]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/fs-writeback.c
fs: Implement lazy LRU updates for inodes
[net-next-2.6.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int for_kupdate:1;
40         unsigned int range_cyclic:1;
41         unsigned int for_background:1;
42
43         struct list_head list;          /* pending work list */
44         struct completion *done;        /* set if the caller waits */
45 };
46
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69         return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74         struct super_block *sb = inode->i_sb;
75
76         if (strcmp(sb->s_type->name, "bdev") == 0)
77                 return inode->i_mapping->backing_dev_info;
78
79         return sb->s_bdi;
80 }
81
82 static void bdi_queue_work(struct backing_dev_info *bdi,
83                 struct wb_writeback_work *work)
84 {
85         trace_writeback_queue(bdi, work);
86
87         spin_lock_bh(&bdi->wb_lock);
88         list_add_tail(&work->list, &bdi->work_list);
89         if (bdi->wb.task) {
90                 wake_up_process(bdi->wb.task);
91         } else {
92                 /*
93                  * The bdi thread isn't there, wake up the forker thread which
94                  * will create and run it.
95                  */
96                 trace_writeback_nothread(bdi, work);
97                 wake_up_process(default_backing_dev_info.wb.task);
98         }
99         spin_unlock_bh(&bdi->wb_lock);
100 }
101
102 static void
103 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
104                 bool range_cyclic, bool for_background)
105 {
106         struct wb_writeback_work *work;
107
108         /*
109          * This is WB_SYNC_NONE writeback, so if allocation fails just
110          * wakeup the thread for old dirty data writeback
111          */
112         work = kzalloc(sizeof(*work), GFP_ATOMIC);
113         if (!work) {
114                 if (bdi->wb.task) {
115                         trace_writeback_nowork(bdi);
116                         wake_up_process(bdi->wb.task);
117                 }
118                 return;
119         }
120
121         work->sync_mode = WB_SYNC_NONE;
122         work->nr_pages  = nr_pages;
123         work->range_cyclic = range_cyclic;
124         work->for_background = for_background;
125
126         bdi_queue_work(bdi, work);
127 }
128
129 /**
130  * bdi_start_writeback - start writeback
131  * @bdi: the backing device to write from
132  * @nr_pages: the number of pages to write
133  *
134  * Description:
135  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
136  *   started when this function returns, we make no guarentees on
137  *   completion. Caller need not hold sb s_umount semaphore.
138  *
139  */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
141 {
142         __bdi_start_writeback(bdi, nr_pages, true, false);
143 }
144
145 /**
146  * bdi_start_background_writeback - start background writeback
147  * @bdi: the backing device to write from
148  *
149  * Description:
150  *   This does WB_SYNC_NONE background writeback. The IO is only
151  *   started when this function returns, we make no guarentees on
152  *   completion. Caller need not hold sb s_umount semaphore.
153  */
154 void bdi_start_background_writeback(struct backing_dev_info *bdi)
155 {
156         __bdi_start_writeback(bdi, LONG_MAX, true, true);
157 }
158
159 /*
160  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
161  * furthest end of its superblock's dirty-inode list.
162  *
163  * Before stamping the inode's ->dirtied_when, we check to see whether it is
164  * already the most-recently-dirtied inode on the b_dirty list.  If that is
165  * the case then the inode must have been redirtied while it was being written
166  * out and we don't reset its dirtied_when.
167  */
168 static void redirty_tail(struct inode *inode)
169 {
170         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
171
172         if (!list_empty(&wb->b_dirty)) {
173                 struct inode *tail;
174
175                 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
176                 if (time_before(inode->dirtied_when, tail->dirtied_when))
177                         inode->dirtied_when = jiffies;
178         }
179         list_move(&inode->i_list, &wb->b_dirty);
180 }
181
182 /*
183  * requeue inode for re-scanning after bdi->b_io list is exhausted.
184  */
185 static void requeue_io(struct inode *inode)
186 {
187         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
188
189         list_move(&inode->i_list, &wb->b_more_io);
190 }
191
192 static void inode_sync_complete(struct inode *inode)
193 {
194         /*
195          * Prevent speculative execution through spin_unlock(&inode_lock);
196          */
197         smp_mb();
198         wake_up_bit(&inode->i_state, __I_SYNC);
199 }
200
201 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
202 {
203         bool ret = time_after(inode->dirtied_when, t);
204 #ifndef CONFIG_64BIT
205         /*
206          * For inodes being constantly redirtied, dirtied_when can get stuck.
207          * It _appears_ to be in the future, but is actually in distant past.
208          * This test is necessary to prevent such wrapped-around relative times
209          * from permanently stopping the whole bdi writeback.
210          */
211         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
212 #endif
213         return ret;
214 }
215
216 /*
217  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
218  */
219 static void move_expired_inodes(struct list_head *delaying_queue,
220                                struct list_head *dispatch_queue,
221                                 unsigned long *older_than_this)
222 {
223         LIST_HEAD(tmp);
224         struct list_head *pos, *node;
225         struct super_block *sb = NULL;
226         struct inode *inode;
227         int do_sb_sort = 0;
228
229         while (!list_empty(delaying_queue)) {
230                 inode = list_entry(delaying_queue->prev, struct inode, i_list);
231                 if (older_than_this &&
232                     inode_dirtied_after(inode, *older_than_this))
233                         break;
234                 if (sb && sb != inode->i_sb)
235                         do_sb_sort = 1;
236                 sb = inode->i_sb;
237                 list_move(&inode->i_list, &tmp);
238         }
239
240         /* just one sb in list, splice to dispatch_queue and we're done */
241         if (!do_sb_sort) {
242                 list_splice(&tmp, dispatch_queue);
243                 return;
244         }
245
246         /* Move inodes from one superblock together */
247         while (!list_empty(&tmp)) {
248                 inode = list_entry(tmp.prev, struct inode, i_list);
249                 sb = inode->i_sb;
250                 list_for_each_prev_safe(pos, node, &tmp) {
251                         inode = list_entry(pos, struct inode, i_list);
252                         if (inode->i_sb == sb)
253                                 list_move(&inode->i_list, dispatch_queue);
254                 }
255         }
256 }
257
258 /*
259  * Queue all expired dirty inodes for io, eldest first.
260  * Before
261  *         newly dirtied     b_dirty    b_io    b_more_io
262  *         =============>    gf         edc     BA
263  * After
264  *         newly dirtied     b_dirty    b_io    b_more_io
265  *         =============>    g          fBAedc
266  *                                           |
267  *                                           +--> dequeue for IO
268  */
269 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
270 {
271         list_splice_init(&wb->b_more_io, &wb->b_io);
272         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
273 }
274
275 static int write_inode(struct inode *inode, struct writeback_control *wbc)
276 {
277         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
278                 return inode->i_sb->s_op->write_inode(inode, wbc);
279         return 0;
280 }
281
282 /*
283  * Wait for writeback on an inode to complete.
284  */
285 static void inode_wait_for_writeback(struct inode *inode)
286 {
287         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
288         wait_queue_head_t *wqh;
289
290         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
291          while (inode->i_state & I_SYNC) {
292                 spin_unlock(&inode_lock);
293                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
294                 spin_lock(&inode_lock);
295         }
296 }
297
298 /*
299  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
300  * caller has ref on the inode (either via __iget or via syscall against an fd)
301  * or the inode has I_WILL_FREE set (via generic_forget_inode)
302  *
303  * If `wait' is set, wait on the writeout.
304  *
305  * The whole writeout design is quite complex and fragile.  We want to avoid
306  * starvation of particular inodes when others are being redirtied, prevent
307  * livelocks, etc.
308  *
309  * Called under inode_lock.
310  */
311 static int
312 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
313 {
314         struct address_space *mapping = inode->i_mapping;
315         unsigned dirty;
316         int ret;
317
318         if (!atomic_read(&inode->i_count))
319                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
320         else
321                 WARN_ON(inode->i_state & I_WILL_FREE);
322
323         if (inode->i_state & I_SYNC) {
324                 /*
325                  * If this inode is locked for writeback and we are not doing
326                  * writeback-for-data-integrity, move it to b_more_io so that
327                  * writeback can proceed with the other inodes on s_io.
328                  *
329                  * We'll have another go at writing back this inode when we
330                  * completed a full scan of b_io.
331                  */
332                 if (wbc->sync_mode != WB_SYNC_ALL) {
333                         requeue_io(inode);
334                         return 0;
335                 }
336
337                 /*
338                  * It's a data-integrity sync.  We must wait.
339                  */
340                 inode_wait_for_writeback(inode);
341         }
342
343         BUG_ON(inode->i_state & I_SYNC);
344
345         /* Set I_SYNC, reset I_DIRTY_PAGES */
346         inode->i_state |= I_SYNC;
347         inode->i_state &= ~I_DIRTY_PAGES;
348         spin_unlock(&inode_lock);
349
350         ret = do_writepages(mapping, wbc);
351
352         /*
353          * Make sure to wait on the data before writing out the metadata.
354          * This is important for filesystems that modify metadata on data
355          * I/O completion.
356          */
357         if (wbc->sync_mode == WB_SYNC_ALL) {
358                 int err = filemap_fdatawait(mapping);
359                 if (ret == 0)
360                         ret = err;
361         }
362
363         /*
364          * Some filesystems may redirty the inode during the writeback
365          * due to delalloc, clear dirty metadata flags right before
366          * write_inode()
367          */
368         spin_lock(&inode_lock);
369         dirty = inode->i_state & I_DIRTY;
370         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
371         spin_unlock(&inode_lock);
372         /* Don't write the inode if only I_DIRTY_PAGES was set */
373         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
374                 int err = write_inode(inode, wbc);
375                 if (ret == 0)
376                         ret = err;
377         }
378
379         spin_lock(&inode_lock);
380         inode->i_state &= ~I_SYNC;
381         if (!(inode->i_state & I_FREEING)) {
382                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
383                         /*
384                          * We didn't write back all the pages.  nfs_writepages()
385                          * sometimes bales out without doing anything.
386                          */
387                         inode->i_state |= I_DIRTY_PAGES;
388                         if (wbc->nr_to_write <= 0) {
389                                 /*
390                                  * slice used up: queue for next turn
391                                  */
392                                 requeue_io(inode);
393                         } else {
394                                 /*
395                                  * Writeback blocked by something other than
396                                  * congestion. Delay the inode for some time to
397                                  * avoid spinning on the CPU (100% iowait)
398                                  * retrying writeback of the dirty page/inode
399                                  * that cannot be performed immediately.
400                                  */
401                                 redirty_tail(inode);
402                         }
403                 } else if (inode->i_state & I_DIRTY) {
404                         /*
405                          * Filesystems can dirty the inode during writeback
406                          * operations, such as delayed allocation during
407                          * submission or metadata updates after data IO
408                          * completion.
409                          */
410                         redirty_tail(inode);
411                 } else {
412                         /*
413                          * The inode is clean.  At this point we either have
414                          * a reference to the inode or it's on it's way out.
415                          * No need to add it back to the LRU.
416                          */
417                         list_del_init(&inode->i_list);
418                 }
419         }
420         inode_sync_complete(inode);
421         return ret;
422 }
423
424 /*
425  * For background writeback the caller does not have the sb pinned
426  * before calling writeback. So make sure that we do pin it, so it doesn't
427  * go away while we are writing inodes from it.
428  */
429 static bool pin_sb_for_writeback(struct super_block *sb)
430 {
431         spin_lock(&sb_lock);
432         if (list_empty(&sb->s_instances)) {
433                 spin_unlock(&sb_lock);
434                 return false;
435         }
436
437         sb->s_count++;
438         spin_unlock(&sb_lock);
439
440         if (down_read_trylock(&sb->s_umount)) {
441                 if (sb->s_root)
442                         return true;
443                 up_read(&sb->s_umount);
444         }
445
446         put_super(sb);
447         return false;
448 }
449
450 /*
451  * Write a portion of b_io inodes which belong to @sb.
452  *
453  * If @only_this_sb is true, then find and write all such
454  * inodes. Otherwise write only ones which go sequentially
455  * in reverse order.
456  *
457  * Return 1, if the caller writeback routine should be
458  * interrupted. Otherwise return 0.
459  */
460 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
461                 struct writeback_control *wbc, bool only_this_sb)
462 {
463         while (!list_empty(&wb->b_io)) {
464                 long pages_skipped;
465                 struct inode *inode = list_entry(wb->b_io.prev,
466                                                  struct inode, i_list);
467
468                 if (inode->i_sb != sb) {
469                         if (only_this_sb) {
470                                 /*
471                                  * We only want to write back data for this
472                                  * superblock, move all inodes not belonging
473                                  * to it back onto the dirty list.
474                                  */
475                                 redirty_tail(inode);
476                                 continue;
477                         }
478
479                         /*
480                          * The inode belongs to a different superblock.
481                          * Bounce back to the caller to unpin this and
482                          * pin the next superblock.
483                          */
484                         return 0;
485                 }
486
487                 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
488                         requeue_io(inode);
489                         continue;
490                 }
491                 /*
492                  * Was this inode dirtied after sync_sb_inodes was called?
493                  * This keeps sync from extra jobs and livelock.
494                  */
495                 if (inode_dirtied_after(inode, wbc->wb_start))
496                         return 1;
497
498                 BUG_ON(inode->i_state & I_FREEING);
499                 __iget(inode);
500                 pages_skipped = wbc->pages_skipped;
501                 writeback_single_inode(inode, wbc);
502                 if (wbc->pages_skipped != pages_skipped) {
503                         /*
504                          * writeback is not making progress due to locked
505                          * buffers.  Skip this inode for now.
506                          */
507                         redirty_tail(inode);
508                 }
509                 spin_unlock(&inode_lock);
510                 iput(inode);
511                 cond_resched();
512                 spin_lock(&inode_lock);
513                 if (wbc->nr_to_write <= 0) {
514                         wbc->more_io = 1;
515                         return 1;
516                 }
517                 if (!list_empty(&wb->b_more_io))
518                         wbc->more_io = 1;
519         }
520         /* b_io is empty */
521         return 1;
522 }
523
524 void writeback_inodes_wb(struct bdi_writeback *wb,
525                 struct writeback_control *wbc)
526 {
527         int ret = 0;
528
529         if (!wbc->wb_start)
530                 wbc->wb_start = jiffies; /* livelock avoidance */
531         spin_lock(&inode_lock);
532         if (!wbc->for_kupdate || list_empty(&wb->b_io))
533                 queue_io(wb, wbc->older_than_this);
534
535         while (!list_empty(&wb->b_io)) {
536                 struct inode *inode = list_entry(wb->b_io.prev,
537                                                  struct inode, i_list);
538                 struct super_block *sb = inode->i_sb;
539
540                 if (!pin_sb_for_writeback(sb)) {
541                         requeue_io(inode);
542                         continue;
543                 }
544                 ret = writeback_sb_inodes(sb, wb, wbc, false);
545                 drop_super(sb);
546
547                 if (ret)
548                         break;
549         }
550         spin_unlock(&inode_lock);
551         /* Leave any unwritten inodes on b_io */
552 }
553
554 static void __writeback_inodes_sb(struct super_block *sb,
555                 struct bdi_writeback *wb, struct writeback_control *wbc)
556 {
557         WARN_ON(!rwsem_is_locked(&sb->s_umount));
558
559         spin_lock(&inode_lock);
560         if (!wbc->for_kupdate || list_empty(&wb->b_io))
561                 queue_io(wb, wbc->older_than_this);
562         writeback_sb_inodes(sb, wb, wbc, true);
563         spin_unlock(&inode_lock);
564 }
565
566 /*
567  * The maximum number of pages to writeout in a single bdi flush/kupdate
568  * operation.  We do this so we don't hold I_SYNC against an inode for
569  * enormous amounts of time, which would block a userspace task which has
570  * been forced to throttle against that inode.  Also, the code reevaluates
571  * the dirty each time it has written this many pages.
572  */
573 #define MAX_WRITEBACK_PAGES     1024
574
575 static inline bool over_bground_thresh(void)
576 {
577         unsigned long background_thresh, dirty_thresh;
578
579         global_dirty_limits(&background_thresh, &dirty_thresh);
580
581         return (global_page_state(NR_FILE_DIRTY) +
582                 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
583 }
584
585 /*
586  * Explicit flushing or periodic writeback of "old" data.
587  *
588  * Define "old": the first time one of an inode's pages is dirtied, we mark the
589  * dirtying-time in the inode's address_space.  So this periodic writeback code
590  * just walks the superblock inode list, writing back any inodes which are
591  * older than a specific point in time.
592  *
593  * Try to run once per dirty_writeback_interval.  But if a writeback event
594  * takes longer than a dirty_writeback_interval interval, then leave a
595  * one-second gap.
596  *
597  * older_than_this takes precedence over nr_to_write.  So we'll only write back
598  * all dirty pages if they are all attached to "old" mappings.
599  */
600 static long wb_writeback(struct bdi_writeback *wb,
601                          struct wb_writeback_work *work)
602 {
603         struct writeback_control wbc = {
604                 .sync_mode              = work->sync_mode,
605                 .older_than_this        = NULL,
606                 .for_kupdate            = work->for_kupdate,
607                 .for_background         = work->for_background,
608                 .range_cyclic           = work->range_cyclic,
609         };
610         unsigned long oldest_jif;
611         long wrote = 0;
612         struct inode *inode;
613
614         if (wbc.for_kupdate) {
615                 wbc.older_than_this = &oldest_jif;
616                 oldest_jif = jiffies -
617                                 msecs_to_jiffies(dirty_expire_interval * 10);
618         }
619         if (!wbc.range_cyclic) {
620                 wbc.range_start = 0;
621                 wbc.range_end = LLONG_MAX;
622         }
623
624         wbc.wb_start = jiffies; /* livelock avoidance */
625         for (;;) {
626                 /*
627                  * Stop writeback when nr_pages has been consumed
628                  */
629                 if (work->nr_pages <= 0)
630                         break;
631
632                 /*
633                  * For background writeout, stop when we are below the
634                  * background dirty threshold
635                  */
636                 if (work->for_background && !over_bground_thresh())
637                         break;
638
639                 wbc.more_io = 0;
640                 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
641                 wbc.pages_skipped = 0;
642
643                 trace_wbc_writeback_start(&wbc, wb->bdi);
644                 if (work->sb)
645                         __writeback_inodes_sb(work->sb, wb, &wbc);
646                 else
647                         writeback_inodes_wb(wb, &wbc);
648                 trace_wbc_writeback_written(&wbc, wb->bdi);
649
650                 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
651                 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
652
653                 /*
654                  * If we consumed everything, see if we have more
655                  */
656                 if (wbc.nr_to_write <= 0)
657                         continue;
658                 /*
659                  * Didn't write everything and we don't have more IO, bail
660                  */
661                 if (!wbc.more_io)
662                         break;
663                 /*
664                  * Did we write something? Try for more
665                  */
666                 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
667                         continue;
668                 /*
669                  * Nothing written. Wait for some inode to
670                  * become available for writeback. Otherwise
671                  * we'll just busyloop.
672                  */
673                 spin_lock(&inode_lock);
674                 if (!list_empty(&wb->b_more_io))  {
675                         inode = list_entry(wb->b_more_io.prev,
676                                                 struct inode, i_list);
677                         trace_wbc_writeback_wait(&wbc, wb->bdi);
678                         inode_wait_for_writeback(inode);
679                 }
680                 spin_unlock(&inode_lock);
681         }
682
683         return wrote;
684 }
685
686 /*
687  * Return the next wb_writeback_work struct that hasn't been processed yet.
688  */
689 static struct wb_writeback_work *
690 get_next_work_item(struct backing_dev_info *bdi)
691 {
692         struct wb_writeback_work *work = NULL;
693
694         spin_lock_bh(&bdi->wb_lock);
695         if (!list_empty(&bdi->work_list)) {
696                 work = list_entry(bdi->work_list.next,
697                                   struct wb_writeback_work, list);
698                 list_del_init(&work->list);
699         }
700         spin_unlock_bh(&bdi->wb_lock);
701         return work;
702 }
703
704 static long wb_check_old_data_flush(struct bdi_writeback *wb)
705 {
706         unsigned long expired;
707         long nr_pages;
708
709         /*
710          * When set to zero, disable periodic writeback
711          */
712         if (!dirty_writeback_interval)
713                 return 0;
714
715         expired = wb->last_old_flush +
716                         msecs_to_jiffies(dirty_writeback_interval * 10);
717         if (time_before(jiffies, expired))
718                 return 0;
719
720         wb->last_old_flush = jiffies;
721         nr_pages = global_page_state(NR_FILE_DIRTY) +
722                         global_page_state(NR_UNSTABLE_NFS) +
723                         get_nr_dirty_inodes();
724
725         if (nr_pages) {
726                 struct wb_writeback_work work = {
727                         .nr_pages       = nr_pages,
728                         .sync_mode      = WB_SYNC_NONE,
729                         .for_kupdate    = 1,
730                         .range_cyclic   = 1,
731                 };
732
733                 return wb_writeback(wb, &work);
734         }
735
736         return 0;
737 }
738
739 /*
740  * Retrieve work items and do the writeback they describe
741  */
742 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
743 {
744         struct backing_dev_info *bdi = wb->bdi;
745         struct wb_writeback_work *work;
746         long wrote = 0;
747
748         set_bit(BDI_writeback_running, &wb->bdi->state);
749         while ((work = get_next_work_item(bdi)) != NULL) {
750                 /*
751                  * Override sync mode, in case we must wait for completion
752                  * because this thread is exiting now.
753                  */
754                 if (force_wait)
755                         work->sync_mode = WB_SYNC_ALL;
756
757                 trace_writeback_exec(bdi, work);
758
759                 wrote += wb_writeback(wb, work);
760
761                 /*
762                  * Notify the caller of completion if this is a synchronous
763                  * work item, otherwise just free it.
764                  */
765                 if (work->done)
766                         complete(work->done);
767                 else
768                         kfree(work);
769         }
770
771         /*
772          * Check for periodic writeback, kupdated() style
773          */
774         wrote += wb_check_old_data_flush(wb);
775         clear_bit(BDI_writeback_running, &wb->bdi->state);
776
777         return wrote;
778 }
779
780 /*
781  * Handle writeback of dirty data for the device backed by this bdi. Also
782  * wakes up periodically and does kupdated style flushing.
783  */
784 int bdi_writeback_thread(void *data)
785 {
786         struct bdi_writeback *wb = data;
787         struct backing_dev_info *bdi = wb->bdi;
788         long pages_written;
789
790         current->flags |= PF_FLUSHER | PF_SWAPWRITE;
791         set_freezable();
792         wb->last_active = jiffies;
793
794         /*
795          * Our parent may run at a different priority, just set us to normal
796          */
797         set_user_nice(current, 0);
798
799         trace_writeback_thread_start(bdi);
800
801         while (!kthread_should_stop()) {
802                 /*
803                  * Remove own delayed wake-up timer, since we are already awake
804                  * and we'll take care of the preriodic write-back.
805                  */
806                 del_timer(&wb->wakeup_timer);
807
808                 pages_written = wb_do_writeback(wb, 0);
809
810                 trace_writeback_pages_written(pages_written);
811
812                 if (pages_written)
813                         wb->last_active = jiffies;
814
815                 set_current_state(TASK_INTERRUPTIBLE);
816                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
817                         __set_current_state(TASK_RUNNING);
818                         continue;
819                 }
820
821                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
822                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
823                 else {
824                         /*
825                          * We have nothing to do, so can go sleep without any
826                          * timeout and save power. When a work is queued or
827                          * something is made dirty - we will be woken up.
828                          */
829                         schedule();
830                 }
831
832                 try_to_freeze();
833         }
834
835         /* Flush any work that raced with us exiting */
836         if (!list_empty(&bdi->work_list))
837                 wb_do_writeback(wb, 1);
838
839         trace_writeback_thread_stop(bdi);
840         return 0;
841 }
842
843
844 /*
845  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
846  * the whole world.
847  */
848 void wakeup_flusher_threads(long nr_pages)
849 {
850         struct backing_dev_info *bdi;
851
852         if (!nr_pages) {
853                 nr_pages = global_page_state(NR_FILE_DIRTY) +
854                                 global_page_state(NR_UNSTABLE_NFS);
855         }
856
857         rcu_read_lock();
858         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
859                 if (!bdi_has_dirty_io(bdi))
860                         continue;
861                 __bdi_start_writeback(bdi, nr_pages, false, false);
862         }
863         rcu_read_unlock();
864 }
865
866 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
867 {
868         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
869                 struct dentry *dentry;
870                 const char *name = "?";
871
872                 dentry = d_find_alias(inode);
873                 if (dentry) {
874                         spin_lock(&dentry->d_lock);
875                         name = (const char *) dentry->d_name.name;
876                 }
877                 printk(KERN_DEBUG
878                        "%s(%d): dirtied inode %lu (%s) on %s\n",
879                        current->comm, task_pid_nr(current), inode->i_ino,
880                        name, inode->i_sb->s_id);
881                 if (dentry) {
882                         spin_unlock(&dentry->d_lock);
883                         dput(dentry);
884                 }
885         }
886 }
887
888 /**
889  *      __mark_inode_dirty -    internal function
890  *      @inode: inode to mark
891  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
892  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
893  *      mark_inode_dirty_sync.
894  *
895  * Put the inode on the super block's dirty list.
896  *
897  * CAREFUL! We mark it dirty unconditionally, but move it onto the
898  * dirty list only if it is hashed or if it refers to a blockdev.
899  * If it was not hashed, it will never be added to the dirty list
900  * even if it is later hashed, as it will have been marked dirty already.
901  *
902  * In short, make sure you hash any inodes _before_ you start marking
903  * them dirty.
904  *
905  * This function *must* be atomic for the I_DIRTY_PAGES case -
906  * set_page_dirty() is called under spinlock in several places.
907  *
908  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
909  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
910  * the kernel-internal blockdev inode represents the dirtying time of the
911  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
912  * page->mapping->host, so the page-dirtying time is recorded in the internal
913  * blockdev inode.
914  */
915 void __mark_inode_dirty(struct inode *inode, int flags)
916 {
917         struct super_block *sb = inode->i_sb;
918         struct backing_dev_info *bdi = NULL;
919         bool wakeup_bdi = false;
920
921         /*
922          * Don't do this for I_DIRTY_PAGES - that doesn't actually
923          * dirty the inode itself
924          */
925         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
926                 if (sb->s_op->dirty_inode)
927                         sb->s_op->dirty_inode(inode);
928         }
929
930         /*
931          * make sure that changes are seen by all cpus before we test i_state
932          * -- mikulas
933          */
934         smp_mb();
935
936         /* avoid the locking if we can */
937         if ((inode->i_state & flags) == flags)
938                 return;
939
940         if (unlikely(block_dump))
941                 block_dump___mark_inode_dirty(inode);
942
943         spin_lock(&inode_lock);
944         if ((inode->i_state & flags) != flags) {
945                 const int was_dirty = inode->i_state & I_DIRTY;
946
947                 inode->i_state |= flags;
948
949                 /*
950                  * If the inode is being synced, just update its dirty state.
951                  * The unlocker will place the inode on the appropriate
952                  * superblock list, based upon its state.
953                  */
954                 if (inode->i_state & I_SYNC)
955                         goto out;
956
957                 /*
958                  * Only add valid (hashed) inodes to the superblock's
959                  * dirty list.  Add blockdev inodes as well.
960                  */
961                 if (!S_ISBLK(inode->i_mode)) {
962                         if (inode_unhashed(inode))
963                                 goto out;
964                 }
965                 if (inode->i_state & I_FREEING)
966                         goto out;
967
968                 /*
969                  * If the inode was already on b_dirty/b_io/b_more_io, don't
970                  * reposition it (that would break b_dirty time-ordering).
971                  */
972                 if (!was_dirty) {
973                         bdi = inode_to_bdi(inode);
974
975                         if (bdi_cap_writeback_dirty(bdi)) {
976                                 WARN(!test_bit(BDI_registered, &bdi->state),
977                                      "bdi-%s not registered\n", bdi->name);
978
979                                 /*
980                                  * If this is the first dirty inode for this
981                                  * bdi, we have to wake-up the corresponding
982                                  * bdi thread to make sure background
983                                  * write-back happens later.
984                                  */
985                                 if (!wb_has_dirty_io(&bdi->wb))
986                                         wakeup_bdi = true;
987                         }
988
989                         inode->dirtied_when = jiffies;
990                         list_move(&inode->i_list, &bdi->wb.b_dirty);
991                 }
992         }
993 out:
994         spin_unlock(&inode_lock);
995
996         if (wakeup_bdi)
997                 bdi_wakeup_thread_delayed(bdi);
998 }
999 EXPORT_SYMBOL(__mark_inode_dirty);
1000
1001 /*
1002  * Write out a superblock's list of dirty inodes.  A wait will be performed
1003  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1004  *
1005  * If older_than_this is non-NULL, then only write out inodes which
1006  * had their first dirtying at a time earlier than *older_than_this.
1007  *
1008  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1009  * This function assumes that the blockdev superblock's inodes are backed by
1010  * a variety of queues, so all inodes are searched.  For other superblocks,
1011  * assume that all inodes are backed by the same queue.
1012  *
1013  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1014  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1015  * on the writer throttling path, and we get decent balancing between many
1016  * throttled threads: we don't want them all piling up on inode_sync_wait.
1017  */
1018 static void wait_sb_inodes(struct super_block *sb)
1019 {
1020         struct inode *inode, *old_inode = NULL;
1021
1022         /*
1023          * We need to be protected against the filesystem going from
1024          * r/o to r/w or vice versa.
1025          */
1026         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1027
1028         spin_lock(&inode_lock);
1029
1030         /*
1031          * Data integrity sync. Must wait for all pages under writeback,
1032          * because there may have been pages dirtied before our sync
1033          * call, but which had writeout started before we write it out.
1034          * In which case, the inode may not be on the dirty list, but
1035          * we still have to wait for that writeout.
1036          */
1037         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1038                 struct address_space *mapping;
1039
1040                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1041                         continue;
1042                 mapping = inode->i_mapping;
1043                 if (mapping->nrpages == 0)
1044                         continue;
1045                 __iget(inode);
1046                 spin_unlock(&inode_lock);
1047                 /*
1048                  * We hold a reference to 'inode' so it couldn't have
1049                  * been removed from s_inodes list while we dropped the
1050                  * inode_lock.  We cannot iput the inode now as we can
1051                  * be holding the last reference and we cannot iput it
1052                  * under inode_lock. So we keep the reference and iput
1053                  * it later.
1054                  */
1055                 iput(old_inode);
1056                 old_inode = inode;
1057
1058                 filemap_fdatawait(mapping);
1059
1060                 cond_resched();
1061
1062                 spin_lock(&inode_lock);
1063         }
1064         spin_unlock(&inode_lock);
1065         iput(old_inode);
1066 }
1067
1068 /**
1069  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1070  * @sb: the superblock
1071  *
1072  * Start writeback on some inodes on this super_block. No guarantees are made
1073  * on how many (if any) will be written, and this function does not wait
1074  * for IO completion of submitted IO. The number of pages submitted is
1075  * returned.
1076  */
1077 void writeback_inodes_sb(struct super_block *sb)
1078 {
1079         unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1080         unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1081         DECLARE_COMPLETION_ONSTACK(done);
1082         struct wb_writeback_work work = {
1083                 .sb             = sb,
1084                 .sync_mode      = WB_SYNC_NONE,
1085                 .done           = &done,
1086         };
1087
1088         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1089
1090         work.nr_pages = nr_dirty + nr_unstable + get_nr_dirty_inodes();
1091
1092         bdi_queue_work(sb->s_bdi, &work);
1093         wait_for_completion(&done);
1094 }
1095 EXPORT_SYMBOL(writeback_inodes_sb);
1096
1097 /**
1098  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1099  * @sb: the superblock
1100  *
1101  * Invoke writeback_inodes_sb if no writeback is currently underway.
1102  * Returns 1 if writeback was started, 0 if not.
1103  */
1104 int writeback_inodes_sb_if_idle(struct super_block *sb)
1105 {
1106         if (!writeback_in_progress(sb->s_bdi)) {
1107                 down_read(&sb->s_umount);
1108                 writeback_inodes_sb(sb);
1109                 up_read(&sb->s_umount);
1110                 return 1;
1111         } else
1112                 return 0;
1113 }
1114 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1115
1116 /**
1117  * sync_inodes_sb       -       sync sb inode pages
1118  * @sb: the superblock
1119  *
1120  * This function writes and waits on any dirty inode belonging to this
1121  * super_block. The number of pages synced is returned.
1122  */
1123 void sync_inodes_sb(struct super_block *sb)
1124 {
1125         DECLARE_COMPLETION_ONSTACK(done);
1126         struct wb_writeback_work work = {
1127                 .sb             = sb,
1128                 .sync_mode      = WB_SYNC_ALL,
1129                 .nr_pages       = LONG_MAX,
1130                 .range_cyclic   = 0,
1131                 .done           = &done,
1132         };
1133
1134         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1135
1136         bdi_queue_work(sb->s_bdi, &work);
1137         wait_for_completion(&done);
1138
1139         wait_sb_inodes(sb);
1140 }
1141 EXPORT_SYMBOL(sync_inodes_sb);
1142
1143 /**
1144  * write_inode_now      -       write an inode to disk
1145  * @inode: inode to write to disk
1146  * @sync: whether the write should be synchronous or not
1147  *
1148  * This function commits an inode to disk immediately if it is dirty. This is
1149  * primarily needed by knfsd.
1150  *
1151  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1152  */
1153 int write_inode_now(struct inode *inode, int sync)
1154 {
1155         int ret;
1156         struct writeback_control wbc = {
1157                 .nr_to_write = LONG_MAX,
1158                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1159                 .range_start = 0,
1160                 .range_end = LLONG_MAX,
1161         };
1162
1163         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1164                 wbc.nr_to_write = 0;
1165
1166         might_sleep();
1167         spin_lock(&inode_lock);
1168         ret = writeback_single_inode(inode, &wbc);
1169         spin_unlock(&inode_lock);
1170         if (sync)
1171                 inode_sync_wait(inode);
1172         return ret;
1173 }
1174 EXPORT_SYMBOL(write_inode_now);
1175
1176 /**
1177  * sync_inode - write an inode and its pages to disk.
1178  * @inode: the inode to sync
1179  * @wbc: controls the writeback mode
1180  *
1181  * sync_inode() will write an inode and its pages to disk.  It will also
1182  * correctly update the inode on its superblock's dirty inode lists and will
1183  * update inode->i_state.
1184  *
1185  * The caller must have a ref on the inode.
1186  */
1187 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1188 {
1189         int ret;
1190
1191         spin_lock(&inode_lock);
1192         ret = writeback_single_inode(inode, wbc);
1193         spin_unlock(&inode_lock);
1194         return ret;
1195 }
1196 EXPORT_SYMBOL(sync_inode);
1197
1198 /**
1199  * sync_inode - write an inode to disk
1200  * @inode: the inode to sync
1201  * @wait: wait for I/O to complete.
1202  *
1203  * Write an inode to disk and adjust it's dirty state after completion.
1204  *
1205  * Note: only writes the actual inode, no associated data or other metadata.
1206  */
1207 int sync_inode_metadata(struct inode *inode, int wait)
1208 {
1209         struct writeback_control wbc = {
1210                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1211                 .nr_to_write = 0, /* metadata-only */
1212         };
1213
1214         return sync_inode(inode, &wbc);
1215 }
1216 EXPORT_SYMBOL(sync_inode_metadata);