]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/wireless/reg.c
cfg80211: fix allowing country IEs for WIPHY_FLAG_STRICT_REGULATORY
[net-next-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50         do { \
51                 printk(KERN_DEBUG format , ## args); \
52         } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62
63 /*
64  * Central wireless core regulatory domains, we only need two,
65  * the current one and a world regulatory domain in case we have no
66  * information to give us an alpha2
67  */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69
70 /*
71  * Protects static reg.c components:
72  *     - cfg80211_world_regdom
73  *     - cfg80211_regdom
74  *     - last_request
75  */
76 static DEFINE_MUTEX(reg_mutex);
77
78 static inline void assert_reg_lock(void)
79 {
80         lockdep_assert_held(&reg_mutex);
81 }
82
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93
94 struct reg_beacon {
95         struct list_head list;
96         struct ieee80211_channel chan;
97 };
98
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101         .n_reg_rules = 5,
102         .alpha2 =  "00",
103         .reg_rules = {
104                 /* IEEE 802.11b/g, channels 1..11 */
105                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106                 /* IEEE 802.11b/g, channels 12..13. No HT40
107                  * channel fits here. */
108                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
109                         NL80211_RRF_PASSIVE_SCAN |
110                         NL80211_RRF_NO_IBSS),
111                 /* IEEE 802.11 channel 14 - Only JP enables
112                  * this and for 802.11b only */
113                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS |
116                         NL80211_RRF_NO_OFDM),
117                 /* IEEE 802.11a, channel 36..48 */
118                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
119                         NL80211_RRF_PASSIVE_SCAN |
120                         NL80211_RRF_NO_IBSS),
121
122                 /* NB: 5260 MHz - 5700 MHz requies DFS */
123
124                 /* IEEE 802.11a, channel 149..165 */
125                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
126                         NL80211_RRF_PASSIVE_SCAN |
127                         NL80211_RRF_NO_IBSS),
128         }
129 };
130
131 static const struct ieee80211_regdomain *cfg80211_world_regdom =
132         &world_regdom;
133
134 static char *ieee80211_regdom = "00";
135 static char user_alpha2[2];
136
137 module_param(ieee80211_regdom, charp, 0444);
138 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
139
140 static void reset_regdomains(void)
141 {
142         /* avoid freeing static information or freeing something twice */
143         if (cfg80211_regdomain == cfg80211_world_regdom)
144                 cfg80211_regdomain = NULL;
145         if (cfg80211_world_regdom == &world_regdom)
146                 cfg80211_world_regdom = NULL;
147         if (cfg80211_regdomain == &world_regdom)
148                 cfg80211_regdomain = NULL;
149
150         kfree(cfg80211_regdomain);
151         kfree(cfg80211_world_regdom);
152
153         cfg80211_world_regdom = &world_regdom;
154         cfg80211_regdomain = NULL;
155 }
156
157 /*
158  * Dynamic world regulatory domain requested by the wireless
159  * core upon initialization
160  */
161 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162 {
163         BUG_ON(!last_request);
164
165         reset_regdomains();
166
167         cfg80211_world_regdom = rd;
168         cfg80211_regdomain = rd;
169 }
170
171 bool is_world_regdom(const char *alpha2)
172 {
173         if (!alpha2)
174                 return false;
175         if (alpha2[0] == '0' && alpha2[1] == '0')
176                 return true;
177         return false;
178 }
179
180 static bool is_alpha2_set(const char *alpha2)
181 {
182         if (!alpha2)
183                 return false;
184         if (alpha2[0] != 0 && alpha2[1] != 0)
185                 return true;
186         return false;
187 }
188
189 static bool is_unknown_alpha2(const char *alpha2)
190 {
191         if (!alpha2)
192                 return false;
193         /*
194          * Special case where regulatory domain was built by driver
195          * but a specific alpha2 cannot be determined
196          */
197         if (alpha2[0] == '9' && alpha2[1] == '9')
198                 return true;
199         return false;
200 }
201
202 static bool is_intersected_alpha2(const char *alpha2)
203 {
204         if (!alpha2)
205                 return false;
206         /*
207          * Special case where regulatory domain is the
208          * result of an intersection between two regulatory domain
209          * structures
210          */
211         if (alpha2[0] == '9' && alpha2[1] == '8')
212                 return true;
213         return false;
214 }
215
216 static bool is_an_alpha2(const char *alpha2)
217 {
218         if (!alpha2)
219                 return false;
220         if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221                 return true;
222         return false;
223 }
224
225 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 {
227         if (!alpha2_x || !alpha2_y)
228                 return false;
229         if (alpha2_x[0] == alpha2_y[0] &&
230                 alpha2_x[1] == alpha2_y[1])
231                 return true;
232         return false;
233 }
234
235 static bool regdom_changes(const char *alpha2)
236 {
237         assert_cfg80211_lock();
238
239         if (!cfg80211_regdomain)
240                 return true;
241         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
242                 return false;
243         return true;
244 }
245
246 /*
247  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
248  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
249  * has ever been issued.
250  */
251 static bool is_user_regdom_saved(void)
252 {
253         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
254                 return false;
255
256         /* This would indicate a mistake on the design */
257         if (WARN((!is_world_regdom(user_alpha2) &&
258                   !is_an_alpha2(user_alpha2)),
259                  "Unexpected user alpha2: %c%c\n",
260                  user_alpha2[0],
261                  user_alpha2[1]))
262                 return false;
263
264         return true;
265 }
266
267 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
268                          const struct ieee80211_regdomain *src_regd)
269 {
270         struct ieee80211_regdomain *regd;
271         int size_of_regd = 0;
272         unsigned int i;
273
274         size_of_regd = sizeof(struct ieee80211_regdomain) +
275           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
276
277         regd = kzalloc(size_of_regd, GFP_KERNEL);
278         if (!regd)
279                 return -ENOMEM;
280
281         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
282
283         for (i = 0; i < src_regd->n_reg_rules; i++)
284                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
285                         sizeof(struct ieee80211_reg_rule));
286
287         *dst_regd = regd;
288         return 0;
289 }
290
291 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
292 struct reg_regdb_search_request {
293         char alpha2[2];
294         struct list_head list;
295 };
296
297 static LIST_HEAD(reg_regdb_search_list);
298 static DEFINE_MUTEX(reg_regdb_search_mutex);
299
300 static void reg_regdb_search(struct work_struct *work)
301 {
302         struct reg_regdb_search_request *request;
303         const struct ieee80211_regdomain *curdom, *regdom;
304         int i, r;
305
306         mutex_lock(&reg_regdb_search_mutex);
307         while (!list_empty(&reg_regdb_search_list)) {
308                 request = list_first_entry(&reg_regdb_search_list,
309                                            struct reg_regdb_search_request,
310                                            list);
311                 list_del(&request->list);
312
313                 for (i=0; i<reg_regdb_size; i++) {
314                         curdom = reg_regdb[i];
315
316                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
317                                 r = reg_copy_regd(&regdom, curdom);
318                                 if (r)
319                                         break;
320                                 mutex_lock(&cfg80211_mutex);
321                                 set_regdom(regdom);
322                                 mutex_unlock(&cfg80211_mutex);
323                                 break;
324                         }
325                 }
326
327                 kfree(request);
328         }
329         mutex_unlock(&reg_regdb_search_mutex);
330 }
331
332 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
333
334 static void reg_regdb_query(const char *alpha2)
335 {
336         struct reg_regdb_search_request *request;
337
338         if (!alpha2)
339                 return;
340
341         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
342         if (!request)
343                 return;
344
345         memcpy(request->alpha2, alpha2, 2);
346
347         mutex_lock(&reg_regdb_search_mutex);
348         list_add_tail(&request->list, &reg_regdb_search_list);
349         mutex_unlock(&reg_regdb_search_mutex);
350
351         schedule_work(&reg_regdb_work);
352 }
353 #else
354 static inline void reg_regdb_query(const char *alpha2) {}
355 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         /* query internal regulatory database (if it exists) */
377         reg_regdb_query(alpha2);
378
379         country_env[8] = alpha2[0];
380         country_env[9] = alpha2[1];
381
382         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
383 }
384
385 /* Used by nl80211 before kmalloc'ing our regulatory domain */
386 bool reg_is_valid_request(const char *alpha2)
387 {
388         assert_cfg80211_lock();
389
390         if (!last_request)
391                 return false;
392
393         return alpha2_equal(last_request->alpha2, alpha2);
394 }
395
396 /* Sanity check on a regulatory rule */
397 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398 {
399         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400         u32 freq_diff;
401
402         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403                 return false;
404
405         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
406                 return false;
407
408         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
409
410         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
411                         freq_range->max_bandwidth_khz > freq_diff)
412                 return false;
413
414         return true;
415 }
416
417 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418 {
419         const struct ieee80211_reg_rule *reg_rule = NULL;
420         unsigned int i;
421
422         if (!rd->n_reg_rules)
423                 return false;
424
425         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
426                 return false;
427
428         for (i = 0; i < rd->n_reg_rules; i++) {
429                 reg_rule = &rd->reg_rules[i];
430                 if (!is_valid_reg_rule(reg_rule))
431                         return false;
432         }
433
434         return true;
435 }
436
437 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
438                             u32 center_freq_khz,
439                             u32 bw_khz)
440 {
441         u32 start_freq_khz, end_freq_khz;
442
443         start_freq_khz = center_freq_khz - (bw_khz/2);
444         end_freq_khz = center_freq_khz + (bw_khz/2);
445
446         if (start_freq_khz >= freq_range->start_freq_khz &&
447             end_freq_khz <= freq_range->end_freq_khz)
448                 return true;
449
450         return false;
451 }
452
453 /**
454  * freq_in_rule_band - tells us if a frequency is in a frequency band
455  * @freq_range: frequency rule we want to query
456  * @freq_khz: frequency we are inquiring about
457  *
458  * This lets us know if a specific frequency rule is or is not relevant to
459  * a specific frequency's band. Bands are device specific and artificial
460  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461  * safe for now to assume that a frequency rule should not be part of a
462  * frequency's band if the start freq or end freq are off by more than 2 GHz.
463  * This resolution can be lowered and should be considered as we add
464  * regulatory rule support for other "bands".
465  **/
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467         u32 freq_khz)
468 {
469 #define ONE_GHZ_IN_KHZ  1000000
470         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471                 return true;
472         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473                 return true;
474         return false;
475 #undef ONE_GHZ_IN_KHZ
476 }
477
478 /*
479  * Helper for regdom_intersect(), this does the real
480  * mathematical intersection fun
481  */
482 static int reg_rules_intersect(
483         const struct ieee80211_reg_rule *rule1,
484         const struct ieee80211_reg_rule *rule2,
485         struct ieee80211_reg_rule *intersected_rule)
486 {
487         const struct ieee80211_freq_range *freq_range1, *freq_range2;
488         struct ieee80211_freq_range *freq_range;
489         const struct ieee80211_power_rule *power_rule1, *power_rule2;
490         struct ieee80211_power_rule *power_rule;
491         u32 freq_diff;
492
493         freq_range1 = &rule1->freq_range;
494         freq_range2 = &rule2->freq_range;
495         freq_range = &intersected_rule->freq_range;
496
497         power_rule1 = &rule1->power_rule;
498         power_rule2 = &rule2->power_rule;
499         power_rule = &intersected_rule->power_rule;
500
501         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
502                 freq_range2->start_freq_khz);
503         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
504                 freq_range2->end_freq_khz);
505         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
506                 freq_range2->max_bandwidth_khz);
507
508         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
509         if (freq_range->max_bandwidth_khz > freq_diff)
510                 freq_range->max_bandwidth_khz = freq_diff;
511
512         power_rule->max_eirp = min(power_rule1->max_eirp,
513                 power_rule2->max_eirp);
514         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
515                 power_rule2->max_antenna_gain);
516
517         intersected_rule->flags = (rule1->flags | rule2->flags);
518
519         if (!is_valid_reg_rule(intersected_rule))
520                 return -EINVAL;
521
522         return 0;
523 }
524
525 /**
526  * regdom_intersect - do the intersection between two regulatory domains
527  * @rd1: first regulatory domain
528  * @rd2: second regulatory domain
529  *
530  * Use this function to get the intersection between two regulatory domains.
531  * Once completed we will mark the alpha2 for the rd as intersected, "98",
532  * as no one single alpha2 can represent this regulatory domain.
533  *
534  * Returns a pointer to the regulatory domain structure which will hold the
535  * resulting intersection of rules between rd1 and rd2. We will
536  * kzalloc() this structure for you.
537  */
538 static struct ieee80211_regdomain *regdom_intersect(
539         const struct ieee80211_regdomain *rd1,
540         const struct ieee80211_regdomain *rd2)
541 {
542         int r, size_of_regd;
543         unsigned int x, y;
544         unsigned int num_rules = 0, rule_idx = 0;
545         const struct ieee80211_reg_rule *rule1, *rule2;
546         struct ieee80211_reg_rule *intersected_rule;
547         struct ieee80211_regdomain *rd;
548         /* This is just a dummy holder to help us count */
549         struct ieee80211_reg_rule irule;
550
551         /* Uses the stack temporarily for counter arithmetic */
552         intersected_rule = &irule;
553
554         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
555
556         if (!rd1 || !rd2)
557                 return NULL;
558
559         /*
560          * First we get a count of the rules we'll need, then we actually
561          * build them. This is to so we can malloc() and free() a
562          * regdomain once. The reason we use reg_rules_intersect() here
563          * is it will return -EINVAL if the rule computed makes no sense.
564          * All rules that do check out OK are valid.
565          */
566
567         for (x = 0; x < rd1->n_reg_rules; x++) {
568                 rule1 = &rd1->reg_rules[x];
569                 for (y = 0; y < rd2->n_reg_rules; y++) {
570                         rule2 = &rd2->reg_rules[y];
571                         if (!reg_rules_intersect(rule1, rule2,
572                                         intersected_rule))
573                                 num_rules++;
574                         memset(intersected_rule, 0,
575                                         sizeof(struct ieee80211_reg_rule));
576                 }
577         }
578
579         if (!num_rules)
580                 return NULL;
581
582         size_of_regd = sizeof(struct ieee80211_regdomain) +
583                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
584
585         rd = kzalloc(size_of_regd, GFP_KERNEL);
586         if (!rd)
587                 return NULL;
588
589         for (x = 0; x < rd1->n_reg_rules; x++) {
590                 rule1 = &rd1->reg_rules[x];
591                 for (y = 0; y < rd2->n_reg_rules; y++) {
592                         rule2 = &rd2->reg_rules[y];
593                         /*
594                          * This time around instead of using the stack lets
595                          * write to the target rule directly saving ourselves
596                          * a memcpy()
597                          */
598                         intersected_rule = &rd->reg_rules[rule_idx];
599                         r = reg_rules_intersect(rule1, rule2,
600                                 intersected_rule);
601                         /*
602                          * No need to memset here the intersected rule here as
603                          * we're not using the stack anymore
604                          */
605                         if (r)
606                                 continue;
607                         rule_idx++;
608                 }
609         }
610
611         if (rule_idx != num_rules) {
612                 kfree(rd);
613                 return NULL;
614         }
615
616         rd->n_reg_rules = num_rules;
617         rd->alpha2[0] = '9';
618         rd->alpha2[1] = '8';
619
620         return rd;
621 }
622
623 /*
624  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
625  * want to just have the channel structure use these
626  */
627 static u32 map_regdom_flags(u32 rd_flags)
628 {
629         u32 channel_flags = 0;
630         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
631                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
632         if (rd_flags & NL80211_RRF_NO_IBSS)
633                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
634         if (rd_flags & NL80211_RRF_DFS)
635                 channel_flags |= IEEE80211_CHAN_RADAR;
636         return channel_flags;
637 }
638
639 static int freq_reg_info_regd(struct wiphy *wiphy,
640                               u32 center_freq,
641                               u32 desired_bw_khz,
642                               const struct ieee80211_reg_rule **reg_rule,
643                               const struct ieee80211_regdomain *custom_regd)
644 {
645         int i;
646         bool band_rule_found = false;
647         const struct ieee80211_regdomain *regd;
648         bool bw_fits = false;
649
650         if (!desired_bw_khz)
651                 desired_bw_khz = MHZ_TO_KHZ(20);
652
653         regd = custom_regd ? custom_regd : cfg80211_regdomain;
654
655         /*
656          * Follow the driver's regulatory domain, if present, unless a country
657          * IE has been processed or a user wants to help complaince further
658          */
659         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
660             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661             wiphy->regd)
662                 regd = wiphy->regd;
663
664         if (!regd)
665                 return -EINVAL;
666
667         for (i = 0; i < regd->n_reg_rules; i++) {
668                 const struct ieee80211_reg_rule *rr;
669                 const struct ieee80211_freq_range *fr = NULL;
670                 const struct ieee80211_power_rule *pr = NULL;
671
672                 rr = &regd->reg_rules[i];
673                 fr = &rr->freq_range;
674                 pr = &rr->power_rule;
675
676                 /*
677                  * We only need to know if one frequency rule was
678                  * was in center_freq's band, that's enough, so lets
679                  * not overwrite it once found
680                  */
681                 if (!band_rule_found)
682                         band_rule_found = freq_in_rule_band(fr, center_freq);
683
684                 bw_fits = reg_does_bw_fit(fr,
685                                           center_freq,
686                                           desired_bw_khz);
687
688                 if (band_rule_found && bw_fits) {
689                         *reg_rule = rr;
690                         return 0;
691                 }
692         }
693
694         if (!band_rule_found)
695                 return -ERANGE;
696
697         return -EINVAL;
698 }
699
700 int freq_reg_info(struct wiphy *wiphy,
701                   u32 center_freq,
702                   u32 desired_bw_khz,
703                   const struct ieee80211_reg_rule **reg_rule)
704 {
705         assert_cfg80211_lock();
706         return freq_reg_info_regd(wiphy,
707                                   center_freq,
708                                   desired_bw_khz,
709                                   reg_rule,
710                                   NULL);
711 }
712 EXPORT_SYMBOL(freq_reg_info);
713
714 /*
715  * Note that right now we assume the desired channel bandwidth
716  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
717  * per channel, the primary and the extension channel). To support
718  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
719  * new ieee80211_channel.target_bw and re run the regulatory check
720  * on the wiphy with the target_bw specified. Then we can simply use
721  * that below for the desired_bw_khz below.
722  */
723 static void handle_channel(struct wiphy *wiphy,
724                            enum nl80211_reg_initiator initiator,
725                            enum ieee80211_band band,
726                            unsigned int chan_idx)
727 {
728         int r;
729         u32 flags, bw_flags = 0;
730         u32 desired_bw_khz = MHZ_TO_KHZ(20);
731         const struct ieee80211_reg_rule *reg_rule = NULL;
732         const struct ieee80211_power_rule *power_rule = NULL;
733         const struct ieee80211_freq_range *freq_range = NULL;
734         struct ieee80211_supported_band *sband;
735         struct ieee80211_channel *chan;
736         struct wiphy *request_wiphy = NULL;
737
738         assert_cfg80211_lock();
739
740         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
741
742         sband = wiphy->bands[band];
743         BUG_ON(chan_idx >= sband->n_channels);
744         chan = &sband->channels[chan_idx];
745
746         flags = chan->orig_flags;
747
748         r = freq_reg_info(wiphy,
749                           MHZ_TO_KHZ(chan->center_freq),
750                           desired_bw_khz,
751                           &reg_rule);
752
753         if (r)
754                 return;
755
756         power_rule = &reg_rule->power_rule;
757         freq_range = &reg_rule->freq_range;
758
759         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
760                 bw_flags = IEEE80211_CHAN_NO_HT40;
761
762         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
763             request_wiphy && request_wiphy == wiphy &&
764             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
765                 /*
766                  * This gaurantees the driver's requested regulatory domain
767                  * will always be used as a base for further regulatory
768                  * settings
769                  */
770                 chan->flags = chan->orig_flags =
771                         map_regdom_flags(reg_rule->flags) | bw_flags;
772                 chan->max_antenna_gain = chan->orig_mag =
773                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
774                 chan->max_power = chan->orig_mpwr =
775                         (int) MBM_TO_DBM(power_rule->max_eirp);
776                 return;
777         }
778
779         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
780         chan->max_antenna_gain = min(chan->orig_mag,
781                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
782         if (chan->orig_mpwr)
783                 chan->max_power = min(chan->orig_mpwr,
784                         (int) MBM_TO_DBM(power_rule->max_eirp));
785         else
786                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
787 }
788
789 static void handle_band(struct wiphy *wiphy,
790                         enum ieee80211_band band,
791                         enum nl80211_reg_initiator initiator)
792 {
793         unsigned int i;
794         struct ieee80211_supported_band *sband;
795
796         BUG_ON(!wiphy->bands[band]);
797         sband = wiphy->bands[band];
798
799         for (i = 0; i < sband->n_channels; i++)
800                 handle_channel(wiphy, initiator, band, i);
801 }
802
803 static bool ignore_reg_update(struct wiphy *wiphy,
804                               enum nl80211_reg_initiator initiator)
805 {
806         if (!last_request)
807                 return true;
808         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
809             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
810                 return true;
811         /*
812          * wiphy->regd will be set once the device has its own
813          * desired regulatory domain set
814          */
815         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
816             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
817             !is_world_regdom(last_request->alpha2))
818                 return true;
819         return false;
820 }
821
822 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
823 {
824         struct cfg80211_registered_device *rdev;
825
826         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
827                 wiphy_update_regulatory(&rdev->wiphy, initiator);
828 }
829
830 static void handle_reg_beacon(struct wiphy *wiphy,
831                               unsigned int chan_idx,
832                               struct reg_beacon *reg_beacon)
833 {
834         struct ieee80211_supported_band *sband;
835         struct ieee80211_channel *chan;
836         bool channel_changed = false;
837         struct ieee80211_channel chan_before;
838
839         assert_cfg80211_lock();
840
841         sband = wiphy->bands[reg_beacon->chan.band];
842         chan = &sband->channels[chan_idx];
843
844         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
845                 return;
846
847         if (chan->beacon_found)
848                 return;
849
850         chan->beacon_found = true;
851
852         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
853                 return;
854
855         chan_before.center_freq = chan->center_freq;
856         chan_before.flags = chan->flags;
857
858         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
859                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
860                 channel_changed = true;
861         }
862
863         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
864                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
865                 channel_changed = true;
866         }
867
868         if (channel_changed)
869                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
870 }
871
872 /*
873  * Called when a scan on a wiphy finds a beacon on
874  * new channel
875  */
876 static void wiphy_update_new_beacon(struct wiphy *wiphy,
877                                     struct reg_beacon *reg_beacon)
878 {
879         unsigned int i;
880         struct ieee80211_supported_band *sband;
881
882         assert_cfg80211_lock();
883
884         if (!wiphy->bands[reg_beacon->chan.band])
885                 return;
886
887         sband = wiphy->bands[reg_beacon->chan.band];
888
889         for (i = 0; i < sband->n_channels; i++)
890                 handle_reg_beacon(wiphy, i, reg_beacon);
891 }
892
893 /*
894  * Called upon reg changes or a new wiphy is added
895  */
896 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
897 {
898         unsigned int i;
899         struct ieee80211_supported_band *sband;
900         struct reg_beacon *reg_beacon;
901
902         assert_cfg80211_lock();
903
904         if (list_empty(&reg_beacon_list))
905                 return;
906
907         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
908                 if (!wiphy->bands[reg_beacon->chan.band])
909                         continue;
910                 sband = wiphy->bands[reg_beacon->chan.band];
911                 for (i = 0; i < sband->n_channels; i++)
912                         handle_reg_beacon(wiphy, i, reg_beacon);
913         }
914 }
915
916 static bool reg_is_world_roaming(struct wiphy *wiphy)
917 {
918         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
919             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
920                 return true;
921         if (last_request &&
922             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
923             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
924                 return true;
925         return false;
926 }
927
928 /* Reap the advantages of previously found beacons */
929 static void reg_process_beacons(struct wiphy *wiphy)
930 {
931         /*
932          * Means we are just firing up cfg80211, so no beacons would
933          * have been processed yet.
934          */
935         if (!last_request)
936                 return;
937         if (!reg_is_world_roaming(wiphy))
938                 return;
939         wiphy_update_beacon_reg(wiphy);
940 }
941
942 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
943 {
944         if (!chan)
945                 return true;
946         if (chan->flags & IEEE80211_CHAN_DISABLED)
947                 return true;
948         /* This would happen when regulatory rules disallow HT40 completely */
949         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
950                 return true;
951         return false;
952 }
953
954 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
955                                          enum ieee80211_band band,
956                                          unsigned int chan_idx)
957 {
958         struct ieee80211_supported_band *sband;
959         struct ieee80211_channel *channel;
960         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
961         unsigned int i;
962
963         assert_cfg80211_lock();
964
965         sband = wiphy->bands[band];
966         BUG_ON(chan_idx >= sband->n_channels);
967         channel = &sband->channels[chan_idx];
968
969         if (is_ht40_not_allowed(channel)) {
970                 channel->flags |= IEEE80211_CHAN_NO_HT40;
971                 return;
972         }
973
974         /*
975          * We need to ensure the extension channels exist to
976          * be able to use HT40- or HT40+, this finds them (or not)
977          */
978         for (i = 0; i < sband->n_channels; i++) {
979                 struct ieee80211_channel *c = &sband->channels[i];
980                 if (c->center_freq == (channel->center_freq - 20))
981                         channel_before = c;
982                 if (c->center_freq == (channel->center_freq + 20))
983                         channel_after = c;
984         }
985
986         /*
987          * Please note that this assumes target bandwidth is 20 MHz,
988          * if that ever changes we also need to change the below logic
989          * to include that as well.
990          */
991         if (is_ht40_not_allowed(channel_before))
992                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
993         else
994                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
995
996         if (is_ht40_not_allowed(channel_after))
997                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
998         else
999                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1000 }
1001
1002 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1003                                       enum ieee80211_band band)
1004 {
1005         unsigned int i;
1006         struct ieee80211_supported_band *sband;
1007
1008         BUG_ON(!wiphy->bands[band]);
1009         sband = wiphy->bands[band];
1010
1011         for (i = 0; i < sband->n_channels; i++)
1012                 reg_process_ht_flags_channel(wiphy, band, i);
1013 }
1014
1015 static void reg_process_ht_flags(struct wiphy *wiphy)
1016 {
1017         enum ieee80211_band band;
1018
1019         if (!wiphy)
1020                 return;
1021
1022         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1023                 if (wiphy->bands[band])
1024                         reg_process_ht_flags_band(wiphy, band);
1025         }
1026
1027 }
1028
1029 void wiphy_update_regulatory(struct wiphy *wiphy,
1030                              enum nl80211_reg_initiator initiator)
1031 {
1032         enum ieee80211_band band;
1033
1034         if (ignore_reg_update(wiphy, initiator))
1035                 goto out;
1036         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1037                 if (wiphy->bands[band])
1038                         handle_band(wiphy, band, initiator);
1039         }
1040 out:
1041         reg_process_beacons(wiphy);
1042         reg_process_ht_flags(wiphy);
1043         if (wiphy->reg_notifier)
1044                 wiphy->reg_notifier(wiphy, last_request);
1045 }
1046
1047 static void handle_channel_custom(struct wiphy *wiphy,
1048                                   enum ieee80211_band band,
1049                                   unsigned int chan_idx,
1050                                   const struct ieee80211_regdomain *regd)
1051 {
1052         int r;
1053         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1054         u32 bw_flags = 0;
1055         const struct ieee80211_reg_rule *reg_rule = NULL;
1056         const struct ieee80211_power_rule *power_rule = NULL;
1057         const struct ieee80211_freq_range *freq_range = NULL;
1058         struct ieee80211_supported_band *sband;
1059         struct ieee80211_channel *chan;
1060
1061         assert_reg_lock();
1062
1063         sband = wiphy->bands[band];
1064         BUG_ON(chan_idx >= sband->n_channels);
1065         chan = &sband->channels[chan_idx];
1066
1067         r = freq_reg_info_regd(wiphy,
1068                                MHZ_TO_KHZ(chan->center_freq),
1069                                desired_bw_khz,
1070                                &reg_rule,
1071                                regd);
1072
1073         if (r) {
1074                 chan->flags = IEEE80211_CHAN_DISABLED;
1075                 return;
1076         }
1077
1078         power_rule = &reg_rule->power_rule;
1079         freq_range = &reg_rule->freq_range;
1080
1081         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1082                 bw_flags = IEEE80211_CHAN_NO_HT40;
1083
1084         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1085         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1086         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1087 }
1088
1089 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1090                                const struct ieee80211_regdomain *regd)
1091 {
1092         unsigned int i;
1093         struct ieee80211_supported_band *sband;
1094
1095         BUG_ON(!wiphy->bands[band]);
1096         sband = wiphy->bands[band];
1097
1098         for (i = 0; i < sband->n_channels; i++)
1099                 handle_channel_custom(wiphy, band, i, regd);
1100 }
1101
1102 /* Used by drivers prior to wiphy registration */
1103 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1104                                    const struct ieee80211_regdomain *regd)
1105 {
1106         enum ieee80211_band band;
1107         unsigned int bands_set = 0;
1108
1109         mutex_lock(&reg_mutex);
1110         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1111                 if (!wiphy->bands[band])
1112                         continue;
1113                 handle_band_custom(wiphy, band, regd);
1114                 bands_set++;
1115         }
1116         mutex_unlock(&reg_mutex);
1117
1118         /*
1119          * no point in calling this if it won't have any effect
1120          * on your device's supportd bands.
1121          */
1122         WARN_ON(!bands_set);
1123 }
1124 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1125
1126 /*
1127  * Return value which can be used by ignore_request() to indicate
1128  * it has been determined we should intersect two regulatory domains
1129  */
1130 #define REG_INTERSECT   1
1131
1132 /* This has the logic which determines when a new request
1133  * should be ignored. */
1134 static int ignore_request(struct wiphy *wiphy,
1135                           struct regulatory_request *pending_request)
1136 {
1137         struct wiphy *last_wiphy = NULL;
1138
1139         assert_cfg80211_lock();
1140
1141         /* All initial requests are respected */
1142         if (!last_request)
1143                 return 0;
1144
1145         switch (pending_request->initiator) {
1146         case NL80211_REGDOM_SET_BY_CORE:
1147                 return 0;
1148         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1149
1150                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1151
1152                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1153                         return -EINVAL;
1154                 if (last_request->initiator ==
1155                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1156                         if (last_wiphy != wiphy) {
1157                                 /*
1158                                  * Two cards with two APs claiming different
1159                                  * Country IE alpha2s. We could
1160                                  * intersect them, but that seems unlikely
1161                                  * to be correct. Reject second one for now.
1162                                  */
1163                                 if (regdom_changes(pending_request->alpha2))
1164                                         return -EOPNOTSUPP;
1165                                 return -EALREADY;
1166                         }
1167                         /*
1168                          * Two consecutive Country IE hints on the same wiphy.
1169                          * This should be picked up early by the driver/stack
1170                          */
1171                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1172                                 return 0;
1173                         return -EALREADY;
1174                 }
1175                 return 0;
1176         case NL80211_REGDOM_SET_BY_DRIVER:
1177                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1178                         if (regdom_changes(pending_request->alpha2))
1179                                 return 0;
1180                         return -EALREADY;
1181                 }
1182
1183                 /*
1184                  * This would happen if you unplug and plug your card
1185                  * back in or if you add a new device for which the previously
1186                  * loaded card also agrees on the regulatory domain.
1187                  */
1188                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1189                     !regdom_changes(pending_request->alpha2))
1190                         return -EALREADY;
1191
1192                 return REG_INTERSECT;
1193         case NL80211_REGDOM_SET_BY_USER:
1194                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1195                         return REG_INTERSECT;
1196                 /*
1197                  * If the user knows better the user should set the regdom
1198                  * to their country before the IE is picked up
1199                  */
1200                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1201                           last_request->intersect)
1202                         return -EOPNOTSUPP;
1203                 /*
1204                  * Process user requests only after previous user/driver/core
1205                  * requests have been processed
1206                  */
1207                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1208                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1209                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1210                         if (regdom_changes(last_request->alpha2))
1211                                 return -EAGAIN;
1212                 }
1213
1214                 if (!regdom_changes(pending_request->alpha2))
1215                         return -EALREADY;
1216
1217                 return 0;
1218         }
1219
1220         return -EINVAL;
1221 }
1222
1223 /**
1224  * __regulatory_hint - hint to the wireless core a regulatory domain
1225  * @wiphy: if the hint comes from country information from an AP, this
1226  *      is required to be set to the wiphy that received the information
1227  * @pending_request: the regulatory request currently being processed
1228  *
1229  * The Wireless subsystem can use this function to hint to the wireless core
1230  * what it believes should be the current regulatory domain.
1231  *
1232  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1233  * already been set or other standard error codes.
1234  *
1235  * Caller must hold &cfg80211_mutex and &reg_mutex
1236  */
1237 static int __regulatory_hint(struct wiphy *wiphy,
1238                              struct regulatory_request *pending_request)
1239 {
1240         bool intersect = false;
1241         int r = 0;
1242
1243         assert_cfg80211_lock();
1244
1245         r = ignore_request(wiphy, pending_request);
1246
1247         if (r == REG_INTERSECT) {
1248                 if (pending_request->initiator ==
1249                     NL80211_REGDOM_SET_BY_DRIVER) {
1250                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1251                         if (r) {
1252                                 kfree(pending_request);
1253                                 return r;
1254                         }
1255                 }
1256                 intersect = true;
1257         } else if (r) {
1258                 /*
1259                  * If the regulatory domain being requested by the
1260                  * driver has already been set just copy it to the
1261                  * wiphy
1262                  */
1263                 if (r == -EALREADY &&
1264                     pending_request->initiator ==
1265                     NL80211_REGDOM_SET_BY_DRIVER) {
1266                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1267                         if (r) {
1268                                 kfree(pending_request);
1269                                 return r;
1270                         }
1271                         r = -EALREADY;
1272                         goto new_request;
1273                 }
1274                 kfree(pending_request);
1275                 return r;
1276         }
1277
1278 new_request:
1279         kfree(last_request);
1280
1281         last_request = pending_request;
1282         last_request->intersect = intersect;
1283
1284         pending_request = NULL;
1285
1286         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1287                 user_alpha2[0] = last_request->alpha2[0];
1288                 user_alpha2[1] = last_request->alpha2[1];
1289         }
1290
1291         /* When r == REG_INTERSECT we do need to call CRDA */
1292         if (r < 0) {
1293                 /*
1294                  * Since CRDA will not be called in this case as we already
1295                  * have applied the requested regulatory domain before we just
1296                  * inform userspace we have processed the request
1297                  */
1298                 if (r == -EALREADY)
1299                         nl80211_send_reg_change_event(last_request);
1300                 return r;
1301         }
1302
1303         return call_crda(last_request->alpha2);
1304 }
1305
1306 /* This processes *all* regulatory hints */
1307 static void reg_process_hint(struct regulatory_request *reg_request)
1308 {
1309         int r = 0;
1310         struct wiphy *wiphy = NULL;
1311         enum nl80211_reg_initiator initiator = reg_request->initiator;
1312
1313         BUG_ON(!reg_request->alpha2);
1314
1315         mutex_lock(&cfg80211_mutex);
1316         mutex_lock(&reg_mutex);
1317
1318         if (wiphy_idx_valid(reg_request->wiphy_idx))
1319                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1320
1321         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1322             !wiphy) {
1323                 kfree(reg_request);
1324                 goto out;
1325         }
1326
1327         r = __regulatory_hint(wiphy, reg_request);
1328         /* This is required so that the orig_* parameters are saved */
1329         if (r == -EALREADY && wiphy &&
1330             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1331                 wiphy_update_regulatory(wiphy, initiator);
1332 out:
1333         mutex_unlock(&reg_mutex);
1334         mutex_unlock(&cfg80211_mutex);
1335 }
1336
1337 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1338 static void reg_process_pending_hints(void)
1339         {
1340         struct regulatory_request *reg_request;
1341
1342         spin_lock(&reg_requests_lock);
1343         while (!list_empty(&reg_requests_list)) {
1344                 reg_request = list_first_entry(&reg_requests_list,
1345                                                struct regulatory_request,
1346                                                list);
1347                 list_del_init(&reg_request->list);
1348
1349                 spin_unlock(&reg_requests_lock);
1350                 reg_process_hint(reg_request);
1351                 spin_lock(&reg_requests_lock);
1352         }
1353         spin_unlock(&reg_requests_lock);
1354 }
1355
1356 /* Processes beacon hints -- this has nothing to do with country IEs */
1357 static void reg_process_pending_beacon_hints(void)
1358 {
1359         struct cfg80211_registered_device *rdev;
1360         struct reg_beacon *pending_beacon, *tmp;
1361
1362         /*
1363          * No need to hold the reg_mutex here as we just touch wiphys
1364          * and do not read or access regulatory variables.
1365          */
1366         mutex_lock(&cfg80211_mutex);
1367
1368         /* This goes through the _pending_ beacon list */
1369         spin_lock_bh(&reg_pending_beacons_lock);
1370
1371         if (list_empty(&reg_pending_beacons)) {
1372                 spin_unlock_bh(&reg_pending_beacons_lock);
1373                 goto out;
1374         }
1375
1376         list_for_each_entry_safe(pending_beacon, tmp,
1377                                  &reg_pending_beacons, list) {
1378
1379                 list_del_init(&pending_beacon->list);
1380
1381                 /* Applies the beacon hint to current wiphys */
1382                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1383                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1384
1385                 /* Remembers the beacon hint for new wiphys or reg changes */
1386                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1387         }
1388
1389         spin_unlock_bh(&reg_pending_beacons_lock);
1390 out:
1391         mutex_unlock(&cfg80211_mutex);
1392 }
1393
1394 static void reg_todo(struct work_struct *work)
1395 {
1396         reg_process_pending_hints();
1397         reg_process_pending_beacon_hints();
1398 }
1399
1400 static DECLARE_WORK(reg_work, reg_todo);
1401
1402 static void queue_regulatory_request(struct regulatory_request *request)
1403 {
1404         if (isalpha(request->alpha2[0]))
1405                 request->alpha2[0] = toupper(request->alpha2[0]);
1406         if (isalpha(request->alpha2[1]))
1407                 request->alpha2[1] = toupper(request->alpha2[1]);
1408
1409         spin_lock(&reg_requests_lock);
1410         list_add_tail(&request->list, &reg_requests_list);
1411         spin_unlock(&reg_requests_lock);
1412
1413         schedule_work(&reg_work);
1414 }
1415
1416 /*
1417  * Core regulatory hint -- happens during cfg80211_init()
1418  * and when we restore regulatory settings.
1419  */
1420 static int regulatory_hint_core(const char *alpha2)
1421 {
1422         struct regulatory_request *request;
1423
1424         kfree(last_request);
1425         last_request = NULL;
1426
1427         request = kzalloc(sizeof(struct regulatory_request),
1428                           GFP_KERNEL);
1429         if (!request)
1430                 return -ENOMEM;
1431
1432         request->alpha2[0] = alpha2[0];
1433         request->alpha2[1] = alpha2[1];
1434         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1435
1436         /*
1437          * This ensures last_request is populated once modules
1438          * come swinging in and calling regulatory hints and
1439          * wiphy_apply_custom_regulatory().
1440          */
1441         reg_process_hint(request);
1442
1443         return 0;
1444 }
1445
1446 /* User hints */
1447 int regulatory_hint_user(const char *alpha2)
1448 {
1449         struct regulatory_request *request;
1450
1451         BUG_ON(!alpha2);
1452
1453         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1454         if (!request)
1455                 return -ENOMEM;
1456
1457         request->wiphy_idx = WIPHY_IDX_STALE;
1458         request->alpha2[0] = alpha2[0];
1459         request->alpha2[1] = alpha2[1];
1460         request->initiator = NL80211_REGDOM_SET_BY_USER;
1461
1462         queue_regulatory_request(request);
1463
1464         return 0;
1465 }
1466
1467 /* Driver hints */
1468 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1469 {
1470         struct regulatory_request *request;
1471
1472         BUG_ON(!alpha2);
1473         BUG_ON(!wiphy);
1474
1475         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1476         if (!request)
1477                 return -ENOMEM;
1478
1479         request->wiphy_idx = get_wiphy_idx(wiphy);
1480
1481         /* Must have registered wiphy first */
1482         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1483
1484         request->alpha2[0] = alpha2[0];
1485         request->alpha2[1] = alpha2[1];
1486         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1487
1488         queue_regulatory_request(request);
1489
1490         return 0;
1491 }
1492 EXPORT_SYMBOL(regulatory_hint);
1493
1494 /*
1495  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1496  * therefore cannot iterate over the rdev list here.
1497  */
1498 void regulatory_hint_11d(struct wiphy *wiphy,
1499                          enum ieee80211_band band,
1500                          u8 *country_ie,
1501                          u8 country_ie_len)
1502 {
1503         char alpha2[2];
1504         enum environment_cap env = ENVIRON_ANY;
1505         struct regulatory_request *request;
1506
1507         mutex_lock(&reg_mutex);
1508
1509         if (unlikely(!last_request))
1510                 goto out;
1511
1512         /* IE len must be evenly divisible by 2 */
1513         if (country_ie_len & 0x01)
1514                 goto out;
1515
1516         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1517                 goto out;
1518
1519         alpha2[0] = country_ie[0];
1520         alpha2[1] = country_ie[1];
1521
1522         if (country_ie[2] == 'I')
1523                 env = ENVIRON_INDOOR;
1524         else if (country_ie[2] == 'O')
1525                 env = ENVIRON_OUTDOOR;
1526
1527         /*
1528          * We will run this only upon a successful connection on cfg80211.
1529          * We leave conflict resolution to the workqueue, where can hold
1530          * cfg80211_mutex.
1531          */
1532         if (likely(last_request->initiator ==
1533             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1534             wiphy_idx_valid(last_request->wiphy_idx)))
1535                 goto out;
1536
1537         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1538         if (!request)
1539                 goto out;
1540
1541         request->wiphy_idx = get_wiphy_idx(wiphy);
1542         request->alpha2[0] = alpha2[0];
1543         request->alpha2[1] = alpha2[1];
1544         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1545         request->country_ie_env = env;
1546
1547         mutex_unlock(&reg_mutex);
1548
1549         queue_regulatory_request(request);
1550
1551         return;
1552
1553 out:
1554         mutex_unlock(&reg_mutex);
1555 }
1556
1557 static void restore_alpha2(char *alpha2, bool reset_user)
1558 {
1559         /* indicates there is no alpha2 to consider for restoration */
1560         alpha2[0] = '9';
1561         alpha2[1] = '7';
1562
1563         /* The user setting has precedence over the module parameter */
1564         if (is_user_regdom_saved()) {
1565                 /* Unless we're asked to ignore it and reset it */
1566                 if (reset_user) {
1567                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1568                                "including user preference\n");
1569                         user_alpha2[0] = '9';
1570                         user_alpha2[1] = '7';
1571
1572                         /*
1573                          * If we're ignoring user settings, we still need to
1574                          * check the module parameter to ensure we put things
1575                          * back as they were for a full restore.
1576                          */
1577                         if (!is_world_regdom(ieee80211_regdom)) {
1578                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1579                                        "module parameter ieee80211_regdom: %c%c\n",
1580                                        ieee80211_regdom[0],
1581                                        ieee80211_regdom[1]);
1582                                 alpha2[0] = ieee80211_regdom[0];
1583                                 alpha2[1] = ieee80211_regdom[1];
1584                         }
1585                 } else {
1586                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1587                                "while preserving user preference for: %c%c\n",
1588                                user_alpha2[0],
1589                                user_alpha2[1]);
1590                         alpha2[0] = user_alpha2[0];
1591                         alpha2[1] = user_alpha2[1];
1592                 }
1593         } else if (!is_world_regdom(ieee80211_regdom)) {
1594                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1595                        "module parameter ieee80211_regdom: %c%c\n",
1596                        ieee80211_regdom[0],
1597                        ieee80211_regdom[1]);
1598                 alpha2[0] = ieee80211_regdom[0];
1599                 alpha2[1] = ieee80211_regdom[1];
1600         } else
1601                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1602 }
1603
1604 /*
1605  * Restoring regulatory settings involves ingoring any
1606  * possibly stale country IE information and user regulatory
1607  * settings if so desired, this includes any beacon hints
1608  * learned as we could have traveled outside to another country
1609  * after disconnection. To restore regulatory settings we do
1610  * exactly what we did at bootup:
1611  *
1612  *   - send a core regulatory hint
1613  *   - send a user regulatory hint if applicable
1614  *
1615  * Device drivers that send a regulatory hint for a specific country
1616  * keep their own regulatory domain on wiphy->regd so that does does
1617  * not need to be remembered.
1618  */
1619 static void restore_regulatory_settings(bool reset_user)
1620 {
1621         char alpha2[2];
1622         struct reg_beacon *reg_beacon, *btmp;
1623
1624         mutex_lock(&cfg80211_mutex);
1625         mutex_lock(&reg_mutex);
1626
1627         reset_regdomains();
1628         restore_alpha2(alpha2, reset_user);
1629
1630         /* Clear beacon hints */
1631         spin_lock_bh(&reg_pending_beacons_lock);
1632         if (!list_empty(&reg_pending_beacons)) {
1633                 list_for_each_entry_safe(reg_beacon, btmp,
1634                                          &reg_pending_beacons, list) {
1635                         list_del(&reg_beacon->list);
1636                         kfree(reg_beacon);
1637                 }
1638         }
1639         spin_unlock_bh(&reg_pending_beacons_lock);
1640
1641         if (!list_empty(&reg_beacon_list)) {
1642                 list_for_each_entry_safe(reg_beacon, btmp,
1643                                          &reg_beacon_list, list) {
1644                         list_del(&reg_beacon->list);
1645                         kfree(reg_beacon);
1646                 }
1647         }
1648
1649         /* First restore to the basic regulatory settings */
1650         cfg80211_regdomain = cfg80211_world_regdom;
1651
1652         mutex_unlock(&reg_mutex);
1653         mutex_unlock(&cfg80211_mutex);
1654
1655         regulatory_hint_core(cfg80211_regdomain->alpha2);
1656
1657         /*
1658          * This restores the ieee80211_regdom module parameter
1659          * preference or the last user requested regulatory
1660          * settings, user regulatory settings takes precedence.
1661          */
1662         if (is_an_alpha2(alpha2))
1663                 regulatory_hint_user(user_alpha2);
1664 }
1665
1666
1667 void regulatory_hint_disconnect(void)
1668 {
1669         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1670                       "restore regulatory settings\n");
1671         restore_regulatory_settings(false);
1672 }
1673
1674 static bool freq_is_chan_12_13_14(u16 freq)
1675 {
1676         if (freq == ieee80211_channel_to_frequency(12) ||
1677             freq == ieee80211_channel_to_frequency(13) ||
1678             freq == ieee80211_channel_to_frequency(14))
1679                 return true;
1680         return false;
1681 }
1682
1683 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1684                                  struct ieee80211_channel *beacon_chan,
1685                                  gfp_t gfp)
1686 {
1687         struct reg_beacon *reg_beacon;
1688
1689         if (likely((beacon_chan->beacon_found ||
1690             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1691             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1692              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1693                 return 0;
1694
1695         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1696         if (!reg_beacon)
1697                 return -ENOMEM;
1698
1699         REG_DBG_PRINT("cfg80211: Found new beacon on "
1700                       "frequency: %d MHz (Ch %d) on %s\n",
1701                       beacon_chan->center_freq,
1702                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1703                       wiphy_name(wiphy));
1704
1705         memcpy(&reg_beacon->chan, beacon_chan,
1706                 sizeof(struct ieee80211_channel));
1707
1708
1709         /*
1710          * Since we can be called from BH or and non-BH context
1711          * we must use spin_lock_bh()
1712          */
1713         spin_lock_bh(&reg_pending_beacons_lock);
1714         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1715         spin_unlock_bh(&reg_pending_beacons_lock);
1716
1717         schedule_work(&reg_work);
1718
1719         return 0;
1720 }
1721
1722 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1723 {
1724         unsigned int i;
1725         const struct ieee80211_reg_rule *reg_rule = NULL;
1726         const struct ieee80211_freq_range *freq_range = NULL;
1727         const struct ieee80211_power_rule *power_rule = NULL;
1728
1729         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1730                 "(max_antenna_gain, max_eirp)\n");
1731
1732         for (i = 0; i < rd->n_reg_rules; i++) {
1733                 reg_rule = &rd->reg_rules[i];
1734                 freq_range = &reg_rule->freq_range;
1735                 power_rule = &reg_rule->power_rule;
1736
1737                 /*
1738                  * There may not be documentation for max antenna gain
1739                  * in certain regions
1740                  */
1741                 if (power_rule->max_antenna_gain)
1742                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1743                                 "(%d mBi, %d mBm)\n",
1744                                 freq_range->start_freq_khz,
1745                                 freq_range->end_freq_khz,
1746                                 freq_range->max_bandwidth_khz,
1747                                 power_rule->max_antenna_gain,
1748                                 power_rule->max_eirp);
1749                 else
1750                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1751                                 "(N/A, %d mBm)\n",
1752                                 freq_range->start_freq_khz,
1753                                 freq_range->end_freq_khz,
1754                                 freq_range->max_bandwidth_khz,
1755                                 power_rule->max_eirp);
1756         }
1757 }
1758
1759 static void print_regdomain(const struct ieee80211_regdomain *rd)
1760 {
1761
1762         if (is_intersected_alpha2(rd->alpha2)) {
1763
1764                 if (last_request->initiator ==
1765                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1766                         struct cfg80211_registered_device *rdev;
1767                         rdev = cfg80211_rdev_by_wiphy_idx(
1768                                 last_request->wiphy_idx);
1769                         if (rdev) {
1770                                 printk(KERN_INFO "cfg80211: Current regulatory "
1771                                         "domain updated by AP to: %c%c\n",
1772                                         rdev->country_ie_alpha2[0],
1773                                         rdev->country_ie_alpha2[1]);
1774                         } else
1775                                 printk(KERN_INFO "cfg80211: Current regulatory "
1776                                         "domain intersected:\n");
1777                 } else
1778                         printk(KERN_INFO "cfg80211: Current regulatory "
1779                                 "domain intersected:\n");
1780         } else if (is_world_regdom(rd->alpha2))
1781                 printk(KERN_INFO "cfg80211: World regulatory "
1782                         "domain updated:\n");
1783         else {
1784                 if (is_unknown_alpha2(rd->alpha2))
1785                         printk(KERN_INFO "cfg80211: Regulatory domain "
1786                                 "changed to driver built-in settings "
1787                                 "(unknown country)\n");
1788                 else
1789                         printk(KERN_INFO "cfg80211: Regulatory domain "
1790                                 "changed to country: %c%c\n",
1791                                 rd->alpha2[0], rd->alpha2[1]);
1792         }
1793         print_rd_rules(rd);
1794 }
1795
1796 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1797 {
1798         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1799                 rd->alpha2[0], rd->alpha2[1]);
1800         print_rd_rules(rd);
1801 }
1802
1803 /* Takes ownership of rd only if it doesn't fail */
1804 static int __set_regdom(const struct ieee80211_regdomain *rd)
1805 {
1806         const struct ieee80211_regdomain *intersected_rd = NULL;
1807         struct cfg80211_registered_device *rdev = NULL;
1808         struct wiphy *request_wiphy;
1809         /* Some basic sanity checks first */
1810
1811         if (is_world_regdom(rd->alpha2)) {
1812                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1813                         return -EINVAL;
1814                 update_world_regdomain(rd);
1815                 return 0;
1816         }
1817
1818         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1819                         !is_unknown_alpha2(rd->alpha2))
1820                 return -EINVAL;
1821
1822         if (!last_request)
1823                 return -EINVAL;
1824
1825         /*
1826          * Lets only bother proceeding on the same alpha2 if the current
1827          * rd is non static (it means CRDA was present and was used last)
1828          * and the pending request came in from a country IE
1829          */
1830         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1831                 /*
1832                  * If someone else asked us to change the rd lets only bother
1833                  * checking if the alpha2 changes if CRDA was already called
1834                  */
1835                 if (!regdom_changes(rd->alpha2))
1836                         return -EINVAL;
1837         }
1838
1839         /*
1840          * Now lets set the regulatory domain, update all driver channels
1841          * and finally inform them of what we have done, in case they want
1842          * to review or adjust their own settings based on their own
1843          * internal EEPROM data
1844          */
1845
1846         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1847                 return -EINVAL;
1848
1849         if (!is_valid_rd(rd)) {
1850                 printk(KERN_ERR "cfg80211: Invalid "
1851                         "regulatory domain detected:\n");
1852                 print_regdomain_info(rd);
1853                 return -EINVAL;
1854         }
1855
1856         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1857
1858         if (!last_request->intersect) {
1859                 int r;
1860
1861                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1862                         reset_regdomains();
1863                         cfg80211_regdomain = rd;
1864                         return 0;
1865                 }
1866
1867                 /*
1868                  * For a driver hint, lets copy the regulatory domain the
1869                  * driver wanted to the wiphy to deal with conflicts
1870                  */
1871
1872                 /*
1873                  * Userspace could have sent two replies with only
1874                  * one kernel request.
1875                  */
1876                 if (request_wiphy->regd)
1877                         return -EALREADY;
1878
1879                 r = reg_copy_regd(&request_wiphy->regd, rd);
1880                 if (r)
1881                         return r;
1882
1883                 reset_regdomains();
1884                 cfg80211_regdomain = rd;
1885                 return 0;
1886         }
1887
1888         /* Intersection requires a bit more work */
1889
1890         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891
1892                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1893                 if (!intersected_rd)
1894                         return -EINVAL;
1895
1896                 /*
1897                  * We can trash what CRDA provided now.
1898                  * However if a driver requested this specific regulatory
1899                  * domain we keep it for its private use
1900                  */
1901                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1902                         request_wiphy->regd = rd;
1903                 else
1904                         kfree(rd);
1905
1906                 rd = NULL;
1907
1908                 reset_regdomains();
1909                 cfg80211_regdomain = intersected_rd;
1910
1911                 return 0;
1912         }
1913
1914         if (!intersected_rd)
1915                 return -EINVAL;
1916
1917         rdev = wiphy_to_dev(request_wiphy);
1918
1919         rdev->country_ie_alpha2[0] = rd->alpha2[0];
1920         rdev->country_ie_alpha2[1] = rd->alpha2[1];
1921         rdev->env = last_request->country_ie_env;
1922
1923         BUG_ON(intersected_rd == rd);
1924
1925         kfree(rd);
1926         rd = NULL;
1927
1928         reset_regdomains();
1929         cfg80211_regdomain = intersected_rd;
1930
1931         return 0;
1932 }
1933
1934
1935 /*
1936  * Use this call to set the current regulatory domain. Conflicts with
1937  * multiple drivers can be ironed out later. Caller must've already
1938  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1939  */
1940 int set_regdom(const struct ieee80211_regdomain *rd)
1941 {
1942         int r;
1943
1944         assert_cfg80211_lock();
1945
1946         mutex_lock(&reg_mutex);
1947
1948         /* Note that this doesn't update the wiphys, this is done below */
1949         r = __set_regdom(rd);
1950         if (r) {
1951                 kfree(rd);
1952                 mutex_unlock(&reg_mutex);
1953                 return r;
1954         }
1955
1956         /* This would make this whole thing pointless */
1957         if (!last_request->intersect)
1958                 BUG_ON(rd != cfg80211_regdomain);
1959
1960         /* update all wiphys now with the new established regulatory domain */
1961         update_all_wiphy_regulatory(last_request->initiator);
1962
1963         print_regdomain(cfg80211_regdomain);
1964
1965         nl80211_send_reg_change_event(last_request);
1966
1967         mutex_unlock(&reg_mutex);
1968
1969         return r;
1970 }
1971
1972 /* Caller must hold cfg80211_mutex */
1973 void reg_device_remove(struct wiphy *wiphy)
1974 {
1975         struct wiphy *request_wiphy = NULL;
1976
1977         assert_cfg80211_lock();
1978
1979         mutex_lock(&reg_mutex);
1980
1981         kfree(wiphy->regd);
1982
1983         if (last_request)
1984                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1985
1986         if (!request_wiphy || request_wiphy != wiphy)
1987                 goto out;
1988
1989         last_request->wiphy_idx = WIPHY_IDX_STALE;
1990         last_request->country_ie_env = ENVIRON_ANY;
1991 out:
1992         mutex_unlock(&reg_mutex);
1993 }
1994
1995 int __init regulatory_init(void)
1996 {
1997         int err = 0;
1998
1999         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2000         if (IS_ERR(reg_pdev))
2001                 return PTR_ERR(reg_pdev);
2002
2003         spin_lock_init(&reg_requests_lock);
2004         spin_lock_init(&reg_pending_beacons_lock);
2005
2006         cfg80211_regdomain = cfg80211_world_regdom;
2007
2008         user_alpha2[0] = '9';
2009         user_alpha2[1] = '7';
2010
2011         /* We always try to get an update for the static regdomain */
2012         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2013         if (err) {
2014                 if (err == -ENOMEM)
2015                         return err;
2016                 /*
2017                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2018                  * memory which is handled and propagated appropriately above
2019                  * but it can also fail during a netlink_broadcast() or during
2020                  * early boot for call_usermodehelper(). For now treat these
2021                  * errors as non-fatal.
2022                  */
2023                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2024                         "to call CRDA during init");
2025 #ifdef CONFIG_CFG80211_REG_DEBUG
2026                 /* We want to find out exactly why when debugging */
2027                 WARN_ON(err);
2028 #endif
2029         }
2030
2031         /*
2032          * Finally, if the user set the module parameter treat it
2033          * as a user hint.
2034          */
2035         if (!is_world_regdom(ieee80211_regdom))
2036                 regulatory_hint_user(ieee80211_regdom);
2037
2038         return 0;
2039 }
2040
2041 void /* __init_or_exit */ regulatory_exit(void)
2042 {
2043         struct regulatory_request *reg_request, *tmp;
2044         struct reg_beacon *reg_beacon, *btmp;
2045
2046         cancel_work_sync(&reg_work);
2047
2048         mutex_lock(&cfg80211_mutex);
2049         mutex_lock(&reg_mutex);
2050
2051         reset_regdomains();
2052
2053         kfree(last_request);
2054
2055         platform_device_unregister(reg_pdev);
2056
2057         spin_lock_bh(&reg_pending_beacons_lock);
2058         if (!list_empty(&reg_pending_beacons)) {
2059                 list_for_each_entry_safe(reg_beacon, btmp,
2060                                          &reg_pending_beacons, list) {
2061                         list_del(&reg_beacon->list);
2062                         kfree(reg_beacon);
2063                 }
2064         }
2065         spin_unlock_bh(&reg_pending_beacons_lock);
2066
2067         if (!list_empty(&reg_beacon_list)) {
2068                 list_for_each_entry_safe(reg_beacon, btmp,
2069                                          &reg_beacon_list, list) {
2070                         list_del(&reg_beacon->list);
2071                         kfree(reg_beacon);
2072                 }
2073         }
2074
2075         spin_lock(&reg_requests_lock);
2076         if (!list_empty(&reg_requests_list)) {
2077                 list_for_each_entry_safe(reg_request, tmp,
2078                                          &reg_requests_list, list) {
2079                         list_del(&reg_request->list);
2080                         kfree(reg_request);
2081                 }
2082         }
2083         spin_unlock(&reg_requests_lock);
2084
2085         mutex_unlock(&reg_mutex);
2086         mutex_unlock(&cfg80211_mutex);
2087 }