]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/jbd/journal.c
e561176518260c23a595e7b6439d2036ebbf9148
[net-next-2.6.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/page.h>
43
44 EXPORT_SYMBOL(journal_start);
45 EXPORT_SYMBOL(journal_restart);
46 EXPORT_SYMBOL(journal_extend);
47 EXPORT_SYMBOL(journal_stop);
48 EXPORT_SYMBOL(journal_lock_updates);
49 EXPORT_SYMBOL(journal_unlock_updates);
50 EXPORT_SYMBOL(journal_get_write_access);
51 EXPORT_SYMBOL(journal_get_create_access);
52 EXPORT_SYMBOL(journal_get_undo_access);
53 EXPORT_SYMBOL(journal_dirty_data);
54 EXPORT_SYMBOL(journal_dirty_metadata);
55 EXPORT_SYMBOL(journal_release_buffer);
56 EXPORT_SYMBOL(journal_forget);
57 #if 0
58 EXPORT_SYMBOL(journal_sync_buffer);
59 #endif
60 EXPORT_SYMBOL(journal_flush);
61 EXPORT_SYMBOL(journal_revoke);
62
63 EXPORT_SYMBOL(journal_init_dev);
64 EXPORT_SYMBOL(journal_init_inode);
65 EXPORT_SYMBOL(journal_update_format);
66 EXPORT_SYMBOL(journal_check_used_features);
67 EXPORT_SYMBOL(journal_check_available_features);
68 EXPORT_SYMBOL(journal_set_features);
69 EXPORT_SYMBOL(journal_create);
70 EXPORT_SYMBOL(journal_load);
71 EXPORT_SYMBOL(journal_destroy);
72 EXPORT_SYMBOL(journal_abort);
73 EXPORT_SYMBOL(journal_errno);
74 EXPORT_SYMBOL(journal_ack_err);
75 EXPORT_SYMBOL(journal_clear_err);
76 EXPORT_SYMBOL(log_wait_commit);
77 EXPORT_SYMBOL(log_start_commit);
78 EXPORT_SYMBOL(journal_start_commit);
79 EXPORT_SYMBOL(journal_force_commit_nested);
80 EXPORT_SYMBOL(journal_wipe);
81 EXPORT_SYMBOL(journal_blocks_per_page);
82 EXPORT_SYMBOL(journal_invalidatepage);
83 EXPORT_SYMBOL(journal_try_to_free_buffers);
84 EXPORT_SYMBOL(journal_force_commit);
85
86 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
87 static void __journal_abort_soft (journal_t *journal, int errno);
88 static const char *journal_dev_name(journal_t *journal, char *buffer);
89
90 /*
91  * Helper function used to manage commit timeouts
92  */
93
94 static void commit_timeout(unsigned long __data)
95 {
96         struct task_struct * p = (struct task_struct *) __data;
97
98         wake_up_process(p);
99 }
100
101 /*
102  * kjournald: The main thread function used to manage a logging device
103  * journal.
104  *
105  * This kernel thread is responsible for two things:
106  *
107  * 1) COMMIT:  Every so often we need to commit the current state of the
108  *    filesystem to disk.  The journal thread is responsible for writing
109  *    all of the metadata buffers to disk.
110  *
111  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
112  *    of the data in that part of the log has been rewritten elsewhere on
113  *    the disk.  Flushing these old buffers to reclaim space in the log is
114  *    known as checkpointing, and this thread is responsible for that job.
115  */
116
117 static int kjournald(void *arg)
118 {
119         journal_t *journal = arg;
120         transaction_t *transaction;
121
122         /*
123          * Set up an interval timer which can be used to trigger a commit wakeup
124          * after the commit interval expires
125          */
126         setup_timer(&journal->j_commit_timer, commit_timeout,
127                         (unsigned long)current);
128
129         /* Record that the journal thread is running */
130         journal->j_task = current;
131         wake_up(&journal->j_wait_done_commit);
132
133         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
134                         journal->j_commit_interval / HZ);
135
136         /*
137          * And now, wait forever for commit wakeup events.
138          */
139         spin_lock(&journal->j_state_lock);
140
141 loop:
142         if (journal->j_flags & JFS_UNMOUNT)
143                 goto end_loop;
144
145         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
146                 journal->j_commit_sequence, journal->j_commit_request);
147
148         if (journal->j_commit_sequence != journal->j_commit_request) {
149                 jbd_debug(1, "OK, requests differ\n");
150                 spin_unlock(&journal->j_state_lock);
151                 del_timer_sync(&journal->j_commit_timer);
152                 journal_commit_transaction(journal);
153                 spin_lock(&journal->j_state_lock);
154                 goto loop;
155         }
156
157         wake_up(&journal->j_wait_done_commit);
158         if (freezing(current)) {
159                 /*
160                  * The simpler the better. Flushing journal isn't a
161                  * good idea, because that depends on threads that may
162                  * be already stopped.
163                  */
164                 jbd_debug(1, "Now suspending kjournald\n");
165                 spin_unlock(&journal->j_state_lock);
166                 refrigerator();
167                 spin_lock(&journal->j_state_lock);
168         } else {
169                 /*
170                  * We assume on resume that commits are already there,
171                  * so we don't sleep
172                  */
173                 DEFINE_WAIT(wait);
174                 int should_sleep = 1;
175
176                 prepare_to_wait(&journal->j_wait_commit, &wait,
177                                 TASK_INTERRUPTIBLE);
178                 if (journal->j_commit_sequence != journal->j_commit_request)
179                         should_sleep = 0;
180                 transaction = journal->j_running_transaction;
181                 if (transaction && time_after_eq(jiffies,
182                                                 transaction->t_expires))
183                         should_sleep = 0;
184                 if (journal->j_flags & JFS_UNMOUNT)
185                         should_sleep = 0;
186                 if (should_sleep) {
187                         spin_unlock(&journal->j_state_lock);
188                         schedule();
189                         spin_lock(&journal->j_state_lock);
190                 }
191                 finish_wait(&journal->j_wait_commit, &wait);
192         }
193
194         jbd_debug(1, "kjournald wakes\n");
195
196         /*
197          * Were we woken up by a commit wakeup event?
198          */
199         transaction = journal->j_running_transaction;
200         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
201                 journal->j_commit_request = transaction->t_tid;
202                 jbd_debug(1, "woke because of timeout\n");
203         }
204         goto loop;
205
206 end_loop:
207         spin_unlock(&journal->j_state_lock);
208         del_timer_sync(&journal->j_commit_timer);
209         journal->j_task = NULL;
210         wake_up(&journal->j_wait_done_commit);
211         jbd_debug(1, "Journal thread exiting.\n");
212         return 0;
213 }
214
215 static int journal_start_thread(journal_t *journal)
216 {
217         struct task_struct *t;
218
219         t = kthread_run(kjournald, journal, "kjournald");
220         if (IS_ERR(t))
221                 return PTR_ERR(t);
222
223         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
224         return 0;
225 }
226
227 static void journal_kill_thread(journal_t *journal)
228 {
229         spin_lock(&journal->j_state_lock);
230         journal->j_flags |= JFS_UNMOUNT;
231
232         while (journal->j_task) {
233                 wake_up(&journal->j_wait_commit);
234                 spin_unlock(&journal->j_state_lock);
235                 wait_event(journal->j_wait_done_commit,
236                                 journal->j_task == NULL);
237                 spin_lock(&journal->j_state_lock);
238         }
239         spin_unlock(&journal->j_state_lock);
240 }
241
242 /*
243  * journal_write_metadata_buffer: write a metadata buffer to the journal.
244  *
245  * Writes a metadata buffer to a given disk block.  The actual IO is not
246  * performed but a new buffer_head is constructed which labels the data
247  * to be written with the correct destination disk block.
248  *
249  * Any magic-number escaping which needs to be done will cause a
250  * copy-out here.  If the buffer happens to start with the
251  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
252  * magic number is only written to the log for descripter blocks.  In
253  * this case, we copy the data and replace the first word with 0, and we
254  * return a result code which indicates that this buffer needs to be
255  * marked as an escaped buffer in the corresponding log descriptor
256  * block.  The missing word can then be restored when the block is read
257  * during recovery.
258  *
259  * If the source buffer has already been modified by a new transaction
260  * since we took the last commit snapshot, we use the frozen copy of
261  * that data for IO.  If we end up using the existing buffer_head's data
262  * for the write, then we *have* to lock the buffer to prevent anyone
263  * else from using and possibly modifying it while the IO is in
264  * progress.
265  *
266  * The function returns a pointer to the buffer_heads to be used for IO.
267  *
268  * We assume that the journal has already been locked in this function.
269  *
270  * Return value:
271  *  <0: Error
272  * >=0: Finished OK
273  *
274  * On success:
275  * Bit 0 set == escape performed on the data
276  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
277  */
278
279 int journal_write_metadata_buffer(transaction_t *transaction,
280                                   struct journal_head  *jh_in,
281                                   struct journal_head **jh_out,
282                                   unsigned int blocknr)
283 {
284         int need_copy_out = 0;
285         int done_copy_out = 0;
286         int do_escape = 0;
287         char *mapped_data;
288         struct buffer_head *new_bh;
289         struct journal_head *new_jh;
290         struct page *new_page;
291         unsigned int new_offset;
292         struct buffer_head *bh_in = jh2bh(jh_in);
293         journal_t *journal = transaction->t_journal;
294
295         /*
296          * The buffer really shouldn't be locked: only the current committing
297          * transaction is allowed to write it, so nobody else is allowed
298          * to do any IO.
299          *
300          * akpm: except if we're journalling data, and write() output is
301          * also part of a shared mapping, and another thread has
302          * decided to launch a writepage() against this buffer.
303          */
304         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
305
306         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
307         /* keep subsequent assertions sane */
308         new_bh->b_state = 0;
309         init_buffer(new_bh, NULL, NULL);
310         atomic_set(&new_bh->b_count, 1);
311         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
312
313         /*
314          * If a new transaction has already done a buffer copy-out, then
315          * we use that version of the data for the commit.
316          */
317         jbd_lock_bh_state(bh_in);
318 repeat:
319         if (jh_in->b_frozen_data) {
320                 done_copy_out = 1;
321                 new_page = virt_to_page(jh_in->b_frozen_data);
322                 new_offset = offset_in_page(jh_in->b_frozen_data);
323         } else {
324                 new_page = jh2bh(jh_in)->b_page;
325                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
326         }
327
328         mapped_data = kmap_atomic(new_page, KM_USER0);
329         /*
330          * Check for escaping
331          */
332         if (*((__be32 *)(mapped_data + new_offset)) ==
333                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
334                 need_copy_out = 1;
335                 do_escape = 1;
336         }
337         kunmap_atomic(mapped_data, KM_USER0);
338
339         /*
340          * Do we need to do a data copy?
341          */
342         if (need_copy_out && !done_copy_out) {
343                 char *tmp;
344
345                 jbd_unlock_bh_state(bh_in);
346                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
347                 jbd_lock_bh_state(bh_in);
348                 if (jh_in->b_frozen_data) {
349                         jbd_free(tmp, bh_in->b_size);
350                         goto repeat;
351                 }
352
353                 jh_in->b_frozen_data = tmp;
354                 mapped_data = kmap_atomic(new_page, KM_USER0);
355                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
356                 kunmap_atomic(mapped_data, KM_USER0);
357
358                 new_page = virt_to_page(tmp);
359                 new_offset = offset_in_page(tmp);
360                 done_copy_out = 1;
361         }
362
363         /*
364          * Did we need to do an escaping?  Now we've done all the
365          * copying, we can finally do so.
366          */
367         if (do_escape) {
368                 mapped_data = kmap_atomic(new_page, KM_USER0);
369                 *((unsigned int *)(mapped_data + new_offset)) = 0;
370                 kunmap_atomic(mapped_data, KM_USER0);
371         }
372
373         set_bh_page(new_bh, new_page, new_offset);
374         new_jh->b_transaction = NULL;
375         new_bh->b_size = jh2bh(jh_in)->b_size;
376         new_bh->b_bdev = transaction->t_journal->j_dev;
377         new_bh->b_blocknr = blocknr;
378         set_buffer_mapped(new_bh);
379         set_buffer_dirty(new_bh);
380
381         *jh_out = new_jh;
382
383         /*
384          * The to-be-written buffer needs to get moved to the io queue,
385          * and the original buffer whose contents we are shadowing or
386          * copying is moved to the transaction's shadow queue.
387          */
388         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
389         spin_lock(&journal->j_list_lock);
390         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
391         spin_unlock(&journal->j_list_lock);
392         jbd_unlock_bh_state(bh_in);
393
394         JBUFFER_TRACE(new_jh, "file as BJ_IO");
395         journal_file_buffer(new_jh, transaction, BJ_IO);
396
397         return do_escape | (done_copy_out << 1);
398 }
399
400 /*
401  * Allocation code for the journal file.  Manage the space left in the
402  * journal, so that we can begin checkpointing when appropriate.
403  */
404
405 /*
406  * __log_space_left: Return the number of free blocks left in the journal.
407  *
408  * Called with the journal already locked.
409  *
410  * Called under j_state_lock
411  */
412
413 int __log_space_left(journal_t *journal)
414 {
415         int left = journal->j_free;
416
417         assert_spin_locked(&journal->j_state_lock);
418
419         /*
420          * Be pessimistic here about the number of those free blocks which
421          * might be required for log descriptor control blocks.
422          */
423
424 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
425
426         left -= MIN_LOG_RESERVED_BLOCKS;
427
428         if (left <= 0)
429                 return 0;
430         left -= (left >> 3);
431         return left;
432 }
433
434 /*
435  * Called under j_state_lock.  Returns true if a transaction commit was started.
436  */
437 int __log_start_commit(journal_t *journal, tid_t target)
438 {
439         /*
440          * Are we already doing a recent enough commit?
441          */
442         if (!tid_geq(journal->j_commit_request, target)) {
443                 /*
444                  * We want a new commit: OK, mark the request and wakup the
445                  * commit thread.  We do _not_ do the commit ourselves.
446                  */
447
448                 journal->j_commit_request = target;
449                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
450                           journal->j_commit_request,
451                           journal->j_commit_sequence);
452                 wake_up(&journal->j_wait_commit);
453                 return 1;
454         }
455         return 0;
456 }
457
458 int log_start_commit(journal_t *journal, tid_t tid)
459 {
460         int ret;
461
462         spin_lock(&journal->j_state_lock);
463         ret = __log_start_commit(journal, tid);
464         spin_unlock(&journal->j_state_lock);
465         return ret;
466 }
467
468 /*
469  * Force and wait upon a commit if the calling process is not within
470  * transaction.  This is used for forcing out undo-protected data which contains
471  * bitmaps, when the fs is running out of space.
472  *
473  * We can only force the running transaction if we don't have an active handle;
474  * otherwise, we will deadlock.
475  *
476  * Returns true if a transaction was started.
477  */
478 int journal_force_commit_nested(journal_t *journal)
479 {
480         transaction_t *transaction = NULL;
481         tid_t tid;
482
483         spin_lock(&journal->j_state_lock);
484         if (journal->j_running_transaction && !current->journal_info) {
485                 transaction = journal->j_running_transaction;
486                 __log_start_commit(journal, transaction->t_tid);
487         } else if (journal->j_committing_transaction)
488                 transaction = journal->j_committing_transaction;
489
490         if (!transaction) {
491                 spin_unlock(&journal->j_state_lock);
492                 return 0;       /* Nothing to retry */
493         }
494
495         tid = transaction->t_tid;
496         spin_unlock(&journal->j_state_lock);
497         log_wait_commit(journal, tid);
498         return 1;
499 }
500
501 /*
502  * Start a commit of the current running transaction (if any).  Returns true
503  * if a transaction is going to be committed (or is currently already
504  * committing), and fills its tid in at *ptid
505  */
506 int journal_start_commit(journal_t *journal, tid_t *ptid)
507 {
508         int ret = 0;
509
510         spin_lock(&journal->j_state_lock);
511         if (journal->j_running_transaction) {
512                 tid_t tid = journal->j_running_transaction->t_tid;
513
514                 __log_start_commit(journal, tid);
515                 /* There's a running transaction and we've just made sure
516                  * it's commit has been scheduled. */
517                 if (ptid)
518                         *ptid = tid;
519                 ret = 1;
520         } else if (journal->j_committing_transaction) {
521                 /*
522                  * If ext3_write_super() recently started a commit, then we
523                  * have to wait for completion of that transaction
524                  */
525                 if (ptid)
526                         *ptid = journal->j_committing_transaction->t_tid;
527                 ret = 1;
528         }
529         spin_unlock(&journal->j_state_lock);
530         return ret;
531 }
532
533 /*
534  * Wait for a specified commit to complete.
535  * The caller may not hold the journal lock.
536  */
537 int log_wait_commit(journal_t *journal, tid_t tid)
538 {
539         int err = 0;
540
541 #ifdef CONFIG_JBD_DEBUG
542         spin_lock(&journal->j_state_lock);
543         if (!tid_geq(journal->j_commit_request, tid)) {
544                 printk(KERN_EMERG
545                        "%s: error: j_commit_request=%d, tid=%d\n",
546                        __func__, journal->j_commit_request, tid);
547         }
548         spin_unlock(&journal->j_state_lock);
549 #endif
550         spin_lock(&journal->j_state_lock);
551         while (tid_gt(tid, journal->j_commit_sequence)) {
552                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
553                                   tid, journal->j_commit_sequence);
554                 wake_up(&journal->j_wait_commit);
555                 spin_unlock(&journal->j_state_lock);
556                 wait_event(journal->j_wait_done_commit,
557                                 !tid_gt(tid, journal->j_commit_sequence));
558                 spin_lock(&journal->j_state_lock);
559         }
560         spin_unlock(&journal->j_state_lock);
561
562         if (unlikely(is_journal_aborted(journal))) {
563                 printk(KERN_EMERG "journal commit I/O error\n");
564                 err = -EIO;
565         }
566         return err;
567 }
568
569 /*
570  * Return 1 if a given transaction has not yet sent barrier request
571  * connected with a transaction commit. If 0 is returned, transaction
572  * may or may not have sent the barrier. Used to avoid sending barrier
573  * twice in common cases.
574  */
575 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
576 {
577         int ret = 0;
578         transaction_t *commit_trans;
579
580         if (!(journal->j_flags & JFS_BARRIER))
581                 return 0;
582         spin_lock(&journal->j_state_lock);
583         /* Transaction already committed? */
584         if (tid_geq(journal->j_commit_sequence, tid))
585                 goto out;
586         /*
587          * Transaction is being committed and we already proceeded to
588          * writing commit record?
589          */
590         commit_trans = journal->j_committing_transaction;
591         if (commit_trans && commit_trans->t_tid == tid &&
592             commit_trans->t_state >= T_COMMIT_RECORD)
593                 goto out;
594         ret = 1;
595 out:
596         spin_unlock(&journal->j_state_lock);
597         return ret;
598 }
599 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
600
601 /*
602  * Log buffer allocation routines:
603  */
604
605 int journal_next_log_block(journal_t *journal, unsigned int *retp)
606 {
607         unsigned int blocknr;
608
609         spin_lock(&journal->j_state_lock);
610         J_ASSERT(journal->j_free > 1);
611
612         blocknr = journal->j_head;
613         journal->j_head++;
614         journal->j_free--;
615         if (journal->j_head == journal->j_last)
616                 journal->j_head = journal->j_first;
617         spin_unlock(&journal->j_state_lock);
618         return journal_bmap(journal, blocknr, retp);
619 }
620
621 /*
622  * Conversion of logical to physical block numbers for the journal
623  *
624  * On external journals the journal blocks are identity-mapped, so
625  * this is a no-op.  If needed, we can use j_blk_offset - everything is
626  * ready.
627  */
628 int journal_bmap(journal_t *journal, unsigned int blocknr,
629                  unsigned int *retp)
630 {
631         int err = 0;
632         unsigned int ret;
633
634         if (journal->j_inode) {
635                 ret = bmap(journal->j_inode, blocknr);
636                 if (ret)
637                         *retp = ret;
638                 else {
639                         char b[BDEVNAME_SIZE];
640
641                         printk(KERN_ALERT "%s: journal block not found "
642                                         "at offset %u on %s\n",
643                                 __func__,
644                                 blocknr,
645                                 bdevname(journal->j_dev, b));
646                         err = -EIO;
647                         __journal_abort_soft(journal, err);
648                 }
649         } else {
650                 *retp = blocknr; /* +journal->j_blk_offset */
651         }
652         return err;
653 }
654
655 /*
656  * We play buffer_head aliasing tricks to write data/metadata blocks to
657  * the journal without copying their contents, but for journal
658  * descriptor blocks we do need to generate bona fide buffers.
659  *
660  * After the caller of journal_get_descriptor_buffer() has finished modifying
661  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
662  * But we don't bother doing that, so there will be coherency problems with
663  * mmaps of blockdevs which hold live JBD-controlled filesystems.
664  */
665 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
666 {
667         struct buffer_head *bh;
668         unsigned int blocknr;
669         int err;
670
671         err = journal_next_log_block(journal, &blocknr);
672
673         if (err)
674                 return NULL;
675
676         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
677         if (!bh)
678                 return NULL;
679         lock_buffer(bh);
680         memset(bh->b_data, 0, journal->j_blocksize);
681         set_buffer_uptodate(bh);
682         unlock_buffer(bh);
683         BUFFER_TRACE(bh, "return this buffer");
684         return journal_add_journal_head(bh);
685 }
686
687 /*
688  * Management for journal control blocks: functions to create and
689  * destroy journal_t structures, and to initialise and read existing
690  * journal blocks from disk.  */
691
692 /* First: create and setup a journal_t object in memory.  We initialise
693  * very few fields yet: that has to wait until we have created the
694  * journal structures from from scratch, or loaded them from disk. */
695
696 static journal_t * journal_init_common (void)
697 {
698         journal_t *journal;
699         int err;
700
701         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
702         if (!journal)
703                 goto fail;
704
705         init_waitqueue_head(&journal->j_wait_transaction_locked);
706         init_waitqueue_head(&journal->j_wait_logspace);
707         init_waitqueue_head(&journal->j_wait_done_commit);
708         init_waitqueue_head(&journal->j_wait_checkpoint);
709         init_waitqueue_head(&journal->j_wait_commit);
710         init_waitqueue_head(&journal->j_wait_updates);
711         mutex_init(&journal->j_barrier);
712         mutex_init(&journal->j_checkpoint_mutex);
713         spin_lock_init(&journal->j_revoke_lock);
714         spin_lock_init(&journal->j_list_lock);
715         spin_lock_init(&journal->j_state_lock);
716
717         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
718
719         /* The journal is marked for error until we succeed with recovery! */
720         journal->j_flags = JFS_ABORT;
721
722         /* Set up a default-sized revoke table for the new mount. */
723         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
724         if (err) {
725                 kfree(journal);
726                 goto fail;
727         }
728         return journal;
729 fail:
730         return NULL;
731 }
732
733 /* journal_init_dev and journal_init_inode:
734  *
735  * Create a journal structure assigned some fixed set of disk blocks to
736  * the journal.  We don't actually touch those disk blocks yet, but we
737  * need to set up all of the mapping information to tell the journaling
738  * system where the journal blocks are.
739  *
740  */
741
742 /**
743  *  journal_t * journal_init_dev() - creates and initialises a journal structure
744  *  @bdev: Block device on which to create the journal
745  *  @fs_dev: Device which hold journalled filesystem for this journal.
746  *  @start: Block nr Start of journal.
747  *  @len:  Length of the journal in blocks.
748  *  @blocksize: blocksize of journalling device
749  *
750  *  Returns: a newly created journal_t *
751  *
752  *  journal_init_dev creates a journal which maps a fixed contiguous
753  *  range of blocks on an arbitrary block device.
754  *
755  */
756 journal_t * journal_init_dev(struct block_device *bdev,
757                         struct block_device *fs_dev,
758                         int start, int len, int blocksize)
759 {
760         journal_t *journal = journal_init_common();
761         struct buffer_head *bh;
762         int n;
763
764         if (!journal)
765                 return NULL;
766
767         /* journal descriptor can store up to n blocks -bzzz */
768         journal->j_blocksize = blocksize;
769         n = journal->j_blocksize / sizeof(journal_block_tag_t);
770         journal->j_wbufsize = n;
771         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
772         if (!journal->j_wbuf) {
773                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
774                         __func__);
775                 goto out_err;
776         }
777         journal->j_dev = bdev;
778         journal->j_fs_dev = fs_dev;
779         journal->j_blk_offset = start;
780         journal->j_maxlen = len;
781
782         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
783         if (!bh) {
784                 printk(KERN_ERR
785                        "%s: Cannot get buffer for journal superblock\n",
786                        __func__);
787                 goto out_err;
788         }
789         journal->j_sb_buffer = bh;
790         journal->j_superblock = (journal_superblock_t *)bh->b_data;
791
792         return journal;
793 out_err:
794         kfree(journal->j_wbuf);
795         kfree(journal);
796         return NULL;
797 }
798
799 /**
800  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
801  *  @inode: An inode to create the journal in
802  *
803  * journal_init_inode creates a journal which maps an on-disk inode as
804  * the journal.  The inode must exist already, must support bmap() and
805  * must have all data blocks preallocated.
806  */
807 journal_t * journal_init_inode (struct inode *inode)
808 {
809         struct buffer_head *bh;
810         journal_t *journal = journal_init_common();
811         int err;
812         int n;
813         unsigned int blocknr;
814
815         if (!journal)
816                 return NULL;
817
818         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
819         journal->j_inode = inode;
820         jbd_debug(1,
821                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
822                   journal, inode->i_sb->s_id, inode->i_ino,
823                   (long long) inode->i_size,
824                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
825
826         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
827         journal->j_blocksize = inode->i_sb->s_blocksize;
828
829         /* journal descriptor can store up to n blocks -bzzz */
830         n = journal->j_blocksize / sizeof(journal_block_tag_t);
831         journal->j_wbufsize = n;
832         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
833         if (!journal->j_wbuf) {
834                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
835                         __func__);
836                 goto out_err;
837         }
838
839         err = journal_bmap(journal, 0, &blocknr);
840         /* If that failed, give up */
841         if (err) {
842                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
843                        __func__);
844                 goto out_err;
845         }
846
847         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
848         if (!bh) {
849                 printk(KERN_ERR
850                        "%s: Cannot get buffer for journal superblock\n",
851                        __func__);
852                 goto out_err;
853         }
854         journal->j_sb_buffer = bh;
855         journal->j_superblock = (journal_superblock_t *)bh->b_data;
856
857         return journal;
858 out_err:
859         kfree(journal->j_wbuf);
860         kfree(journal);
861         return NULL;
862 }
863
864 /*
865  * If the journal init or create aborts, we need to mark the journal
866  * superblock as being NULL to prevent the journal destroy from writing
867  * back a bogus superblock.
868  */
869 static void journal_fail_superblock (journal_t *journal)
870 {
871         struct buffer_head *bh = journal->j_sb_buffer;
872         brelse(bh);
873         journal->j_sb_buffer = NULL;
874 }
875
876 /*
877  * Given a journal_t structure, initialise the various fields for
878  * startup of a new journaling session.  We use this both when creating
879  * a journal, and after recovering an old journal to reset it for
880  * subsequent use.
881  */
882
883 static int journal_reset(journal_t *journal)
884 {
885         journal_superblock_t *sb = journal->j_superblock;
886         unsigned int first, last;
887
888         first = be32_to_cpu(sb->s_first);
889         last = be32_to_cpu(sb->s_maxlen);
890         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
891                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
892                        first, last);
893                 journal_fail_superblock(journal);
894                 return -EINVAL;
895         }
896
897         journal->j_first = first;
898         journal->j_last = last;
899
900         journal->j_head = first;
901         journal->j_tail = first;
902         journal->j_free = last - first;
903
904         journal->j_tail_sequence = journal->j_transaction_sequence;
905         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
906         journal->j_commit_request = journal->j_commit_sequence;
907
908         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
909
910         /* Add the dynamic fields and write it to disk. */
911         journal_update_superblock(journal, 1);
912         return journal_start_thread(journal);
913 }
914
915 /**
916  * int journal_create() - Initialise the new journal file
917  * @journal: Journal to create. This structure must have been initialised
918  *
919  * Given a journal_t structure which tells us which disk blocks we can
920  * use, create a new journal superblock and initialise all of the
921  * journal fields from scratch.
922  **/
923 int journal_create(journal_t *journal)
924 {
925         unsigned int blocknr;
926         struct buffer_head *bh;
927         journal_superblock_t *sb;
928         int i, err;
929
930         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
931                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
932                         journal->j_maxlen);
933                 journal_fail_superblock(journal);
934                 return -EINVAL;
935         }
936
937         if (journal->j_inode == NULL) {
938                 /*
939                  * We don't know what block to start at!
940                  */
941                 printk(KERN_EMERG
942                        "%s: creation of journal on external device!\n",
943                        __func__);
944                 BUG();
945         }
946
947         /* Zero out the entire journal on disk.  We cannot afford to
948            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
949         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
950         for (i = 0; i < journal->j_maxlen; i++) {
951                 err = journal_bmap(journal, i, &blocknr);
952                 if (err)
953                         return err;
954                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
955                 lock_buffer(bh);
956                 memset (bh->b_data, 0, journal->j_blocksize);
957                 BUFFER_TRACE(bh, "marking dirty");
958                 mark_buffer_dirty(bh);
959                 BUFFER_TRACE(bh, "marking uptodate");
960                 set_buffer_uptodate(bh);
961                 unlock_buffer(bh);
962                 __brelse(bh);
963         }
964
965         sync_blockdev(journal->j_dev);
966         jbd_debug(1, "JBD: journal cleared.\n");
967
968         /* OK, fill in the initial static fields in the new superblock */
969         sb = journal->j_superblock;
970
971         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
972         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
973
974         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
975         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
976         sb->s_first     = cpu_to_be32(1);
977
978         journal->j_transaction_sequence = 1;
979
980         journal->j_flags &= ~JFS_ABORT;
981         journal->j_format_version = 2;
982
983         return journal_reset(journal);
984 }
985
986 /**
987  * void journal_update_superblock() - Update journal sb on disk.
988  * @journal: The journal to update.
989  * @wait: Set to '0' if you don't want to wait for IO completion.
990  *
991  * Update a journal's dynamic superblock fields and write it to disk,
992  * optionally waiting for the IO to complete.
993  */
994 void journal_update_superblock(journal_t *journal, int wait)
995 {
996         journal_superblock_t *sb = journal->j_superblock;
997         struct buffer_head *bh = journal->j_sb_buffer;
998
999         /*
1000          * As a special case, if the on-disk copy is already marked as needing
1001          * no recovery (s_start == 0) and there are no outstanding transactions
1002          * in the filesystem, then we can safely defer the superblock update
1003          * until the next commit by setting JFS_FLUSHED.  This avoids
1004          * attempting a write to a potential-readonly device.
1005          */
1006         if (sb->s_start == 0 && journal->j_tail_sequence ==
1007                                 journal->j_transaction_sequence) {
1008                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1009                         "(start %u, seq %d, errno %d)\n",
1010                         journal->j_tail, journal->j_tail_sequence,
1011                         journal->j_errno);
1012                 goto out;
1013         }
1014
1015         if (buffer_write_io_error(bh)) {
1016                 char b[BDEVNAME_SIZE];
1017                 /*
1018                  * Oh, dear.  A previous attempt to write the journal
1019                  * superblock failed.  This could happen because the
1020                  * USB device was yanked out.  Or it could happen to
1021                  * be a transient write error and maybe the block will
1022                  * be remapped.  Nothing we can do but to retry the
1023                  * write and hope for the best.
1024                  */
1025                 printk(KERN_ERR "JBD: previous I/O error detected "
1026                        "for journal superblock update for %s.\n",
1027                        journal_dev_name(journal, b));
1028                 clear_buffer_write_io_error(bh);
1029                 set_buffer_uptodate(bh);
1030         }
1031
1032         spin_lock(&journal->j_state_lock);
1033         jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1034                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1035
1036         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1037         sb->s_start    = cpu_to_be32(journal->j_tail);
1038         sb->s_errno    = cpu_to_be32(journal->j_errno);
1039         spin_unlock(&journal->j_state_lock);
1040
1041         BUFFER_TRACE(bh, "marking dirty");
1042         mark_buffer_dirty(bh);
1043         if (wait) {
1044                 sync_dirty_buffer(bh);
1045                 if (buffer_write_io_error(bh)) {
1046                         char b[BDEVNAME_SIZE];
1047                         printk(KERN_ERR "JBD: I/O error detected "
1048                                "when updating journal superblock for %s.\n",
1049                                journal_dev_name(journal, b));
1050                         clear_buffer_write_io_error(bh);
1051                         set_buffer_uptodate(bh);
1052                 }
1053         } else
1054                 write_dirty_buffer(bh, WRITE);
1055
1056 out:
1057         /* If we have just flushed the log (by marking s_start==0), then
1058          * any future commit will have to be careful to update the
1059          * superblock again to re-record the true start of the log. */
1060
1061         spin_lock(&journal->j_state_lock);
1062         if (sb->s_start)
1063                 journal->j_flags &= ~JFS_FLUSHED;
1064         else
1065                 journal->j_flags |= JFS_FLUSHED;
1066         spin_unlock(&journal->j_state_lock);
1067 }
1068
1069 /*
1070  * Read the superblock for a given journal, performing initial
1071  * validation of the format.
1072  */
1073
1074 static int journal_get_superblock(journal_t *journal)
1075 {
1076         struct buffer_head *bh;
1077         journal_superblock_t *sb;
1078         int err = -EIO;
1079
1080         bh = journal->j_sb_buffer;
1081
1082         J_ASSERT(bh != NULL);
1083         if (!buffer_uptodate(bh)) {
1084                 ll_rw_block(READ, 1, &bh);
1085                 wait_on_buffer(bh);
1086                 if (!buffer_uptodate(bh)) {
1087                         printk (KERN_ERR
1088                                 "JBD: IO error reading journal superblock\n");
1089                         goto out;
1090                 }
1091         }
1092
1093         sb = journal->j_superblock;
1094
1095         err = -EINVAL;
1096
1097         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1098             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1099                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1100                 goto out;
1101         }
1102
1103         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1104         case JFS_SUPERBLOCK_V1:
1105                 journal->j_format_version = 1;
1106                 break;
1107         case JFS_SUPERBLOCK_V2:
1108                 journal->j_format_version = 2;
1109                 break;
1110         default:
1111                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1112                 goto out;
1113         }
1114
1115         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1116                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1117         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1118                 printk (KERN_WARNING "JBD: journal file too short\n");
1119                 goto out;
1120         }
1121
1122         return 0;
1123
1124 out:
1125         journal_fail_superblock(journal);
1126         return err;
1127 }
1128
1129 /*
1130  * Load the on-disk journal superblock and read the key fields into the
1131  * journal_t.
1132  */
1133
1134 static int load_superblock(journal_t *journal)
1135 {
1136         int err;
1137         journal_superblock_t *sb;
1138
1139         err = journal_get_superblock(journal);
1140         if (err)
1141                 return err;
1142
1143         sb = journal->j_superblock;
1144
1145         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1146         journal->j_tail = be32_to_cpu(sb->s_start);
1147         journal->j_first = be32_to_cpu(sb->s_first);
1148         journal->j_last = be32_to_cpu(sb->s_maxlen);
1149         journal->j_errno = be32_to_cpu(sb->s_errno);
1150
1151         return 0;
1152 }
1153
1154
1155 /**
1156  * int journal_load() - Read journal from disk.
1157  * @journal: Journal to act on.
1158  *
1159  * Given a journal_t structure which tells us which disk blocks contain
1160  * a journal, read the journal from disk to initialise the in-memory
1161  * structures.
1162  */
1163 int journal_load(journal_t *journal)
1164 {
1165         int err;
1166         journal_superblock_t *sb;
1167
1168         err = load_superblock(journal);
1169         if (err)
1170                 return err;
1171
1172         sb = journal->j_superblock;
1173         /* If this is a V2 superblock, then we have to check the
1174          * features flags on it. */
1175
1176         if (journal->j_format_version >= 2) {
1177                 if ((sb->s_feature_ro_compat &
1178                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1179                     (sb->s_feature_incompat &
1180                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1181                         printk (KERN_WARNING
1182                                 "JBD: Unrecognised features on journal\n");
1183                         return -EINVAL;
1184                 }
1185         }
1186
1187         /* Let the recovery code check whether it needs to recover any
1188          * data from the journal. */
1189         if (journal_recover(journal))
1190                 goto recovery_error;
1191
1192         /* OK, we've finished with the dynamic journal bits:
1193          * reinitialise the dynamic contents of the superblock in memory
1194          * and reset them on disk. */
1195         if (journal_reset(journal))
1196                 goto recovery_error;
1197
1198         journal->j_flags &= ~JFS_ABORT;
1199         journal->j_flags |= JFS_LOADED;
1200         return 0;
1201
1202 recovery_error:
1203         printk (KERN_WARNING "JBD: recovery failed\n");
1204         return -EIO;
1205 }
1206
1207 /**
1208  * void journal_destroy() - Release a journal_t structure.
1209  * @journal: Journal to act on.
1210  *
1211  * Release a journal_t structure once it is no longer in use by the
1212  * journaled object.
1213  * Return <0 if we couldn't clean up the journal.
1214  */
1215 int journal_destroy(journal_t *journal)
1216 {
1217         int err = 0;
1218
1219         
1220         /* Wait for the commit thread to wake up and die. */
1221         journal_kill_thread(journal);
1222
1223         /* Force a final log commit */
1224         if (journal->j_running_transaction)
1225                 journal_commit_transaction(journal);
1226
1227         /* Force any old transactions to disk */
1228
1229         /* Totally anal locking here... */
1230         spin_lock(&journal->j_list_lock);
1231         while (journal->j_checkpoint_transactions != NULL) {
1232                 spin_unlock(&journal->j_list_lock);
1233                 log_do_checkpoint(journal);
1234                 spin_lock(&journal->j_list_lock);
1235         }
1236
1237         J_ASSERT(journal->j_running_transaction == NULL);
1238         J_ASSERT(journal->j_committing_transaction == NULL);
1239         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1240         spin_unlock(&journal->j_list_lock);
1241
1242         if (journal->j_sb_buffer) {
1243                 if (!is_journal_aborted(journal)) {
1244                         /* We can now mark the journal as empty. */
1245                         journal->j_tail = 0;
1246                         journal->j_tail_sequence =
1247                                 ++journal->j_transaction_sequence;
1248                         journal_update_superblock(journal, 1);
1249                 } else {
1250                         err = -EIO;
1251                 }
1252                 brelse(journal->j_sb_buffer);
1253         }
1254
1255         if (journal->j_inode)
1256                 iput(journal->j_inode);
1257         if (journal->j_revoke)
1258                 journal_destroy_revoke(journal);
1259         kfree(journal->j_wbuf);
1260         kfree(journal);
1261
1262         return err;
1263 }
1264
1265
1266 /**
1267  *int journal_check_used_features () - Check if features specified are used.
1268  * @journal: Journal to check.
1269  * @compat: bitmask of compatible features
1270  * @ro: bitmask of features that force read-only mount
1271  * @incompat: bitmask of incompatible features
1272  *
1273  * Check whether the journal uses all of a given set of
1274  * features.  Return true (non-zero) if it does.
1275  **/
1276
1277 int journal_check_used_features (journal_t *journal, unsigned long compat,
1278                                  unsigned long ro, unsigned long incompat)
1279 {
1280         journal_superblock_t *sb;
1281
1282         if (!compat && !ro && !incompat)
1283                 return 1;
1284         if (journal->j_format_version == 1)
1285                 return 0;
1286
1287         sb = journal->j_superblock;
1288
1289         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1290             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1291             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1292                 return 1;
1293
1294         return 0;
1295 }
1296
1297 /**
1298  * int journal_check_available_features() - Check feature set in journalling layer
1299  * @journal: Journal to check.
1300  * @compat: bitmask of compatible features
1301  * @ro: bitmask of features that force read-only mount
1302  * @incompat: bitmask of incompatible features
1303  *
1304  * Check whether the journaling code supports the use of
1305  * all of a given set of features on this journal.  Return true
1306  * (non-zero) if it can. */
1307
1308 int journal_check_available_features (journal_t *journal, unsigned long compat,
1309                                       unsigned long ro, unsigned long incompat)
1310 {
1311         if (!compat && !ro && !incompat)
1312                 return 1;
1313
1314         /* We can support any known requested features iff the
1315          * superblock is in version 2.  Otherwise we fail to support any
1316          * extended sb features. */
1317
1318         if (journal->j_format_version != 2)
1319                 return 0;
1320
1321         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1322             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1323             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1324                 return 1;
1325
1326         return 0;
1327 }
1328
1329 /**
1330  * int journal_set_features () - Mark a given journal feature in the superblock
1331  * @journal: Journal to act on.
1332  * @compat: bitmask of compatible features
1333  * @ro: bitmask of features that force read-only mount
1334  * @incompat: bitmask of incompatible features
1335  *
1336  * Mark a given journal feature as present on the
1337  * superblock.  Returns true if the requested features could be set.
1338  *
1339  */
1340
1341 int journal_set_features (journal_t *journal, unsigned long compat,
1342                           unsigned long ro, unsigned long incompat)
1343 {
1344         journal_superblock_t *sb;
1345
1346         if (journal_check_used_features(journal, compat, ro, incompat))
1347                 return 1;
1348
1349         if (!journal_check_available_features(journal, compat, ro, incompat))
1350                 return 0;
1351
1352         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1353                   compat, ro, incompat);
1354
1355         sb = journal->j_superblock;
1356
1357         sb->s_feature_compat    |= cpu_to_be32(compat);
1358         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1359         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1360
1361         return 1;
1362 }
1363
1364
1365 /**
1366  * int journal_update_format () - Update on-disk journal structure.
1367  * @journal: Journal to act on.
1368  *
1369  * Given an initialised but unloaded journal struct, poke about in the
1370  * on-disk structure to update it to the most recent supported version.
1371  */
1372 int journal_update_format (journal_t *journal)
1373 {
1374         journal_superblock_t *sb;
1375         int err;
1376
1377         err = journal_get_superblock(journal);
1378         if (err)
1379                 return err;
1380
1381         sb = journal->j_superblock;
1382
1383         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1384         case JFS_SUPERBLOCK_V2:
1385                 return 0;
1386         case JFS_SUPERBLOCK_V1:
1387                 return journal_convert_superblock_v1(journal, sb);
1388         default:
1389                 break;
1390         }
1391         return -EINVAL;
1392 }
1393
1394 static int journal_convert_superblock_v1(journal_t *journal,
1395                                          journal_superblock_t *sb)
1396 {
1397         int offset, blocksize;
1398         struct buffer_head *bh;
1399
1400         printk(KERN_WARNING
1401                 "JBD: Converting superblock from version 1 to 2.\n");
1402
1403         /* Pre-initialise new fields to zero */
1404         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1405         blocksize = be32_to_cpu(sb->s_blocksize);
1406         memset(&sb->s_feature_compat, 0, blocksize-offset);
1407
1408         sb->s_nr_users = cpu_to_be32(1);
1409         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1410         journal->j_format_version = 2;
1411
1412         bh = journal->j_sb_buffer;
1413         BUFFER_TRACE(bh, "marking dirty");
1414         mark_buffer_dirty(bh);
1415         sync_dirty_buffer(bh);
1416         return 0;
1417 }
1418
1419
1420 /**
1421  * int journal_flush () - Flush journal
1422  * @journal: Journal to act on.
1423  *
1424  * Flush all data for a given journal to disk and empty the journal.
1425  * Filesystems can use this when remounting readonly to ensure that
1426  * recovery does not need to happen on remount.
1427  */
1428
1429 int journal_flush(journal_t *journal)
1430 {
1431         int err = 0;
1432         transaction_t *transaction = NULL;
1433         unsigned int old_tail;
1434
1435         spin_lock(&journal->j_state_lock);
1436
1437         /* Force everything buffered to the log... */
1438         if (journal->j_running_transaction) {
1439                 transaction = journal->j_running_transaction;
1440                 __log_start_commit(journal, transaction->t_tid);
1441         } else if (journal->j_committing_transaction)
1442                 transaction = journal->j_committing_transaction;
1443
1444         /* Wait for the log commit to complete... */
1445         if (transaction) {
1446                 tid_t tid = transaction->t_tid;
1447
1448                 spin_unlock(&journal->j_state_lock);
1449                 log_wait_commit(journal, tid);
1450         } else {
1451                 spin_unlock(&journal->j_state_lock);
1452         }
1453
1454         /* ...and flush everything in the log out to disk. */
1455         spin_lock(&journal->j_list_lock);
1456         while (!err && journal->j_checkpoint_transactions != NULL) {
1457                 spin_unlock(&journal->j_list_lock);
1458                 mutex_lock(&journal->j_checkpoint_mutex);
1459                 err = log_do_checkpoint(journal);
1460                 mutex_unlock(&journal->j_checkpoint_mutex);
1461                 spin_lock(&journal->j_list_lock);
1462         }
1463         spin_unlock(&journal->j_list_lock);
1464
1465         if (is_journal_aborted(journal))
1466                 return -EIO;
1467
1468         cleanup_journal_tail(journal);
1469
1470         /* Finally, mark the journal as really needing no recovery.
1471          * This sets s_start==0 in the underlying superblock, which is
1472          * the magic code for a fully-recovered superblock.  Any future
1473          * commits of data to the journal will restore the current
1474          * s_start value. */
1475         spin_lock(&journal->j_state_lock);
1476         old_tail = journal->j_tail;
1477         journal->j_tail = 0;
1478         spin_unlock(&journal->j_state_lock);
1479         journal_update_superblock(journal, 1);
1480         spin_lock(&journal->j_state_lock);
1481         journal->j_tail = old_tail;
1482
1483         J_ASSERT(!journal->j_running_transaction);
1484         J_ASSERT(!journal->j_committing_transaction);
1485         J_ASSERT(!journal->j_checkpoint_transactions);
1486         J_ASSERT(journal->j_head == journal->j_tail);
1487         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1488         spin_unlock(&journal->j_state_lock);
1489         return 0;
1490 }
1491
1492 /**
1493  * int journal_wipe() - Wipe journal contents
1494  * @journal: Journal to act on.
1495  * @write: flag (see below)
1496  *
1497  * Wipe out all of the contents of a journal, safely.  This will produce
1498  * a warning if the journal contains any valid recovery information.
1499  * Must be called between journal_init_*() and journal_load().
1500  *
1501  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1502  * we merely suppress recovery.
1503  */
1504
1505 int journal_wipe(journal_t *journal, int write)
1506 {
1507         int err = 0;
1508
1509         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1510
1511         err = load_superblock(journal);
1512         if (err)
1513                 return err;
1514
1515         if (!journal->j_tail)
1516                 goto no_recovery;
1517
1518         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1519                 write ? "Clearing" : "Ignoring");
1520
1521         err = journal_skip_recovery(journal);
1522         if (write)
1523                 journal_update_superblock(journal, 1);
1524
1525  no_recovery:
1526         return err;
1527 }
1528
1529 /*
1530  * journal_dev_name: format a character string to describe on what
1531  * device this journal is present.
1532  */
1533
1534 static const char *journal_dev_name(journal_t *journal, char *buffer)
1535 {
1536         struct block_device *bdev;
1537
1538         if (journal->j_inode)
1539                 bdev = journal->j_inode->i_sb->s_bdev;
1540         else
1541                 bdev = journal->j_dev;
1542
1543         return bdevname(bdev, buffer);
1544 }
1545
1546 /*
1547  * Journal abort has very specific semantics, which we describe
1548  * for journal abort.
1549  *
1550  * Two internal function, which provide abort to te jbd layer
1551  * itself are here.
1552  */
1553
1554 /*
1555  * Quick version for internal journal use (doesn't lock the journal).
1556  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1557  * and don't attempt to make any other journal updates.
1558  */
1559 static void __journal_abort_hard(journal_t *journal)
1560 {
1561         transaction_t *transaction;
1562         char b[BDEVNAME_SIZE];
1563
1564         if (journal->j_flags & JFS_ABORT)
1565                 return;
1566
1567         printk(KERN_ERR "Aborting journal on device %s.\n",
1568                 journal_dev_name(journal, b));
1569
1570         spin_lock(&journal->j_state_lock);
1571         journal->j_flags |= JFS_ABORT;
1572         transaction = journal->j_running_transaction;
1573         if (transaction)
1574                 __log_start_commit(journal, transaction->t_tid);
1575         spin_unlock(&journal->j_state_lock);
1576 }
1577
1578 /* Soft abort: record the abort error status in the journal superblock,
1579  * but don't do any other IO. */
1580 static void __journal_abort_soft (journal_t *journal, int errno)
1581 {
1582         if (journal->j_flags & JFS_ABORT)
1583                 return;
1584
1585         if (!journal->j_errno)
1586                 journal->j_errno = errno;
1587
1588         __journal_abort_hard(journal);
1589
1590         if (errno)
1591                 journal_update_superblock(journal, 1);
1592 }
1593
1594 /**
1595  * void journal_abort () - Shutdown the journal immediately.
1596  * @journal: the journal to shutdown.
1597  * @errno:   an error number to record in the journal indicating
1598  *           the reason for the shutdown.
1599  *
1600  * Perform a complete, immediate shutdown of the ENTIRE
1601  * journal (not of a single transaction).  This operation cannot be
1602  * undone without closing and reopening the journal.
1603  *
1604  * The journal_abort function is intended to support higher level error
1605  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1606  * mode.
1607  *
1608  * Journal abort has very specific semantics.  Any existing dirty,
1609  * unjournaled buffers in the main filesystem will still be written to
1610  * disk by bdflush, but the journaling mechanism will be suspended
1611  * immediately and no further transaction commits will be honoured.
1612  *
1613  * Any dirty, journaled buffers will be written back to disk without
1614  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1615  * filesystem, but we _do_ attempt to leave as much data as possible
1616  * behind for fsck to use for cleanup.
1617  *
1618  * Any attempt to get a new transaction handle on a journal which is in
1619  * ABORT state will just result in an -EROFS error return.  A
1620  * journal_stop on an existing handle will return -EIO if we have
1621  * entered abort state during the update.
1622  *
1623  * Recursive transactions are not disturbed by journal abort until the
1624  * final journal_stop, which will receive the -EIO error.
1625  *
1626  * Finally, the journal_abort call allows the caller to supply an errno
1627  * which will be recorded (if possible) in the journal superblock.  This
1628  * allows a client to record failure conditions in the middle of a
1629  * transaction without having to complete the transaction to record the
1630  * failure to disk.  ext3_error, for example, now uses this
1631  * functionality.
1632  *
1633  * Errors which originate from within the journaling layer will NOT
1634  * supply an errno; a null errno implies that absolutely no further
1635  * writes are done to the journal (unless there are any already in
1636  * progress).
1637  *
1638  */
1639
1640 void journal_abort(journal_t *journal, int errno)
1641 {
1642         __journal_abort_soft(journal, errno);
1643 }
1644
1645 /**
1646  * int journal_errno () - returns the journal's error state.
1647  * @journal: journal to examine.
1648  *
1649  * This is the errno numbet set with journal_abort(), the last
1650  * time the journal was mounted - if the journal was stopped
1651  * without calling abort this will be 0.
1652  *
1653  * If the journal has been aborted on this mount time -EROFS will
1654  * be returned.
1655  */
1656 int journal_errno(journal_t *journal)
1657 {
1658         int err;
1659
1660         spin_lock(&journal->j_state_lock);
1661         if (journal->j_flags & JFS_ABORT)
1662                 err = -EROFS;
1663         else
1664                 err = journal->j_errno;
1665         spin_unlock(&journal->j_state_lock);
1666         return err;
1667 }
1668
1669 /**
1670  * int journal_clear_err () - clears the journal's error state
1671  * @journal: journal to act on.
1672  *
1673  * An error must be cleared or Acked to take a FS out of readonly
1674  * mode.
1675  */
1676 int journal_clear_err(journal_t *journal)
1677 {
1678         int err = 0;
1679
1680         spin_lock(&journal->j_state_lock);
1681         if (journal->j_flags & JFS_ABORT)
1682                 err = -EROFS;
1683         else
1684                 journal->j_errno = 0;
1685         spin_unlock(&journal->j_state_lock);
1686         return err;
1687 }
1688
1689 /**
1690  * void journal_ack_err() - Ack journal err.
1691  * @journal: journal to act on.
1692  *
1693  * An error must be cleared or Acked to take a FS out of readonly
1694  * mode.
1695  */
1696 void journal_ack_err(journal_t *journal)
1697 {
1698         spin_lock(&journal->j_state_lock);
1699         if (journal->j_errno)
1700                 journal->j_flags |= JFS_ACK_ERR;
1701         spin_unlock(&journal->j_state_lock);
1702 }
1703
1704 int journal_blocks_per_page(struct inode *inode)
1705 {
1706         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1707 }
1708
1709 /*
1710  * Journal_head storage management
1711  */
1712 static struct kmem_cache *journal_head_cache;
1713 #ifdef CONFIG_JBD_DEBUG
1714 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1715 #endif
1716
1717 static int journal_init_journal_head_cache(void)
1718 {
1719         int retval;
1720
1721         J_ASSERT(journal_head_cache == NULL);
1722         journal_head_cache = kmem_cache_create("journal_head",
1723                                 sizeof(struct journal_head),
1724                                 0,              /* offset */
1725                                 SLAB_TEMPORARY, /* flags */
1726                                 NULL);          /* ctor */
1727         retval = 0;
1728         if (!journal_head_cache) {
1729                 retval = -ENOMEM;
1730                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1731         }
1732         return retval;
1733 }
1734
1735 static void journal_destroy_journal_head_cache(void)
1736 {
1737         if (journal_head_cache) {
1738                 kmem_cache_destroy(journal_head_cache);
1739                 journal_head_cache = NULL;
1740         }
1741 }
1742
1743 /*
1744  * journal_head splicing and dicing
1745  */
1746 static struct journal_head *journal_alloc_journal_head(void)
1747 {
1748         struct journal_head *ret;
1749
1750 #ifdef CONFIG_JBD_DEBUG
1751         atomic_inc(&nr_journal_heads);
1752 #endif
1753         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1754         if (ret == NULL) {
1755                 jbd_debug(1, "out of memory for journal_head\n");
1756                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1757                                    __func__);
1758
1759                 while (ret == NULL) {
1760                         yield();
1761                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1762                 }
1763         }
1764         return ret;
1765 }
1766
1767 static void journal_free_journal_head(struct journal_head *jh)
1768 {
1769 #ifdef CONFIG_JBD_DEBUG
1770         atomic_dec(&nr_journal_heads);
1771         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1772 #endif
1773         kmem_cache_free(journal_head_cache, jh);
1774 }
1775
1776 /*
1777  * A journal_head is attached to a buffer_head whenever JBD has an
1778  * interest in the buffer.
1779  *
1780  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1781  * is set.  This bit is tested in core kernel code where we need to take
1782  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1783  * there.
1784  *
1785  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1786  *
1787  * When a buffer has its BH_JBD bit set it is immune from being released by
1788  * core kernel code, mainly via ->b_count.
1789  *
1790  * A journal_head may be detached from its buffer_head when the journal_head's
1791  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1792  * Various places in JBD call journal_remove_journal_head() to indicate that the
1793  * journal_head can be dropped if needed.
1794  *
1795  * Various places in the kernel want to attach a journal_head to a buffer_head
1796  * _before_ attaching the journal_head to a transaction.  To protect the
1797  * journal_head in this situation, journal_add_journal_head elevates the
1798  * journal_head's b_jcount refcount by one.  The caller must call
1799  * journal_put_journal_head() to undo this.
1800  *
1801  * So the typical usage would be:
1802  *
1803  *      (Attach a journal_head if needed.  Increments b_jcount)
1804  *      struct journal_head *jh = journal_add_journal_head(bh);
1805  *      ...
1806  *      jh->b_transaction = xxx;
1807  *      journal_put_journal_head(jh);
1808  *
1809  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1810  * because it has a non-zero b_transaction.
1811  */
1812
1813 /*
1814  * Give a buffer_head a journal_head.
1815  *
1816  * Doesn't need the journal lock.
1817  * May sleep.
1818  */
1819 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1820 {
1821         struct journal_head *jh;
1822         struct journal_head *new_jh = NULL;
1823
1824 repeat:
1825         if (!buffer_jbd(bh)) {
1826                 new_jh = journal_alloc_journal_head();
1827                 memset(new_jh, 0, sizeof(*new_jh));
1828         }
1829
1830         jbd_lock_bh_journal_head(bh);
1831         if (buffer_jbd(bh)) {
1832                 jh = bh2jh(bh);
1833         } else {
1834                 J_ASSERT_BH(bh,
1835                         (atomic_read(&bh->b_count) > 0) ||
1836                         (bh->b_page && bh->b_page->mapping));
1837
1838                 if (!new_jh) {
1839                         jbd_unlock_bh_journal_head(bh);
1840                         goto repeat;
1841                 }
1842
1843                 jh = new_jh;
1844                 new_jh = NULL;          /* We consumed it */
1845                 set_buffer_jbd(bh);
1846                 bh->b_private = jh;
1847                 jh->b_bh = bh;
1848                 get_bh(bh);
1849                 BUFFER_TRACE(bh, "added journal_head");
1850         }
1851         jh->b_jcount++;
1852         jbd_unlock_bh_journal_head(bh);
1853         if (new_jh)
1854                 journal_free_journal_head(new_jh);
1855         return bh->b_private;
1856 }
1857
1858 /*
1859  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1860  * having a journal_head, return NULL
1861  */
1862 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1863 {
1864         struct journal_head *jh = NULL;
1865
1866         jbd_lock_bh_journal_head(bh);
1867         if (buffer_jbd(bh)) {
1868                 jh = bh2jh(bh);
1869                 jh->b_jcount++;
1870         }
1871         jbd_unlock_bh_journal_head(bh);
1872         return jh;
1873 }
1874
1875 static void __journal_remove_journal_head(struct buffer_head *bh)
1876 {
1877         struct journal_head *jh = bh2jh(bh);
1878
1879         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1880
1881         get_bh(bh);
1882         if (jh->b_jcount == 0) {
1883                 if (jh->b_transaction == NULL &&
1884                                 jh->b_next_transaction == NULL &&
1885                                 jh->b_cp_transaction == NULL) {
1886                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1887                         J_ASSERT_BH(bh, buffer_jbd(bh));
1888                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1889                         BUFFER_TRACE(bh, "remove journal_head");
1890                         if (jh->b_frozen_data) {
1891                                 printk(KERN_WARNING "%s: freeing "
1892                                                 "b_frozen_data\n",
1893                                                 __func__);
1894                                 jbd_free(jh->b_frozen_data, bh->b_size);
1895                         }
1896                         if (jh->b_committed_data) {
1897                                 printk(KERN_WARNING "%s: freeing "
1898                                                 "b_committed_data\n",
1899                                                 __func__);
1900                                 jbd_free(jh->b_committed_data, bh->b_size);
1901                         }
1902                         bh->b_private = NULL;
1903                         jh->b_bh = NULL;        /* debug, really */
1904                         clear_buffer_jbd(bh);
1905                         __brelse(bh);
1906                         journal_free_journal_head(jh);
1907                 } else {
1908                         BUFFER_TRACE(bh, "journal_head was locked");
1909                 }
1910         }
1911 }
1912
1913 /*
1914  * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1915  * and has a zero b_jcount then remove and release its journal_head.   If we did
1916  * see that the buffer is not used by any transaction we also "logically"
1917  * decrement ->b_count.
1918  *
1919  * We in fact take an additional increment on ->b_count as a convenience,
1920  * because the caller usually wants to do additional things with the bh
1921  * after calling here.
1922  * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1923  * time.  Once the caller has run __brelse(), the buffer is eligible for
1924  * reaping by try_to_free_buffers().
1925  */
1926 void journal_remove_journal_head(struct buffer_head *bh)
1927 {
1928         jbd_lock_bh_journal_head(bh);
1929         __journal_remove_journal_head(bh);
1930         jbd_unlock_bh_journal_head(bh);
1931 }
1932
1933 /*
1934  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1935  * release the journal_head from the buffer_head.
1936  */
1937 void journal_put_journal_head(struct journal_head *jh)
1938 {
1939         struct buffer_head *bh = jh2bh(jh);
1940
1941         jbd_lock_bh_journal_head(bh);
1942         J_ASSERT_JH(jh, jh->b_jcount > 0);
1943         --jh->b_jcount;
1944         if (!jh->b_jcount && !jh->b_transaction) {
1945                 __journal_remove_journal_head(bh);
1946                 __brelse(bh);
1947         }
1948         jbd_unlock_bh_journal_head(bh);
1949 }
1950
1951 /*
1952  * debugfs tunables
1953  */
1954 #ifdef CONFIG_JBD_DEBUG
1955
1956 u8 journal_enable_debug __read_mostly;
1957 EXPORT_SYMBOL(journal_enable_debug);
1958
1959 static struct dentry *jbd_debugfs_dir;
1960 static struct dentry *jbd_debug;
1961
1962 static void __init jbd_create_debugfs_entry(void)
1963 {
1964         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1965         if (jbd_debugfs_dir)
1966                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1967                                                jbd_debugfs_dir,
1968                                                &journal_enable_debug);
1969 }
1970
1971 static void __exit jbd_remove_debugfs_entry(void)
1972 {
1973         debugfs_remove(jbd_debug);
1974         debugfs_remove(jbd_debugfs_dir);
1975 }
1976
1977 #else
1978
1979 static inline void jbd_create_debugfs_entry(void)
1980 {
1981 }
1982
1983 static inline void jbd_remove_debugfs_entry(void)
1984 {
1985 }
1986
1987 #endif
1988
1989 struct kmem_cache *jbd_handle_cache;
1990
1991 static int __init journal_init_handle_cache(void)
1992 {
1993         jbd_handle_cache = kmem_cache_create("journal_handle",
1994                                 sizeof(handle_t),
1995                                 0,              /* offset */
1996                                 SLAB_TEMPORARY, /* flags */
1997                                 NULL);          /* ctor */
1998         if (jbd_handle_cache == NULL) {
1999                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2000                 return -ENOMEM;
2001         }
2002         return 0;
2003 }
2004
2005 static void journal_destroy_handle_cache(void)
2006 {
2007         if (jbd_handle_cache)
2008                 kmem_cache_destroy(jbd_handle_cache);
2009 }
2010
2011 /*
2012  * Module startup and shutdown
2013  */
2014
2015 static int __init journal_init_caches(void)
2016 {
2017         int ret;
2018
2019         ret = journal_init_revoke_caches();
2020         if (ret == 0)
2021                 ret = journal_init_journal_head_cache();
2022         if (ret == 0)
2023                 ret = journal_init_handle_cache();
2024         return ret;
2025 }
2026
2027 static void journal_destroy_caches(void)
2028 {
2029         journal_destroy_revoke_caches();
2030         journal_destroy_journal_head_cache();
2031         journal_destroy_handle_cache();
2032 }
2033
2034 static int __init journal_init(void)
2035 {
2036         int ret;
2037
2038         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2039
2040         ret = journal_init_caches();
2041         if (ret != 0)
2042                 journal_destroy_caches();
2043         jbd_create_debugfs_entry();
2044         return ret;
2045 }
2046
2047 static void __exit journal_exit(void)
2048 {
2049 #ifdef CONFIG_JBD_DEBUG
2050         int n = atomic_read(&nr_journal_heads);
2051         if (n)
2052                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2053 #endif
2054         jbd_remove_debugfs_entry();
2055         journal_destroy_caches();
2056 }
2057
2058 MODULE_LICENSE("GPL");
2059 module_init(journal_init);
2060 module_exit(journal_exit);
2061