]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ext4/inode.c
58604fe11f4ff04f8986a0d505b9d63981cd7ae7
[net-next-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         return jbd2_journal_begin_ordered_truncate(
57                                         EXT4_SB(inode->i_sb)->s_journal,
58                                         &EXT4_I(inode)->jinode,
59                                         new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
64                                    struct buffer_head *bh_result, int create);
65 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
66 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
67 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
68 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
69
70 /*
71  * Test whether an inode is a fast symlink.
72  */
73 static int ext4_inode_is_fast_symlink(struct inode *inode)
74 {
75         int ea_blocks = EXT4_I(inode)->i_file_acl ?
76                 (inode->i_sb->s_blocksize >> 9) : 0;
77
78         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
79 }
80
81 /*
82  * Work out how many blocks we need to proceed with the next chunk of a
83  * truncate transaction.
84  */
85 static unsigned long blocks_for_truncate(struct inode *inode)
86 {
87         ext4_lblk_t needed;
88
89         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
90
91         /* Give ourselves just enough room to cope with inodes in which
92          * i_blocks is corrupt: we've seen disk corruptions in the past
93          * which resulted in random data in an inode which looked enough
94          * like a regular file for ext4 to try to delete it.  Things
95          * will go a bit crazy if that happens, but at least we should
96          * try not to panic the whole kernel. */
97         if (needed < 2)
98                 needed = 2;
99
100         /* But we need to bound the transaction so we don't overflow the
101          * journal. */
102         if (needed > EXT4_MAX_TRANS_DATA)
103                 needed = EXT4_MAX_TRANS_DATA;
104
105         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
106 }
107
108 /*
109  * Truncate transactions can be complex and absolutely huge.  So we need to
110  * be able to restart the transaction at a conventient checkpoint to make
111  * sure we don't overflow the journal.
112  *
113  * start_transaction gets us a new handle for a truncate transaction,
114  * and extend_transaction tries to extend the existing one a bit.  If
115  * extend fails, we need to propagate the failure up and restart the
116  * transaction in the top-level truncate loop. --sct
117  */
118 static handle_t *start_transaction(struct inode *inode)
119 {
120         handle_t *result;
121
122         result = ext4_journal_start(inode, blocks_for_truncate(inode));
123         if (!IS_ERR(result))
124                 return result;
125
126         ext4_std_error(inode->i_sb, PTR_ERR(result));
127         return result;
128 }
129
130 /*
131  * Try to extend this transaction for the purposes of truncation.
132  *
133  * Returns 0 if we managed to create more room.  If we can't create more
134  * room, and the transaction must be restarted we return 1.
135  */
136 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
137 {
138         if (!ext4_handle_valid(handle))
139                 return 0;
140         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
141                 return 0;
142         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
143                 return 0;
144         return 1;
145 }
146
147 /*
148  * Restart the transaction associated with *handle.  This does a commit,
149  * so before we call here everything must be consistently dirtied against
150  * this transaction.
151  */
152 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
153                                  int nblocks)
154 {
155         int ret;
156
157         /*
158          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
159          * moment, get_block can be called only for blocks inside i_size since
160          * page cache has been already dropped and writes are blocked by
161          * i_mutex. So we can safely drop the i_data_sem here.
162          */
163         BUG_ON(EXT4_JOURNAL(inode) == NULL);
164         jbd_debug(2, "restarting handle %p\n", handle);
165         up_write(&EXT4_I(inode)->i_data_sem);
166         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
167         down_write(&EXT4_I(inode)->i_data_sem);
168         ext4_discard_preallocations(inode);
169
170         return ret;
171 }
172
173 /*
174  * Called at the last iput() if i_nlink is zero.
175  */
176 void ext4_evict_inode(struct inode *inode)
177 {
178         handle_t *handle;
179         int err;
180
181         if (inode->i_nlink) {
182                 truncate_inode_pages(&inode->i_data, 0);
183                 goto no_delete;
184         }
185
186         if (!is_bad_inode(inode))
187                 dquot_initialize(inode);
188
189         if (ext4_should_order_data(inode))
190                 ext4_begin_ordered_truncate(inode, 0);
191         truncate_inode_pages(&inode->i_data, 0);
192
193         if (is_bad_inode(inode))
194                 goto no_delete;
195
196         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
197         if (IS_ERR(handle)) {
198                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
199                 /*
200                  * If we're going to skip the normal cleanup, we still need to
201                  * make sure that the in-core orphan linked list is properly
202                  * cleaned up.
203                  */
204                 ext4_orphan_del(NULL, inode);
205                 goto no_delete;
206         }
207
208         if (IS_SYNC(inode))
209                 ext4_handle_sync(handle);
210         inode->i_size = 0;
211         err = ext4_mark_inode_dirty(handle, inode);
212         if (err) {
213                 ext4_warning(inode->i_sb,
214                              "couldn't mark inode dirty (err %d)", err);
215                 goto stop_handle;
216         }
217         if (inode->i_blocks)
218                 ext4_truncate(inode);
219
220         /*
221          * ext4_ext_truncate() doesn't reserve any slop when it
222          * restarts journal transactions; therefore there may not be
223          * enough credits left in the handle to remove the inode from
224          * the orphan list and set the dtime field.
225          */
226         if (!ext4_handle_has_enough_credits(handle, 3)) {
227                 err = ext4_journal_extend(handle, 3);
228                 if (err > 0)
229                         err = ext4_journal_restart(handle, 3);
230                 if (err != 0) {
231                         ext4_warning(inode->i_sb,
232                                      "couldn't extend journal (err %d)", err);
233                 stop_handle:
234                         ext4_journal_stop(handle);
235                         ext4_orphan_del(NULL, inode);
236                         goto no_delete;
237                 }
238         }
239
240         /*
241          * Kill off the orphan record which ext4_truncate created.
242          * AKPM: I think this can be inside the above `if'.
243          * Note that ext4_orphan_del() has to be able to cope with the
244          * deletion of a non-existent orphan - this is because we don't
245          * know if ext4_truncate() actually created an orphan record.
246          * (Well, we could do this if we need to, but heck - it works)
247          */
248         ext4_orphan_del(handle, inode);
249         EXT4_I(inode)->i_dtime  = get_seconds();
250
251         /*
252          * One subtle ordering requirement: if anything has gone wrong
253          * (transaction abort, IO errors, whatever), then we can still
254          * do these next steps (the fs will already have been marked as
255          * having errors), but we can't free the inode if the mark_dirty
256          * fails.
257          */
258         if (ext4_mark_inode_dirty(handle, inode))
259                 /* If that failed, just do the required in-core inode clear. */
260                 ext4_clear_inode(inode);
261         else
262                 ext4_free_inode(handle, inode);
263         ext4_journal_stop(handle);
264         return;
265 no_delete:
266         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
267 }
268
269 typedef struct {
270         __le32  *p;
271         __le32  key;
272         struct buffer_head *bh;
273 } Indirect;
274
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276 {
277         p->key = *(p->p = v);
278         p->bh = bh;
279 }
280
281 /**
282  *      ext4_block_to_path - parse the block number into array of offsets
283  *      @inode: inode in question (we are only interested in its superblock)
284  *      @i_block: block number to be parsed
285  *      @offsets: array to store the offsets in
286  *      @boundary: set this non-zero if the referred-to block is likely to be
287  *             followed (on disk) by an indirect block.
288  *
289  *      To store the locations of file's data ext4 uses a data structure common
290  *      for UNIX filesystems - tree of pointers anchored in the inode, with
291  *      data blocks at leaves and indirect blocks in intermediate nodes.
292  *      This function translates the block number into path in that tree -
293  *      return value is the path length and @offsets[n] is the offset of
294  *      pointer to (n+1)th node in the nth one. If @block is out of range
295  *      (negative or too large) warning is printed and zero returned.
296  *
297  *      Note: function doesn't find node addresses, so no IO is needed. All
298  *      we need to know is the capacity of indirect blocks (taken from the
299  *      inode->i_sb).
300  */
301
302 /*
303  * Portability note: the last comparison (check that we fit into triple
304  * indirect block) is spelled differently, because otherwise on an
305  * architecture with 32-bit longs and 8Kb pages we might get into trouble
306  * if our filesystem had 8Kb blocks. We might use long long, but that would
307  * kill us on x86. Oh, well, at least the sign propagation does not matter -
308  * i_block would have to be negative in the very beginning, so we would not
309  * get there at all.
310  */
311
312 static int ext4_block_to_path(struct inode *inode,
313                               ext4_lblk_t i_block,
314                               ext4_lblk_t offsets[4], int *boundary)
315 {
316         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
317         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
318         const long direct_blocks = EXT4_NDIR_BLOCKS,
319                 indirect_blocks = ptrs,
320                 double_blocks = (1 << (ptrs_bits * 2));
321         int n = 0;
322         int final = 0;
323
324         if (i_block < direct_blocks) {
325                 offsets[n++] = i_block;
326                 final = direct_blocks;
327         } else if ((i_block -= direct_blocks) < indirect_blocks) {
328                 offsets[n++] = EXT4_IND_BLOCK;
329                 offsets[n++] = i_block;
330                 final = ptrs;
331         } else if ((i_block -= indirect_blocks) < double_blocks) {
332                 offsets[n++] = EXT4_DIND_BLOCK;
333                 offsets[n++] = i_block >> ptrs_bits;
334                 offsets[n++] = i_block & (ptrs - 1);
335                 final = ptrs;
336         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
337                 offsets[n++] = EXT4_TIND_BLOCK;
338                 offsets[n++] = i_block >> (ptrs_bits * 2);
339                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
340                 offsets[n++] = i_block & (ptrs - 1);
341                 final = ptrs;
342         } else {
343                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
344                              i_block + direct_blocks +
345                              indirect_blocks + double_blocks, inode->i_ino);
346         }
347         if (boundary)
348                 *boundary = final - 1 - (i_block & (ptrs - 1));
349         return n;
350 }
351
352 static int __ext4_check_blockref(const char *function, unsigned int line,
353                                  struct inode *inode,
354                                  __le32 *p, unsigned int max)
355 {
356         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
357         __le32 *bref = p;
358         unsigned int blk;
359
360         while (bref < p+max) {
361                 blk = le32_to_cpu(*bref++);
362                 if (blk &&
363                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
364                                                     blk, 1))) {
365                         es->s_last_error_block = cpu_to_le64(blk);
366                         ext4_error_inode(inode, function, line, blk,
367                                          "invalid block");
368                         return -EIO;
369                 }
370         }
371         return 0;
372 }
373
374
375 #define ext4_check_indirect_blockref(inode, bh)                         \
376         __ext4_check_blockref(__func__, __LINE__, inode,                \
377                               (__le32 *)(bh)->b_data,                   \
378                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
379
380 #define ext4_check_inode_blockref(inode)                                \
381         __ext4_check_blockref(__func__, __LINE__, inode,                \
382                               EXT4_I(inode)->i_data,                    \
383                               EXT4_NDIR_BLOCKS)
384
385 /**
386  *      ext4_get_branch - read the chain of indirect blocks leading to data
387  *      @inode: inode in question
388  *      @depth: depth of the chain (1 - direct pointer, etc.)
389  *      @offsets: offsets of pointers in inode/indirect blocks
390  *      @chain: place to store the result
391  *      @err: here we store the error value
392  *
393  *      Function fills the array of triples <key, p, bh> and returns %NULL
394  *      if everything went OK or the pointer to the last filled triple
395  *      (incomplete one) otherwise. Upon the return chain[i].key contains
396  *      the number of (i+1)-th block in the chain (as it is stored in memory,
397  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
398  *      number (it points into struct inode for i==0 and into the bh->b_data
399  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
400  *      block for i>0 and NULL for i==0. In other words, it holds the block
401  *      numbers of the chain, addresses they were taken from (and where we can
402  *      verify that chain did not change) and buffer_heads hosting these
403  *      numbers.
404  *
405  *      Function stops when it stumbles upon zero pointer (absent block)
406  *              (pointer to last triple returned, *@err == 0)
407  *      or when it gets an IO error reading an indirect block
408  *              (ditto, *@err == -EIO)
409  *      or when it reads all @depth-1 indirect blocks successfully and finds
410  *      the whole chain, all way to the data (returns %NULL, *err == 0).
411  *
412  *      Need to be called with
413  *      down_read(&EXT4_I(inode)->i_data_sem)
414  */
415 static Indirect *ext4_get_branch(struct inode *inode, int depth,
416                                  ext4_lblk_t  *offsets,
417                                  Indirect chain[4], int *err)
418 {
419         struct super_block *sb = inode->i_sb;
420         Indirect *p = chain;
421         struct buffer_head *bh;
422
423         *err = 0;
424         /* i_data is not going away, no lock needed */
425         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
426         if (!p->key)
427                 goto no_block;
428         while (--depth) {
429                 bh = sb_getblk(sb, le32_to_cpu(p->key));
430                 if (unlikely(!bh))
431                         goto failure;
432
433                 if (!bh_uptodate_or_lock(bh)) {
434                         if (bh_submit_read(bh) < 0) {
435                                 put_bh(bh);
436                                 goto failure;
437                         }
438                         /* validate block references */
439                         if (ext4_check_indirect_blockref(inode, bh)) {
440                                 put_bh(bh);
441                                 goto failure;
442                         }
443                 }
444
445                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
446                 /* Reader: end */
447                 if (!p->key)
448                         goto no_block;
449         }
450         return NULL;
451
452 failure:
453         *err = -EIO;
454 no_block:
455         return p;
456 }
457
458 /**
459  *      ext4_find_near - find a place for allocation with sufficient locality
460  *      @inode: owner
461  *      @ind: descriptor of indirect block.
462  *
463  *      This function returns the preferred place for block allocation.
464  *      It is used when heuristic for sequential allocation fails.
465  *      Rules are:
466  *        + if there is a block to the left of our position - allocate near it.
467  *        + if pointer will live in indirect block - allocate near that block.
468  *        + if pointer will live in inode - allocate in the same
469  *          cylinder group.
470  *
471  * In the latter case we colour the starting block by the callers PID to
472  * prevent it from clashing with concurrent allocations for a different inode
473  * in the same block group.   The PID is used here so that functionally related
474  * files will be close-by on-disk.
475  *
476  *      Caller must make sure that @ind is valid and will stay that way.
477  */
478 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
479 {
480         struct ext4_inode_info *ei = EXT4_I(inode);
481         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
482         __le32 *p;
483         ext4_fsblk_t bg_start;
484         ext4_fsblk_t last_block;
485         ext4_grpblk_t colour;
486         ext4_group_t block_group;
487         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
488
489         /* Try to find previous block */
490         for (p = ind->p - 1; p >= start; p--) {
491                 if (*p)
492                         return le32_to_cpu(*p);
493         }
494
495         /* No such thing, so let's try location of indirect block */
496         if (ind->bh)
497                 return ind->bh->b_blocknr;
498
499         /*
500          * It is going to be referred to from the inode itself? OK, just put it
501          * into the same cylinder group then.
502          */
503         block_group = ei->i_block_group;
504         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
505                 block_group &= ~(flex_size-1);
506                 if (S_ISREG(inode->i_mode))
507                         block_group++;
508         }
509         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
510         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
511
512         /*
513          * If we are doing delayed allocation, we don't need take
514          * colour into account.
515          */
516         if (test_opt(inode->i_sb, DELALLOC))
517                 return bg_start;
518
519         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
520                 colour = (current->pid % 16) *
521                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
522         else
523                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
524         return bg_start + colour;
525 }
526
527 /**
528  *      ext4_find_goal - find a preferred place for allocation.
529  *      @inode: owner
530  *      @block:  block we want
531  *      @partial: pointer to the last triple within a chain
532  *
533  *      Normally this function find the preferred place for block allocation,
534  *      returns it.
535  *      Because this is only used for non-extent files, we limit the block nr
536  *      to 32 bits.
537  */
538 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
539                                    Indirect *partial)
540 {
541         ext4_fsblk_t goal;
542
543         /*
544          * XXX need to get goal block from mballoc's data structures
545          */
546
547         goal = ext4_find_near(inode, partial);
548         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
549         return goal;
550 }
551
552 /**
553  *      ext4_blks_to_allocate: Look up the block map and count the number
554  *      of direct blocks need to be allocated for the given branch.
555  *
556  *      @branch: chain of indirect blocks
557  *      @k: number of blocks need for indirect blocks
558  *      @blks: number of data blocks to be mapped.
559  *      @blocks_to_boundary:  the offset in the indirect block
560  *
561  *      return the total number of blocks to be allocate, including the
562  *      direct and indirect blocks.
563  */
564 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
565                                  int blocks_to_boundary)
566 {
567         unsigned int count = 0;
568
569         /*
570          * Simple case, [t,d]Indirect block(s) has not allocated yet
571          * then it's clear blocks on that path have not allocated
572          */
573         if (k > 0) {
574                 /* right now we don't handle cross boundary allocation */
575                 if (blks < blocks_to_boundary + 1)
576                         count += blks;
577                 else
578                         count += blocks_to_boundary + 1;
579                 return count;
580         }
581
582         count++;
583         while (count < blks && count <= blocks_to_boundary &&
584                 le32_to_cpu(*(branch[0].p + count)) == 0) {
585                 count++;
586         }
587         return count;
588 }
589
590 /**
591  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
592  *      @indirect_blks: the number of blocks need to allocate for indirect
593  *                      blocks
594  *
595  *      @new_blocks: on return it will store the new block numbers for
596  *      the indirect blocks(if needed) and the first direct block,
597  *      @blks:  on return it will store the total number of allocated
598  *              direct blocks
599  */
600 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
601                              ext4_lblk_t iblock, ext4_fsblk_t goal,
602                              int indirect_blks, int blks,
603                              ext4_fsblk_t new_blocks[4], int *err)
604 {
605         struct ext4_allocation_request ar;
606         int target, i;
607         unsigned long count = 0, blk_allocated = 0;
608         int index = 0;
609         ext4_fsblk_t current_block = 0;
610         int ret = 0;
611
612         /*
613          * Here we try to allocate the requested multiple blocks at once,
614          * on a best-effort basis.
615          * To build a branch, we should allocate blocks for
616          * the indirect blocks(if not allocated yet), and at least
617          * the first direct block of this branch.  That's the
618          * minimum number of blocks need to allocate(required)
619          */
620         /* first we try to allocate the indirect blocks */
621         target = indirect_blks;
622         while (target > 0) {
623                 count = target;
624                 /* allocating blocks for indirect blocks and direct blocks */
625                 current_block = ext4_new_meta_blocks(handle, inode,
626                                                         goal, &count, err);
627                 if (*err)
628                         goto failed_out;
629
630                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
631                         EXT4_ERROR_INODE(inode,
632                                          "current_block %llu + count %lu > %d!",
633                                          current_block, count,
634                                          EXT4_MAX_BLOCK_FILE_PHYS);
635                         *err = -EIO;
636                         goto failed_out;
637                 }
638
639                 target -= count;
640                 /* allocate blocks for indirect blocks */
641                 while (index < indirect_blks && count) {
642                         new_blocks[index++] = current_block++;
643                         count--;
644                 }
645                 if (count > 0) {
646                         /*
647                          * save the new block number
648                          * for the first direct block
649                          */
650                         new_blocks[index] = current_block;
651                         printk(KERN_INFO "%s returned more blocks than "
652                                                 "requested\n", __func__);
653                         WARN_ON(1);
654                         break;
655                 }
656         }
657
658         target = blks - count ;
659         blk_allocated = count;
660         if (!target)
661                 goto allocated;
662         /* Now allocate data blocks */
663         memset(&ar, 0, sizeof(ar));
664         ar.inode = inode;
665         ar.goal = goal;
666         ar.len = target;
667         ar.logical = iblock;
668         if (S_ISREG(inode->i_mode))
669                 /* enable in-core preallocation only for regular files */
670                 ar.flags = EXT4_MB_HINT_DATA;
671
672         current_block = ext4_mb_new_blocks(handle, &ar, err);
673         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
674                 EXT4_ERROR_INODE(inode,
675                                  "current_block %llu + ar.len %d > %d!",
676                                  current_block, ar.len,
677                                  EXT4_MAX_BLOCK_FILE_PHYS);
678                 *err = -EIO;
679                 goto failed_out;
680         }
681
682         if (*err && (target == blks)) {
683                 /*
684                  * if the allocation failed and we didn't allocate
685                  * any blocks before
686                  */
687                 goto failed_out;
688         }
689         if (!*err) {
690                 if (target == blks) {
691                         /*
692                          * save the new block number
693                          * for the first direct block
694                          */
695                         new_blocks[index] = current_block;
696                 }
697                 blk_allocated += ar.len;
698         }
699 allocated:
700         /* total number of blocks allocated for direct blocks */
701         ret = blk_allocated;
702         *err = 0;
703         return ret;
704 failed_out:
705         for (i = 0; i < index; i++)
706                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
707         return ret;
708 }
709
710 /**
711  *      ext4_alloc_branch - allocate and set up a chain of blocks.
712  *      @inode: owner
713  *      @indirect_blks: number of allocated indirect blocks
714  *      @blks: number of allocated direct blocks
715  *      @offsets: offsets (in the blocks) to store the pointers to next.
716  *      @branch: place to store the chain in.
717  *
718  *      This function allocates blocks, zeroes out all but the last one,
719  *      links them into chain and (if we are synchronous) writes them to disk.
720  *      In other words, it prepares a branch that can be spliced onto the
721  *      inode. It stores the information about that chain in the branch[], in
722  *      the same format as ext4_get_branch() would do. We are calling it after
723  *      we had read the existing part of chain and partial points to the last
724  *      triple of that (one with zero ->key). Upon the exit we have the same
725  *      picture as after the successful ext4_get_block(), except that in one
726  *      place chain is disconnected - *branch->p is still zero (we did not
727  *      set the last link), but branch->key contains the number that should
728  *      be placed into *branch->p to fill that gap.
729  *
730  *      If allocation fails we free all blocks we've allocated (and forget
731  *      their buffer_heads) and return the error value the from failed
732  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
733  *      as described above and return 0.
734  */
735 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
736                              ext4_lblk_t iblock, int indirect_blks,
737                              int *blks, ext4_fsblk_t goal,
738                              ext4_lblk_t *offsets, Indirect *branch)
739 {
740         int blocksize = inode->i_sb->s_blocksize;
741         int i, n = 0;
742         int err = 0;
743         struct buffer_head *bh;
744         int num;
745         ext4_fsblk_t new_blocks[4];
746         ext4_fsblk_t current_block;
747
748         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
749                                 *blks, new_blocks, &err);
750         if (err)
751                 return err;
752
753         branch[0].key = cpu_to_le32(new_blocks[0]);
754         /*
755          * metadata blocks and data blocks are allocated.
756          */
757         for (n = 1; n <= indirect_blks;  n++) {
758                 /*
759                  * Get buffer_head for parent block, zero it out
760                  * and set the pointer to new one, then send
761                  * parent to disk.
762                  */
763                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764                 branch[n].bh = bh;
765                 lock_buffer(bh);
766                 BUFFER_TRACE(bh, "call get_create_access");
767                 err = ext4_journal_get_create_access(handle, bh);
768                 if (err) {
769                         /* Don't brelse(bh) here; it's done in
770                          * ext4_journal_forget() below */
771                         unlock_buffer(bh);
772                         goto failed;
773                 }
774
775                 memset(bh->b_data, 0, blocksize);
776                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
777                 branch[n].key = cpu_to_le32(new_blocks[n]);
778                 *branch[n].p = branch[n].key;
779                 if (n == indirect_blks) {
780                         current_block = new_blocks[n];
781                         /*
782                          * End of chain, update the last new metablock of
783                          * the chain to point to the new allocated
784                          * data blocks numbers
785                          */
786                         for (i = 1; i < num; i++)
787                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
788                 }
789                 BUFFER_TRACE(bh, "marking uptodate");
790                 set_buffer_uptodate(bh);
791                 unlock_buffer(bh);
792
793                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
794                 err = ext4_handle_dirty_metadata(handle, inode, bh);
795                 if (err)
796                         goto failed;
797         }
798         *blks = num;
799         return err;
800 failed:
801         /* Allocation failed, free what we already allocated */
802         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
803         for (i = 1; i <= n ; i++) {
804                 /*
805                  * branch[i].bh is newly allocated, so there is no
806                  * need to revoke the block, which is why we don't
807                  * need to set EXT4_FREE_BLOCKS_METADATA.
808                  */
809                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
810                                  EXT4_FREE_BLOCKS_FORGET);
811         }
812         for (i = n+1; i < indirect_blks; i++)
813                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
814
815         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
816
817         return err;
818 }
819
820 /**
821  * ext4_splice_branch - splice the allocated branch onto inode.
822  * @inode: owner
823  * @block: (logical) number of block we are adding
824  * @chain: chain of indirect blocks (with a missing link - see
825  *      ext4_alloc_branch)
826  * @where: location of missing link
827  * @num:   number of indirect blocks we are adding
828  * @blks:  number of direct blocks we are adding
829  *
830  * This function fills the missing link and does all housekeeping needed in
831  * inode (->i_blocks, etc.). In case of success we end up with the full
832  * chain to new block and return 0.
833  */
834 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
835                               ext4_lblk_t block, Indirect *where, int num,
836                               int blks)
837 {
838         int i;
839         int err = 0;
840         ext4_fsblk_t current_block;
841
842         /*
843          * If we're splicing into a [td]indirect block (as opposed to the
844          * inode) then we need to get write access to the [td]indirect block
845          * before the splice.
846          */
847         if (where->bh) {
848                 BUFFER_TRACE(where->bh, "get_write_access");
849                 err = ext4_journal_get_write_access(handle, where->bh);
850                 if (err)
851                         goto err_out;
852         }
853         /* That's it */
854
855         *where->p = where->key;
856
857         /*
858          * Update the host buffer_head or inode to point to more just allocated
859          * direct blocks blocks
860          */
861         if (num == 0 && blks > 1) {
862                 current_block = le32_to_cpu(where->key) + 1;
863                 for (i = 1; i < blks; i++)
864                         *(where->p + i) = cpu_to_le32(current_block++);
865         }
866
867         /* We are done with atomic stuff, now do the rest of housekeeping */
868         /* had we spliced it onto indirect block? */
869         if (where->bh) {
870                 /*
871                  * If we spliced it onto an indirect block, we haven't
872                  * altered the inode.  Note however that if it is being spliced
873                  * onto an indirect block at the very end of the file (the
874                  * file is growing) then we *will* alter the inode to reflect
875                  * the new i_size.  But that is not done here - it is done in
876                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
877                  */
878                 jbd_debug(5, "splicing indirect only\n");
879                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
880                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
881                 if (err)
882                         goto err_out;
883         } else {
884                 /*
885                  * OK, we spliced it into the inode itself on a direct block.
886                  */
887                 ext4_mark_inode_dirty(handle, inode);
888                 jbd_debug(5, "splicing direct\n");
889         }
890         return err;
891
892 err_out:
893         for (i = 1; i <= num; i++) {
894                 /*
895                  * branch[i].bh is newly allocated, so there is no
896                  * need to revoke the block, which is why we don't
897                  * need to set EXT4_FREE_BLOCKS_METADATA.
898                  */
899                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
900                                  EXT4_FREE_BLOCKS_FORGET);
901         }
902         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
903                          blks, 0);
904
905         return err;
906 }
907
908 /*
909  * The ext4_ind_map_blocks() function handles non-extents inodes
910  * (i.e., using the traditional indirect/double-indirect i_blocks
911  * scheme) for ext4_map_blocks().
912  *
913  * Allocation strategy is simple: if we have to allocate something, we will
914  * have to go the whole way to leaf. So let's do it before attaching anything
915  * to tree, set linkage between the newborn blocks, write them if sync is
916  * required, recheck the path, free and repeat if check fails, otherwise
917  * set the last missing link (that will protect us from any truncate-generated
918  * removals - all blocks on the path are immune now) and possibly force the
919  * write on the parent block.
920  * That has a nice additional property: no special recovery from the failed
921  * allocations is needed - we simply release blocks and do not touch anything
922  * reachable from inode.
923  *
924  * `handle' can be NULL if create == 0.
925  *
926  * return > 0, # of blocks mapped or allocated.
927  * return = 0, if plain lookup failed.
928  * return < 0, error case.
929  *
930  * The ext4_ind_get_blocks() function should be called with
931  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
932  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
933  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
934  * blocks.
935  */
936 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
937                                struct ext4_map_blocks *map,
938                                int flags)
939 {
940         int err = -EIO;
941         ext4_lblk_t offsets[4];
942         Indirect chain[4];
943         Indirect *partial;
944         ext4_fsblk_t goal;
945         int indirect_blks;
946         int blocks_to_boundary = 0;
947         int depth;
948         int count = 0;
949         ext4_fsblk_t first_block = 0;
950
951         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
952         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
953         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
954                                    &blocks_to_boundary);
955
956         if (depth == 0)
957                 goto out;
958
959         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
960
961         /* Simplest case - block found, no allocation needed */
962         if (!partial) {
963                 first_block = le32_to_cpu(chain[depth - 1].key);
964                 count++;
965                 /*map more blocks*/
966                 while (count < map->m_len && count <= blocks_to_boundary) {
967                         ext4_fsblk_t blk;
968
969                         blk = le32_to_cpu(*(chain[depth-1].p + count));
970
971                         if (blk == first_block + count)
972                                 count++;
973                         else
974                                 break;
975                 }
976                 goto got_it;
977         }
978
979         /* Next simple case - plain lookup or failed read of indirect block */
980         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
981                 goto cleanup;
982
983         /*
984          * Okay, we need to do block allocation.
985         */
986         goal = ext4_find_goal(inode, map->m_lblk, partial);
987
988         /* the number of blocks need to allocate for [d,t]indirect blocks */
989         indirect_blks = (chain + depth) - partial - 1;
990
991         /*
992          * Next look up the indirect map to count the totoal number of
993          * direct blocks to allocate for this branch.
994          */
995         count = ext4_blks_to_allocate(partial, indirect_blks,
996                                       map->m_len, blocks_to_boundary);
997         /*
998          * Block out ext4_truncate while we alter the tree
999          */
1000         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1001                                 &count, goal,
1002                                 offsets + (partial - chain), partial);
1003
1004         /*
1005          * The ext4_splice_branch call will free and forget any buffers
1006          * on the new chain if there is a failure, but that risks using
1007          * up transaction credits, especially for bitmaps where the
1008          * credits cannot be returned.  Can we handle this somehow?  We
1009          * may need to return -EAGAIN upwards in the worst case.  --sct
1010          */
1011         if (!err)
1012                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1013                                          partial, indirect_blks, count);
1014         if (err)
1015                 goto cleanup;
1016
1017         map->m_flags |= EXT4_MAP_NEW;
1018
1019         ext4_update_inode_fsync_trans(handle, inode, 1);
1020 got_it:
1021         map->m_flags |= EXT4_MAP_MAPPED;
1022         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1023         map->m_len = count;
1024         if (count > blocks_to_boundary)
1025                 map->m_flags |= EXT4_MAP_BOUNDARY;
1026         err = count;
1027         /* Clean up and exit */
1028         partial = chain + depth - 1;    /* the whole chain */
1029 cleanup:
1030         while (partial > chain) {
1031                 BUFFER_TRACE(partial->bh, "call brelse");
1032                 brelse(partial->bh);
1033                 partial--;
1034         }
1035 out:
1036         return err;
1037 }
1038
1039 #ifdef CONFIG_QUOTA
1040 qsize_t *ext4_get_reserved_space(struct inode *inode)
1041 {
1042         return &EXT4_I(inode)->i_reserved_quota;
1043 }
1044 #endif
1045
1046 /*
1047  * Calculate the number of metadata blocks need to reserve
1048  * to allocate a new block at @lblocks for non extent file based file
1049  */
1050 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1051                                               sector_t lblock)
1052 {
1053         struct ext4_inode_info *ei = EXT4_I(inode);
1054         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1055         int blk_bits;
1056
1057         if (lblock < EXT4_NDIR_BLOCKS)
1058                 return 0;
1059
1060         lblock -= EXT4_NDIR_BLOCKS;
1061
1062         if (ei->i_da_metadata_calc_len &&
1063             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1064                 ei->i_da_metadata_calc_len++;
1065                 return 0;
1066         }
1067         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1068         ei->i_da_metadata_calc_len = 1;
1069         blk_bits = order_base_2(lblock);
1070         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1071 }
1072
1073 /*
1074  * Calculate the number of metadata blocks need to reserve
1075  * to allocate a block located at @lblock
1076  */
1077 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1078 {
1079         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1080                 return ext4_ext_calc_metadata_amount(inode, lblock);
1081
1082         return ext4_indirect_calc_metadata_amount(inode, lblock);
1083 }
1084
1085 /*
1086  * Called with i_data_sem down, which is important since we can call
1087  * ext4_discard_preallocations() from here.
1088  */
1089 void ext4_da_update_reserve_space(struct inode *inode,
1090                                         int used, int quota_claim)
1091 {
1092         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093         struct ext4_inode_info *ei = EXT4_I(inode);
1094
1095         spin_lock(&ei->i_block_reservation_lock);
1096         trace_ext4_da_update_reserve_space(inode, used);
1097         if (unlikely(used > ei->i_reserved_data_blocks)) {
1098                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1099                          "with only %d reserved data blocks\n",
1100                          __func__, inode->i_ino, used,
1101                          ei->i_reserved_data_blocks);
1102                 WARN_ON(1);
1103                 used = ei->i_reserved_data_blocks;
1104         }
1105
1106         /* Update per-inode reservations */
1107         ei->i_reserved_data_blocks -= used;
1108         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1109         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1110                            used + ei->i_allocated_meta_blocks);
1111         ei->i_allocated_meta_blocks = 0;
1112
1113         if (ei->i_reserved_data_blocks == 0) {
1114                 /*
1115                  * We can release all of the reserved metadata blocks
1116                  * only when we have written all of the delayed
1117                  * allocation blocks.
1118                  */
1119                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1120                                    ei->i_reserved_meta_blocks);
1121                 ei->i_reserved_meta_blocks = 0;
1122                 ei->i_da_metadata_calc_len = 0;
1123         }
1124         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1125
1126         /* Update quota subsystem for data blocks */
1127         if (quota_claim)
1128                 dquot_claim_block(inode, used);
1129         else {
1130                 /*
1131                  * We did fallocate with an offset that is already delayed
1132                  * allocated. So on delayed allocated writeback we should
1133                  * not re-claim the quota for fallocated blocks.
1134                  */
1135                 dquot_release_reservation_block(inode, used);
1136         }
1137
1138         /*
1139          * If we have done all the pending block allocations and if
1140          * there aren't any writers on the inode, we can discard the
1141          * inode's preallocations.
1142          */
1143         if ((ei->i_reserved_data_blocks == 0) &&
1144             (atomic_read(&inode->i_writecount) == 0))
1145                 ext4_discard_preallocations(inode);
1146 }
1147
1148 static int __check_block_validity(struct inode *inode, const char *func,
1149                                 unsigned int line,
1150                                 struct ext4_map_blocks *map)
1151 {
1152         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1153                                    map->m_len)) {
1154                 ext4_error_inode(inode, func, line, map->m_pblk,
1155                                  "lblock %lu mapped to illegal pblock "
1156                                  "(length %d)", (unsigned long) map->m_lblk,
1157                                  map->m_len);
1158                 return -EIO;
1159         }
1160         return 0;
1161 }
1162
1163 #define check_block_validity(inode, map)        \
1164         __check_block_validity((inode), __func__, __LINE__, (map))
1165
1166 /*
1167  * Return the number of contiguous dirty pages in a given inode
1168  * starting at page frame idx.
1169  */
1170 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1171                                     unsigned int max_pages)
1172 {
1173         struct address_space *mapping = inode->i_mapping;
1174         pgoff_t index;
1175         struct pagevec pvec;
1176         pgoff_t num = 0;
1177         int i, nr_pages, done = 0;
1178
1179         if (max_pages == 0)
1180                 return 0;
1181         pagevec_init(&pvec, 0);
1182         while (!done) {
1183                 index = idx;
1184                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1185                                               PAGECACHE_TAG_DIRTY,
1186                                               (pgoff_t)PAGEVEC_SIZE);
1187                 if (nr_pages == 0)
1188                         break;
1189                 for (i = 0; i < nr_pages; i++) {
1190                         struct page *page = pvec.pages[i];
1191                         struct buffer_head *bh, *head;
1192
1193                         lock_page(page);
1194                         if (unlikely(page->mapping != mapping) ||
1195                             !PageDirty(page) ||
1196                             PageWriteback(page) ||
1197                             page->index != idx) {
1198                                 done = 1;
1199                                 unlock_page(page);
1200                                 break;
1201                         }
1202                         if (page_has_buffers(page)) {
1203                                 bh = head = page_buffers(page);
1204                                 do {
1205                                         if (!buffer_delay(bh) &&
1206                                             !buffer_unwritten(bh))
1207                                                 done = 1;
1208                                         bh = bh->b_this_page;
1209                                 } while (!done && (bh != head));
1210                         }
1211                         unlock_page(page);
1212                         if (done)
1213                                 break;
1214                         idx++;
1215                         num++;
1216                         if (num >= max_pages) {
1217                                 done = 1;
1218                                 break;
1219                         }
1220                 }
1221                 pagevec_release(&pvec);
1222         }
1223         return num;
1224 }
1225
1226 /*
1227  * The ext4_map_blocks() function tries to look up the requested blocks,
1228  * and returns if the blocks are already mapped.
1229  *
1230  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1231  * and store the allocated blocks in the result buffer head and mark it
1232  * mapped.
1233  *
1234  * If file type is extents based, it will call ext4_ext_map_blocks(),
1235  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1236  * based files
1237  *
1238  * On success, it returns the number of blocks being mapped or allocate.
1239  * if create==0 and the blocks are pre-allocated and uninitialized block,
1240  * the result buffer head is unmapped. If the create ==1, it will make sure
1241  * the buffer head is mapped.
1242  *
1243  * It returns 0 if plain look up failed (blocks have not been allocated), in
1244  * that casem, buffer head is unmapped
1245  *
1246  * It returns the error in case of allocation failure.
1247  */
1248 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1249                     struct ext4_map_blocks *map, int flags)
1250 {
1251         int retval;
1252
1253         map->m_flags = 0;
1254         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1255                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1256                   (unsigned long) map->m_lblk);
1257         /*
1258          * Try to see if we can get the block without requesting a new
1259          * file system block.
1260          */
1261         down_read((&EXT4_I(inode)->i_data_sem));
1262         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1263                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1264         } else {
1265                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1266         }
1267         up_read((&EXT4_I(inode)->i_data_sem));
1268
1269         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1270                 int ret = check_block_validity(inode, map);
1271                 if (ret != 0)
1272                         return ret;
1273         }
1274
1275         /* If it is only a block(s) look up */
1276         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1277                 return retval;
1278
1279         /*
1280          * Returns if the blocks have already allocated
1281          *
1282          * Note that if blocks have been preallocated
1283          * ext4_ext_get_block() returns th create = 0
1284          * with buffer head unmapped.
1285          */
1286         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1287                 return retval;
1288
1289         /*
1290          * When we call get_blocks without the create flag, the
1291          * BH_Unwritten flag could have gotten set if the blocks
1292          * requested were part of a uninitialized extent.  We need to
1293          * clear this flag now that we are committed to convert all or
1294          * part of the uninitialized extent to be an initialized
1295          * extent.  This is because we need to avoid the combination
1296          * of BH_Unwritten and BH_Mapped flags being simultaneously
1297          * set on the buffer_head.
1298          */
1299         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1300
1301         /*
1302          * New blocks allocate and/or writing to uninitialized extent
1303          * will possibly result in updating i_data, so we take
1304          * the write lock of i_data_sem, and call get_blocks()
1305          * with create == 1 flag.
1306          */
1307         down_write((&EXT4_I(inode)->i_data_sem));
1308
1309         /*
1310          * if the caller is from delayed allocation writeout path
1311          * we have already reserved fs blocks for allocation
1312          * let the underlying get_block() function know to
1313          * avoid double accounting
1314          */
1315         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1316                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1317         /*
1318          * We need to check for EXT4 here because migrate
1319          * could have changed the inode type in between
1320          */
1321         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1322                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1323         } else {
1324                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1325
1326                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1327                         /*
1328                          * We allocated new blocks which will result in
1329                          * i_data's format changing.  Force the migrate
1330                          * to fail by clearing migrate flags
1331                          */
1332                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1333                 }
1334
1335                 /*
1336                  * Update reserved blocks/metadata blocks after successful
1337                  * block allocation which had been deferred till now. We don't
1338                  * support fallocate for non extent files. So we can update
1339                  * reserve space here.
1340                  */
1341                 if ((retval > 0) &&
1342                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1343                         ext4_da_update_reserve_space(inode, retval, 1);
1344         }
1345         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1346                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1347
1348         up_write((&EXT4_I(inode)->i_data_sem));
1349         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1350                 int ret = check_block_validity(inode, map);
1351                 if (ret != 0)
1352                         return ret;
1353         }
1354         return retval;
1355 }
1356
1357 /* Maximum number of blocks we map for direct IO at once. */
1358 #define DIO_MAX_BLOCKS 4096
1359
1360 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1361                            struct buffer_head *bh, int flags)
1362 {
1363         handle_t *handle = ext4_journal_current_handle();
1364         struct ext4_map_blocks map;
1365         int ret = 0, started = 0;
1366         int dio_credits;
1367
1368         map.m_lblk = iblock;
1369         map.m_len = bh->b_size >> inode->i_blkbits;
1370
1371         if (flags && !handle) {
1372                 /* Direct IO write... */
1373                 if (map.m_len > DIO_MAX_BLOCKS)
1374                         map.m_len = DIO_MAX_BLOCKS;
1375                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1376                 handle = ext4_journal_start(inode, dio_credits);
1377                 if (IS_ERR(handle)) {
1378                         ret = PTR_ERR(handle);
1379                         return ret;
1380                 }
1381                 started = 1;
1382         }
1383
1384         ret = ext4_map_blocks(handle, inode, &map, flags);
1385         if (ret > 0) {
1386                 map_bh(bh, inode->i_sb, map.m_pblk);
1387                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1388                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1389                 ret = 0;
1390         }
1391         if (started)
1392                 ext4_journal_stop(handle);
1393         return ret;
1394 }
1395
1396 int ext4_get_block(struct inode *inode, sector_t iblock,
1397                    struct buffer_head *bh, int create)
1398 {
1399         return _ext4_get_block(inode, iblock, bh,
1400                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1401 }
1402
1403 /*
1404  * `handle' can be NULL if create is zero
1405  */
1406 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1407                                 ext4_lblk_t block, int create, int *errp)
1408 {
1409         struct ext4_map_blocks map;
1410         struct buffer_head *bh;
1411         int fatal = 0, err;
1412
1413         J_ASSERT(handle != NULL || create == 0);
1414
1415         map.m_lblk = block;
1416         map.m_len = 1;
1417         err = ext4_map_blocks(handle, inode, &map,
1418                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1419
1420         if (err < 0)
1421                 *errp = err;
1422         if (err <= 0)
1423                 return NULL;
1424         *errp = 0;
1425
1426         bh = sb_getblk(inode->i_sb, map.m_pblk);
1427         if (!bh) {
1428                 *errp = -EIO;
1429                 return NULL;
1430         }
1431         if (map.m_flags & EXT4_MAP_NEW) {
1432                 J_ASSERT(create != 0);
1433                 J_ASSERT(handle != NULL);
1434
1435                 /*
1436                  * Now that we do not always journal data, we should
1437                  * keep in mind whether this should always journal the
1438                  * new buffer as metadata.  For now, regular file
1439                  * writes use ext4_get_block instead, so it's not a
1440                  * problem.
1441                  */
1442                 lock_buffer(bh);
1443                 BUFFER_TRACE(bh, "call get_create_access");
1444                 fatal = ext4_journal_get_create_access(handle, bh);
1445                 if (!fatal && !buffer_uptodate(bh)) {
1446                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1447                         set_buffer_uptodate(bh);
1448                 }
1449                 unlock_buffer(bh);
1450                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1451                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1452                 if (!fatal)
1453                         fatal = err;
1454         } else {
1455                 BUFFER_TRACE(bh, "not a new buffer");
1456         }
1457         if (fatal) {
1458                 *errp = fatal;
1459                 brelse(bh);
1460                 bh = NULL;
1461         }
1462         return bh;
1463 }
1464
1465 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1466                                ext4_lblk_t block, int create, int *err)
1467 {
1468         struct buffer_head *bh;
1469
1470         bh = ext4_getblk(handle, inode, block, create, err);
1471         if (!bh)
1472                 return bh;
1473         if (buffer_uptodate(bh))
1474                 return bh;
1475         ll_rw_block(READ_META, 1, &bh);
1476         wait_on_buffer(bh);
1477         if (buffer_uptodate(bh))
1478                 return bh;
1479         put_bh(bh);
1480         *err = -EIO;
1481         return NULL;
1482 }
1483
1484 static int walk_page_buffers(handle_t *handle,
1485                              struct buffer_head *head,
1486                              unsigned from,
1487                              unsigned to,
1488                              int *partial,
1489                              int (*fn)(handle_t *handle,
1490                                        struct buffer_head *bh))
1491 {
1492         struct buffer_head *bh;
1493         unsigned block_start, block_end;
1494         unsigned blocksize = head->b_size;
1495         int err, ret = 0;
1496         struct buffer_head *next;
1497
1498         for (bh = head, block_start = 0;
1499              ret == 0 && (bh != head || !block_start);
1500              block_start = block_end, bh = next) {
1501                 next = bh->b_this_page;
1502                 block_end = block_start + blocksize;
1503                 if (block_end <= from || block_start >= to) {
1504                         if (partial && !buffer_uptodate(bh))
1505                                 *partial = 1;
1506                         continue;
1507                 }
1508                 err = (*fn)(handle, bh);
1509                 if (!ret)
1510                         ret = err;
1511         }
1512         return ret;
1513 }
1514
1515 /*
1516  * To preserve ordering, it is essential that the hole instantiation and
1517  * the data write be encapsulated in a single transaction.  We cannot
1518  * close off a transaction and start a new one between the ext4_get_block()
1519  * and the commit_write().  So doing the jbd2_journal_start at the start of
1520  * prepare_write() is the right place.
1521  *
1522  * Also, this function can nest inside ext4_writepage() ->
1523  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1524  * has generated enough buffer credits to do the whole page.  So we won't
1525  * block on the journal in that case, which is good, because the caller may
1526  * be PF_MEMALLOC.
1527  *
1528  * By accident, ext4 can be reentered when a transaction is open via
1529  * quota file writes.  If we were to commit the transaction while thus
1530  * reentered, there can be a deadlock - we would be holding a quota
1531  * lock, and the commit would never complete if another thread had a
1532  * transaction open and was blocking on the quota lock - a ranking
1533  * violation.
1534  *
1535  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1536  * will _not_ run commit under these circumstances because handle->h_ref
1537  * is elevated.  We'll still have enough credits for the tiny quotafile
1538  * write.
1539  */
1540 static int do_journal_get_write_access(handle_t *handle,
1541                                        struct buffer_head *bh)
1542 {
1543         int dirty = buffer_dirty(bh);
1544         int ret;
1545
1546         if (!buffer_mapped(bh) || buffer_freed(bh))
1547                 return 0;
1548         /*
1549          * __block_prepare_write() could have dirtied some buffers. Clean
1550          * the dirty bit as jbd2_journal_get_write_access() could complain
1551          * otherwise about fs integrity issues. Setting of the dirty bit
1552          * by __block_prepare_write() isn't a real problem here as we clear
1553          * the bit before releasing a page lock and thus writeback cannot
1554          * ever write the buffer.
1555          */
1556         if (dirty)
1557                 clear_buffer_dirty(bh);
1558         ret = ext4_journal_get_write_access(handle, bh);
1559         if (!ret && dirty)
1560                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1561         return ret;
1562 }
1563
1564 /*
1565  * Truncate blocks that were not used by write. We have to truncate the
1566  * pagecache as well so that corresponding buffers get properly unmapped.
1567  */
1568 static void ext4_truncate_failed_write(struct inode *inode)
1569 {
1570         truncate_inode_pages(inode->i_mapping, inode->i_size);
1571         ext4_truncate(inode);
1572 }
1573
1574 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1575                    struct buffer_head *bh_result, int create);
1576 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1577                             loff_t pos, unsigned len, unsigned flags,
1578                             struct page **pagep, void **fsdata)
1579 {
1580         struct inode *inode = mapping->host;
1581         int ret, needed_blocks;
1582         handle_t *handle;
1583         int retries = 0;
1584         struct page *page;
1585         pgoff_t index;
1586         unsigned from, to;
1587
1588         trace_ext4_write_begin(inode, pos, len, flags);
1589         /*
1590          * Reserve one block more for addition to orphan list in case
1591          * we allocate blocks but write fails for some reason
1592          */
1593         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1594         index = pos >> PAGE_CACHE_SHIFT;
1595         from = pos & (PAGE_CACHE_SIZE - 1);
1596         to = from + len;
1597
1598 retry:
1599         handle = ext4_journal_start(inode, needed_blocks);
1600         if (IS_ERR(handle)) {
1601                 ret = PTR_ERR(handle);
1602                 goto out;
1603         }
1604
1605         /* We cannot recurse into the filesystem as the transaction is already
1606          * started */
1607         flags |= AOP_FLAG_NOFS;
1608
1609         page = grab_cache_page_write_begin(mapping, index, flags);
1610         if (!page) {
1611                 ext4_journal_stop(handle);
1612                 ret = -ENOMEM;
1613                 goto out;
1614         }
1615         *pagep = page;
1616
1617         if (ext4_should_dioread_nolock(inode))
1618                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1619         else
1620                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1621
1622         if (!ret && ext4_should_journal_data(inode)) {
1623                 ret = walk_page_buffers(handle, page_buffers(page),
1624                                 from, to, NULL, do_journal_get_write_access);
1625         }
1626
1627         if (ret) {
1628                 unlock_page(page);
1629                 page_cache_release(page);
1630                 /*
1631                  * __block_write_begin may have instantiated a few blocks
1632                  * outside i_size.  Trim these off again. Don't need
1633                  * i_size_read because we hold i_mutex.
1634                  *
1635                  * Add inode to orphan list in case we crash before
1636                  * truncate finishes
1637                  */
1638                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1639                         ext4_orphan_add(handle, inode);
1640
1641                 ext4_journal_stop(handle);
1642                 if (pos + len > inode->i_size) {
1643                         ext4_truncate_failed_write(inode);
1644                         /*
1645                          * If truncate failed early the inode might
1646                          * still be on the orphan list; we need to
1647                          * make sure the inode is removed from the
1648                          * orphan list in that case.
1649                          */
1650                         if (inode->i_nlink)
1651                                 ext4_orphan_del(NULL, inode);
1652                 }
1653         }
1654
1655         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1656                 goto retry;
1657 out:
1658         return ret;
1659 }
1660
1661 /* For write_end() in data=journal mode */
1662 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1663 {
1664         if (!buffer_mapped(bh) || buffer_freed(bh))
1665                 return 0;
1666         set_buffer_uptodate(bh);
1667         return ext4_handle_dirty_metadata(handle, NULL, bh);
1668 }
1669
1670 static int ext4_generic_write_end(struct file *file,
1671                                   struct address_space *mapping,
1672                                   loff_t pos, unsigned len, unsigned copied,
1673                                   struct page *page, void *fsdata)
1674 {
1675         int i_size_changed = 0;
1676         struct inode *inode = mapping->host;
1677         handle_t *handle = ext4_journal_current_handle();
1678
1679         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1680
1681         /*
1682          * No need to use i_size_read() here, the i_size
1683          * cannot change under us because we hold i_mutex.
1684          *
1685          * But it's important to update i_size while still holding page lock:
1686          * page writeout could otherwise come in and zero beyond i_size.
1687          */
1688         if (pos + copied > inode->i_size) {
1689                 i_size_write(inode, pos + copied);
1690                 i_size_changed = 1;
1691         }
1692
1693         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1694                 /* We need to mark inode dirty even if
1695                  * new_i_size is less that inode->i_size
1696                  * bu greater than i_disksize.(hint delalloc)
1697                  */
1698                 ext4_update_i_disksize(inode, (pos + copied));
1699                 i_size_changed = 1;
1700         }
1701         unlock_page(page);
1702         page_cache_release(page);
1703
1704         /*
1705          * Don't mark the inode dirty under page lock. First, it unnecessarily
1706          * makes the holding time of page lock longer. Second, it forces lock
1707          * ordering of page lock and transaction start for journaling
1708          * filesystems.
1709          */
1710         if (i_size_changed)
1711                 ext4_mark_inode_dirty(handle, inode);
1712
1713         return copied;
1714 }
1715
1716 /*
1717  * We need to pick up the new inode size which generic_commit_write gave us
1718  * `file' can be NULL - eg, when called from page_symlink().
1719  *
1720  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1721  * buffers are managed internally.
1722  */
1723 static int ext4_ordered_write_end(struct file *file,
1724                                   struct address_space *mapping,
1725                                   loff_t pos, unsigned len, unsigned copied,
1726                                   struct page *page, void *fsdata)
1727 {
1728         handle_t *handle = ext4_journal_current_handle();
1729         struct inode *inode = mapping->host;
1730         int ret = 0, ret2;
1731
1732         trace_ext4_ordered_write_end(inode, pos, len, copied);
1733         ret = ext4_jbd2_file_inode(handle, inode);
1734
1735         if (ret == 0) {
1736                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1737                                                         page, fsdata);
1738                 copied = ret2;
1739                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1740                         /* if we have allocated more blocks and copied
1741                          * less. We will have blocks allocated outside
1742                          * inode->i_size. So truncate them
1743                          */
1744                         ext4_orphan_add(handle, inode);
1745                 if (ret2 < 0)
1746                         ret = ret2;
1747         }
1748         ret2 = ext4_journal_stop(handle);
1749         if (!ret)
1750                 ret = ret2;
1751
1752         if (pos + len > inode->i_size) {
1753                 ext4_truncate_failed_write(inode);
1754                 /*
1755                  * If truncate failed early the inode might still be
1756                  * on the orphan list; we need to make sure the inode
1757                  * is removed from the orphan list in that case.
1758                  */
1759                 if (inode->i_nlink)
1760                         ext4_orphan_del(NULL, inode);
1761         }
1762
1763
1764         return ret ? ret : copied;
1765 }
1766
1767 static int ext4_writeback_write_end(struct file *file,
1768                                     struct address_space *mapping,
1769                                     loff_t pos, unsigned len, unsigned copied,
1770                                     struct page *page, void *fsdata)
1771 {
1772         handle_t *handle = ext4_journal_current_handle();
1773         struct inode *inode = mapping->host;
1774         int ret = 0, ret2;
1775
1776         trace_ext4_writeback_write_end(inode, pos, len, copied);
1777         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1778                                                         page, fsdata);
1779         copied = ret2;
1780         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1781                 /* if we have allocated more blocks and copied
1782                  * less. We will have blocks allocated outside
1783                  * inode->i_size. So truncate them
1784                  */
1785                 ext4_orphan_add(handle, inode);
1786
1787         if (ret2 < 0)
1788                 ret = ret2;
1789
1790         ret2 = ext4_journal_stop(handle);
1791         if (!ret)
1792                 ret = ret2;
1793
1794         if (pos + len > inode->i_size) {
1795                 ext4_truncate_failed_write(inode);
1796                 /*
1797                  * If truncate failed early the inode might still be
1798                  * on the orphan list; we need to make sure the inode
1799                  * is removed from the orphan list in that case.
1800                  */
1801                 if (inode->i_nlink)
1802                         ext4_orphan_del(NULL, inode);
1803         }
1804
1805         return ret ? ret : copied;
1806 }
1807
1808 static int ext4_journalled_write_end(struct file *file,
1809                                      struct address_space *mapping,
1810                                      loff_t pos, unsigned len, unsigned copied,
1811                                      struct page *page, void *fsdata)
1812 {
1813         handle_t *handle = ext4_journal_current_handle();
1814         struct inode *inode = mapping->host;
1815         int ret = 0, ret2;
1816         int partial = 0;
1817         unsigned from, to;
1818         loff_t new_i_size;
1819
1820         trace_ext4_journalled_write_end(inode, pos, len, copied);
1821         from = pos & (PAGE_CACHE_SIZE - 1);
1822         to = from + len;
1823
1824         if (copied < len) {
1825                 if (!PageUptodate(page))
1826                         copied = 0;
1827                 page_zero_new_buffers(page, from+copied, to);
1828         }
1829
1830         ret = walk_page_buffers(handle, page_buffers(page), from,
1831                                 to, &partial, write_end_fn);
1832         if (!partial)
1833                 SetPageUptodate(page);
1834         new_i_size = pos + copied;
1835         if (new_i_size > inode->i_size)
1836                 i_size_write(inode, pos+copied);
1837         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1838         if (new_i_size > EXT4_I(inode)->i_disksize) {
1839                 ext4_update_i_disksize(inode, new_i_size);
1840                 ret2 = ext4_mark_inode_dirty(handle, inode);
1841                 if (!ret)
1842                         ret = ret2;
1843         }
1844
1845         unlock_page(page);
1846         page_cache_release(page);
1847         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1848                 /* if we have allocated more blocks and copied
1849                  * less. We will have blocks allocated outside
1850                  * inode->i_size. So truncate them
1851                  */
1852                 ext4_orphan_add(handle, inode);
1853
1854         ret2 = ext4_journal_stop(handle);
1855         if (!ret)
1856                 ret = ret2;
1857         if (pos + len > inode->i_size) {
1858                 ext4_truncate_failed_write(inode);
1859                 /*
1860                  * If truncate failed early the inode might still be
1861                  * on the orphan list; we need to make sure the inode
1862                  * is removed from the orphan list in that case.
1863                  */
1864                 if (inode->i_nlink)
1865                         ext4_orphan_del(NULL, inode);
1866         }
1867
1868         return ret ? ret : copied;
1869 }
1870
1871 /*
1872  * Reserve a single block located at lblock
1873  */
1874 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1875 {
1876         int retries = 0;
1877         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1878         struct ext4_inode_info *ei = EXT4_I(inode);
1879         unsigned long md_needed;
1880         int ret;
1881
1882         /*
1883          * recalculate the amount of metadata blocks to reserve
1884          * in order to allocate nrblocks
1885          * worse case is one extent per block
1886          */
1887 repeat:
1888         spin_lock(&ei->i_block_reservation_lock);
1889         md_needed = ext4_calc_metadata_amount(inode, lblock);
1890         trace_ext4_da_reserve_space(inode, md_needed);
1891         spin_unlock(&ei->i_block_reservation_lock);
1892
1893         /*
1894          * We will charge metadata quota at writeout time; this saves
1895          * us from metadata over-estimation, though we may go over by
1896          * a small amount in the end.  Here we just reserve for data.
1897          */
1898         ret = dquot_reserve_block(inode, 1);
1899         if (ret)
1900                 return ret;
1901         /*
1902          * We do still charge estimated metadata to the sb though;
1903          * we cannot afford to run out of free blocks.
1904          */
1905         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1906                 dquot_release_reservation_block(inode, 1);
1907                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1908                         yield();
1909                         goto repeat;
1910                 }
1911                 return -ENOSPC;
1912         }
1913         spin_lock(&ei->i_block_reservation_lock);
1914         ei->i_reserved_data_blocks++;
1915         ei->i_reserved_meta_blocks += md_needed;
1916         spin_unlock(&ei->i_block_reservation_lock);
1917
1918         return 0;       /* success */
1919 }
1920
1921 static void ext4_da_release_space(struct inode *inode, int to_free)
1922 {
1923         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1924         struct ext4_inode_info *ei = EXT4_I(inode);
1925
1926         if (!to_free)
1927                 return;         /* Nothing to release, exit */
1928
1929         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1930
1931         trace_ext4_da_release_space(inode, to_free);
1932         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1933                 /*
1934                  * if there aren't enough reserved blocks, then the
1935                  * counter is messed up somewhere.  Since this
1936                  * function is called from invalidate page, it's
1937                  * harmless to return without any action.
1938                  */
1939                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1940                          "ino %lu, to_free %d with only %d reserved "
1941                          "data blocks\n", inode->i_ino, to_free,
1942                          ei->i_reserved_data_blocks);
1943                 WARN_ON(1);
1944                 to_free = ei->i_reserved_data_blocks;
1945         }
1946         ei->i_reserved_data_blocks -= to_free;
1947
1948         if (ei->i_reserved_data_blocks == 0) {
1949                 /*
1950                  * We can release all of the reserved metadata blocks
1951                  * only when we have written all of the delayed
1952                  * allocation blocks.
1953                  */
1954                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1955                                    ei->i_reserved_meta_blocks);
1956                 ei->i_reserved_meta_blocks = 0;
1957                 ei->i_da_metadata_calc_len = 0;
1958         }
1959
1960         /* update fs dirty data blocks counter */
1961         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1962
1963         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1964
1965         dquot_release_reservation_block(inode, to_free);
1966 }
1967
1968 static void ext4_da_page_release_reservation(struct page *page,
1969                                              unsigned long offset)
1970 {
1971         int to_release = 0;
1972         struct buffer_head *head, *bh;
1973         unsigned int curr_off = 0;
1974
1975         head = page_buffers(page);
1976         bh = head;
1977         do {
1978                 unsigned int next_off = curr_off + bh->b_size;
1979
1980                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1981                         to_release++;
1982                         clear_buffer_delay(bh);
1983                 }
1984                 curr_off = next_off;
1985         } while ((bh = bh->b_this_page) != head);
1986         ext4_da_release_space(page->mapping->host, to_release);
1987 }
1988
1989 /*
1990  * Delayed allocation stuff
1991  */
1992
1993 /*
1994  * mpage_da_submit_io - walks through extent of pages and try to write
1995  * them with writepage() call back
1996  *
1997  * @mpd->inode: inode
1998  * @mpd->first_page: first page of the extent
1999  * @mpd->next_page: page after the last page of the extent
2000  *
2001  * By the time mpage_da_submit_io() is called we expect all blocks
2002  * to be allocated. this may be wrong if allocation failed.
2003  *
2004  * As pages are already locked by write_cache_pages(), we can't use it
2005  */
2006 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2007                               struct ext4_map_blocks *map)
2008 {
2009         struct pagevec pvec;
2010         unsigned long index, end;
2011         int ret = 0, err, nr_pages, i;
2012         struct inode *inode = mpd->inode;
2013         struct address_space *mapping = inode->i_mapping;
2014         loff_t size = i_size_read(inode);
2015         unsigned int len, block_start;
2016         struct buffer_head *bh, *page_bufs = NULL;
2017         int journal_data = ext4_should_journal_data(inode);
2018         sector_t pblock = 0, cur_logical = 0;
2019         struct ext4_io_submit io_submit;
2020
2021         BUG_ON(mpd->next_page <= mpd->first_page);
2022         memset(&io_submit, 0, sizeof(io_submit));
2023         /*
2024          * We need to start from the first_page to the next_page - 1
2025          * to make sure we also write the mapped dirty buffer_heads.
2026          * If we look at mpd->b_blocknr we would only be looking
2027          * at the currently mapped buffer_heads.
2028          */
2029         index = mpd->first_page;
2030         end = mpd->next_page - 1;
2031
2032         pagevec_init(&pvec, 0);
2033         while (index <= end) {
2034                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2035                 if (nr_pages == 0)
2036                         break;
2037                 for (i = 0; i < nr_pages; i++) {
2038                         int commit_write = 0, redirty_page = 0;
2039                         struct page *page = pvec.pages[i];
2040
2041                         index = page->index;
2042                         if (index > end)
2043                                 break;
2044
2045                         if (index == size >> PAGE_CACHE_SHIFT)
2046                                 len = size & ~PAGE_CACHE_MASK;
2047                         else
2048                                 len = PAGE_CACHE_SIZE;
2049                         if (map) {
2050                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2051                                                         inode->i_blkbits);
2052                                 pblock = map->m_pblk + (cur_logical -
2053                                                         map->m_lblk);
2054                         }
2055                         index++;
2056
2057                         BUG_ON(!PageLocked(page));
2058                         BUG_ON(PageWriteback(page));
2059
2060                         /*
2061                          * If the page does not have buffers (for
2062                          * whatever reason), try to create them using
2063                          * block_prepare_write.  If this fails,
2064                          * redirty the page and move on.
2065                          */
2066                         if (!page_has_buffers(page)) {
2067                                 if (block_prepare_write(page, 0, len,
2068                                                 noalloc_get_block_write)) {
2069                                 redirty_page:
2070                                         redirty_page_for_writepage(mpd->wbc,
2071                                                                    page);
2072                                         unlock_page(page);
2073                                         continue;
2074                                 }
2075                                 commit_write = 1;
2076                         }
2077
2078                         bh = page_bufs = page_buffers(page);
2079                         block_start = 0;
2080                         do {
2081                                 if (!bh)
2082                                         goto redirty_page;
2083                                 if (map && (cur_logical >= map->m_lblk) &&
2084                                     (cur_logical <= (map->m_lblk +
2085                                                      (map->m_len - 1)))) {
2086                                         if (buffer_delay(bh)) {
2087                                                 clear_buffer_delay(bh);
2088                                                 bh->b_blocknr = pblock;
2089                                         }
2090                                         if (buffer_unwritten(bh) ||
2091                                             buffer_mapped(bh))
2092                                                 BUG_ON(bh->b_blocknr != pblock);
2093                                         if (map->m_flags & EXT4_MAP_UNINIT)
2094                                                 set_buffer_uninit(bh);
2095                                         clear_buffer_unwritten(bh);
2096                                 }
2097
2098                                 /* redirty page if block allocation undone */
2099                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2100                                         redirty_page = 1;
2101                                 bh = bh->b_this_page;
2102                                 block_start += bh->b_size;
2103                                 cur_logical++;
2104                                 pblock++;
2105                         } while (bh != page_bufs);
2106
2107                         if (redirty_page)
2108                                 goto redirty_page;
2109
2110                         if (commit_write)
2111                                 /* mark the buffer_heads as dirty & uptodate */
2112                                 block_commit_write(page, 0, len);
2113
2114                         /*
2115                          * Delalloc doesn't support data journalling,
2116                          * but eventually maybe we'll lift this
2117                          * restriction.
2118                          */
2119                         if (unlikely(journal_data && PageChecked(page)))
2120                                 err = __ext4_journalled_writepage(page, len);
2121                         else
2122                                 err = ext4_bio_write_page(&io_submit, page,
2123                                                           len, mpd->wbc);
2124
2125                         if (!err)
2126                                 mpd->pages_written++;
2127                         /*
2128                          * In error case, we have to continue because
2129                          * remaining pages are still locked
2130                          */
2131                         if (ret == 0)
2132                                 ret = err;
2133                 }
2134                 pagevec_release(&pvec);
2135         }
2136         ext4_io_submit(&io_submit);
2137         return ret;
2138 }
2139
2140 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2141                                         sector_t logical, long blk_cnt)
2142 {
2143         int nr_pages, i;
2144         pgoff_t index, end;
2145         struct pagevec pvec;
2146         struct inode *inode = mpd->inode;
2147         struct address_space *mapping = inode->i_mapping;
2148
2149         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2150         end   = (logical + blk_cnt - 1) >>
2151                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152         while (index <= end) {
2153                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2154                 if (nr_pages == 0)
2155                         break;
2156                 for (i = 0; i < nr_pages; i++) {
2157                         struct page *page = pvec.pages[i];
2158                         if (page->index > end)
2159                                 break;
2160                         BUG_ON(!PageLocked(page));
2161                         BUG_ON(PageWriteback(page));
2162                         block_invalidatepage(page, 0);
2163                         ClearPageUptodate(page);
2164                         unlock_page(page);
2165                 }
2166                 index = pvec.pages[nr_pages - 1]->index + 1;
2167                 pagevec_release(&pvec);
2168         }
2169         return;
2170 }
2171
2172 static void ext4_print_free_blocks(struct inode *inode)
2173 {
2174         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2175         printk(KERN_CRIT "Total free blocks count %lld\n",
2176                ext4_count_free_blocks(inode->i_sb));
2177         printk(KERN_CRIT "Free/Dirty block details\n");
2178         printk(KERN_CRIT "free_blocks=%lld\n",
2179                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2180         printk(KERN_CRIT "dirty_blocks=%lld\n",
2181                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2182         printk(KERN_CRIT "Block reservation details\n");
2183         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2184                EXT4_I(inode)->i_reserved_data_blocks);
2185         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2186                EXT4_I(inode)->i_reserved_meta_blocks);
2187         return;
2188 }
2189
2190 /*
2191  * mpage_da_map_and_submit - go through given space, map them
2192  *       if necessary, and then submit them for I/O
2193  *
2194  * @mpd - bh describing space
2195  *
2196  * The function skips space we know is already mapped to disk blocks.
2197  *
2198  */
2199 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2200 {
2201         int err, blks, get_blocks_flags;
2202         struct ext4_map_blocks map, *mapp = NULL;
2203         sector_t next = mpd->b_blocknr;
2204         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2205         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2206         handle_t *handle = NULL;
2207
2208         /*
2209          * If the blocks are mapped already, or we couldn't accumulate
2210          * any blocks, then proceed immediately to the submission stage.
2211          */
2212         if ((mpd->b_size == 0) ||
2213             ((mpd->b_state  & (1 << BH_Mapped)) &&
2214              !(mpd->b_state & (1 << BH_Delay)) &&
2215              !(mpd->b_state & (1 << BH_Unwritten))))
2216                 goto submit_io;
2217
2218         handle = ext4_journal_current_handle();
2219         BUG_ON(!handle);
2220
2221         /*
2222          * Call ext4_map_blocks() to allocate any delayed allocation
2223          * blocks, or to convert an uninitialized extent to be
2224          * initialized (in the case where we have written into
2225          * one or more preallocated blocks).
2226          *
2227          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2228          * indicate that we are on the delayed allocation path.  This
2229          * affects functions in many different parts of the allocation
2230          * call path.  This flag exists primarily because we don't
2231          * want to change *many* call functions, so ext4_map_blocks()
2232          * will set the magic i_delalloc_reserved_flag once the
2233          * inode's allocation semaphore is taken.
2234          *
2235          * If the blocks in questions were delalloc blocks, set
2236          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2237          * variables are updated after the blocks have been allocated.
2238          */
2239         map.m_lblk = next;
2240         map.m_len = max_blocks;
2241         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2242         if (ext4_should_dioread_nolock(mpd->inode))
2243                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2244         if (mpd->b_state & (1 << BH_Delay))
2245                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2246
2247         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2248         if (blks < 0) {
2249                 struct super_block *sb = mpd->inode->i_sb;
2250
2251                 err = blks;
2252                 /*
2253                  * If get block returns EAGAIN or ENOSPC and there
2254                  * appears to be free blocks we will call
2255                  * ext4_writepage() for all of the pages which will
2256                  * just redirty the pages.
2257                  */
2258                 if (err == -EAGAIN)
2259                         goto submit_io;
2260
2261                 if (err == -ENOSPC &&
2262                     ext4_count_free_blocks(sb)) {
2263                         mpd->retval = err;
2264                         goto submit_io;
2265                 }
2266
2267                 /*
2268                  * get block failure will cause us to loop in
2269                  * writepages, because a_ops->writepage won't be able
2270                  * to make progress. The page will be redirtied by
2271                  * writepage and writepages will again try to write
2272                  * the same.
2273                  */
2274                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2275                         ext4_msg(sb, KERN_CRIT,
2276                                  "delayed block allocation failed for inode %lu "
2277                                  "at logical offset %llu with max blocks %zd "
2278                                  "with error %d", mpd->inode->i_ino,
2279                                  (unsigned long long) next,
2280                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2281                         ext4_msg(sb, KERN_CRIT,
2282                                 "This should not happen!! Data will be lost\n");
2283                         if (err == -ENOSPC)
2284                                 ext4_print_free_blocks(mpd->inode);
2285                 }
2286                 /* invalidate all the pages */
2287                 ext4_da_block_invalidatepages(mpd, next,
2288                                 mpd->b_size >> mpd->inode->i_blkbits);
2289                 return;
2290         }
2291         BUG_ON(blks == 0);
2292
2293         mapp = &map;
2294         if (map.m_flags & EXT4_MAP_NEW) {
2295                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2296                 int i;
2297
2298                 for (i = 0; i < map.m_len; i++)
2299                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2300         }
2301
2302         if (ext4_should_order_data(mpd->inode)) {
2303                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2304                 if (err)
2305                         /* This only happens if the journal is aborted */
2306                         return;
2307         }
2308
2309         /*
2310          * Update on-disk size along with block allocation.
2311          */
2312         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2313         if (disksize > i_size_read(mpd->inode))
2314                 disksize = i_size_read(mpd->inode);
2315         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2316                 ext4_update_i_disksize(mpd->inode, disksize);
2317                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2318                 if (err)
2319                         ext4_error(mpd->inode->i_sb,
2320                                    "Failed to mark inode %lu dirty",
2321                                    mpd->inode->i_ino);
2322         }
2323
2324 submit_io:
2325         mpage_da_submit_io(mpd, mapp);
2326         mpd->io_done = 1;
2327 }
2328
2329 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2330                 (1 << BH_Delay) | (1 << BH_Unwritten))
2331
2332 /*
2333  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2334  *
2335  * @mpd->lbh - extent of blocks
2336  * @logical - logical number of the block in the file
2337  * @bh - bh of the block (used to access block's state)
2338  *
2339  * the function is used to collect contig. blocks in same state
2340  */
2341 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2342                                    sector_t logical, size_t b_size,
2343                                    unsigned long b_state)
2344 {
2345         sector_t next;
2346         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2347
2348         /*
2349          * XXX Don't go larger than mballoc is willing to allocate
2350          * This is a stopgap solution.  We eventually need to fold
2351          * mpage_da_submit_io() into this function and then call
2352          * ext4_map_blocks() multiple times in a loop
2353          */
2354         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2355                 goto flush_it;
2356
2357         /* check if thereserved journal credits might overflow */
2358         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2359                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2360                         /*
2361                          * With non-extent format we are limited by the journal
2362                          * credit available.  Total credit needed to insert
2363                          * nrblocks contiguous blocks is dependent on the
2364                          * nrblocks.  So limit nrblocks.
2365                          */
2366                         goto flush_it;
2367                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2368                                 EXT4_MAX_TRANS_DATA) {
2369                         /*
2370                          * Adding the new buffer_head would make it cross the
2371                          * allowed limit for which we have journal credit
2372                          * reserved. So limit the new bh->b_size
2373                          */
2374                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2375                                                 mpd->inode->i_blkbits;
2376                         /* we will do mpage_da_submit_io in the next loop */
2377                 }
2378         }
2379         /*
2380          * First block in the extent
2381          */
2382         if (mpd->b_size == 0) {
2383                 mpd->b_blocknr = logical;
2384                 mpd->b_size = b_size;
2385                 mpd->b_state = b_state & BH_FLAGS;
2386                 return;
2387         }
2388
2389         next = mpd->b_blocknr + nrblocks;
2390         /*
2391          * Can we merge the block to our big extent?
2392          */
2393         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2394                 mpd->b_size += b_size;
2395                 return;
2396         }
2397
2398 flush_it:
2399         /*
2400          * We couldn't merge the block to our extent, so we
2401          * need to flush current  extent and start new one
2402          */
2403         mpage_da_map_and_submit(mpd);
2404         return;
2405 }
2406
2407 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2408 {
2409         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2410 }
2411
2412 /*
2413  * __mpage_da_writepage - finds extent of pages and blocks
2414  *
2415  * @page: page to consider
2416  * @wbc: not used, we just follow rules
2417  * @data: context
2418  *
2419  * The function finds extents of pages and scan them for all blocks.
2420  */
2421 static int __mpage_da_writepage(struct page *page,
2422                                 struct writeback_control *wbc, void *data)
2423 {
2424         struct mpage_da_data *mpd = data;
2425         struct inode *inode = mpd->inode;
2426         struct buffer_head *bh, *head;
2427         sector_t logical;
2428
2429         /*
2430          * Can we merge this page to current extent?
2431          */
2432         if (mpd->next_page != page->index) {
2433                 /*
2434                  * Nope, we can't. So, we map non-allocated blocks
2435                  * and start IO on them
2436                  */
2437                 if (mpd->next_page != mpd->first_page) {
2438                         mpage_da_map_and_submit(mpd);
2439                         /*
2440                          * skip rest of the page in the page_vec
2441                          */
2442                         redirty_page_for_writepage(wbc, page);
2443                         unlock_page(page);
2444                         return MPAGE_DA_EXTENT_TAIL;
2445                 }
2446
2447                 /*
2448                  * Start next extent of pages ...
2449                  */
2450                 mpd->first_page = page->index;
2451
2452                 /*
2453                  * ... and blocks
2454                  */
2455                 mpd->b_size = 0;
2456                 mpd->b_state = 0;
2457                 mpd->b_blocknr = 0;
2458         }
2459
2460         mpd->next_page = page->index + 1;
2461         logical = (sector_t) page->index <<
2462                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2463
2464         if (!page_has_buffers(page)) {
2465                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2466                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2467                 if (mpd->io_done)
2468                         return MPAGE_DA_EXTENT_TAIL;
2469         } else {
2470                 /*
2471                  * Page with regular buffer heads, just add all dirty ones
2472                  */
2473                 head = page_buffers(page);
2474                 bh = head;
2475                 do {
2476                         BUG_ON(buffer_locked(bh));
2477                         /*
2478                          * We need to try to allocate
2479                          * unmapped blocks in the same page.
2480                          * Otherwise we won't make progress
2481                          * with the page in ext4_writepage
2482                          */
2483                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2484                                 mpage_add_bh_to_extent(mpd, logical,
2485                                                        bh->b_size,
2486                                                        bh->b_state);
2487                                 if (mpd->io_done)
2488                                         return MPAGE_DA_EXTENT_TAIL;
2489                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2490                                 /*
2491                                  * mapped dirty buffer. We need to update
2492                                  * the b_state because we look at
2493                                  * b_state in mpage_da_map_blocks. We don't
2494                                  * update b_size because if we find an
2495                                  * unmapped buffer_head later we need to
2496                                  * use the b_state flag of that buffer_head.
2497                                  */
2498                                 if (mpd->b_size == 0)
2499                                         mpd->b_state = bh->b_state & BH_FLAGS;
2500                         }
2501                         logical++;
2502                 } while ((bh = bh->b_this_page) != head);
2503         }
2504
2505         return 0;
2506 }
2507
2508 /*
2509  * This is a special get_blocks_t callback which is used by
2510  * ext4_da_write_begin().  It will either return mapped block or
2511  * reserve space for a single block.
2512  *
2513  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2514  * We also have b_blocknr = -1 and b_bdev initialized properly
2515  *
2516  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2517  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2518  * initialized properly.
2519  */
2520 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2521                                   struct buffer_head *bh, int create)
2522 {
2523         struct ext4_map_blocks map;
2524         int ret = 0;
2525         sector_t invalid_block = ~((sector_t) 0xffff);
2526
2527         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2528                 invalid_block = ~0;
2529
2530         BUG_ON(create == 0);
2531         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2532
2533         map.m_lblk = iblock;
2534         map.m_len = 1;
2535
2536         /*
2537          * first, we need to know whether the block is allocated already
2538          * preallocated blocks are unmapped but should treated
2539          * the same as allocated blocks.
2540          */
2541         ret = ext4_map_blocks(NULL, inode, &map, 0);
2542         if (ret < 0)
2543                 return ret;
2544         if (ret == 0) {
2545                 if (buffer_delay(bh))
2546                         return 0; /* Not sure this could or should happen */
2547                 /*
2548                  * XXX: __block_prepare_write() unmaps passed block,
2549                  * is it OK?
2550                  */
2551                 ret = ext4_da_reserve_space(inode, iblock);
2552                 if (ret)
2553                         /* not enough space to reserve */
2554                         return ret;
2555
2556                 map_bh(bh, inode->i_sb, invalid_block);
2557                 set_buffer_new(bh);
2558                 set_buffer_delay(bh);
2559                 return 0;
2560         }
2561
2562         map_bh(bh, inode->i_sb, map.m_pblk);
2563         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2564
2565         if (buffer_unwritten(bh)) {
2566                 /* A delayed write to unwritten bh should be marked
2567                  * new and mapped.  Mapped ensures that we don't do
2568                  * get_block multiple times when we write to the same
2569                  * offset and new ensures that we do proper zero out
2570                  * for partial write.
2571                  */
2572                 set_buffer_new(bh);
2573                 set_buffer_mapped(bh);
2574         }
2575         return 0;
2576 }
2577
2578 /*
2579  * This function is used as a standard get_block_t calback function
2580  * when there is no desire to allocate any blocks.  It is used as a
2581  * callback function for block_prepare_write() and block_write_full_page().
2582  * These functions should only try to map a single block at a time.
2583  *
2584  * Since this function doesn't do block allocations even if the caller
2585  * requests it by passing in create=1, it is critically important that
2586  * any caller checks to make sure that any buffer heads are returned
2587  * by this function are either all already mapped or marked for
2588  * delayed allocation before calling  block_write_full_page().  Otherwise,
2589  * b_blocknr could be left unitialized, and the page write functions will
2590  * be taken by surprise.
2591  */
2592 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2593                                    struct buffer_head *bh_result, int create)
2594 {
2595         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2596         return _ext4_get_block(inode, iblock, bh_result, 0);
2597 }
2598
2599 static int bget_one(handle_t *handle, struct buffer_head *bh)
2600 {
2601         get_bh(bh);
2602         return 0;
2603 }
2604
2605 static int bput_one(handle_t *handle, struct buffer_head *bh)
2606 {
2607         put_bh(bh);
2608         return 0;
2609 }
2610
2611 static int __ext4_journalled_writepage(struct page *page,
2612                                        unsigned int len)
2613 {
2614         struct address_space *mapping = page->mapping;
2615         struct inode *inode = mapping->host;
2616         struct buffer_head *page_bufs;
2617         handle_t *handle = NULL;
2618         int ret = 0;
2619         int err;
2620
2621         ClearPageChecked(page);
2622         page_bufs = page_buffers(page);
2623         BUG_ON(!page_bufs);
2624         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2625         /* As soon as we unlock the page, it can go away, but we have
2626          * references to buffers so we are safe */
2627         unlock_page(page);
2628
2629         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2630         if (IS_ERR(handle)) {
2631                 ret = PTR_ERR(handle);
2632                 goto out;
2633         }
2634
2635         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2636                                 do_journal_get_write_access);
2637
2638         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2639                                 write_end_fn);
2640         if (ret == 0)
2641                 ret = err;
2642         err = ext4_journal_stop(handle);
2643         if (!ret)
2644                 ret = err;
2645
2646         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2647         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2648 out:
2649         return ret;
2650 }
2651
2652 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2653 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2654
2655 /*
2656  * Note that we don't need to start a transaction unless we're journaling data
2657  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2658  * need to file the inode to the transaction's list in ordered mode because if
2659  * we are writing back data added by write(), the inode is already there and if
2660  * we are writing back data modified via mmap(), noone guarantees in which
2661  * transaction the data will hit the disk. In case we are journaling data, we
2662  * cannot start transaction directly because transaction start ranks above page
2663  * lock so we have to do some magic.
2664  *
2665  * This function can get called via...
2666  *   - ext4_da_writepages after taking page lock (have journal handle)
2667  *   - journal_submit_inode_data_buffers (no journal handle)
2668  *   - shrink_page_list via pdflush (no journal handle)
2669  *   - grab_page_cache when doing write_begin (have journal handle)
2670  *
2671  * We don't do any block allocation in this function. If we have page with
2672  * multiple blocks we need to write those buffer_heads that are mapped. This
2673  * is important for mmaped based write. So if we do with blocksize 1K
2674  * truncate(f, 1024);
2675  * a = mmap(f, 0, 4096);
2676  * a[0] = 'a';
2677  * truncate(f, 4096);
2678  * we have in the page first buffer_head mapped via page_mkwrite call back
2679  * but other bufer_heads would be unmapped but dirty(dirty done via the
2680  * do_wp_page). So writepage should write the first block. If we modify
2681  * the mmap area beyond 1024 we will again get a page_fault and the
2682  * page_mkwrite callback will do the block allocation and mark the
2683  * buffer_heads mapped.
2684  *
2685  * We redirty the page if we have any buffer_heads that is either delay or
2686  * unwritten in the page.
2687  *
2688  * We can get recursively called as show below.
2689  *
2690  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2691  *              ext4_writepage()
2692  *
2693  * But since we don't do any block allocation we should not deadlock.
2694  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2695  */
2696 static int ext4_writepage(struct page *page,
2697                           struct writeback_control *wbc)
2698 {
2699         int ret = 0, commit_write = 0;
2700         loff_t size;
2701         unsigned int len;
2702         struct buffer_head *page_bufs = NULL;
2703         struct inode *inode = page->mapping->host;
2704
2705         trace_ext4_writepage(inode, page);
2706         size = i_size_read(inode);
2707         if (page->index == size >> PAGE_CACHE_SHIFT)
2708                 len = size & ~PAGE_CACHE_MASK;
2709         else
2710                 len = PAGE_CACHE_SIZE;
2711
2712         /*
2713          * If the page does not have buffers (for whatever reason),
2714          * try to create them using block_prepare_write.  If this
2715          * fails, redirty the page and move on.
2716          */
2717         if (!page_buffers(page)) {
2718                 if (block_prepare_write(page, 0, len,
2719                                         noalloc_get_block_write)) {
2720                 redirty_page:
2721                         redirty_page_for_writepage(wbc, page);
2722                         unlock_page(page);
2723                         return 0;
2724                 }
2725                 commit_write = 1;
2726         }
2727         page_bufs = page_buffers(page);
2728         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2729                               ext4_bh_delay_or_unwritten)) {
2730                 /*
2731                  * We don't want to do block allocation So redirty the
2732                  * page and return We may reach here when we do a
2733                  * journal commit via
2734                  * journal_submit_inode_data_buffers.  If we don't
2735                  * have mapping block we just ignore them. We can also
2736                  * reach here via shrink_page_list
2737                  */
2738                 goto redirty_page;
2739         }
2740         if (commit_write)
2741                 /* now mark the buffer_heads as dirty and uptodate */
2742                 block_commit_write(page, 0, len);
2743
2744         if (PageChecked(page) && ext4_should_journal_data(inode))
2745                 /*
2746                  * It's mmapped pagecache.  Add buffers and journal it.  There
2747                  * doesn't seem much point in redirtying the page here.
2748                  */
2749                 return __ext4_journalled_writepage(page, len);
2750
2751         if (buffer_uninit(page_bufs)) {
2752                 ext4_set_bh_endio(page_bufs, inode);
2753                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2754                                             wbc, ext4_end_io_buffer_write);
2755         } else
2756                 ret = block_write_full_page(page, noalloc_get_block_write,
2757                                             wbc);
2758
2759         return ret;
2760 }
2761
2762 /*
2763  * This is called via ext4_da_writepages() to
2764  * calulate the total number of credits to reserve to fit
2765  * a single extent allocation into a single transaction,
2766  * ext4_da_writpeages() will loop calling this before
2767  * the block allocation.
2768  */
2769
2770 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2771 {
2772         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2773
2774         /*
2775          * With non-extent format the journal credit needed to
2776          * insert nrblocks contiguous block is dependent on
2777          * number of contiguous block. So we will limit
2778          * number of contiguous block to a sane value
2779          */
2780         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2781             (max_blocks > EXT4_MAX_TRANS_DATA))
2782                 max_blocks = EXT4_MAX_TRANS_DATA;
2783
2784         return ext4_chunk_trans_blocks(inode, max_blocks);
2785 }
2786
2787 /*
2788  * write_cache_pages_da - walk the list of dirty pages of the given
2789  * address space and call the callback function (which usually writes
2790  * the pages).
2791  *
2792  * This is a forked version of write_cache_pages().  Differences:
2793  *      Range cyclic is ignored.
2794  *      no_nrwrite_index_update is always presumed true
2795  */
2796 static int write_cache_pages_da(struct address_space *mapping,
2797                                 struct writeback_control *wbc,
2798                                 struct mpage_da_data *mpd)
2799 {
2800         int ret = 0;
2801         int done = 0;
2802         struct pagevec pvec;
2803         int nr_pages;
2804         pgoff_t index;
2805         pgoff_t end;            /* Inclusive */
2806         long nr_to_write = wbc->nr_to_write;
2807
2808         pagevec_init(&pvec, 0);
2809         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2810         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2811
2812         while (!done && (index <= end)) {
2813                 int i;
2814
2815                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2816                               PAGECACHE_TAG_DIRTY,
2817                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2818                 if (nr_pages == 0)
2819                         break;
2820
2821                 for (i = 0; i < nr_pages; i++) {
2822                         struct page *page = pvec.pages[i];
2823
2824                         /*
2825                          * At this point, the page may be truncated or
2826                          * invalidated (changing page->mapping to NULL), or
2827                          * even swizzled back from swapper_space to tmpfs file
2828                          * mapping. However, page->index will not change
2829                          * because we have a reference on the page.
2830                          */
2831                         if (page->index > end) {
2832                                 done = 1;
2833                                 break;
2834                         }
2835
2836                         lock_page(page);
2837
2838                         /*
2839                          * Page truncated or invalidated. We can freely skip it
2840                          * then, even for data integrity operations: the page
2841                          * has disappeared concurrently, so there could be no
2842                          * real expectation of this data interity operation
2843                          * even if there is now a new, dirty page at the same
2844                          * pagecache address.
2845                          */
2846                         if (unlikely(page->mapping != mapping)) {
2847 continue_unlock:
2848                                 unlock_page(page);
2849                                 continue;
2850                         }
2851
2852                         if (!PageDirty(page)) {
2853                                 /* someone wrote it for us */
2854                                 goto continue_unlock;
2855                         }
2856
2857                         if (PageWriteback(page)) {
2858                                 if (wbc->sync_mode != WB_SYNC_NONE)
2859                                         wait_on_page_writeback(page);
2860                                 else
2861                                         goto continue_unlock;
2862                         }
2863
2864                         BUG_ON(PageWriteback(page));
2865                         if (!clear_page_dirty_for_io(page))
2866                                 goto continue_unlock;
2867
2868                         ret = __mpage_da_writepage(page, wbc, mpd);
2869                         if (unlikely(ret)) {
2870                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2871                                         unlock_page(page);
2872                                         ret = 0;
2873                                 } else {
2874                                         done = 1;
2875                                         break;
2876                                 }
2877                         }
2878
2879                         if (nr_to_write > 0) {
2880                                 nr_to_write--;
2881                                 if (nr_to_write == 0 &&
2882                                     wbc->sync_mode == WB_SYNC_NONE) {
2883                                         /*
2884                                          * We stop writing back only if we are
2885                                          * not doing integrity sync. In case of
2886                                          * integrity sync we have to keep going
2887                                          * because someone may be concurrently
2888                                          * dirtying pages, and we might have
2889                                          * synced a lot of newly appeared dirty
2890                                          * pages, but have not synced all of the
2891                                          * old dirty pages.
2892                                          */
2893                                         done = 1;
2894                                         break;
2895                                 }
2896                         }
2897                 }
2898                 pagevec_release(&pvec);
2899                 cond_resched();
2900         }
2901         return ret;
2902 }
2903
2904
2905 static int ext4_da_writepages(struct address_space *mapping,
2906                               struct writeback_control *wbc)
2907 {
2908         pgoff_t index;
2909         int range_whole = 0;
2910         handle_t *handle = NULL;
2911         struct mpage_da_data mpd;
2912         struct inode *inode = mapping->host;
2913         int pages_written = 0;
2914         long pages_skipped;
2915         unsigned int max_pages;
2916         int range_cyclic, cycled = 1, io_done = 0;
2917         int needed_blocks, ret = 0;
2918         long desired_nr_to_write, nr_to_writebump = 0;
2919         loff_t range_start = wbc->range_start;
2920         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2921
2922         trace_ext4_da_writepages(inode, wbc);
2923
2924         /*
2925          * No pages to write? This is mainly a kludge to avoid starting
2926          * a transaction for special inodes like journal inode on last iput()
2927          * because that could violate lock ordering on umount
2928          */
2929         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2930                 return 0;
2931
2932         /*
2933          * If the filesystem has aborted, it is read-only, so return
2934          * right away instead of dumping stack traces later on that
2935          * will obscure the real source of the problem.  We test
2936          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2937          * the latter could be true if the filesystem is mounted
2938          * read-only, and in that case, ext4_da_writepages should
2939          * *never* be called, so if that ever happens, we would want
2940          * the stack trace.
2941          */
2942         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2943                 return -EROFS;
2944
2945         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2946                 range_whole = 1;
2947
2948         range_cyclic = wbc->range_cyclic;
2949         if (wbc->range_cyclic) {
2950                 index = mapping->writeback_index;
2951                 if (index)
2952                         cycled = 0;
2953                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2954                 wbc->range_end  = LLONG_MAX;
2955                 wbc->range_cyclic = 0;
2956         } else
2957                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2958
2959         /*
2960          * This works around two forms of stupidity.  The first is in
2961          * the writeback code, which caps the maximum number of pages
2962          * written to be 1024 pages.  This is wrong on multiple
2963          * levels; different architectues have a different page size,
2964          * which changes the maximum amount of data which gets
2965          * written.  Secondly, 4 megabytes is way too small.  XFS
2966          * forces this value to be 16 megabytes by multiplying
2967          * nr_to_write parameter by four, and then relies on its
2968          * allocator to allocate larger extents to make them
2969          * contiguous.  Unfortunately this brings us to the second
2970          * stupidity, which is that ext4's mballoc code only allocates
2971          * at most 2048 blocks.  So we force contiguous writes up to
2972          * the number of dirty blocks in the inode, or
2973          * sbi->max_writeback_mb_bump whichever is smaller.
2974          */
2975         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2976         if (!range_cyclic && range_whole) {
2977                 if (wbc->nr_to_write == LONG_MAX)
2978                         desired_nr_to_write = wbc->nr_to_write;
2979                 else
2980                         desired_nr_to_write = wbc->nr_to_write * 8;
2981         } else
2982                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2983                                                            max_pages);
2984         if (desired_nr_to_write > max_pages)
2985                 desired_nr_to_write = max_pages;
2986
2987         if (wbc->nr_to_write < desired_nr_to_write) {
2988                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2989                 wbc->nr_to_write = desired_nr_to_write;
2990         }
2991
2992         mpd.wbc = wbc;
2993         mpd.inode = mapping->host;
2994
2995         pages_skipped = wbc->pages_skipped;
2996
2997 retry:
2998         while (!ret && wbc->nr_to_write > 0) {
2999
3000                 /*
3001                  * we  insert one extent at a time. So we need
3002                  * credit needed for single extent allocation.
3003                  * journalled mode is currently not supported
3004                  * by delalloc
3005                  */
3006                 BUG_ON(ext4_should_journal_data(inode));
3007                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3008
3009                 /* start a new transaction*/
3010                 handle = ext4_journal_start(inode, needed_blocks);
3011                 if (IS_ERR(handle)) {
3012                         ret = PTR_ERR(handle);
3013                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3014                                "%ld pages, ino %lu; err %d", __func__,
3015                                 wbc->nr_to_write, inode->i_ino, ret);
3016                         goto out_writepages;
3017                 }
3018
3019                 /*
3020                  * Now call __mpage_da_writepage to find the next
3021                  * contiguous region of logical blocks that need
3022                  * blocks to be allocated by ext4.  We don't actually
3023                  * submit the blocks for I/O here, even though
3024                  * write_cache_pages thinks it will, and will set the
3025                  * pages as clean for write before calling
3026                  * __mpage_da_writepage().
3027                  */
3028                 mpd.b_size = 0;
3029                 mpd.b_state = 0;
3030                 mpd.b_blocknr = 0;
3031                 mpd.first_page = 0;
3032                 mpd.next_page = 0;
3033                 mpd.io_done = 0;
3034                 mpd.pages_written = 0;
3035                 mpd.retval = 0;
3036                 ret = write_cache_pages_da(mapping, wbc, &mpd);
3037                 /*
3038                  * If we have a contiguous extent of pages and we
3039                  * haven't done the I/O yet, map the blocks and submit
3040                  * them for I/O.
3041                  */
3042                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3043                         mpage_da_map_and_submit(&mpd);
3044                         ret = MPAGE_DA_EXTENT_TAIL;
3045                 }
3046                 trace_ext4_da_write_pages(inode, &mpd);
3047                 wbc->nr_to_write -= mpd.pages_written;
3048
3049                 ext4_journal_stop(handle);
3050
3051                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3052                         /* commit the transaction which would
3053                          * free blocks released in the transaction
3054                          * and try again
3055                          */
3056                         jbd2_journal_force_commit_nested(sbi->s_journal);
3057                         wbc->pages_skipped = pages_skipped;
3058                         ret = 0;
3059                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3060                         /*
3061                          * got one extent now try with
3062                          * rest of the pages
3063                          */
3064                         pages_written += mpd.pages_written;
3065                         wbc->pages_skipped = pages_skipped;
3066                         ret = 0;
3067                         io_done = 1;
3068                 } else if (wbc->nr_to_write)
3069                         /*
3070                          * There is no more writeout needed
3071                          * or we requested for a noblocking writeout
3072                          * and we found the device congested
3073                          */
3074                         break;
3075         }
3076         if (!io_done && !cycled) {
3077                 cycled = 1;
3078                 index = 0;
3079                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3080                 wbc->range_end  = mapping->writeback_index - 1;
3081                 goto retry;
3082         }
3083         if (pages_skipped != wbc->pages_skipped)
3084                 ext4_msg(inode->i_sb, KERN_CRIT,
3085                          "This should not happen leaving %s "
3086                          "with nr_to_write = %ld ret = %d",
3087                          __func__, wbc->nr_to_write, ret);
3088
3089         /* Update index */
3090         index += pages_written;
3091         wbc->range_cyclic = range_cyclic;
3092         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3093                 /*
3094                  * set the writeback_index so that range_cyclic
3095                  * mode will write it back later
3096                  */
3097                 mapping->writeback_index = index;
3098
3099 out_writepages:
3100         wbc->nr_to_write -= nr_to_writebump;
3101         wbc->range_start = range_start;
3102         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3103         return ret;
3104 }
3105
3106 #define FALL_BACK_TO_NONDELALLOC 1
3107 static int ext4_nonda_switch(struct super_block *sb)
3108 {
3109         s64 free_blocks, dirty_blocks;
3110         struct ext4_sb_info *sbi = EXT4_SB(sb);
3111
3112         /*
3113          * switch to non delalloc mode if we are running low
3114          * on free block. The free block accounting via percpu
3115          * counters can get slightly wrong with percpu_counter_batch getting
3116          * accumulated on each CPU without updating global counters
3117          * Delalloc need an accurate free block accounting. So switch
3118          * to non delalloc when we are near to error range.
3119          */
3120         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3121         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3122         if (2 * free_blocks < 3 * dirty_blocks ||
3123                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3124                 /*
3125                  * free block count is less than 150% of dirty blocks
3126                  * or free blocks is less than watermark
3127                  */
3128                 return 1;
3129         }
3130         /*
3131          * Even if we don't switch but are nearing capacity,
3132          * start pushing delalloc when 1/2 of free blocks are dirty.
3133          */
3134         if (free_blocks < 2 * dirty_blocks)
3135                 writeback_inodes_sb_if_idle(sb);
3136
3137         return 0;
3138 }
3139
3140 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3141                                loff_t pos, unsigned len, unsigned flags,
3142                                struct page **pagep, void **fsdata)
3143 {
3144         int ret, retries = 0;
3145         struct page *page;
3146         pgoff_t index;
3147         struct inode *inode = mapping->host;
3148         handle_t *handle;
3149
3150         index = pos >> PAGE_CACHE_SHIFT;
3151
3152         if (ext4_nonda_switch(inode->i_sb)) {
3153                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3154                 return ext4_write_begin(file, mapping, pos,
3155                                         len, flags, pagep, fsdata);
3156         }
3157         *fsdata = (void *)0;
3158         trace_ext4_da_write_begin(inode, pos, len, flags);
3159 retry:
3160         /*
3161          * With delayed allocation, we don't log the i_disksize update
3162          * if there is delayed block allocation. But we still need
3163          * to journalling the i_disksize update if writes to the end
3164          * of file which has an already mapped buffer.
3165          */
3166         handle = ext4_journal_start(inode, 1);
3167         if (IS_ERR(handle)) {
3168                 ret = PTR_ERR(handle);
3169                 goto out;
3170         }
3171         /* We cannot recurse into the filesystem as the transaction is already
3172          * started */
3173         flags |= AOP_FLAG_NOFS;
3174
3175         page = grab_cache_page_write_begin(mapping, index, flags);
3176         if (!page) {
3177                 ext4_journal_stop(handle);
3178                 ret = -ENOMEM;
3179                 goto out;
3180         }
3181         *pagep = page;
3182
3183         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3184         if (ret < 0) {
3185                 unlock_page(page);
3186                 ext4_journal_stop(handle);
3187                 page_cache_release(page);
3188                 /*
3189                  * block_write_begin may have instantiated a few blocks
3190                  * outside i_size.  Trim these off again. Don't need
3191                  * i_size_read because we hold i_mutex.
3192                  */
3193                 if (pos + len > inode->i_size)
3194                         ext4_truncate_failed_write(inode);
3195         }
3196
3197         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3198                 goto retry;
3199 out:
3200         return ret;
3201 }
3202
3203 /*
3204  * Check if we should update i_disksize
3205  * when write to the end of file but not require block allocation
3206  */
3207 static int ext4_da_should_update_i_disksize(struct page *page,
3208                                             unsigned long offset)
3209 {
3210         struct buffer_head *bh;
3211         struct inode *inode = page->mapping->host;
3212         unsigned int idx;
3213         int i;
3214
3215         bh = page_buffers(page);
3216         idx = offset >> inode->i_blkbits;
3217
3218         for (i = 0; i < idx; i++)
3219                 bh = bh->b_this_page;
3220
3221         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3222                 return 0;
3223         return 1;
3224 }
3225
3226 static int ext4_da_write_end(struct file *file,
3227                              struct address_space *mapping,
3228                              loff_t pos, unsigned len, unsigned copied,
3229                              struct page *page, void *fsdata)
3230 {
3231         struct inode *inode = mapping->host;
3232         int ret = 0, ret2;
3233         handle_t *handle = ext4_journal_current_handle();
3234         loff_t new_i_size;
3235         unsigned long start, end;
3236         int write_mode = (int)(unsigned long)fsdata;
3237
3238         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3239                 if (ext4_should_order_data(inode)) {
3240                         return ext4_ordered_write_end(file, mapping, pos,
3241                                         len, copied, page, fsdata);
3242                 } else if (ext4_should_writeback_data(inode)) {
3243                         return ext4_writeback_write_end(file, mapping, pos,
3244                                         len, copied, page, fsdata);
3245                 } else {
3246                         BUG();
3247                 }
3248         }
3249
3250         trace_ext4_da_write_end(inode, pos, len, copied);
3251         start = pos & (PAGE_CACHE_SIZE - 1);
3252         end = start + copied - 1;
3253
3254         /*
3255          * generic_write_end() will run mark_inode_dirty() if i_size
3256          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3257          * into that.
3258          */
3259
3260         new_i_size = pos + copied;
3261         if (new_i_size > EXT4_I(inode)->i_disksize) {
3262                 if (ext4_da_should_update_i_disksize(page, end)) {
3263                         down_write(&EXT4_I(inode)->i_data_sem);
3264                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3265                                 /*
3266                                  * Updating i_disksize when extending file
3267                                  * without needing block allocation
3268                                  */
3269                                 if (ext4_should_order_data(inode))
3270                                         ret = ext4_jbd2_file_inode(handle,
3271                                                                    inode);
3272
3273                                 EXT4_I(inode)->i_disksize = new_i_size;
3274                         }
3275                         up_write(&EXT4_I(inode)->i_data_sem);
3276                         /* We need to mark inode dirty even if
3277                          * new_i_size is less that inode->i_size
3278                          * bu greater than i_disksize.(hint delalloc)
3279                          */
3280                         ext4_mark_inode_dirty(handle, inode);
3281                 }
3282         }
3283         ret2 = generic_write_end(file, mapping, pos, len, copied,
3284                                                         page, fsdata);
3285         copied = ret2;
3286         if (ret2 < 0)
3287                 ret = ret2;
3288         ret2 = ext4_journal_stop(handle);
3289         if (!ret)
3290                 ret = ret2;
3291
3292         return ret ? ret : copied;
3293 }
3294
3295 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3296 {
3297         /*
3298          * Drop reserved blocks
3299          */
3300         BUG_ON(!PageLocked(page));
3301         if (!page_has_buffers(page))
3302                 goto out;
3303
3304         ext4_da_page_release_reservation(page, offset);
3305
3306 out:
3307         ext4_invalidatepage(page, offset);
3308
3309         return;
3310 }
3311
3312 /*
3313  * Force all delayed allocation blocks to be allocated for a given inode.
3314  */
3315 int ext4_alloc_da_blocks(struct inode *inode)
3316 {
3317         trace_ext4_alloc_da_blocks(inode);
3318
3319         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3320             !EXT4_I(inode)->i_reserved_meta_blocks)
3321                 return 0;
3322
3323         /*
3324          * We do something simple for now.  The filemap_flush() will
3325          * also start triggering a write of the data blocks, which is
3326          * not strictly speaking necessary (and for users of
3327          * laptop_mode, not even desirable).  However, to do otherwise
3328          * would require replicating code paths in:
3329          *
3330          * ext4_da_writepages() ->
3331          *    write_cache_pages() ---> (via passed in callback function)
3332          *        __mpage_da_writepage() -->
3333          *           mpage_add_bh_to_extent()
3334          *           mpage_da_map_blocks()
3335          *
3336          * The problem is that write_cache_pages(), located in
3337          * mm/page-writeback.c, marks pages clean in preparation for
3338          * doing I/O, which is not desirable if we're not planning on
3339          * doing I/O at all.
3340          *
3341          * We could call write_cache_pages(), and then redirty all of
3342          * the pages by calling redirty_page_for_writeback() but that
3343          * would be ugly in the extreme.  So instead we would need to
3344          * replicate parts of the code in the above functions,
3345          * simplifying them becuase we wouldn't actually intend to
3346          * write out the pages, but rather only collect contiguous
3347          * logical block extents, call the multi-block allocator, and
3348          * then update the buffer heads with the block allocations.
3349          *
3350          * For now, though, we'll cheat by calling filemap_flush(),
3351          * which will map the blocks, and start the I/O, but not
3352          * actually wait for the I/O to complete.
3353          */
3354         return filemap_flush(inode->i_mapping);
3355 }
3356
3357 /*
3358  * bmap() is special.  It gets used by applications such as lilo and by
3359  * the swapper to find the on-disk block of a specific piece of data.
3360  *
3361  * Naturally, this is dangerous if the block concerned is still in the
3362  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3363  * filesystem and enables swap, then they may get a nasty shock when the
3364  * data getting swapped to that swapfile suddenly gets overwritten by
3365  * the original zero's written out previously to the journal and
3366  * awaiting writeback in the kernel's buffer cache.
3367  *
3368  * So, if we see any bmap calls here on a modified, data-journaled file,
3369  * take extra steps to flush any blocks which might be in the cache.
3370  */
3371 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3372 {
3373         struct inode *inode = mapping->host;
3374         journal_t *journal;
3375         int err;
3376
3377         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3378                         test_opt(inode->i_sb, DELALLOC)) {
3379                 /*
3380                  * With delalloc we want to sync the file
3381                  * so that we can make sure we allocate
3382                  * blocks for file
3383                  */
3384                 filemap_write_and_wait(mapping);
3385         }
3386
3387         if (EXT4_JOURNAL(inode) &&
3388             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3389                 /*
3390                  * This is a REALLY heavyweight approach, but the use of
3391                  * bmap on dirty files is expected to be extremely rare:
3392                  * only if we run lilo or swapon on a freshly made file
3393                  * do we expect this to happen.
3394                  *
3395                  * (bmap requires CAP_SYS_RAWIO so this does not
3396                  * represent an unprivileged user DOS attack --- we'd be
3397                  * in trouble if mortal users could trigger this path at
3398                  * will.)
3399                  *
3400                  * NB. EXT4_STATE_JDATA is not set on files other than
3401                  * regular files.  If somebody wants to bmap a directory
3402                  * or symlink and gets confused because the buffer
3403                  * hasn't yet been flushed to disk, they deserve
3404                  * everything they get.
3405                  */
3406
3407                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3408                 journal = EXT4_JOURNAL(inode);
3409                 jbd2_journal_lock_updates(journal);
3410                 err = jbd2_journal_flush(journal);
3411                 jbd2_journal_unlock_updates(journal);
3412
3413                 if (err)
3414                         return 0;
3415         }
3416
3417         return generic_block_bmap(mapping, block, ext4_get_block);
3418 }
3419
3420 static int ext4_readpage(struct file *file, struct page *page)
3421 {
3422         return mpage_readpage(page, ext4_get_block);
3423 }
3424
3425 static int
3426 ext4_readpages(struct file *file, struct address_space *mapping,
3427                 struct list_head *pages, unsigned nr_pages)
3428 {
3429         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3430 }
3431
3432 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3433 {
3434         struct buffer_head *head, *bh;
3435         unsigned int curr_off = 0;
3436
3437         if (!page_has_buffers(page))
3438                 return;
3439         head = bh = page_buffers(page);
3440         do {
3441                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3442                                         && bh->b_private) {
3443                         ext4_free_io_end(bh->b_private);
3444                         bh->b_private = NULL;
3445                         bh->b_end_io = NULL;
3446                 }
3447                 curr_off = curr_off + bh->b_size;
3448                 bh = bh->b_this_page;
3449         } while (bh != head);
3450 }
3451
3452 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3453 {
3454         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3455
3456         /*
3457          * free any io_end structure allocated for buffers to be discarded
3458          */
3459         if (ext4_should_dioread_nolock(page->mapping->host))
3460                 ext4_invalidatepage_free_endio(page, offset);
3461         /*
3462          * If it's a full truncate we just forget about the pending dirtying
3463          */
3464         if (offset == 0)
3465                 ClearPageChecked(page);
3466
3467         if (journal)
3468                 jbd2_journal_invalidatepage(journal, page, offset);
3469         else
3470                 block_invalidatepage(page, offset);
3471 }
3472
3473 static int ext4_releasepage(struct page *page, gfp_t wait)
3474 {
3475         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3476
3477         WARN_ON(PageChecked(page));
3478         if (!page_has_buffers(page))
3479                 return 0;
3480         if (journal)
3481                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3482         else
3483                 return try_to_free_buffers(page);
3484 }
3485
3486 /*
3487  * O_DIRECT for ext3 (or indirect map) based files
3488  *
3489  * If the O_DIRECT write will extend the file then add this inode to the
3490  * orphan list.  So recovery will truncate it back to the original size
3491  * if the machine crashes during the write.
3492  *
3493  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3494  * crashes then stale disk data _may_ be exposed inside the file. But current
3495  * VFS code falls back into buffered path in that case so we are safe.
3496  */
3497 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3498                               const struct iovec *iov, loff_t offset,
3499                               unsigned long nr_segs)
3500 {
3501         struct file *file = iocb->ki_filp;
3502         struct inode *inode = file->f_mapping->host;
3503         struct ext4_inode_info *ei = EXT4_I(inode);
3504         handle_t *handle;
3505         ssize_t ret;
3506         int orphan = 0;
3507         size_t count = iov_length(iov, nr_segs);
3508         int retries = 0;
3509
3510         if (rw == WRITE) {
3511                 loff_t final_size = offset + count;
3512
3513                 if (final_size > inode->i_size) {
3514                         /* Credits for sb + inode write */
3515                         handle = ext4_journal_start(inode, 2);
3516                         if (IS_ERR(handle)) {
3517                                 ret = PTR_ERR(handle);
3518                                 goto out;
3519                         }
3520                         ret = ext4_orphan_add(handle, inode);
3521                         if (ret) {
3522                                 ext4_journal_stop(handle);
3523                                 goto out;
3524                         }
3525                         orphan = 1;
3526                         ei->i_disksize = inode->i_size;
3527                         ext4_journal_stop(handle);
3528                 }
3529         }
3530
3531 retry:
3532         if (rw == READ && ext4_should_dioread_nolock(inode))
3533                 ret = __blockdev_direct_IO(rw, iocb, inode,
3534                                  inode->i_sb->s_bdev, iov,
3535                                  offset, nr_segs,
3536                                  ext4_get_block, NULL, NULL, 0);
3537         else {
3538                 ret = blockdev_direct_IO(rw, iocb, inode,
3539                                  inode->i_sb->s_bdev, iov,
3540                                  offset, nr_segs,
3541                                  ext4_get_block, NULL);
3542
3543                 if (unlikely((rw & WRITE) && ret < 0)) {
3544                         loff_t isize = i_size_read(inode);
3545                         loff_t end = offset + iov_length(iov, nr_segs);
3546
3547                         if (end > isize)
3548                                 vmtruncate(inode, isize);
3549                 }
3550         }
3551         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3552                 goto retry;
3553
3554         if (orphan) {
3555                 int err;
3556
3557                 /* Credits for sb + inode write */
3558                 handle = ext4_journal_start(inode, 2);
3559                 if (IS_ERR(handle)) {
3560                         /* This is really bad luck. We've written the data
3561                          * but cannot extend i_size. Bail out and pretend
3562                          * the write failed... */
3563                         ret = PTR_ERR(handle);
3564                         if (inode->i_nlink)
3565                                 ext4_orphan_del(NULL, inode);
3566
3567                         goto out;
3568                 }
3569                 if (inode->i_nlink)
3570                         ext4_orphan_del(handle, inode);
3571                 if (ret > 0) {
3572                         loff_t end = offset + ret;
3573                         if (end > inode->i_size) {
3574                                 ei->i_disksize = end;
3575                                 i_size_write(inode, end);
3576                                 /*
3577                                  * We're going to return a positive `ret'
3578                                  * here due to non-zero-length I/O, so there's
3579                                  * no way of reporting error returns from
3580                                  * ext4_mark_inode_dirty() to userspace.  So
3581                                  * ignore it.
3582                                  */
3583                                 ext4_mark_inode_dirty(handle, inode);
3584                         }
3585                 }
3586                 err = ext4_journal_stop(handle);
3587                 if (ret == 0)
3588                         ret = err;
3589         }
3590 out:
3591         return ret;
3592 }
3593
3594 /*
3595  * ext4_get_block used when preparing for a DIO write or buffer write.
3596  * We allocate an uinitialized extent if blocks haven't been allocated.
3597  * The extent will be converted to initialized after the IO is complete.
3598  */
3599 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3600                    struct buffer_head *bh_result, int create)
3601 {
3602         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3603                    inode->i_ino, create);
3604         return _ext4_get_block(inode, iblock, bh_result,
3605                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3606 }
3607
3608 static void dump_completed_IO(struct inode * inode)
3609 {
3610 #ifdef  EXT4_DEBUG
3611         struct list_head *cur, *before, *after;
3612         ext4_io_end_t *io, *io0, *io1;
3613         unsigned long flags;
3614
3615         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3616                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3617                 return;
3618         }
3619
3620         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3621         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3622         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3623                 cur = &io->list;
3624                 before = cur->prev;
3625                 io0 = container_of(before, ext4_io_end_t, list);
3626                 after = cur->next;
3627                 io1 = container_of(after, ext4_io_end_t, list);
3628
3629                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3630                             io, inode->i_ino, io0, io1);
3631         }
3632         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3633 #endif
3634 }
3635
3636 /*
3637  * This function is called from ext4_sync_file().
3638  *
3639  * When IO is completed, the work to convert unwritten extents to
3640  * written is queued on workqueue but may not get immediately
3641  * scheduled. When fsync is called, we need to ensure the
3642  * conversion is complete before fsync returns.
3643  * The inode keeps track of a list of pending/completed IO that
3644  * might needs to do the conversion. This function walks through
3645  * the list and convert the related unwritten extents for completed IO
3646  * to written.
3647  * The function return the number of pending IOs on success.
3648  */
3649 int flush_completed_IO(struct inode *inode)
3650 {
3651         ext4_io_end_t *io;
3652         struct ext4_inode_info *ei = EXT4_I(inode);
3653         unsigned long flags;
3654         int ret = 0;
3655         int ret2 = 0;
3656
3657         if (list_empty(&ei->i_completed_io_list))
3658                 return ret;
3659
3660         dump_completed_IO(inode);
3661         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3662         while (!list_empty(&ei->i_completed_io_list)){
3663                 io = list_entry(ei->i_completed_io_list.next,
3664                                 ext4_io_end_t, list);
3665                 /*
3666                  * Calling ext4_end_io_nolock() to convert completed
3667                  * IO to written.
3668                  *
3669                  * When ext4_sync_file() is called, run_queue() may already
3670                  * about to flush the work corresponding to this io structure.
3671                  * It will be upset if it founds the io structure related
3672                  * to the work-to-be schedule is freed.
3673                  *
3674                  * Thus we need to keep the io structure still valid here after
3675                  * convertion finished. The io structure has a flag to
3676                  * avoid double converting from both fsync and background work
3677                  * queue work.
3678                  */
3679                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3680                 ret = ext4_end_io_nolock(io);
3681                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3682                 if (ret < 0)
3683                         ret2 = ret;
3684                 else
3685                         list_del_init(&io->list);
3686         }
3687         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3688         return (ret2 < 0) ? ret2 : 0;
3689 }
3690
3691 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3692                             ssize_t size, void *private, int ret,
3693                             bool is_async)
3694 {
3695         ext4_io_end_t *io_end = iocb->private;
3696         struct workqueue_struct *wq;
3697         unsigned long flags;
3698         struct ext4_inode_info *ei;
3699
3700         /* if not async direct IO or dio with 0 bytes write, just return */
3701         if (!io_end || !size)
3702                 goto out;
3703
3704         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3705                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3706                   iocb->private, io_end->inode->i_ino, iocb, offset,
3707                   size);
3708
3709         /* if not aio dio with unwritten extents, just free io and return */
3710         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3711                 ext4_free_io_end(io_end);
3712                 iocb->private = NULL;
3713 out:
3714                 if (is_async)
3715                         aio_complete(iocb, ret, 0);
3716                 return;
3717         }
3718
3719         io_end->offset = offset;
3720         io_end->size = size;
3721         if (is_async) {
3722                 io_end->iocb = iocb;
3723                 io_end->result = ret;
3724         }
3725         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3726
3727         /* Add the io_end to per-inode completed aio dio list*/
3728         ei = EXT4_I(io_end->inode);
3729         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3730         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3731         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3732
3733         /* queue the work to convert unwritten extents to written */
3734         queue_work(wq, &io_end->work);
3735         iocb->private = NULL;
3736 }
3737
3738 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3739 {
3740         ext4_io_end_t *io_end = bh->b_private;
3741         struct workqueue_struct *wq;
3742         struct inode *inode;
3743         unsigned long flags;
3744
3745         if (!test_clear_buffer_uninit(bh) || !io_end)
3746                 goto out;
3747
3748         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3749                 printk("sb umounted, discard end_io request for inode %lu\n",
3750                         io_end->inode->i_ino);
3751                 ext4_free_io_end(io_end);
3752                 goto out;
3753         }
3754
3755         io_end->flag = EXT4_IO_END_UNWRITTEN;
3756         inode = io_end->inode;
3757
3758         /* Add the io_end to per-inode completed io list*/
3759         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3760         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3761         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3762
3763         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3764         /* queue the work to convert unwritten extents to written */
3765         queue_work(wq, &io_end->work);
3766 out:
3767         bh->b_private = NULL;
3768         bh->b_end_io = NULL;
3769         clear_buffer_uninit(bh);
3770         end_buffer_async_write(bh, uptodate);
3771 }
3772
3773 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3774 {
3775         ext4_io_end_t *io_end;
3776         struct page *page = bh->b_page;
3777         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3778         size_t size = bh->b_size;
3779
3780 retry:
3781         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3782         if (!io_end) {
3783                 if (printk_ratelimit())
3784                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3785                 schedule();
3786                 goto retry;
3787         }
3788         io_end->offset = offset;
3789         io_end->size = size;
3790         /*
3791          * We need to hold a reference to the page to make sure it
3792          * doesn't get evicted before ext4_end_io_work() has a chance
3793          * to convert the extent from written to unwritten.
3794          */
3795         io_end->page = page;
3796         get_page(io_end->page);
3797
3798         bh->b_private = io_end;
3799         bh->b_end_io = ext4_end_io_buffer_write;
3800         return 0;
3801 }
3802
3803 /*
3804  * For ext4 extent files, ext4 will do direct-io write to holes,
3805  * preallocated extents, and those write extend the file, no need to
3806  * fall back to buffered IO.
3807  *
3808  * For holes, we fallocate those blocks, mark them as unintialized
3809  * If those blocks were preallocated, we mark sure they are splited, but
3810  * still keep the range to write as unintialized.
3811  *
3812  * The unwrritten extents will be converted to written when DIO is completed.
3813  * For async direct IO, since the IO may still pending when return, we
3814  * set up an end_io call back function, which will do the convertion
3815  * when async direct IO completed.
3816  *
3817  * If the O_DIRECT write will extend the file then add this inode to the
3818  * orphan list.  So recovery will truncate it back to the original size
3819  * if the machine crashes during the write.
3820  *
3821  */
3822 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3823                               const struct iovec *iov, loff_t offset,
3824                               unsigned long nr_segs)
3825 {
3826         struct file *file = iocb->ki_filp;
3827         struct inode *inode = file->f_mapping->host;
3828         ssize_t ret;
3829         size_t count = iov_length(iov, nr_segs);
3830
3831         loff_t final_size = offset + count;
3832         if (rw == WRITE && final_size <= inode->i_size) {
3833                 /*
3834                  * We could direct write to holes and fallocate.
3835                  *
3836                  * Allocated blocks to fill the hole are marked as uninitialized
3837                  * to prevent paralel buffered read to expose the stale data
3838                  * before DIO complete the data IO.
3839                  *
3840                  * As to previously fallocated extents, ext4 get_block
3841                  * will just simply mark the buffer mapped but still
3842                  * keep the extents uninitialized.
3843                  *
3844                  * for non AIO case, we will convert those unwritten extents
3845                  * to written after return back from blockdev_direct_IO.
3846                  *
3847                  * for async DIO, the conversion needs to be defered when
3848                  * the IO is completed. The ext4 end_io callback function
3849                  * will be called to take care of the conversion work.
3850                  * Here for async case, we allocate an io_end structure to
3851                  * hook to the iocb.
3852                  */
3853                 iocb->private = NULL;
3854                 EXT4_I(inode)->cur_aio_dio = NULL;
3855                 if (!is_sync_kiocb(iocb)) {
3856                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3857                         if (!iocb->private)
3858                                 return -ENOMEM;
3859                         /*
3860                          * we save the io structure for current async
3861                          * direct IO, so that later ext4_map_blocks()
3862                          * could flag the io structure whether there
3863                          * is a unwritten extents needs to be converted
3864                          * when IO is completed.
3865                          */
3866                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3867                 }
3868
3869                 ret = blockdev_direct_IO(rw, iocb, inode,
3870                                          inode->i_sb->s_bdev, iov,
3871                                          offset, nr_segs,
3872                                          ext4_get_block_write,
3873                                          ext4_end_io_dio);
3874                 if (iocb->private)
3875                         EXT4_I(inode)->cur_aio_dio = NULL;
3876                 /*
3877                  * The io_end structure takes a reference to the inode,
3878                  * that structure needs to be destroyed and the
3879                  * reference to the inode need to be dropped, when IO is
3880                  * complete, even with 0 byte write, or failed.
3881                  *
3882                  * In the successful AIO DIO case, the io_end structure will be
3883                  * desctroyed and the reference to the inode will be dropped
3884                  * after the end_io call back function is called.
3885                  *
3886                  * In the case there is 0 byte write, or error case, since
3887                  * VFS direct IO won't invoke the end_io call back function,
3888                  * we need to free the end_io structure here.
3889                  */
3890                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3891                         ext4_free_io_end(iocb->private);
3892                         iocb->private = NULL;
3893                 } else if (ret > 0 && ext4_test_inode_state(inode,
3894                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3895                         int err;
3896                         /*
3897                          * for non AIO case, since the IO is already
3898                          * completed, we could do the convertion right here
3899                          */
3900                         err = ext4_convert_unwritten_extents(inode,
3901                                                              offset, ret);
3902                         if (err < 0)
3903                                 ret = err;
3904                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3905                 }
3906                 return ret;
3907         }
3908
3909         /* for write the the end of file case, we fall back to old way */
3910         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3911 }
3912
3913 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3914                               const struct iovec *iov, loff_t offset,
3915                               unsigned long nr_segs)
3916 {
3917         struct file *file = iocb->ki_filp;
3918         struct inode *inode = file->f_mapping->host;
3919
3920         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3921                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3922
3923         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3924 }
3925
3926 /*
3927  * Pages can be marked dirty completely asynchronously from ext4's journalling
3928  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3929  * much here because ->set_page_dirty is called under VFS locks.  The page is
3930  * not necessarily locked.
3931  *
3932  * We cannot just dirty the page and leave attached buffers clean, because the
3933  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3934  * or jbddirty because all the journalling code will explode.
3935  *
3936  * So what we do is to mark the page "pending dirty" and next time writepage
3937  * is called, propagate that into the buffers appropriately.
3938  */
3939 static int ext4_journalled_set_page_dirty(struct page *page)
3940 {
3941         SetPageChecked(page);
3942         return __set_page_dirty_nobuffers(page);
3943 }
3944
3945 static const struct address_space_operations ext4_ordered_aops = {
3946         .readpage               = ext4_readpage,
3947         .readpages              = ext4_readpages,
3948         .writepage              = ext4_writepage,
3949         .sync_page              = block_sync_page,
3950         .write_begin            = ext4_write_begin,
3951         .write_end              = ext4_ordered_write_end,
3952         .bmap                   = ext4_bmap,
3953         .invalidatepage         = ext4_invalidatepage,
3954         .releasepage            = ext4_releasepage,
3955         .direct_IO              = ext4_direct_IO,
3956         .migratepage            = buffer_migrate_page,
3957         .is_partially_uptodate  = block_is_partially_uptodate,
3958         .error_remove_page      = generic_error_remove_page,
3959 };
3960
3961 static const struct address_space_operations ext4_writeback_aops = {
3962         .readpage               = ext4_readpage,
3963         .readpages              = ext4_readpages,
3964         .writepage              = ext4_writepage,
3965         .sync_page              = block_sync_page,
3966         .write_begin            = ext4_write_begin,
3967         .write_end              = ext4_writeback_write_end,
3968         .bmap                   = ext4_bmap,
3969         .invalidatepage         = ext4_invalidatepage,
3970         .releasepage            = ext4_releasepage,
3971         .direct_IO              = ext4_direct_IO,
3972         .migratepage            = buffer_migrate_page,
3973         .is_partially_uptodate  = block_is_partially_uptodate,
3974         .error_remove_page      = generic_error_remove_page,
3975 };
3976
3977 static const struct address_space_operations ext4_journalled_aops = {
3978         .readpage               = ext4_readpage,
3979         .readpages              = ext4_readpages,
3980         .writepage              = ext4_writepage,
3981         .sync_page              = block_sync_page,
3982         .write_begin            = ext4_write_begin,
3983         .write_end              = ext4_journalled_write_end,
3984         .set_page_dirty         = ext4_journalled_set_page_dirty,
3985         .bmap                   = ext4_bmap,
3986         .invalidatepage         = ext4_invalidatepage,
3987         .releasepage            = ext4_releasepage,
3988         .is_partially_uptodate  = block_is_partially_uptodate,
3989         .error_remove_page      = generic_error_remove_page,
3990 };
3991
3992 static const struct address_space_operations ext4_da_aops = {
3993         .readpage               = ext4_readpage,
3994         .readpages              = ext4_readpages,
3995         .writepage              = ext4_writepage,
3996         .writepages             = ext4_da_writepages,
3997         .sync_page              = block_sync_page,
3998         .write_begin            = ext4_da_write_begin,
3999         .write_end              = ext4_da_write_end,
4000         .bmap                   = ext4_bmap,
4001         .invalidatepage         = ext4_da_invalidatepage,
4002         .releasepage            = ext4_releasepage,
4003         .direct_IO              = ext4_direct_IO,
4004         .migratepage            = buffer_migrate_page,
4005         .is_partially_uptodate  = block_is_partially_uptodate,
4006         .error_remove_page      = generic_error_remove_page,
4007 };
4008
4009 void ext4_set_aops(struct inode *inode)
4010 {
4011         if (ext4_should_order_data(inode) &&
4012                 test_opt(inode->i_sb, DELALLOC))
4013                 inode->i_mapping->a_ops = &ext4_da_aops;
4014         else if (ext4_should_order_data(inode))
4015                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4016         else if (ext4_should_writeback_data(inode) &&
4017                  test_opt(inode->i_sb, DELALLOC))
4018                 inode->i_mapping->a_ops = &ext4_da_aops;
4019         else if (ext4_should_writeback_data(inode))
4020                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4021         else
4022                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4023 }
4024
4025 /*
4026  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4027  * up to the end of the block which corresponds to `from'.
4028  * This required during truncate. We need to physically zero the tail end
4029  * of that block so it doesn't yield old data if the file is later grown.
4030  */
4031 int ext4_block_truncate_page(handle_t *handle,
4032                 struct address_space *mapping, loff_t from)
4033 {
4034         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4035         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4036         unsigned blocksize, length, pos;
4037         ext4_lblk_t iblock;
4038         struct inode *inode = mapping->host;
4039         struct buffer_head *bh;
4040         struct page *page;
4041         int err = 0;
4042
4043         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4044                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4045         if (!page)
4046                 return -EINVAL;
4047
4048         blocksize = inode->i_sb->s_blocksize;
4049         length = blocksize - (offset & (blocksize - 1));
4050         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4051
4052         if (!page_has_buffers(page))
4053                 create_empty_buffers(page, blocksize, 0);
4054
4055         /* Find the buffer that contains "offset" */
4056         bh = page_buffers(page);
4057         pos = blocksize;
4058         while (offset >= pos) {
4059                 bh = bh->b_this_page;
4060                 iblock++;
4061                 pos += blocksize;
4062         }
4063
4064         err = 0;
4065         if (buffer_freed(bh)) {
4066                 BUFFER_TRACE(bh, "freed: skip");
4067                 goto unlock;
4068         }
4069
4070         if (!buffer_mapped(bh)) {
4071                 BUFFER_TRACE(bh, "unmapped");
4072                 ext4_get_block(inode, iblock, bh, 0);
4073                 /* unmapped? It's a hole - nothing to do */
4074                 if (!buffer_mapped(bh)) {
4075                         BUFFER_TRACE(bh, "still unmapped");
4076                         goto unlock;
4077                 }
4078         }
4079
4080         /* Ok, it's mapped. Make sure it's up-to-date */
4081         if (PageUptodate(page))
4082                 set_buffer_uptodate(bh);
4083
4084         if (!buffer_uptodate(bh)) {
4085                 err = -EIO;
4086                 ll_rw_block(READ, 1, &bh);
4087                 wait_on_buffer(bh);
4088                 /* Uhhuh. Read error. Complain and punt. */
4089                 if (!buffer_uptodate(bh))
4090                         goto unlock;
4091         }
4092
4093         if (ext4_should_journal_data(inode)) {
4094                 BUFFER_TRACE(bh, "get write access");
4095                 err = ext4_journal_get_write_access(handle, bh);
4096                 if (err)
4097                         goto unlock;
4098         }
4099
4100         zero_user(page, offset, length);
4101
4102         BUFFER_TRACE(bh, "zeroed end of block");
4103
4104         err = 0;
4105         if (ext4_should_journal_data(inode)) {
4106                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4107         } else {
4108                 if (ext4_should_order_data(inode))
4109                         err = ext4_jbd2_file_inode(handle, inode);
4110                 mark_buffer_dirty(bh);
4111         }
4112
4113 unlock:
4114         unlock_page(page);
4115         page_cache_release(page);
4116         return err;
4117 }
4118
4119 /*
4120  * Probably it should be a library function... search for first non-zero word
4121  * or memcmp with zero_page, whatever is better for particular architecture.
4122  * Linus?
4123  */
4124 static inline int all_zeroes(__le32 *p, __le32 *q)
4125 {
4126         while (p < q)
4127                 if (*p++)
4128                         return 0;
4129         return 1;
4130 }
4131
4132 /**
4133  *      ext4_find_shared - find the indirect blocks for partial truncation.
4134  *      @inode:   inode in question
4135  *      @depth:   depth of the affected branch
4136  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4137  *      @chain:   place to store the pointers to partial indirect blocks
4138  *      @top:     place to the (detached) top of branch
4139  *
4140  *      This is a helper function used by ext4_truncate().
4141  *
4142  *      When we do truncate() we may have to clean the ends of several
4143  *      indirect blocks but leave the blocks themselves alive. Block is
4144  *      partially truncated if some data below the new i_size is refered
4145  *      from it (and it is on the path to the first completely truncated
4146  *      data block, indeed).  We have to free the top of that path along
4147  *      with everything to the right of the path. Since no allocation
4148  *      past the truncation point is possible until ext4_truncate()
4149  *      finishes, we may safely do the latter, but top of branch may
4150  *      require special attention - pageout below the truncation point
4151  *      might try to populate it.
4152  *
4153  *      We atomically detach the top of branch from the tree, store the
4154  *      block number of its root in *@top, pointers to buffer_heads of
4155  *      partially truncated blocks - in @chain[].bh and pointers to
4156  *      their last elements that should not be removed - in
4157  *      @chain[].p. Return value is the pointer to last filled element
4158  *      of @chain.
4159  *
4160  *      The work left to caller to do the actual freeing of subtrees:
4161  *              a) free the subtree starting from *@top
4162  *              b) free the subtrees whose roots are stored in
4163  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4164  *              c) free the subtrees growing from the inode past the @chain[0].
4165  *                      (no partially truncated stuff there).  */
4166
4167 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4168                                   ext4_lblk_t offsets[4], Indirect chain[4],
4169                                   __le32 *top)
4170 {
4171         Indirect *partial, *p;
4172         int k, err;
4173
4174         *top = 0;
4175         /* Make k index the deepest non-null offset + 1 */
4176         for (k = depth; k > 1 && !offsets[k-1]; k--)
4177                 ;
4178         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4179         /* Writer: pointers */
4180         if (!partial)
4181                 partial = chain + k-1;
4182         /*
4183          * If the branch acquired continuation since we've looked at it -
4184          * fine, it should all survive and (new) top doesn't belong to us.
4185          */
4186         if (!partial->key && *partial->p)
4187                 /* Writer: end */
4188                 goto no_top;
4189         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4190                 ;
4191         /*
4192          * OK, we've found the last block that must survive. The rest of our
4193          * branch should be detached before unlocking. However, if that rest
4194          * of branch is all ours and does not grow immediately from the inode
4195          * it's easier to cheat and just decrement partial->p.
4196          */
4197         if (p == chain + k - 1 && p > chain) {
4198                 p->p--;
4199         } else {
4200                 *top = *p->p;
4201                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4202 #if 0
4203                 *p->p = 0;
4204 #endif
4205         }
4206         /* Writer: end */
4207
4208         while (partial > p) {
4209                 brelse(partial->bh);
4210                 partial--;
4211         }
4212 no_top:
4213         return partial;
4214 }
4215
4216 /*
4217  * Zero a number of block pointers in either an inode or an indirect block.
4218  * If we restart the transaction we must again get write access to the
4219  * indirect block for further modification.
4220  *
4221  * We release `count' blocks on disk, but (last - first) may be greater
4222  * than `count' because there can be holes in there.
4223  */
4224 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4225                              struct buffer_head *bh,
4226                              ext4_fsblk_t block_to_free,
4227                              unsigned long count, __le32 *first,
4228                              __le32 *last)
4229 {
4230         __le32 *p;
4231         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4232
4233         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4234                 flags |= EXT4_FREE_BLOCKS_METADATA;
4235
4236         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4237                                    count)) {
4238                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4239                                  "blocks %llu len %lu",
4240                                  (unsigned long long) block_to_free, count);
4241                 return 1;
4242         }
4243
4244         if (try_to_extend_transaction(handle, inode)) {
4245                 if (bh) {
4246                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4247                         ext4_handle_dirty_metadata(handle, inode, bh);
4248                 }
4249                 ext4_mark_inode_dirty(handle, inode);
4250                 ext4_truncate_restart_trans(handle, inode,
4251                                             blocks_for_truncate(inode));
4252                 if (bh) {
4253                         BUFFER_TRACE(bh, "retaking write access");
4254                         ext4_journal_get_write_access(handle, bh);
4255                 }
4256         }
4257
4258         for (p = first; p < last; p++)
4259                 *p = 0;
4260
4261         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4262         return 0;
4263 }
4264
4265 /**
4266  * ext4_free_data - free a list of data blocks
4267  * @handle:     handle for this transaction
4268  * @inode:      inode we are dealing with
4269  * @this_bh:    indirect buffer_head which contains *@first and *@last
4270  * @first:      array of block numbers
4271  * @last:       points immediately past the end of array
4272  *
4273  * We are freeing all blocks refered from that array (numbers are stored as
4274  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4275  *
4276  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4277  * blocks are contiguous then releasing them at one time will only affect one
4278  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4279  * actually use a lot of journal space.
4280  *
4281  * @this_bh will be %NULL if @first and @last point into the inode's direct
4282  * block pointers.
4283  */
4284 static void ext4_free_data(handle_t *handle, struct inode *inode,
4285                            struct buffer_head *this_bh,
4286                            __le32 *first, __le32 *last)
4287 {
4288         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4289         unsigned long count = 0;            /* Number of blocks in the run */
4290         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4291                                                corresponding to
4292                                                block_to_free */
4293         ext4_fsblk_t nr;                    /* Current block # */
4294         __le32 *p;                          /* Pointer into inode/ind
4295                                                for current block */
4296         int err;
4297
4298         if (this_bh) {                          /* For indirect block */
4299                 BUFFER_TRACE(this_bh, "get_write_access");
4300                 err = ext4_journal_get_write_access(handle, this_bh);
4301                 /* Important: if we can't update the indirect pointers
4302                  * to the blocks, we can't free them. */
4303                 if (err)
4304                         return;
4305         }
4306
4307         for (p = first; p < last; p++) {
4308                 nr = le32_to_cpu(*p);
4309                 if (nr) {
4310                         /* accumulate blocks to free if they're contiguous */
4311                         if (count == 0) {
4312                                 block_to_free = nr;
4313                                 block_to_free_p = p;
4314                                 count = 1;
4315                         } else if (nr == block_to_free + count) {
4316                                 count++;
4317                         } else {
4318                                 if (ext4_clear_blocks(handle, inode, this_bh,
4319                                                       block_to_free, count,
4320                                                       block_to_free_p, p))
4321                                         break;
4322                                 block_to_free = nr;
4323                                 block_to_free_p = p;
4324                                 count = 1;
4325                         }
4326                 }
4327         }
4328
4329         if (count > 0)
4330                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4331                                   count, block_to_free_p, p);
4332
4333         if (this_bh) {
4334                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4335
4336                 /*
4337                  * The buffer head should have an attached journal head at this
4338                  * point. However, if the data is corrupted and an indirect
4339                  * block pointed to itself, it would have been detached when
4340                  * the block was cleared. Check for this instead of OOPSing.
4341                  */
4342                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4343                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4344                 else
4345                         EXT4_ERROR_INODE(inode,
4346                                          "circular indirect block detected at "
4347                                          "block %llu",
4348                                 (unsigned long long) this_bh->b_blocknr);
4349         }
4350 }
4351
4352 /**
4353  *      ext4_free_branches - free an array of branches
4354  *      @handle: JBD handle for this transaction
4355  *      @inode: inode we are dealing with
4356  *      @parent_bh: the buffer_head which contains *@first and *@last
4357  *      @first: array of block numbers
4358  *      @last:  pointer immediately past the end of array
4359  *      @depth: depth of the branches to free
4360  *
4361  *      We are freeing all blocks refered from these branches (numbers are
4362  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4363  *      appropriately.
4364  */
4365 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4366                                struct buffer_head *parent_bh,
4367                                __le32 *first, __le32 *last, int depth)
4368 {
4369         ext4_fsblk_t nr;
4370         __le32 *p;
4371
4372         if (ext4_handle_is_aborted(handle))
4373                 return;
4374
4375         if (depth--) {
4376                 struct buffer_head *bh;
4377                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4378                 p = last;
4379                 while (--p >= first) {
4380                         nr = le32_to_cpu(*p);
4381                         if (!nr)
4382                                 continue;               /* A hole */
4383
4384                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4385                                                    nr, 1)) {
4386                                 EXT4_ERROR_INODE(inode,
4387                                                  "invalid indirect mapped "
4388                                                  "block %lu (level %d)",
4389                                                  (unsigned long) nr, depth);
4390                                 break;
4391                         }
4392
4393                         /* Go read the buffer for the next level down */
4394                         bh = sb_bread(inode->i_sb, nr);
4395
4396                         /*
4397                          * A read failure? Report error and clear slot
4398                          * (should be rare).
4399                          */
4400                         if (!bh) {
4401                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4402                                                        "Read failure");
4403                                 continue;
4404                         }
4405
4406                         /* This zaps the entire block.  Bottom up. */
4407                         BUFFER_TRACE(bh, "free child branches");
4408                         ext4_free_branches(handle, inode, bh,
4409                                         (__le32 *) bh->b_data,
4410                                         (__le32 *) bh->b_data + addr_per_block,
4411                                         depth);
4412
4413                         /*
4414                          * Everything below this this pointer has been
4415                          * released.  Now let this top-of-subtree go.
4416                          *
4417                          * We want the freeing of this indirect block to be
4418                          * atomic in the journal with the updating of the
4419                          * bitmap block which owns it.  So make some room in
4420                          * the journal.
4421                          *
4422                          * We zero the parent pointer *after* freeing its
4423                          * pointee in the bitmaps, so if extend_transaction()
4424                          * for some reason fails to put the bitmap changes and
4425                          * the release into the same transaction, recovery
4426                          * will merely complain about releasing a free block,
4427                          * rather than leaking blocks.
4428                          */
4429                         if (ext4_handle_is_aborted(handle))
4430                                 return;
4431                         if (try_to_extend_transaction(handle, inode)) {
4432                                 ext4_mark_inode_dirty(handle, inode);
4433                                 ext4_truncate_restart_trans(handle, inode,
4434                                             blocks_for_truncate(inode));
4435                         }
4436
4437                         /*
4438                          * The forget flag here is critical because if
4439                          * we are journaling (and not doing data
4440                          * journaling), we have to make sure a revoke
4441                          * record is written to prevent the journal
4442                          * replay from overwriting the (former)
4443                          * indirect block if it gets reallocated as a
4444                          * data block.  This must happen in the same
4445                          * transaction where the data blocks are
4446                          * actually freed.
4447                          */
4448                         ext4_free_blocks(handle, inode, 0, nr, 1,
4449                                          EXT4_FREE_BLOCKS_METADATA|
4450                                          EXT4_FREE_BLOCKS_FORGET);
4451
4452                         if (parent_bh) {
4453                                 /*
4454                                  * The block which we have just freed is
4455                                  * pointed to by an indirect block: journal it
4456                                  */
4457                                 BUFFER_TRACE(parent_bh, "get_write_access");
4458                                 if (!ext4_journal_get_write_access(handle,
4459                                                                    parent_bh)){
4460                                         *p = 0;
4461                                         BUFFER_TRACE(parent_bh,
4462                                         "call ext4_handle_dirty_metadata");
4463                                         ext4_handle_dirty_metadata(handle,
4464                                                                    inode,
4465                                                                    parent_bh);
4466                                 }
4467                         }
4468                 }
4469         } else {
4470                 /* We have reached the bottom of the tree. */
4471                 BUFFER_TRACE(parent_bh, "free data blocks");
4472                 ext4_free_data(handle, inode, parent_bh, first, last);
4473         }
4474 }
4475
4476 int ext4_can_truncate(struct inode *inode)
4477 {
4478         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4479                 return 0;
4480         if (S_ISREG(inode->i_mode))
4481                 return 1;
4482         if (S_ISDIR(inode->i_mode))
4483                 return 1;
4484         if (S_ISLNK(inode->i_mode))
4485                 return !ext4_inode_is_fast_symlink(inode);
4486         return 0;
4487 }
4488
4489 /*
4490  * ext4_truncate()
4491  *
4492  * We block out ext4_get_block() block instantiations across the entire
4493  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4494  * simultaneously on behalf of the same inode.
4495  *
4496  * As we work through the truncate and commmit bits of it to the journal there
4497  * is one core, guiding principle: the file's tree must always be consistent on
4498  * disk.  We must be able to restart the truncate after a crash.
4499  *
4500  * The file's tree may be transiently inconsistent in memory (although it
4501  * probably isn't), but whenever we close off and commit a journal transaction,
4502  * the contents of (the filesystem + the journal) must be consistent and
4503  * restartable.  It's pretty simple, really: bottom up, right to left (although
4504  * left-to-right works OK too).
4505  *
4506  * Note that at recovery time, journal replay occurs *before* the restart of
4507  * truncate against the orphan inode list.
4508  *
4509  * The committed inode has the new, desired i_size (which is the same as
4510  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4511  * that this inode's truncate did not complete and it will again call
4512  * ext4_truncate() to have another go.  So there will be instantiated blocks
4513  * to the right of the truncation point in a crashed ext4 filesystem.  But
4514  * that's fine - as long as they are linked from the inode, the post-crash
4515  * ext4_truncate() run will find them and release them.
4516  */
4517 void ext4_truncate(struct inode *inode)
4518 {
4519         handle_t *handle;
4520         struct ext4_inode_info *ei = EXT4_I(inode);
4521         __le32 *i_data = ei->i_data;
4522         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4523         struct address_space *mapping = inode->i_mapping;
4524         ext4_lblk_t offsets[4];
4525         Indirect chain[4];
4526         Indirect *partial;
4527         __le32 nr = 0;
4528         int n;
4529         ext4_lblk_t last_block;
4530         unsigned blocksize = inode->i_sb->s_blocksize;
4531
4532         if (!ext4_can_truncate(inode))
4533                 return;
4534
4535         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4536
4537         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4538                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4539
4540         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4541                 ext4_ext_truncate(inode);
4542                 return;
4543         }
4544
4545         handle = start_transaction(inode);
4546         if (IS_ERR(handle))
4547                 return;         /* AKPM: return what? */
4548
4549         last_block = (inode->i_size + blocksize-1)
4550                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4551
4552         if (inode->i_size & (blocksize - 1))
4553                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4554                         goto out_stop;
4555
4556         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4557         if (n == 0)
4558                 goto out_stop;  /* error */
4559
4560         /*
4561          * OK.  This truncate is going to happen.  We add the inode to the
4562          * orphan list, so that if this truncate spans multiple transactions,
4563          * and we crash, we will resume the truncate when the filesystem
4564          * recovers.  It also marks the inode dirty, to catch the new size.
4565          *
4566          * Implication: the file must always be in a sane, consistent
4567          * truncatable state while each transaction commits.
4568          */
4569         if (ext4_orphan_add(handle, inode))
4570                 goto out_stop;
4571
4572         /*
4573          * From here we block out all ext4_get_block() callers who want to
4574          * modify the block allocation tree.
4575          */
4576         down_write(&ei->i_data_sem);
4577
4578         ext4_discard_preallocations(inode);
4579
4580         /*
4581          * The orphan list entry will now protect us from any crash which
4582          * occurs before the truncate completes, so it is now safe to propagate
4583          * the new, shorter inode size (held for now in i_size) into the
4584          * on-disk inode. We do this via i_disksize, which is the value which
4585          * ext4 *really* writes onto the disk inode.
4586          */
4587         ei->i_disksize = inode->i_size;
4588
4589         if (n == 1) {           /* direct blocks */
4590                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4591                                i_data + EXT4_NDIR_BLOCKS);
4592                 goto do_indirects;
4593         }
4594
4595         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4596         /* Kill the top of shared branch (not detached) */
4597         if (nr) {
4598                 if (partial == chain) {
4599                         /* Shared branch grows from the inode */
4600                         ext4_free_branches(handle, inode, NULL,
4601                                            &nr, &nr+1, (chain+n-1) - partial);
4602                         *partial->p = 0;
4603                         /*
4604                          * We mark the inode dirty prior to restart,
4605                          * and prior to stop.  No need for it here.
4606                          */
4607                 } else {
4608                         /* Shared branch grows from an indirect block */
4609                         BUFFER_TRACE(partial->bh, "get_write_access");
4610                         ext4_free_branches(handle, inode, partial->bh,
4611                                         partial->p,
4612                                         partial->p+1, (chain+n-1) - partial);
4613                 }
4614         }
4615         /* Clear the ends of indirect blocks on the shared branch */
4616         while (partial > chain) {
4617                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4618                                    (__le32*)partial->bh->b_data+addr_per_block,
4619                                    (chain+n-1) - partial);
4620                 BUFFER_TRACE(partial->bh, "call brelse");
4621                 brelse(partial->bh);
4622                 partial--;
4623         }
4624 do_indirects:
4625         /* Kill the remaining (whole) subtrees */
4626         switch (offsets[0]) {
4627         default:
4628                 nr = i_data[EXT4_IND_BLOCK];
4629                 if (nr) {
4630                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4631                         i_data[EXT4_IND_BLOCK] = 0;
4632                 }
4633         case EXT4_IND_BLOCK:
4634                 nr = i_data[EXT4_DIND_BLOCK];
4635                 if (nr) {
4636                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4637                         i_data[EXT4_DIND_BLOCK] = 0;
4638                 }
4639         case EXT4_DIND_BLOCK:
4640                 nr = i_data[EXT4_TIND_BLOCK];
4641                 if (nr) {
4642                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4643                         i_data[EXT4_TIND_BLOCK] = 0;
4644                 }
4645         case EXT4_TIND_BLOCK:
4646                 ;
4647         }
4648
4649         up_write(&ei->i_data_sem);
4650         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4651         ext4_mark_inode_dirty(handle, inode);
4652
4653         /*
4654          * In a multi-transaction truncate, we only make the final transaction
4655          * synchronous
4656          */
4657         if (IS_SYNC(inode))
4658                 ext4_handle_sync(handle);
4659 out_stop:
4660         /*
4661          * If this was a simple ftruncate(), and the file will remain alive
4662          * then we need to clear up the orphan record which we created above.
4663          * However, if this was a real unlink then we were called by
4664          * ext4_delete_inode(), and we allow that function to clean up the
4665          * orphan info for us.
4666          */
4667         if (inode->i_nlink)
4668                 ext4_orphan_del(handle, inode);
4669
4670         ext4_journal_stop(handle);
4671 }
4672
4673 /*
4674  * ext4_get_inode_loc returns with an extra refcount against the inode's
4675  * underlying buffer_head on success. If 'in_mem' is true, we have all
4676  * data in memory that is needed to recreate the on-disk version of this
4677  * inode.
4678  */
4679 static int __ext4_get_inode_loc(struct inode *inode,
4680                                 struct ext4_iloc *iloc, int in_mem)
4681 {
4682         struct ext4_group_desc  *gdp;
4683         struct buffer_head      *bh;
4684         struct super_block      *sb = inode->i_sb;
4685         ext4_fsblk_t            block;
4686         int                     inodes_per_block, inode_offset;
4687
4688         iloc->bh = NULL;
4689         if (!ext4_valid_inum(sb, inode->i_ino))
4690                 return -EIO;
4691
4692         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4693         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4694         if (!gdp)
4695                 return -EIO;
4696
4697         /*
4698          * Figure out the offset within the block group inode table
4699          */
4700         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4701         inode_offset = ((inode->i_ino - 1) %
4702                         EXT4_INODES_PER_GROUP(sb));
4703         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4704         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4705
4706         bh = sb_getblk(sb, block);
4707         if (!bh) {
4708                 EXT4_ERROR_INODE_BLOCK(inode, block,
4709                                        "unable to read itable block");
4710                 return -EIO;
4711         }
4712         if (!buffer_uptodate(bh)) {
4713                 lock_buffer(bh);
4714
4715                 /*
4716                  * If the buffer has the write error flag, we have failed
4717                  * to write out another inode in the same block.  In this
4718                  * case, we don't have to read the block because we may
4719                  * read the old inode data successfully.
4720                  */
4721                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4722                         set_buffer_uptodate(bh);
4723
4724                 if (buffer_uptodate(bh)) {
4725                         /* someone brought it uptodate while we waited */
4726                         unlock_buffer(bh);
4727                         goto has_buffer;
4728                 }
4729
4730                 /*
4731                  * If we have all information of the inode in memory and this
4732                  * is the only valid inode in the block, we need not read the
4733                  * block.
4734                  */
4735                 if (in_mem) {
4736                         struct buffer_head *bitmap_bh;
4737                         int i, start;
4738
4739                         start = inode_offset & ~(inodes_per_block - 1);
4740
4741                         /* Is the inode bitmap in cache? */
4742                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4743                         if (!bitmap_bh)
4744                                 goto make_io;
4745
4746                         /*
4747                          * If the inode bitmap isn't in cache then the
4748                          * optimisation may end up performing two reads instead
4749                          * of one, so skip it.
4750                          */
4751                         if (!buffer_uptodate(bitmap_bh)) {
4752                                 brelse(bitmap_bh);
4753                                 goto make_io;
4754                         }
4755                         for (i = start; i < start + inodes_per_block; i++) {
4756                                 if (i == inode_offset)
4757                                         continue;
4758                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4759                                         break;
4760                         }
4761                         brelse(bitmap_bh);
4762                         if (i == start + inodes_per_block) {
4763                                 /* all other inodes are free, so skip I/O */
4764                                 memset(bh->b_data, 0, bh->b_size);
4765                                 set_buffer_uptodate(bh);
4766                                 unlock_buffer(bh);
4767                                 goto has_buffer;
4768                         }
4769                 }
4770
4771 make_io:
4772                 /*
4773                  * If we need to do any I/O, try to pre-readahead extra
4774                  * blocks from the inode table.
4775                  */
4776                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4777                         ext4_fsblk_t b, end, table;
4778                         unsigned num;
4779
4780                         table = ext4_inode_table(sb, gdp);
4781                         /* s_inode_readahead_blks is always a power of 2 */
4782                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4783                         if (table > b)
4784                                 b = table;
4785                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4786                         num = EXT4_INODES_PER_GROUP(sb);
4787                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4788                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4789                                 num -= ext4_itable_unused_count(sb, gdp);
4790                         table += num / inodes_per_block;
4791                         if (end > table)
4792                                 end = table;
4793                         while (b <= end)
4794                                 sb_breadahead(sb, b++);
4795                 }
4796
4797                 /*
4798                  * There are other valid inodes in the buffer, this inode
4799                  * has in-inode xattrs, or we don't have this inode in memory.
4800                  * Read the block from disk.
4801                  */
4802                 get_bh(bh);
4803                 bh->b_end_io = end_buffer_read_sync;
4804                 submit_bh(READ_META, bh);
4805                 wait_on_buffer(bh);
4806                 if (!buffer_uptodate(bh)) {
4807                         EXT4_ERROR_INODE_BLOCK(inode, block,
4808                                                "unable to read itable block");
4809                         brelse(bh);
4810                         return -EIO;
4811                 }
4812         }
4813 has_buffer:
4814         iloc->bh = bh;
4815         return 0;
4816 }
4817
4818 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4819 {
4820         /* We have all inode data except xattrs in memory here. */
4821         return __ext4_get_inode_loc(inode, iloc,
4822                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4823 }
4824
4825 void ext4_set_inode_flags(struct inode *inode)
4826 {
4827         unsigned int flags = EXT4_I(inode)->i_flags;
4828
4829         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4830         if (flags & EXT4_SYNC_FL)
4831                 inode->i_flags |= S_SYNC;
4832         if (flags & EXT4_APPEND_FL)
4833                 inode->i_flags |= S_APPEND;
4834         if (flags & EXT4_IMMUTABLE_FL)
4835                 inode->i_flags |= S_IMMUTABLE;
4836         if (flags & EXT4_NOATIME_FL)
4837                 inode->i_flags |= S_NOATIME;
4838         if (flags & EXT4_DIRSYNC_FL)
4839                 inode->i_flags |= S_DIRSYNC;
4840 }
4841
4842 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4843 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4844 {
4845         unsigned int vfs_fl;
4846         unsigned long old_fl, new_fl;
4847
4848         do {
4849                 vfs_fl = ei->vfs_inode.i_flags;
4850                 old_fl = ei->i_flags;
4851                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4852                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4853                                 EXT4_DIRSYNC_FL);
4854                 if (vfs_fl & S_SYNC)
4855                         new_fl |= EXT4_SYNC_FL;
4856                 if (vfs_fl & S_APPEND)
4857                         new_fl |= EXT4_APPEND_FL;
4858                 if (vfs_fl & S_IMMUTABLE)
4859                         new_fl |= EXT4_IMMUTABLE_FL;
4860                 if (vfs_fl & S_NOATIME)
4861                         new_fl |= EXT4_NOATIME_FL;
4862                 if (vfs_fl & S_DIRSYNC)
4863                         new_fl |= EXT4_DIRSYNC_FL;
4864         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4865 }
4866
4867 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4868                                   struct ext4_inode_info *ei)
4869 {
4870         blkcnt_t i_blocks ;
4871         struct inode *inode = &(ei->vfs_inode);
4872         struct super_block *sb = inode->i_sb;
4873
4874         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4875                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4876                 /* we are using combined 48 bit field */
4877                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4878                                         le32_to_cpu(raw_inode->i_blocks_lo);
4879                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4880                         /* i_blocks represent file system block size */
4881                         return i_blocks  << (inode->i_blkbits - 9);
4882                 } else {
4883                         return i_blocks;
4884                 }
4885         } else {
4886                 return le32_to_cpu(raw_inode->i_blocks_lo);
4887         }
4888 }
4889
4890 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4891 {
4892         struct ext4_iloc iloc;
4893         struct ext4_inode *raw_inode;
4894         struct ext4_inode_info *ei;
4895         struct inode *inode;
4896         journal_t *journal = EXT4_SB(sb)->s_journal;
4897         long ret;
4898         int block;
4899
4900         inode = iget_locked(sb, ino);
4901         if (!inode)
4902                 return ERR_PTR(-ENOMEM);
4903         if (!(inode->i_state & I_NEW))
4904                 return inode;
4905
4906         ei = EXT4_I(inode);
4907         iloc.bh = 0;
4908
4909         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4910         if (ret < 0)
4911                 goto bad_inode;
4912         raw_inode = ext4_raw_inode(&iloc);
4913         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4914         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4915         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4916         if (!(test_opt(inode->i_sb, NO_UID32))) {
4917                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4918                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4919         }
4920         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4921
4922         ei->i_state_flags = 0;
4923         ei->i_dir_start_lookup = 0;
4924         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4925         /* We now have enough fields to check if the inode was active or not.
4926          * This is needed because nfsd might try to access dead inodes
4927          * the test is that same one that e2fsck uses
4928          * NeilBrown 1999oct15
4929          */
4930         if (inode->i_nlink == 0) {
4931                 if (inode->i_mode == 0 ||
4932                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4933                         /* this inode is deleted */
4934                         ret = -ESTALE;
4935                         goto bad_inode;
4936                 }
4937                 /* The only unlinked inodes we let through here have
4938                  * valid i_mode and are being read by the orphan
4939                  * recovery code: that's fine, we're about to complete
4940                  * the process of deleting those. */
4941         }
4942         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4943         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4944         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4945         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4946                 ei->i_file_acl |=
4947                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4948         inode->i_size = ext4_isize(raw_inode);
4949         ei->i_disksize = inode->i_size;
4950 #ifdef CONFIG_QUOTA
4951         ei->i_reserved_quota = 0;
4952 #endif
4953         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4954         ei->i_block_group = iloc.block_group;
4955         ei->i_last_alloc_group = ~0;
4956         /*
4957          * NOTE! The in-memory inode i_data array is in little-endian order
4958          * even on big-endian machines: we do NOT byteswap the block numbers!
4959          */
4960         for (block = 0; block < EXT4_N_BLOCKS; block++)
4961                 ei->i_data[block] = raw_inode->i_block[block];
4962         INIT_LIST_HEAD(&ei->i_orphan);
4963
4964         /*
4965          * Set transaction id's of transactions that have to be committed
4966          * to finish f[data]sync. We set them to currently running transaction
4967          * as we cannot be sure that the inode or some of its metadata isn't
4968          * part of the transaction - the inode could have been reclaimed and
4969          * now it is reread from disk.
4970          */
4971         if (journal) {
4972                 transaction_t *transaction;
4973                 tid_t tid;
4974
4975                 read_lock(&journal->j_state_lock);
4976                 if (journal->j_running_transaction)
4977                         transaction = journal->j_running_transaction;
4978                 else
4979                         transaction = journal->j_committing_transaction;
4980                 if (transaction)
4981                         tid = transaction->t_tid;
4982                 else
4983                         tid = journal->j_commit_sequence;
4984                 read_unlock(&journal->j_state_lock);
4985                 ei->i_sync_tid = tid;
4986                 ei->i_datasync_tid = tid;
4987         }
4988
4989         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4990                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4991                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4992                     EXT4_INODE_SIZE(inode->i_sb)) {
4993                         ret = -EIO;
4994                         goto bad_inode;
4995                 }
4996                 if (ei->i_extra_isize == 0) {
4997                         /* The extra space is currently unused. Use it. */
4998                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4999                                             EXT4_GOOD_OLD_INODE_SIZE;
5000                 } else {
5001                         __le32 *magic = (void *)raw_inode +
5002                                         EXT4_GOOD_OLD_INODE_SIZE +
5003                                         ei->i_extra_isize;
5004                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5005                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5006                 }
5007         } else
5008                 ei->i_extra_isize = 0;
5009
5010         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5011         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5012         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5013         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5014
5015         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5016         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5017                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5018                         inode->i_version |=
5019                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5020         }
5021
5022         ret = 0;
5023         if (ei->i_file_acl &&
5024             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5025                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5026                                  ei->i_file_acl);
5027                 ret = -EIO;
5028                 goto bad_inode;
5029         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5030                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5031                     (S_ISLNK(inode->i_mode) &&
5032                      !ext4_inode_is_fast_symlink(inode)))
5033                         /* Validate extent which is part of inode */
5034                         ret = ext4_ext_check_inode(inode);
5035         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5036                    (S_ISLNK(inode->i_mode) &&
5037                     !ext4_inode_is_fast_symlink(inode))) {
5038                 /* Validate block references which are part of inode */
5039                 ret = ext4_check_inode_blockref(inode);
5040         }
5041         if (ret)
5042                 goto bad_inode;
5043
5044         if (S_ISREG(inode->i_mode)) {
5045                 inode->i_op = &ext4_file_inode_operations;
5046                 inode->i_fop = &ext4_file_operations;
5047                 ext4_set_aops(inode);
5048         } else if (S_ISDIR(inode->i_mode)) {
5049                 inode->i_op = &ext4_dir_inode_operations;
5050                 inode->i_fop = &ext4_dir_operations;
5051         } else if (S_ISLNK(inode->i_mode)) {
5052                 if (ext4_inode_is_fast_symlink(inode)) {
5053                         inode->i_op = &ext4_fast_symlink_inode_operations;
5054                         nd_terminate_link(ei->i_data, inode->i_size,
5055                                 sizeof(ei->i_data) - 1);
5056                 } else {
5057                         inode->i_op = &ext4_symlink_inode_operations;
5058                         ext4_set_aops(inode);
5059                 }
5060         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5061               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5062                 inode->i_op = &ext4_special_inode_operations;
5063                 if (raw_inode->i_block[0])
5064                         init_special_inode(inode, inode->i_mode,
5065                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5066                 else
5067                         init_special_inode(inode, inode->i_mode,
5068                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5069         } else {
5070                 ret = -EIO;
5071                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5072                 goto bad_inode;
5073         }
5074         brelse(iloc.bh);
5075         ext4_set_inode_flags(inode);
5076         unlock_new_inode(inode);
5077         return inode;
5078
5079 bad_inode:
5080         brelse(iloc.bh);
5081         iget_failed(inode);
5082         return ERR_PTR(ret);
5083 }
5084
5085 static int ext4_inode_blocks_set(handle_t *handle,
5086                                 struct ext4_inode *raw_inode,
5087                                 struct ext4_inode_info *ei)
5088 {
5089         struct inode *inode = &(ei->vfs_inode);
5090         u64 i_blocks = inode->i_blocks;
5091         struct super_block *sb = inode->i_sb;
5092
5093         if (i_blocks <= ~0U) {
5094                 /*
5095                  * i_blocks can be represnted in a 32 bit variable
5096                  * as multiple of 512 bytes
5097                  */
5098                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5099                 raw_inode->i_blocks_high = 0;
5100                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5101                 return 0;
5102         }
5103         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5104                 return -EFBIG;
5105
5106         if (i_blocks <= 0xffffffffffffULL) {
5107                 /*
5108                  * i_blocks can be represented in a 48 bit variable
5109                  * as multiple of 512 bytes
5110                  */
5111                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5112                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5113                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5114         } else {
5115                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5116                 /* i_block is stored in file system block size */
5117                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5118                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5119                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5120         }
5121         return 0;
5122 }
5123
5124 /*
5125  * Post the struct inode info into an on-disk inode location in the
5126  * buffer-cache.  This gobbles the caller's reference to the
5127  * buffer_head in the inode location struct.
5128  *
5129  * The caller must have write access to iloc->bh.
5130  */
5131 static int ext4_do_update_inode(handle_t *handle,
5132                                 struct inode *inode,
5133                                 struct ext4_iloc *iloc)
5134 {
5135         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5136         struct ext4_inode_info *ei = EXT4_I(inode);
5137         struct buffer_head *bh = iloc->bh;
5138         int err = 0, rc, block;
5139
5140         /* For fields not not tracking in the in-memory inode,
5141          * initialise them to zero for new inodes. */
5142         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5143                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5144
5145         ext4_get_inode_flags(ei);
5146         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5147         if (!(test_opt(inode->i_sb, NO_UID32))) {
5148                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5149                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5150 /*
5151  * Fix up interoperability with old kernels. Otherwise, old inodes get
5152  * re-used with the upper 16 bits of the uid/gid intact
5153  */
5154                 if (!ei->i_dtime) {
5155                         raw_inode->i_uid_high =
5156                                 cpu_to_le16(high_16_bits(inode->i_uid));
5157                         raw_inode->i_gid_high =
5158                                 cpu_to_le16(high_16_bits(inode->i_gid));
5159                 } else {
5160                         raw_inode->i_uid_high = 0;
5161                         raw_inode->i_gid_high = 0;
5162                 }
5163         } else {
5164                 raw_inode->i_uid_low =
5165                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5166                 raw_inode->i_gid_low =
5167                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5168                 raw_inode->i_uid_high = 0;
5169                 raw_inode->i_gid_high = 0;
5170         }
5171         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5172
5173         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5174         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5175         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5176         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5177
5178         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5179                 goto out_brelse;
5180         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5181         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5182         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5183             cpu_to_le32(EXT4_OS_HURD))
5184                 raw_inode->i_file_acl_high =
5185                         cpu_to_le16(ei->i_file_acl >> 32);
5186         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5187         ext4_isize_set(raw_inode, ei->i_disksize);
5188         if (ei->i_disksize > 0x7fffffffULL) {
5189                 struct super_block *sb = inode->i_sb;
5190                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5191                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5192                                 EXT4_SB(sb)->s_es->s_rev_level ==
5193                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5194                         /* If this is the first large file
5195                          * created, add a flag to the superblock.
5196                          */
5197                         err = ext4_journal_get_write_access(handle,
5198                                         EXT4_SB(sb)->s_sbh);
5199                         if (err)
5200                                 goto out_brelse;
5201                         ext4_update_dynamic_rev(sb);
5202                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5203                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5204                         sb->s_dirt = 1;
5205                         ext4_handle_sync(handle);
5206                         err = ext4_handle_dirty_metadata(handle, NULL,
5207                                         EXT4_SB(sb)->s_sbh);
5208                 }
5209         }
5210         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5211         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5212                 if (old_valid_dev(inode->i_rdev)) {
5213                         raw_inode->i_block[0] =
5214                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5215                         raw_inode->i_block[1] = 0;
5216                 } else {
5217                         raw_inode->i_block[0] = 0;
5218                         raw_inode->i_block[1] =
5219                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5220                         raw_inode->i_block[2] = 0;
5221                 }
5222         } else
5223                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5224                         raw_inode->i_block[block] = ei->i_data[block];
5225
5226         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5227         if (ei->i_extra_isize) {
5228                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5229                         raw_inode->i_version_hi =
5230                         cpu_to_le32(inode->i_version >> 32);
5231                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5232         }
5233
5234         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5235         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5236         if (!err)
5237                 err = rc;
5238         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5239
5240         ext4_update_inode_fsync_trans(handle, inode, 0);
5241 out_brelse:
5242         brelse(bh);
5243         ext4_std_error(inode->i_sb, err);
5244         return err;
5245 }
5246
5247 /*
5248  * ext4_write_inode()
5249  *
5250  * We are called from a few places:
5251  *
5252  * - Within generic_file_write() for O_SYNC files.
5253  *   Here, there will be no transaction running. We wait for any running
5254  *   trasnaction to commit.
5255  *
5256  * - Within sys_sync(), kupdate and such.
5257  *   We wait on commit, if tol to.
5258  *
5259  * - Within prune_icache() (PF_MEMALLOC == true)
5260  *   Here we simply return.  We can't afford to block kswapd on the
5261  *   journal commit.
5262  *
5263  * In all cases it is actually safe for us to return without doing anything,
5264  * because the inode has been copied into a raw inode buffer in
5265  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5266  * knfsd.
5267  *
5268  * Note that we are absolutely dependent upon all inode dirtiers doing the
5269  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5270  * which we are interested.
5271  *
5272  * It would be a bug for them to not do this.  The code:
5273  *
5274  *      mark_inode_dirty(inode)
5275  *      stuff();
5276  *      inode->i_size = expr;
5277  *
5278  * is in error because a kswapd-driven write_inode() could occur while
5279  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5280  * will no longer be on the superblock's dirty inode list.
5281  */
5282 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5283 {
5284         int err;
5285
5286         if (current->flags & PF_MEMALLOC)
5287                 return 0;
5288
5289         if (EXT4_SB(inode->i_sb)->s_journal) {
5290                 if (ext4_journal_current_handle()) {
5291                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5292                         dump_stack();
5293                         return -EIO;
5294                 }
5295
5296                 if (wbc->sync_mode != WB_SYNC_ALL)
5297                         return 0;
5298
5299                 err = ext4_force_commit(inode->i_sb);
5300         } else {
5301                 struct ext4_iloc iloc;
5302
5303                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5304                 if (err)
5305                         return err;
5306                 if (wbc->sync_mode == WB_SYNC_ALL)
5307                         sync_dirty_buffer(iloc.bh);
5308                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5309                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5310                                          "IO error syncing inode");
5311                         err = -EIO;
5312                 }
5313                 brelse(iloc.bh);
5314         }
5315         return err;
5316 }
5317
5318 /*
5319  * ext4_setattr()
5320  *
5321  * Called from notify_change.
5322  *
5323  * We want to trap VFS attempts to truncate the file as soon as
5324  * possible.  In particular, we want to make sure that when the VFS
5325  * shrinks i_size, we put the inode on the orphan list and modify
5326  * i_disksize immediately, so that during the subsequent flushing of
5327  * dirty pages and freeing of disk blocks, we can guarantee that any
5328  * commit will leave the blocks being flushed in an unused state on
5329  * disk.  (On recovery, the inode will get truncated and the blocks will
5330  * be freed, so we have a strong guarantee that no future commit will
5331  * leave these blocks visible to the user.)
5332  *
5333  * Another thing we have to assure is that if we are in ordered mode
5334  * and inode is still attached to the committing transaction, we must
5335  * we start writeout of all the dirty pages which are being truncated.
5336  * This way we are sure that all the data written in the previous
5337  * transaction are already on disk (truncate waits for pages under
5338  * writeback).
5339  *
5340  * Called with inode->i_mutex down.
5341  */
5342 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5343 {
5344         struct inode *inode = dentry->d_inode;
5345         int error, rc = 0;
5346         const unsigned int ia_valid = attr->ia_valid;
5347
5348         error = inode_change_ok(inode, attr);
5349         if (error)
5350                 return error;
5351
5352         if (is_quota_modification(inode, attr))
5353                 dquot_initialize(inode);
5354         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5355                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5356                 handle_t *handle;
5357
5358                 /* (user+group)*(old+new) structure, inode write (sb,
5359                  * inode block, ? - but truncate inode update has it) */
5360                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5361                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5362                 if (IS_ERR(handle)) {
5363                         error = PTR_ERR(handle);
5364                         goto err_out;
5365                 }
5366                 error = dquot_transfer(inode, attr);
5367                 if (error) {
5368                         ext4_journal_stop(handle);
5369                         return error;
5370                 }
5371                 /* Update corresponding info in inode so that everything is in
5372                  * one transaction */
5373                 if (attr->ia_valid & ATTR_UID)
5374                         inode->i_uid = attr->ia_uid;
5375                 if (attr->ia_valid & ATTR_GID)
5376                         inode->i_gid = attr->ia_gid;
5377                 error = ext4_mark_inode_dirty(handle, inode);
5378                 ext4_journal_stop(handle);
5379         }
5380
5381         if (attr->ia_valid & ATTR_SIZE) {
5382                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5383                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5384
5385                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5386                                 return -EFBIG;
5387                 }
5388         }
5389
5390         if (S_ISREG(inode->i_mode) &&
5391             attr->ia_valid & ATTR_SIZE &&
5392             (attr->ia_size < inode->i_size ||
5393              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5394                 handle_t *handle;
5395
5396                 handle = ext4_journal_start(inode, 3);
5397                 if (IS_ERR(handle)) {
5398                         error = PTR_ERR(handle);
5399                         goto err_out;
5400                 }
5401
5402                 error = ext4_orphan_add(handle, inode);
5403                 EXT4_I(inode)->i_disksize = attr->ia_size;
5404                 rc = ext4_mark_inode_dirty(handle, inode);
5405                 if (!error)
5406                         error = rc;
5407                 ext4_journal_stop(handle);
5408
5409                 if (ext4_should_order_data(inode)) {
5410                         error = ext4_begin_ordered_truncate(inode,
5411                                                             attr->ia_size);
5412                         if (error) {
5413                                 /* Do as much error cleanup as possible */
5414                                 handle = ext4_journal_start(inode, 3);
5415                                 if (IS_ERR(handle)) {
5416                                         ext4_orphan_del(NULL, inode);
5417                                         goto err_out;
5418                                 }
5419                                 ext4_orphan_del(handle, inode);
5420                                 ext4_journal_stop(handle);
5421                                 goto err_out;
5422                         }
5423                 }
5424                 /* ext4_truncate will clear the flag */
5425                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5426                         ext4_truncate(inode);
5427         }
5428
5429         if ((attr->ia_valid & ATTR_SIZE) &&
5430             attr->ia_size != i_size_read(inode))
5431                 rc = vmtruncate(inode, attr->ia_size);
5432
5433         if (!rc) {
5434                 setattr_copy(inode, attr);
5435                 mark_inode_dirty(inode);
5436         }
5437
5438         /*
5439          * If the call to ext4_truncate failed to get a transaction handle at
5440          * all, we need to clean up the in-core orphan list manually.
5441          */
5442         if (inode->i_nlink)
5443                 ext4_orphan_del(NULL, inode);
5444
5445         if (!rc && (ia_valid & ATTR_MODE))
5446                 rc = ext4_acl_chmod(inode);
5447
5448 err_out:
5449         ext4_std_error(inode->i_sb, error);
5450         if (!error)
5451                 error = rc;
5452         return error;
5453 }
5454
5455 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5456                  struct kstat *stat)
5457 {
5458         struct inode *inode;
5459         unsigned long delalloc_blocks;
5460
5461         inode = dentry->d_inode;
5462         generic_fillattr(inode, stat);
5463
5464         /*
5465          * We can't update i_blocks if the block allocation is delayed
5466          * otherwise in the case of system crash before the real block
5467          * allocation is done, we will have i_blocks inconsistent with
5468          * on-disk file blocks.
5469          * We always keep i_blocks updated together with real
5470          * allocation. But to not confuse with user, stat
5471          * will return the blocks that include the delayed allocation
5472          * blocks for this file.
5473          */
5474         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5475         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5476         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5477
5478         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5479         return 0;
5480 }
5481
5482 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5483                                       int chunk)
5484 {
5485         int indirects;
5486
5487         /* if nrblocks are contiguous */
5488         if (chunk) {
5489                 /*
5490                  * With N contiguous data blocks, it need at most
5491                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5492                  * 2 dindirect blocks
5493                  * 1 tindirect block
5494                  */
5495                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5496                 return indirects + 3;
5497         }
5498         /*
5499          * if nrblocks are not contiguous, worse case, each block touch
5500          * a indirect block, and each indirect block touch a double indirect
5501          * block, plus a triple indirect block
5502          */
5503         indirects = nrblocks * 2 + 1;
5504         return indirects;
5505 }
5506
5507 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5508 {
5509         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5510                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5511         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5512 }
5513
5514 /*
5515  * Account for index blocks, block groups bitmaps and block group
5516  * descriptor blocks if modify datablocks and index blocks
5517  * worse case, the indexs blocks spread over different block groups
5518  *
5519  * If datablocks are discontiguous, they are possible to spread over
5520  * different block groups too. If they are contiuguous, with flexbg,
5521  * they could still across block group boundary.
5522  *
5523  * Also account for superblock, inode, quota and xattr blocks
5524  */
5525 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5526 {
5527         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5528         int gdpblocks;
5529         int idxblocks;
5530         int ret = 0;
5531
5532         /*
5533          * How many index blocks need to touch to modify nrblocks?
5534          * The "Chunk" flag indicating whether the nrblocks is
5535          * physically contiguous on disk
5536          *
5537          * For Direct IO and fallocate, they calls get_block to allocate
5538          * one single extent at a time, so they could set the "Chunk" flag
5539          */
5540         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5541
5542         ret = idxblocks;
5543
5544         /*
5545          * Now let's see how many group bitmaps and group descriptors need
5546          * to account
5547          */
5548         groups = idxblocks;
5549         if (chunk)
5550                 groups += 1;
5551         else
5552                 groups += nrblocks;
5553
5554         gdpblocks = groups;
5555         if (groups > ngroups)
5556                 groups = ngroups;
5557         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5558                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5559
5560         /* bitmaps and block group descriptor blocks */
5561         ret += groups + gdpblocks;
5562
5563         /* Blocks for super block, inode, quota and xattr blocks */
5564         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5565
5566         return ret;
5567 }
5568
5569 /*
5570  * Calulate the total number of credits to reserve to fit
5571  * the modification of a single pages into a single transaction,
5572  * which may include multiple chunks of block allocations.
5573  *
5574  * This could be called via ext4_write_begin()
5575  *
5576  * We need to consider the worse case, when
5577  * one new block per extent.
5578  */
5579 int ext4_writepage_trans_blocks(struct inode *inode)
5580 {
5581         int bpp = ext4_journal_blocks_per_page(inode);
5582         int ret;
5583
5584         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5585
5586         /* Account for data blocks for journalled mode */
5587         if (ext4_should_journal_data(inode))
5588                 ret += bpp;
5589         return ret;
5590 }
5591
5592 /*
5593  * Calculate the journal credits for a chunk of data modification.
5594  *
5595  * This is called from DIO, fallocate or whoever calling
5596  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5597  *
5598  * journal buffers for data blocks are not included here, as DIO
5599  * and fallocate do no need to journal data buffers.
5600  */
5601 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5602 {
5603         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5604 }
5605
5606 /*
5607  * The caller must have previously called ext4_reserve_inode_write().
5608  * Give this, we know that the caller already has write access to iloc->bh.
5609  */
5610 int ext4_mark_iloc_dirty(handle_t *handle,
5611                          struct inode *inode, struct ext4_iloc *iloc)
5612 {
5613         int err = 0;
5614
5615         if (test_opt(inode->i_sb, I_VERSION))
5616                 inode_inc_iversion(inode);
5617
5618         /* the do_update_inode consumes one bh->b_count */
5619         get_bh(iloc->bh);
5620
5621         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5622         err = ext4_do_update_inode(handle, inode, iloc);
5623         put_bh(iloc->bh);
5624         return err;
5625 }
5626
5627 /*
5628  * On success, We end up with an outstanding reference count against
5629  * iloc->bh.  This _must_ be cleaned up later.
5630  */
5631
5632 int
5633 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5634                          struct ext4_iloc *iloc)
5635 {
5636         int err;
5637
5638         err = ext4_get_inode_loc(inode, iloc);
5639         if (!err) {
5640                 BUFFER_TRACE(iloc->bh, "get_write_access");
5641                 err = ext4_journal_get_write_access(handle, iloc->bh);
5642                 if (err) {
5643                         brelse(iloc->bh);
5644                         iloc->bh = NULL;
5645                 }
5646         }
5647         ext4_std_error(inode->i_sb, err);
5648         return err;
5649 }
5650
5651 /*
5652  * Expand an inode by new_extra_isize bytes.
5653  * Returns 0 on success or negative error number on failure.
5654  */
5655 static int ext4_expand_extra_isize(struct inode *inode,
5656                                    unsigned int new_extra_isize,
5657                                    struct ext4_iloc iloc,
5658                                    handle_t *handle)
5659 {
5660         struct ext4_inode *raw_inode;
5661         struct ext4_xattr_ibody_header *header;
5662
5663         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5664                 return 0;
5665
5666         raw_inode = ext4_raw_inode(&iloc);
5667
5668         header = IHDR(inode, raw_inode);
5669
5670         /* No extended attributes present */
5671         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5672             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5673                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5674                         new_extra_isize);
5675                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5676                 return 0;
5677         }
5678
5679         /* try to expand with EAs present */
5680         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5681                                           raw_inode, handle);
5682 }
5683
5684 /*
5685  * What we do here is to mark the in-core inode as clean with respect to inode
5686  * dirtiness (it may still be data-dirty).
5687  * This means that the in-core inode may be reaped by prune_icache
5688  * without having to perform any I/O.  This is a very good thing,
5689  * because *any* task may call prune_icache - even ones which
5690  * have a transaction open against a different journal.
5691  *
5692  * Is this cheating?  Not really.  Sure, we haven't written the
5693  * inode out, but prune_icache isn't a user-visible syncing function.
5694  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5695  * we start and wait on commits.
5696  *
5697  * Is this efficient/effective?  Well, we're being nice to the system
5698  * by cleaning up our inodes proactively so they can be reaped
5699  * without I/O.  But we are potentially leaving up to five seconds'
5700  * worth of inodes floating about which prune_icache wants us to
5701  * write out.  One way to fix that would be to get prune_icache()
5702  * to do a write_super() to free up some memory.  It has the desired
5703  * effect.
5704  */
5705 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5706 {
5707         struct ext4_iloc iloc;
5708         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5709         static unsigned int mnt_count;
5710         int err, ret;
5711
5712         might_sleep();
5713         err = ext4_reserve_inode_write(handle, inode, &iloc);
5714         if (ext4_handle_valid(handle) &&
5715             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5716             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5717                 /*
5718                  * We need extra buffer credits since we may write into EA block
5719                  * with this same handle. If journal_extend fails, then it will
5720                  * only result in a minor loss of functionality for that inode.
5721                  * If this is felt to be critical, then e2fsck should be run to
5722                  * force a large enough s_min_extra_isize.
5723                  */
5724                 if ((jbd2_journal_extend(handle,
5725                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5726                         ret = ext4_expand_extra_isize(inode,
5727                                                       sbi->s_want_extra_isize,
5728                                                       iloc, handle);
5729                         if (ret) {
5730                                 ext4_set_inode_state(inode,
5731                                                      EXT4_STATE_NO_EXPAND);
5732                                 if (mnt_count !=
5733                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5734                                         ext4_warning(inode->i_sb,
5735                                         "Unable to expand inode %lu. Delete"
5736                                         " some EAs or run e2fsck.",
5737                                         inode->i_ino);
5738                                         mnt_count =
5739                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5740                                 }
5741                         }
5742                 }
5743         }
5744         if (!err)
5745                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5746         return err;
5747 }
5748
5749 /*
5750  * ext4_dirty_inode() is called from __mark_inode_dirty()
5751  *
5752  * We're really interested in the case where a file is being extended.
5753  * i_size has been changed by generic_commit_write() and we thus need
5754  * to include the updated inode in the current transaction.
5755  *
5756  * Also, dquot_alloc_block() will always dirty the inode when blocks
5757  * are allocated to the file.
5758  *
5759  * If the inode is marked synchronous, we don't honour that here - doing
5760  * so would cause a commit on atime updates, which we don't bother doing.
5761  * We handle synchronous inodes at the highest possible level.
5762  */
5763 void ext4_dirty_inode(struct inode *inode)
5764 {
5765         handle_t *handle;
5766
5767         handle = ext4_journal_start(inode, 2);
5768         if (IS_ERR(handle))
5769                 goto out;
5770
5771         ext4_mark_inode_dirty(handle, inode);
5772
5773         ext4_journal_stop(handle);
5774 out:
5775         return;
5776 }
5777
5778 #if 0
5779 /*
5780  * Bind an inode's backing buffer_head into this transaction, to prevent
5781  * it from being flushed to disk early.  Unlike
5782  * ext4_reserve_inode_write, this leaves behind no bh reference and
5783  * returns no iloc structure, so the caller needs to repeat the iloc
5784  * lookup to mark the inode dirty later.
5785  */
5786 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5787 {
5788         struct ext4_iloc iloc;
5789
5790         int err = 0;
5791         if (handle) {
5792                 err = ext4_get_inode_loc(inode, &iloc);
5793                 if (!err) {
5794                         BUFFER_TRACE(iloc.bh, "get_write_access");
5795                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5796                         if (!err)
5797                                 err = ext4_handle_dirty_metadata(handle,
5798                                                                  NULL,
5799                                                                  iloc.bh);
5800                         brelse(iloc.bh);
5801                 }
5802         }
5803         ext4_std_error(inode->i_sb, err);
5804         return err;
5805 }
5806 #endif
5807
5808 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5809 {
5810         journal_t *journal;
5811         handle_t *handle;
5812         int err;
5813
5814         /*
5815          * We have to be very careful here: changing a data block's
5816          * journaling status dynamically is dangerous.  If we write a
5817          * data block to the journal, change the status and then delete
5818          * that block, we risk forgetting to revoke the old log record
5819          * from the journal and so a subsequent replay can corrupt data.
5820          * So, first we make sure that the journal is empty and that
5821          * nobody is changing anything.
5822          */
5823
5824         journal = EXT4_JOURNAL(inode);
5825         if (!journal)
5826                 return 0;
5827         if (is_journal_aborted(journal))
5828                 return -EROFS;
5829
5830         jbd2_journal_lock_updates(journal);
5831         jbd2_journal_flush(journal);
5832
5833         /*
5834          * OK, there are no updates running now, and all cached data is
5835          * synced to disk.  We are now in a completely consistent state
5836          * which doesn't have anything in the journal, and we know that
5837          * no filesystem updates are running, so it is safe to modify
5838          * the inode's in-core data-journaling state flag now.
5839          */
5840
5841         if (val)
5842                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5843         else
5844                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5845         ext4_set_aops(inode);
5846
5847         jbd2_journal_unlock_updates(journal);
5848
5849         /* Finally we can mark the inode as dirty. */
5850
5851         handle = ext4_journal_start(inode, 1);
5852         if (IS_ERR(handle))
5853                 return PTR_ERR(handle);
5854
5855         err = ext4_mark_inode_dirty(handle, inode);
5856         ext4_handle_sync(handle);
5857         ext4_journal_stop(handle);
5858         ext4_std_error(inode->i_sb, err);
5859
5860         return err;
5861 }
5862
5863 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5864 {
5865         return !buffer_mapped(bh);
5866 }
5867
5868 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5869 {
5870         struct page *page = vmf->page;
5871         loff_t size;
5872         unsigned long len;
5873         int ret = -EINVAL;
5874         void *fsdata;
5875         struct file *file = vma->vm_file;
5876         struct inode *inode = file->f_path.dentry->d_inode;
5877         struct address_space *mapping = inode->i_mapping;
5878
5879         /*
5880          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5881          * get i_mutex because we are already holding mmap_sem.
5882          */
5883         down_read(&inode->i_alloc_sem);
5884         size = i_size_read(inode);
5885         if (page->mapping != mapping || size <= page_offset(page)
5886             || !PageUptodate(page)) {
5887                 /* page got truncated from under us? */
5888                 goto out_unlock;
5889         }
5890         ret = 0;
5891         if (PageMappedToDisk(page))
5892                 goto out_unlock;
5893
5894         if (page->index == size >> PAGE_CACHE_SHIFT)
5895                 len = size & ~PAGE_CACHE_MASK;
5896         else
5897                 len = PAGE_CACHE_SIZE;
5898
5899         lock_page(page);
5900         /*
5901          * return if we have all the buffers mapped. This avoid
5902          * the need to call write_begin/write_end which does a
5903          * journal_start/journal_stop which can block and take
5904          * long time
5905          */
5906         if (page_has_buffers(page)) {
5907                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5908                                         ext4_bh_unmapped)) {
5909                         unlock_page(page);
5910                         goto out_unlock;
5911                 }
5912         }
5913         unlock_page(page);
5914         /*
5915          * OK, we need to fill the hole... Do write_begin write_end
5916          * to do block allocation/reservation.We are not holding
5917          * inode.i__mutex here. That allow * parallel write_begin,
5918          * write_end call. lock_page prevent this from happening
5919          * on the same page though
5920          */
5921         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5922                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5923         if (ret < 0)
5924                 goto out_unlock;
5925         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5926                         len, len, page, fsdata);
5927         if (ret < 0)
5928                 goto out_unlock;
5929         ret = 0;
5930 out_unlock:
5931         if (ret)
5932                 ret = VM_FAULT_SIGBUS;
5933         up_read(&inode->i_alloc_sem);
5934         return ret;
5935 }