132  * This function checks the SECMARK reference counter to see if any SECMARK
133  * targets are currently configured, if the reference counter is greater than
134  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
135  * enabled, false (0) if SECMARK is disabled.
136  *
137  */
138 static int selinux_secmark_enabled(void)
139 {
140         return (atomic_read(&selinux_secmark_refcount) > 0);
141 }
142
143 /*
144  * initialise the security for the init task
145  */
146 static void cred_init_security(void)
147 {
148         struct cred *cred = (struct cred *) current->real_cred;
149         struct task_security_struct *tsec;
150
151         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
152         if (!tsec)
153                 panic("SELinux:  Failed to initialize initial task.\n");
154
155         tsec->osid = tsec->sid = SECINITSID_KERNEL;
156         cred->security = tsec;
157 }
158
159 /*
160  * get the security ID of a set of credentials
161  */
162 static inline u32 cred_sid(const struct cred *cred)
163 {
164         const struct task_security_struct *tsec;
165
166         tsec = cred->security;
167         return tsec->sid;
168 }
169
170 /*
171  * get the objective security ID of a task
172  */
173 static inline u32 task_sid(const struct task_struct *task)
174 {
175         u32 sid;
176
177         rcu_read_lock();
178         sid = cred_sid(__task_cred(task));
179         rcu_read_unlock();
180         return sid;
181 }
182
183 /*
184  * get the subjective security ID of the current task
185  */
186 static inline u32 current_sid(void)
187 {
188         const struct task_security_struct *tsec = current_security();
189
190         return tsec->sid;
191 }
192
193 /* Allocate and free functions for each kind of security blob. */
194
195 static int inode_alloc_security(struct inode *inode)
196 {
197         struct inode_security_struct *isec;
198         u32 sid = current_sid();
199
200         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
201         if (!isec)
202                 return -ENOMEM;
203
204         mutex_init(&isec->lock);
205         INIT_LIST_HEAD(&isec->list);
206         isec->inode = inode;
207         isec->sid = SECINITSID_UNLABELED;
208         isec->sclass = SECCLASS_FILE;
209         isec->task_sid = sid;
210         inode->i_security = isec;
211
212         return 0;
213 }
214
215 static void inode_free_security(struct inode *inode)
216 {
217         struct inode_security_struct *isec = inode->i_security;
218         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
219
220         spin_lock(&sbsec->isec_lock);
221         if (!list_empty(&isec->list))
222                 list_del_init(&isec->list);
223         spin_unlock(&sbsec->isec_lock);
224
225         inode->i_security = NULL;
226         kmem_cache_free(sel_inode_cache, isec);
227 }
228
229 static int file_alloc_security(struct file *file)
230 {
231         struct file_security_struct *fsec;
232         u32 sid = current_sid();
233
234         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
235         if (!fsec)
236                 return -ENOMEM;
237
238         fsec->sid = sid;
239         fsec->fown_sid = sid;
240         file->f_security = fsec;
241
242         return 0;
243 }
244
245 static void file_free_security(struct file *file)
246 {
247         struct file_security_struct *fsec = file->f_security;
248         file->f_security = NULL;
249         kfree(fsec);
250 }
251
252 static int superblock_alloc_security(struct super_block *sb)
253 {
254         struct superblock_security_struct *sbsec;
255
256         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
257         if (!sbsec)
258                 return -ENOMEM;
259
260         mutex_init(&sbsec->lock);
261         INIT_LIST_HEAD(&sbsec->isec_head);
262         spin_lock_init(&sbsec->isec_lock);
263         sbsec->sb = sb;
264         sbsec->sid = SECINITSID_UNLABELED;
265         sbsec->def_sid = SECINITSID_FILE;
266         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
267         sb->s_security = sbsec;
268
269         return 0;
270 }
271
272 static void superblock_free_security(struct super_block *sb)
273 {
274         struct superblock_security_struct *sbsec = sb->s_security;
275         sb->s_security = NULL;
276         kfree(sbsec);
277 }
278
279 /* The security server must be initialized before
280    any labeling or access decisions can be provided. */
281 extern int ss_initialized;
282
283 /* The file system's label must be initialized prior to use. */
284
285 static const char *labeling_behaviors[6] = {
286         "uses xattr",
287         "uses transition SIDs",
288         "uses task SIDs",
289         "uses genfs_contexts",
290         "not configured for labeling",
291         "uses mountpoint labeling",
292 };
293
294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
295
296 static inline int inode_doinit(struct inode *inode)
297 {
298         return inode_doinit_with_dentry(inode, NULL);
299 }
300
301 enum {
302         Opt_error = -1,
303         Opt_context = 1,
304         Opt_fscontext = 2,
305         Opt_defcontext = 3,
306         Opt_rootcontext = 4,
307         Opt_labelsupport = 5,
308 };
309
310 static const match_table_t tokens = {
311         {Opt_context, CONTEXT_STR "%s"},
312         {Opt_fscontext, FSCONTEXT_STR "%s"},
313         {Opt_defcontext, DEFCONTEXT_STR "%s"},
314         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
315         {Opt_labelsupport, LABELSUPP_STR},
316         {Opt_error, NULL},
317 };
318
319 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
320
321 static int may_context_mount_sb_relabel(u32 sid,
322                         struct superblock_security_struct *sbsec,
323                         const struct cred *cred)
324 {
325         const struct task_security_struct *tsec = cred->security;
326         int rc;
327
328         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
329                           FILESYSTEM__RELABELFROM, NULL);
330         if (rc)
331                 return rc;
332
333         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
334                           FILESYSTEM__RELABELTO, NULL);
335         return rc;
336 }
337
338 static int may_context_mount_inode_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         const struct cred *cred)
341 {
342         const struct task_security_struct *tsec = cred->security;
343         int rc;
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__ASSOCIATE, NULL);
351         return rc;
352 }
353
354 static int sb_finish_set_opts(struct super_block *sb)
355 {
356         struct superblock_security_struct *sbsec = sb->s_security;
357         struct dentry *root = sb->s_root;
358         struct inode *root_inode = root->d_inode;
359         int rc = 0;
360
361         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
362                 /* Make sure that the xattr handler exists and that no
363                    error other than -ENODATA is returned by getxattr on
364                    the root directory.  -ENODATA is ok, as this may be
365                    the first boot of the SELinux kernel before we have
366                    assigned xattr values to the filesystem. */
367                 if (!root_inode->i_op->getxattr) {
368                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
369                                "xattr support\n", sb->s_id, sb->s_type->name);
370                         rc = -EOPNOTSUPP;
371                         goto out;
372                 }
373                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
374                 if (rc < 0 && rc != -ENODATA) {
375                         if (rc == -EOPNOTSUPP)
376                                 printk(KERN_WARNING "SELinux: (dev %s, type "
377                                        "%s) has no security xattr handler\n",
378                                        sb->s_id, sb->s_type->name);
379                         else
380                                 printk(KERN_WARNING "SELinux: (dev %s, type "
381                                        "%s) getxattr errno %d\n", sb->s_id,
382                                        sb->s_type->name, -rc);
383                         goto out;
384                 }
385         }
386
387         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
388
389         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
390                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
391                        sb->s_id, sb->s_type->name);
392         else
393                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
394                        sb->s_id, sb->s_type->name,
395                        labeling_behaviors[sbsec->behavior-1]);
396
397         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
398             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
399             sbsec->behavior == SECURITY_FS_USE_NONE ||
400             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
401                 sbsec->flags &= ~SE_SBLABELSUPP;
402
403         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
404         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405                 sbsec->flags |= SE_SBLABELSUPP;
406
407         /* Initialize the root inode. */
408         rc = inode_doinit_with_dentry(root_inode, root);
409
410         /* Initialize any other inodes associated with the superblock, e.g.
411            inodes created prior to initial policy load or inodes created
412            during get_sb by a pseudo filesystem that directly
413            populates itself. */
414         spin_lock(&sbsec->isec_lock);
415 next_inode:
416         if (!list_empty(&sbsec->isec_head)) {
417                 struct inode_security_struct *isec =
418                                 list_entry(sbsec->isec_head.next,
419                                            struct inode_security_struct, list);
420                 struct inode *inode = isec->inode;
421                 spin_unlock(&sbsec->isec_lock);
422                 inode = igrab(inode);
423                 if (inode) {
424                         if (!IS_PRIVATE(inode))
425                                 inode_doinit(inode);
426                         iput(inode);
427                 }
428                 spin_lock(&sbsec->isec_lock);
429                 list_del_init(&isec->list);
430                 goto next_inode;
431         }
432         spin_unlock(&sbsec->isec_lock);
433 out:
434         return rc;
435 }
436
437 /*
438  * This function should allow an FS to ask what it's mount security
439  * options were so it can use those later for submounts, displaying
440  * mount options, or whatever.
441  */
442 static int selinux_get_mnt_opts(const struct super_block *sb,
443                                 struct security_mnt_opts *opts)
444 {
445         int rc = 0, i;
446         struct superblock_security_struct *sbsec = sb->s_security;
447         char *context = NULL;
448         u32 len;
449         char tmp;
450
451         security_init_mnt_opts(opts);
452
453         if (!(sbsec->flags & SE_SBINITIALIZED))
454                 return -EINVAL;
455
456         if (!ss_initialized)
457                 return -EINVAL;
458
459         tmp = sbsec->flags & SE_MNTMASK;
460         /* count the number of mount options for this sb */
461         for (i = 0; i < 8; i++) {
462                 if (tmp & 0x01)
463                         opts->num_mnt_opts++;
464                 tmp >>= 1;
465         }
466         /* Check if the Label support flag is set */
467         if (sbsec->flags & SE_SBLABELSUPP)
468                 opts->num_mnt_opts++;
469
470         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
471         if (!opts->mnt_opts) {
472                 rc = -ENOMEM;
473                 goto out_free;
474         }
475
476         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
477         if (!opts->mnt_opts_flags) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         i = 0;
483         if (sbsec->flags & FSCONTEXT_MNT) {
484                 rc = security_sid_to_context(sbsec->sid, &context, &len);
485                 if (rc)
486                         goto out_free;
487                 opts->mnt_opts[i] = context;
488                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
489         }
490         if (sbsec->flags & CONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
496         }
497         if (sbsec->flags & DEFCONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
503         }
504         if (sbsec->flags & ROOTCONTEXT_MNT) {
505                 struct inode *root = sbsec->sb->s_root->d_inode;
506                 struct inode_security_struct *isec = root->i_security;
507
508                 rc = security_sid_to_context(isec->sid, &context, &len);
509                 if (rc)
510                         goto out_free;
511                 opts->mnt_opts[i] = context;
512                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
513         }
514         if (sbsec->flags & SE_SBLABELSUPP) {
515                 opts->mnt_opts[i] = NULL;
516                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
517         }
518
519         BUG_ON(i != opts->num_mnt_opts);
520
521         return 0;
522
523 out_free:
524         security_free_mnt_opts(opts);
525         return rc;
526 }
527
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529                       u32 old_sid, u32 new_sid)
530 {
531         char mnt_flags = sbsec->flags & SE_MNTMASK;
532
533         /* check if the old mount command had the same options */
534         if (sbsec->flags & SE_SBINITIALIZED)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!(sbsec->flags & SE_SBINITIALIZED))
543                 if (mnt_flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         const struct cred *cred = current_cred();
556         int rc = 0, i;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         goto out;
575                 }
576                 rc = -EINVAL;
577                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
578                         "before the security server is initialized\n");
579                 goto out;
580         }
581
582         /*
583          * Binary mount data FS will come through this function twice.  Once
584          * from an explicit call and once from the generic calls from the vfs.
585          * Since the generic VFS calls will not contain any security mount data
586          * we need to skip the double mount verification.
587          *
588          * This does open a hole in which we will not notice if the first
589          * mount using this sb set explict options and a second mount using
590          * this sb does not set any security options.  (The first options
591          * will be used for both mounts)
592          */
593         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
594             && (num_opts == 0))
595                 goto out;
596
597         /*
598          * parse the mount options, check if they are valid sids.
599          * also check if someone is trying to mount the same sb more
600          * than once with different security options.
601          */
602         for (i = 0; i < num_opts; i++) {
603                 u32 sid;
604
605                 if (flags[i] == SE_SBLABELSUPP)
606                         continue;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->flags & SE_SBINITIALIZED) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->flags |= SE_SBPROC;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
682                 if (rc)
683                         goto out;
684
685                 sbsec->sid = fscontext_sid;
686         }
687
688         /*
689          * Switch to using mount point labeling behavior.
690          * sets the label used on all file below the mountpoint, and will set
691          * the superblock context if not already set.
692          */
693         if (context_sid) {
694                 if (!fscontext_sid) {
695                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
696                                                           cred);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
702                                                              cred);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
715                                                      cred);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, cred);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely deal with this superblock later
765          */
766         if (!ss_initialized)
767                 return;
768
769         /* how can we clone if the old one wasn't set up?? */
770         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
771
772         /* if fs is reusing a sb, just let its options stand... */
773         if (newsbsec->flags & SE_SBINITIALIZED)
774                 return;
775
776         mutex_lock(&newsbsec->lock);
777
778         newsbsec->flags = oldsbsec->flags;
779
780         newsbsec->sid = oldsbsec->sid;
781         newsbsec->def_sid = oldsbsec->def_sid;
782         newsbsec->behavior = oldsbsec->behavior;
783
784         if (set_context) {
785                 u32 sid = oldsbsec->mntpoint_sid;
786
787                 if (!set_fscontext)
788                         newsbsec->sid = sid;
789                 if (!set_rootcontext) {
790                         struct inode *newinode = newsb->s_root->d_inode;
791                         struct inode_security_struct *newisec = newinode->i_security;
792                         newisec->sid = sid;
793                 }
794                 newsbsec->mntpoint_sid = sid;
795         }
796         if (set_rootcontext) {
797                 const struct inode *oldinode = oldsb->s_root->d_inode;
798                 const struct inode_security_struct *oldisec = oldinode->i_security;
799                 struct inode *newinode = newsb->s_root->d_inode;
800                 struct inode_security_struct *newisec = newinode->i_security;
801
802                 newisec->sid = oldisec->sid;
803         }
804
805         sb_finish_set_opts(newsb);
806         mutex_unlock(&newsbsec->lock);
807 }
808
809 static int selinux_parse_opts_str(char *options,
810                                   struct security_mnt_opts *opts)
811 {
812         char *p;
813         char *context = NULL, *defcontext = NULL;
814         char *fscontext = NULL, *rootcontext = NULL;
815         int rc, num_mnt_opts = 0;
816
817         opts->num_mnt_opts = 0;
818
819         /* Standard string-based options. */
820         while ((p = strsep(&options, "|")) != NULL) {
821                 int token;
822                 substring_t args[MAX_OPT_ARGS];
823
824                 if (!*p)
825                         continue;
826
827                 token = match_token(p, tokens, args);
828
829                 switch (token) {
830                 case Opt_context:
831                         if (context || defcontext) {
832                                 rc = -EINVAL;
833                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
834                                 goto out_err;
835                         }
836                         context = match_strdup(&args[0]);
837                         if (!context) {
838                                 rc = -ENOMEM;
839                                 goto out_err;
840                         }
841                         break;
842
843                 case Opt_fscontext:
844                         if (fscontext) {
845                                 rc = -EINVAL;
846                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
847                                 goto out_err;
848                         }
849                         fscontext = match_strdup(&args[0]);
850                         if (!fscontext) {
851                                 rc = -ENOMEM;
852                                 goto out_err;
853                         }
854                         break;
855
856                 case Opt_rootcontext:
857                         if (rootcontext) {
858                                 rc = -EINVAL;
859                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
860                                 goto out_err;
861                         }
862                         rootcontext = match_strdup(&args[0]);
863                         if (!rootcontext) {
864                                 rc = -ENOMEM;
865                                 goto out_err;
866                         }
867                         break;
868
869                 case Opt_defcontext:
870                         if (context || defcontext) {
871                                 rc = -EINVAL;
872                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873                                 goto out_err;
874                         }
875                         defcontext = match_strdup(&args[0]);
876                         if (!defcontext) {
877                                 rc = -ENOMEM;
878                                 goto out_err;
879                         }
880                         break;
881                 case Opt_labelsupport:
882                         break;
883                 default:
884                         rc = -EINVAL;
885                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
886                         goto out_err;
887
888                 }
889         }
890
891         rc = -ENOMEM;
892         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
893         if (!opts->mnt_opts)
894                 goto out_err;
895
896         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
897         if (!opts->mnt_opts_flags) {
898                 kfree(opts->mnt_opts);
899                 goto out_err;
900         }
901
902         if (fscontext) {
903                 opts->mnt_opts[num_mnt_opts] = fscontext;
904                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
905         }
906         if (context) {
907                 opts->mnt_opts[num_mnt_opts] = context;
908                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
909         }
910         if (rootcontext) {
911                 opts->mnt_opts[num_mnt_opts] = rootcontext;
912                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
913         }
914         if (defcontext) {
915                 opts->mnt_opts[num_mnt_opts] = defcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
917         }
918
919         opts->num_mnt_opts = num_mnt_opts;
920         return 0;
921
922 out_err:
923         kfree(context);
924         kfree(defcontext);
925         kfree(fscontext);
926         kfree(rootcontext);
927         return rc;
928 }
929 /*
930  * string mount options parsing and call set the sbsec
931  */
932 static int superblock_doinit(struct super_block *sb, void *data)
933 {
934         int rc = 0;
935         char *options = data;
936         struct security_mnt_opts opts;
937
938         security_init_mnt_opts(&opts);
939
940         if (!data)
941                 goto out;
942
943         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
944
945         rc = selinux_parse_opts_str(options, &opts);
946         if (rc)
947                 goto out_err;
948
949 out:
950         rc = selinux_set_mnt_opts(sb, &opts);
951
952 out_err:
953         security_free_mnt_opts(&opts);
954         return rc;
955 }
956
957 static void selinux_write_opts(struct seq_file *m,
958                                struct security_mnt_opts *opts)
959 {
960         int i;
961         char *prefix;
962
963         for (i = 0; i < opts->num_mnt_opts; i++) {
964                 char *has_comma;
965
966                 if (opts->mnt_opts[i])
967                         has_comma = strchr(opts->mnt_opts[i], ',');
968                 else
969                         has_comma = NULL;
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 case SE_SBLABELSUPP:
985                         seq_putc(m, ',');
986                         seq_puts(m, LABELSUPP_STR);
987                         continue;
988                 default:
989                         BUG();
990                 };
991                 /* we need a comma before each option */
992                 seq_putc(m, ',');
993                 seq_puts(m, prefix);
994                 if (has_comma)
995                         seq_putc(m, '\"');
996                 seq_puts(m, opts->mnt_opts[i]);
997                 if (has_comma)
998                         seq_putc(m, '\"');
999         }
1000 }
1001
1002 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1003 {
1004         struct security_mnt_opts opts;
1005         int rc;
1006
1007         rc = selinux_get_mnt_opts(sb, &opts);
1008         if (rc) {
1009                 /* before policy load we may get EINVAL, don't show anything */
1010                 if (rc == -EINVAL)
1011                         rc = 0;
1012                 return rc;
1013         }
1014
1015         selinux_write_opts(m, &opts);
1016
1017         security_free_mnt_opts(&opts);
1018
1019         return rc;
1020 }
1021
1022 static inline u16 inode_mode_to_security_class(umode_t mode)
1023 {
1024         switch (mode & S_IFMT) {
1025         case S_IFSOCK:
1026                 return SECCLASS_SOCK_FILE;
1027         case S_IFLNK:
1028                 return SECCLASS_LNK_FILE;
1029         case S_IFREG:
1030                 return SECCLASS_FILE;
1031         case S_IFBLK:
1032                 return SECCLASS_BLK_FILE;
1033         case S_IFDIR:
1034                 return SECCLASS_DIR;
1035         case S_IFCHR:
1036                 return SECCLASS_CHR_FILE;
1037         case S_IFIFO:
1038                 return SECCLASS_FIFO_FILE;
1039
1040         }
1041
1042         return SECCLASS_FILE;
1043 }
1044
1045 static inline int default_protocol_stream(int protocol)
1046 {
1047         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1048 }
1049
1050 static inline int default_protocol_dgram(int protocol)
1051 {
1052         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1053 }
1054
1055 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1056 {
1057         switch (family) {
1058         case PF_UNIX:
1059                 switch (type) {
1060                 case SOCK_STREAM:
1061                 case SOCK_SEQPACKET:
1062                         return SECCLASS_UNIX_STREAM_SOCKET;
1063                 case SOCK_DGRAM:
1064                         return SECCLASS_UNIX_DGRAM_SOCKET;
1065                 }
1066                 break;
1067         case PF_INET:
1068         case PF_INET6:
1069                 switch (type) {
1070                 case SOCK_STREAM:
1071                         if (default_protocol_stream(protocol))
1072                                 return SECCLASS_TCP_SOCKET;
1073                         else
1074                                 return SECCLASS_RAWIP_SOCKET;
1075                 case SOCK_DGRAM:
1076                         if (default_protocol_dgram(protocol))
1077                                 return SECCLASS_UDP_SOCKET;
1078                         else
1079                                 return SECCLASS_RAWIP_SOCKET;
1080                 case SOCK_DCCP:
1081                         return SECCLASS_DCCP_SOCKET;
1082                 default:
1083                         return SECCLASS_RAWIP_SOCKET;
1084                 }
1085                 break;
1086         case PF_NETLINK:
1087                 switch (protocol) {
1088                 case NETLINK_ROUTE:
1089                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1090                 case NETLINK_FIREWALL:
1091                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1092                 case NETLINK_INET_DIAG:
1093                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1094                 case NETLINK_NFLOG:
1095                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1096                 case NETLINK_XFRM:
1097                         return SECCLASS_NETLINK_XFRM_SOCKET;
1098                 case NETLINK_SELINUX:
1099                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1100                 case NETLINK_AUDIT:
1101                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1102                 case NETLINK_IP6_FW:
1103                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1104                 case NETLINK_DNRTMSG:
1105                         return SECCLASS_NETLINK_DNRT_SOCKET;
1106                 case NETLINK_KOBJECT_UEVENT:
1107                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1108                 default:
1109                         return SECCLASS_NETLINK_SOCKET;
1110                 }
1111         case PF_PACKET:
1112                 return SECCLASS_PACKET_SOCKET;
1113         case PF_KEY:
1114                 return SECCLASS_KEY_SOCKET;
1115         case PF_APPLETALK:
1116                 return SECCLASS_APPLETALK_SOCKET;
1117         }
1118
1119         return SECCLASS_SOCKET;
1120 }
1121
1122 #ifdef CONFIG_PROC_FS
1123 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1124                                 u16 tclass,
1125                                 u32 *sid)
1126 {
1127         int buflen, rc;
1128         char *buffer, *path, *end;
1129
1130         buffer = (char *)__get_free_page(GFP_KERNEL);
1131         if (!buffer)
1132                 return -ENOMEM;
1133
1134         buflen = PAGE_SIZE;
1135         end = buffer+buflen;
1136         *--end = '\0';
1137         buflen--;
1138         path = end-1;
1139         *path = '/';
1140         while (de && de != de->parent) {
1141                 buflen -= de->namelen + 1;
1142                 if (buflen < 0)
1143                         break;
1144                 end -= de->namelen;
1145                 memcpy(end, de->name, de->namelen);
1146                 *--end = '/';
1147                 path = end;
1148                 de = de->parent;
1149         }
1150         rc = security_genfs_sid("proc", path, tclass, sid);
1151         free_page((unsigned long)buffer);
1152         return rc;
1153 }
1154 #else
1155 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1156                                 u16 tclass,
1157                                 u32 *sid)
1158 {
1159         return -EINVAL;
1160 }
1161 #endif
1162
1163 /* The inode's security attributes must be initialized before first use. */
1164 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165 {
1166         struct superblock_security_struct *sbsec = NULL;
1167         struct inode_security_struct *isec = inode->i_security;
1168         u32 sid;
1169         struct dentry *dentry;
1170 #define INITCONTEXTLEN 255
1171         char *context = NULL;
1172         unsigned len = 0;
1173         int rc = 0;
1174
1175         if (isec->initialized)
1176                 goto out;
1177
1178         mutex_lock(&isec->lock);
1179         if (isec->initialized)
1180                 goto out_unlock;
1181
1182         sbsec = inode->i_sb->s_security;
1183         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184                 /* Defer initialization until selinux_complete_init,
1185                    after the initial policy is loaded and the security
1186                    server is ready to handle calls. */
1187                 spin_lock(&sbsec->isec_lock);
1188                 if (list_empty(&isec->list))
1189                         list_add(&isec->list, &sbsec->isec_head);
1190                 spin_unlock(&sbsec->isec_lock);
1191                 goto out_unlock;
1192         }
1193
1194         switch (sbsec->behavior) {
1195         case SECURITY_FS_USE_XATTR:
1196                 if (!inode->i_op->getxattr) {
1197                         isec->sid = sbsec->def_sid;
1198                         break;
1199                 }
1200
1201                 /* Need a dentry, since the xattr API requires one.
1202                    Life would be simpler if we could just pass the inode. */
1203                 if (opt_dentry) {
1204                         /* Called from d_instantiate or d_splice_alias. */
1205                         dentry = dget(opt_dentry);
1206                 } else {
1207                         /* Called from selinux_complete_init, try to find a dentry. */
1208                         dentry = d_find_alias(inode);
1209                 }
1210                 if (!dentry) {
1211                         /*
1212                          * this is can be hit on boot when a file is accessed
1213                          * before the policy is loaded.  When we load policy we
1214                          * may find inodes that have no dentry on the
1215                          * sbsec->isec_head list.  No reason to complain as these
1216                          * will get fixed up the next time we go through
1217                          * inode_doinit with a dentry, before these inodes could
1218                          * be used again by userspace.
1219                          */
1220                         goto out_unlock;
1221                 }
1222
1223                 len = INITCONTEXTLEN;
1224                 context = kmalloc(len+1, GFP_NOFS);
1225                 if (!context) {
1226                         rc = -ENOMEM;
1227                         dput(dentry);
1228                         goto out_unlock;
1229                 }
1230                 context[len] = '\0';
1231                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232                                            context, len);
1233                 if (rc == -ERANGE) {
1234                         kfree(context);
1235
1236                         /* Need a larger buffer.  Query for the right size. */
1237                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238                                                    NULL, 0);
1239                         if (rc < 0) {
1240                                 dput(dentry);
1241                                 goto out_unlock;
1242                         }
1243                         len = rc;
1244                         context = kmalloc(len+1, GFP_NOFS);
1245                         if (!context) {
1246                                 rc = -ENOMEM;
1247                                 dput(dentry);
1248                                 goto out_unlock;
1249                         }
1250                         context[len] = '\0';
1251                         rc = inode->i_op->getxattr(dentry,
1252                                                    XATTR_NAME_SELINUX,
1253                                                    context, len);
1254                 }
1255                 dput(dentry);
1256                 if (rc < 0) {
1257                         if (rc != -ENODATA) {
1258                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1259                                        "%d for dev=%s ino=%ld\n", __func__,
1260                                        -rc, inode->i_sb->s_id, inode->i_ino);
1261                                 kfree(context);
1262                                 goto out_unlock;
1263                         }
1264                         /* Map ENODATA to the default file SID */
1265                         sid = sbsec->def_sid;
1266                         rc = 0;
1267                 } else {
1268                         rc = security_context_to_sid_default(context, rc, &sid,
1269                                                              sbsec->def_sid,
1270                                                              GFP_NOFS);
1271                         if (rc) {
1272                                 char *dev = inode->i_sb->s_id;
1273                                 unsigned long ino = inode->i_ino;
1274
1275                                 if (rc == -EINVAL) {
1276                                         if (printk_ratelimit())
1277                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1279                                                         "filesystem in question.\n", ino, dev, context);
1280                                 } else {
1281                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282                                                "returned %d for dev=%s ino=%ld\n",
1283                                                __func__, context, -rc, dev, ino);
1284                                 }
1285                                 kfree(context);
1286                                 /* Leave with the unlabeled SID */
1287                                 rc = 0;
1288                                 break;
1289                         }
1290                 }
1291                 kfree(context);
1292                 isec->sid = sid;
1293                 break;
1294         case SECURITY_FS_USE_TASK:
1295                 isec->sid = isec->task_sid;
1296                 break;
1297         case SECURITY_FS_USE_TRANS:
1298                 /* Default to the fs SID. */
1299                 isec->sid = sbsec->sid;
1300
1301                 /* Try to obtain a transition SID. */
1302                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303                 rc = security_transition_sid(isec->task_sid,
1304                                              sbsec->sid,
1305                                              isec->sclass,
1306                                              &sid);
1307                 if (rc)
1308                         goto out_unlock;
1309                 isec->sid = sid;
1310                 break;
1311         case SECURITY_FS_USE_MNTPOINT:
1312                 isec->sid = sbsec->mntpoint_sid;
1313                 break;
1314         default:
1315                 /* Default to the fs superblock SID. */
1316                 isec->sid = sbsec->sid;
1317
1318                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1319                         struct proc_inode *proci = PROC_I(inode);
1320                         if (proci->pde) {
1321                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1322                                 rc = selinux_proc_get_sid(proci->pde,
1323                                                           isec->sclass,
1324                                                           &sid);
1325                                 if (rc)
1326                                         goto out_unlock;
1327                                 isec->sid = sid;
1328                         }
1329                 }
1330                 break;
1331         }
1332
1333         isec->initialized = 1;
1334
1335 out_unlock:
1336         mutex_unlock(&isec->lock);
1337 out:
1338         if (isec->sclass == SECCLASS_FILE)
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340         return rc;
1341 }
1342
1343 /* Convert a Linux signal to an access vector. */
1344 static inline u32 signal_to_av(int sig)
1345 {
1346         u32 perm = 0;
1347
1348         switch (sig) {
1349         case SIGCHLD:
1350                 /* Commonly granted from child to parent. */
1351                 perm = PROCESS__SIGCHLD;
1352                 break;
1353         case SIGKILL:
1354                 /* Cannot be caught or ignored */
1355                 perm = PROCESS__SIGKILL;
1356                 break;
1357         case SIGSTOP:
1358                 /* Cannot be caught or ignored */
1359                 perm = PROCESS__SIGSTOP;
1360                 break;
1361         default:
1362                 /* All other signals. */
1363                 perm = PROCESS__SIGNAL;
1364                 break;
1365         }
1366
1367         return perm;
1368 }
1369
1370 /*
1371  * Check permission between a pair of credentials
1372  * fork check, ptrace check, etc.
1373  */
1374 static int cred_has_perm(const struct cred *actor,
1375                          const struct cred *target,
1376                          u32 perms)
1377 {
1378         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1379
1380         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1381 }
1382
1383 /*
1384  * Check permission between a pair of tasks, e.g. signal checks,
1385  * fork check, ptrace check, etc.
1386  * tsk1 is the actor and tsk2 is the target
1387  * - this uses the default subjective creds of tsk1
1388  */
1389 static int task_has_perm(const struct task_struct *tsk1,
1390                          const struct task_struct *tsk2,
1391                          u32 perms)
1392 {
1393         const struct task_security_struct *__tsec1, *__tsec2;
1394         u32 sid1, sid2;
1395
1396         rcu_read_lock();
1397         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1398         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1399         rcu_read_unlock();
1400         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1401 }
1402
1403 /*
1404  * Check permission between current and another task, e.g. signal checks,
1405  * fork check, ptrace check, etc.
1406  * current is the actor and tsk2 is the target
1407  * - this uses current's subjective creds
1408  */
1409 static int current_has_perm(const struct task_struct *tsk,
1410                             u32 perms)
1411 {
1412         u32 sid, tsid;
1413
1414         sid = current_sid();
1415         tsid = task_sid(tsk);
1416         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1417 }
1418
1419 #if CAP_LAST_CAP > 63
1420 #error Fix SELinux to handle capabilities > 63.
1421 #endif
1422
1423 /* Check whether a task is allowed to use a capability. */
1424 static int task_has_capability(struct task_struct *tsk,
1425                                const struct cred *cred,
1426                                int cap, int audit)
1427 {
1428         struct common_audit_data ad;
1429         struct av_decision avd;
1430         u16 sclass;
1431         u32 sid = cred_sid(cred);
1432         u32 av = CAP_TO_MASK(cap);
1433         int rc;
1434
1435         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1436         ad.tsk = tsk;
1437         ad.u.cap = cap;
1438
1439         switch (CAP_TO_INDEX(cap)) {
1440         case 0:
1441                 sclass = SECCLASS_CAPABILITY;
1442                 break;
1443         case 1:
1444                 sclass = SECCLASS_CAPABILITY2;
1445                 break;
1446         default:
1447                 printk(KERN_ERR
1448                        "SELinux:  out of range capability %d\n", cap);
1449                 BUG();
1450         }
1451
1452         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1453         if (audit == SECURITY_CAP_AUDIT)
1454                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1455         return rc;
1456 }
1457
1458 /* Check whether a task is allowed to use a system operation. */
1459 static int task_has_system(struct task_struct *tsk,
1460                            u32 perms)
1461 {
1462         u32 sid = task_sid(tsk);
1463
1464         return avc_has_perm(sid, SECINITSID_KERNEL,
1465                             SECCLASS_SYSTEM, perms, NULL);
1466 }
1467
1468 /* Check whether a task has a particular permission to an inode.
1469    The 'adp' parameter is optional and allows other audit
1470    data to be passed (e.g. the dentry). */
1471 static int inode_has_perm(const struct cred *cred,
1472                           struct inode *inode,
1473                           u32 perms,
1474                           struct common_audit_data *adp)
1475 {
1476         struct inode_security_struct *isec;
1477         struct common_audit_data ad;
1478         u32 sid;
1479
1480         validate_creds(cred);
1481
1482         if (unlikely(IS_PRIVATE(inode)))
1483                 return 0;
1484
1485         sid = cred_sid(cred);
1486         isec = inode->i_security;
1487
1488         if (!adp) {
1489                 adp = &ad;
1490                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1491                 ad.u.fs.inode = inode;
1492         }
1493
1494         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1495 }
1496
1497 /* Same as inode_has_perm, but pass explicit audit data containing
1498    the dentry to help the auditing code to more easily generate the
1499    pathname if needed. */
1500 static inline int dentry_has_perm(const struct cred *cred,
1501                                   struct vfsmount *mnt,
1502                                   struct dentry *dentry,
1503                                   u32 av)
1504 {
1505         struct inode *inode = dentry->d_inode;
1506         struct common_audit_data ad;
1507
1508         COMMON_AUDIT_DATA_INIT(&ad, FS);
1509         ad.u.fs.path.mnt = mnt;
1510         ad.u.fs.path.dentry = dentry;
1511         return inode_has_perm(cred, inode, av, &ad);
1512 }
1513
1514 /* Check whether a task can use an open file descriptor to
1515    access an inode in a given way.  Check access to the
1516    descriptor itself, and then use dentry_has_perm to
1517    check a particular permission to the file.
1518    Access to the descriptor is implicitly granted if it
1519    has the same SID as the process.  If av is zero, then
1520    access to the file is not checked, e.g. for cases
1521    where only the descriptor is affected like seek. */
1522 static int file_has_perm(const struct cred *cred,
1523                          struct file *file,
1524                          u32 av)
1525 {
1526         struct file_security_struct *fsec = file->f_security;
1527         struct inode *inode = file->f_path.dentry->d_inode;
1528         struct common_audit_data ad;
1529         u32 sid = cred_sid(cred);
1530         int rc;
1531
1532         COMMON_AUDIT_DATA_INIT(&ad, FS);
1533         ad.u.fs.path = file->f_path;
1534
1535         if (sid != fsec->sid) {
1536                 rc = avc_has_perm(sid, fsec->sid,
1537                                   SECCLASS_FD,
1538                                   FD__USE,
1539                                   &ad);
1540                 if (rc)
1541                         goto out;
1542         }
1543
1544         /* av is zero if only checking access to the descriptor. */
1545         rc = 0;
1546         if (av)
1547                 rc = inode_has_perm(cred, inode, av, &ad);
1548
1549 out:
1550         return rc;
1551 }
1552
1553 /* Check whether a task can create a file. */
1554 static int may_create(struct inode *dir,
1555                       struct dentry *dentry,
1556                       u16 tclass)
1557 {
1558         const struct task_security_struct *tsec = current_security();
1559         struct inode_security_struct *dsec;
1560         struct superblock_security_struct *sbsec;
1561         u32 sid, newsid;
1562         struct common_audit_data ad;
1563         int rc;
1564
1565         dsec = dir->i_security;
1566         sbsec = dir->i_sb->s_security;
1567
1568         sid = tsec->sid;
1569         newsid = tsec->create_sid;
1570
1571         COMMON_AUDIT_DATA_INIT(&ad, FS);
1572         ad.u.fs.path.dentry = dentry;
1573
1574         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1575                           DIR__ADD_NAME | DIR__SEARCH,
1576                           &ad);
1577         if (rc)
1578                 return rc;
1579
1580         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1581                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1582                 if (rc)
1583                         return rc;
1584         }
1585
1586         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1587         if (rc)
1588                 return rc;
1589
1590         return avc_has_perm(newsid, sbsec->sid,
1591                             SECCLASS_FILESYSTEM,
1592                             FILESYSTEM__ASSOCIATE, &ad);
1593 }
1594
1595 /* Check whether a task can create a key. */
1596 static int may_create_key(u32 ksid,
1597                           struct task_struct *ctx)
1598 {
1599         u32 sid = task_sid(ctx);
1600
1601         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1602 }
1603
1604 #define MAY_LINK        0
1605 #define MAY_UNLINK      1
1606 #define MAY_RMDIR       2
1607
1608 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1609 static int may_link(struct inode *dir,
1610                     struct dentry *dentry,
1611                     int kind)
1612
1613 {
1614         struct inode_security_struct *dsec, *isec;
1615         struct common_audit_data ad;
1616         u32 sid = current_sid();
1617         u32 av;
1618         int rc;
1619
1620         dsec = dir->i_security;
1621         isec = dentry->d_inode->i_security;
1622
1623         COMMON_AUDIT_DATA_INIT(&ad, FS);
1624         ad.u.fs.path.dentry = dentry;
1625
1626         av = DIR__SEARCH;
1627         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1628         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1629         if (rc)
1630                 return rc;
1631
1632         switch (kind) {
1633         case MAY_LINK:
1634                 av = FILE__LINK;
1635                 break;
1636         case MAY_UNLINK:
1637                 av = FILE__UNLINK;
1638                 break;
1639         case MAY_RMDIR:
1640                 av = DIR__RMDIR;
1641                 break;
1642         default:
1643                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1644                         __func__, kind);
1645                 return 0;
1646         }
1647
1648         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1649         return rc;
1650 }
1651
1652 static inline int may_rename(struct inode *old_dir,
1653                              struct dentry *old_dentry,
1654                              struct inode *new_dir,
1655                              struct dentry *new_dentry)
1656 {
1657         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1658         struct common_audit_data ad;
1659         u32 sid = current_sid();
1660         u32 av;
1661         int old_is_dir, new_is_dir;
1662         int rc;
1663
1664         old_dsec = old_dir->i_security;
1665         old_isec = old_dentry->d_inode->i_security;
1666         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1667         new_dsec = new_dir->i_security;
1668
1669         COMMON_AUDIT_DATA_INIT(&ad, FS);
1670
1671         ad.u.fs.path.dentry = old_dentry;
1672         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1673                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1674         if (rc)
1675                 return rc;
1676         rc = avc_has_perm(sid, old_isec->sid,
1677                           old_isec->sclass, FILE__RENAME, &ad);
1678         if (rc)
1679                 return rc;
1680         if (old_is_dir && new_dir != old_dir) {
1681                 rc = avc_has_perm(sid, old_isec->sid,
1682                                   old_isec->sclass, DIR__REPARENT, &ad);
1683                 if (rc)
1684                         return rc;
1685         }
1686
1687         ad.u.fs.path.dentry = new_dentry;
1688         av = DIR__ADD_NAME | DIR__SEARCH;
1689         if (new_dentry->d_inode)
1690                 av |= DIR__REMOVE_NAME;
1691         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1692         if (rc)
1693                 return rc;
1694         if (new_dentry->d_inode) {
1695                 new_isec = new_dentry->d_inode->i_security;
1696                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1697                 rc = avc_has_perm(sid, new_isec->sid,
1698                                   new_isec->sclass,
1699                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1700                 if (rc)
1701                         return rc;
1702         }
1703
1704         return 0;
1705 }
1706
1707 /* Check whether a task can perform a filesystem operation. */
1708 static int superblock_has_perm(const struct cred *cred,
1709                                struct super_block *sb,
1710                                u32 perms,
1711                                struct common_audit_data *ad)
1712 {
1713         struct superblock_security_struct *sbsec;
1714         u32 sid = cred_sid(cred);
1715
1716         sbsec = sb->s_security;
1717         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1718 }
1719
1720 /* Convert a Linux mode and permission mask to an access vector. */
1721 static inline u32 file_mask_to_av(int mode, int mask)
1722 {
1723         u32 av = 0;
1724
1725         if ((mode & S_IFMT) != S_IFDIR) {
1726                 if (mask & MAY_EXEC)
1727                         av |= FILE__EXECUTE;
1728                 if (mask & MAY_READ)
1729                         av |= FILE__READ;
1730
1731                 if (mask & MAY_APPEND)
1732                         av |= FILE__APPEND;
1733                 else if (mask & MAY_WRITE)
1734                         av |= FILE__WRITE;
1735
1736         } else {
1737                 if (mask & MAY_EXEC)
1738                         av |= DIR__SEARCH;
1739                 if (mask & MAY_WRITE)
1740                         av |= DIR__WRITE;
1741                 if (mask & MAY_READ)
1742                         av |= DIR__READ;
1743         }
1744
1745         return av;
1746 }
1747
1748 /* Convert a Linux file to an access vector. */
1749 static inline u32 file_to_av(struct file *file)
1750 {
1751         u32 av = 0;
1752
1753         if (file->f_mode & FMODE_READ)
1754                 av |= FILE__READ;
1755         if (file->f_mode & FMODE_WRITE) {
1756                 if (file->f_flags & O_APPEND)
1757                         av |= FILE__APPEND;
1758                 else
1759                         av |= FILE__WRITE;
1760         }
1761         if (!av) {
1762                 /*
1763                  * Special file opened with flags 3 for ioctl-only use.
1764                  */
1765                 av = FILE__IOCTL;
1766         }
1767
1768         return av;
1769 }
1770
1771 /*
1772  * Convert a file to an access vector and include the correct open
1773  * open permission.
1774  */
1775 static inline u32 open_file_to_av(struct file *file)
1776 {
1777         u32 av = file_to_av(file);
1778
1779         if (selinux_policycap_openperm) {
1780                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1781                 /*
1782                  * lnk files and socks do not really have an 'open'
1783                  */
1784                 if (S_ISREG(mode))
1785                         av |= FILE__OPEN;
1786                 else if (S_ISCHR(mode))
1787                         av |= CHR_FILE__OPEN;
1788                 else if (S_ISBLK(mode))
1789                         av |= BLK_FILE__OPEN;
1790                 else if (S_ISFIFO(mode))
1791                         av |= FIFO_FILE__OPEN;
1792                 else if (S_ISDIR(mode))
1793                         av |= DIR__OPEN;
1794                 else if (S_ISSOCK(mode))
1795                         av |= SOCK_FILE__OPEN;
1796                 else
1797                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1798                                 "unknown mode:%o\n", __func__, mode);
1799         }
1800         return av;
1801 }
1802
1803 /* Hook functions begin here. */
1804
1805 static int selinux_ptrace_access_check(struct task_struct *child,
1806                                      unsigned int mode)
1807 {
1808         int rc;
1809
1810         rc = cap_ptrace_access_check(child, mode);
1811         if (rc)
1812                 return rc;
1813
1814         if (mode == PTRACE_MODE_READ) {
1815                 u32 sid = current_sid();
1816                 u32 csid = task_sid(child);
1817                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1818         }
1819
1820         return current_has_perm(child, PROCESS__PTRACE);
1821 }
1822
1823 static int selinux_ptrace_traceme(struct task_struct *parent)
1824 {
1825         int rc;
1826
1827         rc = cap_ptrace_traceme(parent);
1828         if (rc)
1829                 return rc;
1830
1831         return task_has_perm(parent, current, PROCESS__PTRACE);
1832 }
1833
1834 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1835                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1836 {
1837         int error;
1838
1839         error = current_has_perm(target, PROCESS__GETCAP);
1840         if (error)
1841                 return error;
1842
1843         return cap_capget(target, effective, inheritable, permitted);
1844 }
1845
1846 static int selinux_capset(struct cred *new, const struct cred *old,
1847                           const kernel_cap_t *effective,
1848                           const kernel_cap_t *inheritable,
1849                           const kernel_cap_t *permitted)
1850 {
1851         int error;
1852
1853         error = cap_capset(new, old,
1854                                       effective, inheritable, permitted);
1855         if (error)
1856                 return error;
1857
1858         return cred_has_perm(old, new, PROCESS__SETCAP);
1859 }
1860
1861 /*
1862  * (This comment used to live with the selinux_task_setuid hook,
1863  * which was removed).
1864  *
1865  * Since setuid only affects the current process, and since the SELinux
1866  * controls are not based on the Linux identity attributes, SELinux does not
1867  * need to control this operation.  However, SELinux does control the use of
1868  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1869  */
1870
1871 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1872                            int cap, int audit)
1873 {
1874         int rc;
1875
1876         rc = cap_capable(tsk, cred, cap, audit);
1877         if (rc)
1878                 return rc;
1879
1880         return task_has_capability(tsk, cred, cap, audit);
1881 }
1882
1883 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1884 {
1885         int buflen, rc;
1886         char *buffer, *path, *end;
1887
1888         rc = -ENOMEM;
1889         buffer = (char *)__get_free_page(GFP_KERNEL);
1890         if (!buffer)
1891                 goto out;
1892
1893         buflen = PAGE_SIZE;
1894         end = buffer+buflen;
1895         *--end = '\0';
1896         buflen--;
1897         path = end-1;
1898         *path = '/';
1899         while (table) {
1900                 const char *name = table->procname;
1901                 size_t namelen = strlen(name);
1902                 buflen -= namelen + 1;
1903                 if (buflen < 0)
1904                         goto out_free;
1905                 end -= namelen;
1906                 memcpy(end, name, namelen);
1907                 *--end = '/';
1908                 path = end;
1909                 table = table->parent;
1910         }
1911         buflen -= 4;
1912         if (buflen < 0)
1913                 goto out_free;
1914         end -= 4;
1915         memcpy(end, "/sys", 4);
1916         path = end;
1917         rc = security_genfs_sid("proc", path, tclass, sid);
1918 out_free:
1919         free_page((unsigned long)buffer);
1920 out:
1921         return rc;
1922 }
1923
1924 static int selinux_sysctl(ctl_table *table, int op)
1925 {
1926         int error = 0;
1927         u32 av;
1928         u32 tsid, sid;
1929         int rc;
1930
1931         sid = current_sid();
1932
1933         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1934                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1935         if (rc) {
1936                 /* Default to the well-defined sysctl SID. */
1937                 tsid = SECINITSID_SYSCTL;
1938         }
1939
1940         /* The op values are "defined" in sysctl.c, thereby creating
1941          * a bad coupling between this module and sysctl.c */
1942         if (op == 001) {
1943                 error = avc_has_perm(sid, tsid,
1944                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1945         } else {
1946                 av = 0;
1947                 if (op & 004)
1948                         av |= FILE__READ;
1949                 if (op & 002)
1950                         av |= FILE__WRITE;
1951                 if (av)
1952                         error = avc_has_perm(sid, tsid,
1953                                              SECCLASS_FILE, av, NULL);
1954         }
1955
1956         return error;
1957 }
1958
1959 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1960 {
1961         const struct cred *cred = current_cred();
1962         int rc = 0;
1963
1964         if (!sb)
1965                 return 0;
1966
1967         switch (cmds) {
1968         case Q_SYNC:
1969         case Q_QUOTAON:
1970         case Q_QUOTAOFF:
1971         case Q_SETINFO:
1972         case Q_SETQUOTA:
1973                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1974                 break;
1975         case Q_GETFMT:
1976         case Q_GETINFO:
1977         case Q_GETQUOTA:
1978                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1979                 break;
1980         default:
1981                 rc = 0;  /* let the kernel handle invalid cmds */
1982                 break;
1983         }
1984         return rc;
1985 }
1986
1987 static int selinux_quota_on(struct dentry *dentry)
1988 {
1989         const struct cred *cred = current_cred();
1990
1991         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1992 }
1993
1994 static int selinux_syslog(int type, bool from_file)
1995 {
1996         int rc;
1997
1998         rc = cap_syslog(type, from_file);
1999         if (rc)
2000                 return rc;
2001
2002         switch (type) {
2003         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2004         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2005                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2006                 break;
2007         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2008         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2009         /* Set level of messages printed to console */
2010         case SYSLOG_ACTION_CONSOLE_LEVEL:
2011                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2012                 break;
2013         case SYSLOG_ACTION_CLOSE:       /* Close log */
2014         case SYSLOG_ACTION_OPEN:        /* Open log */
2015         case SYSLOG_ACTION_READ:        /* Read from log */
2016         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2017         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2018         default:
2019                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2020                 break;
2021         }
2022         return rc;
2023 }
2024
2025 /*
2026  * Check that a process has enough memory to allocate a new virtual
2027  * mapping. 0 means there is enough memory for the allocation to
2028  * succeed and -ENOMEM implies there is not.
2029  *
2030  * Do not audit the selinux permission check, as this is applied to all
2031  * processes that allocate mappings.
2032  */
2033 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2034 {
2035         int rc, cap_sys_admin = 0;
2036
2037         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2038                              SECURITY_CAP_NOAUDIT);
2039         if (rc == 0)
2040                 cap_sys_admin = 1;
2041
2042         return __vm_enough_memory(mm, pages, cap_sys_admin);
2043 }
2044
2045 /* binprm security operations */
2046
2047 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2048 {
2049         const struct task_security_struct *old_tsec;
2050         struct task_security_struct *new_tsec;
2051         struct inode_security_struct *isec;
2052         struct common_audit_data ad;
2053         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2054         int rc;
2055
2056         rc = cap_bprm_set_creds(bprm);
2057         if (rc)
2058                 return rc;
2059
2060         /* SELinux context only depends on initial program or script and not
2061          * the script interpreter */
2062         if (bprm->cred_prepared)
2063                 return 0;
2064
2065         old_tsec = current_security();
2066         new_tsec = bprm->cred->security;
2067         isec = inode->i_security;
2068
2069         /* Default to the current task SID. */
2070         new_tsec->sid = old_tsec->sid;
2071         new_tsec->osid = old_tsec->sid;
2072
2073         /* Reset fs, key, and sock SIDs on execve. */
2074         new_tsec->create_sid = 0;
2075         new_tsec->keycreate_sid = 0;
2076         new_tsec->sockcreate_sid = 0;
2077
2078         if (old_tsec->exec_sid) {
2079                 new_tsec->sid = old_tsec->exec_sid;
2080                 /* Reset exec SID on execve. */
2081                 new_tsec->exec_sid = 0;
2082         } else {
2083                 /* Check for a default transition on this program. */
2084                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2085                                              SECCLASS_PROCESS, &new_tsec->sid);
2086                 if (rc)
2087                         return rc;
2088         }
2089
2090         COMMON_AUDIT_DATA_INIT(&ad, FS);
2091         ad.u.fs.path = bprm->file->f_path;
2092
2093         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2094                 new_tsec->sid = old_tsec->sid;
2095
2096         if (new_tsec->sid == old_tsec->sid) {
2097                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2098                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2099                 if (rc)
2100                         return rc;
2101         } else {
2102                 /* Check permissions for the transition. */
2103                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2104                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2105                 if (rc)
2106                         return rc;
2107
2108                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2109                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2110                 if (rc)
2111                         return rc;
2112
2113                 /* Check for shared state */
2114                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2115                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2116                                           SECCLASS_PROCESS, PROCESS__SHARE,
2117                                           NULL);
2118                         if (rc)
2119                                 return -EPERM;
2120                 }
2121
2122                 /* Make sure that anyone attempting to ptrace over a task that
2123                  * changes its SID has the appropriate permit */
2124                 if (bprm->unsafe &
2125                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2126                         struct task_struct *tracer;
2127                         struct task_security_struct *sec;
2128                         u32 ptsid = 0;
2129
2130                         rcu_read_lock();
2131                         tracer = tracehook_tracer_task(current);
2132                         if (likely(tracer != NULL)) {
2133                                 sec = __task_cred(tracer)->security;
2134                                 ptsid = sec->sid;
2135                         }
2136                         rcu_read_unlock();
2137
2138                         if (ptsid != 0) {
2139                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2140                                                   SECCLASS_PROCESS,
2141                                                   PROCESS__PTRACE, NULL);
2142                                 if (rc)
2143                                         return -EPERM;
2144                         }
2145                 }
2146
2147                 /* Clear any possibly unsafe personality bits on exec: */
2148                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2149         }
2150
2151         return 0;
2152 }
2153
2154 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2155 {
2156         const struct task_security_struct *tsec = current_security();
2157         u32 sid, osid;
2158         int atsecure = 0;
2159
2160         sid = tsec->sid;
2161         osid = tsec->osid;
2162
2163         if (osid != sid) {
2164                 /* Enable secure mode for SIDs transitions unless
2165                    the noatsecure permission is granted between
2166                    the two SIDs, i.e. ahp returns 0. */
2167                 atsecure = avc_has_perm(osid, sid,
2168                                         SECCLASS_PROCESS,
2169                                         PROCESS__NOATSECURE, NULL);
2170         }
2171
2172         return (atsecure || cap_bprm_secureexec(bprm));
2173 }
2174
2175 extern struct vfsmount *selinuxfs_mount;
2176 extern struct dentry *selinux_null;
2177
2178 /* Derived from fs/exec.c:flush_old_files. */
2179 static inline void flush_unauthorized_files(const struct cred *cred,
2180                                             struct files_struct *files)
2181 {
2182         struct common_audit_data ad;
2183         struct file *file, *devnull = NULL;
2184         struct tty_struct *tty;
2185         struct fdtable *fdt;
2186         long j = -1;
2187         int drop_tty = 0;
2188
2189         tty = get_current_tty();
2190         if (tty) {
2191                 file_list_lock();
2192                 if (!list_empty(&tty->tty_files)) {
2193                         struct inode *inode;
2194
2195                         /* Revalidate access to controlling tty.
2196                            Use inode_has_perm on the tty inode directly rather
2197                            than using file_has_perm, as this particular open
2198                            file may belong to another process and we are only
2199                            interested in the inode-based check here. */
2200                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2201                         inode = file->f_path.dentry->d_inode;
2202                         if (inode_has_perm(cred, inode,
2203                                            FILE__READ | FILE__WRITE, NULL)) {
2204                                 drop_tty = 1;
2205                         }
2206                 }
2207                 file_list_unlock();
2208                 tty_kref_put(tty);
2209         }
2210         /* Reset controlling tty. */
2211         if (drop_tty)
2212                 no_tty();
2213
2214         /* Revalidate access to inherited open files. */
2215
2216         COMMON_AUDIT_DATA_INIT(&ad, FS);
2217
2218         spin_lock(&files->file_lock);
2219         for (;;) {
2220                 unsigned long set, i;
2221                 int fd;
2222
2223                 j++;
2224                 i = j * __NFDBITS;
2225                 fdt = files_fdtable(files);
2226                 if (i >= fdt->max_fds)
2227                         break;
2228                 set = fdt->open_fds->fds_bits[j];
2229                 if (!set)
2230                         continue;
2231                 spin_unlock(&files->file_lock);
2232                 for ( ; set ; i++, set >>= 1) {
2233                         if (set & 1) {
2234                                 file = fget(i);
2235                                 if (!file)
2236                                         continue;
2237                                 if (file_has_perm(cred,
2238                                                   file,
2239                                                   file_to_av(file))) {
2240                                         sys_close(i);
2241                                         fd = get_unused_fd();
2242                                         if (fd != i) {
2243                                                 if (fd >= 0)
2244                                                         put_unused_fd(fd);
2245                                                 fput(file);
2246                                                 continue;
2247                                         }
2248                                         if (devnull) {
2249                                                 get_file(devnull);
2250                                         } else {
2251                                                 devnull = dentry_open(
2252                                                         dget(selinux_null),
2253                                                         mntget(selinuxfs_mount),
2254                                                         O_RDWR, cred);
2255                                                 if (IS_ERR(devnull)) {
2256                                                         devnull = NULL;
2257                                                         put_unused_fd(fd);
2258                                                         fput(file);
2259                                                         continue;
2260                                                 }
2261                                         }
2262                                         fd_install(fd, devnull);
2263                                 }
2264                                 fput(file);
2265                         }
2266                 }
2267                 spin_lock(&files->file_lock);
2268
2269         }
2270         spin_unlock(&files->file_lock);
2271 }
2272
2273 /*
2274  * Prepare a process for imminent new credential changes due to exec
2275  */
2276 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2277 {
2278         struct task_security_struct *new_tsec;
2279         struct rlimit *rlim, *initrlim;
2280         int rc, i;
2281
2282         new_tsec = bprm->cred->security;
2283         if (new_tsec->sid == new_tsec->osid)
2284                 return;
2285
2286         /* Close files for which the new task SID is not authorized. */
2287         flush_unauthorized_files(bprm->cred, current->files);
2288
2289         /* Always clear parent death signal on SID transitions. */
2290         current->pdeath_signal = 0;
2291
2292         /* Check whether the new SID can inherit resource limits from the old
2293          * SID.  If not, reset all soft limits to the lower of the current
2294          * task's hard limit and the init task's soft limit.
2295          *
2296          * Note that the setting of hard limits (even to lower them) can be
2297          * controlled by the setrlimit check.  The inclusion of the init task's
2298          * soft limit into the computation is to avoid resetting soft limits
2299          * higher than the default soft limit for cases where the default is
2300          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2301          */
2302         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2303                           PROCESS__RLIMITINH, NULL);
2304         if (rc) {
2305                 for (i = 0; i < RLIM_NLIMITS; i++) {
2306                         rlim = current->signal->rlim + i;
2307                         initrlim = init_task.signal->rlim + i;
2308                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2309                 }
2310                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2311         }
2312 }
2313
2314 /*
2315  * Clean up the process immediately after the installation of new credentials
2316  * due to exec
2317  */
2318 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2319 {
2320         const struct task_security_struct *tsec = current_security();
2321         struct itimerval itimer;
2322         u32 osid, sid;
2323         int rc, i;
2324
2325         osid = tsec->osid;
2326         sid = tsec->sid;
2327
2328         if (sid == osid)
2329                 return;
2330
2331         /* Check whether the new SID can inherit signal state from the old SID.
2332          * If not, clear itimers to avoid subsequent signal generation and
2333          * flush and unblock signals.
2334          *
2335          * This must occur _after_ the task SID has been updated so that any
2336          * kill done after the flush will be checked against the new SID.
2337          */
2338         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2339         if (rc) {
2340                 memset(&itimer, 0, sizeof itimer);
2341                 for (i = 0; i < 3; i++)
2342                         do_setitimer(i, &itimer, NULL);
2343                 spin_lock_irq(&current->sighand->siglock);
2344                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2345                         __flush_signals(current);
2346                         flush_signal_handlers(current, 1);
2347                         sigemptyset(&current->blocked);
2348                 }
2349                 spin_unlock_irq(&current->sighand->siglock);
2350         }
2351
2352         /* Wake up the parent if it is waiting so that it can recheck
2353          * wait permission to the new task SID. */
2354         read_lock(&tasklist_lock);
2355         __wake_up_parent(current, current->real_parent);
2356         read_unlock(&tasklist_lock);
2357 }
2358
2359 /* superblock security operations */
2360
2361 static int selinux_sb_alloc_security(struct super_block *sb)
2362 {
2363         return superblock_alloc_security(sb);
2364 }
2365
2366 static void selinux_sb_free_security(struct super_block *sb)
2367 {
2368         superblock_free_security(sb);
2369 }
2370
2371 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2372 {
2373         if (plen > olen)
2374                 return 0;
2375
2376         return !memcmp(prefix, option, plen);
2377 }
2378
2379 static inline int selinux_option(char *option, int len)
2380 {
2381         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2382                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2383                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2384                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2385                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2386 }
2387
2388 static inline void take_option(char **to, char *from, int *first, int len)
2389 {
2390         if (!*first) {
2391                 **to = ',';
2392                 *to += 1;
2393         } else
2394                 *first = 0;
2395         memcpy(*to, from, len);
2396         *to += len;
2397 }
2398
2399 static inline void take_selinux_option(char **to, char *from, int *first,
2400                                        int len)
2401 {
2402         int current_size = 0;
2403
2404         if (!*first) {
2405                 **to = '|';
2406                 *to += 1;
2407         } else
2408                 *first = 0;
2409
2410         while (current_size < len) {
2411                 if (*from != '"') {
2412                         **to = *from;
2413                         *to += 1;
2414                 }
2415                 from += 1;
2416                 current_size += 1;
2417         }
2418 }
2419
2420 static int selinux_sb_copy_data(char *orig, char *copy)
2421 {
2422         int fnosec, fsec, rc = 0;
2423         char *in_save, *in_curr, *in_end;
2424         char *sec_curr, *nosec_save, *nosec;
2425         int open_quote = 0;
2426
2427         in_curr = orig;
2428         sec_curr = copy;
2429
2430         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2431         if (!nosec) {
2432                 rc = -ENOMEM;
2433                 goto out;
2434         }
2435
2436         nosec_save = nosec;
2437         fnosec = fsec = 1;
2438         in_save = in_end = orig;
2439
2440         do {
2441                 if (*in_end == '"')
2442                         open_quote = !open_quote;
2443                 if ((*in_end == ',' && open_quote == 0) ||
2444                                 *in_end == '\0') {
2445                         int len = in_end - in_curr;
2446
2447                         if (selinux_option(in_curr, len))
2448                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2449                         else
2450                                 take_option(&nosec, in_curr, &fnosec, len);
2451
2452                         in_curr = in_end + 1;
2453                 }
2454         } while (*in_end++);
2455
2456         strcpy(in_save, nosec_save);
2457         free_page((unsigned long)nosec_save);
2458 out:
2459         return rc;
2460 }
2461
2462 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2463 {
2464         const struct cred *cred = current_cred();
2465         struct common_audit_data ad;
2466         int rc;
2467
2468         rc = superblock_doinit(sb, data);
2469         if (rc)
2470                 return rc;
2471
2472         /* Allow all mounts performed by the kernel */
2473         if (flags & MS_KERNMOUNT)
2474                 return 0;
2475
2476         COMMON_AUDIT_DATA_INIT(&ad, FS);
2477         ad.u.fs.path.dentry = sb->s_root;
2478         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2479 }
2480
2481 static int selinux_sb_statfs(struct dentry *dentry)
2482 {
2483         const struct cred *cred = current_cred();
2484         struct common_audit_data ad;
2485
2486         COMMON_AUDIT_DATA_INIT(&ad, FS);
2487         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2488         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2489 }
2490
2491 static int selinux_mount(char *dev_name,
2492                          struct path *path,
2493                          char *type,
2494                          unsigned long flags,
2495                          void *data)
2496 {
2497         const struct cred *cred = current_cred();
2498
2499         if (flags & MS_REMOUNT)
2500                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2501                                            FILESYSTEM__REMOUNT, NULL);
2502         else
2503                 return dentry_has_perm(cred, path->mnt, path->dentry,
2504                                        FILE__MOUNTON);
2505 }
2506
2507 static int selinux_umount(struct vfsmount *mnt, int flags)
2508 {
2509         const struct cred *cred = current_cred();
2510
2511         return superblock_has_perm(cred, mnt->mnt_sb,
2512                                    FILESYSTEM__UNMOUNT, NULL);
2513 }
2514
2515 /* inode security operations */
2516
2517 static int selinux_inode_alloc_security(struct inode *inode)
2518 {
2519         return inode_alloc_security(inode);
2520 }
2521
2522 static void selinux_inode_free_security(struct inode *inode)
2523 {
2524         inode_free_security(inode);
2525 }
2526
2527 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2528                                        char **name, void **value,
2529                                        size_t *len)
2530 {
2531         const struct task_security_struct *tsec = current_security();
2532         struct inode_security_struct *dsec;
2533         struct superblock_security_struct *sbsec;
2534         u32 sid, newsid, clen;
2535         int rc;
2536         char *namep = NULL, *context;
2537
2538         dsec = dir->i_security;
2539         sbsec = dir->i_sb->s_security;
2540
2541         sid = tsec->sid;
2542         newsid = tsec->create_sid;
2543
2544         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2545                 rc = security_transition_sid(sid, dsec->sid,
2546                                              inode_mode_to_security_class(inode->i_mode),
2547                                              &newsid);
2548                 if (rc) {
2549                         printk(KERN_WARNING "%s:  "
2550                                "security_transition_sid failed, rc=%d (dev=%s "
2551                                "ino=%ld)\n",
2552                                __func__,
2553                                -rc, inode->i_sb->s_id, inode->i_ino);
2554                         return rc;
2555                 }
2556         }
2557
2558         /* Possibly defer initialization to selinux_complete_init. */
2559         if (sbsec->flags & SE_SBINITIALIZED) {
2560                 struct inode_security_struct *isec = inode->i_security;
2561                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2562                 isec->sid = newsid;
2563                 isec->initialized = 1;
2564         }
2565
2566         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2567                 return -EOPNOTSUPP;
2568
2569         if (name) {
2570                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2571                 if (!namep)
2572                         return -ENOMEM;
2573                 *name = namep;
2574         }
2575
2576         if (value && len) {
2577                 rc = security_sid_to_context_force(newsid, &context, &clen);
2578                 if (rc) {
2579                         kfree(namep);
2580                         return rc;
2581                 }
2582                 *value = context;
2583                 *len = clen;
2584         }
2585
2586         return 0;
2587 }
2588
2589 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2590 {
2591         return may_create(dir, dentry, SECCLASS_FILE);
2592 }
2593
2594 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2595 {
2596         return may_link(dir, old_dentry, MAY_LINK);
2597 }
2598
2599 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2600 {
2601         return may_link(dir, dentry, MAY_UNLINK);
2602 }
2603
2604 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2605 {
2606         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2607 }
2608
2609 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2610 {
2611         return may_create(dir, dentry, SECCLASS_DIR);
2612 }
2613
2614 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2615 {
2616         return may_link(dir, dentry, MAY_RMDIR);
2617 }
2618
2619 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2620 {
2621         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2622 }
2623
2624 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2625                                 struct inode *new_inode, struct dentry *new_dentry)
2626 {
2627         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2628 }
2629
2630 static int selinux_inode_readlink(struct dentry *dentry)
2631 {
2632         const struct cred *cred = current_cred();
2633
2634         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2635 }
2636
2637 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2638 {
2639         const struct cred *cred = current_cred();
2640
2641         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2642 }
2643
2644 static int selinux_inode_permission(struct inode *inode, int mask)
2645 {
2646         const struct cred *cred = current_cred();
2647
2648         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2649
2650         if (!mask) {
2651                 /* No permission to check.  Existence test. */
2652                 return 0;
2653         }
2654
2655         return inode_has_perm(cred, inode,
2656                               file_mask_to_av(inode->i_mode, mask), NULL);
2657 }
2658
2659 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2660 {
2661         const struct cred *cred = current_cred();
2662         unsigned int ia_valid = iattr->ia_valid;
2663
2664         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2665         if (ia_valid & ATTR_FORCE) {
2666                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2667                               ATTR_FORCE);
2668                 if (!ia_valid)
2669                         return 0;
2670         }
2671
2672         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2673                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2674                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2675
2676         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2677 }
2678
2679 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2680 {
2681         const struct cred *cred = current_cred();
2682
2683         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2684 }
2685
2686 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2687 {
2688         const struct cred *cred = current_cred();
2689
2690         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2691                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2692                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2693                         if (!capable(CAP_SETFCAP))
2694                                 return -EPERM;
2695                 } else if (!capable(CAP_SYS_ADMIN)) {
2696                         /* A different attribute in the security namespace.
2697                            Restrict to administrator. */
2698                         return -EPERM;
2699                 }
2700         }
2701
2702         /* Not an attribute we recognize, so just check the
2703            ordinary setattr permission. */
2704         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2705 }
2706
2707 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2708                                   const void *value, size_t size, int flags)
2709 {
2710         struct inode *inode = dentry->d_inode;
2711         struct inode_security_struct *isec = inode->i_security;
2712         struct superblock_security_struct *sbsec;
2713         struct common_audit_data ad;
2714         u32 newsid, sid = current_sid();
2715         int rc = 0;
2716
2717         if (strcmp(name, XATTR_NAME_SELINUX))
2718                 return selinux_inode_setotherxattr(dentry, name);
2719
2720         sbsec = inode->i_sb->s_security;
2721         if (!(sbsec->flags & SE_SBLABELSUPP))
2722                 return -EOPNOTSUPP;
2723
2724         if (!is_owner_or_cap(inode))
2725                 return -EPERM;
2726
2727         COMMON_AUDIT_DATA_INIT(&ad, FS);
2728         ad.u.fs.path.dentry = dentry;
2729
2730         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2731                           FILE__RELABELFROM, &ad);
2732         if (rc)
2733                 return rc;
2734
2735         rc = security_context_to_sid(value, size, &newsid);
2736         if (rc == -EINVAL) {
2737                 if (!capable(CAP_MAC_ADMIN))
2738                         return rc;
2739                 rc = security_context_to_sid_force(value, size, &newsid);
2740         }
2741         if (rc)
2742                 return rc;
2743
2744         rc = avc_has_perm(sid, newsid, isec->sclass,
2745                           FILE__RELABELTO, &ad);
2746         if (rc)
2747                 return rc;
2748
2749         rc = security_validate_transition(isec->sid, newsid, sid,
2750                                           isec->sclass);
2751         if (rc)
2752                 return rc;
2753
2754         return avc_has_perm(newsid,
2755                             sbsec->sid,
2756                             SECCLASS_FILESYSTEM,
2757                             FILESYSTEM__ASSOCIATE,
2758                             &ad);
2759 }
2760
2761 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2762                                         const void *value, size_t size,
2763                                         int flags)
2764 {
2765         struct inode *inode = dentry->d_inode;
2766         struct inode_security_struct *isec = inode->i_security;
2767         u32 newsid;
2768         int rc;
2769
2770         if (strcmp(name, XATTR_NAME_SELINUX)) {
2771                 /* Not an attribute we recognize, so nothing to do. */
2772                 return;
2773         }
2774
2775         rc = security_context_to_sid_force(value, size, &newsid);
2776         if (rc) {
2777                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2778                        "for (%s, %lu), rc=%d\n",
2779                        inode->i_sb->s_id, inode->i_ino, -rc);
2780                 return;
2781         }
2782
2783         isec->sid = newsid;
2784         return;
2785 }
2786
2787 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2788 {
2789         const struct cred *cred = current_cred();
2790
2791         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2792 }
2793
2794 static int selinux_inode_listxattr(struct dentry *dentry)
2795 {
2796         const struct cred *cred = current_cred();
2797
2798         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2799 }
2800
2801 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2802 {
2803         if (strcmp(name, XATTR_NAME_SELINUX))
2804                 return selinux_inode_setotherxattr(dentry, name);
2805
2806         /* No one is allowed to remove a SELinux security label.
2807            You can change the label, but all data must be labeled. */
2808         return -EACCES;
2809 }
2810
2811 /*
2812  * Copy the inode security context value to the user.
2813  *
2814  * Permission check is handled by selinux_inode_getxattr hook.
2815  */
2816 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2817 {
2818         u32 size;
2819         int error;
2820         char *context = NULL;
2821         struct inode_security_struct *isec = inode->i_security;
2822
2823         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2824                 return -EOPNOTSUPP;
2825
2826         /*
2827          * If the caller has CAP_MAC_ADMIN, then get the raw context
2828          * value even if it is not defined by current policy; otherwise,
2829          * use the in-core value under current policy.
2830          * Use the non-auditing forms of the permission checks since
2831          * getxattr may be called by unprivileged processes commonly
2832          * and lack of permission just means that we fall back to the
2833          * in-core context value, not a denial.
2834          */
2835         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2836                                 SECURITY_CAP_NOAUDIT);
2837         if (!error)
2838                 error = security_sid_to_context_force(isec->sid, &context,
2839                                                       &size);
2840         else
2841                 error = security_sid_to_context(isec->sid, &context, &size);
2842         if (error)
2843                 return error;
2844         error = size;
2845         if (alloc) {
2846                 *buffer = context;
2847                 goto out_nofree;
2848         }
2849         kfree(context);
2850 out_nofree:
2851         return error;
2852 }
2853
2854 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2855                                      const void *value, size_t size, int flags)
2856 {
2857         struct inode_security_struct *isec = inode->i_security;
2858         u32 newsid;
2859         int rc;
2860
2861         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2862                 return -EOPNOTSUPP;
2863
2864         if (!value || !size)
2865                 return -EACCES;
2866
2867         rc = security_context_to_sid((void *)value, size, &newsid);
2868         if (rc)
2869                 return rc;
2870
2871         isec->sid = newsid;
2872         isec->initialized = 1;
2873         return 0;
2874 }
2875
2876 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2877 {
2878         const int len = sizeof(XATTR_NAME_SELINUX);
2879         if (buffer && len <= buffer_size)
2880                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2881         return len;
2882 }
2883
2884 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2885 {
2886         struct inode_security_struct *isec = inode->i_security;
2887         *secid = isec->sid;
2888 }
2889
2890 /* file security operations */
2891
2892 static int selinux_revalidate_file_permission(struct file *file, int mask)
2893 {
2894         const struct cred *cred = current_cred();
2895         struct inode *inode = file->f_path.dentry->d_inode;
2896
2897         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2898         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2899                 mask |= MAY_APPEND;
2900
2901         return file_has_perm(cred, file,
2902                              file_mask_to_av(inode->i_mode, mask));
2903 }
2904
2905 static int selinux_file_permission(struct file *file, int mask)
2906 {
2907         struct inode *inode = file->f_path.dentry->d_inode;
2908         struct file_security_struct *fsec = file->f_security;
2909         struct inode_security_struct *isec = inode->i_security;
2910         u32 sid = current_sid();
2911
2912         if (!mask)
2913                 /* No permission to check.  Existence test. */
2914                 return 0;
2915
2916         if (sid == fsec->sid && fsec->isid == isec->sid &&
2917             fsec->pseqno == avc_policy_seqno())
2918                 /* No change since dentry_open check. */
2919                 return 0;
2920
2921         return selinux_revalidate_file_permission(file, mask);
2922 }
2923
2924 static int selinux_file_alloc_security(struct file *file)
2925 {
2926         return file_alloc_security(file);
2927 }
2928
2929 static void selinux_file_free_security(struct file *file)
2930 {
2931         file_free_security(file);
2932 }
2933
2934 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2935                               unsigned long arg)
2936 {
2937         const struct cred *cred = current_cred();
2938         u32 av = 0;
2939
2940         if (_IOC_DIR(cmd) & _IOC_WRITE)
2941                 av |= FILE__WRITE;
2942         if (_IOC_DIR(cmd) & _IOC_READ)
2943                 av |= FILE__READ;
2944         if (!av)
2945                 av = FILE__IOCTL;
2946
2947         return file_has_perm(cred, file, av);
2948 }
2949
2950 static int default_noexec;
2951
2952 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2953 {
2954         const struct cred *cred = current_cred();
2955         int rc = 0;
2956
2957         if (default_noexec &&
2958             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2959                 /*
2960                  * We are making executable an anonymous mapping or a
2961                  * private file mapping that will also be writable.
2962                  * This has an additional check.
2963                  */
2964                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2965                 if (rc)
2966                         goto error;
2967         }
2968
2969         if (file) {
2970                 /* read access is always possible with a mapping */
2971                 u32 av = FILE__READ;
2972
2973                 /* write access only matters if the mapping is shared */
2974                 if (shared && (prot & PROT_WRITE))
2975                         av |= FILE__WRITE;
2976
2977                 if (prot & PROT_EXEC)
2978                         av |= FILE__EXECUTE;
2979
2980                 return file_has_perm(cred, file, av);
2981         }
2982
2983 error:
2984         return rc;
2985 }
2986
2987 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2988                              unsigned long prot, unsigned long flags,
2989                              unsigned long addr, unsigned long addr_only)
2990 {
2991         int rc = 0;
2992         u32 sid = current_sid();
2993
2994         /*
2995          * notice that we are intentionally putting the SELinux check before
2996          * the secondary cap_file_mmap check.  This is such a likely attempt
2997          * at bad behaviour/exploit that we always want to get the AVC, even
2998          * if DAC would have also denied the operation.
2999          */
3000         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3001                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3002                                   MEMPROTECT__MMAP_ZERO, NULL);
3003                 if (rc)
3004                         return rc;
3005         }
3006
3007         /* do DAC check on address space usage */
3008         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3009         if (rc || addr_only)
3010                 return rc;
3011
3012         if (selinux_checkreqprot)
3013                 prot = reqprot;
3014
3015         return file_map_prot_check(file, prot,
3016                                    (flags & MAP_TYPE) == MAP_SHARED);
3017 }
3018
3019 static int selinux_file_mprotect(struct vm_area_struct *vma,
3020                                  unsigned long reqprot,
3021                                  unsigned long prot)
3022 {
3023         const struct cred *cred = current_cred();
3024
3025         if (selinux_checkreqprot)
3026                 prot = reqprot;
3027
3028         if (default_noexec &&
3029             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3030                 int rc = 0;
3031                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3032                     vma->vm_end <= vma->vm_mm->brk) {
3033                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3034                 } else if (!vma->vm_file &&
3035                            vma->vm_start <= vma->vm_mm->start_stack &&
3036                            vma->vm_end >= vma->vm_mm->start_stack) {
3037                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3038                 } else if (vma->vm_file && vma->anon_vma) {
3039                         /*
3040                          * We are making executable a file mapping that has
3041                          * had some COW done. Since pages might have been
3042                          * written, check ability to execute the possibly
3043                          * modified content.  This typically should only
3044                          * occur for text relocations.
3045                          */
3046                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3047                 }
3048                 if (rc)
3049                         return rc;
3050         }
3051
3052         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3053 }
3054
3055 static int selinux_file_lock(struct file *file, unsigned int cmd)
3056 {
3057         const struct cred *cred = current_cred();
3058
3059         return file_has_perm(cred, file, FILE__LOCK);
3060 }
3061
3062 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3063                               unsigned long arg)
3064 {
3065         const struct cred *cred = current_cred();
3066         int err = 0;
3067
3068         switch (cmd) {
3069         case F_SETFL:
3070                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3071                         err = -EINVAL;
3072                         break;
3073                 }
3074
3075                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3076                         err = file_has_perm(cred, file, FILE__WRITE);
3077                         break;
3078                 }
3079                 /* fall through */
3080         case F_SETOWN:
3081         case F_SETSIG:
3082         case F_GETFL:
3083         case F_GETOWN:
3084         case F_GETSIG:
3085                 /* Just check FD__USE permission */
3086                 err = file_has_perm(cred, file, 0);
3087                 break;
3088         case F_GETLK:
3089         case F_SETLK:
3090         case F_SETLKW:
3091 #if BITS_PER_LONG == 32
3092         case F_GETLK64:
3093         case F_SETLK64:
3094         case F_SETLKW64:
3095 #endif
3096                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3097                         err = -EINVAL;
3098                         break;
3099                 }
3100                 err = file_has_perm(cred, file, FILE__LOCK);
3101                 break;
3102         }
3103
3104         return err;
3105 }
3106
3107 static int selinux_file_set_fowner(struct file *file)
3108 {
3109         struct file_security_struct *fsec;
3110
3111         fsec = file->f_security;
3112         fsec->fown_sid = current_sid();
3113
3114         return 0;
3115 }
3116
3117 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3118                                        struct fown_struct *fown, int signum)
3119 {
3120         struct file *file;
3121         u32 sid = task_sid(tsk);
3122         u32 perm;
3123         struct file_security_struct *fsec;
3124
3125         /* struct fown_struct is never outside the context of a struct file */
3126         file = container_of(fown, struct file, f_owner);
3127
3128         fsec = file->f_security;
3129
3130         if (!signum)
3131                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3132         else
3133                 perm = signal_to_av(signum);
3134
3135         return avc_has_perm(fsec->fown_sid, sid,
3136                             SECCLASS_PROCESS, perm, NULL);
3137 }
3138
3139 static int selinux_file_receive(struct file *file)
3140 {
3141         const struct cred *cred = current_cred();
3142
3143         return file_has_perm(cred, file, file_to_av(file));
3144 }
3145
3146 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3147 {
3148         struct file_security_struct *fsec;
3149         struct inode *inode;
3150         struct inode_security_struct *isec;
3151
3152         inode = file->f_path.dentry->d_inode;
3153         fsec = file->f_security;
3154         isec = inode->i_security;
3155         /*
3156          * Save inode label and policy sequence number
3157          * at open-time so that selinux_file_permission
3158          * can determine whether revalidation is necessary.
3159          * Task label is already saved in the file security
3160          * struct as its SID.
3161          */
3162         fsec->isid = isec->sid;
3163         fsec->pseqno = avc_policy_seqno();
3164         /*
3165          * Since the inode label or policy seqno may have changed
3166          * between the selinux_inode_permission check and the saving
3167          * of state above, recheck that access is still permitted.
3168          * Otherwise, access might never be revalidated against the
3169          * new inode label or new policy.
3170          * This check is not redundant - do not remove.
3171          */
3172         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3173 }
3174
3175 /* task security operations */
3176
3177 static int selinux_task_create(unsigned long clone_flags)
3178 {
3179         return current_has_perm(current, PROCESS__FORK);
3180 }
3181
3182 /*
3183  * allocate the SELinux part of blank credentials
3184  */
3185 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3186 {
3187         struct task_security_struct *tsec;
3188
3189         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3190         if (!tsec)
3191                 return -ENOMEM;
3192
3193         cred->security = tsec;
3194         return 0;
3195 }
3196
3197 /*
3198  * detach and free the LSM part of a set of credentials
3199  */
3200 static void selinux_cred_free(struct cred *cred)
3201 {
3202         struct task_security_struct *tsec = cred->security;
3203
3204         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3205         cred->security = (void *) 0x7UL;
3206         kfree(tsec);
3207 }
3208
3209 /*
3210  * prepare a new set of credentials for modification
3211  */
3212 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3213                                 gfp_t gfp)
3214 {
3215         const struct task_security_struct *old_tsec;
3216         struct task_security_struct *tsec;
3217
3218         old_tsec = old->security;
3219
3220         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3221         if (!tsec)
3222                 return -ENOMEM;
3223
3224         new->security = tsec;
3225         return 0;
3226 }
3227
3228 /*
3229  * transfer the SELinux data to a blank set of creds
3230  */
3231 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3232 {
3233         const struct task_security_struct *old_tsec = old->security;
3234         struct task_security_struct *tsec = new->security;
3235
3236         *tsec = *old_tsec;
3237 }
3238
3239 /*
3240  * set the security data for a kernel service
3241  * - all the creation contexts are set to unlabelled
3242  */
3243 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3244 {
3245         struct task_security_struct *tsec = new->security;
3246         u32 sid = current_sid();
3247         int ret;
3248
3249         ret = avc_has_perm(sid, secid,
3250                            SECCLASS_KERNEL_SERVICE,
3251                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3252                            NULL);
3253         if (ret == 0) {
3254                 tsec->sid = secid;
3255                 tsec->create_sid = 0;
3256                 tsec->keycreate_sid = 0;
3257                 tsec->sockcreate_sid = 0;
3258         }
3259         return ret;
3260 }
3261
3262 /*
3263  * set the file creation context in a security record to the same as the
3264  * objective context of the specified inode
3265  */
3266 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3267 {
3268         struct inode_security_struct *isec = inode->i_security;
3269         struct task_security_struct *tsec = new->security;
3270         u32 sid = current_sid();
3271         int ret;
3272
3273         ret = avc_has_perm(sid, isec->sid,
3274                            SECCLASS_KERNEL_SERVICE,
3275                            KERNEL_SERVICE__CREATE_FILES_AS,
3276                            NULL);
3277
3278         if (ret == 0)
3279                 tsec->create_sid = isec->sid;
3280         return ret;
3281 }
3282
3283 static int selinux_kernel_module_request(char *kmod_name)
3284 {
3285         u32 sid;
3286         struct common_audit_data ad;
3287
3288         sid = task_sid(current);
3289
3290         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3291         ad.u.kmod_name = kmod_name;
3292
3293         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3294                             SYSTEM__MODULE_REQUEST, &ad);
3295 }
3296
3297 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3298 {
3299         return current_has_perm(p, PROCESS__SETPGID);
3300 }
3301
3302 static int selinux_task_getpgid(struct task_struct *p)
3303 {
3304         return current_has_perm(p, PROCESS__GETPGID);
3305 }
3306
3307 static int selinux_task_getsid(struct task_struct *p)
3308 {
3309         return current_has_perm(p, PROCESS__GETSESSION);
3310 }
3311
3312 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3313 {
3314         *secid = task_sid(p);
3315 }
3316
3317 static int selinux_task_setnice(struct task_struct *p, int nice)
3318 {
3319         int rc;
3320
3321         rc = cap_task_setnice(p, nice);
3322         if (rc)
3323                 return rc;
3324
3325         return current_has_perm(p, PROCESS__SETSCHED);
3326 }
3327
3328 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3329 {
3330         int rc;
3331
3332         rc = cap_task_setioprio(p, ioprio);
3333         if (rc)
3334                 return rc;
3335
3336         return current_has_perm(p, PROCESS__SETSCHED);
3337 }
3338
3339 static int selinux_task_getioprio(struct task_struct *p)
3340 {
3341         return current_has_perm(p, PROCESS__GETSCHED);
3342 }
3343
3344 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3345 {
3346         struct rlimit *old_rlim = current->signal->rlim + resource;
3347
3348         /* Control the ability to change the hard limit (whether
3349            lowering or raising it), so that the hard limit can
3350            later be used as a safe reset point for the soft limit
3351            upon context transitions.  See selinux_bprm_committing_creds. */
3352         if (old_rlim->rlim_max != new_rlim->rlim_max)
3353                 return current_has_perm(current, PROCESS__SETRLIMIT);
3354
3355         return 0;
3356 }
3357
3358 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3359 {
3360         int rc;
3361
3362         rc = cap_task_setscheduler(p, policy, lp);
3363         if (rc)
3364                 return rc;
3365
3366         return current_has_perm(p, PROCESS__SETSCHED);
3367 }
3368
3369 static int selinux_task_getscheduler(struct task_struct *p)
3370 {
3371         return current_has_perm(p, PROCESS__GETSCHED);
3372 }
3373
3374 static int selinux_task_movememory(struct task_struct *p)
3375 {
3376         return current_has_perm(p, PROCESS__SETSCHED);
3377 }
3378
3379 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3380                                 int sig, u32 secid)
3381 {
3382         u32 perm;
3383         int rc;
3384
3385         if (!sig)
3386                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3387         else
3388                 perm = signal_to_av(sig);
3389         if (secid)
3390                 rc = avc_has_perm(secid, task_sid(p),
3391                                   SECCLASS_PROCESS, perm, NULL);
3392         else
3393                 rc = current_has_perm(p, perm);
3394         return rc;
3395 }
3396
3397 static int selinux_task_wait(struct task_struct *p)
3398 {
3399         return task_has_perm(p, current, PROCESS__SIGCHLD);
3400 }
3401
3402 static void selinux_task_to_inode(struct task_struct *p,
3403                                   struct inode *inode)
3404 {
3405         struct inode_security_struct *isec = inode->i_security;
3406         u32 sid = task_sid(p);
3407
3408         isec->sid = sid;
3409         isec->initialized = 1;
3410 }
3411
3412 /* Returns error only if unable to parse addresses */
3413 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3414                         struct common_audit_data *ad, u8 *proto)
3415 {
3416         int offset, ihlen, ret = -EINVAL;
3417         struct iphdr _iph, *ih;
3418
3419         offset = skb_network_offset(skb);
3420         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3421         if (ih == NULL)
3422                 goto out;
3423
3424         ihlen = ih->ihl * 4;
3425         if (ihlen < sizeof(_iph))
3426                 goto out;
3427
3428         ad->u.net.v4info.saddr = ih->saddr;
3429         ad->u.net.v4info.daddr = ih->daddr;
3430         ret = 0;
3431
3432         if (proto)
3433                 *proto = ih->protocol;
3434
3435         switch (ih->protocol) {
3436         case IPPROTO_TCP: {
3437                 struct tcphdr _tcph, *th;
3438
3439                 if (ntohs(ih->frag_off) & IP_OFFSET)
3440                         break;
3441
3442                 offset += ihlen;
3443                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3444                 if (th == NULL)
3445                         break;
3446
3447                 ad->u.net.sport = th->source;
3448                 ad->u.net.dport = th->dest;
3449                 break;
3450         }
3451
3452         case IPPROTO_UDP: {
3453                 struct udphdr _udph, *uh;
3454
3455                 if (ntohs(ih->frag_off) & IP_OFFSET)
3456                         break;
3457
3458                 offset += ihlen;
3459                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3460                 if (uh == NULL)
3461                         break;
3462
3463                 ad->u.net.sport = uh->source;
3464                 ad->u.net.dport = uh->dest;
3465                 break;
3466         }
3467
3468         case IPPROTO_DCCP: {
3469                 struct dccp_hdr _dccph, *dh;
3470
3471                 if (ntohs(ih->frag_off) & IP_OFFSET)
3472                         break;
3473
3474                 offset += ihlen;
3475                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3476                 if (dh == NULL)
3477                         break;
3478
3479                 ad->u.net.sport = dh->dccph_sport;
3480                 ad->u.net.dport = dh->dccph_dport;
3481                 break;
3482         }
3483
3484         default:
3485                 break;
3486         }
3487 out:
3488         return ret;
3489 }
3490
3491 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3492
3493 /* Returns error only if unable to parse addresses */
3494 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3495                         struct common_audit_data *ad, u8 *proto)
3496 {
3497         u8 nexthdr;
3498         int ret = -EINVAL, offset;
3499         struct ipv6hdr _ipv6h, *ip6;
3500
3501         offset = skb_network_offset(skb);
3502         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3503         if (ip6 == NULL)
3504                 goto out;
3505
3506         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3507         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3508         ret = 0;
3509
3510         nexthdr = ip6->nexthdr;
3511         offset += sizeof(_ipv6h);
3512         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3513         if (offset < 0)
3514                 goto out;
3515
3516         if (proto)
3517                 *proto = nexthdr;
3518
3519         switch (nexthdr) {
3520         case IPPROTO_TCP: {
3521                 struct tcphdr _tcph, *th;
3522
3523                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3524                 if (th == NULL)
3525                         break;
3526
3527                 ad->u.net.sport = th->source;
3528                 ad->u.net.dport = th->dest;
3529                 break;
3530         }
3531
3532         case IPPROTO_UDP: {
3533                 struct udphdr _udph, *uh;
3534
3535                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3536                 if (uh == NULL)
3537                         break;
3538
3539                 ad->u.net.sport = uh->source;
3540                 ad->u.net.dport = uh->dest;
3541                 break;
3542         }
3543
3544         case IPPROTO_DCCP: {
3545                 struct dccp_hdr _dccph, *dh;
3546
3547                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3548                 if (dh == NULL)
3549                         break;
3550
3551                 ad->u.net.sport = dh->dccph_sport;
3552                 ad->u.net.dport = dh->dccph_dport;
3553                 break;
3554         }
3555
3556         /* includes fragments */
3557         default:
3558                 break;
3559         }
3560 out:
3561         return ret;
3562 }
3563
3564 #endif /* IPV6 */
3565
3566 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3567                              char **_addrp, int src, u8 *proto)
3568 {
3569         char *addrp;
3570         int ret;
3571
3572         switch (ad->u.net.family) {
3573         case PF_INET:
3574                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3575                 if (ret)
3576                         goto parse_error;
3577                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3578                                        &ad->u.net.v4info.daddr);
3579                 goto okay;
3580
3581 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3582         case PF_INET6:
3583                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3584                 if (ret)
3585                         goto parse_error;
3586                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3587                                        &ad->u.net.v6info.daddr);
3588                 goto okay;
3589 #endif  /* IPV6 */
3590         default:
3591                 addrp = NULL;
3592                 goto okay;
3593         }
3594
3595 parse_error:
3596         printk(KERN_WARNING
3597                "SELinux: failure in selinux_parse_skb(),"
3598                " unable to parse packet\n");
3599         return ret;
3600
3601 okay:
3602         if (_addrp)
3603                 *_addrp = addrp;
3604         return 0;
3605 }
3606
3607 /**
3608  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3609  * @skb: the packet
3610  * @family: protocol family
3611  * @sid: the packet's peer label SID
3612  *
3613  * Description:
3614  * Check the various different forms of network peer labeling and determine
3615  * the peer label/SID for the packet; most of the magic actually occurs in
3616  * the security server function security_net_peersid_cmp().  The function
3617  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3618  * or -EACCES if @sid is invalid due to inconsistencies with the different
3619  * peer labels.
3620  *
3621  */
3622 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3623 {
3624         int err;
3625         u32 xfrm_sid;
3626         u32 nlbl_sid;
3627         u32 nlbl_type;
3628
3629         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3630         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3631
3632         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3633         if (unlikely(err)) {
3634                 printk(KERN_WARNING
3635                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3636                        " unable to determine packet's peer label\n");
3637                 return -EACCES;
3638         }
3639
3640         return 0;
3641 }
3642
3643 /* socket security operations */
3644
3645 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec)
3646 {
3647         return tsec->sockcreate_sid ? : tsec->sid;
3648 }
3649
3650 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3651 {
3652         struct sk_security_struct *sksec = sk->sk_security;
3653         struct common_audit_data ad;
3654         u32 tsid = task_sid(task);
3655
3656         if (sksec->sid == SECINITSID_KERNEL)
3657                 return 0;
3658
3659         COMMON_AUDIT_DATA_INIT(&ad, NET);
3660         ad.u.net.sk = sk;
3661
3662         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3663 }
3664
3665 static int selinux_socket_create(int family, int type,
3666                                  int protocol, int kern)
3667 {
3668         const struct task_security_struct *tsec = current_security();
3669         u32 newsid;
3670         u16 secclass;
3671
3672         if (kern)
3673                 return 0;
3674
3675         newsid = socket_sockcreate_sid(tsec);
3676         secclass = socket_type_to_security_class(family, type, protocol);
3677         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3678 }
3679
3680 static int selinux_socket_post_create(struct socket *sock, int family,
3681                                       int type, int protocol, int kern)
3682 {
3683         const struct task_security_struct *tsec = current_security();
3684         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3685         struct sk_security_struct *sksec;
3686         int err = 0;
3687
3688         if (kern)
3689                 isec->sid = SECINITSID_KERNEL;
3690         else
3691                 isec->sid = socket_sockcreate_sid(tsec);
3692
3693         isec->sclass = socket_type_to_security_class(family, type, protocol);
3694         isec->initialized = 1;
3695
3696         if (sock->sk) {
3697                 sksec = sock->sk->sk_security;
3698                 sksec->sid = isec->sid;
3699                 sksec->sclass = isec->sclass;
3700                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3701         }
3702
3703         return err;
3704 }
3705
3706 /* Range of port numbers used to automatically bind.
3707    Need to determine whether we should perform a name_bind
3708    permission check between the socket and the port number. */
3709
3710 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3711 {
3712         struct sock *sk = sock->sk;
3713         u16 family;
3714         int err;
3715
3716         err = sock_has_perm(current, sk, SOCKET__BIND);
3717         if (err)
3718                 goto out;
3719
3720         /*
3721          * If PF_INET or PF_INET6, check name_bind permission for the port.
3722          * Multiple address binding for SCTP is not supported yet: we just
3723          * check the first address now.
3724          */
3725         family = sk->sk_family;
3726         if (family == PF_INET || family == PF_INET6) {
3727                 char *addrp;
3728                 struct sk_security_struct *sksec = sk->sk_security;
3729                 struct common_audit_data ad;
3730                 struct sockaddr_in *addr4 = NULL;
3731                 struct sockaddr_in6 *addr6 = NULL;
3732                 unsigned short snum;
3733                 u32 sid, node_perm;
3734
3735                 if (family == PF_INET) {
3736                         addr4 = (struct sockaddr_in *)address;
3737                         snum = ntohs(addr4->sin_port);
3738                         addrp = (char *)&addr4->sin_addr.s_addr;
3739                 } else {
3740                         addr6 = (struct sockaddr_in6 *)address;
3741                         snum = ntohs(addr6->sin6_port);
3742                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3743                 }
3744
3745                 if (snum) {
3746                         int low, high;
3747
3748                         inet_get_local_port_range(&low, &high);
3749
3750                         if (snum < max(PROT_SOCK, low) || snum > high) {
3751                                 err = sel_netport_sid(sk->sk_protocol,
3752                                                       snum, &sid);
3753                                 if (err)
3754                                         goto out;
3755                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3756                                 ad.u.net.sport = htons(snum);
3757                                 ad.u.net.family = family;
3758                                 err = avc_has_perm(sksec->sid, sid,
3759                                                    sksec->sclass,
3760                                                    SOCKET__NAME_BIND, &ad);
3761                                 if (err)
3762                                         goto out;
3763                         }
3764                 }
3765
3766                 switch (sksec->sclass) {
3767                 case SECCLASS_TCP_SOCKET:
3768                         node_perm = TCP_SOCKET__NODE_BIND;
3769                         break;
3770
3771                 case SECCLASS_UDP_SOCKET:
3772                         node_perm = UDP_SOCKET__NODE_BIND;
3773                         break;
3774
3775                 case SECCLASS_DCCP_SOCKET:
3776                         node_perm = DCCP_SOCKET__NODE_BIND;
3777                         break;
3778
3779                 default:
3780                         node_perm = RAWIP_SOCKET__NODE_BIND;
3781                         break;
3782                 }
3783
3784                 err = sel_netnode_sid(addrp, family, &sid);
3785                 if (err)
3786                         goto out;
3787
3788                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3789                 ad.u.net.sport = htons(snum);
3790                 ad.u.net.family = family;
3791
3792                 if (family == PF_INET)
3793                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3794                 else
3795                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3796
3797                 err = avc_has_perm(sksec->sid, sid,
3798                                    sksec->sclass, node_perm, &ad);
3799                 if (err)
3800                         goto out;
3801         }
3802 out:
3803         return err;
3804 }
3805
3806 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3807 {
3808         struct sock *sk = sock->sk;
3809         struct sk_security_struct *sksec = sk->sk_security;
3810         int err;
3811
3812         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3813         if (err)
3814                 return err;
3815
3816         /*
3817          * If a TCP or DCCP socket, check name_connect permission for the port.
3818          */
3819         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3820             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3821                 struct common_audit_data ad;
3822                 struct sockaddr_in *addr4 = NULL;
3823                 struct sockaddr_in6 *addr6 = NULL;
3824                 unsigned short snum;
3825                 u32 sid, perm;
3826
3827                 if (sk->sk_family == PF_INET) {
3828                         addr4 = (struct sockaddr_in *)address;
3829                         if (addrlen < sizeof(struct sockaddr_in))
3830                                 return -EINVAL;
3831                         snum = ntohs(addr4->sin_port);
3832                 } else {
3833                         addr6 = (struct sockaddr_in6 *)address;
3834                         if (addrlen < SIN6_LEN_RFC2133)
3835                                 return -EINVAL;
3836                         snum = ntohs(addr6->sin6_port);
3837                 }
3838
3839                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3840                 if (err)
3841                         goto out;
3842
3843                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3844                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3845
3846                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3847                 ad.u.net.dport = htons(snum);
3848                 ad.u.net.family = sk->sk_family;
3849                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3850                 if (err)
3851                         goto out;
3852         }
3853
3854         err = selinux_netlbl_socket_connect(sk, address);
3855
3856 out:
3857         return err;
3858 }
3859
3860 static int selinux_socket_listen(struct socket *sock, int backlog)
3861 {
3862         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3863 }
3864
3865 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3866 {
3867         int err;
3868         struct inode_security_struct *isec;
3869         struct inode_security_struct *newisec;
3870
3871         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3872         if (err)
3873                 return err;
3874
3875         newisec = SOCK_INODE(newsock)->i_security;
3876
3877         isec = SOCK_INODE(sock)->i_security;
3878         newisec->sclass = isec->sclass;
3879         newisec->sid = isec->sid;
3880         newisec->initialized = 1;
3881
3882         return 0;
3883 }
3884
3885 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3886                                   int size)
3887 {
3888         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3889 }
3890
3891 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3892                                   int size, int flags)
3893 {
3894         return sock_has_perm(current, sock->sk, SOCKET__READ);
3895 }
3896
3897 static int selinux_socket_getsockname(struct socket *sock)
3898 {
3899         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3900 }
3901
3902 static int selinux_socket_getpeername(struct socket *sock)
3903 {
3904         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3905 }
3906
3907 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3908 {
3909         int err;
3910
3911         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3912         if (err)
3913                 return err;
3914
3915         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3916 }
3917
3918 static int selinux_socket_getsockopt(struct socket *sock, int level,
3919                                      int optname)
3920 {
3921         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3922 }
3923
3924 static int selinux_socket_shutdown(struct socket *sock, int how)
3925 {
3926         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3927 }
3928
3929 static int selinux_socket_unix_stream_connect(struct socket *sock,
3930                                               struct socket *other,
3931                                               struct sock *newsk)
3932 {
3933         struct sk_security_struct *sksec_sock = sock->sk->sk_security;
3934         struct sk_security_struct *sksec_other = other->sk->sk_security;
3935         struct sk_security_struct *sksec_new = newsk->sk_security;
3936         struct common_audit_data ad;
3937         int err;
3938
3939         COMMON_AUDIT_DATA_INIT(&ad, NET);
3940         ad.u.net.sk = other->sk;
3941
3942         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3943                            sksec_other->sclass,
3944                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3945         if (err)
3946                 return err;
3947
3948         /* server child socket */
3949         sksec_new->peer_sid = sksec_sock->sid;
3950         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
3951                                     &sksec_new->sid);
3952         if (err)
3953                 return err;
3954
3955         /* connecting socket */
3956         sksec_sock->peer_sid = sksec_new->sid;
3957
3958         return 0;
3959 }
3960
3961 static int selinux_socket_unix_may_send(struct socket *sock,
3962                                         struct socket *other)
3963 {
3964         struct sk_security_struct *ssec = sock->sk->sk_security;
3965         struct sk_security_struct *osec = other->sk->sk_security;
3966         struct common_audit_data ad;
3967
3968         COMMON_AUDIT_DATA_INIT(&ad, NET);
3969         ad.u.net.sk = other->sk;
3970
3971         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
3972                             &ad);
3973 }
3974
3975 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3976                                     u32 peer_sid,
3977                                     struct common_audit_data *ad)
3978 {
3979         int err;
3980         u32 if_sid;
3981         u32 node_sid;
3982
3983         err = sel_netif_sid(ifindex, &if_sid);
3984         if (err)
3985                 return err;
3986         err = avc_has_perm(peer_sid, if_sid,
3987                            SECCLASS_NETIF, NETIF__INGRESS, ad);
3988         if (err)
3989                 return err;
3990
3991         err = sel_netnode_sid(addrp, family, &node_sid);
3992         if (err)
3993                 return err;
3994         return avc_has_perm(peer_sid, node_sid,
3995                             SECCLASS_NODE, NODE__RECVFROM, ad);
3996 }
3997
3998 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3999                                        u16 family)
4000 {
4001         int err = 0;
4002         struct sk_security_struct *sksec = sk->sk_security;
4003         u32 peer_sid;
4004         u32 sk_sid = sksec->sid;
4005         struct common_audit_data ad;
4006         char *addrp;
4007
4008         COMMON_AUDIT_DATA_INIT(&ad, NET);
4009         ad.u.net.netif = skb->skb_iif;
4010         ad.u.net.family = family;
4011         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4012         if (err)
4013                 return err;
4014
4015         if (selinux_secmark_enabled()) {
4016                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4017                                    PACKET__RECV, &ad);
4018                 if (err)
4019                         return err;
4020         }
4021
4022         if (selinux_policycap_netpeer) {
4023                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4024                 if (err)
4025                         return err;
4026                 err = avc_has_perm(sk_sid, peer_sid,
4027                                    SECCLASS_PEER, PEER__RECV, &ad);
4028                 if (err)
4029                         selinux_netlbl_err(skb, err, 0);
4030         } else {
4031                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4032                 if (err)
4033                         return err;
4034                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4035         }
4036
4037         return err;
4038 }
4039
4040 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4041 {
4042         int err;
4043         struct sk_security_struct *sksec = sk->sk_security;
4044         u16 family = sk->sk_family;
4045         u32 sk_sid = sksec->sid;
4046         struct common_audit_data ad;
4047         char *addrp;
4048         u8 secmark_active;
4049         u8 peerlbl_active;
4050
4051         if (family != PF_INET && family != PF_INET6)
4052                 return 0;
4053
4054         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4055         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4056                 family = PF_INET;
4057
4058         /* If any sort of compatibility mode is enabled then handoff processing
4059          * to the selinux_sock_rcv_skb_compat() function to deal with the
4060          * special handling.  We do this in an attempt to keep this function
4061          * as fast and as clean as possible. */
4062         if (!selinux_policycap_netpeer)
4063                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4064
4065         secmark_active = selinux_secmark_enabled();
4066         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4067         if (!secmark_active && !peerlbl_active)
4068                 return 0;
4069
4070         COMMON_AUDIT_DATA_INIT(&ad, NET);
4071         ad.u.net.netif = skb->skb_iif;
4072         ad.u.net.family = family;
4073         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4074         if (err)
4075                 return err;
4076
4077         if (peerlbl_active) {
4078                 u32 peer_sid;
4079
4080                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4081                 if (err)
4082                         return err;
4083                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4084                                                peer_sid, &ad);
4085                 if (err) {
4086                         selinux_netlbl_err(skb, err, 0);
4087                         return err;
4088                 }
4089                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4090                                    PEER__RECV, &ad);
4091                 if (err)
4092                         selinux_netlbl_err(skb, err, 0);
4093         }
4094
4095         if (secmark_active) {
4096                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4097                                    PACKET__RECV, &ad);
4098                 if (err)
4099                         return err;
4100         }
4101
4102         return err;
4103 }
4104
4105 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4106                                             int __user *optlen, unsigned len)
4107 {
4108         int err = 0;
4109         char *scontext;
4110         u32 scontext_len;
4111         struct sk_security_struct *sksec = sock->sk->sk_security;
4112         u32 peer_sid = SECSID_NULL;
4113
4114         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4115             sksec->sclass == SECCLASS_TCP_SOCKET)
4116                 peer_sid = sksec->peer_sid;
4117         if (peer_sid == SECSID_NULL)
4118                 return -ENOPROTOOPT;
4119
4120         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4121         if (err)
4122                 return err;
4123
4124         if (scontext_len > len) {
4125                 err = -ERANGE;
4126                 goto out_len;
4127         }
4128
4129         if (copy_to_user(optval, scontext, scontext_len))
4130                 err = -EFAULT;
4131
4132 out_len:
4133         if (put_user(scontext_len, optlen))
4134                 err = -EFAULT;
4135         kfree(scontext);
4136         return err;
4137 }
4138
4139 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4140 {
4141         u32 peer_secid = SECSID_NULL;
4142         u16 family;
4143
4144         if (skb && skb->protocol == htons(ETH_P_IP))
4145                 family = PF_INET;
4146         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4147                 family = PF_INET6;
4148         else if (sock)
4149                 family = sock->sk->sk_family;
4150         else
4151                 goto out;
4152
4153         if (sock && family == PF_UNIX)
4154                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4155         else if (skb)
4156                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4157
4158 out:
4159         *secid = peer_secid;
4160         if (peer_secid == SECSID_NULL)
4161                 return -EINVAL;
4162         return 0;
4163 }
4164
4165 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4166 {
4167         struct sk_security_struct *sksec;
4168
4169         sksec = kzalloc(sizeof(*sksec), priority);
4170         if (!sksec)
4171                 return -ENOMEM;
4172
4173         sksec->peer_sid = SECINITSID_UNLABELED;
4174         sksec->sid = SECINITSID_UNLABELED;
4175         selinux_netlbl_sk_security_reset(sksec);
4176         sk->sk_security = sksec;
4177
4178         return 0;
4179 }
4180
4181 static void selinux_sk_free_security(struct sock *sk)
4182 {
4183         struct sk_security_struct *sksec = sk->sk_security;
4184
4185         sk->sk_security = NULL;
4186         selinux_netlbl_sk_security_free(sksec);
4187         kfree(sksec);
4188 }
4189
4190 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4191 {
4192         struct sk_security_struct *sksec = sk->sk_security;
4193         struct sk_security_struct *newsksec = newsk->sk_security;
4194
4195         newsksec->sid = sksec->sid;
4196         newsksec->peer_sid = sksec->peer_sid;
4197         newsksec->sclass = sksec->sclass;
4198
4199         selinux_netlbl_sk_security_reset(newsksec);
4200 }
4201
4202 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4203 {
4204         if (!sk)
4205                 *secid = SECINITSID_ANY_SOCKET;
4206         else {
4207                 struct sk_security_struct *sksec = sk->sk_security;
4208
4209                 *secid = sksec->sid;
4210         }
4211 }
4212
4213 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4214 {
4215         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4216         struct sk_security_struct *sksec = sk->sk_security;
4217
4218         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4219             sk->sk_family == PF_UNIX)
4220                 isec->sid = sksec->sid;
4221         sksec->sclass = isec->sclass;
4222 }
4223
4224 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4225                                      struct request_sock *req)
4226 {
4227         struct sk_security_struct *sksec = sk->sk_security;
4228         int err;
4229         u16 family = sk->sk_family;
4230         u32 newsid;
4231         u32 peersid;
4232
4233         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4234         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4235                 family = PF_INET;
4236
4237         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4238         if (err)
4239                 return err;
4240         if (peersid == SECSID_NULL) {
4241                 req->secid = sksec->sid;
4242                 req->peer_secid = SECSID_NULL;
4243         } else {
4244                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4245                 if (err)
4246                         return err;
4247                 req->secid = newsid;
4248                 req->peer_secid = peersid;
4249         }
4250
4251         return selinux_netlbl_inet_conn_request(req, family);
4252 }
4253
4254 static void selinux_inet_csk_clone(struct sock *newsk,
4255                                    const struct request_sock *req)
4256 {
4257         struct sk_security_struct *newsksec = newsk->sk_security;
4258
4259         newsksec->sid = req->secid;
4260         newsksec->peer_sid = req->peer_secid;
4261         /* NOTE: Ideally, we should also get the isec->sid for the
4262            new socket in sync, but we don't have the isec available yet.
4263            So we will wait until sock_graft to do it, by which
4264            time it will have been created and available. */
4265
4266         /* We don't need to take any sort of lock here as we are the only
4267          * thread with access to newsksec */
4268         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4269 }
4270
4271 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4272 {
4273         u16 family = sk->sk_family;
4274         struct sk_security_struct *sksec = sk->sk_security;
4275
4276         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4277         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4278                 family = PF_INET;
4279
4280         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4281 }
4282
4283 static void selinux_req_classify_flow(const struct request_sock *req,
4284                                       struct flowi *fl)
4285 {
4286         fl->secid = req->secid;
4287 }
4288
4289 static int selinux_tun_dev_create(void)
4290 {
4291         u32 sid = current_sid();
4292
4293         /* we aren't taking into account the "sockcreate" SID since the socket
4294          * that is being created here is not a socket in the traditional sense,
4295          * instead it is a private sock, accessible only to the kernel, and
4296          * representing a wide range of network traffic spanning multiple
4297          * connections unlike traditional sockets - check the TUN driver to
4298          * get a better understanding of why this socket is special */
4299
4300         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4301                             NULL);
4302 }
4303
4304 static void selinux_tun_dev_post_create(struct sock *sk)
4305 {
4306         struct sk_security_struct *sksec = sk->sk_security;
4307
4308         /* we don't currently perform any NetLabel based labeling here and it
4309          * isn't clear that we would want to do so anyway; while we could apply
4310          * labeling without the support of the TUN user the resulting labeled
4311          * traffic from the other end of the connection would almost certainly
4312          * cause confusion to the TUN user that had no idea network labeling
4313          * protocols were being used */
4314
4315         /* see the comments in selinux_tun_dev_create() about why we don't use
4316          * the sockcreate SID here */
4317
4318         sksec->sid = current_sid();
4319         sksec->sclass = SECCLASS_TUN_SOCKET;
4320 }
4321
4322 static int selinux_tun_dev_attach(struct sock *sk)
4323 {
4324         struct sk_security_struct *sksec = sk->sk_security;
4325         u32 sid = current_sid();
4326         int err;
4327
4328         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4329                            TUN_SOCKET__RELABELFROM, NULL);
4330         if (err)
4331                 return err;
4332         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4333                            TUN_SOCKET__RELABELTO, NULL);
4334         if (err)
4335                 return err;
4336
4337         sksec->sid = sid;
4338
4339         return 0;
4340 }
4341
4342 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4343 {
4344         int err = 0;
4345         u32 perm;
4346         struct nlmsghdr *nlh;
4347         struct sk_security_struct *sksec = sk->sk_security;
4348
4349         if (skb->len < NLMSG_SPACE(0)) {
4350                 err = -EINVAL;
4351                 goto out;
4352         }
4353         nlh = nlmsg_hdr(skb);
4354
4355         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4356         if (err) {
4357                 if (err == -EINVAL) {
4358                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4359                                   "SELinux:  unrecognized netlink message"
4360                                   " type=%hu for sclass=%hu\n",
4361                                   nlh->nlmsg_type, sksec->sclass);
4362                         if (!selinux_enforcing || security_get_allow_unknown())
4363                                 err = 0;
4364                 }
4365
4366                 /* Ignore */
4367                 if (err == -ENOENT)
4368                         err = 0;
4369                 goto out;
4370         }
4371
4372         err = sock_has_perm(current, sk, perm);
4373 out:
4374         return err;
4375 }
4376
4377 #ifdef CONFIG_NETFILTER
4378
4379 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4380                                        u16 family)
4381 {
4382         int err;
4383         char *addrp;
4384         u32 peer_sid;
4385         struct common_audit_data ad;
4386         u8 secmark_active;
4387         u8 netlbl_active;
4388         u8 peerlbl_active;
4389
4390         if (!selinux_policycap_netpeer)
4391                 return NF_ACCEPT;
4392
4393         secmark_active = selinux_secmark_enabled();
4394         netlbl_active = netlbl_enabled();
4395         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4396         if (!secmark_active && !peerlbl_active)
4397                 return NF_ACCEPT;
4398
4399         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4400                 return NF_DROP;
4401
4402         COMMON_AUDIT_DATA_INIT(&ad, NET);
4403         ad.u.net.netif = ifindex;
4404         ad.u.net.family = family;
4405         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4406                 return NF_DROP;
4407
4408         if (peerlbl_active) {
4409                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4410                                                peer_sid, &ad);
4411                 if (err) {
4412                         selinux_netlbl_err(skb, err, 1);
4413                         return NF_DROP;
4414                 }
4415         }
4416
4417         if (secmark_active)
4418                 if (avc_has_perm(peer_sid, skb->secmark,
4419                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4420                         return NF_DROP;
4421
4422         if (netlbl_active)
4423                 /* we do this in the FORWARD path and not the POST_ROUTING
4424                  * path because we want to make sure we apply the necessary
4425                  * labeling before IPsec is applied so we can leverage AH
4426                  * protection */
4427                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4428                         return NF_DROP;
4429
4430         return NF_ACCEPT;
4431 }
4432
4433 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4434                                          struct sk_buff *skb,
4435                                          const struct net_device *in,
4436                                          const struct net_device *out,
4437                                          int (*okfn)(struct sk_buff *))
4438 {
4439         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4440 }
4441
4442 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4443 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4444                                          struct sk_buff *skb,
4445                                          const struct net_device *in,
4446                                          const struct net_device *out,
4447                                          int (*okfn)(struct sk_buff *))
4448 {
4449         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4450 }
4451 #endif  /* IPV6 */
4452
4453 static unsigned int selinux_ip_output(struct sk_buff *skb,
4454                                       u16 family)
4455 {
4456         u32 sid;
4457
4458         if (!netlbl_enabled())
4459                 return NF_ACCEPT;
4460
4461         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4462          * because we want to make sure we apply the necessary labeling
4463          * before IPsec is applied so we can leverage AH protection */
4464         if (skb->sk) {
4465                 struct sk_security_struct *sksec = skb->sk->sk_security;
4466                 sid = sksec->sid;
4467         } else
4468                 sid = SECINITSID_KERNEL;
4469         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4470                 return NF_DROP;
4471
4472         return NF_ACCEPT;
4473 }
4474
4475 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4476                                         struct sk_buff *skb,
4477                                         const struct net_device *in,
4478                                         const struct net_device *out,
4479                                         int (*okfn)(struct sk_buff *))
4480 {
4481         return selinux_ip_output(skb, PF_INET);
4482 }
4483
4484 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4485                                                 int ifindex,
4486                                                 u16 family)
4487 {
4488         struct sock *sk = skb->sk;
4489         struct sk_security_struct *sksec;
4490         struct common_audit_data ad;
4491         char *addrp;
4492         u8 proto;
4493
4494         if (sk == NULL)
4495                 return NF_ACCEPT;
4496         sksec = sk->sk_security;
4497
4498         COMMON_AUDIT_DATA_INIT(&ad, NET);
4499         ad.u.net.netif = ifindex;
4500         ad.u.net.family = family;
4501         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4502                 return NF_DROP;
4503
4504         if (selinux_secmark_enabled())
4505                 if (avc_has_perm(sksec->sid, skb->secmark,
4506                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4507                         return NF_DROP;
4508
4509         if (selinux_policycap_netpeer)
4510                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4511                         return NF_DROP;
4512
4513         return NF_ACCEPT;
4514 }
4515
4516 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4517                                          u16 family)
4518 {
4519         u32 secmark_perm;
4520         u32 peer_sid;
4521         struct sock *sk;
4522         struct common_audit_data ad;
4523         char *addrp;
4524         u8 secmark_active;
4525         u8 peerlbl_active;
4526
4527         /* If any sort of compatibility mode is enabled then handoff processing
4528          * to the selinux_ip_postroute_compat() function to deal with the
4529          * special handling.  We do this in an attempt to keep this function
4530          * as fast and as clean as possible. */
4531         if (!selinux_policycap_netpeer)
4532                 return selinux_ip_postroute_compat(skb, ifindex, family);
4533 #ifdef CONFIG_XFRM
4534         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4535          * packet transformation so allow the packet to pass without any checks
4536          * since we'll have another chance to perform access control checks
4537          * when the packet is on it's final way out.
4538          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4539          *       is NULL, in this case go ahead and apply access control. */
4540         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4541                 return NF_ACCEPT;
4542 #endif
4543         secmark_active = selinux_secmark_enabled();
4544         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4545         if (!secmark_active && !peerlbl_active)
4546                 return NF_ACCEPT;
4547
4548         /* if the packet is being forwarded then get the peer label from the
4549          * packet itself; otherwise check to see if it is from a local
4550          * application or the kernel, if from an application get the peer label
4551          * from the sending socket, otherwise use the kernel's sid */
4552         sk = skb->sk;
4553         if (sk == NULL) {
4554                 switch (family) {
4555                 case PF_INET:
4556                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4557                                 secmark_perm = PACKET__FORWARD_OUT;
4558                         else
4559                                 secmark_perm = PACKET__SEND;
4560                         break;
4561                 case PF_INET6:
4562                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4563                                 secmark_perm = PACKET__FORWARD_OUT;
4564                         else
4565                                 secmark_perm = PACKET__SEND;
4566                         break;
4567                 default:
4568                         return NF_DROP;
4569                 }
4570                 if (secmark_perm == PACKET__FORWARD_OUT) {
4571                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4572                                 return NF_DROP;
4573                 } else
4574                         peer_sid = SECINITSID_KERNEL;
4575         } else {
4576                 struct sk_security_struct *sksec = sk->sk_security;
4577                 peer_sid = sksec->sid;
4578                 secmark_perm = PACKET__SEND;
4579         }
4580
4581         COMMON_AUDIT_DATA_INIT(&ad, NET);
4582         ad.u.net.netif = ifindex;
4583         ad.u.net.family = family;
4584         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4585                 return NF_DROP;
4586
4587         if (secmark_active)
4588                 if (avc_has_perm(peer_sid, skb->secmark,
4589                                  SECCLASS_PACKET, secmark_perm, &ad))
4590                         return NF_DROP;
4591
4592         if (peerlbl_active) {
4593                 u32 if_sid;
4594                 u32 node_sid;
4595
4596                 if (sel_netif_sid(ifindex, &if_sid))
4597                         return NF_DROP;
4598                 if (avc_has_perm(peer_sid, if_sid,
4599                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4600                         return NF_DROP;
4601
4602                 if (sel_netnode_sid(addrp, family, &node_sid))
4603                         return NF_DROP;
4604                 if (avc_has_perm(peer_sid, node_sid,
4605                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4606                         return NF_DROP;
4607         }
4608
4609         return NF_ACCEPT;
4610 }
4611
4612 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4613                                            struct sk_buff *skb,
4614                                            const struct net_device *in,
4615                                            const struct net_device *out,
4616                                            int (*okfn)(struct sk_buff *))
4617 {
4618         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4619 }
4620
4621 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4622 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4623                                            struct sk_buff *skb,
4624                                            const struct net_device *in,
4625                                            const struct net_device *out,
4626                                            int (*okfn)(struct sk_buff *))
4627 {
4628         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4629 }
4630 #endif  /* IPV6 */
4631
4632 #endif  /* CONFIG_NETFILTER */
4633
4634 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4635 {
4636         int err;
4637
4638         err = cap_netlink_send(sk, skb);
4639         if (err)
4640                 return err;
4641
4642         return selinux_nlmsg_perm(sk, skb);
4643 }
4644
4645 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4646 {
4647         int err;
4648         struct common_audit_data ad;
4649
4650         err = cap_netlink_recv(skb, capability);
4651         if (err)
4652                 return err;
4653
4654         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4655         ad.u.cap = capability;
4656
4657         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4658                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4659 }
4660
4661 static int ipc_alloc_security(struct task_struct *task,
4662                               struct kern_ipc_perm *perm,
4663                               u16 sclass)
4664 {
4665         struct ipc_security_struct *isec;
4666         u32 sid;
4667
4668         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4669         if (!isec)
4670                 return -ENOMEM;
4671
4672         sid = task_sid(task);
4673         isec->sclass = sclass;
4674         isec->sid = sid;
4675         perm->security = isec;
4676
4677         return 0;
4678 }
4679
4680 static void ipc_free_security(struct kern_ipc_perm *perm)
4681 {
4682         struct ipc_security_struct *isec = perm->security;
4683         perm->security = NULL;
4684         kfree(isec);
4685 }
4686
4687 static int msg_msg_alloc_security(struct msg_msg *msg)
4688 {
4689         struct msg_security_struct *msec;
4690
4691         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4692         if (!msec)
4693                 return -ENOMEM;
4694
4695         msec->sid = SECINITSID_UNLABELED;
4696         msg->security = msec;
4697
4698         return 0;
4699 }
4700
4701 static void msg_msg_free_security(struct msg_msg *msg)
4702 {
4703         struct msg_security_struct *msec = msg->security;
4704
4705         msg->security = NULL;
4706         kfree(msec);
4707 }
4708
4709 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4710                         u32 perms)
4711 {
4712         struct ipc_security_struct *isec;
4713         struct common_audit_data ad;
4714         u32 sid = current_sid();
4715
4716         isec = ipc_perms->security;
4717
4718         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4719         ad.u.ipc_id = ipc_perms->key;
4720
4721         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4722 }
4723
4724 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4725 {
4726         return msg_msg_alloc_security(msg);
4727 }
4728
4729 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4730 {
4731         msg_msg_free_security(msg);
4732 }
4733
4734 /* message queue security operations */
4735 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4736 {
4737         struct ipc_security_struct *isec;
4738         struct common_audit_data ad;
4739         u32 sid = current_sid();
4740         int rc;
4741
4742         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4743         if (rc)
4744                 return rc;
4745
4746         isec = msq->q_perm.security;
4747
4748         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4749         ad.u.ipc_id = msq->q_perm.key;
4750
4751         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4752                           MSGQ__CREATE, &ad);
4753         if (rc) {
4754                 ipc_free_security(&msq->q_perm);
4755                 return rc;
4756         }
4757         return 0;
4758 }
4759
4760 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4761 {
4762         ipc_free_security(&msq->q_perm);
4763 }
4764
4765 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4766 {
4767         struct ipc_security_struct *isec;
4768         struct common_audit_data ad;
4769         u32 sid = current_sid();
4770
4771         isec = msq->q_perm.security;
4772
4773         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4774         ad.u.ipc_id = msq->q_perm.key;
4775
4776         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4777                             MSGQ__ASSOCIATE, &ad);
4778 }
4779
4780 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4781 {
4782         int err;
4783         int perms;
4784
4785         switch (cmd) {
4786         case IPC_INFO:
4787         case MSG_INFO:
4788                 /* No specific object, just general system-wide information. */
4789                 return task_has_system(current, SYSTEM__IPC_INFO);
4790         case IPC_STAT:
4791         case MSG_STAT:
4792                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4793                 break;
4794         case IPC_SET:
4795                 perms = MSGQ__SETATTR;
4796                 break;
4797         case IPC_RMID:
4798                 perms = MSGQ__DESTROY;
4799                 break;
4800         default:
4801                 return 0;
4802         }
4803
4804         err = ipc_has_perm(&msq->q_perm, perms);
4805         return err;
4806 }
4807
4808 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4809 {
4810         struct ipc_security_struct *isec;
4811         struct msg_security_struct *msec;
4812         struct common_audit_data ad;
4813         u32 sid = current_sid();
4814         int rc;
4815
4816         isec = msq->q_perm.security;
4817         msec = msg->security;
4818
4819         /*
4820          * First time through, need to assign label to the message
4821          */
4822         if (msec->sid == SECINITSID_UNLABELED) {
4823                 /*
4824                  * Compute new sid based on current process and
4825                  * message queue this message will be stored in
4826                  */
4827                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4828                                              &msec->sid);
4829                 if (rc)
4830                         return rc;
4831         }
4832
4833         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4834         ad.u.ipc_id = msq->q_perm.key;
4835
4836         /* Can this process write to the queue? */
4837         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4838                           MSGQ__WRITE, &ad);
4839         if (!rc)
4840                 /* Can this process send the message */
4841                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4842                                   MSG__SEND, &ad);
4843         if (!rc)
4844                 /* Can the message be put in the queue? */
4845                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4846                                   MSGQ__ENQUEUE, &ad);
4847
4848         return rc;
4849 }
4850
4851 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4852                                     struct task_struct *target,
4853                                     long type, int mode)
4854 {
4855         struct ipc_security_struct *isec;
4856         struct msg_security_struct *msec;
4857         struct common_audit_data ad;
4858         u32 sid = task_sid(target);
4859         int rc;
4860
4861         isec = msq->q_perm.security;
4862         msec = msg->security;
4863
4864         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4865         ad.u.ipc_id = msq->q_perm.key;
4866
4867         rc = avc_has_perm(sid, isec->sid,
4868                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4869         if (!rc)
4870                 rc = avc_has_perm(sid, msec->sid,
4871                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4872         return rc;
4873 }
4874
4875 /* Shared Memory security operations */
4876 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4877 {
4878         struct ipc_security_struct *isec;
4879         struct common_audit_data ad;
4880         u32 sid = current_sid();
4881         int rc;
4882
4883         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4884         if (rc)
4885                 return rc;
4886
4887         isec = shp->shm_perm.security;
4888
4889         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4890         ad.u.ipc_id = shp->shm_perm.key;
4891
4892         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4893                           SHM__CREATE, &ad);
4894         if (rc) {
4895                 ipc_free_security(&shp->shm_perm);
4896                 return rc;
4897         }
4898         return 0;
4899 }
4900
4901 static void selinux_shm_free_security(struct shmid_kernel *shp)
4902 {
4903         ipc_free_security(&shp->shm_perm);
4904 }
4905
4906 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4907 {
4908         struct ipc_security_struct *isec;
4909         struct common_audit_data ad;
4910         u32 sid = current_sid();
4911
4912         isec = shp->shm_perm.security;
4913
4914         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4915         ad.u.ipc_id = shp->shm_perm.key;
4916
4917         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4918                             SHM__ASSOCIATE, &ad);
4919 }
4920
4921 /* Note, at this point, shp is locked down */
4922 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4923 {
4924         int perms;
4925         int err;
4926
4927         switch (cmd) {
4928         case IPC_INFO:
4929         case SHM_INFO:
4930                 /* No specific object, just general system-wide information. */
4931                 return task_has_system(current, SYSTEM__IPC_INFO);
4932         case IPC_STAT:
4933         case SHM_STAT:
4934                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4935                 break;
4936         case IPC_SET:
4937                 perms = SHM__SETATTR;
4938                 break;
4939         case SHM_LOCK:
4940         case SHM_UNLOCK:
4941                 perms = SHM__LOCK;
4942                 break;
4943         case IPC_RMID:
4944                 perms = SHM__DESTROY;
4945                 break;
4946         default:
4947                 return 0;
4948         }
4949
4950         err = ipc_has_perm(&shp->shm_perm, perms);
4951         return err;
4952 }
4953
4954 static int selinux_shm_shmat(struct shmid_kernel *shp,
4955                              char __user *shmaddr, int shmflg)
4956 {
4957         u32 perms;
4958
4959         if (shmflg & SHM_RDONLY)
4960                 perms = SHM__READ;
4961         else
4962                 perms = SHM__READ | SHM__WRITE;
4963
4964         return ipc_has_perm(&shp->shm_perm, perms);
4965 }
4966
4967 /* Semaphore security operations */
4968 static int selinux_sem_alloc_security(struct sem_array *sma)
4969 {
4970         struct ipc_security_struct *isec;
4971         struct common_audit_data ad;
4972         u32 sid = current_sid();
4973         int rc;
4974
4975         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4976         if (rc)
4977                 return rc;
4978
4979         isec = sma->sem_perm.security;
4980
4981         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4982         ad.u.ipc_id = sma->sem_perm.key;
4983
4984         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4985                           SEM__CREATE, &ad);
4986         if (rc) {
4987                 ipc_free_security(&sma->sem_perm);
4988                 return rc;
4989         }
4990         return 0;
4991 }
4992
4993 static void selinux_sem_free_security(struct sem_array *sma)
4994 {
4995         ipc_free_security(&sma->sem_perm);
4996 }
4997
4998 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4999 {
5000         struct ipc_security_struct *isec;
5001         struct common_audit_data ad;
5002         u32 sid = current_sid();
5003
5004         isec = sma->sem_perm.security;
5005
5006         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5007         ad.u.ipc_id = sma->sem_perm.key;
5008
5009         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5010                             SEM__ASSOCIATE, &ad);
5011 }
5012
5013 /* Note, at this point, sma is locked down */
5014 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5015 {
5016         int err;
5017         u32 perms;
5018
5019         switch (cmd) {
5020         case IPC_INFO:
5021         case SEM_INFO:
5022                 /* No specific object, just general system-wide information. */
5023                 return task_has_system(current, SYSTEM__IPC_INFO);
5024         case GETPID:
5025         case GETNCNT:
5026         case GETZCNT:
5027                 perms = SEM__GETATTR;
5028                 break;
5029         case GETVAL:
5030         case GETALL:
5031                 perms = SEM__READ;
5032                 break;
5033         case SETVAL:
5034         case SETALL:
5035                 perms = SEM__WRITE;
5036                 break;
5037         case IPC_RMID:
5038                 perms = SEM__DESTROY;
5039                 break;
5040         case IPC_SET:
5041                 perms = SEM__SETATTR;
5042                 break;
5043         case IPC_STAT:
5044         case SEM_STAT:
5045                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5046                 break;
5047         default:
5048                 return 0;
5049         }
5050
5051         err = ipc_has_perm(&sma->sem_perm, perms);
5052         return err;
5053 }
5054
5055 static int selinux_sem_semop(struct sem_array *sma,
5056                              struct sembuf *sops, unsigned nsops, int alter)
5057 {
5058         u32 perms;
5059
5060         if (alter)
5061                 perms = SEM__READ | SEM__WRITE;
5062         else
5063                 perms = SEM__READ;
5064
5065         return ipc_has_perm(&sma->sem_perm, perms);
5066 }
5067
5068 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5069 {
5070         u32 av = 0;
5071
5072         av = 0;
5073         if (flag & S_IRUGO)
5074                 av |= IPC__UNIX_READ;
5075         if (flag & S_IWUGO)
5076                 av |= IPC__UNIX_WRITE;
5077
5078         if (av == 0)
5079                 return 0;
5080
5081         return ipc_has_perm(ipcp, av);
5082 }
5083
5084 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5085 {
5086         struct ipc_security_struct *isec = ipcp->security;
5087         *secid = isec->sid;
5088 }
5089
5090 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5091 {
5092         if (inode)
5093                 inode_doinit_with_dentry(inode, dentry);
5094 }
5095
5096 static int selinux_getprocattr(struct task_struct *p,
5097                                char *name, char **value)
5098 {
5099         const struct task_security_struct *__tsec;
5100         u32 sid;
5101         int error;
5102         unsigned len;
5103
5104         if (current != p) {
5105                 error = current_has_perm(p, PROCESS__GETATTR);
5106                 if (error)
5107                         return error;
5108         }
5109
5110         rcu_read_lock();
5111         __tsec = __task_cred(p)->security;
5112
5113         if (!strcmp(name, "current"))
5114                 sid = __tsec->sid;
5115         else if (!strcmp(name, "prev"))
5116                 sid = __tsec->osid;
5117         else if (!strcmp(name, "exec"))
5118                 sid = __tsec->exec_sid;
5119         else if (!strcmp(name, "fscreate"))
5120                 sid = __tsec->create_sid;
5121         else if (!strcmp(name, "keycreate"))
5122                 sid = __tsec->keycreate_sid;
5123         else if (!strcmp(name, "sockcreate"))
5124                 sid = __tsec->sockcreate_sid;
5125         else
5126                 goto invalid;
5127         rcu_read_unlock();
5128
5129         if (!sid)
5130                 return 0;
5131
5132         error = security_sid_to_context(sid, value, &len);
5133         if (error)
5134                 return error;
5135         return len;
5136
5137 invalid:
5138         rcu_read_unlock();
5139         return -EINVAL;
5140 }
5141
5142 static int selinux_setprocattr(struct task_struct *p,
5143                                char *name, void *value, size_t size)
5144 {
5145         struct task_security_struct *tsec;
5146         struct task_struct *tracer;
5147         struct cred *new;
5148         u32 sid = 0, ptsid;
5149         int error;
5150         char *str = value;
5151
5152         if (current != p) {
5153                 /* SELinux only allows a process to change its own
5154                    security attributes. */
5155                 return -EACCES;
5156         }
5157
5158         /*
5159          * Basic control over ability to set these attributes at all.
5160          * current == p, but we'll pass them separately in case the
5161          * above restriction is ever removed.
5162          */
5163         if (!strcmp(name, "exec"))
5164                 error = current_has_perm(p, PROCESS__SETEXEC);
5165         else if (!strcmp(name, "fscreate"))
5166                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5167         else if (!strcmp(name, "keycreate"))
5168                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5169         else if (!strcmp(name, "sockcreate"))
5170                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5171         else if (!strcmp(name, "current"))
5172                 error = current_has_perm(p, PROCESS__SETCURRENT);
5173         else
5174                 error = -EINVAL;
5175         if (error)
5176                 return error;
5177
5178         /* Obtain a SID for the context, if one was specified. */
5179         if (size && str[1] && str[1] != '\n') {
5180                 if (str[size-1] == '\n') {
5181                         str[size-1] = 0;
5182                         size--;
5183                 }
5184                 error = security_context_to_sid(value, size, &sid);
5185                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5186                         if (!capable(CAP_MAC_ADMIN))
5187                                 return error;
5188                         error = security_context_to_sid_force(value, size,
5189                                                               &sid);
5190                 }
5191                 if (error)
5192                         return error;
5193         }
5194
5195         new = prepare_creds();
5196         if (!new)
5197                 return -ENOMEM;
5198
5199         /* Permission checking based on the specified context is
5200            performed during the actual operation (execve,
5201            open/mkdir/...), when we know the full context of the
5202            operation.  See selinux_bprm_set_creds for the execve
5203            checks and may_create for the file creation checks. The
5204            operation will then fail if the context is not permitted. */
5205         tsec = new->security;
5206         if (!strcmp(name, "exec")) {
5207                 tsec->exec_sid = sid;
5208         } else if (!strcmp(name, "fscreate")) {
5209                 tsec->create_sid = sid;
5210         } else if (!strcmp(name, "keycreate")) {
5211                 error = may_create_key(sid, p);
5212                 if (error)
5213                         goto abort_change;
5214                 tsec->keycreate_sid = sid;
5215         } else if (!strcmp(name, "sockcreate")) {
5216                 tsec->sockcreate_sid = sid;
5217         } else if (!strcmp(name, "current")) {
5218                 error = -EINVAL;
5219                 if (sid == 0)
5220                         goto abort_change;
5221
5222                 /* Only allow single threaded processes to change context */
5223                 error = -EPERM;
5224                 if (!current_is_single_threaded()) {
5225                         error = security_bounded_transition(tsec->sid, sid);
5226                         if (error)
5227                                 goto abort_change;
5228                 }
5229
5230                 /* Check permissions for the transition. */
5231                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5232                                      PROCESS__DYNTRANSITION, NULL);
5233                 if (error)
5234                         goto abort_change;
5235
5236                 /* Check for ptracing, and update the task SID if ok.
5237                    Otherwise, leave SID unchanged and fail. */
5238                 ptsid = 0;
5239                 task_lock(p);
5240                 tracer = tracehook_tracer_task(p);
5241                 if (tracer)
5242                         ptsid = task_sid(tracer);
5243                 task_unlock(p);
5244
5245                 if (tracer) {
5246                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5247                                              PROCESS__PTRACE, NULL);
5248                         if (error)
5249                                 goto abort_change;
5250                 }
5251
5252                 tsec->sid = sid;
5253         } else {
5254                 error = -EINVAL;
5255                 goto abort_change;
5256         }
5257
5258         commit_creds(new);
5259         return size;
5260
5261 abort_change:
5262         abort_creds(new);
5263         return error;
5264 }
5265
5266 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5267 {
5268         return security_sid_to_context(secid, secdata, seclen);
5269 }
5270
5271 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5272 {
5273         return security_context_to_sid(secdata, seclen, secid);
5274 }
5275
5276 static void selinux_release_secctx(char *secdata, u32 seclen)
5277 {
5278         kfree(secdata);
5279 }
5280
5281 /*
5282  *      called with inode->i_mutex locked
5283  */
5284 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5285 {
5286         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5287 }
5288
5289 /*
5290  *      called with inode->i_mutex locked
5291  */
5292 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5293 {
5294         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5295 }
5296
5297 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5298 {
5299         int len = 0;
5300         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5301                                                 ctx, true);
5302         if (len < 0)
5303                 return len;
5304         *ctxlen = len;
5305         return 0;
5306 }
5307 #ifdef CONFIG_KEYS
5308
5309 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5310                              unsigned long flags)
5311 {
5312         const struct task_security_struct *tsec;
5313         struct key_security_struct *ksec;
5314
5315         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5316         if (!ksec)
5317                 return -ENOMEM;
5318
5319         tsec = cred->security;
5320         if (tsec->keycreate_sid)
5321                 ksec->sid = tsec->keycreate_sid;
5322         else
5323                 ksec->sid = tsec->sid;
5324
5325         k->security = ksec;
5326         return 0;
5327 }
5328
5329 static void selinux_key_free(struct key *k)
5330 {
5331         struct key_security_struct *ksec = k->security;
5332
5333         k->security = NULL;
5334         kfree(ksec);
5335 }
5336
5337 static int selinux_key_permission(key_ref_t key_ref,
5338                                   const struct cred *cred,
5339                                   key_perm_t perm)
5340 {
5341         struct key *key;
5342         struct key_security_struct *ksec;
5343         u32 sid;
5344
5345         /* if no specific permissions are requested, we skip the
5346            permission check. No serious, additional covert channels
5347            appear to be created. */
5348         if (perm == 0)
5349                 return 0;
5350
5351         sid = cred_sid(cred);
5352
5353         key = key_ref_to_ptr(key_ref);
5354         ksec = key->security;
5355
5356         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5357 }
5358
5359 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5360 {
5361         struct key_security_struct *ksec = key->security;
5362         char *context = NULL;
5363         unsigned len;
5364         int rc;
5365
5366         rc = security_sid_to_context(ksec->sid, &context, &len);
5367         if (!rc)
5368                 rc = len;
5369         *_buffer = context;
5370         return rc;
5371 }
5372
5373 #endif
5374
5375 static struct security_operations selinux_ops = {
5376         .name =                         "selinux",
5377
5378         .ptrace_access_check =          selinux_ptrace_access_check,
5379         .ptrace_traceme =               selinux_ptrace_traceme,
5380         .capget =                       selinux_capget,
5381         .capset =                       selinux_capset,
5382         .sysctl =                       selinux_sysctl,
5383         .capable =                      selinux_capable,
5384         .quotactl =                     selinux_quotactl,
5385         .quota_on =                     selinux_quota_on,
5386         .syslog =                       selinux_syslog,
5387         .vm_enough_memory =             selinux_vm_enough_memory,
5388
5389         .netlink_send =                 selinux_netlink_send,
5390         .netlink_recv =                 selinux_netlink_recv,
5391
5392         .bprm_set_creds =               selinux_bprm_set_creds,
5393         .bprm_committing_creds =        selinux_bprm_committing_creds,
5394         .bprm_committed_creds =         selinux_bprm_committed_creds,
5395         .bprm_secureexec =              selinux_bprm_secureexec,
5396
5397         .sb_alloc_security =            selinux_sb_alloc_security,
5398         .sb_free_security =             selinux_sb_free_security,
5399         .sb_copy_data =                 selinux_sb_copy_data,
5400         .sb_kern_mount =                selinux_sb_kern_mount,
5401         .sb_show_options =              selinux_sb_show_options,
5402         .sb_statfs =                    selinux_sb_statfs,
5403         .sb_mount =                     selinux_mount,
5404         .sb_umount =                    selinux_umount,
5405         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5406         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5407         .sb_parse_opts_str =            selinux_parse_opts_str,
5408
5409
5410         .inode_alloc_security =         selinux_inode_alloc_security,
5411         .inode_free_security =          selinux_inode_free_security,
5412         .inode_init_security =          selinux_inode_init_security,
5413         .inode_create =                 selinux_inode_create,
5414         .inode_link =                   selinux_inode_link,
5415         .inode_unlink =                 selinux_inode_unlink,
5416         .inode_symlink =                selinux_inode_symlink,
5417         .inode_mkdir =                  selinux_inode_mkdir,
5418         .inode_rmdir =                  selinux_inode_rmdir,
5419         .inode_mknod =                  selinux_inode_mknod,
5420         .inode_rename =                 selinux_inode_rename,
5421         .inode_readlink =               selinux_inode_readlink,
5422         .inode_follow_link =            selinux_inode_follow_link,
5423         .inode_permission =             selinux_inode_permission,
5424         .inode_setattr =                selinux_inode_setattr,
5425         .inode_getattr =                selinux_inode_getattr,
5426         .inode_setxattr =               selinux_inode_setxattr,
5427         .inode_post_setxattr =          selinux_inode_post_setxattr,
5428         .inode_getxattr =               selinux_inode_getxattr,
5429         .inode_listxattr =              selinux_inode_listxattr,
5430         .inode_removexattr =            selinux_inode_removexattr,
5431         .inode_getsecurity =            selinux_inode_getsecurity,
5432         .inode_setsecurity =            selinux_inode_setsecurity,
5433         .inode_listsecurity =           selinux_inode_listsecurity,
5434         .inode_getsecid =               selinux_inode_getsecid,
5435
5436         .file_permission =              selinux_file_permission,
5437         .file_alloc_security =          selinux_file_alloc_security,
5438         .file_free_security =           selinux_file_free_security,
5439         .file_ioctl =                   selinux_file_ioctl,
5440         .file_mmap =                    selinux_file_mmap,
5441         .file_mprotect =                selinux_file_mprotect,
5442         .file_lock =                    selinux_file_lock,
5443         .file_fcntl =                   selinux_file_fcntl,
5444         .file_set_fowner =              selinux_file_set_fowner,
5445         .file_send_sigiotask =          selinux_file_send_sigiotask,
5446         .file_receive =                 selinux_file_receive,
5447
5448         .dentry_open =                  selinux_dentry_open,
5449
5450         .task_create =                  selinux_task_create,
5451         .cred_alloc_blank =             selinux_cred_alloc_blank,
5452         .cred_free =                    selinux_cred_free,
5453         .cred_prepare =                 selinux_cred_prepare,
5454         .cred_transfer =                selinux_cred_transfer,
5455         .kernel_act_as =                selinux_kernel_act_as,
5456         .kernel_create_files_as =       selinux_kernel_create_files_as,
5457         .kernel_module_request =        selinux_kernel_module_request,
5458         .task_setpgid =                 selinux_task_setpgid,
5459         .task_getpgid =                 selinux_task_getpgid,
5460         .task_getsid =                  selinux_task_getsid,
5461         .task_getsecid =                selinux_task_getsecid,
5462         .task_setnice =                 selinux_task_setnice,
5463         .task_setioprio =               selinux_task_setioprio,
5464         .task_getioprio =               selinux_task_getioprio,
5465         .task_setrlimit =               selinux_task_setrlimit,
5466         .task_setscheduler =            selinux_task_setscheduler,
5467         .task_getscheduler =            selinux_task_getscheduler,
5468         .task_movememory =              selinux_task_movememory,
5469         .task_kill =                    selinux_task_kill,
5470         .task_wait =                    selinux_task_wait,
5471         .task_to_inode =                selinux_task_to_inode,
5472
5473         .ipc_permission =               selinux_ipc_permission,
5474         .ipc_getsecid =                 selinux_ipc_getsecid,
5475
5476         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5477         .msg_msg_free_security =        selinux_msg_msg_free_security,
5478
5479         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5480         .msg_queue_free_security =      selinux_msg_queue_free_security,
5481         .msg_queue_associate =          selinux_msg_queue_associate,
5482         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5483         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5484         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5485
5486         .shm_alloc_security =           selinux_shm_alloc_security,
5487         .shm_free_security =            selinux_shm_free_security,
5488         .shm_associate =                selinux_shm_associate,
5489         .shm_shmctl =                   selinux_shm_shmctl,
5490         .shm_shmat =                    selinux_shm_shmat,
5491
5492         .sem_alloc_security =           selinux_sem_alloc_security,
5493         .sem_free_security =            selinux_sem_free_security,
5494         .sem_associate =                selinux_sem_associate,
5495         .sem_semctl =                   selinux_sem_semctl,
5496         .sem_semop =                    selinux_sem_semop,
5497
5498         .d_instantiate =                selinux_d_instantiate,
5499
5500         .getprocattr =                  selinux_getprocattr,
5501         .setprocattr =                  selinux_setprocattr,
5502
5503         .secid_to_secctx =              selinux_secid_to_secctx,
5504         .secctx_to_secid =              selinux_secctx_to_secid,
5505         .release_secctx =               selinux_release_secctx,
5506         .inode_notifysecctx =           selinux_inode_notifysecctx,
5507         .inode_setsecctx =              selinux_inode_setsecctx,
5508         .inode_getsecctx =              selinux_inode_getsecctx,
5509
5510         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5511         .unix_may_send =                selinux_socket_unix_may_send,
5512
5513         .socket_create =                selinux_socket_create,
5514         .socket_post_create =           selinux_socket_post_create,
5515         .socket_bind =                  selinux_socket_bind,
5516         .socket_connect =               selinux_socket_connect,
5517         .socket_listen =                selinux_socket_listen,
5518         .socket_accept =                selinux_socket_accept,
5519         .socket_sendmsg =               selinux_socket_sendmsg,
5520         .socket_recvmsg =               selinux_socket_recvmsg,
5521         .socket_getsockname =           selinux_socket_getsockname,
5522         .socket_getpeername =           selinux_socket_getpeername,
5523         .socket_getsockopt =            selinux_socket_getsockopt,
5524         .socket_setsockopt =            selinux_socket_setsockopt,
5525         .socket_shutdown =              selinux_socket_shutdown,
5526         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5527         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5528         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5529         .sk_alloc_security =            selinux_sk_alloc_security,
5530         .sk_free_security =             selinux_sk_free_security,
5531         .sk_clone_security =            selinux_sk_clone_security,
5532         .sk_getsecid =                  selinux_sk_getsecid,
5533         .sock_graft =                   selinux_sock_graft,
5534         .inet_conn_request =            selinux_inet_conn_request,
5535         .inet_csk_clone =               selinux_inet_csk_clone,
5536         .inet_conn_established =        selinux_inet_conn_established,
5537         .req_classify_flow =            selinux_req_classify_flow,
5538         .tun_dev_create =               selinux_tun_dev_create,
5539         .tun_dev_post_create =          selinux_tun_dev_post_create,
5540         .tun_dev_attach =               selinux_tun_dev_attach,
5541
5542 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5543         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5544         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5545         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5546         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5547         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5548         .xfrm_state_free_security =     selinux_xfrm_state_free,
5549         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5550         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5551         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5552         .xfrm_decode_session =          selinux_xfrm_decode_session,
5553 #endif
5554
5555 #ifdef CONFIG_KEYS
5556         .key_alloc =                    selinux_key_alloc,
5557         .key_free =                     selinux_key_free,
5558         .key_permission =               selinux_key_permission,
5559         .key_getsecurity =              selinux_key_getsecurity,
5560 #endif
5561
5562 #ifdef CONFIG_AUDIT
5563         .audit_rule_init =              selinux_audit_rule_init,
5564         .audit_rule_known =             selinux_audit_rule_known,
5565         .audit_rule_match =             selinux_audit_rule_match,
5566         .audit_rule_free =              selinux_audit_rule_free,
5567 #endif
5568 };
5569
5570 static __init int selinux_init(void)
5571 {
5572         if (!security_module_enable(&selinux_ops)) {
5573                 selinux_enabled = 0;
5574                 return 0;
5575         }
5576
5577         if (!selinux_enabled) {
5578                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5579                 return 0;
5580         }
5581
5582         printk(KERN_INFO "SELinux:  Initializing.\n");
5583
5584         /* Set the security state for the initial task. */
5585         cred_init_security();
5586
5587         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5588
5589         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5590                                             sizeof(struct inode_security_struct),
5591                                             0, SLAB_PANIC, NULL);
5592         avc_init();
5593
5594         if (register_security(&selinux_ops))
5595                 panic("SELinux: Unable to register with kernel.\n");
5596
5597         if (selinux_enforcing)
5598                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5599         else
5600                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5601
5602         return 0;
5603 }
5604
5605 static void delayed_superblock_init(struct super_block *sb, void *unused)
5606 {
5607         superblock_doinit(sb, NULL);
5608 }
5609
5610 void selinux_complete_init(void)
5611 {
5612         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5613
5614         /* Set up any superblocks initialized prior to the policy load. */
5615         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5616         iterate_supers(delayed_superblock_init, NULL);
5617 }
5618
5619 /* SELinux requires early initialization in order to label
5620    all processes and objects when they are created. */
5621 security_initcall(selinux_init);
5622
5623 #if defined(CONFIG_NETFILTER)
5624
5625 static struct nf_hook_ops selinux_ipv4_ops[] = {
5626         {
5627                 .hook =         selinux_ipv4_postroute,
5628                 .owner =        THIS_MODULE,
5629                 .pf =           PF_INET,
5630                 .hooknum =      NF_INET_POST_ROUTING,
5631                 .priority =     NF_IP_PRI_SELINUX_LAST,
5632         },
5633         {
5634                 .hook =         selinux_ipv4_forward,
5635                 .owner =        THIS_MODULE,
5636                 .pf =           PF_INET,
5637                 .hooknum =      NF_INET_FORWARD,
5638                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5639         },
5640         {
5641                 .hook =         selinux_ipv4_output,
5642                 .owner =        THIS_MODULE,
5643                 .pf =           PF_INET,
5644                 .hooknum =      NF_INET_LOCAL_OUT,
5645                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5646         }
5647 };
5648
5649 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5650
5651 static struct nf_hook_ops selinux_ipv6_ops[] = {
5652         {
5653                 .hook =         selinux_ipv6_postroute,
5654                 .owner =        THIS_MODULE,
5655                 .pf =           PF_INET6,
5656                 .hooknum =      NF_INET_POST_ROUTING,
5657                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5658         },
5659         {
5660                 .hook =         selinux_ipv6_forward,
5661                 .owner =        THIS_MODULE,
5662                 .pf =           PF_INET6,
5663                 .hooknum =      NF_INET_FORWARD,
5664                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5665         }
5666 };
5667
5668 #endif  /* IPV6 */
5669
5670 static int __init selinux_nf_ip_init(void)
5671 {
5672         int err = 0;
5673
5674         if (!selinux_enabled)
5675                 goto out;
5676
5677         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5678
5679         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5680         if (err)
5681                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5682
5683 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5684         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5685         if (err)
5686                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5687 #endif  /* IPV6 */
5688
5689 out:
5690         return err;
5691 }
5692
5693 __initcall(selinux_nf_ip_init);
5694
5695 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5696 static void selinux_nf_ip_exit(void)
5697 {
5698         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5699
5700         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5701 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5702         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5703 #endif  /* IPV6 */
5704 }
5705 #endif
5706
5707 #else /* CONFIG_NETFILTER */
5708
5709 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5710 #define selinux_nf_ip_exit()
5711 #endif
5712
5713 #endif /* CONFIG_NETFILTER */
5714
5715 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5716 static int selinux_disabled;
5717
5718 int selinux_disable(void)
5719 {
5720         extern void exit_sel_fs(void);
5721
5722         if (ss_initialized) {
5723                 /* Not permitted after initial policy load. */
5724                 return -EINVAL;
5725         }
5726
5727         if (selinux_disabled) {
5728                 /* Only do this once. */
5729                 return -EINVAL;
5730         }
5731
5732         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5733
5734         selinux_disabled = 1;
5735         selinux_enabled = 0;
5736
5737         reset_security_ops();
5738
5739         /* Try to destroy the avc node cache */
5740         avc_disable();
5741
5742         /* Unregister netfilter hooks. */
5743         selinux_nf_ip_exit();
5744
5745         /* Unregister selinuxfs. */
5746         exit_sel_fs();
5747
5748         return 0;
5749 }
5750 #endif