]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/jbd/journal.c
2c4b1f109da9e6bc3bcedddd423f02cb84c6bc2f
[net-next-2.6.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
42
43 EXPORT_SYMBOL(journal_start);
44 EXPORT_SYMBOL(journal_restart);
45 EXPORT_SYMBOL(journal_extend);
46 EXPORT_SYMBOL(journal_stop);
47 EXPORT_SYMBOL(journal_lock_updates);
48 EXPORT_SYMBOL(journal_unlock_updates);
49 EXPORT_SYMBOL(journal_get_write_access);
50 EXPORT_SYMBOL(journal_get_create_access);
51 EXPORT_SYMBOL(journal_get_undo_access);
52 EXPORT_SYMBOL(journal_dirty_data);
53 EXPORT_SYMBOL(journal_dirty_metadata);
54 EXPORT_SYMBOL(journal_release_buffer);
55 EXPORT_SYMBOL(journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(journal_flush);
60 EXPORT_SYMBOL(journal_revoke);
61
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_abort);
72 EXPORT_SYMBOL(journal_errno);
73 EXPORT_SYMBOL(journal_ack_err);
74 EXPORT_SYMBOL(journal_clear_err);
75 EXPORT_SYMBOL(log_wait_commit);
76 EXPORT_SYMBOL(log_start_commit);
77 EXPORT_SYMBOL(journal_start_commit);
78 EXPORT_SYMBOL(journal_force_commit_nested);
79 EXPORT_SYMBOL(journal_wipe);
80 EXPORT_SYMBOL(journal_blocks_per_page);
81 EXPORT_SYMBOL(journal_invalidatepage);
82 EXPORT_SYMBOL(journal_try_to_free_buffers);
83 EXPORT_SYMBOL(journal_force_commit);
84
85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
86 static void __journal_abort_soft (journal_t *journal, int errno);
87
88 /*
89  * Helper function used to manage commit timeouts
90  */
91
92 static void commit_timeout(unsigned long __data)
93 {
94         struct task_struct * p = (struct task_struct *) __data;
95
96         wake_up_process(p);
97 }
98
99 /*
100  * kjournald: The main thread function used to manage a logging device
101  * journal.
102  *
103  * This kernel thread is responsible for two things:
104  *
105  * 1) COMMIT:  Every so often we need to commit the current state of the
106  *    filesystem to disk.  The journal thread is responsible for writing
107  *    all of the metadata buffers to disk.
108  *
109  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
110  *    of the data in that part of the log has been rewritten elsewhere on
111  *    the disk.  Flushing these old buffers to reclaim space in the log is
112  *    known as checkpointing, and this thread is responsible for that job.
113  */
114
115 static int kjournald(void *arg)
116 {
117         journal_t *journal = arg;
118         transaction_t *transaction;
119
120         /*
121          * Set up an interval timer which can be used to trigger a commit wakeup
122          * after the commit interval expires
123          */
124         setup_timer(&journal->j_commit_timer, commit_timeout,
125                         (unsigned long)current);
126
127         /* Record that the journal thread is running */
128         journal->j_task = current;
129         wake_up(&journal->j_wait_done_commit);
130
131         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
132                         journal->j_commit_interval / HZ);
133
134         /*
135          * And now, wait forever for commit wakeup events.
136          */
137         spin_lock(&journal->j_state_lock);
138
139 loop:
140         if (journal->j_flags & JFS_UNMOUNT)
141                 goto end_loop;
142
143         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144                 journal->j_commit_sequence, journal->j_commit_request);
145
146         if (journal->j_commit_sequence != journal->j_commit_request) {
147                 jbd_debug(1, "OK, requests differ\n");
148                 spin_unlock(&journal->j_state_lock);
149                 del_timer_sync(&journal->j_commit_timer);
150                 journal_commit_transaction(journal);
151                 spin_lock(&journal->j_state_lock);
152                 goto loop;
153         }
154
155         wake_up(&journal->j_wait_done_commit);
156         if (freezing(current)) {
157                 /*
158                  * The simpler the better. Flushing journal isn't a
159                  * good idea, because that depends on threads that may
160                  * be already stopped.
161                  */
162                 jbd_debug(1, "Now suspending kjournald\n");
163                 spin_unlock(&journal->j_state_lock);
164                 refrigerator();
165                 spin_lock(&journal->j_state_lock);
166         } else {
167                 /*
168                  * We assume on resume that commits are already there,
169                  * so we don't sleep
170                  */
171                 DEFINE_WAIT(wait);
172                 int should_sleep = 1;
173
174                 prepare_to_wait(&journal->j_wait_commit, &wait,
175                                 TASK_INTERRUPTIBLE);
176                 if (journal->j_commit_sequence != journal->j_commit_request)
177                         should_sleep = 0;
178                 transaction = journal->j_running_transaction;
179                 if (transaction && time_after_eq(jiffies,
180                                                 transaction->t_expires))
181                         should_sleep = 0;
182                 if (journal->j_flags & JFS_UNMOUNT)
183                         should_sleep = 0;
184                 if (should_sleep) {
185                         spin_unlock(&journal->j_state_lock);
186                         schedule();
187                         spin_lock(&journal->j_state_lock);
188                 }
189                 finish_wait(&journal->j_wait_commit, &wait);
190         }
191
192         jbd_debug(1, "kjournald wakes\n");
193
194         /*
195          * Were we woken up by a commit wakeup event?
196          */
197         transaction = journal->j_running_transaction;
198         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
199                 journal->j_commit_request = transaction->t_tid;
200                 jbd_debug(1, "woke because of timeout\n");
201         }
202         goto loop;
203
204 end_loop:
205         spin_unlock(&journal->j_state_lock);
206         del_timer_sync(&journal->j_commit_timer);
207         journal->j_task = NULL;
208         wake_up(&journal->j_wait_done_commit);
209         jbd_debug(1, "Journal thread exiting.\n");
210         return 0;
211 }
212
213 static int journal_start_thread(journal_t *journal)
214 {
215         struct task_struct *t;
216
217         t = kthread_run(kjournald, journal, "kjournald");
218         if (IS_ERR(t))
219                 return PTR_ERR(t);
220
221         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
222         return 0;
223 }
224
225 static void journal_kill_thread(journal_t *journal)
226 {
227         spin_lock(&journal->j_state_lock);
228         journal->j_flags |= JFS_UNMOUNT;
229
230         while (journal->j_task) {
231                 wake_up(&journal->j_wait_commit);
232                 spin_unlock(&journal->j_state_lock);
233                 wait_event(journal->j_wait_done_commit,
234                                 journal->j_task == NULL);
235                 spin_lock(&journal->j_state_lock);
236         }
237         spin_unlock(&journal->j_state_lock);
238 }
239
240 /*
241  * journal_write_metadata_buffer: write a metadata buffer to the journal.
242  *
243  * Writes a metadata buffer to a given disk block.  The actual IO is not
244  * performed but a new buffer_head is constructed which labels the data
245  * to be written with the correct destination disk block.
246  *
247  * Any magic-number escaping which needs to be done will cause a
248  * copy-out here.  If the buffer happens to start with the
249  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
250  * magic number is only written to the log for descripter blocks.  In
251  * this case, we copy the data and replace the first word with 0, and we
252  * return a result code which indicates that this buffer needs to be
253  * marked as an escaped buffer in the corresponding log descriptor
254  * block.  The missing word can then be restored when the block is read
255  * during recovery.
256  *
257  * If the source buffer has already been modified by a new transaction
258  * since we took the last commit snapshot, we use the frozen copy of
259  * that data for IO.  If we end up using the existing buffer_head's data
260  * for the write, then we *have* to lock the buffer to prevent anyone
261  * else from using and possibly modifying it while the IO is in
262  * progress.
263  *
264  * The function returns a pointer to the buffer_heads to be used for IO.
265  *
266  * We assume that the journal has already been locked in this function.
267  *
268  * Return value:
269  *  <0: Error
270  * >=0: Finished OK
271  *
272  * On success:
273  * Bit 0 set == escape performed on the data
274  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
275  */
276
277 int journal_write_metadata_buffer(transaction_t *transaction,
278                                   struct journal_head  *jh_in,
279                                   struct journal_head **jh_out,
280                                   unsigned int blocknr)
281 {
282         int need_copy_out = 0;
283         int done_copy_out = 0;
284         int do_escape = 0;
285         char *mapped_data;
286         struct buffer_head *new_bh;
287         struct journal_head *new_jh;
288         struct page *new_page;
289         unsigned int new_offset;
290         struct buffer_head *bh_in = jh2bh(jh_in);
291         journal_t *journal = transaction->t_journal;
292
293         /*
294          * The buffer really shouldn't be locked: only the current committing
295          * transaction is allowed to write it, so nobody else is allowed
296          * to do any IO.
297          *
298          * akpm: except if we're journalling data, and write() output is
299          * also part of a shared mapping, and another thread has
300          * decided to launch a writepage() against this buffer.
301          */
302         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
303
304         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
305         /* keep subsequent assertions sane */
306         new_bh->b_state = 0;
307         init_buffer(new_bh, NULL, NULL);
308         atomic_set(&new_bh->b_count, 1);
309         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
310
311         /*
312          * If a new transaction has already done a buffer copy-out, then
313          * we use that version of the data for the commit.
314          */
315         jbd_lock_bh_state(bh_in);
316 repeat:
317         if (jh_in->b_frozen_data) {
318                 done_copy_out = 1;
319                 new_page = virt_to_page(jh_in->b_frozen_data);
320                 new_offset = offset_in_page(jh_in->b_frozen_data);
321         } else {
322                 new_page = jh2bh(jh_in)->b_page;
323                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
324         }
325
326         mapped_data = kmap_atomic(new_page, KM_USER0);
327         /*
328          * Check for escaping
329          */
330         if (*((__be32 *)(mapped_data + new_offset)) ==
331                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
332                 need_copy_out = 1;
333                 do_escape = 1;
334         }
335         kunmap_atomic(mapped_data, KM_USER0);
336
337         /*
338          * Do we need to do a data copy?
339          */
340         if (need_copy_out && !done_copy_out) {
341                 char *tmp;
342
343                 jbd_unlock_bh_state(bh_in);
344                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
345                 jbd_lock_bh_state(bh_in);
346                 if (jh_in->b_frozen_data) {
347                         jbd_free(tmp, bh_in->b_size);
348                         goto repeat;
349                 }
350
351                 jh_in->b_frozen_data = tmp;
352                 mapped_data = kmap_atomic(new_page, KM_USER0);
353                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
354                 kunmap_atomic(mapped_data, KM_USER0);
355
356                 new_page = virt_to_page(tmp);
357                 new_offset = offset_in_page(tmp);
358                 done_copy_out = 1;
359         }
360
361         /*
362          * Did we need to do an escaping?  Now we've done all the
363          * copying, we can finally do so.
364          */
365         if (do_escape) {
366                 mapped_data = kmap_atomic(new_page, KM_USER0);
367                 *((unsigned int *)(mapped_data + new_offset)) = 0;
368                 kunmap_atomic(mapped_data, KM_USER0);
369         }
370
371         set_bh_page(new_bh, new_page, new_offset);
372         new_jh->b_transaction = NULL;
373         new_bh->b_size = jh2bh(jh_in)->b_size;
374         new_bh->b_bdev = transaction->t_journal->j_dev;
375         new_bh->b_blocknr = blocknr;
376         set_buffer_mapped(new_bh);
377         set_buffer_dirty(new_bh);
378
379         *jh_out = new_jh;
380
381         /*
382          * The to-be-written buffer needs to get moved to the io queue,
383          * and the original buffer whose contents we are shadowing or
384          * copying is moved to the transaction's shadow queue.
385          */
386         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
387         spin_lock(&journal->j_list_lock);
388         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
389         spin_unlock(&journal->j_list_lock);
390         jbd_unlock_bh_state(bh_in);
391
392         JBUFFER_TRACE(new_jh, "file as BJ_IO");
393         journal_file_buffer(new_jh, transaction, BJ_IO);
394
395         return do_escape | (done_copy_out << 1);
396 }
397
398 /*
399  * Allocation code for the journal file.  Manage the space left in the
400  * journal, so that we can begin checkpointing when appropriate.
401  */
402
403 /*
404  * __log_space_left: Return the number of free blocks left in the journal.
405  *
406  * Called with the journal already locked.
407  *
408  * Called under j_state_lock
409  */
410
411 int __log_space_left(journal_t *journal)
412 {
413         int left = journal->j_free;
414
415         assert_spin_locked(&journal->j_state_lock);
416
417         /*
418          * Be pessimistic here about the number of those free blocks which
419          * might be required for log descriptor control blocks.
420          */
421
422 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
423
424         left -= MIN_LOG_RESERVED_BLOCKS;
425
426         if (left <= 0)
427                 return 0;
428         left -= (left >> 3);
429         return left;
430 }
431
432 /*
433  * Called under j_state_lock.  Returns true if a transaction commit was started.
434  */
435 int __log_start_commit(journal_t *journal, tid_t target)
436 {
437         /*
438          * Are we already doing a recent enough commit?
439          */
440         if (!tid_geq(journal->j_commit_request, target)) {
441                 /*
442                  * We want a new commit: OK, mark the request and wakup the
443                  * commit thread.  We do _not_ do the commit ourselves.
444                  */
445
446                 journal->j_commit_request = target;
447                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
448                           journal->j_commit_request,
449                           journal->j_commit_sequence);
450                 wake_up(&journal->j_wait_commit);
451                 return 1;
452         }
453         return 0;
454 }
455
456 int log_start_commit(journal_t *journal, tid_t tid)
457 {
458         int ret;
459
460         spin_lock(&journal->j_state_lock);
461         ret = __log_start_commit(journal, tid);
462         spin_unlock(&journal->j_state_lock);
463         return ret;
464 }
465
466 /*
467  * Force and wait upon a commit if the calling process is not within
468  * transaction.  This is used for forcing out undo-protected data which contains
469  * bitmaps, when the fs is running out of space.
470  *
471  * We can only force the running transaction if we don't have an active handle;
472  * otherwise, we will deadlock.
473  *
474  * Returns true if a transaction was started.
475  */
476 int journal_force_commit_nested(journal_t *journal)
477 {
478         transaction_t *transaction = NULL;
479         tid_t tid;
480
481         spin_lock(&journal->j_state_lock);
482         if (journal->j_running_transaction && !current->journal_info) {
483                 transaction = journal->j_running_transaction;
484                 __log_start_commit(journal, transaction->t_tid);
485         } else if (journal->j_committing_transaction)
486                 transaction = journal->j_committing_transaction;
487
488         if (!transaction) {
489                 spin_unlock(&journal->j_state_lock);
490                 return 0;       /* Nothing to retry */
491         }
492
493         tid = transaction->t_tid;
494         spin_unlock(&journal->j_state_lock);
495         log_wait_commit(journal, tid);
496         return 1;
497 }
498
499 /*
500  * Start a commit of the current running transaction (if any).  Returns true
501  * if a transaction is going to be committed (or is currently already
502  * committing), and fills its tid in at *ptid
503  */
504 int journal_start_commit(journal_t *journal, tid_t *ptid)
505 {
506         int ret = 0;
507
508         spin_lock(&journal->j_state_lock);
509         if (journal->j_running_transaction) {
510                 tid_t tid = journal->j_running_transaction->t_tid;
511
512                 __log_start_commit(journal, tid);
513                 /* There's a running transaction and we've just made sure
514                  * it's commit has been scheduled. */
515                 if (ptid)
516                         *ptid = tid;
517                 ret = 1;
518         } else if (journal->j_committing_transaction) {
519                 /*
520                  * If ext3_write_super() recently started a commit, then we
521                  * have to wait for completion of that transaction
522                  */
523                 if (ptid)
524                         *ptid = journal->j_committing_transaction->t_tid;
525                 ret = 1;
526         }
527         spin_unlock(&journal->j_state_lock);
528         return ret;
529 }
530
531 /*
532  * Wait for a specified commit to complete.
533  * The caller may not hold the journal lock.
534  */
535 int log_wait_commit(journal_t *journal, tid_t tid)
536 {
537         int err = 0;
538
539 #ifdef CONFIG_JBD_DEBUG
540         spin_lock(&journal->j_state_lock);
541         if (!tid_geq(journal->j_commit_request, tid)) {
542                 printk(KERN_EMERG
543                        "%s: error: j_commit_request=%d, tid=%d\n",
544                        __func__, journal->j_commit_request, tid);
545         }
546         spin_unlock(&journal->j_state_lock);
547 #endif
548         spin_lock(&journal->j_state_lock);
549         while (tid_gt(tid, journal->j_commit_sequence)) {
550                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
551                                   tid, journal->j_commit_sequence);
552                 wake_up(&journal->j_wait_commit);
553                 spin_unlock(&journal->j_state_lock);
554                 wait_event(journal->j_wait_done_commit,
555                                 !tid_gt(tid, journal->j_commit_sequence));
556                 spin_lock(&journal->j_state_lock);
557         }
558         spin_unlock(&journal->j_state_lock);
559
560         if (unlikely(is_journal_aborted(journal))) {
561                 printk(KERN_EMERG "journal commit I/O error\n");
562                 err = -EIO;
563         }
564         return err;
565 }
566
567 /*
568  * Return 1 if a given transaction has not yet sent barrier request
569  * connected with a transaction commit. If 0 is returned, transaction
570  * may or may not have sent the barrier. Used to avoid sending barrier
571  * twice in common cases.
572  */
573 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
574 {
575         int ret = 0;
576         transaction_t *commit_trans;
577
578         if (!(journal->j_flags & JFS_BARRIER))
579                 return 0;
580         spin_lock(&journal->j_state_lock);
581         /* Transaction already committed? */
582         if (tid_geq(journal->j_commit_sequence, tid))
583                 goto out;
584         /*
585          * Transaction is being committed and we already proceeded to
586          * writing commit record?
587          */
588         commit_trans = journal->j_committing_transaction;
589         if (commit_trans && commit_trans->t_tid == tid &&
590             commit_trans->t_state >= T_COMMIT_RECORD)
591                 goto out;
592         ret = 1;
593 out:
594         spin_unlock(&journal->j_state_lock);
595         return ret;
596 }
597 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
598
599 /*
600  * Log buffer allocation routines:
601  */
602
603 int journal_next_log_block(journal_t *journal, unsigned int *retp)
604 {
605         unsigned int blocknr;
606
607         spin_lock(&journal->j_state_lock);
608         J_ASSERT(journal->j_free > 1);
609
610         blocknr = journal->j_head;
611         journal->j_head++;
612         journal->j_free--;
613         if (journal->j_head == journal->j_last)
614                 journal->j_head = journal->j_first;
615         spin_unlock(&journal->j_state_lock);
616         return journal_bmap(journal, blocknr, retp);
617 }
618
619 /*
620  * Conversion of logical to physical block numbers for the journal
621  *
622  * On external journals the journal blocks are identity-mapped, so
623  * this is a no-op.  If needed, we can use j_blk_offset - everything is
624  * ready.
625  */
626 int journal_bmap(journal_t *journal, unsigned int blocknr,
627                  unsigned int *retp)
628 {
629         int err = 0;
630         unsigned int ret;
631
632         if (journal->j_inode) {
633                 ret = bmap(journal->j_inode, blocknr);
634                 if (ret)
635                         *retp = ret;
636                 else {
637                         char b[BDEVNAME_SIZE];
638
639                         printk(KERN_ALERT "%s: journal block not found "
640                                         "at offset %u on %s\n",
641                                 __func__,
642                                 blocknr,
643                                 bdevname(journal->j_dev, b));
644                         err = -EIO;
645                         __journal_abort_soft(journal, err);
646                 }
647         } else {
648                 *retp = blocknr; /* +journal->j_blk_offset */
649         }
650         return err;
651 }
652
653 /*
654  * We play buffer_head aliasing tricks to write data/metadata blocks to
655  * the journal without copying their contents, but for journal
656  * descriptor blocks we do need to generate bona fide buffers.
657  *
658  * After the caller of journal_get_descriptor_buffer() has finished modifying
659  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
660  * But we don't bother doing that, so there will be coherency problems with
661  * mmaps of blockdevs which hold live JBD-controlled filesystems.
662  */
663 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
664 {
665         struct buffer_head *bh;
666         unsigned int blocknr;
667         int err;
668
669         err = journal_next_log_block(journal, &blocknr);
670
671         if (err)
672                 return NULL;
673
674         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
675         if (!bh)
676                 return NULL;
677         lock_buffer(bh);
678         memset(bh->b_data, 0, journal->j_blocksize);
679         set_buffer_uptodate(bh);
680         unlock_buffer(bh);
681         BUFFER_TRACE(bh, "return this buffer");
682         return journal_add_journal_head(bh);
683 }
684
685 /*
686  * Management for journal control blocks: functions to create and
687  * destroy journal_t structures, and to initialise and read existing
688  * journal blocks from disk.  */
689
690 /* First: create and setup a journal_t object in memory.  We initialise
691  * very few fields yet: that has to wait until we have created the
692  * journal structures from from scratch, or loaded them from disk. */
693
694 static journal_t * journal_init_common (void)
695 {
696         journal_t *journal;
697         int err;
698
699         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
700         if (!journal)
701                 goto fail;
702
703         init_waitqueue_head(&journal->j_wait_transaction_locked);
704         init_waitqueue_head(&journal->j_wait_logspace);
705         init_waitqueue_head(&journal->j_wait_done_commit);
706         init_waitqueue_head(&journal->j_wait_checkpoint);
707         init_waitqueue_head(&journal->j_wait_commit);
708         init_waitqueue_head(&journal->j_wait_updates);
709         mutex_init(&journal->j_barrier);
710         mutex_init(&journal->j_checkpoint_mutex);
711         spin_lock_init(&journal->j_revoke_lock);
712         spin_lock_init(&journal->j_list_lock);
713         spin_lock_init(&journal->j_state_lock);
714
715         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
716
717         /* The journal is marked for error until we succeed with recovery! */
718         journal->j_flags = JFS_ABORT;
719
720         /* Set up a default-sized revoke table for the new mount. */
721         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
722         if (err) {
723                 kfree(journal);
724                 goto fail;
725         }
726         return journal;
727 fail:
728         return NULL;
729 }
730
731 /* journal_init_dev and journal_init_inode:
732  *
733  * Create a journal structure assigned some fixed set of disk blocks to
734  * the journal.  We don't actually touch those disk blocks yet, but we
735  * need to set up all of the mapping information to tell the journaling
736  * system where the journal blocks are.
737  *
738  */
739
740 /**
741  *  journal_t * journal_init_dev() - creates and initialises a journal structure
742  *  @bdev: Block device on which to create the journal
743  *  @fs_dev: Device which hold journalled filesystem for this journal.
744  *  @start: Block nr Start of journal.
745  *  @len:  Length of the journal in blocks.
746  *  @blocksize: blocksize of journalling device
747  *
748  *  Returns: a newly created journal_t *
749  *
750  *  journal_init_dev creates a journal which maps a fixed contiguous
751  *  range of blocks on an arbitrary block device.
752  *
753  */
754 journal_t * journal_init_dev(struct block_device *bdev,
755                         struct block_device *fs_dev,
756                         int start, int len, int blocksize)
757 {
758         journal_t *journal = journal_init_common();
759         struct buffer_head *bh;
760         int n;
761
762         if (!journal)
763                 return NULL;
764
765         /* journal descriptor can store up to n blocks -bzzz */
766         journal->j_blocksize = blocksize;
767         n = journal->j_blocksize / sizeof(journal_block_tag_t);
768         journal->j_wbufsize = n;
769         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
770         if (!journal->j_wbuf) {
771                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
772                         __func__);
773                 goto out_err;
774         }
775         journal->j_dev = bdev;
776         journal->j_fs_dev = fs_dev;
777         journal->j_blk_offset = start;
778         journal->j_maxlen = len;
779
780         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
781         if (!bh) {
782                 printk(KERN_ERR
783                        "%s: Cannot get buffer for journal superblock\n",
784                        __func__);
785                 goto out_err;
786         }
787         journal->j_sb_buffer = bh;
788         journal->j_superblock = (journal_superblock_t *)bh->b_data;
789
790         return journal;
791 out_err:
792         kfree(journal->j_wbuf);
793         kfree(journal);
794         return NULL;
795 }
796
797 /**
798  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
799  *  @inode: An inode to create the journal in
800  *
801  * journal_init_inode creates a journal which maps an on-disk inode as
802  * the journal.  The inode must exist already, must support bmap() and
803  * must have all data blocks preallocated.
804  */
805 journal_t * journal_init_inode (struct inode *inode)
806 {
807         struct buffer_head *bh;
808         journal_t *journal = journal_init_common();
809         int err;
810         int n;
811         unsigned int blocknr;
812
813         if (!journal)
814                 return NULL;
815
816         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
817         journal->j_inode = inode;
818         jbd_debug(1,
819                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
820                   journal, inode->i_sb->s_id, inode->i_ino,
821                   (long long) inode->i_size,
822                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
823
824         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
825         journal->j_blocksize = inode->i_sb->s_blocksize;
826
827         /* journal descriptor can store up to n blocks -bzzz */
828         n = journal->j_blocksize / sizeof(journal_block_tag_t);
829         journal->j_wbufsize = n;
830         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
831         if (!journal->j_wbuf) {
832                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
833                         __func__);
834                 goto out_err;
835         }
836
837         err = journal_bmap(journal, 0, &blocknr);
838         /* If that failed, give up */
839         if (err) {
840                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
841                        __func__);
842                 goto out_err;
843         }
844
845         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
846         if (!bh) {
847                 printk(KERN_ERR
848                        "%s: Cannot get buffer for journal superblock\n",
849                        __func__);
850                 goto out_err;
851         }
852         journal->j_sb_buffer = bh;
853         journal->j_superblock = (journal_superblock_t *)bh->b_data;
854
855         return journal;
856 out_err:
857         kfree(journal->j_wbuf);
858         kfree(journal);
859         return NULL;
860 }
861
862 /*
863  * If the journal init or create aborts, we need to mark the journal
864  * superblock as being NULL to prevent the journal destroy from writing
865  * back a bogus superblock.
866  */
867 static void journal_fail_superblock (journal_t *journal)
868 {
869         struct buffer_head *bh = journal->j_sb_buffer;
870         brelse(bh);
871         journal->j_sb_buffer = NULL;
872 }
873
874 /*
875  * Given a journal_t structure, initialise the various fields for
876  * startup of a new journaling session.  We use this both when creating
877  * a journal, and after recovering an old journal to reset it for
878  * subsequent use.
879  */
880
881 static int journal_reset(journal_t *journal)
882 {
883         journal_superblock_t *sb = journal->j_superblock;
884         unsigned int first, last;
885
886         first = be32_to_cpu(sb->s_first);
887         last = be32_to_cpu(sb->s_maxlen);
888         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
889                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
890                        first, last);
891                 journal_fail_superblock(journal);
892                 return -EINVAL;
893         }
894
895         journal->j_first = first;
896         journal->j_last = last;
897
898         journal->j_head = first;
899         journal->j_tail = first;
900         journal->j_free = last - first;
901
902         journal->j_tail_sequence = journal->j_transaction_sequence;
903         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
904         journal->j_commit_request = journal->j_commit_sequence;
905
906         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
907
908         /* Add the dynamic fields and write it to disk. */
909         journal_update_superblock(journal, 1);
910         return journal_start_thread(journal);
911 }
912
913 /**
914  * int journal_create() - Initialise the new journal file
915  * @journal: Journal to create. This structure must have been initialised
916  *
917  * Given a journal_t structure which tells us which disk blocks we can
918  * use, create a new journal superblock and initialise all of the
919  * journal fields from scratch.
920  **/
921 int journal_create(journal_t *journal)
922 {
923         unsigned int blocknr;
924         struct buffer_head *bh;
925         journal_superblock_t *sb;
926         int i, err;
927
928         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
929                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
930                         journal->j_maxlen);
931                 journal_fail_superblock(journal);
932                 return -EINVAL;
933         }
934
935         if (journal->j_inode == NULL) {
936                 /*
937                  * We don't know what block to start at!
938                  */
939                 printk(KERN_EMERG
940                        "%s: creation of journal on external device!\n",
941                        __func__);
942                 BUG();
943         }
944
945         /* Zero out the entire journal on disk.  We cannot afford to
946            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
947         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
948         for (i = 0; i < journal->j_maxlen; i++) {
949                 err = journal_bmap(journal, i, &blocknr);
950                 if (err)
951                         return err;
952                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
953                 lock_buffer(bh);
954                 memset (bh->b_data, 0, journal->j_blocksize);
955                 BUFFER_TRACE(bh, "marking dirty");
956                 mark_buffer_dirty(bh);
957                 BUFFER_TRACE(bh, "marking uptodate");
958                 set_buffer_uptodate(bh);
959                 unlock_buffer(bh);
960                 __brelse(bh);
961         }
962
963         sync_blockdev(journal->j_dev);
964         jbd_debug(1, "JBD: journal cleared.\n");
965
966         /* OK, fill in the initial static fields in the new superblock */
967         sb = journal->j_superblock;
968
969         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
970         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
971
972         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
973         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
974         sb->s_first     = cpu_to_be32(1);
975
976         journal->j_transaction_sequence = 1;
977
978         journal->j_flags &= ~JFS_ABORT;
979         journal->j_format_version = 2;
980
981         return journal_reset(journal);
982 }
983
984 /**
985  * void journal_update_superblock() - Update journal sb on disk.
986  * @journal: The journal to update.
987  * @wait: Set to '0' if you don't want to wait for IO completion.
988  *
989  * Update a journal's dynamic superblock fields and write it to disk,
990  * optionally waiting for the IO to complete.
991  */
992 void journal_update_superblock(journal_t *journal, int wait)
993 {
994         journal_superblock_t *sb = journal->j_superblock;
995         struct buffer_head *bh = journal->j_sb_buffer;
996
997         /*
998          * As a special case, if the on-disk copy is already marked as needing
999          * no recovery (s_start == 0) and there are no outstanding transactions
1000          * in the filesystem, then we can safely defer the superblock update
1001          * until the next commit by setting JFS_FLUSHED.  This avoids
1002          * attempting a write to a potential-readonly device.
1003          */
1004         if (sb->s_start == 0 && journal->j_tail_sequence ==
1005                                 journal->j_transaction_sequence) {
1006                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1007                         "(start %u, seq %d, errno %d)\n",
1008                         journal->j_tail, journal->j_tail_sequence,
1009                         journal->j_errno);
1010                 goto out;
1011         }
1012
1013         spin_lock(&journal->j_state_lock);
1014         jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1015                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1016
1017         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1018         sb->s_start    = cpu_to_be32(journal->j_tail);
1019         sb->s_errno    = cpu_to_be32(journal->j_errno);
1020         spin_unlock(&journal->j_state_lock);
1021
1022         BUFFER_TRACE(bh, "marking dirty");
1023         mark_buffer_dirty(bh);
1024         if (wait)
1025                 sync_dirty_buffer(bh);
1026         else
1027                 write_dirty_buffer(bh, WRITE);
1028
1029 out:
1030         /* If we have just flushed the log (by marking s_start==0), then
1031          * any future commit will have to be careful to update the
1032          * superblock again to re-record the true start of the log. */
1033
1034         spin_lock(&journal->j_state_lock);
1035         if (sb->s_start)
1036                 journal->j_flags &= ~JFS_FLUSHED;
1037         else
1038                 journal->j_flags |= JFS_FLUSHED;
1039         spin_unlock(&journal->j_state_lock);
1040 }
1041
1042 /*
1043  * Read the superblock for a given journal, performing initial
1044  * validation of the format.
1045  */
1046
1047 static int journal_get_superblock(journal_t *journal)
1048 {
1049         struct buffer_head *bh;
1050         journal_superblock_t *sb;
1051         int err = -EIO;
1052
1053         bh = journal->j_sb_buffer;
1054
1055         J_ASSERT(bh != NULL);
1056         if (!buffer_uptodate(bh)) {
1057                 ll_rw_block(READ, 1, &bh);
1058                 wait_on_buffer(bh);
1059                 if (!buffer_uptodate(bh)) {
1060                         printk (KERN_ERR
1061                                 "JBD: IO error reading journal superblock\n");
1062                         goto out;
1063                 }
1064         }
1065
1066         sb = journal->j_superblock;
1067
1068         err = -EINVAL;
1069
1070         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1071             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1072                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1073                 goto out;
1074         }
1075
1076         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1077         case JFS_SUPERBLOCK_V1:
1078                 journal->j_format_version = 1;
1079                 break;
1080         case JFS_SUPERBLOCK_V2:
1081                 journal->j_format_version = 2;
1082                 break;
1083         default:
1084                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1085                 goto out;
1086         }
1087
1088         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1089                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1090         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1091                 printk (KERN_WARNING "JBD: journal file too short\n");
1092                 goto out;
1093         }
1094
1095         return 0;
1096
1097 out:
1098         journal_fail_superblock(journal);
1099         return err;
1100 }
1101
1102 /*
1103  * Load the on-disk journal superblock and read the key fields into the
1104  * journal_t.
1105  */
1106
1107 static int load_superblock(journal_t *journal)
1108 {
1109         int err;
1110         journal_superblock_t *sb;
1111
1112         err = journal_get_superblock(journal);
1113         if (err)
1114                 return err;
1115
1116         sb = journal->j_superblock;
1117
1118         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1119         journal->j_tail = be32_to_cpu(sb->s_start);
1120         journal->j_first = be32_to_cpu(sb->s_first);
1121         journal->j_last = be32_to_cpu(sb->s_maxlen);
1122         journal->j_errno = be32_to_cpu(sb->s_errno);
1123
1124         return 0;
1125 }
1126
1127
1128 /**
1129  * int journal_load() - Read journal from disk.
1130  * @journal: Journal to act on.
1131  *
1132  * Given a journal_t structure which tells us which disk blocks contain
1133  * a journal, read the journal from disk to initialise the in-memory
1134  * structures.
1135  */
1136 int journal_load(journal_t *journal)
1137 {
1138         int err;
1139         journal_superblock_t *sb;
1140
1141         err = load_superblock(journal);
1142         if (err)
1143                 return err;
1144
1145         sb = journal->j_superblock;
1146         /* If this is a V2 superblock, then we have to check the
1147          * features flags on it. */
1148
1149         if (journal->j_format_version >= 2) {
1150                 if ((sb->s_feature_ro_compat &
1151                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1152                     (sb->s_feature_incompat &
1153                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1154                         printk (KERN_WARNING
1155                                 "JBD: Unrecognised features on journal\n");
1156                         return -EINVAL;
1157                 }
1158         }
1159
1160         /* Let the recovery code check whether it needs to recover any
1161          * data from the journal. */
1162         if (journal_recover(journal))
1163                 goto recovery_error;
1164
1165         /* OK, we've finished with the dynamic journal bits:
1166          * reinitialise the dynamic contents of the superblock in memory
1167          * and reset them on disk. */
1168         if (journal_reset(journal))
1169                 goto recovery_error;
1170
1171         journal->j_flags &= ~JFS_ABORT;
1172         journal->j_flags |= JFS_LOADED;
1173         return 0;
1174
1175 recovery_error:
1176         printk (KERN_WARNING "JBD: recovery failed\n");
1177         return -EIO;
1178 }
1179
1180 /**
1181  * void journal_destroy() - Release a journal_t structure.
1182  * @journal: Journal to act on.
1183  *
1184  * Release a journal_t structure once it is no longer in use by the
1185  * journaled object.
1186  * Return <0 if we couldn't clean up the journal.
1187  */
1188 int journal_destroy(journal_t *journal)
1189 {
1190         int err = 0;
1191
1192         
1193         /* Wait for the commit thread to wake up and die. */
1194         journal_kill_thread(journal);
1195
1196         /* Force a final log commit */
1197         if (journal->j_running_transaction)
1198                 journal_commit_transaction(journal);
1199
1200         /* Force any old transactions to disk */
1201
1202         /* Totally anal locking here... */
1203         spin_lock(&journal->j_list_lock);
1204         while (journal->j_checkpoint_transactions != NULL) {
1205                 spin_unlock(&journal->j_list_lock);
1206                 log_do_checkpoint(journal);
1207                 spin_lock(&journal->j_list_lock);
1208         }
1209
1210         J_ASSERT(journal->j_running_transaction == NULL);
1211         J_ASSERT(journal->j_committing_transaction == NULL);
1212         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1213         spin_unlock(&journal->j_list_lock);
1214
1215         if (journal->j_sb_buffer) {
1216                 if (!is_journal_aborted(journal)) {
1217                         /* We can now mark the journal as empty. */
1218                         journal->j_tail = 0;
1219                         journal->j_tail_sequence =
1220                                 ++journal->j_transaction_sequence;
1221                         journal_update_superblock(journal, 1);
1222                 } else {
1223                         err = -EIO;
1224                 }
1225                 brelse(journal->j_sb_buffer);
1226         }
1227
1228         if (journal->j_inode)
1229                 iput(journal->j_inode);
1230         if (journal->j_revoke)
1231                 journal_destroy_revoke(journal);
1232         kfree(journal->j_wbuf);
1233         kfree(journal);
1234
1235         return err;
1236 }
1237
1238
1239 /**
1240  *int journal_check_used_features () - Check if features specified are used.
1241  * @journal: Journal to check.
1242  * @compat: bitmask of compatible features
1243  * @ro: bitmask of features that force read-only mount
1244  * @incompat: bitmask of incompatible features
1245  *
1246  * Check whether the journal uses all of a given set of
1247  * features.  Return true (non-zero) if it does.
1248  **/
1249
1250 int journal_check_used_features (journal_t *journal, unsigned long compat,
1251                                  unsigned long ro, unsigned long incompat)
1252 {
1253         journal_superblock_t *sb;
1254
1255         if (!compat && !ro && !incompat)
1256                 return 1;
1257         if (journal->j_format_version == 1)
1258                 return 0;
1259
1260         sb = journal->j_superblock;
1261
1262         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1263             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1264             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1265                 return 1;
1266
1267         return 0;
1268 }
1269
1270 /**
1271  * int journal_check_available_features() - Check feature set in journalling layer
1272  * @journal: Journal to check.
1273  * @compat: bitmask of compatible features
1274  * @ro: bitmask of features that force read-only mount
1275  * @incompat: bitmask of incompatible features
1276  *
1277  * Check whether the journaling code supports the use of
1278  * all of a given set of features on this journal.  Return true
1279  * (non-zero) if it can. */
1280
1281 int journal_check_available_features (journal_t *journal, unsigned long compat,
1282                                       unsigned long ro, unsigned long incompat)
1283 {
1284         if (!compat && !ro && !incompat)
1285                 return 1;
1286
1287         /* We can support any known requested features iff the
1288          * superblock is in version 2.  Otherwise we fail to support any
1289          * extended sb features. */
1290
1291         if (journal->j_format_version != 2)
1292                 return 0;
1293
1294         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1295             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1296             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1297                 return 1;
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * int journal_set_features () - Mark a given journal feature in the superblock
1304  * @journal: Journal to act on.
1305  * @compat: bitmask of compatible features
1306  * @ro: bitmask of features that force read-only mount
1307  * @incompat: bitmask of incompatible features
1308  *
1309  * Mark a given journal feature as present on the
1310  * superblock.  Returns true if the requested features could be set.
1311  *
1312  */
1313
1314 int journal_set_features (journal_t *journal, unsigned long compat,
1315                           unsigned long ro, unsigned long incompat)
1316 {
1317         journal_superblock_t *sb;
1318
1319         if (journal_check_used_features(journal, compat, ro, incompat))
1320                 return 1;
1321
1322         if (!journal_check_available_features(journal, compat, ro, incompat))
1323                 return 0;
1324
1325         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1326                   compat, ro, incompat);
1327
1328         sb = journal->j_superblock;
1329
1330         sb->s_feature_compat    |= cpu_to_be32(compat);
1331         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1332         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1333
1334         return 1;
1335 }
1336
1337
1338 /**
1339  * int journal_update_format () - Update on-disk journal structure.
1340  * @journal: Journal to act on.
1341  *
1342  * Given an initialised but unloaded journal struct, poke about in the
1343  * on-disk structure to update it to the most recent supported version.
1344  */
1345 int journal_update_format (journal_t *journal)
1346 {
1347         journal_superblock_t *sb;
1348         int err;
1349
1350         err = journal_get_superblock(journal);
1351         if (err)
1352                 return err;
1353
1354         sb = journal->j_superblock;
1355
1356         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1357         case JFS_SUPERBLOCK_V2:
1358                 return 0;
1359         case JFS_SUPERBLOCK_V1:
1360                 return journal_convert_superblock_v1(journal, sb);
1361         default:
1362                 break;
1363         }
1364         return -EINVAL;
1365 }
1366
1367 static int journal_convert_superblock_v1(journal_t *journal,
1368                                          journal_superblock_t *sb)
1369 {
1370         int offset, blocksize;
1371         struct buffer_head *bh;
1372
1373         printk(KERN_WARNING
1374                 "JBD: Converting superblock from version 1 to 2.\n");
1375
1376         /* Pre-initialise new fields to zero */
1377         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1378         blocksize = be32_to_cpu(sb->s_blocksize);
1379         memset(&sb->s_feature_compat, 0, blocksize-offset);
1380
1381         sb->s_nr_users = cpu_to_be32(1);
1382         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1383         journal->j_format_version = 2;
1384
1385         bh = journal->j_sb_buffer;
1386         BUFFER_TRACE(bh, "marking dirty");
1387         mark_buffer_dirty(bh);
1388         sync_dirty_buffer(bh);
1389         return 0;
1390 }
1391
1392
1393 /**
1394  * int journal_flush () - Flush journal
1395  * @journal: Journal to act on.
1396  *
1397  * Flush all data for a given journal to disk and empty the journal.
1398  * Filesystems can use this when remounting readonly to ensure that
1399  * recovery does not need to happen on remount.
1400  */
1401
1402 int journal_flush(journal_t *journal)
1403 {
1404         int err = 0;
1405         transaction_t *transaction = NULL;
1406         unsigned int old_tail;
1407
1408         spin_lock(&journal->j_state_lock);
1409
1410         /* Force everything buffered to the log... */
1411         if (journal->j_running_transaction) {
1412                 transaction = journal->j_running_transaction;
1413                 __log_start_commit(journal, transaction->t_tid);
1414         } else if (journal->j_committing_transaction)
1415                 transaction = journal->j_committing_transaction;
1416
1417         /* Wait for the log commit to complete... */
1418         if (transaction) {
1419                 tid_t tid = transaction->t_tid;
1420
1421                 spin_unlock(&journal->j_state_lock);
1422                 log_wait_commit(journal, tid);
1423         } else {
1424                 spin_unlock(&journal->j_state_lock);
1425         }
1426
1427         /* ...and flush everything in the log out to disk. */
1428         spin_lock(&journal->j_list_lock);
1429         while (!err && journal->j_checkpoint_transactions != NULL) {
1430                 spin_unlock(&journal->j_list_lock);
1431                 mutex_lock(&journal->j_checkpoint_mutex);
1432                 err = log_do_checkpoint(journal);
1433                 mutex_unlock(&journal->j_checkpoint_mutex);
1434                 spin_lock(&journal->j_list_lock);
1435         }
1436         spin_unlock(&journal->j_list_lock);
1437
1438         if (is_journal_aborted(journal))
1439                 return -EIO;
1440
1441         cleanup_journal_tail(journal);
1442
1443         /* Finally, mark the journal as really needing no recovery.
1444          * This sets s_start==0 in the underlying superblock, which is
1445          * the magic code for a fully-recovered superblock.  Any future
1446          * commits of data to the journal will restore the current
1447          * s_start value. */
1448         spin_lock(&journal->j_state_lock);
1449         old_tail = journal->j_tail;
1450         journal->j_tail = 0;
1451         spin_unlock(&journal->j_state_lock);
1452         journal_update_superblock(journal, 1);
1453         spin_lock(&journal->j_state_lock);
1454         journal->j_tail = old_tail;
1455
1456         J_ASSERT(!journal->j_running_transaction);
1457         J_ASSERT(!journal->j_committing_transaction);
1458         J_ASSERT(!journal->j_checkpoint_transactions);
1459         J_ASSERT(journal->j_head == journal->j_tail);
1460         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1461         spin_unlock(&journal->j_state_lock);
1462         return 0;
1463 }
1464
1465 /**
1466  * int journal_wipe() - Wipe journal contents
1467  * @journal: Journal to act on.
1468  * @write: flag (see below)
1469  *
1470  * Wipe out all of the contents of a journal, safely.  This will produce
1471  * a warning if the journal contains any valid recovery information.
1472  * Must be called between journal_init_*() and journal_load().
1473  *
1474  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1475  * we merely suppress recovery.
1476  */
1477
1478 int journal_wipe(journal_t *journal, int write)
1479 {
1480         int err = 0;
1481
1482         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1483
1484         err = load_superblock(journal);
1485         if (err)
1486                 return err;
1487
1488         if (!journal->j_tail)
1489                 goto no_recovery;
1490
1491         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1492                 write ? "Clearing" : "Ignoring");
1493
1494         err = journal_skip_recovery(journal);
1495         if (write)
1496                 journal_update_superblock(journal, 1);
1497
1498  no_recovery:
1499         return err;
1500 }
1501
1502 /*
1503  * journal_dev_name: format a character string to describe on what
1504  * device this journal is present.
1505  */
1506
1507 static const char *journal_dev_name(journal_t *journal, char *buffer)
1508 {
1509         struct block_device *bdev;
1510
1511         if (journal->j_inode)
1512                 bdev = journal->j_inode->i_sb->s_bdev;
1513         else
1514                 bdev = journal->j_dev;
1515
1516         return bdevname(bdev, buffer);
1517 }
1518
1519 /*
1520  * Journal abort has very specific semantics, which we describe
1521  * for journal abort.
1522  *
1523  * Two internal function, which provide abort to te jbd layer
1524  * itself are here.
1525  */
1526
1527 /*
1528  * Quick version for internal journal use (doesn't lock the journal).
1529  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1530  * and don't attempt to make any other journal updates.
1531  */
1532 static void __journal_abort_hard(journal_t *journal)
1533 {
1534         transaction_t *transaction;
1535         char b[BDEVNAME_SIZE];
1536
1537         if (journal->j_flags & JFS_ABORT)
1538                 return;
1539
1540         printk(KERN_ERR "Aborting journal on device %s.\n",
1541                 journal_dev_name(journal, b));
1542
1543         spin_lock(&journal->j_state_lock);
1544         journal->j_flags |= JFS_ABORT;
1545         transaction = journal->j_running_transaction;
1546         if (transaction)
1547                 __log_start_commit(journal, transaction->t_tid);
1548         spin_unlock(&journal->j_state_lock);
1549 }
1550
1551 /* Soft abort: record the abort error status in the journal superblock,
1552  * but don't do any other IO. */
1553 static void __journal_abort_soft (journal_t *journal, int errno)
1554 {
1555         if (journal->j_flags & JFS_ABORT)
1556                 return;
1557
1558         if (!journal->j_errno)
1559                 journal->j_errno = errno;
1560
1561         __journal_abort_hard(journal);
1562
1563         if (errno)
1564                 journal_update_superblock(journal, 1);
1565 }
1566
1567 /**
1568  * void journal_abort () - Shutdown the journal immediately.
1569  * @journal: the journal to shutdown.
1570  * @errno:   an error number to record in the journal indicating
1571  *           the reason for the shutdown.
1572  *
1573  * Perform a complete, immediate shutdown of the ENTIRE
1574  * journal (not of a single transaction).  This operation cannot be
1575  * undone without closing and reopening the journal.
1576  *
1577  * The journal_abort function is intended to support higher level error
1578  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1579  * mode.
1580  *
1581  * Journal abort has very specific semantics.  Any existing dirty,
1582  * unjournaled buffers in the main filesystem will still be written to
1583  * disk by bdflush, but the journaling mechanism will be suspended
1584  * immediately and no further transaction commits will be honoured.
1585  *
1586  * Any dirty, journaled buffers will be written back to disk without
1587  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1588  * filesystem, but we _do_ attempt to leave as much data as possible
1589  * behind for fsck to use for cleanup.
1590  *
1591  * Any attempt to get a new transaction handle on a journal which is in
1592  * ABORT state will just result in an -EROFS error return.  A
1593  * journal_stop on an existing handle will return -EIO if we have
1594  * entered abort state during the update.
1595  *
1596  * Recursive transactions are not disturbed by journal abort until the
1597  * final journal_stop, which will receive the -EIO error.
1598  *
1599  * Finally, the journal_abort call allows the caller to supply an errno
1600  * which will be recorded (if possible) in the journal superblock.  This
1601  * allows a client to record failure conditions in the middle of a
1602  * transaction without having to complete the transaction to record the
1603  * failure to disk.  ext3_error, for example, now uses this
1604  * functionality.
1605  *
1606  * Errors which originate from within the journaling layer will NOT
1607  * supply an errno; a null errno implies that absolutely no further
1608  * writes are done to the journal (unless there are any already in
1609  * progress).
1610  *
1611  */
1612
1613 void journal_abort(journal_t *journal, int errno)
1614 {
1615         __journal_abort_soft(journal, errno);
1616 }
1617
1618 /**
1619  * int journal_errno () - returns the journal's error state.
1620  * @journal: journal to examine.
1621  *
1622  * This is the errno numbet set with journal_abort(), the last
1623  * time the journal was mounted - if the journal was stopped
1624  * without calling abort this will be 0.
1625  *
1626  * If the journal has been aborted on this mount time -EROFS will
1627  * be returned.
1628  */
1629 int journal_errno(journal_t *journal)
1630 {
1631         int err;
1632
1633         spin_lock(&journal->j_state_lock);
1634         if (journal->j_flags & JFS_ABORT)
1635                 err = -EROFS;
1636         else
1637                 err = journal->j_errno;
1638         spin_unlock(&journal->j_state_lock);
1639         return err;
1640 }
1641
1642 /**
1643  * int journal_clear_err () - clears the journal's error state
1644  * @journal: journal to act on.
1645  *
1646  * An error must be cleared or Acked to take a FS out of readonly
1647  * mode.
1648  */
1649 int journal_clear_err(journal_t *journal)
1650 {
1651         int err = 0;
1652
1653         spin_lock(&journal->j_state_lock);
1654         if (journal->j_flags & JFS_ABORT)
1655                 err = -EROFS;
1656         else
1657                 journal->j_errno = 0;
1658         spin_unlock(&journal->j_state_lock);
1659         return err;
1660 }
1661
1662 /**
1663  * void journal_ack_err() - Ack journal err.
1664  * @journal: journal to act on.
1665  *
1666  * An error must be cleared or Acked to take a FS out of readonly
1667  * mode.
1668  */
1669 void journal_ack_err(journal_t *journal)
1670 {
1671         spin_lock(&journal->j_state_lock);
1672         if (journal->j_errno)
1673                 journal->j_flags |= JFS_ACK_ERR;
1674         spin_unlock(&journal->j_state_lock);
1675 }
1676
1677 int journal_blocks_per_page(struct inode *inode)
1678 {
1679         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1680 }
1681
1682 /*
1683  * Journal_head storage management
1684  */
1685 static struct kmem_cache *journal_head_cache;
1686 #ifdef CONFIG_JBD_DEBUG
1687 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1688 #endif
1689
1690 static int journal_init_journal_head_cache(void)
1691 {
1692         int retval;
1693
1694         J_ASSERT(journal_head_cache == NULL);
1695         journal_head_cache = kmem_cache_create("journal_head",
1696                                 sizeof(struct journal_head),
1697                                 0,              /* offset */
1698                                 SLAB_TEMPORARY, /* flags */
1699                                 NULL);          /* ctor */
1700         retval = 0;
1701         if (!journal_head_cache) {
1702                 retval = -ENOMEM;
1703                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1704         }
1705         return retval;
1706 }
1707
1708 static void journal_destroy_journal_head_cache(void)
1709 {
1710         if (journal_head_cache) {
1711                 kmem_cache_destroy(journal_head_cache);
1712                 journal_head_cache = NULL;
1713         }
1714 }
1715
1716 /*
1717  * journal_head splicing and dicing
1718  */
1719 static struct journal_head *journal_alloc_journal_head(void)
1720 {
1721         struct journal_head *ret;
1722         static unsigned long last_warning;
1723
1724 #ifdef CONFIG_JBD_DEBUG
1725         atomic_inc(&nr_journal_heads);
1726 #endif
1727         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1728         if (ret == NULL) {
1729                 jbd_debug(1, "out of memory for journal_head\n");
1730                 if (time_after(jiffies, last_warning + 5*HZ)) {
1731                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1732                                __func__);
1733                         last_warning = jiffies;
1734                 }
1735                 while (ret == NULL) {
1736                         yield();
1737                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1738                 }
1739         }
1740         return ret;
1741 }
1742
1743 static void journal_free_journal_head(struct journal_head *jh)
1744 {
1745 #ifdef CONFIG_JBD_DEBUG
1746         atomic_dec(&nr_journal_heads);
1747         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1748 #endif
1749         kmem_cache_free(journal_head_cache, jh);
1750 }
1751
1752 /*
1753  * A journal_head is attached to a buffer_head whenever JBD has an
1754  * interest in the buffer.
1755  *
1756  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1757  * is set.  This bit is tested in core kernel code where we need to take
1758  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1759  * there.
1760  *
1761  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1762  *
1763  * When a buffer has its BH_JBD bit set it is immune from being released by
1764  * core kernel code, mainly via ->b_count.
1765  *
1766  * A journal_head may be detached from its buffer_head when the journal_head's
1767  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1768  * Various places in JBD call journal_remove_journal_head() to indicate that the
1769  * journal_head can be dropped if needed.
1770  *
1771  * Various places in the kernel want to attach a journal_head to a buffer_head
1772  * _before_ attaching the journal_head to a transaction.  To protect the
1773  * journal_head in this situation, journal_add_journal_head elevates the
1774  * journal_head's b_jcount refcount by one.  The caller must call
1775  * journal_put_journal_head() to undo this.
1776  *
1777  * So the typical usage would be:
1778  *
1779  *      (Attach a journal_head if needed.  Increments b_jcount)
1780  *      struct journal_head *jh = journal_add_journal_head(bh);
1781  *      ...
1782  *      jh->b_transaction = xxx;
1783  *      journal_put_journal_head(jh);
1784  *
1785  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1786  * because it has a non-zero b_transaction.
1787  */
1788
1789 /*
1790  * Give a buffer_head a journal_head.
1791  *
1792  * Doesn't need the journal lock.
1793  * May sleep.
1794  */
1795 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1796 {
1797         struct journal_head *jh;
1798         struct journal_head *new_jh = NULL;
1799
1800 repeat:
1801         if (!buffer_jbd(bh)) {
1802                 new_jh = journal_alloc_journal_head();
1803                 memset(new_jh, 0, sizeof(*new_jh));
1804         }
1805
1806         jbd_lock_bh_journal_head(bh);
1807         if (buffer_jbd(bh)) {
1808                 jh = bh2jh(bh);
1809         } else {
1810                 J_ASSERT_BH(bh,
1811                         (atomic_read(&bh->b_count) > 0) ||
1812                         (bh->b_page && bh->b_page->mapping));
1813
1814                 if (!new_jh) {
1815                         jbd_unlock_bh_journal_head(bh);
1816                         goto repeat;
1817                 }
1818
1819                 jh = new_jh;
1820                 new_jh = NULL;          /* We consumed it */
1821                 set_buffer_jbd(bh);
1822                 bh->b_private = jh;
1823                 jh->b_bh = bh;
1824                 get_bh(bh);
1825                 BUFFER_TRACE(bh, "added journal_head");
1826         }
1827         jh->b_jcount++;
1828         jbd_unlock_bh_journal_head(bh);
1829         if (new_jh)
1830                 journal_free_journal_head(new_jh);
1831         return bh->b_private;
1832 }
1833
1834 /*
1835  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1836  * having a journal_head, return NULL
1837  */
1838 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1839 {
1840         struct journal_head *jh = NULL;
1841
1842         jbd_lock_bh_journal_head(bh);
1843         if (buffer_jbd(bh)) {
1844                 jh = bh2jh(bh);
1845                 jh->b_jcount++;
1846         }
1847         jbd_unlock_bh_journal_head(bh);
1848         return jh;
1849 }
1850
1851 static void __journal_remove_journal_head(struct buffer_head *bh)
1852 {
1853         struct journal_head *jh = bh2jh(bh);
1854
1855         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1856
1857         get_bh(bh);
1858         if (jh->b_jcount == 0) {
1859                 if (jh->b_transaction == NULL &&
1860                                 jh->b_next_transaction == NULL &&
1861                                 jh->b_cp_transaction == NULL) {
1862                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1863                         J_ASSERT_BH(bh, buffer_jbd(bh));
1864                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1865                         BUFFER_TRACE(bh, "remove journal_head");
1866                         if (jh->b_frozen_data) {
1867                                 printk(KERN_WARNING "%s: freeing "
1868                                                 "b_frozen_data\n",
1869                                                 __func__);
1870                                 jbd_free(jh->b_frozen_data, bh->b_size);
1871                         }
1872                         if (jh->b_committed_data) {
1873                                 printk(KERN_WARNING "%s: freeing "
1874                                                 "b_committed_data\n",
1875                                                 __func__);
1876                                 jbd_free(jh->b_committed_data, bh->b_size);
1877                         }
1878                         bh->b_private = NULL;
1879                         jh->b_bh = NULL;        /* debug, really */
1880                         clear_buffer_jbd(bh);
1881                         __brelse(bh);
1882                         journal_free_journal_head(jh);
1883                 } else {
1884                         BUFFER_TRACE(bh, "journal_head was locked");
1885                 }
1886         }
1887 }
1888
1889 /*
1890  * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1891  * and has a zero b_jcount then remove and release its journal_head.   If we did
1892  * see that the buffer is not used by any transaction we also "logically"
1893  * decrement ->b_count.
1894  *
1895  * We in fact take an additional increment on ->b_count as a convenience,
1896  * because the caller usually wants to do additional things with the bh
1897  * after calling here.
1898  * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1899  * time.  Once the caller has run __brelse(), the buffer is eligible for
1900  * reaping by try_to_free_buffers().
1901  */
1902 void journal_remove_journal_head(struct buffer_head *bh)
1903 {
1904         jbd_lock_bh_journal_head(bh);
1905         __journal_remove_journal_head(bh);
1906         jbd_unlock_bh_journal_head(bh);
1907 }
1908
1909 /*
1910  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1911  * release the journal_head from the buffer_head.
1912  */
1913 void journal_put_journal_head(struct journal_head *jh)
1914 {
1915         struct buffer_head *bh = jh2bh(jh);
1916
1917         jbd_lock_bh_journal_head(bh);
1918         J_ASSERT_JH(jh, jh->b_jcount > 0);
1919         --jh->b_jcount;
1920         if (!jh->b_jcount && !jh->b_transaction) {
1921                 __journal_remove_journal_head(bh);
1922                 __brelse(bh);
1923         }
1924         jbd_unlock_bh_journal_head(bh);
1925 }
1926
1927 /*
1928  * debugfs tunables
1929  */
1930 #ifdef CONFIG_JBD_DEBUG
1931
1932 u8 journal_enable_debug __read_mostly;
1933 EXPORT_SYMBOL(journal_enable_debug);
1934
1935 static struct dentry *jbd_debugfs_dir;
1936 static struct dentry *jbd_debug;
1937
1938 static void __init jbd_create_debugfs_entry(void)
1939 {
1940         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1941         if (jbd_debugfs_dir)
1942                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1943                                                jbd_debugfs_dir,
1944                                                &journal_enable_debug);
1945 }
1946
1947 static void __exit jbd_remove_debugfs_entry(void)
1948 {
1949         debugfs_remove(jbd_debug);
1950         debugfs_remove(jbd_debugfs_dir);
1951 }
1952
1953 #else
1954
1955 static inline void jbd_create_debugfs_entry(void)
1956 {
1957 }
1958
1959 static inline void jbd_remove_debugfs_entry(void)
1960 {
1961 }
1962
1963 #endif
1964
1965 struct kmem_cache *jbd_handle_cache;
1966
1967 static int __init journal_init_handle_cache(void)
1968 {
1969         jbd_handle_cache = kmem_cache_create("journal_handle",
1970                                 sizeof(handle_t),
1971                                 0,              /* offset */
1972                                 SLAB_TEMPORARY, /* flags */
1973                                 NULL);          /* ctor */
1974         if (jbd_handle_cache == NULL) {
1975                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1976                 return -ENOMEM;
1977         }
1978         return 0;
1979 }
1980
1981 static void journal_destroy_handle_cache(void)
1982 {
1983         if (jbd_handle_cache)
1984                 kmem_cache_destroy(jbd_handle_cache);
1985 }
1986
1987 /*
1988  * Module startup and shutdown
1989  */
1990
1991 static int __init journal_init_caches(void)
1992 {
1993         int ret;
1994
1995         ret = journal_init_revoke_caches();
1996         if (ret == 0)
1997                 ret = journal_init_journal_head_cache();
1998         if (ret == 0)
1999                 ret = journal_init_handle_cache();
2000         return ret;
2001 }
2002
2003 static void journal_destroy_caches(void)
2004 {
2005         journal_destroy_revoke_caches();
2006         journal_destroy_journal_head_cache();
2007         journal_destroy_handle_cache();
2008 }
2009
2010 static int __init journal_init(void)
2011 {
2012         int ret;
2013
2014         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2015
2016         ret = journal_init_caches();
2017         if (ret != 0)
2018                 journal_destroy_caches();
2019         jbd_create_debugfs_entry();
2020         return ret;
2021 }
2022
2023 static void __exit journal_exit(void)
2024 {
2025 #ifdef CONFIG_JBD_DEBUG
2026         int n = atomic_read(&nr_journal_heads);
2027         if (n)
2028                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2029 #endif
2030         jbd_remove_debugfs_entry();
2031         journal_destroy_caches();
2032 }
2033
2034 MODULE_LICENSE("GPL");
2035 module_init(journal_init);
2036 module_exit(journal_exit);
2037